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On the Functors Associated with Beaded Open
Jacobi Diagrams

by

Christine Vespa

Abstract

Morphisms in the linear category A of Jacobi diagrams in handlebodies give rise to
interesting contravariant functors on the category gr of finitely generated free groups,
encoding part of the composition structure of the category A. These functors correspond,
via an equivalence of categories given by Powell, to functors given by beaded open Jacobi
diagrams. We study the polynomiality of these functors and whether they are outer func-
tors. These results are inspired by and generalize previous results obtained by Katada.
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§1. Introduction

In [HM21], Habiro and Massuyeau extend the Kontsevich integral to construct a

functor from the category of bottom tangles in handlebodies to the linear category

A of Jacobi diagrams in handlebodies. This category has N as objects and for

n,m ∈ N, a generator of the vector space A(n,m) can be represented by a Jacobi

diagram J whose edges are oriented, such that each univalent vertex is embedded

into the interior of the 1-manifold Xm, consisting of m arcs and where we have

beads, coloured with elements of the free group of rank n, on Xm and on the edges

of J . For example, for F3 = ⟨x1, x2, x3⟩, the following is a non-zero element of

A(3, 2):

x−1
2

x−1
1

x3

x1
x1
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C. Vespa: Université de Strasbourg, CNRS, IRMA UMR 7501, 67000 Strasbourg, France;
e-mail: christine.vespa@univ-amu.fr

© 2025 Research Institute for Mathematical Sciences, Kyoto University.
This work is licensed under a CC BY 4.0 license.

mailto:christine.vespa@univ-amu.fr
https://creativecommons.org/licenses/by/4.0/


504 C. Vespa

The definition of the composition in the linear category A is natural from

the geometric point of view. However, it is quite complicated to understand it

algebraically and this paper sheds some light on this.

To study the composition in a category, we can fix an object n in the category

and look at the composition of the morphisms from n with any morphism of the

category. In our setting, this corresponds to studying, for n an object of A, the

linear functor A(n,−) : A → K-Mod where A(−,−) denotes the K-vector space

of morphisms in A, for K a field of characteristic zero. These functors being still

too complicated to study, we restrict them to the subcategory A0 of A which is

equivalent, by [HM21, p. 630], to the K-linearization of the opposite of the category

gr of finitely generated free groups. This gives rise to functors

A(n,−) : grop → K-Mod

encoding the composition of morphisms in A from n with a morphism in the

subcategory A0. The grading by the degree d of the Jacobi diagrams defines sub-

functors of A(n,−):

Ad(n,−) : grop → K-Mod.

For n = 0, these functors have been studied by Katada [Kat23, Kat24]. Katada

shows that Ad(0,−) is a polynomial functor of degree 2d which is an outer functor:

i.e. for all m ∈ N, the inner automorphisms act trivially onAd(0,m). She also gives

the complete structure of the functors Ad(0,−) for d ∈ {1, 2, 3} and, for general

d, a decomposition of the functor Ad(0,−) into indecomposables.

The aim of this paper is to study, more generally, the functors Ad(n,−) : grop

→ K-Mod for d, n ∈ N.
Our first result shows that the polynomiality of the functorsAd(0,−) is excep-

tional.

Proposition 1 (Proposition 5.4). For d, n ∈ N, the functor Ad(n,−) : grop →
K-Mod is polynomial iff n = 0.

Using the grop-grading of A(n,m) introduced by Habiro and Massuyeau

[HM21], we obtain, in Proposition 6.1, a subfunctor A(n,−)0 of A(n,−), sat-

isfying A(0,−)0 = A(0,−). The generators of A(n,m)0 are those of A(n,m)

which can be represented by a Jacobi diagram on Xm without beads on Xm (but

there may be beads on the Jacobi diagram). For example, for F3 = ⟨x1, x2, x3⟩,
the following represents a non-zero element of A(3, 2)0:

x−1
1

x3
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The grading by the degree d of the Jacobi diagrams defines a subfunctor

Ad(n,−)0 of A(n,−)0. Considering the subspace of Ad(n,m)0 generated by

the Jacobi diagrams having at least t trivalent vertices, we obtain subfunctors

At
d(n,−)0 of Ad(n,−)0 defining a filtration

(1.1) 0 = A2d
d (n,−)0 ⊂ · · · ⊂ A1

d(n,−)0 ⊂ A0
d(n,−)0 = Ad(n,−)0

corresponding, for n = 0, to the filtration considered by Katada [Kat23].

These functors satisfy the following.

Theorem 2 (Theorem 6.9). For n ∈ N and d ≥ 0, the functor Ad(n,−)0 : gr
op →

K-Mod is polynomial of degree 2d and the filtration (1.1) corresponds to the poly-

nomial filtration.

However, contrary to Katada’s result, the functors Ad(n,−)0 are rarely outer

functors.

Theorem 3 (Theorem 6.13). For d, n ∈ N, the functor Ad(n,−)0 is an outer

functor iff n = 0 or d = 0.

We obtain a description of the functor A1(n,−)0 generalizing that of the

functor A1(0,−) given in [Kat23, Sect. 4]. Let a : gr → K-Mod be the abelian-

ization functor, P2 : gr → K-Mod the second Passi functor (see Section 3) and

(−)# : F(gr;K)op →F(grop;K) the duality functor, where F(gr;K) (resp. F(grop;

K)) denote the category of functors from gr (resp. grop). We have the following

proposition.

Proposition 4 (Proposition 6.12). For n ∈ N, we have a natural equivalence

A1(n,−)0 ≃ P#
2 ⊗

S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and

the action of S2 on P#
2 is given in Section 3. In particular, we have A1(0,−) ≃

S2 ◦ a# where S2 : K-Mod → K-Mod is the second symmetric power functor.

In Section 6.7 we give another proof, based on [PV25], of [Kat24, Thm. 10.1],

giving a direct sum decomposition of the functor Ad(0,−) in the category of

functors on grop.

One of the main ingredients of this paper is the use of the equivalence of

categories given by Powell [Pow]:

α−1 : Fω(gr
op;K)

≃−→ FLie,
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where Fω(gr
op;K) is the category of analytic functors on grop and FLie is the

category of K-linear functors from the linear PROP associated with the operad Lie
to K-Mod (see Section 2.4 for further details). It turns out that the polynomial

filtration of a functor is easier to understand in the category FLie than in the

category Fω(gr
op;K) (see [Pow] and Section 2.4). It is also easier to show that

the action of inner automorphisms is trivial in the category FLie (see [Pow24]

and Section 2.5). The proofs of the previous results are based on the computation

of the functor α−1(Ad(n,−)0). In Section 6.2, we introduce the K-vector space

JFn

d (m) which is the quotient by the AS and the IHX relations, of the K-vector

space generated by equivalence classes of open Jacobi diagrams D whose edges are

oriented and labelled by Fn (represented by beads) and equipped with a bijection

{univalent vertices of D} ≃−→ {1, . . . ,m}. For example, the following is a non-zero

element of JFn
2 (3):

x3

x−1
1

1

2 3

The generators of JFn

d (m) are called Fn-beaded open Jacobi diagrams. The

correspondence between the AS relation and the antisymmetry relation for Lie

algebras and the IHX relation and the Jacobi relation for Lie algebras implies that

this defines a functor JFn

d in FLie (see Proposition 6.6). We have the following.

Theorem 5 (Theorem 6.7). For n, d ∈ N, we have an equivalence of functors in

FLie:

α−1(Ad(n,−)0) ≃ JFn

d .

The title of this paper reflects the fact that the functors JFn

d are much easier

to study than the functors Ad(n,−)0. A more in-depth study of the functors JFn

d

will be given in another paper.

Notation. Denote by

� K a field of characteristic 0;

� K-Mod the category of K-vector spaces.

For n ≥ 0,

� n = {1, . . . , n};
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� Sn is the symmetric group on n letters;

� Xn is the oriented 1-manifold consisting of n arc components;

� Fn = ⟨x1, . . . , xn⟩ is the free group of rank n. The trivial group is denoted

by {1}.

For generalities on Jacobi diagrams we refer the reader to [CDM12, Chap. 5].

§2. Functors on grop

§2.1. Generalities on gr

Let gr be the category of finitely generated free groups. This category is essentially

small, with skeleton given by N, where n ∈ N corresponds to the free group Fn

of rank n. For clarity, we will sometimes denote the object n by Fn. The object

0 = F0 = {1} is a null-object in gr. For n,m objects of gr, we denote by 0 : n → m

the composition n → 0 → m. Explicitly, 0 is the homomorphism Fn → Fm sending

each generator of Fn to 1 ∈ Fm.

The category gr is a PROP for the symmetric strict monoidal structure given

by the free product.

By Pirashvili’s result [Pir02], the PROP gr is isomorphic to the free symmetric

monoidal category generated by a commutative Hopf monoid. In other words, the

morphisms of gr are generated by the permutations in gr(n, n) for n ∈ N and the

following homomorphisms:

(1) m1 : 1 → 0 corresponding to F1 → {1};
(2) m2 : 1 → 2 corresponding to F1 → F2 sending the generator x of F1 to x1x2;

(3) m3 : 0 → 1 corresponding to {1} → F1;

(4) m4 : 1 → 1 corresponding to F1 → F1 sending the generator x of F1 to x−1;

(5) m5 : 2 → 1 corresponding to F2 → F1 sending x1 to x and x2 to x (this is the

folding map).

§2.2. Generalities on functors on gr and grop

We denote by F(gr;K) (resp. F(grop;K)) the category of functors from gr (resp.

grop) to K-Mod. These categories are abelian.

A functor M : gr → K-Mod (resp. N : grop → K-Mod) is said to be reduced

if M(0) = 0 (resp. N(0) = 0).

Let Pn : gr → K-Mod be the functor K[gr(n,−)]; {Pn, n ∈ N} is a set of

projective generators of the category F(gr;K). By the Yoneda lemma, for F : gr →
K-Mod, HomF(gr;K)(Pn, F ) ≃ F (n).
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We denote by P 1 the reduced part of P1 i.e. P1 ≃ K ⊕ P 1, where K is

the constant functor on gr. For G a free group, P 1(G) is the K-vector space

underlying the augmentation ideal IG of the K-algebra K[G]. Since P0 = K, we

have HomF(gr;K)(P1, F ) ≃ F (0)⊕HomF(gr;K)(P 1, F ), so

(2.1) HomF(gr;K)(P 1, P 1) ≃ P 1(1) ≃ IF1.

Composition with the vector space duality functor (−)# : K-Mod → K-Modop

gives rise to a pair of adjoint functors, named the duality functors

(−)# : F(gr;K)op → Func(gr;K-Modop)op
≃−→ F(grop;K),

(−)# : F(grop;K) → Func(grop;K-Modop)
≃−→ F(gr;K)op,

where the last equivalences are given by the usual equivalence of categories F(grop;

K)op ≃ Func(gr;K-Modop), where Func(gr;K-Modop) is the category of functors

from gr to the opposite of K-Mod. The duality functors restrict to an equivalence

of categories for functors taking finite-dimensional values.

Let a : gr → K-Mod be the abelianization functor that sends a free group G

to (G/[G,G])⊗
Z
K.

The category of outer functors FOut(grop;K) is the full subcategory of

F(grop;K) of functors F such that, for each n ∈ N, inner automorphisms act triv-

ially on F (n). Outer functors were introduced in [PV25, Sect. 10]. Let Ω: F(grop;

K) → FOut(grop;K) be the left adjoint to the inclusion functor FOut(grop;K) ↪→
F(grop;K). The functor Ω is described explicitly in [PV25, Def. 11.5].

§2.3. Polynomial and analytic functors on grop

Polynomial contravariant functors have been considered in a general setting in

[HPV15, Sect. 3.1]. Here we recall the definitions for contravariant functors on gr.

For k ∈ {1, . . . , n}, let in
k̂
: Fn−1 → Fn be the homomorphism given by

in
k̂
(xi) =

{
xi if i < k,

xi+1 if i ≥ k.

The nth cross-effect of a functor N : grop → K-Mod is a functor c̃rn(N):

(grop)×n → K-Mod. Its evaluation on F1 in each variable c̃rn(N)(1, . . . , 1) is equal

to the kernel of the natural homomorphism

N(Fn)

(
N(in

1̂
)

...
N(inn̂)

)
//

n⊕
k=1

N(Fn−1).



On the Functors Associated with Beaded Open Jacobi Diagrams 509

In the examples, it is easier to compute cross-effects using the following equiv-

alent description using a cokernel instead of a kernel. For k ∈ {1, . . . , n}, let

rn
k̂
: Fn → Fn−1 be the homomorphism given by

rn
k̂
(xi) =


xi if i < k,

1 if i = k,

xi−1 if i > k,

c̃rn(N)(1, . . . , 1) is isomorphic to the cokernel of the natural homomorphism

n⊕
k=1

N(Fn−1)
(N(rn

1̂
),...,N(rnn̂))

−−−−−−−−−−−→ N(Fn).

For d ∈ N, a functor N : grop → K-Mod is polynomial of degree at most d if

c̃rk(N)(1, . . . , 1) = 0 for any k ≥ d + 1. Let Fd(gr
op;K) be the full subcategory

of polynomial functors of degree at most d. The forgetful functor Fd(gr
op;K) →

F(grop;K) has a right adjoint denoted by pd. For N : grop → K-Mod, the functor

pd(N) is the largest subfunctor of N polynomial of degree d. Hence, a functor

N : grop → K-Mod admits a natural filtration, called the polynomial filtration of

N :

p0(N) ⊂ p1(N) ⊂ · · · ⊂ pd(N) ⊂ pd+1(N) ⊂ · · · ⊂ N.

A functor N : grop → K-Mod is analytic if it is the colimit of its subfunc-

tors pd(N). Let Fω(gr
op;K) denote the full subcategory of F(grop;K) of analytic

functors.

For d ∈ N, we have a functor: crd : Fd(gr
op;K) → K[Sd]-Mod, given on

N : grop → K-Mod by crd(N) = c̃rd(N)(1, . . . , 1), where the action of Sd is given

by permuting the factors.

The functor (a#)⊗d : grop → K-Mod is polynomial of degree d. The following

proposition is the analogue, for contravariant functors, of [PV25, Prop. 6.9].

Proposition 2.1 ([Pow, Prop. 7.21]). For d ∈ N, the functor crd : Fd(gr
op;K) →

K[Sd]-Mod has a right adjoint given by

M 7→ ((a#)⊗d ⊗M)Sd ,

where Sd acts diagonally. This functor is exact and ((a#)⊗d⊗M)Sd is semisimple

of polynomial degree d.

For N : grop → K-Mod there is a natural short exact sequence

0 → pd−1(N) → pd(N) → ((a#)⊗d ⊗ crd(pdN))Sd → 0.



510 C. Vespa

§2.4. Analytic functors on grop and CatLie-modules

Let CatLie be the linear PROP associated with the operad Lie [LV12, Sect. 5.4.1].

Explicitly, CatLie is the K-linear category such that Ob(CatLie) = N and

CatLie(m,n) =
⊕

f∈Fin(m,n)

n⊗
i=1

Lie(|f−1(i)|)

where Fin is the category of finite sets. Since Lie is reduced (i.e. Lie(0) = 0) the

sum can be taken over the surjections m ↠ n. For m ∈ N, CatLie(m, 1) = Lie(m)

and for m < n, CatLie(m,n) = 0. Since Lie(1) = K, CatLie(m,m) ≃ K[Sm].

Fix a generator µ ∈ Lie(2). For n ∈ N and i ∈ {1, . . . , n}, let µn+1
i ∈

CatLie(n+ 1, n) be the morphism given by the set map sn+1
i : n+ 1 → n defined

by sn+1
i (j) = j for j < n + 1 and sn+1

i (n + 1) = i and taking 1 ∈ Lie(1) for the

fibers of cardinal 1 and µ ∈ Lie(2) for the fiber of cardinal 2. The K-linear category

CatLie is generated (via linear combination and composition) by the morphisms

µn+1
i ∈ CatLie(n+ 1, n) and CatLie(n, n) ≃ K[Sn] for n ∈ N.

Note that a pointed version of CatLie with a shuffle condition on fibers inter-

venes in [HV15].

Let FLie be the category of K-linear functors from CatLie to K-Mod. For

n ∈ N, CatLie(n,−) : CatLie → K-Mod is a linear functor. By the enriched Yoneda

lemma, for F : CatLie → K-Mod a K-linear functor, we have an isomorphism:

HomFLie
(CatLie(n,−), F ) ≃ F (n).

We deduce that the functors CatLie(n,−), for n ≥ 0, are projective generators of

FLie.

For F ∈ FLie and i ∈ N, since CatLie(m,n) = 0 for m < n, F admits a

subfunctor F≤i given by truncation, i.e.

F≤i(n) =

{
F (n) if n ≤ i,

0 if n > i.

It follows that a functor F ∈ FLie admits a natural filtration:

F≤0 ⊂ F≤1 ⊂ · · · ⊂ F≤d ⊂ F≤d+1 ⊂ · · · ⊂ F.

Powell [Pow] gives an equivalence of categories between FLie and Fω(gr
op;K).

In particular, in [Pow, Thm. 9.19] he constructs explicit exact functors:

α : FLie → Fω(gr
op;K),

α−1 : Fω(gr
op;K) → FLie,
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giving this equivalence. Combining [Pow, Thm. 9.19, Prop. 9.17, Cor. 7.28], for

F ∈ Fω(gr
op;K) we have an isomorphism:

(2.2) α−1(F )(d) ≃ c̃rd(pdF )(1, . . . , 1).

The category CatLie is easier to understand than the category grop. For

example, we have CatLie(i, j) = 0 for i < j. It follows that it is easier to work

with CatLie-modules than with functors on grop. In particular, the polynomial-

ity of functors in Fω(gr
op;K) has an easy interpretation in CatLie-modules: a

functor F ∈ Fω(gr
op;K) is polynomial of degree equal to d iff α−1(F )(d) ̸= 0

and α−1(F )(k) = 0 for k > d. Via the equivalence of categories, the polynomial

filtration of a functor in Fω(gr
op;K) corresponds to the filtration given by the

truncations of CatLie-modules. More precisely, for N : grop → K-Mod and i ∈ N
we have

(2.3) α−1(pi(N)) = (α−1N)≤i.

To prove Theorem 6.7, we will need the following explicit description of the

functor α given in [Pow, Thm. 9.19]. Let CatAssu be the linear PROP associ-

ated with unital associative algebras; CatAssu is the K-linear category such that

Ob(CatAssu) = N and

CatAssu(m,n) =
⊕

f∈Fin(m,n)

n⊗
i=1

Assu(|f−1(i)|),

where Fin is the category of finite sets. More explicitly, a generator of CatAssu(m,

n) is represented by a set map f ∈ Fin(m,n) and an order of the elements of

each fiber of f . We denote by (sn+1
i , i < n + 1) (resp. (sn+1

i , n + 1 < i)) the

morphism in CatAssu(n + 1, n) given by the set map sn+1
i : n+ 1 → n and the

order i < n + 1 (resp. n + 1 < i) on the fiber of cardinal 2. The morphism of

operads Lie → Assu induces a functor CatLie → CatAssu sending the morphism

µn+1
i ∈ CatLie(n+1, n) to (sn+1

i , i < n+1)−(sn+1
i , n+1 < i) ∈ CatAssu(n+1, n).

By [Pow, Prop. 9.13] the sets of morphisms in CatAssu define a functor:

CatAssu : (CatLie)op ⊗K[grop] → K-Mod.

In [Pow, Lem. A.2], the functor CatAssu(i,−) : grop → K-Mod, for i an object of

(CatLie)op, is described explicitly on the generators of gr recalled in Section 2.1.

By [Pow, Thm. 9.19], α = CatAssu ⊗
CatLie

−.

Let Σ be the category of finite sets and bijections and F(Σ;K) the category

of functors from Σ to K-Mod. To a K[Sd]-module M , we can associate the functor

M : Σ → K-Mod which is 0 for n ̸= d and M on d. A functor F : Σ → K-Mod is



512 C. Vespa

equivalent to a family of independent representations of the symmetric groups Sd

for all d ∈ N.
The obvious functor Σ → grop induces a functor F(grop;K) → F(Σ;K). By

[Pow, Rem. 9.21], for an object F of FLie and d an object of grop, the functor in

F(Σ;K) associated with CatAssu ⊗
CatLie

F is given explicitly by

(2.4) α(F )(d) ≃
⊕
i∈N

KFin(i,d) ⊗
Si

F (i).

A K[Sd]-module M defines an object of FLie which is 0 for n ̸= d and M on

d. Such a CatLie-module will be called atomic and will be denoted by M [d].

For a K[Sd]-module M , by [Pow, Exa. 8.7], we have

(2.5) α(M [d]) = (a#)⊗d ⊗
Sd

M.

This is in the image of the faithful embedding Fω(ab
op;K) ↪→ Fω(gr

op;K), where

ab is the category of finitely generated free abelian groups. The category of analytic

functors Fω(ab
op;K) is semisimple. More precisely, we have an equivalence of

categories:

Fω(ab
op;K) ≃ F(Σ;K).

The functor α extends this equivalence of categories in the sense that we have a

commutative diagram:

FLie
α

≃
// Fω(gr

op;K)

F(Σ;K) ≃
//

?�

OO

Fω(ab
op;K).
?�

OO

Remark 2.2. For N : grop → K-Mod, by Proposition 2.1 we can consider the

graded functor gr(N) associated with the filtered functor N , obtained by consid-

ering the polynomial filtration. We have gr(N) =
⊕

d∈N((a
#)⊗d ⊗ crd(pdN))Sd

and α−1(gr(N)) is the direct sum of atomic functors associated with the K[Sd]-

module crd(pdN), whereas α−1(N) is not, in general, the direct sum of atomic

functors. This illustrates the fact that, considering the graded functor associated

with a filtered functor, we lose much of the structure.

§2.5. Outer CatLie-modules

Powell [Pow24] gives a characterization of CatLie-modules corresponding to outer

functors via the equivalence of categories given in the previous section. These

CatLie-modules will be called outer CatLie-modules. We briefly recall Powell’s

result.
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Let τ : FLie → FLie be the shifting functor given by precomposition with −+

1: CatLie → CatLie. Let µ : τ → Id be the natural transformation defined as fol-

lows: for F ∈ FLie, µF : τF →F is given by the natural morphisms (µF )n : τF (n) =

F (n + 1) → F (n) induced by
∑n

i=1 µ
n+1
i ∈ CatLie(n + 1, n). Let Fµ

Lie be the full

subcategory of FLie of functors such that µF = 0. By [Pow24, Thm. 6.14], under the

equivalence of categories Fω(gr
op;K) ≃ FLie, the full subcategory FOut

ω (grop;K)

of Fω(gr
op;K) is equivalent to Fµ

Lie.

Let (−)µ : FLie → Fµ
Lie be the functor given by Fµ := coker(µF ). By [Pow24,

Prop. 3.17], (−)µ is the left adjoint to the inclusion Fµ
Lie ↪→ FLie and so corresponds

to the functor Ω: F(grop;K) → FOut(grop;K) via the equivalence of categories

Fω(gr
op;K) ≃ FLie.

§3. On the second Passi functor P2

The contents of this section will be used in the proof of Proposition 6.12. As the

results of this section are of independent interest, we choose to dedicate a separate

section to them. The reader can skip this section on first reading.

The polynomial functors on gr are defined similarly to polynomial functors

on grop (see [HPV15, Def. 3.6] for example). Let Fd(gr;K) be the full subcategory

of F(gr;K) of polynomial functors of degree at most d. The forgetful functor

Fd(gr;K) → F(gr;K) has a right adjoint denoted by pd. For M : gr → K-Mod,

the functor pd(M) is the largest quotient of M polynomial of degree d.

Let P2 : gr → K-Mod be the functor defined by P2(Fn) = IFn/(IFn)
3. The

functor P2 is called the second Passi functor (see [HPV15, Ves18, PV25]). We have

P2 = p2(P 1), so P2 is the largest quotient of P 1 that is polynomial of degree 2.

For G a group, we denote by {[g], g ∈ G} the basis of KG given by the set of

elements of G.

The group S2 acts on P2 in the following way: by (2.1), the element [x−1
1 ]− [1]

of IF1 corresponds to a natural transformation σ in EndF(gr;K)(P 1). For G ∈ gr,

σG : IG → IG is given explicitly by: σG([g] − [1]) = [g−1] − [1]. Since σ2 = 1, σ

defines an action of S2 on P 1. By composition with P 1 ↠ P2 we obtain

σ ∈ HomF(gr;K)(P 1,P2) ≃ HomF2(gr;K)(P2,P2),

where the last isomorphism is given by adjunction, so that S2 acts on P2.

In the following lemma we give an explicit description of this action of S2 on

P2. Recall that a(G) ≃ IG/(IG)2, for G an object of gr.

Lemma 3.1. The natural transformation σ : P2 → P2 restricts to a natural trans-

formation σ|a⊗2 : a⊗2 → a⊗2 given by the place permutation. The induced natural
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transformation σ̄ : a → a is given by σ̄(x) = −x for G an object of gr and x an

element in a(G).

Proof. By [Ves18, DPV16], P2 is a generator of Ext1F(gr;K)(a, a
⊗2). The non-split

short exact sequence

(3.1) 0 // a⊗2 i // P2
p
// a // 0

gives rise, for G an object of gr, to an exact sequence

0 // IG/(IG)2 ⊗ IG/(IG)2
i // IG/(IG)3

p
// IG/(IG)2 // 0.

For x, y ∈ G we have

σG ◦ i
(
([x]− [1] + (IG)2)⊗ ([y]− [1] + (IG)2)

)
= σG(([x]− [1]).([y]− [1]) + (IG)3)

= σG(([xy]− [1])− ([x]− [1])− ([y]− [1]) + (IG)3)

= ([y−1x−1]− [1])− ([x−1]− [1])− ([y−1]− [1]) + (IG)3

= ([y−1]− [1]).([x−1]− [1]) + (IG)3

= i
(
([y−1]− [1] + (IG)2)⊗ ([x−1]− [1] + (IG)2)

)
.

We deduce that σ induces natural transformations σ|a⊗2 : a⊗2 → a⊗2 and σ̄ : a → a.

Since ([y]− [1])([y−1]− [1]) = −([y]− [1])− ([y−1]− [1]) in (IG)2, we have

([y−1]− [1] + (IG)2)⊗ ([x−1]− [1] + (IG)2)

= (−([y]− [1]) + (IG)2)⊗ (−([x]− [1]) + (IG)2)

= ([y]− [1] + (IG)2)⊗ ([x]− [1] + (IG)2),

giving the explicit description of σ|a⊗2 .

For that of σ̄, we have

p ◦ σG([y]− [1] + (IG)3) = p([y−1]− [1] + (IG)3) = [y−1]− [1] + (IG)2

= −([y]− [1]) + (IG)2.

The action of S2 on P2 induces an action of S2 on P#
2 . The functor P#

2 is

polynomial of degree 2, since P2 is polynomial of degree 2.

In order to describe the functor A1(n,−)0 in Proposition 6.12, we need the

following results on the second Passi functor.

Proposition 3.2. We have a natural equivalence in FLie:

α−1(P#
2 ) ≃ CatLie(2,−),

hence α−1(P#
2 ) is projective.
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Proof. The duality functor and α−1 being exact functors, we deduce from the

non-split exact sequence (3.1), the following non-split exact sequence in FLie:

(3.2) 0 // α−1(a#) // α−1(P#
2 ) // α−1((a⊗2)#) // 0.

By (2.5), α−1(a#) and α−1((a⊗2)#) are atomic functors given by α−1(a#) = K[1]

and α−1((a⊗2)#) = K[S2][2]. We deduce that α−1(P#
2 ) is non-zero only on 1 and

2 and that

α−1(P#
2 )(1) = K and α−1(P#

2 )(2) = K[S2].

The functor CatLie(2,−) : CatLie → K-Mod is non-zero only on 1 and 2 and

we have

CatLie(2, 1) ≃ K and CatLie(2, 2) ≃ K[S2].

By the Yoneda lemma,

HomFLie
(CatLie(2,−), α−1(P#

2 )) ≃ α−1(P#
2 )(2) = K[S2].

Let ν : CatLie(2,−) → α−1(P#
2 ) be the natural transformation corresponding to

[Id] by the previous isomorphism. By naturality of ν, we have

α−1(P#
2 )(µ2

1) ◦ ν2 = ν1 ◦ CatLie(2,−)(µ2
1).

By construction, ν2 is an isomorphism and, since the short exact sequence

(3.2) is non-split, α−1(P#
2 )(µ2

1) ̸= 0. We deduce that ν1 ̸= 0 and so it is an

isomorphism. Consequently, ν is a natural equivalence.

Corollary 3.3. The functor P#
2 is projective in the category of polynomial func-

tors on grop.

Proof. The functor α is an equivalence of categories and, by Proposition 3.2,

α−1(P#
2 ) is projective in FLie. So P#

2 is projective in Fω(gr
op;K). Since the cat-

egory of polynomial functors on grop is a full abelian subcategory of Fω(gr
op;K),

P#
2 is projective in the category of polynomial functors on grop.

Corollary 3.4. For n ∈ N, we have a natural equivalence:

α−1(P#
2 ⊗

S2

K[Fn]) ≃ CatLie(2,−) ⊗
S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and

the action of S2 on P#
2 is induced by the action of S2 on P2, which is described

in Lemma 3.1.
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§4. Habiro–Massuyeau’s category

§4.1. Definition

Habiro and Massuyeau [HM21, Sect. 4.1] consider Jacobi diagrams on a 1-manifold

coloured by elements of a group (see also [GL01, ST04]). In order to avoid confu-

sion with the fact that we will also consider Jacobi diagrams where the univalent

vertices are “coloured” by a set, we replace the terminology used by Habiro and

Massuyeau with beaded Jacobi diagrams (following, for example, [GR04]).

For d ≥ 0, let Xd be the oriented 1-manifold consisting of d arc components.

Recall that a Jacobi diagram D on Xd is a uni-trivalent graph such that each

trivalent vertex is oriented, the set of univalent vertices is embedded into the

interior of Xd and each connected component of D contains at least one univalent

vertex. When a Jacobi diagram D on Xd is drawn in the plane, we draw the 1-

manifold Xd with solid lines, the Jacobi diagram part D with dashed lines and we

assume counterclockwise orientation for the trivalent vertices of D.

For G a group, a G-beaded Jacobi diagram on Xd is a Jacobi diagram D on

Xd whose graph edges are oriented and a G-valued function on a finite subset of

(Int(Xd)∪D) \Vert(D). This function labels the oriented edges of D and the arcs

of Xd, by elements in G. In figures, the labels are encoded by “beads” coloured

with elements of G.

Two G-beaded Jacobi diagrams on Xd are said to be equivalent if they are

related by the following sequence of local moves (see [HM21, (4.1) and p. 618]),

where w, x ∈ G:

∼w x wx ; ∼1 ;

∼w w−1

∼w x wx ; ∼1 ;

∼w
w

w

∼w
w

w

For example, these two G-beaded Jacobi diagrams on X2, where w1, w2, w3 ∈ G,

are equivalent:

w1

w3

w3
w2

w2

w1(w2)
−1

w1
∼ w1w3

w2w1

w−1
1 w1w2
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In particular, each G-beaded Jacobi diagram on Xd is equivalent to a G-beaded

Jacobi diagram of the form

. . . . . . . . .

1 2
. . .

d

w1 w2 wd

where w1, . . . , wd ∈ G and where we can have beads on the Jacobi diagram repre-

sented by the dashed parts.

Habiro and Massuyeau [HM21, Sect. 4.2] define the linear categoryA of Jacobi

diagrams in handlebodies. This category has N as objects and for n,m ∈ N,
A(n,m) is the vector space generated by the equivalence classes of Fn-beaded

Jacobi diagrams on Xm modulo the following STU relation:

= −

A generator in A(n,m) is called an (m,n)-Jacobi diagram. The composition

in the category A is quite complicated and we refer the reader to [HM21, Sect. 4.2]

for its formal definition. Roughly speaking it is given by a linear combination of

different ways of cabling the Jacobi diagrams on the arcs.

By [HM21, Sect. 4.3], the linear category A admits a symmetric monoidal

structure given on objects by the addition of integers. We denote this monoidal

structure by ⊙.

§4.2. Two gradings and sub-(semi)categories

In [HM21, Sect. 4.4] the authors define two gradings on the morphisms of A. The

first one is an N-grading given by the degree of the Jacobi diagram. Recall that

the degree of a Jacobi diagram is half the number of its vertices. For m,n ∈ N,
A(n,m) can be decomposed as a direct sum with respect to the degree d of the

Jacobi diagrams

(4.1) A(n,m) ≃
⊕
d∈N

Ad(n,m).

This grading is compatible with the composition in the category A giving maps

(4.2) ◦ : Ad′(m,n′)×Ad(n,m) → Ad+d′(n, n′)

for d, d′ ∈ N.
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The second grading is a grop-grading: the homotopy class of an (m,n)-Jacobi

diagramD onXn is the homomorphism h(D) : Fn → Fm that maps each generator

xj to the product of the beads along the jth-oriented component of Xn. We have

(4.3) A(m,n) =
⊕

f∈grop(m,n)

A(m,n)f .

Note that the identity morphism in A(n, n) is in the homotopy class of the identity

homomorphism Fn → Fn. This grading is compatible with the composition in the

category A:

(4.4) ◦ : A(m,n′)g ×A(n,m)f → A(n, n′)g◦f

for f ∈ grop(n,m) = gr(m,n) and g ∈ grop(m,n′) = gr(n′,m).

Using these gradings we can consider the following subcategory and sub-

semicategory of A. Recall that a semicategory is defined as a category without

the condition on the existence of identity morphisms (see [Mit72, Sect. 4]).

Taking degree d = 0, by (4.2) we have maps

◦ : A0(m,n′)×A0(n,m) → A0(n, n
′).

Hence A has a subcategory, denoted by A0, such that Obj(A0) = Obj(A)

and the morphisms in A0 are given by Jacobi diagrams of degree 0. By [HM21,

p. 630] we have an isomorphism of linear categories

(4.5) h : A0
≃−→ Kgrop.

This isomorphism comes from the fact that A0(n,m) is generated by Fn-beaded

empty Jacobi diagrams on Xm. So we have only beads on the arcs of Xm. Such

a choice of beads corresponds to a homomorphism Fm → Fn sending xi ∈ Fm

to the product of the beads along the ith arc of Xm. In other words, h sends an

(n,m)-Jacobi diagram to its homotopy class.

Via the isomorphism h given in (4.5), the generators (m1,m2,m3,m4,m5)

of gr recalled in Section 2.1 correspond to the morphisms (η, µ, ε, S,∆) given in

[HM21, (5.28)].

Recall that 0 ∈ grop(n,m) = gr(m,n) is the composition m → 0 → n in gr.

By Section 4.1, an Fn-beaded Jacobi diagram D on Xm in the homotopy class of 0

is represented by an Fn-beaded Jacobi diagram without beads on Xm (but there

may be beads on D).

By (4.4) we have maps

◦ : A(m,n′)0 ×A(n,m)0 → A(n, n′)0.
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We deduce that A has a sub-semicategory, denoted by A(−,−)0, such that

Obj(A(−,−)0) = Obj(A) and the morphisms in A(−,−)0 are given by beaded

Jacobi diagrams in the homotopy class of 0.

§5. Projective generators on Habiro–Massuyeau’s category

Let A-Mod be the category of K-linear functors from A to the category K-Mod.

For n ∈ N, A(n,−) : A → K-Mod is a linear functor. By the enriched Yoneda

lemma, for F : A → K-Mod a K-linear functor, we have an isomorphism:

HomA-Mod(A(n,−), F ) ≃ F (n).

We deduce that the functors A(n,−), for n ≥ 0, are projective generators of

A-Mod.

Note that, for d ∈ N, Ad(n,−) do not define subfunctors of A(n,−) since the

degree of Jacobi diagrams is not preserved by composition. However, for n ∈ N,
by restriction to A0, we have linear functors A(n,−) : A0≃Kgrop → K-Mod and

so functors

A(n,−) : grop → K-Mod.

Then, by (4.2), the grading by the degree of the Jacobi diagrams defines subfunc-

tors

Ad(n,−) : grop → K-Mod.

Remark 5.1. Katada [Kat23, Kat24] studies the functorA(0,−) : grop →K-Mod

and, for d ∈ N, its subfunctors Ad(0,−) denoted by Ad in [Kat23, Kat24]. In

[Kat23], she proves that Ad(0,−) is a polynomial functor of degree 2d which is an

outer functor. She also gives a complete description of the functorA1(0,−) and the

more complicated case of the functor A2(0,−). In [Kat24, Thm. 10.1], she gives a

direct decomposition of the functor Ad(0,−) for d ≥ 1 (see also Proposition 6.16

for another proof) and obtains in [Kat24, Prop. 10.2] that this is an indecomposable

decomposition.

Remark 5.2. More generally, A(−,−) : Aop × A → K-Mod is a linear functor

and, by restriction, we have a functor A(−,−) : gr× grop → K-Mod.

§5.1. Generalities on the functors A(n,−) and Ad(n,−)

The first result of this section shows that the functors A(n,−) are connected to

each other by injective natural transformations. Let ε ∈ A0(1, 0) = A(1, 0) be the

morphism corresponding, via the isomorphism h of (4.5) to the morphismm3 given
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in Section 2.1. For n ≥ 1 we have A(n, 0) ≃ K[ε⊙n] ≃ K and A(0, 0) = A0(0, 0) =

K. So 0 is a terminal object in the K-linear category A. We deduce that, for n ≥ 0,

the functors A(n,−) : grop → K-Mod are not reduced. We denote by A(n,−) the

reduced subfunctor of A(n,−). In particular, we have A(n,−) ≃ K ⊕ A(n,−).

Note that 0 is far from being an initial object in A.

Lemma 5.3. For d, n ∈ N, the precomposition with Idn ⊙ ε ∈ A0(n+ 1, n) gives

injective natural transformations

A(n,−) ↪→ A(n+ 1,−), Ad(n,−) ↪→ Ad(n+ 1,−).

Proof. For n = 0, the injectivity follows from [HM21, Lem. 4.5] and the general

case is a consequence of the generalization of this lemma given in [HM21, Rem. 4.6].

By (4.2) the composition preserves the degree of the Jacobi diagram.

Katada [Kat23, Prop. 8.1] proves that the functor Ad(0,−) is polynomial of

degree 2d. The following proposition shows that the polynomiality of the functors

Ad(n,−) is an infrequent phenomenon.

Proposition 5.4. For d, n ∈ N, the functor Ad(n,−) : grop → K-Mod is polyno-

mial iff n = 0.

The proof of this proposition is based on the following lemma.

Lemma 5.5. For d ≥ 0 and n ≥ 1 the functor Ad(n,−) : grop → K-Mod is not

polynomial.

Proof. We will prove that for k ≥ 2d+ 1, c̃rk(Ad(n,−))(1, . . . , 1) ̸= 0.

By Section 2.3, c̃rk(Ad(n,−))(1, . . . , 1) is the cokernel of the following homo-

morphism:

k⊕
l=1

Ad(n,−)(Fk−1)
(Ad(n,−)(rk

1̂
),...,Ad(n,−)(rk

k̂
))

−−−−−−−−−−−−−−−−−−−→ Ad(n,−)(Fk).

We have Ad(n,−)(Fk−1) ̸= 0 and a generator of Ad(n,−)(Fk−1) is represented

by a Fn-beaded Jacobi diagram D on Xk−1 having 2d vertices. For 1 ≤ i ≤ k,

Ad(n,−)(rk
î
)(D) is the Fn-beaded Jacobi diagram on Xk obtained from D by

inserting the Fn-beaded arc:

1
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between the (i − 1)th and the ith arc of D. So the following Fn-beaded Jacobi

diagram on Xk is a non-zero element in c̃rk(Ad(n,−))(1, . . . , 1):

1 2
. . .

2d− 1 2d 2d+ 1
. . .

k

1 ̸= wk−2d ∈ Fn1 ̸= w1 ∈ Fn

Proof of Proposition 5.4. For d ≥ 0 and n ≥ 1 the functor Ad(n,−) is not polyno-

mial by Lemma 5.5. The polynomiality of Ad(0,−) is given by [Kat23, Prop. 8.1]

(see also Corollary 6.11).

§5.2. Filtration of the functors A(n,−) and Ad(n,−)

For n,m, t ∈ N, let At(n,m) be the subspace of A(n,m) generated by Jacobi

diagrams having at least t trivalent vertices. We define At
d(n,m) similarly. We

have the following result.

Proposition 5.6. For d,m ∈ N, the functors A(n,−) and Ad(n,−) have a fil-

tration given by the subfunctors

At(n,−) ⊂ A(n,−), At
d(n,−) ⊂ Ad(n,−).

Proof. Let D be a generator in At(n,m) and f ∈ grop(m,m′). Via the isomor-

phism K[grop] ≃ A0, f corresponds to an element in A0(m,m′). The composition

in A is given by a suitable cabling of the Jacobi diagram of D on the arcs of Xm′ .

This operation does not change the number of trivalent vertices in the Jacobi

diagram.

Katada [Kat23] considers the filtration

0 = A2d−1
d (0,−) ⊂ · · · ⊂ A1

d(0,−) ⊂ A0
d(0,−) = Ad(0,−).

§6. The functors A(n,−)0 and beaded open Jacobi diagrams

For d ∈ N and n ≥ 1, by Proposition 5.4, Ad(n,−) is not polynomial. In this

section we introduce a subfunctor of Ad(n,−), which is polynomial and which

coincides, for n = 0, with Ad(0,−).

§6.1. Definition of the functors A(n,−)0

The functors A(n,−)0 are defined using the grop-grading of A which is compatible

with the composition in A by (4.4).

We deduce from (4.4) the following proposition.
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Proposition 6.1. For n ∈ N, the grop-grading gives rise to the subfunctor

A(n,−)0 : gr
op → K-Mod of A(n,−) : grop → K-Mod and to the subfunctor

Ad(n,−)0 : gr
op → K-Mod of Ad(n,−) : grop → K-Mod.

Proof. Let 0 ∈ grop(n,m) = gr(m,n) be the homomorphism Fm → Fn sending

each generator to 1. For g ∈ grop(m,n′), by (4.4), we have

◦ : A(m,n′)g ×A(n,m)0 → A(n, n′)g◦0.

Since g ◦ 0 = 0, A(n,−)0 is a subfunctor of A(n,−).

Remark 6.2. For n,m ∈ N, the generators of A(n,m)0 are those of A(n,m)

which can be represented by an Fn-beaded Jacobi diagrams on Xm, without beads

on Xm.

Corollary 6.3. For d, n ∈ N, the precomposition with Idn⊙ε ∈ A0(n+1, n) gives

injective natural transformations

A(n,−)0 ↪→ A(n+ 1,−)0, Ad(n,−)0 ↪→ Ad(n+ 1,−)0.

Note that, for n = 0, we have A(0,−)0 = A(0,−) and Ad(0,−)0 = Ad(0,−).

So the functors Ad(n,−)0 can be viewed as generalizations of the functor Ad(0,−)

studied by Katada [Kat23, Kat24]. However, we emphasize that, for d, n ≥ 1, the

functors Ad(n,−)0 are much more complicated than Ad(0,−) since Ad(0,m) is

finite-dimensional whereas Ad(n,m) is infinite-dimensional, for m ≥ 1.

Similarly to Proposition 5.6 we have the following result.

Proposition 6.4. For d, n ∈ N, the functors A(n,−)0 and Ad(n,−)0 have a

filtration given by the subfunctors

At(n,−)0 ⊂ A(n,−)0, At
d(n,−)0 ⊂ Ad(n,−)0.

Remark 6.5. We have A0(n,−)0 = K and A0(n,−) ≃ Pn ≃ A0(n,−)0 ⊕ Pn.

§6.2. The CatLie-modules JFm of Fm-beaded open Jacobi diagrams

Recall that an open Jacobi diagram is a uni-trivalent graph such that each trivalent

vertex is oriented and has at least one univalent vertex in each connected com-

ponent. For generalities on open Jacobi diagrams we refer the reader to [CDM12,

Sect. 5.6].

For Z a set, a Z-labelled open Jacobi diagram is an open Jacobi diagram D

and a bijection: {univalent vertices of D} ≃−→ Z. Note that in [Kat23, p. 1505], Z-

labelled open Jacobi diagrams are called special Z-coloured open Jacobi diagrams.
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For G a group, a G-beaded open Jacobi diagram is an open Jacobi diagram

whose graph edges are oriented and a map from a finite subset of D \ Vert(D) to

G which labels oriented edges of D by elements in G. In figures, the labels are

encoded by “beads” coloured with elements of G.

Two G-beaded open Jacobi diagrams are said to be equivalent if they are

related by the following local moves where w, x ∈ G:

(6.1) ∼w x wx ; ∼1 ; ∼w
w

w

; ∼w w−1

For G a group and Z a set, JG(Z) is the K-vector space generated by equiv-

alence classes of Z-labelled, G-beaded, open Jacobi diagrams quotiented by the

following AS and the IHX relations:

+ = 0
AS

=
IHX

−

Let JG
d (Z) be the subspace of JG(Z) generated by the Jacobi diagrams having

2d vertices.

A generator in CatLie(n,m) can be viewed as an m+ n-labelled, F0 = {1}-
beaded open Jacobi diagram. In this case the orientation of the edges can be taken

arbitrarily (by the last relation given in (6.1)).

Proposition 6.6. For d ∈ N, n 7→ JFm

d (n) has the structure of a K-linear functor

on CatLie.

Proof. By the description of the category CatLie given in Section 2.4, it is sufficient

to define JFm

d on the generators σ ∈ CatLie(n, n) ≃ K[Sn] and µn
i ∈ CatLie(n,

n− 1).

Let D be a generator in JFm

d (n), that is, D is represented by an n-labelled,

Fm-beaded, open Jacobi diagram.

The action of CatLie(n, n) ≃ K[Sn] on D is given by the permutation of the

labels of univalent vertices.

To define JFm

d (µn
i )(D), consider the open Jacobi diagram D′ obtained from

D by gluing the tree
i n

to the corresponding univalent vertices of D. Edges of D′ inherit an orientation

from D and a labelling in Fm. Colouring the univalent vertex of D′ without
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labelling by i, we obtain an (n− 1)-labelled, Fm-beaded, open Jacobi diagram.

Since the antisymmetry and Jacobi relations in the operad Lie correspond to the

AS and IHX relations for Jacobi diagrams, this construction is well defined on

JFm

d (n).

§6.3. The correspondence between Ad(n,−)0 and JFn

d

We have the following theorem.

Theorem 6.7. For n, d ∈ N, we have an equivalence of functors in Fω(gr
op;K):

α(JFn

d ) ≃ Ad(n,−)0.

Proof. By definition, CatAssu ⊗
CatLie

JFn

d is the coequalizer of the following dia-

gram:

CatAssu ⊗
Σ
CatLie⊗

Σ
JFn

d

L //

R
// CatAssu ⊗

Σ
JFn

d ,

where L is defined using the functor CatAssu : (CatLie)op → Func(K[grop];

K-Mod) and R using the functor JFn

d : CatLie → K-Mod. More explicitly, CatAssu

⊗
CatLie

JFn

d is the coequalizer of the following diagram:

⊕
k,i∈N

CatAssu(i,−) ⊗
Si

CatLie(k, i) ⊗
Sk

JFn

d (k)
L //

R
//

⊕
c∈N

CatAssu(c,−) ⊗
Sc

JFn

d (c),

where L is defined using the map

CatAssu(i,−) ⊗
Si

CatLie(k, i) → CatAssu(k,−),

obtained using the functor CatLie → CatAssu, and R is defined using the map

CatLie(k, i) ⊗
Sk

JFn

d (k) → JFn

d (i).

Let J Fn

d (c) be the set of c-labelled, Fn-beaded, open Jacobi diagrams. For

l ∈ N, we define a linear map⊕
c∈N

CatAssu(c, l) ⊗
Sc

K[J Fn

d (c)]
fl−→ Ad(n,−)0(l)

as follows: for [α̃] a generator of CatAssu(c, l) represented by a set map α : c → l

and a given order on each of its fibers, and D a c-labelled, Fn-beaded, open Jacobi

diagram, we define fl([α̃] ⊗ [D]) as being the Jacobi diagram on Xl obtained by

gluing the univalent vertices of D labelled by the elements of α−1(k) on the kth

component of Xl, respecting the order given on the fiber α−1(k), for 1 ≤ k ≤ l.



On the Functors Associated with Beaded Open Jacobi Diagrams 525

The map fl is well defined with respect to the AS and IHX relations and so

defines a linear map:⊕
c∈N

CatAssu(c, l) ⊗
Sc

JFn

d (c)
fl−→ Ad(n,−)0(l),

which is compatible with the action of the symmetric group Sl.

By Section 2.1, the PROP gr is generated by the permutations and the homo-

morphisms mi for i ∈ {1, 2, 3, 4, 5}. To prove that the linear maps fl define a

natural transformation of functors on grop, it is sufficient to prove the natural-

ity for these five homomorphisms. Using the explicit description of the functor

CatAssu(c,−) : grop → K-Mod, for c ∈ N given in [Pow, Lem. A.2], and the defi-

nition of the composition in the category A given in [HM21], we obtain that the

maps fl define a natural transformation:⊕
c∈N

CatAssu(c,−) ⊗
Sc

JFn

d (c)
f−→ Ad(n,−)0.

For example, form5 : F2→F1, the induced map CatAssu(c, 1)→ CatAssu(c, 2)

sends a set map f : c → 1 with an order of c to the sum of all the maps c → 2

obtained by shuffles, and the map Ad(n,−)0(1) → Ad(n,−)0(2) sends a Jacobi

diagram on X1 to the sum of the Jacobi diagrams on X2 obtained by a shuffle of

the univalent vertices. This corresponds in A to the box notation used to define

the composition.

Since CatLie is generated by the morphisms µc+1
i ∈ CatLie(c+1, c), to prove

that f ◦ L = f ◦ R it is sufficient to prove this relation on these generators. Let

[ε] be a generator in CatAssu(c, l) represented by a set map ε : c → l and a given

order on each of its fibers. We denote by Ei the ordered fiber of ε(i) by ε: explicitly

we have

Ei =
{
a1 < · · · < au < i < b1 < · · · < bv

}
.

We consider the following ordered sets Ei<c+1 = {a1 < · · · < au < i < c + 1 <

b1 < · · · < bv} and Ec+1<i = {a1 < · · · < au < c+ 1 < i < b1 < · · · < bv}.
We have

Ll([ε]⊗ [µc+1
i ]⊗ [D]) = [(ε ◦ sc+1

i , Ei<c+1)]⊗ [D]− [(ε ◦ sc+1
i , Ec+1<i)]⊗ [D],

where [(ε ◦ sc+1
i , Ei<c+1)] is the generator in CatAssu(c+ 1, l) represented by the

set map ε ◦ sc+1
i : c + 1 → l, and the order on the fibers over j is the same that

for ε for j ̸= ε(i) and is Ei<c+1 for j = ε(i). The generator [(ε ◦ sc+1
i , Ec+1<i)] is

defined similarly.
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We have

Rl([ε]⊗ [µc+1
i ]⊗ [D]) = [ε]⊗ i c+ 1

i

D

.

By the AS and IHX relations we obtain that

fl ◦ Ll([ε]⊗ [µc+1
i ]⊗ [D]) = fl ◦Rl([ε]⊗ [µc+1

i ]⊗ [D]),

and we deduce that fl defines a natural transformation

CatAssu ⊗
CatLie

JFn

d → Ad(n,−)0.

By the isomorphism given in (2.4), we obtain that this natural transformation is

a natural equivalence.

Corollary 6.8. For n, d ∈ N, we have an equivalence of functors in Fω(gr
op;K):

α((JFn

d )≤l) ≃ A2d−l
d (n,−)0.

Proof. Since ((JFn

d )≤l)(i) = 0 for i > l, non-zero elements in ((JFn

d )≤l)(i) are

open Jacobi diagrams, of degree d, having at most l univalent vertices and so

at least 2d − l trivalent vertices. So, by the equivalence of categories described

in Theorem 6.7, the subfunctor (JFn

d )≤l of JFn

d corresponds to the subfunctor

A2d−l
d (n,−)0 of Ad(n,−)0.

For n = 0, since Ad(0,−)0 = Ad(0,−) it follows from Theorem 6.7 that

α(J
{1}
d ) = Ad(0,−).

In the rest of this section we will exploit the correspondence given in Theo-

rem 6.7 in order to study the functors Ad(n,−)0.

§6.4. On the polynomial filtration of the functors Ad(n,−)0

Theorem 6.9. For n ∈ N and d ≥ 0, the functor Ad(n,−)0 : gr
op → K-Mod is

polynomial of degree 2d and the filtration of Ad(n,−)0 given in Proposition 6.4

corresponds to the polynomial filtration. In other words,

p2d−t(Ad(n,−)0) = At
d(n,−)0.

Proof. Since JFn

d (2d+1) = 0 and JFn

d (2d) ̸= 0, the functor α(JFn

d ) ∈ Fω(gr
op;K)

is a polynomial functor of degree 2d, by Section 2.4.

By (2.3), Theorem 6.7 and Corollary 6.8 we have

α−1
(
pi(Ad(n,−)0)

)
≃

(
α−1(Ad(n,−)0)

)
≤i

≃ (JFn

d )≤i ≃ α−1(A2d−i
d (n,−)0).
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Remark 6.10. The polynomiality of the functors Ad(n,−)0 can be proved with-

out using the equivalence of categories Fω(gr
op;K) ≃ FLie, using similar argu-

ments to the proof of Lemma 5.5. As this seems instructive to us, we give this

alternative proof below.

We want to prove that c̃rk(Ad(n,−)0)(1, . . . , 1) = 0 for any k ≥ 2d + 1. By

Section 2.3, c̃rk(Ad(n,−)0)(1, . . . , 1) is the cokernel of the following homomor-

phism:

k⊕
i=1

Ad(n,−)0(Fk−1)
(Ad(n,−)0(r

k
1̂
),...,Ad(n,−)0(r

k
k̂
))

−−−−−−−−−−−−−−−−−−−−−→ Ad(n,−)0(Fk).

A generator of Ad(n,−)0(Fk) is represented by an Fn-beaded Jacobi diagram D

on Xk having 2d vertices and without bead on Xk. Since k ≥ 2d+1 and the Jacobi

diagram has at most 2d univalent vertices, at least one of the k-arc components

of Xk has no univalent vertex. Assume that this is the case for the ith arc of Xk.

Denote by Dî the generator of Ad(n,−)0(Fk−1) obtained from D by forgetting

the ith arc of Xk; then

Ad(n,−)0(r
k
î
)(Dî) = D.

We deduce that the cokernel of the previous map is zero.

Since Ad(0,−)0 = Ad(0,−), as a special case we obtain the following result,

originally due to Katada.

Corollary 6.11 ([Kat23, Prop. 8.1]). For d ≥ 0, the functor Ad(0,−) : grop →
K-Mod is polynomial of degree 2d.

§6.5. On the functors A1(n,−)0

Recall that, in Section 3, we define the functor P2 and study the action of S2

on it.

Proposition 6.12. For n ∈ N, we have a natural equivalence

A1(n,−)0 ≃ P#
2 ⊗

S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and

the action of S2 on P#
2 is given in Section 3. In particular, we have A1(0,−) ≃

S2 ◦ a#, where S2 : K-Mod → K-Mod is the second symmetric power functor.

The second part of the statement corresponds to a result of Katada’s given

in [Kat23, Sect. 4].
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Proof of Proposition 6.12. By Theorem 6.7, the equivalence of categories α−1:

Fω(gr
op;K)

≃−→ FLie and Corollary 3.4, the statement is equivalent to the existence

of a natural equivalence:

JFn
1 ≃ CatLie(2,−) ⊗

S2

K[Fn].

The functor JFn
1 : CatLie → K-Mod is non-zero only on 1 and 2 and we have

JFn
1 (2) = K

[
1 2

w

]
≃ K[Fn],

JFn
1 (1) = K


1

w
/〈

1

w

+

1

w−1 〉
≃ K[Fn]/⟨[w] + [w−1]⟩,

S2 acts on JFn
1 (2) taking the inverse in Fn and JFn

1 (µ2
1)([w]) = [w], for w ∈ Fn.

The functor CatLie(2,−) : CatLie → K-Mod is non-zero only on 1 and 2 and

we have

CatLie(2, 2) ≃ K[S2] and CatLie(2, 1) ≃ K[µ2
1],

and CatLie(2,−)(µ2
1)([τ ]) = −[µ2

1] for τ the generator of S2.

In order to define a natural transformation ρ : CatLie(2,−) ⊗
S2

K[Fn] → JFn
1 ,

we define the K-linear maps

� ρ2 : K[S2] ⊗
S2

K[Fn] → K[Fn] given by ρ2([σ]⊗ [w]) = σ · [w];

� ρ1 : K[µ2
1] ⊗

S2

K[Fn] → K[Fn]/⟨[w] + [w−1]⟩ given by ρ1([µ
2
1]⊗ [w]) = [w].

Denoting by C the functor CatLie(2,−) ⊗
S2

K[Fn], we have

ρ2 ◦ C(τ)([τ ]⊗ [w]) = ρ2([τ ◦ τ ]⊗ [w]) = ρ2([Id]⊗ [w]) = [w]

and JFn
1 (τ) ◦ ρ2([τ ]⊗ [w]) = JFn

1 (τ)(τ · [w]) = JFn
1 (τ)([w−1]) = [w]

and
ρ1 ◦ C(µ2

1)([τ ]⊗ [w]) = ρ1(−[µ2
1]⊗ [w]) = −[w]

and JFn
1 (µ2

1) ◦ ρ2([τ ]⊗ [w]) = JFn
1 (µ2

1)(τ · [w])

= JFn
1 (µ2

1)([w
−1]) = [w−1] = −[w].

By similar computations on the generators [Id] ⊗ [w], we obtain that ρ1 and ρ2
satisfy the two relations

ρ2 ◦ C(τ) = JFn
1 (τ) ◦ ρ2 and ρ1 ◦ C(µ2

1) = JFn
1 (µ2

1) ◦ ρ2

and so define a natural transformation.
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Since ρ1 and ρ2 are isomorphisms, ρ is a natural equivalence.

For n = 0, K[F0]/⟨[w] + [w−1]⟩ = 0, so the functor CatLie(2,−) ⊗
S2

K[Fn] is

the atomic functor K[2] and by (2.5) we have

α(JF0
1 ) = α(K[2]) ≃ (a#)⊗2 ⊗

S2

K ≃ ((a#)⊗2)S2 ≃ S2 ◦ a#.

§6.6. Outer property of the functors Ad(n,−)0

For d ∈ N, Katada [Kat23, Thm. 5.1] proves that Ad(0,−) is an outer functor,

namely inner automorphisms of Fm act trivially on Ad(0,m). Her proof is based

on properties of the composition in the category A, especially properties of the box

operator. In Theorem 6.13, we study the outer property of the functors Ad(n,−)0
using the equivalence of categories Fω(gr

op;K) ≃ FLie. For n = 0, this gives

another proof of Katada’s result.

Theorem 6.13. For d, n ∈ N, the functor Ad(n,−)0 is an outer functor iff n = 0

or d = 0.

By Theorem 6.7 and Section 2.5, Ad(n,−)0 is an outer functor iff JFn

d belongs

to Fµ
Lie.

The proof of this theorem relies on the following result.

Proposition 6.14. The functor JF0

d belongs to Fµ
Lie.

Proof. For simplicity, the functor JF0

d is denoted by Jd below.

For k ∈ N, the natural transformation (µJd
) : τJd → Jd gives maps

(µJd
)k : τJd(k) = Jd(k + 1) → Jd(k).

� For k ≥ 2d, Jd(k + 1) = 0 so (µJd
)k = 0.

� For k = 2d− 1, the generators of Jd(2d) are Jacobi diagrams of the form

D := . . .

j1 jd−1

id−1i1

j2

i2 β

2d

.

For d = 1, we have

(µJ1
)1(D) = (µJ1

)1( 1 2 ) =
1

= 0 by the AS relation.
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For d > 1, and α ∈ {1, . . . , d− 1},

µ2d
iα (D) =

iα

. . .

jα β

and µ2d
jα(D) =

jα

. . .

iα β

.

Using the AS relation we have µ2d
iα
(D)+µ2d

jα
(D) = 0 and µ2d

β (D) = 0. We

deduce that (µJd
)2d−1 = 0.

� For k < 2d− 1. By functoriality of Jd on CatLie, we have morphisms

(6.2) CatLie(k + 2, k + 1)⊗ Jd(k + 2) → Jd(k + 1).

We will prove that these maps are surjective.

Let D be a generator of Jd(k + 1); since k + 1 < 2d, D has at least one

trivalent vertex. If we choose one of the trivalent vertices, then D is of the

form

i

D′

where i ∈ {1, . . . , k + 1} and D′ is a Jacobi diagram. The generator D is

obtained by applying µk+2
i to the generator of Jd(k + 2) obtained from D

replacing the previous connected component by

i k + 2

D′

(which could be non-connected). By iteration we obtain that the morphism

CatLie(2d, k + 1)⊗ Jd(2d) → Jd(k + 1)

is surjective. By the naturality of µJd
and the fact that (µJd

)2d−1 = 0, we

deduce that (µJd
)k = 0.

Proof of Theorem 6.13. For d = 0, by Remark 6.5, A0(n,−)0 = K which is

obviously an outer functor.

For n = 0, Ad(0,−)0 is an outer functor by Proposition 6.14.
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If n ̸= 0 and d ≥ 1, we prove that JFn

d does not belong to Fµ
Lie. The natural

transformation µJFn
d

: τJFn

d → JFn

d gives a map

(µJFn
d

)2d−1 : τJ
Fn

d (2d− 1) = JFn

d (2d) → JFn

d (2d− 1).

Consider the following generator of JFn

d (2d):

D :=

d+ 1 d+ 2 2d

. . .

1 2 d

wdw2w1
,

where w1, . . . , wd ∈ Fn.

For d ≥ 1, (µJFn
d

)2d−1(D) is a sum of 2d− 1 Jacobi diagrams. Among them,

2d− 2 have the form

. . .

with a (2d−1)-labelling and beads in Fn on edges and one (µ2d
d (D)) is of the form

d+ 1 d+ 2 2d− 1

. . .

1 2 d− 1

wd−1w2w1

d

wd

Since n ≥ 1, for wd ̸= 1 ∈ Fn, µ
2d
d (D) ̸= 0 and since it is the unique Jacobi

diagram in (µJFn
d

)2d−1(D) of this form, we deduce that, for n ≥ 1, (µJFn
d

)2d−1 ̸= 0

and JFn

d is not an outer CatLie-module.

Remark 6.15. We can also prove that

(1) Ad(n,−)0 is not an outer functor if n ≥ 1 directly by considering the action

of the inner automorphism σ : F3F3 given by σ(xi) = x1xix
−1
1 for 1 ≤ i ≤ 3

on an element of Ad(n, 3)0 with one cord connecting the first and the second

arcs with a bead x1 ∈ Fn and with d−1 cords on the third arc without beads;

(2) A1(n,−)0 is not an outer functor by using Proposition 6.12 and [PV25, Exa.

11.13], where it is proved that the functor P2 is not an outer functor.
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§6.7. On the functors Ad(0,−)

By Section 2.3, we can consider the polynomial filtration ofAd(0,−) and by Propo-

sition 6.9, p2d−i(Ad(0,−)) = Ai
d(0,−). So the quotient

p2d−i(Ad(0,−))/p2d−i−1(Ad(0,−)) = Ai
d(0,−)/Ai+1

d (0,−)

corresponds to the functor denoted by Bd,i in [Kat23].

By Corollary 6.8, α−1(Ai
d(0,−)) ≃ (JF0

d )≤2d−i, so α−1(Ai
d(0,−)/Ai+1

d (0,−))

is the atomic functor concentrated in 2d− i, where it is equal to the vector space

D2d−i which is the quotient by AS and IHX relations of the K-vector space gen-

erated by the (2d− i)-labelled Jacobi diagrams of degree d. The symmetric group

S2d−i acts on D2d−i by the permutation of the labels of univalent vertices.

By (2.5) we obtain

Bd,i ≃ (a#)⊗2d−i ⊗
S2d−i

D2d−i,

corresponding to the description of the functor Bd,i given by Katada [Kat23, iso-

morphism (3.1)].

The decomposition of Bd,0 given by Katada [Kat24, Prop. 7.7] is functorial.

In other words, denoting by Sλ the Schur functor associated with the partition

λ ⊢ d, we have, for d ≥ 0,

(6.3) Bd,0 ≃
⊕
λ⊢d

S2λ ◦ a#,

where, for λ = (λ1, . . . , λl) ⊢ d, 2λ is the partition (2λ1, . . . , 2λl) ⊢ 2d.

By [Ves18, Thm. 4.2], Ext1F(gr;K)(F,S2d ◦ a) = 0, for F a polynomial functor,

so S2d ◦ a is an injective object in the category of polynomial functors on gr, so

S2d ◦a# is a projective object in the category of polynomial functors on grop. This

allows us to give another proof of [Kat24, Thm. 10.1].

Proposition 6.16 ([Kat24, Thm. 10.1]). For d ∈ N, we have a direct decomposi-

tion in F(grop;K):

Ad(0,−) = S2d ◦ a# ⊕Ad(0,−)/S2d ◦ a#.

Proof. By polynomial filtration and (6.3), we have an epimorphism in F2d(gr
op;K):

(6.4) p : Ad(0,−) ↠ S2d ◦ a#.

Since S2d ◦ a# is a projective object in F2d(gr
op;K), the functor

HomF2d(grop;K)(S2d ◦ a#,−) : F2d(gr
op;K) → Ab
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is exact. Hence it sends the epimorphism (6.4) to an epimorphism:

HomF2d(grop;K)(S2d ◦ a#,Ad(0,−)) ↠ HomF2d(grop;K)(S2d ◦ a#,S2d ◦ a#).

We deduce that p has a section s, i.e. a natural transformation s : S2d ◦ a# →
Ad(0,−) in F2d(gr

op;K) such that p ◦ s = IdS2d◦a# .

Note that [Kat24, Prop. 10.2] proves a stronger result, namely that Ad(0,−)/

S2d ◦ a# is indecomposable.
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