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On the Duality Formula for
Parametrized Multiple Series

by

Masahiro Igarashi

Abstract

We show that a duality formula for certain parametrized multiple series yields numerous
relations among them. As a result, we obtain a new relation among extended multiple
zeta values, which is an extension of Ohno’s relation for multiple zeta values. We perform
the same study for multiple Hurwitz zeta values, and obtain a new identity for them.
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§1. Introduction

Fischler and Rivoal [5], Kawashima [21] and Ulanskĭi [25] studied the following

extension of the multiple zeta value (MZV for short):

(1)
∑

0<m1<c1
···<cp−1

mp<∞
mi∈Z

1

mk1
1 · · ·mkp

p

,

where 1 ≤ p ∈ Z, ci ∈ {0, 1}, 1 ≤ ki ∈ Z (i = 1, . . . , p − 1), 2 ≤ kp ∈ Z
and the symbols <ci (i = 1, . . . , p − 1) denote < if ci = 1 and ≤ if ci = 0.

For ci = 1 (i = 1, . . . , p − 1), this multiple series becomes an MZV, which was

studied in Euler [4], Hoffman [8] and Zagier [26]. The MZV has rich mathematical

content. For example, the product of MZVs has two kinds of multiplication laws:

one is induced from the series expression of an MZV and the other is an iterated

integral expression, and they yield numerous relations over Q. Furthermore, the

set of MZVs generates a Q-algebra with the multiplication laws. Understanding

the algebra is one of the important problems in mathematics, because MZVs have
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connections with various mathematical objects, e.g., knot invariants, Feynman

integrals, modular forms and mixed Tate motives over Z. The extension (1) keeps

these rich contents. Another simple case, ci = 0 (i = 1, . . . , p − 1), becomes the

multiple zeta-star value (MZSV for short). The MZSV is an interesting object itself.

Indeed, it is almost the same as MZV in appearance, but aspects of its relations

are fairly different: see, e.g., [18, 23, 24]. It can be seen that relations among

MZSVs have brevity. All other cases of (1) are hybrids of both < and ≤. (They

can be expressed in Z-linear combinations of MZVs or MZSVs.) These hybrid

MZVs frequently appear in the study of MZVs and MZSVs. The most important

point of the extension (1) is that it gives a unified expression of the three objects

MZV, MZSV and the hybrid MZV, and this gives unified extensions of relations

among MZVs and MZSVs: see the case α = 1 of (7) below. Hereafter, we call the

multiple series (1) the extended multiple zeta value (EMZV for short). Kawashima

[21] introduced the EMZV to study a Newton series and relations among MZVs.

He proved a duality relation among EMZVs [21, Prop. 5.3]. Ulanskĭi [25] gave an

algebraic formulation for the EMZV, and proved some basic properties of EMZVs:

the Chen iterated integral representation, the duality formula, the shuffle and

stuffle relations [25, Cor. 2, Thms 1, 2 and 3]. Fischler and Rivoal [5] used the

EMZV and an extended multiple polylogarithm to study a Padé approximation

problem involving multiple polylogarithms. They also proved a duality formula

for EMZVs, and applied it to construction of Q-linear forms in the Riemann zeta

values (see [5, Sect. 2]). We note that multiple series of the extended form (1)

naturally appear as derivatives of hypergeometric series (see [13]).

In the present paper, we also study multiple series of the extended form (1).

Our interest is duality relations among them. In the first part of the paper, we

study the multiple series

(2)
∑

0≤m1<c1 ···<cp−1
mp<∞

mi∈Z

(α)m1

m1!

mp!

(α)mp

{ p∏
i=1

1

(mi + α)ai(mi + β)bi

}
,

where 1 ≤ p ∈ Z, ai, bi ∈ Z such that ai + bi ≥ 1 (i = 1, . . . , p − 1), ap + bp ≥ 2,

α, β ∈ C such that Re(α) > 0, β /∈ Z≤0 := {0,−1,−2, . . .}; (a)m denotes the

Pochhammer symbol, i.e., (a)m = a(a+1) · · · (a+m−1) (1 ≤ m ∈ Z) and (a)0 = 1.

The Pochhammer symbol can be expressed as a quotient of the gamma function:

(a)m = Γ(a+m)/Γ(a). Therefore, Stirling’s formula for Γ(z) can be applied to the

estimation of (a)m. For the convergence of (2), see [12, Lem. 2.1]. The multiple

series (2) is an extension of both the EMZV and our two-parameter multiple series

studied in [10, 12]. The study of this kind of two-parameter extension of the MZV

originated in [10] by the author. See also [12, 13] and [17, Note 2]. For other results,
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the author proved the cyclic sum formula for the case ci = 1 (i = 1, . . . , p − 1)

of (2) and for the case ci = 0 (i = 1, . . . , p − 1): see [15] and also [17, Note 2(iv)

and (v)].

§1.1. Definitions and notation

To describe our results concisely, we follow Ulanskĭi’s algebraic formulation for

EMZVs [25], which is an extension of Hoffman’s for MZVs [9]. The formulation

is done by using three non-commutative variables, x0, x1 and x−1. Hereafter, we

assume that i, m, n, p, q, r, li, mi, ki, k
′
i, si, ri, y

(i)
j , M

(i)
j ∈ Z. For brevity, we

frequently use the notation zci−1
(ki) := xci−1

xki−1
−1 (ci−1 ∈ {0, 1}, ki ≥ 1). For

example, we write x1x
k1−1
−1 xc1x

k2−1
−1 · · ·xcp−1x

kp−1
−1 as

z1(k1)zc1(k2)· · ·zcp−1
(kp) =

p∏
i=1

zci−1
(ki),

where c0 = 1. Here we put

B0 :=
{∏p

i=1zci−1(ki)
∣∣ p ≥ 0, c0 = 1, ci ∈ {0, 1}, ki ≥ 1(i = 1, . . . , p−1), kp ≥ 2

}
,

where
∏0

i=1 zci−1(ki) = 1 ∈ Q, and denote by V 0 the Q-vector space whose basis

is B0. (This vector space corresponds to Y 0 in [25].) We define the evaluation map

Z = Z(α,β) : B
0 → C by Z(1; (α, β)) = 1 and

Z(z1(k1)zc1(k2)· · ·zcp−1(kp); (α, β))

=
∑

0≤m1<c1
···<cp−1

mp<∞

(α)m1

m1!

mp!

(α)mp+1

{ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1
,(3)

where α, β ∈ C such that Re(α) > 0, β /∈ Z≤0. This map can be extended

to a Q-linear map onto the whole space V 0. To describe partial derivatives of

(3), we use the evaluation map Z∗
({ri}q

i=1)
= Z∗

({ri}q
i=1),(β,α)

: B0 → C defined by

Z∗
({ri}q

i=1)
(1; (β, α)) = 1 and

Z∗
({ri}q

i=1)
(z1(k1)zc1(k2)· · ·zcq−1

(kq); (β, α))

=
∑

0≤m1<c1
M

(2)
1 ≤···≤M(2)

r2
<1−c2

m2...
mi−1<ci−1

M
(i)
1 ≤···≤M(i)

ri
<1−ci

mi
...

mq−1<cq−1
M

(q)
1 ≤···≤M(q)

rq
<1−cqmq<∞

(β)m1

m1!

mq!(mq + α)

(β)mq+1

× 1

(m1 + β)r1(m1 + α)k1

{ q∏
i=2

( ri∏
j=1

1

M
(i)
j + β

)
1

(mi + α)ki

}
,(4)
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where q ≥ 1, ri ≥ 0 (i = 1, . . . , q), cq = 1, α, β ∈ C such that α /∈ Z≤0, Re(β) > 0.

This map can also be extended to a Q-linear map onto the whole space V 0. If

ri = 0, we regard the inequalities mi−1 <ci−1
M

(i)
1 ≤ · · · ≤ M

(i)
ri <1−ci mi of (4)

as mi−1 <ci−1 mi. For ri = 0 (i = 1, . . . , q) and for q = 1, the multiple series (4)

becomes

Z∗
({0}q

i=1)

( p∏
i=1

zci−1
(ki); (β, α)

)
= Z

( p∏
i=1

zci−1
(ki); (β, α)

)
,

Z∗
(r1)

(z1(k1); (β, α)) =
∑

0≤m1<∞

1

(m1 + β)r1+1(m1 + α)k1−1
,

respectively; therefore the map Z∗
({ri}q

i=1)
is an extension of the map Z with

the additional parameters {ri}qi=1. This gives an algebraic description of par-

tial derivatives on α of (3): see the proof of Theorem 1.1(i). To describe another

derivation aspect of our results, we need the maps σb,1
r , σr : B

0 → V 0 defined by

σb,1
r (1) = σr(1) = 1 and

σb,1
r (z1(k1)zc1(k2)· · ·zcp−1(kp))

=
∑

r1+···+rp=r
ri≥0

{ p−1∏
i=1

(
ki + ri − 1

ri

)}(
kp + rp − 2

rp

) p∏
i=1

zci−1(ki + ri),

σr(z1(k1)zc1(k2)· · ·zcp−1
(kp))

=
∑

∑p−1
i=1 ciri+rp=r
ciri,rp≥0

{ p−1∏
i=1

zci−1
(ki + ciri)

}
zcp−1

(kp + rp),

where r ≥ 0. These are variations of the map σm used in [19, Sect. 6]. (For ci = 1

(i = 1, . . . , p − 1), the map σr becomes σm.) In the present paper, we use the

following standard definition of the dual: Let τ be the map τ : B0 → B0 defined

by τ(1) = 1 and τ(x1xe1 · · ·xen−1
x−1) = x1x−en−1

· · ·x−e1x−1, where n ≥ 1 and

ei ∈ {−1, 0, 1} (i = 1, . . . , n − 1). Then τ(v) is called the dual of v. It is obvious

that τ2(v) = v. The maps σb,1
r , σr and τ can be extended to Q-linear maps from

the whole space V 0 to itself. Let v ∈ B0. Then τ(v) can also be expressed as

τ(v) =
∏q

i=1 zc′i−1
(k′i), where q ≥ 0, c′0 = 1, c′i ∈ {0, 1}, k′i ≥ 1 (i = 1, . . . , q − 1),

k′q ≥ 2. Hereafter, we assume this expression for τ(v). For any fixed real numbers

a, b (a < b ≤ ∞), we regard the sum
∑

a<c1
M1<c2

···<cpMp<cp+1
b AM1,...,Mp

as 1 if

p = 0.
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§1.2. Main theorem

For v =
∏p

i=1 z1(ki), we proved in [12] a large class of relations among the multiple

series Z(v; (α, α)) by using the duality formula

(5) Z(v; (α, β)) = Z(τ(v); (β, α)), Re(α),Re(β) > 0

(see [12, Thm. 1.1 and Lem. 2.3]). The symmetry in α and β of (5) played an

essential role for the proof (see [12, Sect. 2]). From this fact, we think that this

kind of symmetry of parametrized multiple series is useful for the study of relations

among multiple series (e.g., MZVs). In the present paper, we prove a large class

of relations among (2) by using a duality formula for (3), which is an extension of

(5) (see Lemma 2.2 below), that is, we prove the following.

Theorem 1.1. Let v ∈ B0, and let τ(v) be its dual. Then

(i) we have

(6) Z(σb,1
r (v); (α, β)) =

∑
c′1r1+

∑q
i=2 ri=r

c′1r1,ri≥0

Z∗
(c′1r1,{ri}

q
i=2)

(τ(v); (β, α))

for all r ≥ 0, α, β ∈ C with Re(α),Re(β) > 0, where c′1 and q are those of

the dual τ(v) =
∏q

i=1 zc′i−1
(k′i);

(ii) we have

(7) Z(σr(v);α) = Z(σrτ(v);α)

for all r ≥ 0, α ∈ C with Re(α) > 0, where Z(v;α) := Z(v; (α, α)) (v ∈ B0,

α ∈ C with Re(α) > 0).

The identities (6) and (7) yield numerous relations among (2) and EMZVs. In

fact, even the simple case v =
∏p

i=1 z1(ki) of (7) becomes a large class of relations

[12, Thm. 1.1]. We note that, for v ∈ B0 and its dual τ(v), the identity (6) gives

two different relations among (2): see Example 2.7(i) below. This is one of the

features of our multi-parameter extension. The specializations α = β = 1 of (6)

and of (7) give a large class of relations among EMZVs. In particular, the case

α = 1 of (7) is a new extension of Ohno’s relation for MZVs [22, Thm. 1], which

extends Ohno’s relation to a relation involving MZSVs and the hybrid MZVs.

Besides this, the specialization v = z1(k1){
∏p

i=2 z0(ki)} and α = 1 of (7) gives a

relation between MZSVs and the hybrid MZVs: see (26) below. For a recent crucial

result on (2), we note that Hirose, Murahara and Onozuka [7] determined all the
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linear relations among (2) with α = β. In fact, they proved that the multiple

series (2) with α = β, ci = 1 (i = 1, . . . , p − 1) satisfies the same relation as the

linear part of Kawashima’s relation for MZVs [20, Cor. 5.5], and that any linear

relation can be written as a linear combination of the linear part relation for (2)

with α = β, ci = 1 (see [7, Thms 1–3]). It is interesting to study whether the linear

part relation can be derived from another relation for (2) by using differentiation.

In the present paper, we shall also study a duality formula for multiple Hurwitz

zeta values; see Section 3 for details. The result, Theorem 3.1 below, is another

main theorem of the paper.

We explain our idea for the proofs of Theorems 1.1 and 3.1. It is to use

symmetries in α and β of the multiple series (2), (27) and (28) below; see (9) and

(32) below. These symmetries can be found by making a change of variables to

an iterated integral representation of (2) and of (27): see the proof of (9) and of

(32). We note that the change of variables also brings changes of the positions of

the parameters of (2), (27) and (28): compare the positions of the parameters α

and β on both sides of (9) and of (32). This plays an essential role for deriving

various and numerous relations. Indeed, the changes of the positions allow us to

show that partial differential operators act on each side of (9) and of (32) in two

different ways, and this gives the relations in the theorems. (The above idea was

used in our previous works [10, 12].) Another main tool for the proof is our method

of computing the Pochhammer symbol (a)m used in [13], which was developed in

its preprints distributed in 2013. This allows us to compute derivatives of (a)m
without computing products of finite multiple harmonic sums: see, e.g., (10)–(12)

below and compare them with our computation used in [11].

We shall prove Theorem 1.1 in Section 2. Our method of proof is similar to

that in [10] and [12]. In Section 3 we shall apply our method to multiple Hurwitz

zeta values as well, and shall obtain an identity for them similar to Theorem 1.1(i),

which also yields numerous relations.

The present paper is a revised version of preprints of ours which were dis-

tributed in October 2015. See also a preprint [16, Note].

§2. Proof of Theorem 1.1

We first prove a duality formula for (3). We define the symbol ωei(t) (ei ∈
{−1, 0, 1}) by

ω−1(t) =
1

t
, ω0(t) =

1

t(1− t)
, ω1(t) =

1

1− t
.
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Lemma 2.1. Let n ≥ 1 and ei ∈ {−1, 0, 1} (i = 1, . . . , n− 1). Then the following

iterated integral representation of (3) holds:

Z(x1xe1 · · ·xen−1
x−1; (α, β))(8)

=

∫
· · ·

∫
0<t0<···<tn<1

(1− t0)
1−αtβ−1

0 ω1(t0)

{ n−1∏
i=1

ωei(ti)

}
× ω−1(tn)t

1−β
n (1− tn)

α−1 dt0 · · · dtn

for all α, β ∈ C with Re(α),Re(β) > 0.

Proof. The proof is the same as that in [12, Proof of Lem. 2.2]. The integrand of

the iterated integral of (8) can be rewritten as

ω1

{ n−1∏
i=1

ωei

}
ω−1 =

p∏
i=1

ωci−1
ωki−1
−1 ,

where p ≥ 1, c0 = 1, ci ∈ {0, 1}, ki ≥ 1 (i = 1, . . . , p − 1), kp ≥ 2. Using this

expression, we can rewrite the iterated integral of (8), which we denote by I, as

I =

∫
· · ·

∫
0<t11<···<t1k1

<...
<ti1<···<tiki

<...
<tp1<···<tpkp<1

(1− t11)
1−αtβ−1

11

{ p∏
i=1

ωci−1
(ti1)

( ki∏
j=2

ω−1(tij)

)}

× t1−β
pkp

(1− tpkp
)α−1

( p∏
i=1

ki∏
j=1

dtij

)
.

Further, applying the expansions

(1− t11)
−α =

∞∑
m=0

(α)m
m!

tm11, (1− ti1)
−1 =

∞∑
m=0

tmi1

(i = 2, . . . , p) to the integrand and integrating term by term, we also have the

identities

I =
∑

0≤m1<c1 ···<cp−1
mp<∞

(α)m1

m1!

{ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1

×
∫ 1

0

(1− tpkp
)α−1t

mp

pkp
dtpkp



542 M. Igarashi

=
∑

0≤m1<c1
···<cp−1

mp<∞

(α)m1

m1!

{ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1

× Γ(α)Γ(mp + 1)

Γ(α+mp + 1)

=
∑

0≤m1<c1
···<cp−1

mp<∞

(α)m1

m1!

mp!

(α)mp+1

{ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1

= Z(x1x
k1−1
−1 xc1x

k2−1
−1 · · ·xcp−1

x
kp−1
−1 ; (α, β))

for α, β ∈ C with Re(α),Re(β) > 0. The monomial x1x
k1−1
−1 xc1x

k2−1
−1 · · ·xcp−1

x
kp−1
−1

can be rewritten as x1xe1 · · ·xen−1x−1 (ei ∈ {−1, 0, 1}); thus we obtain (8).

Using Lemma 2.1, we can prove the following duality formula for (3), which

will play an essential role in the proof of Theorem 1.1.

Lemma 2.2 (Duality formula). Let v ∈ B0, and let τ(v) be its dual. Then

(9) Z(v; (α, β)) = Z(τ(v); (β, α))

for all α, β ∈ C with Re(α),Re(β) > 0.

Proof. Making the change of variables ti = 1 − un−i (i = 0, 1, . . . , n; see [26,

p. 510]) to the iterated integral on the right-hand side of (8), we obtain (9).

Remark 2.3. Ulanskĭi [25] proved the Chen iterated integral representation and

the duality formula for EMZVs [25, Cor. 2 and Thm. 1]. The case α = β = 1 of

(8) and of (9) are Corollary 2 and Theorem 1 of [25], respectively. We also note

that (8) and (9) are extensions of our previous results [12, Lems 2.2 and 2.3].

§2.1. Proof of Theorem 1.1(i)

Let v =
∏p

i=1 zci−1
(ki) ∈ B0, and let τ(v) =

∏q
i=1 zc′i−1

(k′i) be its dual. The proof is

done by differentiating both sides of the duality formula (9) r times with respect

to β. The left-hand side of (6) is an immediate result of differentiating that of

(9). To obtain the right-hand side, we calculate the derivative (−1)r

r!
dr

dβr (
(β)m1

(β)mq+1
)

(r ≥ 0). From the definition of ci (= 0, 1), we have (β)m1+c′1
= (β)m1(m1 + β)c

′
1 .

Using this, we have the expression

(10)
(β)m1

(β)mq+1
=

1

(m1 + β)c
′
1

( q∏
i=2

(β)mi−1+c′i−1

(β)mi+c′i

)
,
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where m1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1

mq and c′q = 1. The deriva-

tives of the factors on the right-hand side of (10) can be calculated as follows:

(−1)ri

ri!

dri

dβri

(
(β)mi−1+c′i−1

(β)mi+c′i

)

=
(β)mi−1+c′i−1

(β)mi+c′i

∑
mi−1+c′i−1≤M

(i)
1 ≤···≤M

(i)
ri

<mi+c′i

ri∏
j=1

1

M
(i)
j + β

=
(β)mi−1+c′i−1

(β)mi+c′i

∑
mi−1<c′

i−1
M

(i)
1 ≤···≤M

(i)
ri

<1−c′
i
mi

ri∏
j=1

1

M
(i)
j + β

(11)

for ri ≥ 0 (i = 2, . . . , q). (From the definitions of the symbols ci and <ci , the

inequalities mi−1 + c′i−1 ≤ M
(i)
1 and M

(i)
ri < mi + c′i of (11) can be rewritten as

mi−1<c′i−1
M

(i)
1 and M

(i)
ri <1−c′i

mi, respectively.) Using (10) and (11), we have

(−1)r

r!

dr

dβr

(
(β)m1

(β)mq+1

)

=
∑

r1+···+rq=r
ri≥0

(
r1+c′1−1

r1

)
(m1 + β)r1+c′1

×
( q∏

i=2

(β)mi−1+c′i−1

(β)mi+c′i

∑
mi−1<c′

i−1
M

(i)
1 ≤···≤M

(i)
ri

<1−c′
i
mi

ri∏
j=1

1

M
(i)
j + β

)

=
∑

r1+···+rq=r
ri≥0

(
r1+c′1−1

r1

)
(m1 + β)r1

× (β)m1

(β)mq+1

q∏
i=2

( ∑
mi−1<c′

i−1
M

(i)
1 ≤···≤M

(i)
ri

<1−c′
i
mi

ri∏
j=1

1

M
(i)
j + β

)

=
∑

c′1r1+
∑q

i=2 ri=r

c′1r1,ri≥0

1

(m1 + β)c
′
1r1

× (β)m1

(β)mq+1

q∏
i=2

( ∑
mi−1<c′

i−1
M

(i)
1 ≤···≤M

(i)
ri

<1−c′
i
mi

ri∏
j=1

1

M
(i)
j + β

)
(12)
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for r ≥ 0: the last identity of (12) follows from the identity

(13)

(
ri + c′i − 1

ri

)
=

1 if c′i = ri = 0 or c′i = 1, ri ≥ 0,

0 if c′i = 0, ri ≥ 1.

Therefore, using (12), we have

(−1)r

r!

∂r

∂βr

(
(β)m1

m1!

mq!

(β)mq+1

{ q−1∏
i=1

1

(mi + α)k
′
i

}
1

(mq + α)k
′
q−1

)

=
∑

c′1r1+
∑q

i=2 ri=r

c′1r1,ri≥0

∑
m1<c′1

M
(2)
1 ≤···≤M(2)

r2
<1−c′2

m2
...

mq−1<c′
q−1

M
(q)
1 ≤···≤M(q)

rq
<1−c′q

mq

(β)m1

m1!

mq!(mq + α)

(β)mq+1

× 1

(m1 + β)c
′
1r1(m1 + α)k

′
1

{ q∏
i=2

( ri∏
j=1

1

M
(i)
j + β

)
1

(mi + α)k
′
i

}
(14)

for r ≥ 0, m1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1

mq and c′q = 1. Differ-

entiating the right-hand side of (9) r times with respect to β and using (14), we

obtain the right-hand side of (6). This completes the proof of Theorem 1.1(i).

§2.2. Proof of Theorem 1.1(ii) and a related theorem

For brevity, we put y
(i)
m :=

∑m
j=1 y

(i)
j (i,m ≥ 1, y

(i)
j ≥ 0): we regard y

(i)
0 as 0. For

any v =
∏p

i=1 zci−1(ki) ∈ B0 and its dual τ(v) =
∏q

i=1 zc′i−1
(k′i), we define the

following two monomials:

vy :=

{ p−1∏
i=1

zci−1
(ki + y

(i)
ki−ci

)

}
zcp−1

(kp + y
(p)
kp−2),(15)

v′
({li}q−1

i=1 )
:= x1x

k′
1−1

−1

{ q∏
i=2

xc′i−1
x
li−1

1 x
k′
i−1

−1

}

= z1(k
′
1)

{ q∏
i=2

zc′i−1
(1)z1(1)

li−1−1z1(k
′
i)

}
,(16)
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where y := ({y(i)
ki−ci

}p−1
i=1 ,y

(p)
kp−2) and li ≥ 0 (i = 1, . . . , q − 1). If li−1 = 0 in (16),

the factor becomes

xc′i−1
x
li−1

1 x
k′
i−1

−1 = xc′i−1
x
k′
i−1

−1 = zc′i−1
(k′i);

therefore we regard zc′i−1
(1)z1(1)

−1z1(k
′
i) as zc′i−1

(k′i).

Theorem 1.1(ii) can be proved in the same way as in [12, Sect. 2]. We first

prove the following identity.

Proposition 2.4. Let v ∈ B0. Then

r∑
l=0

∑
∑p−1

i=1 y
(i)
ki−ci

+y
(p)
kp−2=l

y
(i)
j ≥0

Z(σr−l(vy);α)

=

r∑
l=0

∑
l1+···+lq−1=l

li≥0

Z(σr−l(v
′
({li}q−1

i=1 )
);α)(17)

for all r ≥ 0, α ∈ C with Re(α) > 0.

Proof. The proof is similar to that of [12, Lem. 2.5]. Let v =
∏p

i=1 zci−1
(ki) ∈ B0,

and let τ(v) =
∏q

i=1 zc′i−1
(k′i) be its dual. Here we note that the identities

(−1)r

r!

dr

dβr

({ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1

)

=
∑

r1+···+rp=r
ri≥0

( p−1∏
i=1

(
ki+ri−1

ri

)
(mi + β)ki+ri

) (
kp+rp−2

rp

)
(mp + β)kp+rp−1

=

r∑
l=0

∑
∑p−1

i=1 y
(i)
ki−ci

+y
(p)
kp−2=l

y
(i)
j ≥0

∑
∑p−1

i=1 ciri
+rp=r−l
ciri,rp≥0

( p−1∏
i=1

1

(mi + β)
ki+y

(i)
ki−ci

+ciri

)

× 1

(mp + β)
kp+y

(p)
kp−2+rp−1

(18)
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hold for r ≥ 0 and m1, . . . ,mp ∈ Z such that 0 ≤ m1<c1 · · ·<cp−1
mp. Therefore,

using (18), we have

(−1)r

r!

∂r

∂βr

(
(α)m1

m1!

mp!

(α)mp+1

{ p−1∏
i=1

1

(mi + β)ki

}
1

(mp + β)kp−1

)∣∣∣∣
β=α

=

r∑
l=0

∑
∑p−1

i=1 y
(i)
ki−ci

+y
(p)
kp−2=l

y
(i)
j ≥0

∑
∑p−1

i=1 ciri
+rp=r−l
ciri,rp≥0

(α)m1

m1!

mp!

(α)mp

( p−1∏
i=1

1

(mi+α)
ki+y

(i)
ki−ci

+ciri

)

× 1

(mp + α)
kp+y

(p)
kp−2+rp

(19)

for r ≥ 0 and m1, . . . ,mp ∈ Z such that 0 ≤ m1<c1 · · ·<cp−1mp. Differentiating

the left-hand side of (9) r times with respect to β at β = α (α ∈ C with Re(α) > 0)

and using (19), we obtain the left-hand side of (17). To obtain the right-hand side

of (17), we use the same computation as in the proof of Theorem 1.1(i). From the

definition of ci (= 0, 1), we have (β)mi+c′i
= (β)mi

(mi + β)c
′
i . Using this, we have

the expression

(20)
(β)m1

(β)mq+1
=

( q−1∏
i=1

(β)mi+c′i

(β)mi+1

)( q−1∏
i=1

1

(mi + β)c
′
i

)
1

mq + β
,

where m1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1

mq. The derivatives of the

factors on the right-hand side of (20) can be calculated as follows:

(−1)si

si!

dsi

dβsi

(
(β)mi+c′i

(β)mi+1

)

=
(β)mi+c′i

(β)mi+1

∑
mi+c′i≤M

(i)
1 ≤···≤M

(i)
si

<mi+1

si∏
j=1

1

M
(i)
j + β

=
(β)mi+c′i

(β)mi+1

∑
mi<c′

i
M

(i)
1 ≤···≤M

(i)
si

<mi+1

si∏
j=1

1

M
(i)
j + β

=
(β)mi+c′i

(β)mi+1

si∑
li=0

∑
∑li

j=1 y
(i)
j =si−li

y
(i)
j ≥0

∑
mi<c′

i
M

(i)
1 <···<M

(i)
li

<mi+1

li∏
j=1

1

(M
(i)
j +β)y

(i)
j +1

(21)
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for si,mi,mi+1 ≥ 0 such that mi<c′i
mi+1 (i = 1, . . . , q − 1), where we regard

∑
0=si
y
(i)
j ≥0

=

1 if si = 0,

0 otherwise.

(From the definitions of the symbols ci and <ci , the inequality mi + c′i ≤ M
(i)
1 of

(21) can be rewritten as mi<c′i
M

(i)
1 .) Using (13), (20) and (21), we have

(−1)r

r!

dr

dβr

(
(β)m1

(β)mq+1

)

=
∑

∑q
i=1 ri+

∑q−1
i=1 si=r

ri,si≥0

( q−1∏
i=1

(
ri+c′i−1

ri

)
(mi + β)ri+c′i

)
1

(mq + β)rq+1

×
q−1∏
i=1

(
(β)mi+c′i

(β)mi+1

si∑
li=0

∑
∑li

j=1 y
(i)
j =si−li

y
(i)
j ≥0

∑
mi<c′

i
M

(i)
1 <···<M

(i)
li

<mi+1

li∏
j=1

1

(M
(i)
j +β)y

(i)
j +1

)

=
∑

∑q−1
i=1 c′iri+rq

+
∑q−1

i=1 si=r

c′iri,rq,si≥0

(β)m1

(β)mq

( q−1∏
i=1

1

(mi + β)c
′
iri

)
1

(mq + β)rq+1

×
q−1∏
i=1

( si∑
li=0

∑
∑li

j=1 y
(i)
j =si−li

y
(i)
j ≥0

∑
mi<c′

i
M

(i)
1 <···<M

(i)
li

<mi+1

li∏
j=1

1

(M
(i)
j + β)y

(i)
j +1

)

=

r∑
l=0

∑
l1+···+lq−1=l

li≥0

∑
∑q−1

i=1 c′iri+rq

+
∑q−1

i=1

∑li
j=1 y

(i)
j =r−l

c′iri,rq,y
(i)
j ≥0

(β)m1

(β)mq

( q−1∏
i=1

1

(mi + β)c
′
iri

)
1

(mq + β)rq+1

×
q−1∏
i=1

( ∑
mi<c′

i
M

(i)
1 <···<M

(i)
li

<mi+1

li∏
j=1

1

(M
(i)
j + β)y

(i)
j +1

)
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for r ≥ 0. Therefore, using this result, we have

(−1)r

r!

∂r

∂βr

(
(β)m1

m1!

mq!

(β)mq+1

{ q−1∏
i=1

1

(mi + α)k
′
i

}
1

(mq + α)k
′
q−1

)∣∣∣∣
β=α

=

r∑
l=0

∑
l1+···+lq−1=l

li≥0

∑
∑q−1

i=1 c′iri+rq

+
∑q−1

i=1

∑li
j=1 y

(i)
j =r−l

c′iri,rq,y
(i)
j ≥0

∑
m1<c′1

M
(1)
1 <···<M

(1)
l1

<m2...
mq−1<c′

q−1
M

(q−1)
1 <···<M

(q−1)
lq−1

<mq

(α)m1

m1!

mq!

(α)mq

×
{ q−1∏

i=1

1

(mi+α)k
′
i+c′iri

( li∏
j=1

1

(M
(i)
j +α)y

(i)
j +1

)}
1

(mq+α)k
′
q+rq

(22)

for r ≥ 0 andm1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1

mq. Differentiating the

right-hand side of (9) r times with respect to β at β = α (α ∈ C with Re(α) > 0)

and using (22), we obtain the right-hand side of (17) This completes the proof

of (17).

Proposition 2.5. Theorem 1.1(ii) and Proposition 2.4 are equivalent.

Proof. Let v ∈ B0, and let vy be the monomial defined by (15). From the definition

of the dual map τ , it can be seen that the dual τ(vy) takes the form

(23) x1x
k′
1−1

−1

{ q∏
i=2

xc′i−1
x
li−1

1 x
k′
i−1

−1

}
= z1(k

′
1)

{ q∏
i=2

zc′i−1
(1)z1(1)

li−1−1z1(k
′
i)

}
with

l1 + · · ·+ lq−1 =

p−1∑
i=1

y
(i)
ki−ci

+ y
(p)
kp−2,

where li ≥ 0 (i = 1, . . . , q − 1) and the parameters q, c′i−1 and k′i are those of

τ(v) =
∏q

i=1 zc′i−1
(k′i). The monomial (23) is just v′

({li}q−1
i=1 )

, the monomial defined

by (16). The equivalence can be proved by using these facts on monomials and the

same argument as in [12, Proof of Prop. 2.7].

We can also prove the following theorem, which shows that the same equiva-

lence as in [12, Thm. 1.2] holds for the extended multiple series.

Theorem 2.6. The following assertion (A) is equivalent to Theorem 1.1(ii):

(A) Let v ∈ B0, and let τ(v) be its dual. Then the identity (7) holds for all “even”

integers r ≥ 0 and α ∈ C with Re(α) > 0.

Proof. This can be proved in the same way as in [12, Sect. 3].
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Applying Theorem 2.6 to the case v =
∏p

i=1 z1(ki), we have Theorem 1.2 of

[12].

Example 2.7. We give some examples of Theorem 1.1:

(i) We put v0 := z1(k1){
∏p

i=2 z0(ki)} (p, ki ≥ 1 (i = 1, . . . , p − 1), kp ≥ 2). Then

we have

τ(v0) =

{ 2∏
i=p

xki−1
1 x0

}
xk1−1
1 x−1 =

{ q−1∏
i=1

zc′i−1
(1)

}
zc′q−1

(2),

where q ≥ 1, c′0 = 1, c′i ∈ {0, 1} (i = 1, . . . , q − 1). Because τ2(v0) = v0, the dual

of τ(v0) becomes v0. For these monomials, the identity (6) gives the following two

different relations among (2), which come from the symmetry in α and β of (9)

(compare (14) with (19)): by taking v = v0 in (6),

∑
r1+···+rp=r

ri≥0

{ p−1∏
i=1

(
ki + ri − 1

ri

)}(
kp + rp − 2

rp

)

× Z

(
z1(k1 + r1)

{ p∏
i=2

z0(ki + ri)

}
; (α, β)

)

=
∑

c′1r1+
∑q

i=2 ri=r

c′1r1,ri≥0

Z∗
(c′1r1,{ri}

q
i=2)

({ q−1∏
i=1

zc′i−1
(1)

}
zc′q−1

(2); (β, α)

)
(24)

and, by taking v = τ(v0) in (6),

∑
r1+···+rq=r

ri≥0

Z

({ q−1∏
i=1

zc′i−1
(1 + ri)

}
zc′q−1

(2 + rq); (α, β)

)

=
∑

ε(p)r1+
∑p

i=2 ri=r
ε(p)r1,ri≥0

Z∗
(ε(p)r1,{ri}p

i=2)

(
z1(k1)

{ p∏
i=2

z0(ki)

}
; (β, α)

)
(25)

for all r ≥ 0, α, β ∈ C with Re(α),Re(β) > 0, where ε(p) = 1 if p = 1 and ε(p) = 0

otherwise. If p = 1, the right-hand side of (25) becomes Z∗
(r)(z1(k1); (β, α)) =∑∞

m=0(m + β)−r−1(m + α)−k1+1; therefore, the case p = 1 of (25) is the sum

formula proved in [10] (see also [12, Rem. 2.4] and [13, (R2)]). We note that,

for the monomials v0 and τ(v0), the identity (7) gives only the following relation
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among (2) with α = β:

Z

(
z1(k1)

{ p−1∏
i=2

z0(ki)

}
z0(kp + r);α

)

=
∑

∑q−1
i=1 c′iri+rq=r

c′iri,rq≥0

Z

({ q−1∏
i=1

zc′i−1
(1 + c′iri)

}
zc′q−1

(2 + rq);α

)
(26)

for all r ≥ 0, α ∈ C with Re(α) > 0.

(ii) Since the dual of
∏p

i=1z1(ki) is
∏q

i=1z1(k
′
i), the identity (6) with v=

∏p
i=1z1(ki)

becomes ∑
r1+···+rp=r

ri≥0

{ p−1∏
i=1

(
ki + ri − 1

ri

)}(
kp + rp − 2

rp

)
Z

( p∏
i=1

z1(ki + ri); (α, β)

)

=
∑

r1+···+rq=r
ri≥0

Z∗
({ri}q

i=1)

( q∏
i=1

z1(k
′
i + ri); (β, α)

)

for all r ≥ 0, α, β ∈ C with Re(α),Re(β) > 0.

§3. Duality of multiple Hurwitz zeta values

In the present section, we apply our method used in Section 2 to deriving duality

relations for multiple Hurwitz zeta values. Our result in the present section is also

formulated in the same way as in the introduction. We define the evaluation map

ζ = ζα : B
0 → C by ζ(1;α) = 1 and

(27) ζ(z1(k1)zc1(k2)· · ·zcp−1
(kp);α) =

∑
0≤m1<c1 ···<cp−1

mp<∞

p∏
i=1

1

(mi + α)ki
,

where p ≥ 1 and α ∈ C \ Z≤0. This map can be extended to Q-linear maps onto

the whole space V 0. We call the multiple series (27) the multiple Hurwitz zeta

value (MHZV for short). In [10] and [13], we studied relations for MHZVs in some

different ways. Our results were described as relations between MHZVs and the

multiples series

(28)
∑

0≤m1<c1 ···<cp−1
mp<∞

zmp
mp!

(α)mp

{ p∏
i=1

1

(mi + α)ai(mi + 1)bi

}
,

where z ∈ {−1, 1}, p ≥ 1, ai, bi ∈ Z such that ai + bi ≥ 1 (i = 1, . . . , p − 1),

ap + bp ≥ 2, α ∈ C with Re(α) > 0, (a)m is the Pochhammer symbol. (For
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related works, see Remark 3.3 below.) Our result in the present section, a duality

of MHZVs, is also described as such a relation. To formulate it, we introduce the

evaluation map H∗
({ri}q

i=1)
= H∗

({ri}q
i=1),α

: B0 → C defined by H∗
({ri}q

i=1)
(1;α) = 1

and

H∗
({ri}q

i=1)
(z1(k1)zc1(k2)· · ·zcq−1

(kq);α)

=
∑

0≤M
(1)
1 ≤···≤M(1)

r1
<1−c1m1

...
mi−1<ci−1

M
(i)
1 ≤···≤M(i)

ri
<1−ci

mi
...

mq−1<cq−1
M

(q)
1 ≤···≤M(q)

rq
<1−cqmq<∞

(mq+1)!

(α)mq+1

{ q∏
i=1

( ri∏
j=1

1

M
(i)
j +α

)
1

(mi+1)ki

}
,(29)

where q ≥ 1, ri ≥ 0 (i = 1, . . . , q), cq = 1, α ∈ C with Re(α) > 0. If ri =

0, we regard the inequalities mi−1 <ci−1
M

(i)
1 ≤ · · · ≤ M

(i)
ri <1−ci mi of (29)

as mi−1 <ci−1 mi. This map can be extended to Q-linear maps onto the whole

space V 0. We also use the map σb,2
r : B0 → V 0 defined by σb,2

r (1) = 1 and

σb,2
r (z1(k1)zc1(k2)· · ·zcp−1(kp))

=
∑

r1+···+rp=r
ri≥0

{ p∏
i=1

(
ki + ri − 1

ri

)} p∏
i=1

zci−1
(ki + ri),

where r ≥ 0. This can be extended to a Q-linear map from the whole space V 0

to itself. Using the same method as in Section 2, we can prove the following new

relation between MHZVs and (28) with z = 1, which yields numerous relations.

Theorem 3.1. Let v ∈ B0, and let τ(v) be its dual. Then

(30) ζ(σb,2
r (v);α) =

∑
r1+···+rq=r

ri≥0

H∗
({ri}q

i=1)
(τ(v);α)

for all r ≥ 0, α ∈ C with Re(α) > 0.

Proof. Let v =
∏p

i=1 zci−1
(ki) ∈ B0, and let τ(v) =

∏q
i=1 zc′i−1

(k′i) be its dual. In

the same way as in the proof of Lemma 2.1 with α = 1, we have the following

iterated integral representation of (27):

ζ(x1xe1 · · ·xen−1x−1;α)

=

∫
· · ·

∫
0<t0<···<tn<1

tα−1
0 ω1(t0)

{ n−1∏
i=1

ωei(ti)

}
ω−1(tn) dt0 · · · dtn(31)
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for α ∈ C with Re(α) > 0, where n ≥ 1 and ei ∈ {−1, 0, 1} (i = 1, . . . , n − 1).

Further, making the change of variables ti = 1−un−i (i = 0, 1, . . . , n) to the above

iterated integral, we have the duality formula

ζ(v;α) =
∑

0≤m1<c′1
···<c′

q−1
mq<∞

(mq + 1)!

(α)mq+1

{ q∏
i=1

1

(mi + 1)k
′
i

}

= H∗
({0}q

i=1)
(τ(v);α)(32)

for α ∈ C with Re(α) > 0. The left-hand side of (30) can be obtained by differ-

entiating that of (32) r times. The right-hand side of (30) can also be obtained

in the same way as in the proof of Theorem 1.1(i). Indeed, dividing both sides of

(10) by (β)m1 , we have the expression

1

(α)mq+1
=

1

(α)m1+c′1

( q∏
i=2

(α)mi−1+c′i−1

(α)mi+c′i

)
,

where m1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1

mq and c′q = 1. Using this

and a computation similar to that in the proof of (12), we have

(−1)r

r!

dr

dαr

(
(mq + 1)!

(α)mq+1

{ q∏
i=1

1

(mi + 1)k
′
i

})

=
∑

r1+···+rq=r
ri≥0

(
(mq + 1)!

(α)m1+c′1

∑
0≤M

(1)
1 ≤···≤M

(1)
r1

<m1+c′1

r1∏
j=1

1

M
(1)
j + α

)

×
( q∏

i=2

(α)mi−1+c′i−1

(α)mi+c′i

∑
mi−1+c′i−1≤M

(i)
1 ≤···

≤M(i)
ri

<mi+c′i

ri∏
j=1

1

M
(i)
j +α

){ q∏
i=1

1

(mi+1)k
′
i

}

=
∑

r1+···+rq=r
ri≥0

(mq + 1)!

(α)mq+1

( ∑
0≤M

(1)
1 ≤···≤M

(1)
r1

<1−c′1
m1

r1∏
j=1

1

M
(1)
j + α

)

×
{ q∏

i=2

( ∑
mi−1<c′

i−1
M

(i)
1 ≤···

≤M(i)
ri

<1−c′
i
mi

ri∏
j=1

1

M
(i)
j + α

)}{ q∏
i=1

1

(mi + 1)k
′
i

}
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=
∑

r1+···+rq=r
ri≥0

∑
0≤M

(1)
1 ≤···≤M(1)

r1
<1−c′1

m1...
mi−1<c′

i−1
M

(i)
1 ≤···≤M(i)

ri
<1−c′

i
mi

...
mq−1<c′

q−1
M

(q)
1 ≤···≤M(q)

rq
<1−c′q

mq

(mq+1)!

(α)mq+1

{ q∏
i=1

( ri∏
j=1

1

M
(i)
j +α

)
1

(mi+1)k
′
i

}
(33)

for r ≥ 0, m1, . . . ,mq ∈ Z such that 0 ≤ m1<c′1
· · ·<c′q−1mq and c′q = 1. Therefore,

differentiating the right-hand side of (32) r times and using (33), we obtain the

right-hand side of (30). This completes the proof.

Note. I note that the case v =
∏p

i=1 z1(ki) of (30) was proved in my manuscript

submitted to a journal on March 9, 2015 and its preprint distributed in Febru-

ary 2015 in the same way as in the proof of (30): the case v =
∏p

i=1 z1(ki) of

the proof of (30) is just the proof written therein. As regards the duality for-

mula (32), I stated the case v =
∏p

i=1 z1(ki) of it in my talk at the Seminar

on Analytic Number Theory, Graduate School of Mathematics, Nagoya Univer-

sity, Japan, February 13, 2008. (See also [12, Acknowledgments, p. 578] and [16,

Note (ii)].) Therefore Theorem 3.1 and its proof are extensions of my previous

works on MHZVs.

Example 3.2. For the monomials v0 and τ(v0) used in Example 2.7(i), the iden-

tity (30) also gives the following two different relations between MHZVs and (29),

which are similar to (24) and (25): by taking v = v0 in (30),

∑
r1+···+rp=r

ri≥0

{ p∏
i=1

(
ki + ri − 1

ri

)}
ζ

(
z1(k1 + r1)

{ p∏
i=2

z0(ki + ri)

}
;α

)

=
∑

r1+···+rq=r
ri≥0

H∗
({ri}q

i=1)

({ q−1∏
i=1

zc′i−1
(1)

}
zc′q−1

(2);α

)

and, by taking v = τ(v0) in (30),

∑
r1+···+rq=r

ri≥0

(1 + rq)ζ

({ q−1∏
i=1

zc′i−1
(1 + ri)

}
zc′q−1

(2 + rq);α

)

=
∑

r1+···+rp=r
ri≥0

H∗
({ri}p

i=1)

(
z1(k1)

{ p∏
i=2

z0(ki)

}
;α

)

for all r ≥ 0, α ∈ C with Re(α) > 0.
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Remark 3.3. Coppo [1], Coppo and Candelpergher [2], Émery [3] and Hasse [6]

proved relations between the case ci = 0 (or ci = 1) (i = 1, . . . , p − 1) of (28)

and the single Hurwitz(–Lerch ) zeta values ζ(z1(k1);α),
∑∞

m=0 z
m(m+α)−k. We

proved in [10] relations between the above case of (28) with z = 1 and the case

ci = 1 (i = 1, . . . , p− 1) of (27): see [10, Prop. 2 and its examples] and [13, (R3)].

See also [17, Note 2].

Corrections to [14]. (i) Page 223, line 7: “the idea” should be “our idea”.

(ii) Page 223, line 15 from the bottom and page 234, line 12: “former” should

be “previous”. (iii) Page 235, line 7: “sort” should be “kind”.

Corrections to [12]. (i) Page 575, lines 2–3 from the bottom: “what we noted”

should be “a note on”. (ii) Page 578, line 23 from the bottom: “March 2007” should

be “February 3, 2007”.
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Birkhäuser, Basel, 1994, 497–512. Zbl 0822.11001 MR 1341859

http://arxiv.org/abs/2206.01190v1
http://arxiv.org/abs/2201.01651v3
http://arxiv.org/abs/2007.11873v18
https://doi.org/10.1016/j.jalgebra.2010.12.029
https://doi.org/10.1016/j.jalgebra.2010.12.029
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1266.11093&format=complete
http://www.ams.org/mathscinet-getitem?mr=2774684
https://doi.org/10.1112/S0010437X0500182X
https://doi.org/10.1112/S0010437X0500182X
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.11053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2218898
https://doi.org/10.1016/j.jnt.2008.11.002
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1220.11103&format=complete
http://www.ams.org/mathscinet-getitem?mr=2499404
http://arxiv.org/abs/0905.0243v1
https://doi.org/10.1006/jnth.1998.2314
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0920.11063&format=complete
http://www.ams.org/mathscinet-getitem?mr=1670544
https://doi.org/10.4064/aa123-3-5
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1156.11038&format=complete
http://www.ams.org/mathscinet-getitem?mr=2263259
https://doi.org/10.4310/CNTP.2008.v2.n2.a2
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.11132&format=complete
http://www.ams.org/mathscinet-getitem?mr=2442776
http://www.ams.org/mathscinet-getitem?mr=2918861
https://doi.org/10.3103/S002713221103003X
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1304.11098&format=complete
https://doi.org/10.1007/978-3-0348-9112-7_23
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0822.11001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1341859

	Introduction
	Definitions and notation
	Main theorem

	Proof of Theorem 1.1
	Proof of Theorem 1.1(i)
	Proof of Theorem 1.1(ii) and a related theorem

	Duality of multiple Hurwitz zeta values
	References

