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Abstract

In order to realize all possible KMS-bundles on the Jiang–Su algebra, we introduce a class
of C∗-algebras which we call rationally approximately finite-dimensional (RAF). Using
these, we show that for a given proper simplex bundle (S, π) with a singleton π−1({0}) and
a unital separable monotracial C∗-algebra A absorbing the Jiang–Su algebra tensorially
(for instance, the irrational rotation algebra), there exists a flow on A whose KMS-bundle
is isomorphic to (S, π).
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§1. Introduction

Approximately finite-dimensional separable C∗-algebras (AF algebras) were clas-

sified, roughly 50 years ago, in [34, 16, 5, 20], in terms of the Murray–von Neu-

mann semigroup of equivalence classes of projections – equivalently, the universal

enveloping ordered group that has come to be known (since Murray and von Neu-

mann) as K0 (and in the setting of AF algebras, the dimension group).

A very general class of simple separable C∗-algebras, assumed to be well

behaved but satisfying very simple abstract axioms, has now been classified by
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a generalization of this invariant; see [45, 46, 47, 59, 40, 41, 21, 23, 27, 26, 72,

12, 25, 38, 39], all of which follow on substantial earlier work over the last 30 to

40 years. The axioms are amenability, absorption of the Jiang–Su algebra Z, and

the universal coefficient theorem (conceivably redundant in the amenable case).

Recall (see [44]) that the tensor product of any C∗-algebra with the Jiang–Su

algebra absorbs the Jiang–Su algebra tensorially. In many examples (see [28]; see

also e.g. [32, 67]), this property already holds. The invariant, in the stable case, is

K∗ = K0 ⊕K1 together with the natural pairing with traces, where both K0 and

K1 are arbitrary countable abelian groups, and the traces constitute an arbitrary

metrizable simplicial cone paired in an arbitrary way with K0 (the natural order

in which is determined by this pairing).

At the same time, considerable progress has been made in the last 30 years

in the classification of non-simple C∗-algebras beyond the case of AF algebras. In

the infinite (O∞-stable) case an ideal-related KK-equivalence-based isomorphism

theorem was outlined in [46]; a different proof of this was given in [33]. In the finite

(non-simple) case, after earlier results, a K-theoretical classification of inductive

limits of finite direct sums of matrix algebras over commutative C∗-algebras (AH,

or approximately homogeneous, algebras) with no dimension growth in the spectra

and with the ideal property (every closed two-sided ideal generated by projections)

was given in [35]. The next step in this direction would be to classify inductive

limits of sequences of C∗-subalgebras of matrix algebras over commutative C∗-

algebras (ASH, or approximately subhomogeneous, algebras), with no dimension

growth and with the ideal property.

Unexpectedly, in an investigation of KMS-state behavior of one-parameter

automorphism groups of a C∗-algebra, along the lines of [7] and [8], a class of ASH

algebras arose which it was possible to classify. This is the basis of the present

paper, which uses this new classification theorem to construct specified KMS-

state phenomena in the Jiang–Su C∗-algebra, and hence in the tensor product of

this algebra with any other monotracial C∗-algebra.

The class of algebras in question (see Section 4), to be named rationally

AF algebras (following the terminology of [40] and [41]), or RAF algebras, can

be characterized as those C∗-algebras such that the tensor product with every

infinite-dimensional UHF (Glimm uniformly hyperfinite) algebra is AF.

By [36], every C∗-algebra which is both RAF and AH with no dimension

growth is AF. (To see this, one may assume that the algebra is stable, and then

as shown in the proof of Corollary 5.4, below, it has the ideal property. By [36]

it is AT, and since by Lemma 4.2, it has zero K1 group, by [70] it is AI. By [6,

Cor. 1.3] any AH algebra with no dimension growth has real rank zero if it has
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small eigenvalue variation, which holds if the tensor product with a UHF algebra

has real rank zero. It is well known that an AI algebra of real rank zero is AF. AT

algebras of real rank zero were classified in [23].)

The present class, thus, projects directly into the unknown territory of the

non-simple ASH class.

Interestingly (see Theorem 5.3), the classifying invariant for this class – or,

rather, the Jiang–Su stable members of the class – at least up to stable isomor-

phism, is exactly the same as for the class of AF algebras, namely, the ordered

K0-group, which can be an arbitrary countable ordered abelian group whose tensor

product with every dense subgroup of the rational numbers is a dimension group.

(We use the terminology rational dimension group, following [53] which deals with

the simple case. See Definition 3.2, Lemma 3.1(v), and Theorem 4.4.)

The classification up to isomorphism for non-stable algebras is also almost the

same as for AF algebras, and in the case that there is an approximate unit con-

sisting of projections (for instance if the algebras are stable or unital), it is exactly

the same (namely, the dimension range). The general case (appearing already with

the non-unital algebras stably isomorphic to the Jiang–Su algebra) is slightly more

subtle. See Corollaries 4.8 and 5.4, which introduce what we shall call the matrix

dimension range.

The proof of Theorem 5.3, the Z-absorbing RAF-algebra classification theo-

rem, consists of an application of the Winter deformation technique [75, Prop. 4.5],

extended in a simple way beyond the unital case in which it is at present couched.

Our result concerning KMS-state structure, which follows from the Jiang–Su-

absorbing RAF classification (Corollaries 4.8 and 5.4) is Theorem 6.5. (A precise

statement is given in the abstract.) The method is similar to that of [7] and [8], and

to that of [31] and [30], and there is some overlap in the results. In [7] and [8] the C∗-

algebras on which the actions are constructed are not precisely identified. In [30],

the present setting but with only the case of a compact bundle, i.e., bounded set

of admissible inverse temperatures, is dealt with – this uses the known simple C∗-

algebra classification referred to above. The case of an infinite Kirchberg algebra

is also dealt with in [30], without the compactness restriction. In [31], the only

overlap is the case of a monotracial simple unital AF algebra.

As a straightforward application of the present paper, we obtain in particular

the following result.

Corollary 1.1. For any irrational rotation algebra, there exists a flow which real-

izes any given proper simplex bundle with singleton fiber over 0 as a KMS-bundle

on it.
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§2. Preliminaries

Let us start with some basic terminology and a fact for ordered abelian groups

with the Riesz interpolation property.

In this paper, a (partially) ordered abelian group (G, G+) will mean an abelian

group G with a positive cone G+ satisfying G++G+ ⊂ G+ and G+∩−G+ = {0}.
If just the first condition is satisfied, (G,G+) will be called a pre-ordered abelian

group (see [42]). If, in addition to both conditions, G = G+ − G+, then (G,G+)

will be called an ordered abelian group (see [64, Def. 5.1.3]). For a partially ordered

(or pre-ordered) abelian group (G,G+), we shall denote by ≤ the order relation

defined by g ≤ h if h− g ∈ G+.

A partially ordered abelian group (G,G+) will be said to have the Riesz (or

Birkhoff–Riesz) interpolation property (RIP) if for g0, g1, h0, h1 ∈ G satisfying

gi ≤ hj for all i, j ∈ {0, 1}, there exists a ∈ G such that gi ≤ a ≤ hj for all

i, j ∈ {0, 1}. (See [1].)

For a supernatural number n (i.e., a formal infinite product of finite or infinite

powers of prime numbers; see [16, 62, 64]), denote by Dn the set of all rational

numbers p/q given by p ∈ Z and q ∈ N with q|n, and fix the positive cone D+
n =

{d ∈ Dn : d ≥ 0}. Denote by Dn[e
x, e−x] the group of Laurent polynomials on

R with coefficients in Dn. For a closed subset F ⊂ R, equip Dn[e
x, e−x] with the

strict pointwise order, making it an ordered abelian group:

Dn[e
x, e−x]+F = {0} ∪

{
f ∈ Dn[e

x, e−x] : f(x) > 0 for any x ∈ F
}
.

We shall have occasion to use the following fundamental lemma in the sequel (in

Lemma 3.5).

Lemma 2.1. Let F ⊂ R be a closed subset of R and n an infinite supernatural

number. Then the ordered abelian group (Dn[e
x, e−x],Dn[e

x, e−x]+F ) has the RIP if

and only if F is semibounded (i.e., either bounded below or bounded above).

Proof. The “if” part of the statement is a variant of the argument of [71, Sect. 5].

We include a proof for the reader’s convenience. Suppose that F is semibounded,

and set −F = {x ∈ R : −x ∈ F}. In the case that F is bounded, the Stone–

Weierstrass theorem can be applied directly to show the RIP. So we may assume

that F is unbounded. To simplify notation, set G = Dn[e
x, e−x] and G+

F =

D[ex, e−x]+F . It is immediate that (G,G+
F ) has the RIP if and only if (G,G+

−F )

has. Thus, we may assume that F is bounded below.

Let pi, qj ∈ G, i, j ∈ {0, 1}, be such that pi ≤ qj for all i, j ∈ {0, 1}. If
pi0 = qj0 for some i0, j0 ∈ {0, 1}, then a = pi0 = qj0 satisfies pi ≤ a ≤ qj for all

i, j ∈ {0, 1}. Therefore, we may suppose that pi(x) < qj(x) for all i, j ∈ {0, 1} and
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x ∈ F . As the first step in the argument which follows, note that for sufficiently

large N ∈ N and R > 0, there exists a0 ∈ G such that

pi(x) + e−Nx < a0(x) < qj(x)− e−Nx,

for all i, j ∈ {0, 1} and x ∈ F ∩ [R,∞).

Let D∞
n denote the infinite direct sum

⊕
n∈Z Dn of copies of Dn over Z, and

equip D∞
n with the reverse lexicographic order ≤lex, which means that for g =

(gn)n∈Z and h = (hn)n∈Z ∈ D∞
n , g ≤lex h if gn = hn for all n ∈ Z or gn0

< hn0

for n0 = max{n ∈ Z : gn ̸= hn}. If g ≤lex h and g ̸= h, write g <lex h. Since

F is unbounded (above), it follows that (gn)n∈Z <lex (hn)n∈Z if, and only if,

there exists r > 0 such that
∑

n∈Z gne
nx <

∑
n∈Z hne

nx for any x ∈ F ∩ [r,∞).

Let p∞i = (pi,n)n∈Z, q
∞
j = (qj,n)n∈Z ∈ D∞

n denote the coefficient sequences of

pi(x) =
∑

n∈Z pi,ne
nx and qj(x) =

∑
n∈Z qj,ne

nx, i, j ∈ {0, 1}. Since the reverse

lexicographic order is a total order, reindexing, we may assume that p∞0 ≤lex

p∞1 <lex q
∞
0 ≤lex q

∞
1 . Set n0 = max{n ∈ Z : p1,n ̸= q0,n} and note that p1,n0

<

q0,n0
. For k ∈ Z, set δk = (δk,n)n∈Z ∈ D∞

n , where δk,n is the Kronecker delta, and

set a∞0 = p∞1 +δn0−1. Then we have p∞1 <lex a
∞
0 <lex q

∞
0 . Let N ∈ N chosen above

be chosen sufficiently large that p∞0 +δ−N ≤lex p
∞
1 +δ−N <lex a

∞
0 <lex q

∞
0 −δ−N ≤

q∞1 − δ−N also, which is the analogue in D∞
n of the required condition.

Since by the choice of a0, e
Nx(pi(x)− a0(x)) < −1 < 1 < eNx(qj(x)− a0(x))

for all i, j ∈ {0, 1} and x ∈ F ∩ [R,∞), there exist d > 0 and a continuous function

f : R → R with compact support such that eNx(pi(x) − a0(x)) + d < f(x) <

eNx(qj(x)− a0(x))− d for any x ∈ F . By the Stone–Weierstrass theorem (applied

to the compact space F ∪{∞} and the subalgebra of Laurent polynomials bounded

on this space), we obtain a1 ∈ G such that supx∈F |f(x) − a1(x)| < d. Defining

a ∈ G by a(x) = e−Nxa1(x) + a0(x), we have pi ≤ a ≤ qj for all i, j ∈ {0, 1}.
To show the “only if” part, assume that F is not semibounded. Let N ∈ N and

β ∈ F be such that N < eβ < 2N . Define pi, qj ∈ G, i, j ∈ {0, 1}, by p0(x) = −1,

p1(x) = (N − ex)(ex − 2N), q0(x) = e2x, and q1(x) = N2 for x ∈ R. Then it

follows that pi ≤ qj for all i, j ∈ {0, 1}. If there existed a ∈ G with pi ≤ a ≤ qj
for all i, j ∈ {0, 1}, then, as p0 ≤ a ≤ q1, a would be a bounded function on F .

Since F is not semibounded, a must be a constant function, in contradiction with

p1 ≤ a ≤ q0.

§3. Rational dimension groups and simplex bundles

The notion of a rationally Riesz group was introduced in [53], and it was shown

that a weakly unperforated simple ordered abelian group G is a rationally Riesz

group if and only if G⊗Dp has the Riesz interpolation property for every infinite
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supernatural number p. (See [62] for the definition of the supernatural numbers,

which extend the natural numbers, which we shall refer to as finite.) In this sec-

tion, we shall consider a modified definition for non-simple ordered abelian groups

(Definition 3.2), and construct an example which gives rise in a natural way to

a given proper simplex bundle (see below) in Proposition 3.6. In the sequel (see

Theorem 6.5), proper simplex bundles will be shown to give rise to KMS-bundles

on the Jiang–Su algebra.

Recall that the positive cone (G⊗H)+ of the tensor product of two partially

ordered (or pre-ordered) abelian groups (G,G+) and (H,H+) is defined as the set

of all finite sums of {g⊗h : g ∈ G+, h ∈ H+}, and note that (G⊗H, (G⊗H)+) is

then a partially ordered (or pre-ordered) abelian group; see [43]. For convenience,

we shall just write G⊗H+. For an abelian group G we shall denote by G⊗1k the

subgroup of G⊗ Dk consisting of {g ⊗ 1k : g ∈ G}, where 1k denotes the number

1 ∈ Dk.

Lemma 3.1. Let p and q be relatively prime supernatural numbers. For an abelian

group G, the following fundamental statements hold:

(i) If G⊗ Dp and G⊗ Dq are torsion-free abelian groups, then so also is G.

(ii) If G is torsion-free, then the subgroup (G ⊗ Dp ⊗ 1q) ∩ (G ⊗ 1p ⊗ Dq) of

G⊗ Dp ⊗ Dq is isomorphic to G as an abelian group.

(iii) If a partially ordered abelian group (G,G+) is such that (G ⊗ Dp, G⊗ Dp
+)

and (G⊗Dq, G⊗ Dq
+) are torsion-free ordered abelian groups, then (G,G+)

is an ordered abelian group (i.e., G = G+ −G+).

(iv) If (G,G+) is an unperforated ordered abelian group (i.e., ng ≥ 0 for some

n ∈ N implies g ≥ 0; see [2, Def. 6.7.1]), then so also is (G⊗ Dn, G⊗ Dn
+)

for any supernatural number n.

(v) If (G,G+) is an unperforated partially ordered abelian group such that (G⊗
Dp, G⊗ Dp

+) and (G⊗Dq, G⊗ Dq
+) are dimension groups, then (G,G+) is

an ordered abelian group and (G ⊗ Dn, G⊗ Dn
+) is a dimension group for

any infinite supernatural number n.

Proof. (i) Assume that g ∈ G is a torsion element and n ∈ N is the first number

such that ng = 0. Since G ⊗ Dp is torsion-free, we have g ⊗ 1p = 0 in ⟨g⟩ ⊗ Dp.

Since ⟨g⟩ ⊗ Dp
∼= (Z/nZ) ⊗ Dp

∼= Dp/nDp, it follows that 1 ∈ nDp. Similarly, we

have 1 ∈ nDq. Because p and q are relatively prime, this implies that n = 1 and

so g = ng = 0.

(ii) Since G is torsion-free, the canonical embedding φ : G→ G⊗ 1p ⊗ 1q defined

by φ(g) = g ⊗ 1p ⊗ 1q for g ∈ G is a group isomorphism. Therefore, it suffices



Rationally AF Algebras 563

to show that (G ⊗ Dp ⊗ 1q) ∩ (G ⊗ 1p ⊗ Dq) = G ⊗ 1p ⊗ 1q. If x ∈ (G ⊗ Dp ⊗
1q) ∩ (G ⊗ 1p ⊗ Dq), then there exist k, l ∈ N such that 1/k ∈ Dp, 1/l ∈ Dq, and

kx, lx ∈ G⊗ 1p ⊗ 1q. Since k and l are relatively prime, there exist a, b ∈ Z such

that 1 = ak+bl. It follows that x = akx+blx ∈ G⊗1p⊗1q. The converse inclusion

(G⊗ Dp ⊗ 1q) ∩ (G⊗ 1p ⊗ Dq) ⊃ G⊗ 1p ⊗ 1q is trivial.

(iii) Fix x ∈ G. For i = p, q, since (G ⊗ Di, G⊗ Di
+) is an ordered group, there

exist ai, bi ∈ G⊗ Di
+ such that x⊗1i = ai− bi. Let ni be such that 1/ni ∈ Di and

niai, nibi ∈ G ⊗ 1i for i = p, q. Since ai, bi ∈ G⊗ Di
+, there exist gai

, gbi ∈ G+,

i = p, q, such that niai = gai
⊗ 1i and nibi = gbi ⊗ 1i. By (i), G is torsion-free, and

so from nix⊗ 1i = (gai
− gbi)⊗ 1i it follows that nix = gai

− gbi . Since np and nq
are relatively prime, there exist c, d ∈ N such that 1 = cnp − dnq. Then we have

x = (cgap
+ dgbq)− (cgbp + dgaq

) ∈ G+ −G+.

(iv) Since (G,G+) and (Dn,Dn
+) are torsion-free ordered abelian groups, it is

straightforward to check that (G ⊗ Dn, G⊗ Dn
+) is also a torsion-free ordered

abelian group. Therefore, it suffices to show that there exists d ∈ N such that 1/d ∈
Dn and dx ∈ G⊗ Dn

+ if x ∈ G⊗Dn and n ∈ N satisfy nx ∈ G⊗ Dn
+. Let gj ∈ G

and dj ∈ Dn, j = 1, 2, . . . , N , be such that
∑N

j=1 gj ⊗dj = x. Since nx ∈ G⊗ Dn
+,

there exist hm ∈ G+, and em ∈ Dn
+, m = 1, 2, . . . ,M , such that nx =

∑M
m=1 hm⊗

em. Choose d ∈ N such that 1/d ∈ Dn and ddj , dem ∈ Z for all j = 1, 2, . . . , N and

m = 1, 2, . . . ,M . Then it follows that (
∑N

j=1 nddjgj)⊗ 1n = (
∑M

m=1 demhm)⊗ 1n.

Since G is torsion-free, we have
∑N

j=1 nddjgj =
∑M

m=1 demhm ∈ G+. Finally, since

G is unperforated, we conclude that dx = (
∑N

j=1 ddjgj)⊗ 1n ∈ (G⊗ Dn)
+.

(v) By (i) and (iii), we see that (G,G+) is an unperforated ordered abelian group,

and by (iv) so also is (G⊗Dn, G⊗ Dn
+). Because the Riesz interpolation property

in an ordered abelian group is equivalent to the Riesz decomposition property

of [61] (see [1]; see also [15, Thm. IV 6.2]), it suffices to show that for x, a0,

a1 ∈ G⊗ Dn
+ with x ≤ a0 + a1 there exist two elements xi ∈ G⊗ Dn

+, i = 0, 1,

such that x = x0 + x1 and xi ≤ ai for both i = 0, 1.

Choose N ∈ N such that 1/N ∈ Dn and Nx, Nai ∈ G ⊗ 1n, and denote by

gx, gai
∈ G+, i = 0, 1, the elements such that gx ⊗ 1n = Nx and gai

⊗ 1n = Nai
for i = 0, 1. Since gx ⊗ 1n ≤ (ga0 + ga1) ⊗ 1n, we have gx ≤ ga0 + ga1 , as G is

unperforated. By the Riesz decomposition property of G ⊗ Dp and G ⊗ Dq, for

j = p, q there are y
(j)
i ∈ G⊗ Dj

+, i = 0, 1, such that gx ⊗ 1j = y
(j)
0 + y

(j)
1 and

y
(j)
i ≤ gai

⊗ 1j for both i = 0, 1. Choose Nj ∈ N, j = p, q, such that 1/Nj ∈ Dj

and Njy
(j)
i ∈ G ⊗ 1j for both i = 0, 1, and denote by g

(j)
i ∈ G+ the element

such that Njy
(j)
i = g

(j)
i ⊗ 1j. Thus we have Njgx = g

(j)
0 + g

(j)
1 for j = p, q. Since
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Np and Nq are relatively prime, if n is infinite, there exist natural numbers c, d,

and M (> NpNq) such that 1/(MN) ∈ Dn and M = cNp + dNq. The elements

xi = (cg
(p)
i + dg

(q)
i ) ⊗ 1/(MN) ∈ G⊗ Dn

+, i = 0, 1, then satisfy the desired

conditions.

Definition 3.2. We shall call a partially ordered abelian group (G,G+) a rational

dimension group if (G,G+) is unperforated and, further, (G ⊗ Dp, G⊗ Dp
+) and

(G⊗Dq, G⊗ Dq
+) are dimension groups for some pair of relatively prime infinite

supernatural numbers p and q. Note that a partially ordered abelian group is not

necessarily unperforated even if G ⊗ Dn is a dimension group for every infinite

supernatural number n. For example, the ordered abelian group (Z, Sn) with Sn =

{0, n, n+1, . . .} is not unperforated for n ∈ N\{1}; however, (Z⊗Dn, Sn ⊗ Dn
+) is

isomorphic to (Dn,Dn
+) as an ordered abelian group for any infinite supernatural

number n.

Remark 3.3. For simple ordered abelian groups, it is enough for the tensor prod-

uct of an unperforated ordered group with Dn for a single supernatural number n

to be a dimension group in order for it to be a rational dimension group (see [53,

Prop. 5.7]). However, for non-simple ordered abelian groups, the following example

indicates the necessity of the two tensor products in the definition above.

Let p and q be two relatively prime numbers, and let u denote the universal

supernatural number, with Du = Q. Set H = Q2, H+ = {(x, y) ∈ H : x ≥ 0,

y ≥ 0}, a0 = (0, 0), b0 = (1, 0), a1 = (1/p, 1/p − 1), and b1 = (1/p, 1/p) in

H. Define (G,G+) as the ordered subgroup of (H,H+) generated by {a1, b1},
which is unperforated and non-simple. Note that, for any supernatural number

n, the ordered abelian group (G ⊗ Dn, G⊗ Dn
+) is isomorphic to (Dna1 + Dnb1,

(Dna1 + Dnb1) ∩ H+), and that a0, b0 ∈ G. Then the tensor product (G ⊗ Du,

G⊗ Du
+) ∼= (H,H+) is a dimension group. However, if there exists x ∈ G⊗ Dq∞

such that ai ⊗ 1q∞ ≤ x ≤ bj ⊗ 1q∞ , for i, j ∈ {0, 1}, then x must correspond

to (1/p, 0) via the identification of G ⊗ Dq∞ with Dq∞a1 + Dq∞b1. Since p and q

are relatively prime, x cannot be contained in G ⊗ Dq∞ . This shows that (G ⊗
Dq∞ , G⊗ Dq∞

+) does not have the RIP.

Let us recall a few notions concerning simplex bundles, introduced in [7] and

[8] (see also [31, 30]). A pair (S, π) consisting of a second countable locally compact

Hausdorff space S and a continuous map π : S → R is called a simplex bundle if

π−1({β}) is compact and has a structure of Choquet simplex for every β ∈ R. To
simplify notation, we shall write π−1(β) for π−1({β}). Two simplex bundles (S, π)

and (S′, π′) are said to be isomorphic if there exists a homeomorphism Φ: S → S′

such that π′ ◦ Φ = π and the restriction of Φ to π−1(β) is affine for all β ∈ R.
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For a simplex bundle (S, π), we shall denote by A(S) the set of all continuous

functions f from S to R such that each restriction of f to π−1(β) is affine for any

β ∈ R. We also set

A0(S) =
{
f ∈ A(S) : f vanishes at infinity

}
,

A00(S) =
{
f ∈ A(S) : supp(f) is compact and supp(f) ∩ π−1(0) = ∅

}
.

A simplex bundle (S, π) will be called proper if π is a proper map (i.e., π−1(K)

is compact for any compact set K ⊂ R), and A(S) separates points of S.

Lemma 3.4. Let (S, π) be a simplex bundle, S′ a locally compact second countable

Hausdorff space, and π′ : S′ → R a continuous map. Suppose that π is proper and

Φ is a bijective continuous map from S to S′ such that π = π′ ◦ Φ. Then Φ

is a homeomorphism. In particular, if (S, π) is a proper simplex bundle and the

restriction of Φ to π−1(β) is affine for any β ∈ R, then (S′, π′) is also a proper

simplex bundle.

Proof. For any compact subset K of S′, since π′ is continuous, there exists a

compact interval I ⊂ R such that π′(K) ⊂ I, which implies that Φ−1(K) ⊂ π−1(I).

Since π−1(I) is compact, so also is Φ−1(K). This shows that Φ is a proper map.

Let F be a closed subset of S. To show Φ−1 is continuous, it suffices to show

that Φ(F ) is closed. For any compact subset K of S′, it follows that Φ(F ) ∩K =

Φ(F ∩Φ−1(K)) is compact. Since S′ is locally compact and Hausdorff, this shows

that Φ(F ) is closed.

As π = π′ ◦ Φ, it follows that π′−1
(B) = Φ(π−1(B)) for any subset B of R.

Then π′ is also a proper map. If each restriction of Φ to π−1(β) is affine, then we

see that A(S′) = {f ◦ Φ−1 : f ∈ A(S)} separates points of S′.

The concept of a proper simplex bundle was presented as an abstract charac-

terization of the KMS-bundle of a C∗-algebra in [7, 8, 31, 30]. On the one hand,

it was shown in [7] and [8] (see also [9, Sect. 5.3]) that a KMS-bundle for a unital

separable C∗-algebra is a proper simplex bundle, and on the other hand, in [31],

it was shown that any proper simplex bundle can be realized as a KMS-bundle

on a given unital simple infinite-dimensional AF-algebra. The construction in this

paper is a variant of [31, Sect. 4.2] for rational dimension groups (instead of just

dimension groups). In the rest of this section, we shall consider a proper simplex

bundle (S, π) such that π−1(0) is a singleton {τS}.
Let G be a countable additive subgroup of R with 1 ∈ G and let G∞ denote

the infinite direct sum
⊕

n∈Z G of copies of G over Z. Given a sequence g = (gn)n∈Z
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in G∞, define a continuous function L(g) ∈ A(S) by

L(g)(s) =
∑
n∈Z

gne
nπ(s) for s ∈ S.

From now on, we shall denote by e−π the function e−π(·) ∈ A(S), so that L(g) =∑
n∈Z gne

nπ. Let σS denote the automorphism of A(S) defined by σS(f) = e−πf

for f ∈ A(S), and σG∞ the automorphism of G∞ defined by σG∞((gn)n∈Z) =

(gn+1)n∈Z for (gn)n∈Z ∈ G∞. Note that

σS ◦ L = L ◦ σG∞ .

For k ∈ N, choose positive continuous functions ψk, ψk+, ψk− from R into

[0, 1] such that (−∞,−1/k] ⊂ ψ−1
k−({1}), [−1/2k, 1/2k] ⊂ ψ−1

k ({1}), [1/k,∞) ⊂
ψ−1
k+({1}), and ψk− + ψk + ψk+ = 1C(R). Denote by G[e−π, (1− e−π)] the additive

group generated by the functions genπ(1 − e−π)m, g ∈ G, m, n ∈ Z defined on

S \ π−1(0). For h ∈ G[e−π, (1 − e−π)], we regard h(ψk± ◦ π) as elements of A(S)

in a canonical way. Consider the countable subgroup of A(S),

G∞
k = G[e−π, (1− e−π)]ψk− ◦ π + L(G∞)ψk ◦ π + G[e−π, (1− e−π)]ψk+ ◦ π.

In the same way as in [8, Lem. 2.2] and [31, Prop. 4.5], choose a countable subgroup

G00 of A00(S) satisfying the following conditions:

(1) For any f ∈ A00(S), ε > 0, and N ∈ N with supp(f) ⊂ π−1((−N,N) \
{0}), there exists g ∈ G00 such that sups∈S |f(x) − g(x)| < ε and supp(g) ⊂
π−1((−N,N) \ {0}),

(2) G∞
k + G00 ⊂ G∞

k+1 + G00 for any k ∈ N, and
(3) σS(G00) = (idA(S) −σS)(G00) = G00.

Consider the countable subgroup of A(S),

R(G) =
∞⋃
k=1

G∞
k + G00.

Define positive cones A(S)+ and R(G)+ of A(S) and R(G) by

A(S)+ = {0} ∪
{
f ∈ A(S) : f(x) > 0 for any x ∈ S

}
,

R(G)+ = R(G) ∩A(S)+.

Lemma 3.5. With G and R(G) as above, the following statements hold:

(i) (R(G),R(G)+) is an unperforated ordered group.

(ii) In the case G = Z, (R(Z),R(Z)+) is a rational dimension group.
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Proof. (i) It is straightforward to see that R(G)+ ∩ −R(G)+ = 0 and that the

partially ordered abelian group (R(G),R(G)+) is unperforated. We must show that

R(G) = R(G)+ −R(G)+. For k ∈ N, let g ∈ G∞
k + G00 ⊂ R(G) be given, so that

g = h−ψk− ◦ π + h0ψk ◦ π + h+ψk+ ◦ π + g0,

with h+, h− ∈ G[e−π, (1 − e−π)], h0 ∈ L(G∞), and g0 ∈ G00. For N ∈ N, let us

fix the notation −[N,∞) := (−∞,−N ] and +[N,∞) := [N,∞). With M a large

enough natural number, we have h±(x) ≤ e±Mπ(x) for any x ∈ π−1(±[M,∞)).

Since the supports of h0ψk ◦ π and g0 are compact, and π is proper, there exists

c > 0 such that the function f = c(e−Mπψk− ◦ π+ψk ◦ π+ eMπψk+ ◦ π) ∈ R(G)+

satisfies f − g ∈ R(G)+. Thus, g = f − (f − g) ∈ R(G)+ −R(G)+.
(ii) Let n be an infinite supernatural number and denote by R̃(Dn) the subgroup

of A(S) defined by

R̃(Dn) =
{∑N

i=1 digi ∈ A(S) : N ∈ N, di ∈ Dn, gi ∈ R(Z)
}
.

We define a positive cone R̃(Dn)
+ by R̃(Dn)

+ = R̃(Dn)∩A(S)+. First we show that

the partially ordered abelian group (R̃(Dn), R̃(Dn)
+) is isomorphic to (R(Z)⊗Dn,

R(Z)⊗ Dn
+
) (as a partially ordered abelian group). Note that, by Lemma 3.1(iv),

(R(Z)⊗Dn,R(Z)⊗ Dn
+
) is an unperforated ordered abelian group. Let Φ: R(Z)⊗

Dn → R̃(Dn) denote the group homomorphism determined by Φ(g ⊗ d) = dg for

g ∈ R(Z) and d ∈ Dn, which is obviously surjective. To show the injectivity of

Φ, let gi, g
′
i ∈ R(Z) and di, d

′
i ∈ Dn, i = 1, 2, . . . , N , be such that

∑N
i=1 digi =∑N

i=1 d
′
ig

′
i in R̃(Dn). Choose d ∈ N such that ddi, dd

′
i ∈ Z for all i = 1, 2, . . . , N and

1/d ∈ Dn. Then it follows that
∑N

i=1 ddigi =
∑N

i=1 dd
′
ig

′
i in R(Z). Thus we have

d(
∑N

i=1 gi ⊗ di) = d(
∑N

i=1 g
′
i ⊗ d′i) in R(Z)⊗ Dn. Since R(Z)⊗ Dn is torsion-free,

we have
∑N

i=1 gi ⊗ di =
∑N

i=1 g
′
i ⊗ d′i. It is trivial to see that Φ(R(Z)⊗ Dn

+
) ⊂

R̃(Dn)
+. Since (R(Z)⊗Dn,R(Z)⊗ Dn

+
) is unperforated, we also have the converse

inclusion.

What remains to be shown is the RIP of (R̃(Dn), R̃(Dn)
+). The following

argument is essentially same as that in the proof of [31, Lem. 4.6]. Let fi, gj ∈
R̃(Dn), i, j ∈ {0, 1}, be such that fi(x) < gj(x) for any x ∈ S and i, j ∈ {0, 1}. At
τS ∈ π−1(0), since Dn is dense in R, we obtain d ∈ Dn such that fi(τS) < d < gj(τS)

for all i, j ∈ {0, 1}. By the definition of R̃(Dn), there exist N ∈ N and f̃i+, f̃i−,

g̃j+, g̃j− ∈ Dn[e
−π, (1− e−π)], i, j ∈ {0, 1} such that f̃i±(x) = fi(x) and g̃j±(x) =

gj(x) for any i, j ∈ {0, 1} and x ∈ π−1(±[N,∞)). Note that π(π−1(±[N,∞)))

are semibounded closed subsets of R, since π is a proper map. By Lemma 2.1, we

obtain e−, e+ ∈ Dn[e
x, e−x] such that

fi(x) < e±(π(x)) < gj(x) for s ∈ π−1(±[N,∞)).
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Set

h̄(x) = (e−ψk− + dψ + e+ψk+) ◦ π(x) for x ∈ S;

then it follows that fi(x) < h̄(x) < gj(x) for any i, j ∈ {0, 1} and x ∈ π−1((−∞,

−N ] ∪ {0} ∪ [N,∞)). By [8, Lem. 2.3] and [31, Lem. 4.4], there exists h̃ ∈ A(S)

such that h̃(x) = h̄(x) for x ∈ π−1((−∞,−N ]∪ {0} ∪ [N,∞)), and fi < h̃ < gj on

S for all i, j ∈ {0, 1}. Because π−1([−N,N ]) is compact, there exists ε > 0 such

that

fi(x) + ε < h̃(x) < gj(x)− ε,

for any i, j ∈ {0, 1} and x ∈ π−1([−N,N ]). Set r̄(x) = h̃(x)− h̄(x) for x ∈ S. Then

it follows that supp(r̄) ⊂ π−1((−N,N) \ {0}). By (1) of the conditions for G00, we

have r ∈ G00 such that r(x) ≈ε r̄(x) for x ∈ S and supp(r) ⊂ π−1((−N,N) \ {0}).
The element h = h̄+ r ∈ R̃(Dn) satisfies fi < h < gj for all i, j ∈ {0, 1}.

For an infinite supernatural number n, consider the ordered abelian group

(R̃(Dn), R̃(Dn)
+) introduced in the proof above. Define an ordered group GDn

and a subgroup GZ ⊂ GDn
by

GDn
=

{
ξ⊕ g ∈ (D∞

n ⊕R̃(Dn)) : ∃ ε> 0, for any x∈π−1((−ε, ε)), L(ξ)(x)= g(x)
}
,

GZ = (Z∞ ⊕R(Z)) ∩GDn
.

Define positive cones for GZ and GDn
by

G+
Dn

= {0} ∪
{
ξ ⊕ g ∈ GDn

: g ∈ R̃(Dn)
+ \ {0}

}
,

G+
Z = GZ ∩G+

Dn
.

Note that (GZ, G
+
Z ) is independent of the choice of infinite supernatural num-

ber n. It is straightforward to check that (GDn
, G+

Dn
) and (GZ, G

+
Z ) are torsion-

free ordered abelian groups such that (GDn
, G+

Dn
) is isomorphic to (GZ ⊗ Dn,

GZ ⊗ D+
n ) (as ordered abelian groups). Since R̃(Dn) is a dimension group (see

the proof of Lemma 3.5), so also is GDn
, for any infinite supernatural number n,

which means that (GZ, G
+
Z ) is a rational dimension group.

Define an automorphism σ of (GDn
, G+

Dn
) by

σ(ξ ⊕ g) = (σD∞
n
(ξ)⊕ σS(g)), for ξ ⊕ g ∈ GDn

.

From σS(R(Z)+) = R(Z)+, it follows that σ(G+
Z ) = G+

Z . Then, using the same

symbol, we may regard σ as an automorphism of (GZ, G
+
Z ).

Set 10 = (δ0,n)n∈Z ∈ Z∞, using the Kronecker delta δmn for m,n ∈ Z, and set

u = (10 ⊕ 1) ∈ GZ. Although u is not necessarily an order unit, we may consider a

kind of state space Su(H) for an ordered abelian subgroup (H,H+) of (GDn
, G+

Dn
)



Rationally AF Algebras 569

with u ∈ H+ defined by

Su(H) =
{
φ : H → R : a positive group homomorphism with φ(u) = 1

}
.

Consider Su(H) with the relative topology from the Cartesian product RH

(the topology of pointwise convergence). Assuming σ(H+) = H+, for α = e−β ∈ R,
consider the subset Sα

σ (H) of Su(H) and the bundle Sσ(H) over R defined by

Sα
σ (H) =

{
φ ∈ Su(H) : φ ◦ σ = αφ

}
,

Sσ(H) =
{
(φ, β) ∈ Su(H)× R : φ ∈ Sα

σ (H)
}
.

Although RH is not locally compact, we shall show that Sσ(GQ) is locally compact,

in Proposition 3.6(i) below. Define a projection πσH : Sσ(H) → R by πσH(φ, β) =

β. To simplify notation, let us write πZ and πDn
for πσGZ and πσGDn

.

For a supernatural number n, let ιn denote the canonical embedding of GZ
into GDn

, and ι∗n the induced map from Su(GDn
) to Su(GZ) defined by ι∗n(φ) =

φ ◦ ιn for φ ∈ Su(GDn
). Define a continuous map ι∗nσ from Sσ(GDn

) to Sσ(GZ) by

ι∗nσ(φ, β) = (ι∗n(φ), β) for (φ, β) ∈ Sσ(GDn
). For s ∈ S and g ∈ GDn

with g = ξ⊕ f
for some ξ ∈ D∞

n and f ∈ R̃(Dn), set ŝ(g) = f(s) and regard ŝ as an element

of Sα
σ (GDn

) for α = e−π(s). Define a continuous map ΨDn
from S to Sσ(GDn

) by

ΨDn
(s) = (ŝ, π(s)) for s ∈ S.

Proposition 3.6. As in Remark 3.3, let u denote the supernatural number cor-

responding to the universal UHF algebra, i.e., Du = Q.

(i) The pair (Sσ(GQ), πQ) is a proper simplex bundle.

(ii) The induced map ι∗uσ : Sσ(GQ) → Sσ(GZ) is a homeomorphism such that

πZ◦ι∗uσ = πQ and the restriction ι∗uσ|π−1
Q (β) is affine for each β ∈ R. Therefore,

the pair (Sσ(GZ), πZ) is also a proper simplex bundle that is isomorphic to

(Sσ(GQ), πQ).

(iii) ΨZ : S → Sσ(GZ) is an isomorphism of simplex bundles.

To prove the proposition, we shall consider the subgroup of GQ for which

u is an order unit, and its elements of compact support. Let ρ : GQ → R̃(Q)

denote the standard projection defined by ρ(ξ ⊕ f) = f . Set Gu+
Q = {g ∈ G+

Q :

there exists N ∈ N such that x ≤ Nu}, Gc+
Q = {g ∈ G+

Q : supp(ρ(g)) is compact},
Gu

Q = Gu+
Q − Gu+

Q , and Gc
Q = Gc+

Q − Gc+
Q . It is straightforward to check that

(Gu
Q, G

u+
Q ) is an ordered abelian group with order unit u. Since (GQ, G

+
Q ) is a

dimension group, we also see that (Gu
Q, G

u+
Q ) has the RIP. Let S(Gu

Q) denote the

state space of Gu
Q, a Choquet simplex (see for example [42, Thm. 10.17], [17]).

To simplify notation, set Q0 = Q[ex, e−x] and Q = Q[e−x, (1 − e−x)]. For

ξ = (ξn)n∈Z ∈ Q∞, define Σξ ∈ Q0 by Σξ(x) =
∑

n∈Z ξne
nx. Let φ ∈ S(Gu

Q). Note
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that, since φ(Ng) = Nφ(g) for any g ∈ Gu
Q and N ∈ N, we have φ(λg) = λφ(g)

for λ ∈ Q and g ∈ Gu
Q.

Lemma 3.7. Suppose that φ, ψ ∈ S(Gu
Q), λ > 0, and β ∈ R satisfy ψ(g) ≤ λφ(g)

for any g ∈ Gu+
Q , and φ(σ(g)) = e−βφ(g) for any g ∈ Gc

Q. Then it follows that

ψ(σ(g)) = e−βψ(g) for any g ∈ Gc
Q.

Proof. For η = (ηn)n∈Z and ξ = (ξn)n∈Z ∈ Q∞, let η ∗ ξ denote the convolution

product of η and ξ (i.e., η∗ξ = (
∑

k∈Z ηkξn−k)n). For q ∈ Q0 and g = (ξ⊕f) ∈ Gc
Q,

setting q∞ = (qn)n ∈ Q∞ such that Σq∞ = q, we define q · g ∈ Gc
Q by q · g =

(q∞ ∗ ξ ⊕ q ◦ πf). Note that, since φ(e−x · g) = e−βφ(g) for any g ∈ Gc
Q, it follows

that φ(q · g) = q(β)φ(g) for any q ∈ Q0 and g ∈ Gc
Q.

Fix g ∈ Gc+
Q and define ψg(q) = ψ(q · g) for q ∈ Q0. Thus one obtains the

Cauchy–Schwarz inequality

ψg(qr)
2 ≤ ψg(q

2)ψg(r
2)

for any q, r ∈ Q0. Choose a sequence αn ∈ Q, n ∈ N, such that limn→∞ αn = e−β ,

and set q̃n = e−x − αn ∈ Q0. Then we have

ψg(q̃n)
2 ≤ ψg(q̃

2
n)ψg(1) ≤ λ−1φ(q̃2n · g)ψg(1)

= λ−1q̃2n(β)φ(g)ψ(g) → 0 (n→ ∞),

which implies that limn→∞ ψ(e−x · g) − αnψ(g) = 0. Since Gc
Q = Gc+

Q − Gc+
Q , we

have ψ(e−x · g) = e−βψ(g) for any g ∈ Gc
Q.

Proof of Proposition 3.6. (i) First we show that πQ : Sσ(GQ) → R is a proper map.

Let K ⊂ R be a compact set, and sλ = (φλ, βλ) ∈ π−1
Q (K), λ ∈ Λ be a universal

net (see [58] for the definition). For g ∈ GQ such that ρ(g) is bounded on S, there

exists c ∈ N such that |φλ(g)| < c for any λ ∈ Λ. Then the net φλ(g), λ ∈ Λ,

converges to a point in [−c, c]. For a general g ∈ GQ, there are g0, g+, g− ∈ GQ
such that g = g−+g0+g+, and ρ(g0), ρ(σ

N (g−)), and ρ(σ
−N (g+)) are bounded on

S. By (φλ, βλ) ∈ π−1
Q (K) and φλ(g±) = e±Nβλφλ(σ

∓N (g±)), it follows that φλ(g),

λ ∈ Λ, converges in R. Set φ(g) = limλ→∞ φλ(g). Setting β = limλ→∞ βλ ∈ K,

we have φ(σ(g)) = e−βφ(g) for any g ∈ GQ, which implies that sλ converges to

(φ, β) ∈ π−1
Q (K). Thus, π−1

Q (K) is compact.

For s = (φ, β) ∈ Sσ(GQ), we see that π
−1
Q ([β−ε, β+ε]) for ε > 0 is a compact

neighborhood of S, which means that Sσ(GQ) is locally compact.

It remains to show that π−1
Q (β) is a Choquet simplex for any β ∈ R. Fix β ∈ R.

Denote by ιu the canonical embedding of Gu
Q into GQ and define the induced map

ι∗u : π
−1
Q (β) → S(Gu

Q) by ι
∗
u(s) = φ◦ιu for s = (φ, β) ∈ π−1

Q (β). From the definition,

it follows that ι∗u is affine and continuous in the topology of pointwise convergence.
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We see that points of π−1
Q (β) are separated by Gu

Q, because any g ∈ GQ can be

decomposed as g = σ−N (g−)+ g0 +σN (g+) for some g0, g−, g+ ∈ Gu
Q and N ∈ N.

Thus ι∗u is injective. Since a compact face of a Choquet simplex is also a Choquet

simplex (see [42, Thm. 10.9]), it suffices to show that Im(ι∗u) is a face of S(Gu
Q).

Let φ ∈ Im(ι∗u), ψ, η ∈ S(Gu
Q), and λ ∈ (0, 1) satisfy φ = λψ + (1 − λ)η.

In the following argument, we first consider a specific g ∈ Gu
Q with the property

ρ(g) = ψk+ ◦π, ψk− ◦π, (ψk+−ψl+)◦π, or (ψk−−ψl−)◦π for k, l ∈ N with k > l.

Set fg = ρ(g), Qg = {q ∈ Q : 0⊕ (q ◦π)fg ∈ Gu
Q}, and ψg(q) = ψ(0⊕ (q ◦π)fg) for

q ∈ Qg. Thus we obtain the Cauchy–Schwarz inequality, ψg(qr)
2 ≤ ψg(q

2)ψg(r
2),

for any q, r ∈ Qg satisfying qr, q2, r2 ∈ Qg. By an argument similar to that in the

proof of Lemma 3.7, we have

(1) ψ(0⊕ (q ◦ π)fg) = q(β)ψ(0⊕ fg) for any q ∈ Qg.

For general g = ξ⊕f ∈ GQ represented as f = (f−ψk−)◦ψ+L(ξ)ψk◦π+(f+ψk+)◦
π + f0 with f+, f− ∈ Q, and f0 ∈ G00, define

ψ̃(g) = f−(β)ψ(0⊕ψk− ◦π)+ψ(ξ⊕L(ξ)ψk ◦π)+f+(β)ψ(0⊕ψk+ ◦π)+ψ(0⊕f0).

Then ψ̃ : GQ → R is well defined (single valued). Indeed, if two elements g1, g2 ∈
GQ are written as

gi = ξ(i) ⊕
(
(f

(i)
− ψki−) ◦ π + L(ξ(i))(ψki ◦ π) + (f

(i)
+ ψki+) ◦ π + f

(i)
0

)
, i = 1, 2,

for some f
(i)
− , f

(i)
+ ∈ Q, and f

(i)
0 ∈ G00, and if g1 = g2, then we may assume

that k1 ≤ k2 and f
(1)
± = f

(2)
± without loss of generality. Applying (1) to fg =

(ψk2± − ψk1±) ◦ π we have

ψ(0⊕ f±(ψk2± − ψk1±) ◦ π) = f±(β)ψ(0⊕ (ψk2± − ψk1±) ◦ π),

which implies ψ̃(g2)−ψ̃(g1) = ψ(g2−g1) = 0. Similarly, applying (1) to fg = ψk±◦π
we see that ψ̃(g) = ψ(g) for any g ∈ Gu

Q. It is not hard to see that ψ̃ : GQ → R is

a group homomorphism such that ψ̃(u) = 1. In the following paragraph we shall

show that ψ̃ is positive.

Let g = ξ ⊕ f ∈ GQ be such that f > 0 and let k ∈ N, f+, f− ∈ Q, and

f0 ∈ G00 satisfy f = (f−ψk−) ◦ π + L(ξ)(ψk ◦ π) + (f+ψk+ ◦ π) + f0. Let N ∈ N
and continuous functions e+, e− on R satisfy supp(f0) ⊂ [−N,N ], 0 ≤ e± ≤ 1,

supp(e±) ⊂ ±[N,∞), and e±|±[N+1,∞) = 1. Set

z = ((1− e−)f−ψk−) ◦ π + L(ξ)ψk ◦ π + ((1− e+)f+ψk+) ◦ π + f0 ∈ A(S).

Since f > 0, we may assume that N ∈ N, e+, and e− also satisfy f±e± ≥ 0, and

that z ≥ 0. Since there exists (a large) M ∈ N such that e∓Mxf± are bounded
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on ±[0,∞), by approximating e±Mx(1 − e±) on ±[0,∞) uniformly, we obtain

sequences d+n, d−n ∈ Q such that

sup
x∈±[0,∞)

|d±nf±(x)− (1− e±)f±(x)| < 1/n.

Set

yn = (f−(1− d−n)ψk−) ◦ π + (f+(1− d+n)ψk±) ◦ π ∈ R̃(Q),

zn = (f−d−nψk−) ◦ π + L(ξ)ψk ◦ π + (f+d+nψk+) ◦ π + f0 ∈ R̃(Q).

Then it follows that 0⊕yn, ξ⊕ zn ∈ GQ and g = (0⊕yn)+ (ξ⊕ zn) for any n ∈ N.
Since f±(1− d±) converge uniformly to e±f± on ±[0,∞), we have that

lim inf
n→∞

ψ̃(0⊕ yn) = lim inf
n→∞

f−(1− d−n)(β)ψ(0⊕ ψk− ◦ π)

+ f+(1− d+n)(β)ψ(0⊕ ψk+ ◦ π) ≥ 0.

Since zn converges uniformly to z ≥ 0 on S, and supp(z) is compact, we have

ξ ⊕ zn ∈ Gu
Q and lim infn→∞ ψ̃(ξ ⊕ zn) = lim infn→∞ ψ(ξ ⊕ zn) ≥ 0. Thus we

conclude that ψ̃(g) ≥ 0.

By Lemma 3.7 and ψ(g) ≤ λ−1φ(g) for g ∈ Gu+
Q , we see that ψ̃(σ(g)) =

e−βψ̃(g) for any g ∈ GQ. From ψ̃(g) = ψ(g) for any g ∈ Gu
Q, it follows that

ψ = ι∗u(ψ̃) ∈ Im(ι∗u). By the same argument, we also see that η ∈ Im(ι∗u), which

means that Im(ι∗u) is a face of S(Gu
Q), as asserted, and the proof of (i) is complete.

(ii) For any g ∈ GQ, consider the smallest number Ng ∈ N such that Ngg ∈ GZ.

To show injectivity of ι∗uσ, let s = (φ, πQ(φ)), t = (ψ, πQ(ψ)) ∈ Sσ(GQ) satisfy

ι∗uσ(s) = ι∗uσ(t). Then

Ngφ(g) = φ ◦ ιu(Ngg) = ψ ◦ ιu(Ngg) = Ngψ(g),

for any g ∈ GQ, and it follows that s = t. To prove surjectivity of ι∗uσ, let s =

(φ, β) ∈ Sσ(GZ) and define a map φ̃ : GQ → R by φ̃(g) = 1
Ng
φ(Ngg) for g ∈

GQ. From φ̃(g + h) = 1
Ng+hNgNh

φ(Ng+hNgNh(g + h)) = φ̃(g) + φ̃(h) for any g,

h ∈ GQ, it follows that φ̃ is a group homomorphism. It is straightforward to see

that φ̃ is a positive group homomorphism satisfying φ̃(u) = 1. By φ̃(σ(g)) =
1

NgNσ(g)
φ(NgNσ(g)σ(g)) =

1
NgNσ(g)

e−βφ(NgNσ(g)g) = e−βφ̃(g) for any g ∈ GQ, we

have (φ̃, β) ∈ Sσ(GQ) and ι
∗
uσ((φ̃, β)) = (φ, β).

By the same argument as in (i), we see that Sσ(GZ) is also locally compact.

From the definition of ι∗u, it follows that ι∗uσ is a bijective continuous map such

that πZ ◦ ι∗uσ = πQ and ι∗uσ|π−1
Q (β) is affine for any β ∈ R. Because of Lemma 3.4,

ι∗uσ is an isomorphism of simplex bundles and (Sσ(GZ), πZ) is also proper.
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(iii) As ΨZ = ι∗uσ◦ΨQ, it suffices to show that ΨQ : S → Sσ(GQ) is an isomorphism

of simplex bundles. From the definition, it is straightforward to check that ΨQ is

injective and continuous, and the restriction of ΨQ to π−1(β) is affine for any

β ∈ R. By Lemma 3.4, it is enough to show that ΨQ is surjective. However, this is

done in the proof of [31, Lem. 4.12]. We sketch a proof for the convenience of the

reader.

Let (φ, β) be in Sσ(GQ). If g = ξ⊕f ∈ GQ satisfies f = 0 ∈ R̃(Q), then it fol-

lows that ng ≤ u for any n ∈ N, which implies φ(g) = 0. Thus we obtain a positive

group homomorphism φ′ : R̃(Q) → R such that φ′ ◦ ρ = φ. Denote by AR(S) the

real Banach space, with the supremum norm, consisting of functions in A(S) which

have a limit at infinity. Since ρ(Gu
Q)∩AR(S) is uniformly dense in AR(S) (see [31,

Lem. 4.11]), we can extend φ′ to AR(S) in such a way that |φ′(f)| ≤ sups∈S |f(s)|
for any f ∈ AR(S). By the Hahn–Banach theorem, we can further extend φ′

to the Banach space Cu(S) = {f ∈ C(S,R) : there exists lims→±∞ f(s)}. Since
φ′(1) = 1, the extension of φ′ is also a positive bounded linear functional on Cu(S).

Thus we obtain a Borel measure mφ on S such that

φ′(f) =

∫
S

f(x) dmφ(x) for any f ∈ C0(S).

For y ∈ Aff(π−1(β)) such that y > 0, by [31, Lem. 4.4(2) and Lem. 4.11], we

obtain a sequence gyn = (ξyn⊕fyn) ∈ GQ, n ∈ N, such that supp(fyn) is compact,

fyn ≥ 0 for any n ∈ N, supn∈N sups∈S |fyn(s)| < ∞, and fyn|π−1(β) converges to

y uniformly. Let ω be a free ultrafilter on N. For y ∈ Aff(π−1(β)) with y > 0,

we define φ̄(y) = limn→ω φ
′(fyn). Then φ̄ is independent of the choice of ξyn and

fyn. Indeed, if we suppose that g′yn = (ξ′yn ⊕ f ′yn) ∈ GQ is another choice, then

for ε > 0 there exists N ∈ N such that sups∈π−1(β) |fyn(s) − f ′yn(s)| < ε, for

any n > N . Set Xn = supp(fyn) ∪ supp(f ′yn), which is compact for any n ∈ N,
and let qm ∈ Q[ex, e−x], m ∈ N, be a sequence such that qm|Xn converges to the

characteristic function χβ at {β} and such that supps∈Xn
|qm(s)|, m ∈ N, is a

bounded sequence. Then, by the Lebesgue dominated convergence theorem,

lim
m→∞

φ′((qm ◦ π)fyn) =
∫
S

(χβ ◦ π)fyn dmφ

≈ε

∫
S

(χβ ◦ π)f ′yn dmφ = lim
m→∞

φ′((qm ◦ π)f ′yn),

for any n ≥ N . It follows that

|φ′(fyn− f ′yn)| ≤ lim sup
m→∞

(|φ′(qm ◦π(fyn− f ′yn))|+ |(1− qm(β))φ′(fyn− f ′yn)|) < ε.

Since ε > 0 is arbitrary, we have limn→ω φ
′(fyn) = limn→ω φ

′(f ′yn).
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Since φ̄ is well defined, we see that φ̄(x + y) = φ̄(x) + φ̄(y) for any x, y ∈
Aff(π−1(β)) with x, y > 0. Because Aff(π−1(β)) is an ordered abelian group in

the strict ordering, we can extend φ̄ to a positive group homomorphism from

Aff(π−1(β)) to R. Thus there exist s ∈ π−1(β) and λ ∈ (0,∞) such that φ̄(y) =

λy(s) for any y ∈ Aff(π−1(β)); see [42, Thm. 7.1], for example. From the definition

of φ̄ it follows that

λf(s) = φ̄(f |π−1(β)) = φ(ξ ⊕ f),

for any g = ξ ⊕ f ∈ GQ such that supp(f) is compact. For g = ξ ⊕ f ∈ GQ
with f ∈ A0(S) and ξ = 0, by property (1) of G00, there exists a sequence fn ∈
G00, n ∈ N, which converges to f uniformly. Then it follows that φ(0 ⊕ f) =

limn→∞ φ(0 ⊕ fn) = λf(s). For f ∈ Q, there exists a large N ∈ N such that

(fe∓Nxψk±) ◦ π ∈ A0(S) for any k ∈ N. Then we have that φ(0 ⊕ (fψk±) ◦ π) =
e±Nβφ(0 ⊕ (e∓Nxfψk±) ◦ π) = λfψk±(β), which implies that φ(g) = λf(s) for

any g = ξ ⊕ f ∈ GQ. Since φ(u) = 1, it is clear that λ = 1, and thus we conclude

that ΨQ(s) = (φ, β).

§4. Rationally AF algebras

In order to realize a given rational dimension group at the level of K0-groups

for operator algebras, it seems plausible that a corresponding C∗-algebra should

become an AF-algebra after tensoring with a UHF-algebra. This tensoring proce-

dure is called rationalization in [3, 76]. While the rationalization was determined

by a single UHF-algebra in these previous works, we would like to use the term

“rationally” to refer to the tensor products with two UHF-algebras, that are rela-

tively prime in the natural sense. (Cf. Remark 3.3.)

We prepare some facts and notation concerning C∗-algebras. For a C∗-algebra

C, we let C∼ denote the unitization of C, and C1 denote the closed unit ball of C.

We denote by idC the identity automorphism of C. For a subset F ⊂ C, let P (F )

denote the set of all projections in F , and F+ the set of all positive elements in

F . When C is a unital C∗-algebra, the symbol 1C means the unit of C. For two

elements x, y ∈ C, and ε > 0, we use the notation x ≈ε y if ∥x − y∥ < ε. For

subsets F , G in C, and ε > 0, the notation F ⊂ε G means that for any x ∈ F

there exists y ∈ G with y ≈ε x.

For a supernatural number n, let Mn denote the uniformly hyperfinite (UHF)

algebra of type n (i.e., (K0(Mn),K0(Mn)
+, [1Mn

]0) ∼= (Dn,D+
n , 1Dn

)), and K the

C∗-algebra of all compact operators on a separable Hilbert space. For a natural

number n ∈ N, we let {e(n)ij }ni,j=1 or {eij}ni,j=1 denote the set of canonical matrix

units of Mn.
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For two C∗-algebras C, D, and a ∗-homomorphism φ from C to D, denote

the induced map from K0(C) to K0(D), a homomorphism of pre-ordered abelian

groups (the positive cone of K0 being the canonical image of the Murray–von

Neumann semigroup – see [64]) by φ∗.

Definition 4.1. Given a C∗-algebra A, we shall say that A is rationally AF

(RAF) if A ⊗ Mp and A ⊗ Mq are AF-algebras for some relatively prime pair

of supernatural numbers p and q.

Lemma 4.2. The following two statements hold:

(i) If A is an RAF-algebra, then A⊗Mn is approximately finite-dimensional for

every infinite supernatural number n.

(ii) Any RAF-algebra has trivial K1-group.

Proof. (i) Since A ⊗Mn is also an RAF-algebra for any n ∈ N, to show A ⊗Mn

is approximately finite-dimensional, it suffices to show that for any finite subset F

of A and ε > 0 there exists a finite-dimensional C∗-subalgebra B of A⊗Mn such

that F ⊗ 1Mn
⊂ε B.

Taking large natural numbers mp and mq with mp|p and mq|q, we have finite-
dimensional C∗-subalgebras Ai of A ⊗ Mi for i = p, q such that F ⊗ 1Mi

⊂ε

Ai for both i = p, q. Since mp and mq are relatively prime, there exist natural

numbers a, b, and N such that amp+ bmq = N and N |n (cf. proof of Lemma 3.1).

Therefore, there exists a unital embedding Φ of Mmp
⊕Mmq

into Mn. Identifying

A⊗(Mmp
⊕Mmq

) with (A⊗Mmp
)⊕(A⊗Mmq

), we obtain a finite-dimensional C∗-

subalgebra B = (idA ⊗Φ)(Ap⊕Aq) of A⊗Mn which satisfies the above condition.

(ii) Because of the Künneth theorem [69, Thm. 2.14] (see also [2, Thm. 23.1.3]),

we see that K1(A) ⊗ K0(Mi) ∼= K1(A ⊗Mi) = 0 for both i = p, q. From (i) of

Lemma 3.1, it follows that K1(A) is torsion-free. Therefore the canonical embed-

ding of K1(A) into K1(A)⊗ Dp = 0 is injective, and so K1(A) = 0.

Note that any RAF-algebra is AF-embeddable, and so it is stably finite. Hence

the ordered K0-group of any RAF-algebra is a partially ordered abelian group. In

combination with Lemma 3.1(iii), the following results show that the ordered K0-

group of a Z-absorbing RAF-algebra is an ordered abelian group.

A typical example of an RAF-algebra is the Jiang–Su algebra Z, which is

constructed as a unital separable simple monotracial RAF-algebra whose ordered

K0-group is (Z,Z+). Gong, Jiang, and Su [37, Thm. 1] showed that the orderedK0-

group of a unital simple Z-absorbing C∗-algebra is weakly unperforated. Part (ii)

of the following Proposition 4.3 is a variant of their argument for RAF-algebras in

the absence of simplicity.
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In contrast, it is noteworthy that Villadsen algebras of the first kind are

examples of non-type-I simple RAF-algebras which do not absorb the Jiang–Su

algebra Z tensorially [74, 73].

Proposition 4.3. The following two statements hold:

(i) Let A be a C∗-algebra and n a supernatural number. Then the pre-ordered

abelian groups (K0(A⊗Mn),K0(A⊗Mn)
+) and (K0(A)⊗Dn,K0(A)⊗ Dn

+
)

are isomorphic (in a natural way).

(ii) Let A be a Z-absorbing RAF-algebra. Then the partially ordered abelian group

(K0(A),K0(A)
+) is unperforated, and, furthermore, is a rational dimension

group.

Proof. (i) It is enough to note that, for any natural number n, the Murray–von

Neumann semigroup of A ⊗Mn is the same (by definition – with respect to the

map A → A ⊗ e11 ⊂ A ⊗ Mn) as that of A (the image of which in K0(A) is

the positive cone), and the semigroup endomorphism corresponding to the map

A→ A⊗1Mn
⊂ A⊗Mn is just multiplication by n. (Recall that both the Murray–

von Neumann semigroup functor and the K0 functor preserve inductive limits.)

(ii) If A is an RAF-algebra, then so also is A ⊗ K. Since the ordered K0-groups

(K0(A),K0(A)
+) and (K0(A ⊗ K),K0(A ⊗ K)+) are isomorphic, without loss of

generality we may assume that A is stable.

Let ι denote the canonical embedding of A into A⊗Z defined by ι(a) = a⊗1Z
for a ∈ A, and ι∗ the induced map by ι from K0(A) to K0(A⊗Z). As in the proof

of [37, Thm. 1], for g ∈ K0(A) it is enough to show that ι∗(g) ∈ K0(A ⊗ Z)+

if and only if ng ∈ K0(A)
+ for some n ∈ N. Indeed, if x ∈ K0(A ⊗ Z) satisfies

nx ∈ K0(A⊗Z)+ for some n ∈ N, then, since (by [69]) ι∗ is a group isomorphism,

there exists gx ∈ K0(A) such that ι∗(gx) = x. Then we obtain m ∈ N such that

mngx ∈ K0(A)
+ which implies x ∈ K0(A⊗Z)+.

Suppose that g ∈ K0(A) satisfies ι∗(g) ∈ K0(A⊗Z)+. Recall that the Jiang–

Su algebra is constructed as the inductive limit C∗-algebra lim−→(Zpnqn , φn) of prime

dimension drop algebras Zpnqn , n ∈ N, and the connecting maps φn : Zpnqn →
Zpn+1qn+1

, n ∈ N, where pn and qn are relatively prime numbers; see [44]. Note that

A⊗Zpnqn is stably finite for each n ∈ N: then (K0(A⊗Zpnqn),K0(A⊗Zpnqn)
+)

is a partially ordered abelian group. By the continuity of the functor K0 (see

[64, Thm. 6.3.2], for example), there exist embeddings ψn : A ⊗ Zpnqn → A ⊗ Z
such that K0(A ⊗ Z)+ =

⋃∞
n=1 ψn∗(K0(A ⊗ Zpnqn)

+). Then there exist N ∈ N
and x ∈ K0(A ⊗ ZpNqN )+ such that ι∗(g) = ψN∗(x). Let ιN : A → A ⊗ ZpNqN

denote the canonical embedding defined by ιN (a) = a ⊗ 1ZpNqN
for a ∈ A and

ev0 : A⊗ZpNqN → A⊗MpN
the evaluation map determined by ev0(f)⊗ 1MqN

=
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f(0) for f ∈ A ⊗ ZpNqN . Since ev0 ◦ιN (a) = a ⊗ 1MpN
for any a ∈ A, it follows

that ev0∗ ◦ιN∗(g) = pNg. Since ιN∗(g) = x ∈ K0(A ⊗ ZpNqN )+, we have pNg =

ev0∗ ◦ιN∗(g) ∈ K0(A)
+.

Conversely, suppose that g ∈ K0(A) satisfies ng ∈ K0(A)
+ for some n ∈ N.

Let p and q ∈ N\{1} be relatively prime natural numbers, and denote by ιi : A→
A ⊗ Mi∞ , i = p, q, the canonical embeddings defined by ιi(a) = a ⊗ 1Mi∞ for

a ∈ A. Since K0(A ⊗Mi∞), i = p, q, are ordered abelian groups, there exist ai,

bi ∈ K0(A⊗Mi∞)+ such that ιi∗(g) = ai−bi for both i = p, q. Since K0(A⊗Mi∞)

is unperforated and n(ai − bi) = ιi∗(ng) ∈ K0(A ⊗Mi∞)+ for i = p, q, it follows

that ai − bi ∈ K0(A⊗Mi∞)+. Because A⊗Mi∞ , i = p, q, are stable AF-algebras,

we obtain projections yi ∈ A⊗Mi∞ , i = p, q, such that [yi]0 = ai − bi. Identifying

A ⊗ Mp∞ ⊗ Mq∞ with A ⊗ Mq∞ ⊗ Mp∞ canonically, we have [yp ⊗ 1Mq∞ ]0 =

[yq ⊗ 1Mp∞ ]0 in K0(A ⊗Mp∞ ⊗Mq∞). Since A ⊗Mp∞ ⊗Mq∞ is an AF-algebra,

there exists a projection z ∈ C([0, 1])⊗A⊗Mp∞⊗Mq∞ such that z(0) = yp⊗1Mq∞

and z(1) = yq ⊗ 1Mp∞ . Considering the C∗-algebra

Z∞ =
{
f ∈ C([0, 1])⊗Mp∞ ⊗Mq∞ : f(0) ∈Mp∞ ⊗ 1Mq∞ , f(1) ∈ 1Mp∞ ⊗Mq∞

}
,

introduced in [65], we can regard z as a projection in A⊗Z∞. Denote by ι∞ : A→
A⊗ Z∞ the canonical embedding defined by ι∞(a) = a⊗ 1Z∞ for a ∈ A, and by

Evi : A⊗Z∞ → A⊗Mi∞ , i = p, q, the evaluation maps determined by Evp(f)⊗
1Mq∞ = f(0) and Evq(f) ⊗ 1Mp∞ = f(1) for f ∈ A ⊗ Z∞. Since K1(A ⊗Mp∞ ⊗
Mq∞) = 0, the induced map (Evp ⊕Evq)∗ : K0(A⊗Z∞) → K0(A⊗Mp∞)⊕K0(A⊗
Mq∞) is injective. Since

(Evp ⊕Evq)∗([z]0 − ι∞∗(g)) = ([yp]0 ⊕ [yq]0)− (ιp∗(g)⊕ ιq∗(g)) = 0,

considering the embedding ιZ∞ : A ⊗ Z∞ → A ⊗ Z we conclude that ι∗(g) =

ιZ∞∗ ◦ ι∞∗(g) ∈ K0(A⊗Z)+.

This shows that (K0(A),K0(A)
+) is an unperforated partially ordered abelian

group. On using once more that A is RAF, the second statement follows from (i).

Our goal in this section is to provide a construction of RAF-algebras which

exhausts all countable rational dimension groups as K0-groups. Here we emphasize

that the non-simple cases of RAF-algebras are required in order to realize the

rational dimension group (GZ, G
+
Z ) of Section 3. The construction is somewhat

analogous to the construction of simple C∗-algebras in [24] and [44].

As a corollary, we also show that a natural addition to the invariant in the

non-stable case is exhausted (Corollary 4.8). In Section 5, we shall show that the

augmented invariant (K0 alone in the stable case) is complete.
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Theorem 4.4. For any countable rational dimension group (G,G+), there exists

a separable stable RAF-algebra AG such that AG ⊗ Z ∼= AG and (K0(AG),

K0(AG)
+) is isomorphic to (G,G+) as an ordered abelian group.

Let (G,G+) be a countable rational dimension group. For i = 0, 1, we obtain a

stable AF-algebra Fi such that (K0(Fi),K0(Fi)
+) is isomorphic to (G⊗D(2+i)∞ ,

G⊗ D(2+i)∞
+) as an ordered abelian group. Because of the Elliott classification

theorem [20] and Proposition 4.3(i), we can see that

F0 ⊗M3∞
∼= F1 ⊗M2∞ .

To simplify notation, we suppress the isomorphism between F0 ⊗M3∞ and F1 ⊗
M2∞ in the rest of this section, and set F = F0 ⊗M3∞ = F1 ⊗M2∞ . We denote

by ι
(i)
∞ the canonical embedding of Fi into F defined by ι

(i)
∞ (a) = a ⊗ 1M(3−i)∞

for i = 0, 1 and a ∈ Fi. The desired RAF-algebra AG will be constructed as an

inductive limit whose building blocks are type-I C∗-subalgebras of the following

generalized dimension drop algebra IG.

We define a C∗-algebra IG by

IG =
{
f ∈ C([0, 1])⊗ F : f(i) ∈ Im(ι(i)∞ ) for both i = 0, 1

}
.

Proposition 4.5. Let Ai, i = 0, 1, be two AF-embeddable C∗-algebras. Suppose

that there exist an AF-algebra A and embeddings ι(i), i = 0, 1, of Ai into A. Then

the C∗-algebra J defined by

J =
{
f ∈ C([0, 1])⊗A : f(i) ∈ Im(ι(i)) for both i = 0, 1

}
has the following properties:

(i) Suppose that the induced maps ι
(i)
∗ : K0(Ai) → K0(A), i = 0, 1, are injective.

Let evi : J → Im(ι(i)), i = 0, 1, denote the evaluation maps at these two

points: evi(f) = f(i). Then, on identifying K0(Im(ι(i))) with Im(ι
(i)
∗ ), the

induced maps evi∗ : K0(J) → Im(ι
(i)
∗ ), i = 0, 1, satisfy ev0∗ = ev1∗ and

ev0∗ : K0(J) → Im(ι
(0)
∗ ) ∩ Im(ι

(1)
∗ ) is a group isomorphism.

(ii) If ι(i), i = 0, 1, satisfy the assumption of (i) and ι
(i)
∗ (K0(Ai)

+) =

ι
(i)
∗ (K0(Ai)) ∩ K0(A)

+ for both i = 0, 1, then ev0∗ is an isomorphism of

ordered abelian groups from (K0(J),K0(J)
+) to (Im(ι

(0)
∗ )∩Im(ι

(1)
∗ ), Im(ι

(0)
∗ )∩

Im(ι
(1)
∗ ) ∩K0(A)

+).

(iii) In particular, for A = F , Ai = Fi, and ι
(i) = ι

(i)
∞ , i = 0, 1, it follows that

(K0(IG),K0(IG)
+) is isomorphic to (G,G+) as an ordered abelian group.
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Proof. (i) Denote by ι the canonical embedding of C0((0, 1))⊗A into J . From the

exact sequence

0 → C0((0, 1))⊗A
ι−→ J

ev0 ⊕ ev1−−−−−−→ Im(ι(0))⊕ Im(ι(1)) → 0,

we obtain the six-term exact sequence of Bott periodicity which implies the fol-

lowing exact sequence:

0 → K0(J)
(ev0 ⊕ ev1)∗−−−−−−−−→ Im(ι

(0)
∗ )⊕ Im(ι

(1)
∗ )

∂−→ K0(A) → 0,

where ∂ is the exponential map from K0(Im(ι(0)))⊕K0(Im(ι(1))) to K1(C0((0, 1))

⊗A) ∼= K0(A). Then it is not hard to check that ∂(x⊕ y) = x− y for x ∈ Im(ι
(0)
∗ )

and y ∈ Im(ι
(1)
∗ ). Set Φ: Im(ι

(0)
∗ )∩ Im(ι

(1)
∗ ) → Im(ι

(0)
∗ )⊕ Im(ι

(1)
∗ ) by Φ(x) = x⊕x

for x ∈ Im(ι
(0)
∗ ) ∩ Im(ι

(1)
∗ ). Then the group homomorphism (ev0 ⊕ ev1)∗ is an

isomorphism onto Im(Φ). Thus we see that ev0∗ = Φ−1 ◦ (ev0 ⊕ ev1)∗ = ev1∗ is a

group isomorphism.

(ii) From the assumption ι
(i)
∗ (K0(Ai)

+) = ι
(i)
∗ (K0(Ai))∩K0(A)

+, for x ∈ Im(ι
(0)
∗ )∩

Im(ι
(1)
∗ ) ∩ K0(A)

+, there exist N ∈ N and projections pi ∈ Ai ⊗MN , i = 0, 1,

such that ι
(i)
∗ ([pi]0) = x for both i = 0, 1. Since A ⊗ MN is an AF-algebra

and [ι(0) ⊗ idMN
(p0)]0 = [ι(1) ⊗ idMN

(p1)]0 in K0(A), there exists a projection

p̃ ∈ C([0, 1])⊗A⊗MN such that p̃(i) = ι(i)⊗idMN
(pi) for i = 0, 1. Regarding p̃ as a

projection in J⊗MN , we have that (ev0 ⊕ ev1)∗([p̃]0) = ι
(0)
∗ ([p]0)⊕ι(1)∗ ([p]0) = x⊕x.

Then it follows that x = Φ−1 ◦ (ev0 ⊕ ev1)∗([p̃]0) = ev0∗([p̃]0) ∈ ev0∗(K0(J)
+),

which implies that ev0∗(K0(J)
+) = Im(ι

(0)
∗ ) ∩ Im(ι

(1)
∗ ) ∩K0(A)

+.

(iii) For i = 0, 1, since K0(Ai) is torsion-free, it follows that the induced map

ι
(i)
∗ : K0(Ai) → K0(A) ∼= K0(Ai) ⊗ D(3−i)∞ is injective. By Proposition 4.3(i), it

follows that

(K0(A),K0(A)
+) ∼= (K0(A0)⊗ D3∞ ,K0(A0)⊗ D3∞

+
)

∼= (K0(A1)⊗ D2∞ ,K0(A1)⊗ D2∞
+
),

as ordered abelian groups. Then, for i = 0, 1 and x ∈ Im(ι
(i)
∗ ) ∩ K0(A)

+, there

exists d ∈ N such that (3−i)dx ∈ ι
(i)
∗ (K0(Ai)

+). Since (K0(Ai),K0(Ai)
+) is unper-

forated, it follows that x ∈ ι
(i)
∗ (K0(Ai)

+), which implies that Im(ι
(i)
∗ )∩K0(A)

+ =

ι
(i)
∗ (K0(Ai)

+) for both i = 0, 1. Applying (ii), we see that (K0(IG),K0(IG)
+) is

isomorphic to (Im(ι
(0)
∗ ) ∩ Im(ι

(1)
∗ ), Im(ι

(0)
∗ ) ∩ Im(ι

(1)
∗ ) ∩K0(A)

+).

By Lemma 3.1(i), any rational dimension group is torsion-free, and by

Lemma 3.1(ii), we have Im(ι
(0)
∗ )∩Im(ι

(1)
∗ ) = G⊗D2∞⊗1D3∞ ∩G⊗1D2∞ ⊗D3∞

∼= G.

Let Ψ: G → G ⊗ D2∞ ⊗ D3∞ denote the positive group homomorphism defined

by Ψ(g) = g ⊗ 1D2∞ ⊗ 1D3∞ for g ∈ G. The group isomorphism of (the proof
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of) Lemma 3.1(ii) is just the map Ψ. Furthermore, since G is unperforated it is

straightforward to check that Ψ(G+) = Ψ(G) ∩ (G⊗D2∞ ⊗D3∞)+. Therefore we

conclude that

(Im(ι
(0)
∗ ) ∩ Im(ι

(1)
∗ ), Im(ι

(0)
∗ ) ∩ Im(ι

(1)
∗ ) ∩K0(A)

+)

∼= (Ψ(G),Ψ(G) ∩ (G⊗ D2∞ ⊗ D3∞)+) ∼= (G,G+).

Before going into the proof, we collect some necessary well-known facts con-

cerning finite-dimensional C∗-algebras.

Lemma 4.6. The following five statements hold:

(i) If natural numbers P , Q, R and a projection p ∈ MQ ⊗ MR satisfy R ≤
rank(p), R| rank(p), rank(p)

R < Q, and P |(Q − rank(p)
R ), then there exists a

unitary u ∈ MP ⊗MQ ⊗MR such that for any C∗-algebra A, a ∈ A, and

b ∈ A⊗MP ,

Ad(1A∼ ⊗ u)
(
(a⊗ 1MP

⊗ p)⊕ (b⊗ (1MQ⊗MR
− p))

)
∈ A⊗ 1MP

⊗MQ ⊗ 1MR
.

(ii) For ε > 0 and N ∈ N, there exists δ > 0 such that if A and B are C∗-

subalgebras of a unital C∗-algebra A such that dim(B) ≤ N and B1 ⊂δ A,

then there exists a unitary u ∈ A such that u ≈ε 1A and Adu(B) ⊂ A.

(iii) For ε > 0 and N ∈ N, there exists δ > 0 such that if a finite-dimensional

C∗-algebra A and two embeddings ι0 and ι1 of A into a unital C∗-algebra A

satisfy dim(A) ≤ N and ∥ι0(a)− ι1(a)∥ < δ for all a ∈ A1, then there exists

a unitary u ∈ A such that Adu ◦ ι0 = ι1 and ∥u− 1A ∥ < ε.

(iv) For ε > 0 and N ∈ N, there exists δ > 0 such that if A, B, and C are

C∗-subalgebras of a unital C∗-algebra A satisfying C ⊂ A∩B, B1 ⊂δ A, and

dim(B),dim(C) ≤ N , then there exists a unitary y ∈ A such that y ∈ C ′∩A ,

Ad y(B) ⊂ A, and ∥y − 1A ∥ < ε.

(v) Let A and B be C∗-subalgebras of a unital C∗-algebra A . Suppose that A

and B are finite-dimensional C∗-algebras and unitaries u, v ∈ A satisfy

{u, v} ⊂1/16 B + C1A and Adu(A) ∪ Ad v(A) ⊂ B. Then there exists a

unitary w ∈ B + C1A such that Adwu(a) = Ad v(a) for any a ∈ A.

Proof. (i) Set a projection e ∈ MQ with rank(e) = rank(p)
R . By P |(Q − rank(e)),

we obtain a unital embedding ι : MP → (1MQ
−e)MQ(1MQ

−e). Since P rank(p) =

PR rank(e), there exists a partial isometry v ∈ MP ⊗MQ ⊗MR such that v∗v =

1MP
⊗ p and vv∗ = 1MP

⊗ e ⊗ 1MR
. Denote by η the canonical embedding of

MP into MP ⊗ (1MQ⊗MR
− p) defined by η(a) = a ⊗ (1MQ⊗MR

− p) for a ∈ MP .

Since the multiplicity of η is QR − rank(p), the same as that of 1MP
⊗ ι ⊗ 1MR

,
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there exists a partial isometry w ∈ MP ⊗MQ ⊗MR such that w∗w = η(1MP
),

ww∗ = 1MP
⊗ ι(1MP

)⊗1MR
, and Adw◦η = 1MP

⊗ ι⊗1MR
. The unitary u = v+w

inMP ⊗MQ⊗MR then satisfies the desired conditions. Indeed, for any C∗-algebra

A, a, b′ ∈ A, and x ∈MP ,

Ad(1A∼ ⊗ u)
(
(a⊗ 1MP

⊗ p)⊕ (b′ ⊗ x⊗ (1MQ⊗MR
− p))

)
= a⊗ 1MP

⊗ e⊗ 1MR
+ b′ ⊗ 1MP

⊗ ι(x)⊗ 1MR
∈ A⊗ 1MP

⊗MQ ⊗ 1MR
.

(ii) See [15, Lem. III 3.2].

(iii) Since A is finite-dimensional, we may identify A with
⊕L

l=1Mkl
for some

k1, k2, . . . , kL ∈ N. For given ε > 0 and N ∈ N there exists δ ∈ (0, ε/4N) such

that if two projections p and q in A satisfy ∥p − q∥ < δ then there exists a

partial isometry w ∈ A such that w∗w = p, ww∗ = q, and w ≈ε/4N p. Let us

show that δ is as required. Suppose that A, ι0, and ι1 satisfy the hypotheses.

Then there are partial isometries wl ∈ A , l = 1, 2, . . . , L, such that w∗
l wl =

ι0(e
(l)
11 ), wlw

∗
l = ι1(e

(l)
11 ), and wl ≈ε/4N ι0(e

(l)
11 ). Consider the partial isometry

w =
∑L

l=1

∑kl

j=1 ι1(e
(l)
j,1)wlι0(e

(l)
1,j) ∈ A . We have Adw◦ ι0 = ι1 and w ≈ε/2 ι0(1A).

Since 1A − ι0(1A) ≈δ 1A − ι1(1A), there exists a partial isometry v ∈ A such

that v∗v = 1A − ι0(1A), vv
∗ = 1A − ι1(1A), and v ≈ε/2 1A − ι0(1A). The unitary

u = v + w ∈ A satisfies the stipulated conditions.

(iv) Applying (iii), we obtain δ′ ∈ (0, ε) satisfying the condition of (iii) for ε/2 > 0

and N ∈ N. Applying (ii), we also obtain δ > 0 satisfying the condition of (ii) for

δ′/2 > 0 and N ∈ N. This δ satisfies the desired condition. Indeed, if A, B, and

C satisfy the assumption of (iv) for δ > 0 and N ∈ N, then there exists a unitary

u ∈ A such that u ≈δ′/2 1A and Adu(B) ⊂ A, which implies that Adu(c) ≈δ′ c

for any c ∈ C1. Thus we obtain a unitary w ∈ A + C1A such that Adwu(c) = c

for any c ∈ C and w ≈ε/2 1A . The unitary y = wu ∈ A satisfies the conditions.

(v) Let A and
⊕L

l=1Mkl
be as in the proof of (iii). Define a unitary w′′ ∈ A

by w′′ = vu∗. By hypothesis, there exists a unitary w′ in B + C1A such that

w′ ≈1/2 w′′. It follows that Adw′u(e
(l)
11 ) ≈1 Ad v(e

(l)
11 ) for all l = 1, 2, . . . , L.

Thus there exists a partial isometry wl ∈ B such that w∗
l wl = Adw′u(e

(l)
11 )

and wlw
∗
l = Ad v(e

(l)
11 ). Set w = (

∑N
l=1

∑kl

j=1 Ad v(e
(l)
j,1)wl Adw′u(e

(l)
1j ))w

′; w is

a partial isometry in B such that Adwu(a) = Ad v(a) for any a ∈ A. Since B

is finite-dimensional, we can extend w to a unitary w in B + C1A such that

Adwu(a) = Ad v(a) for any a ∈ A.

In the following proof, for a given C∗-algebra A and a Lipschitz continuous

function f ∈ C([0, 1]) ⊗ A we denote by Lip(f) the Lipschitz constant of f . We

shall denote by 1F and 1Fi
the units of the unitizations F∼ and F∼

i .
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Proof of Theorem 4.4. Let Fn, n ∈ N, be an increasing sequence of finite subsets of

G+ whose union is G+ with F1 = {0}, and εn > 0, n ∈ N, be a decreasing sequence

such that
∑

n∈N εn < 1. Let FAn (resp. FAin), n ∈ N, be an increasing sequence

of finite subsets of F 1 (resp. F 1
i ) whose union is dense in F 1 (resp. F 1

i ) and

FA1 = {0} (resp. FAi1 = {0} for i = 0, 1). For n ∈ N, we shall inductively construct

numbers Ln, Λn, L̃n ∈ N∪{0}, finite-dimensional C∗-subalgebras A
(i)
n , B

(i)
n ⊂ Fi,

i = 0, 1, and An ⊂ F , embeddings ϵ1 : {0} → F , ϵn : M2Ln ⊗M3Ln → A′
n−1 ∩ F

(for n ≥ 2), ι
(i)
n : A

(i)
n → An, κ

(i)
n : B

(i)
n ⊗ M(3−i)Λn → F for i = 0, 1, a C∗-

subalgebra An of C([0, 1]) ⊗ An, and an injective ∗-homomorphism φn : An−1 →
An (where A0 = {0}) satisfying the following conditions:

(1,n) Λn > Ln + Λn−1, L̃n > Ln ≥ Λn−1,

(2,n) for i=0, 1, on regarding (K0(Fi),K0(Fi)
+) as (G⊗D(2+i)∞ , G⊗D(2+i)∞

+),

one has Fn ⊗ 1(2+i)∞ ⊂ K0(A
(i)
n )+, A

(i)
n−1 ⊂ A

(i)
n ⊂ B

(i)
n , and FAin ⊂εn A

(i)
n ,

(3,n) if n = 2n′ + in for some n′ ∈ N ∪ {0} and in ∈ {0, 1}, then there exists a

unitary Un in F∼ such that

Un ≈εn 1F and (An−1+C1F ) Im(ϵn) ⊂ AdUn(A
(1−in)
n ⊗M(2+in)L̃n ) = An,

(4,n) ϵn(1(M
2Ln ⊗M

3Ln ))a = a for any a ∈ An−1, and FAn ⊂εn A
1
n,

(5,n) An is defined by

An =
{
f ∈ C([0, 1])⊗An : f(i) ∈ Im(ι(i)n ) for i = 0, 1

}
,

(6,n) there are unitaries V
(i)
n , W

(i)
n ∈ F∼, i = 0, 1, such that

ι(i)n = AdV (i)
n ◦ ι(i)∞ |

A
(i)
n
, κ(i)n (b⊗ 1M

(3−i)Λn
) = AdW (i)

n (b⊗ 1M(3−i)∞ ),

for any i = 0, 1 and b ∈ B
(i)
n , and

V (i)
n ∈εn An + C1F and W (i)

n ∈ εn
4

Im(κ(i)n ) + C1F ,

(7,n) An ⊂ Im(κ
(i)
n ) for i = 0, 1, and

ι(i)n (a) = κ(i)n (a⊗ 1M
(3−i)Λn

) for any i = 0, 1, and a ∈ A(i)
n ,

(8,n) one has

Lip(φn(f)) ≤ Lip(f)/2 + 2εn

for any Lipschitz continuous function f ∈ An−1 with ∥f∥ ≤ 1.

For n = 1 and i = 0, 1, setting Λ0 = 0, A
(i)
0 = {0} ⊂ Fi, and A0 = {0} ⊂ F ,

define L1 = 0, Λ1 = L̃1 = 1, A1 = {0} ⊂ F , A
(i)
1 = B

(i)
1 = {0} ⊂ Fi, U1 = V

(i)
1 =

W
(i)
1 = 1F , and A0 = A1 = {0}. These choices satisfy (1, 1)–(8, 1).



Rationally AF Algebras 583

For the induction, assume that Ln, Λn, L̃n, A
(i)
n , B

(i)
n , An, ϵn, ι

(i)
n , κ

(i)
n , An,

and φn satisfying (1, n)–(8, n) have been constructed. Choose Ln+1 ∈ N large

enough that 2Ln+1 > 3Λn . Then there are k′n+1, l
′
n+1 ∈ N such that k′n+1 < 3Λn ,

l′n+1 < 2Λn , 3Λn |2Ln+1 − k′n+1, and 2Λn |3Ln+1 − l′n+1. Set Nn+1 = Ln+1 + Λn,

kn+1 = 3Ln+1k′n+1, ln+1 = 2Ln+1 l′n+1, and mn+1 = 6Ln+1 . Note that from k′n+1 <

3Λn ≤ 2Ln+1 − k′n+1 and l′n+1 < 2Λn ≤ 3Ln+1 − l′n+1 it follows that

mn+1 − (kn+1 + ln+1) = (3Ln+1 − l′n+1)(2
Ln+1 − k′n+1)− l′n+1k

′
n+1 > 0.

Set N = (dim(B
(0)
n ) + dim(B

(1)
n ) + dim(An))6

2Ln+1 ∈ N, and δ
(0)
n+1 = εn+1/8.

Applying Lemma 4.6(ii), (iii), (iv) inductively to δ
(k)
n+1 (= ε) > 0 and N , we obtain

δ
(k+1)
n+1 (= δ) > 0 verifying the estimates of (ii), (iii), (iv) of Lemma 4.6. Refining

the choice of δ
(k)
n+1 > 0, k ∈ N, making each one smaller in turn, we may suppose

that δ
(k+1)
n+1 < δ

(k)
n+1 for k ∈ N and

N

( ∞∑
j=1

8jδ
(k+j)
n+1

)
< δ

(k)
n+1 for any k ∈ N.

Since Fi ⊗M(2+i)∞
∼= Fi for i = 0, 1, there are embeddings ϵ

(i)
n+1 : M(2+i)Ln+1 →

(B
(i)
n )′ ∩ Fi, i = 0, 1, such that

(Im(ϵ
(1)
n+1)⊗ 1M2∞ )1 ⊂

δ
(10)
n+1

(Im(ϵ
(0)
n+1)⊗ 1M3∞ )′ ∩ F ,

bϵ
(i)
n+1(1M

(2+i)
Ln+1

) ≈ εn+1
4

b for any i = 0, 1 and b ∈ (B(i)
n )1,

and

a(ϵ
(i)
n+1(1M

(2+i)
Ln+1

)⊗1M(3−i)∞ ) ≈
δ
(10)
n+1

a for any a∈A1
n∪

⋃
j=0,1

(B(j)
n ⊗1M(3−j)∞ )1.

By Lemma 4.6(ii), we obtain a unitary E1 in F∼ such that E1 ≈
δ
(9)
n+1

1F and

AdE1(Im(ϵ
(1)
n+1)⊗ 1M2∞ ) ⊂ (Im(ϵ

(0)
n+1)⊗ 1M3∞ )′ ∩ F .

Set ϵ̄n+1(a ⊗ b) = ϵ
(0)
n+1(a) ⊗ 1M3∞ AdE1(ϵ

(1)
n+1(b) ⊗ 1M2∞ ) for a ∈ M2Ln+1 , b ∈

M3Ln+1 . Choosing ϵ
(0)
n+1 and ϵ

(1)
n+1 almost commuting with Im(κ

(i)
n )1 and W

(i)
n , we

may further assume that

Im(κ(i)n )1 ∪ {W (i)
n } ⊂

δ
(8)
n+1

Im(ϵ̄n+1)
′ ∩ F ,

for both i = 0, 1. Because of the inclusion An ⊂ Im(κ
(i)
n ) for i = 0, 1 in (7, n), we

have an embedding ϵn+1 : M2Ln+1 ⊗M3Ln+1 → A′
n ∩ F such that ϵn+1(x) ≈δ

(6)
n+1

ϵ̄n+1(x) for all x ∈ (M2Ln+1 ⊗M3Ln+1 )
1. Then it follows that Im(ϵn+1)

1 ⊂
δ
(5)
n+1
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Im(κ
(i)
n )′ ∩ F for i = 0, 1. Note that, since 1An

ϵn+1(1M
2
Ln+1

⊗M
3
Ln+1

) ≈εn+1
1An

and ϵn+1(1M
2
Ln+1

⊗M
3
Ln+1

) ∈ A′
n, we have ϵn+1(1M

2
Ln+1

⊗M
3
Ln+1

)1An = 1An ,

which implies ϵn+1(1M
2
Ln+1

⊗M
3
Ln+1

)a = a for any a ∈ An in (4, n + 1). For

the same reason, from 1
A

(i)
n
ϵ
(i)
n+1(1M

(2+i)
Ln+1

) ≈εn+1 1
A

(i)
n

and ϵ
(i)
n+1(1M

(2+i)
Ln+1

) ∈

A
(i)
n

′
, it follows that ϵ

(i)
n+1(1M

(2+i)
Ln+1

)a = a for all i = 0, 1 and a ∈ A
(i)
n .

For i = 0, 1, since Fi ⊗M(3−i)∞ = F , there exist L̃n+1 ∈ N and a finite-

dimensional C∗-subalgebra A
(i)
n+1 of Fi satisfying Fn+1 ⊗ 1(2+i)∞ ⊂ K0(A

(i)
n+1)

+

in (2, n+1), L̃n+1 > Ln+1, A
(i)
n ⊂ A

(i)
n+1, FAin+1 ⊂εn+1

A
(i)
n+1, An ⊂

δ
(10)
n+1

A
(i)
n+1 ⊗

M
(3−i)L̃n+1

, and B
(i)
n Im(ϵ

(i)
n+1) ⊂ A

(i)
n+1. When n is an even number (resp. an odd

number), we have in+1 = 1 (resp. in+1 = 0). By Lemma 4.6(ii), there exists δ̃ > 0

satisfying the condition for δ
(10)
n+1 (= ε) > 0 and dim(A

(in+1)
n+1 )62Ln+1 ∈ N. Enlarging

the choice of L̃n+1 ∈ N and A
(1−in+1)
n+1 further, we may choose L̃n+1 and A

(1−in+1)
n+1

such that

(A
(in+1)
n+1 ⊗M(3−in+1)

Ln+1 )
1 ∪ (An + C1F ) Im(ϵn+1)

1 ∪ Im(κ(0)n )1

∪ Im(κ(1)n )1 ∪ FAn+1 ⊂
min{δ(10)n+1,δ̃}

A
(1−in+1)
n+1 ⊗M

(2+in+1)
L̃n+1

(2)

and

(3) {W (0)
n ,W (1)

n } ⊂
δ
(10)
n+1

A
(1−in+1)
n+1 ⊗M

(2+in+1)
L̃n+1

+ C1F .

By Lemma 4.6(ii) for δ
(9)
n+1 > 0 and N ∈ N, there exists a unitary Un+1 ∈ F∼

satisfying the condition of (3, n+ 1) and Un+1 ≈
δ
(9)
n+1

1F . Define

An+1 = AdUn+1(A
(1−in+1)
n+1 ⊗M

(2+in+1)
L̃n+1

) ⊂ F .

Note that from FAn+1 ⊂
δ
(10)
n+1

A
(1−in+1)
n+1 ⊗M

(2+in+1)
L̃n+1

, we see that FAn+1 ⊂εn+1

A1
n+1 as required for (4, n+1). By the conditions of (3, n+1) and (4, n+1), it follows

that An ⊂ An+1. Since
⋃

i=0,1 Im(κ
(i)
n )1 ⊂

δ
(8)
n+1

An+1, applying Lemma 4.6(iv) to

A = An+1, B = Im(κ
(i)
n ), and C = An, we obtain unitaries y

(i)
n ∈ F∼ ∩ A′

n,

i = 0, 1, such that Ad y
(i)
n (Im(κ

(i)
n )) ⊂ An+1 and y

(i)
n ≈

δ
(7)
n+1

1F . Define embeddings

κ̄
(i)
n : B

(i)
n ⊗ M(3−i)Λn → An+1, i = 0, 1, by κ̄

(i)
n = Ad y

(i)
n ◦ κ(i)n . Note that, by

(7, n), we also see that κ̄
(i)
n (a⊗ 1M

(3−i)Λn
) = ι

(i)
n (a) for any i = 0, 1 and a ∈ A

(i)
n .

Now we have An ⊂ Im(κ̄
(i)
n ) ⊂ An+1 for both i = 0, 1, Im(ϵn+1) ⊂ An+1, and

Im(κ̄
(i)
n )1 ⊂

δ
(4)
n+1

An+1 ∩ Im(ϵn+1)
′ for i = 0, 1. Applying Lemma 4.6(iv) to A =

An+1∩ Im(ϵn+1)
′, B = Im(κ̄

(i)
n ), and C = An, we obtain unitaries ỹ

(i)
n ∈ A′

n∩F∼,

i = 0, 1, such that ỹ
(i)
n ≈

δ
(3)
n+1

1F and Ad ỹ
(i)
n (Im(κ̄

(i)
n )) ⊂ An+1∩ Im(ϵn+1)

′. Define
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embeddings κ̃
(i)
n : B

(i)
n ⊗M(3−i)Λn → An+1, i = 0, 1, by κ̃

(i)
n = Ad ỹ

(i)
n ◦ κ̄(i)n , which

satisfy κ̃
(i)
n (a⊗ 1) = ι

(i)
n (a) for any i = 0, 1 and a ∈ A

(i)
n , and also An ⊂ Im(κ̃

(i)
n ) ⊂

An+1 ∩ Im(ϵn+1)
′ for both i = 0, 1.

To simplify notation, let {eij}mn+1

i,j=1 be a system of matrix units for Mmn+1
∼=

M2Ln+1 ⊗M3Ln+1 . Note that mn+1 > kn+1 + ln+1. Define an embedding ξ from

C([0, 1])⊗An into C([0, 1])⊗An+1 by

ξ(f)(t) =

kn+1∑
j=1

f
( t
2

)
ϵn+1(ejj) +

mn+1−ln+1∑
j=1+kn+1

f
(1
2

)
ϵn+1(ejj)

+

mn+1∑
j=1+mn+1−ln+1

f
(1 + t

2

)
ϵn+1(ejj),

for f ∈ C([0, 1]) ⊗ An and t ∈ [0, 1]. Set p = ϵn+1(
∑kn+1

j=1 ejj). Since κ̃
(0)
n (a ⊗

1M
3Λn

) = ι
(0)
n (a) for any a ∈ A

(0)
n and An ⊂ Im(κ̃

(0)
n ), for any f ∈ An there exist

af ∈ A
(0)
n ⊂ B

(0)
n and bf ∈ B

(0)
n ⊗M3Λn such that

ξ(f)(0) =

kn+1∑
j=1

f(0)ϵn+1(ejj) +

mn+1∑
j=1+kn+1

f
(1
2

)
ϵn+1(ejj)

= κ̃(0)n (af ⊗ 1)p+ κ̃(0)n (bf )(ϵn+1(1)− p).

Since 3Ln+1 |3Ln+1k′n+1 = kn+1 and 3Λn |2Ln+1 − k′n+1, applying Lemma 4.6(i) to

P = 3Λn , Q = 2Ln+1 , R = 3Ln+1 , and p, we obtain a unitary U
(0)
n+1 in κ̃

(0)
n (1

B
(0)
n

⊗
M3Λn )ϵn+1(M2Ln+1 ⊗M3Ln+1 ) + C1F ⊂ An+1 + C1F such that

AdU
(0)
n+1(ξ(f)(0)) ∈ κ̃(0)n (B(0)

n ⊗ 1M
3Λn

)ϵn+1(M2Ln+1 ⊗ 1M
3
Ln+1

),

for any f ∈ An. By (6, n), now we have AdW
(0)
n (b ⊗ 1M3∞ ) = κ

(0)
n (b ⊗ 1M

3Λn
)

for any ∈ B
(0)
n and W

(0)
n ∈εn/4 Im(κ

(0)
n )+C1F . Since W

(0)
n ∈

δ
(8)
n+1

Im(ϵ̄n+1)
′ ∩F∼

(from (3)), and ϵ̄n+1(x) ≈δ
(6)
n+1

ϵn+1(x) for all x ∈ (M2Ln+1 ⊗M3Ln+1 )
1, we obtain

a unitary W̃
(0)
n ∈ Im(ϵn+1)

′∩F∼ such that W̃
(0)
n ≈

δ
(5)
n+1

W
(0)
n . Then it follows that

AdW (0)
n

∗
(κ̃(0)n (b⊗ 1M

3Λn
)ϵn+1(a⊗ 1M

3
Ln+1

))

≈
2δ

(5)
n+1

AdW (0)
n

∗
(κ̃(0)n (b⊗ 1M

3Λn
))ϵn+1(a⊗ 1M

3
Ln+1

)

= (b⊗ 1M3∞ )ϵn+1(a⊗ 1M
3
Ln+1

)

≈
δ
(6)
n+1+2δ

(9)
n+1

(
(bϵ

(0)
n+1(a))⊗ 1M3∞

)
(ϵ

(1)
n+1(1)⊗ 1M2∞ )

≈
δ
(10)
n+1

bϵ
(0)
n+1(a)⊗ 1M3∞ ,
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for any b ∈ B
(0)
n

1
and a ∈M1

2Ln+1
. By Lemma 4.6(iii), we obtain a unitary u(0) in

F∼ such that u(0) ≈
δ
(3)
n+1

1F and

Adu(0)W (0)
n

∗
(κ̃(0)n (b⊗ 1M

3Λn
)ϵn+1(a⊗ 1M

3
Ln+1

)) = (bϵ
(0)
n+1(a))⊗ 1M3∞ ,

for any b ∈ B
(0)
n and a ∈ M2Ln+1 . Consider the unitary z

(0)
n = W

(0)
n u(0)

∗
in F∼,

which satisfies z
(0)
n ≈

δ
(3)
n+1

W
(0)
n and

Ad z(0)n (bϵ
(0)
n+1(a)⊗ 1M3∞ ) = κ̃(0)n (b⊗ 1M

3Λn
)ϵn+1(a⊗ 1M

3
Ln+1

)

for any b ∈ B
(0)
n and a ∈M2Ln+1 . Define an embedding ῑ

(0)
n+1 of A

(0)
n+1 into F by

ῑ
(0)
n+1(a) = AdU

(0)
n+1

∗
z(0)n (a⊗ 1M3∞ ) for a ∈ A

(0)
n+1.

From B
(0)
n Im(ϵ

(0)
n+1) ⊂ A

(0)
n+1, it follows that ξ(f)(0) ∈ Im(ῑ

(0)
n+1) for any f ∈ An.

In the same way as for i = 0, we also obtain unitaries u(1), U
(1)
n+1, z

(1)
n in F∼,

and an embedding ῑ
(1)
n+1 of A

(1)
n+1 into F such that

U
(1)
n+1 ∈ κ̃(1)n (1

B
(1)
n

⊗M2Λn )ϵn+1(M2Ln+1 ⊗M3Ln+1 ) + C1F ,

z(1)n =W (1)
n u(1)

∗
≈

δ
(3)
n+1

W (1)
n ,

ῑ
(1)
n+1(a) = AdU

(1)
n+1

∗
z(1)n (a⊗ 1M2∞ )

for a ∈ A
(1)
n+1, and ξ(f)(1) ∈ Im(ῑ

(1)
n+1) for any f ∈ An.

Note that, since (A
(i)
n+1⊗1M

(3−i)
Ln+1

)1 ⊂
δ
(8)
n+1

An+1 for both i = 0, 1, and since

z
(i)
n ≈

δ
(3)
n+1

W
(i)
n ∈

δ
(8)
n+1

An+1 + C1F (from (3)), we have

Im(ῑ
(i)
n+1)

1 = AdU
(i)
n+1

∗
z(i)n ((A

(i)
n+1)

1 ⊗ 1M
(3−i)

Ln+1
) ⊂

δ
(2)
n+1

An+1.

Although dim(A
(i)
n+1) can be bigger than N , the following argument allows us to

obtain unitaries Ũ
(i)
n+1 ∈ F∼, i = 0, 1, such that Ũ

(i)
n+1 ≈

δ
(2)
n+1

1F and Ad Ũ
(i)
n+1 ◦

ῑ
(i)
n+1(A

(i)
n+1) ⊂ An+1. In the case i = 1− in+1, we fix a unitary

U
(i)

n+1 = Un+1u
(i)W (i)

n

∗
U

(i)
n+1 ∈ F∼.

Since W
(i)
n ∈

δ
(8)
n+1

An+1 + C1F and U
(i)
n+1 ∈ An+1 + C1F , there exists a unitary

y(i) ∈ An+1 + C1F such that y(i) ≈
δ
(2)
n+1

U
(i)

n+1. Consider the unitary Ũ
(i)
n+1 =

y(i)
∗
U

(i)

n+1, which satisfies Ũ
(i)
n+1 ≈

δ
(2)
n+1

1F and

Ad Ũ
(i)
n+1 ◦ ῑ

(i)
n+1(a) = Ad y(i)

∗
Un+1(a⊗ 1M(3−i)∞ ) ∈ An+1
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for any a∈A(i)
n+1. In the case i= in+1, from (2) it follows that (A

(i)
n+1 ⊗M(3−i)Ln+1 )

1

⊂δ̃ A
(1−i)
n+1 ⊗M

(2+i)L̃n+1
and δ̃ > 0 is chosen for dim(A

(i)
n+1)6

2Ln+1 . By Lemma 4.6(ii),

there exists a unitary V ∈ F∼ such that V ≈
δ
(10)
n+1

1F and

AdV (A
(i)
n+1 ⊗M(3−i)Ln+1 ) ⊂ A

(1−i)
n+1 ⊗M

(2+i)L̃n+1
.

It follows that

AdUn+1V (A
(i)
n+1 ⊗M(3−i)Ln+1 ) ⊂ An+1.

Set U
(i)

n+1 = Un+1V u
(i)W

(i)
n

∗
U

(i)
n+1 which is a unitary in F∼ such that U

(i)

n+1 ∈
2δ

(3)
n+1

An+1 +C1F . Then there exists a unitary y(i) ∈ An+1 +C1F such that y(i) ≈
δ
(2)
n+1

U
(i)

n+1. Setting Ũ
(i)
n+1 = y(i)

∗
U

(i)

n+1, we also see that

Ad Ũ
(i)
n+1 ◦ ῑ

(i)
n+1(a) = Ad y(i)

∗
Un+1V (a⊗ 1M(3−i)∞ ) ∈ An+1

for any a ∈ A
(i)
n+1.

Define embeddings ι
(i)
n+1 of A

(i)
n+1 into An+1, i = 0, 1, by ι

(i)
n+1 = Ad Ũ

(i)
n+1◦ῑ

(i)
n+1.

Then it follows that Ad Ũ
(i)
n+1(ξ(f)(i)) ∈ Im(ι

(i)
n+1) for any i = 0, 1 and f ∈ An.

Define unitaries V
(i)
n+1 = Ũ

(i)
n+1U

(i)
n+1

∗
z
(i)
n , i = 0, 1, in F∼. Since U

(i)
n+1 ∈ An+1+C1F

for both i = 0, 1, we see that V
(i)
n+1, i = 0, 1, satisfy the conditions of (6, n+1). We

define a C∗-subalgebra An+1 of C([0, 1])⊗An+1 as required for (5, n+ 1). Define

finite-dimensional C∗-subalgebras E(i), i = 0, 1, of An+1 by E(i) = {ξ(f)(i) : f ∈
An}. Note that dim(E(i)) ≤ dim(A

(i)
n )+dim(B

(i)
n )(3− i)2Λn < N for both i = 0, 1

and that ξ(f)(i) ≈
2δ

(2)
n+1

Ad Ũ
(i)
n+1(ξ(f)(i)) for any f ∈ A 1

n . By Lemma 4.6(iii) with

(3, n+1), we obtain unitaries U (i) in An+1+C1F , i = 0, 1, such that U (i) ≈
δ
(0)
n+1

1F

and AdU (i)(ξ(f)(i)) = Ad Ũ
(i)
n+1(ξ(f)(i)) for any i = 0, 1 and f ∈ An. Thus we

obtain a unitary Ũ ∈ C([0, 1]) ⊗ (An+1 + C1F ) which is a Lipschitz continuous

function such that Ũ(i) = U (i) for i = 0, 1, Ũ(t) ≈εn+1 1F for all t ∈ [0, 1] and

Lip(Ũ) ≤ εn+1. We define an embedding φn+1 of An into An+1 by φn+1(f) =

Ad Ũ ◦ ξ(f) for f ∈ An. Because of the construction of ξ and the inequality

Lip(Ũ) ≤ εn+1, it follows that φn+1 satisfies (8, n+ 1).

In the rest of the induction, we construct Λn+1, B
(i)
n+1, and κ

(i)
n+1 satisfying

the conditions (1, n+ 1), (2, n+ 1), (6, n+ 1), (7, n+ 1). Set δ̄
(0)
n+1 = εn+1/8. By

applying Lemma 4.6(ii), (iii), (iv) to δ̄
(k)
n+1 (= ε) and N = dim(An+1) inductively,

there exists δ̄
(k+1)
n+1 (= δ) > 0 satisfying the conditions of (ii), (iii), and (iv). Taking

smaller δ̄
(k)
n+1, k ∈ N, as above, we may assume that δ̄

(k+1)
n+1 < δ̄

(k)
n+1 for k ∈ N and

N
∑∞

j=1 8
j δ̄

(k+j)
n+1 < δ̄

(k)
n+1. Since F = Fi ⊗M(3−i)∞ for both i = 0, 1, there exist

Λn+1 ∈ N with the condition of (1, n + 1) and finite-dimensional C∗-subalgebras
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B
(i)
n+1 ⊂ Fi, i = 0, 1, such that A

(i)
n+1 ⊂ B

(i)
n+1, A

1
n+1 ⊂

δ̄
(4)
n+1

B
(i)
n+1 ⊗M(3−i)Λn+1 ,

and {V (0)
n+1, V

(1)
n+1} ⊂

δ̄
(4)
n+1

B
(i)
n+1 ⊗M(3−i)Λn+1 + C1F .

By Lemma 4.6(ii), there exist unitaries W
(i)

n+1, i = 0, 1, in F∼ such that

W
(i)

n+1 ≈
δ̄
(3)
n+1

1F and AdW
(i)

n+1(B
(i)
n+1 ⊗M(3−i)Λn+1 ) ⊃ An+1 for i = 0, 1. Define

embeddings κ̂
(i)
n+1 : B

(i)
n+1 ⊗ M(3−i)Λn+1 → F , i = 0, 1, by κ̂

(i)
n+1 = AdW

(i)

n+1.

By Lemma 4.6(v) and V
(i)
n+1 ∈

δ̄
(2)
n+1

Im(κ̂
(i)
n+1) + C1F , there exist unitaries Ŵ

(i)
n+1 ∈

Im(κ̂
(i)
n+1) + C1F such that

Ad Ŵ
(i)
n+1V

(i)
n+1(a⊗ 1M(3−i)∞ ) = AdW

(i)

n+1(a⊗ 1M(3−i)∞ )

for any a ∈ A
(i)
n+1. Define unitaries W

(i)
n+1, i = 0, 1, in F∼ and embeddings

κ
(i)
n+1 : B

(i)
n+1 ⊗M(3−i)Λn+1 → F by

W
(i)
n+1 = (Ŵ

(i)
n+1)

∗W
(i)

n+1, κ
(i)
n+1(b⊗ a) = AdW (i)(b⊗ a),

for b ∈ B
(i)
n+1 and a ∈M(3−i)Λn+1 ⊂M(3−i)∞ . These choices satisfy the conditions

of (6, n+ 1) and (7, n+ 1).

Define AG as the inductive limit C∗-algebra lim−→(An, φn+1). In the proof

of Proposition 4.5(iii), we saw that (G,G+) ∼= (Im(ι
(0)
∞∗) ∩ Im(ι

(1)
∞∗), Im(ι

(0)
∞∗) ∩

Im(ι
(1)
∞∗)∩K0(F )+), as ordered abelian groups. To show that the right-hand side

is isomorphic to (K0(AG),K0(AG)
+), we need the following observation. Let ηn

denote the canonical embedding of An into An+1 which is obtained from (3, n+1)

for n ∈ N. Write ev
(i)
n : An → Im(ι

(i)
n ), i = 0, 1, to denote the evaluation maps and

η̄
(i)
n : Im(ι

(i)
n ) → An for the canonical embeddings.

Observation 4.7. For i=0, 1 and n ∈ N, the two ∗-homomorphisms ev
(i)
n+1 ◦φn+1

and Ad Ũ(i) ◦ ηn ◦ η̄(i)n ◦ ev(i)n : An → Im(ι
(i)
n+1) are homotopic.

Proof. Let Φ
(i)
t , t ∈ [0, 1], i = 0, 1, be pointwise continuous paths of automorphisms

on An such that Φ
(0)
0 = Φ

(1)
0 = idAn , Φ

(0)
1 (f)(t) = f(0), t ∈ [0, 1/2], Φ

(0)
1 (f)(t) =

f(2t − 1), t ∈ [1/2, 1], Φ
(1)
1 (f)(t) = f(2t), t ∈ [0, 1/2], and Φ

(1)
1 (f)(t) = f(1), t ∈

[1/2, 1], for any f ∈ An. Then it follows that ev
(i)
n+1 ◦φn+1 and ev

(i)
n+1 ◦φn+1 ◦Φ(i)

1

are homotopic for both i = 0, 1. From the construction of φn+1 = Ad Ũ ◦ ξ and

Φ
(i)
1 (f)(1/2) = f(i), we have

ev
(i)
n+1 ◦φn+1 ◦Φ(i)

1 (f) = Ad Ũ(i)(f(i)ϵn+1(1Mmn+1
)) = Ad Ũ(i)◦ηn ◦ η̄(i)n ◦ ev(i)n (f),

for any i = 0, 1 and f ∈ An.

Denote by η∞n the canonical embedding of An into F . For i = 0, 1, denote

by Ev(i)n : An → An the evaluation map at i. Note that η̄
(i)
n ◦ ev

(i)
n = Ev(i)n . Let
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η
(i)
n : A

(i)
n → A

(i)
n+1 denote the canonical embeddings of (2, n+1) and η

(i)
∞n : A

(i)
n →

Fi the canonical embeddings. For m, n ∈ N with m > n, set φm,n = φm ◦
φm−1 ◦ · · · ◦ φn+1 : An → Am, ηm,n = ηm−1 ◦ ηm−2 ◦ · · · ◦ ηn : An → Am, and

η
(i)
m,n = η

(i)
m−1 ◦η

(i)
m−2 ◦ · · · ◦η

(i)
n : A

(i)
n → A

(i)
m . By Observation 4.7, Ev

(i)
n+1 ◦φn+1 and

Ad Ũ(i) ◦ ηn ◦Ev(i)n are homotopic as ∗-homomorphisms from An into An+1. Since

Ũ(i) ∈ An+1 + C1F , it follows that Ev
(i)
n+1∗ ◦φn+1∗ = ηn∗ ◦ Ev(i)n∗. From (6, n) it

follows that

ι
(i)
n+1 ◦ η(i)n = AdV

(i)
n+1V

(i)
n

∗
◦ ι(i)n , and V

(i)
n+1V

(i)
n

∗
∈2εn An+1 + C1F .

Then we have AdV
(i)
n+1V

(i)
n

∗
|
Im(ι

(i)
n )∗ = ηn|Im(ι

(i)
n )∗ as group homomorphisms from

K0(Im(ι
(i)
n )) to K0(An+1), which implies that ι

(i)
n+1∗ ◦ η(i)n∗ = ηn∗ ◦ ι(i)n∗. It follows

that

ηn∗(Im(ι
(0)
n∗ ) ∩ Im(ι

(1)
n∗ )) ⊂ Im(ι

(0)
n+1∗) ∩ Im(ι

(1)
n+1∗).

Denote by (I, I+) the inductive limit of ordered groups lim−→(Im(ι
(0)
n∗ ) ∩ Im(ι

(1)
n∗ ),

ηn∗), where the order in Im(ι
(0)
n∗ ) ∩ Im(ι

(1)
n∗ ) is determined by Im(ι

(0)
n∗ ) ∩ Im(ι

(1)
n∗ ) ∩

K0(An)
+. By (6, n), we also see that η∞n∗ ◦ ι(i)n∗ = ι

(i)
∞∗ ◦ η(i)∞n∗. Since K0(F ) =⋃∞

n=1 η∞n∗(K0(An)) (from FAn ⊂εn A
1
n in (4, n)), we have

I ∼=
∞⋃

n=1

η∞,n∗(Im(ι
(0)
n∗ ) ∩ Im(ι

(1)
n∗ )) =

∞⋃
n=1

Im(ι
(0)
∞∗ ◦ η(0)∞n∗) ∩ Im(ι

(1)
∞∗ ◦ η(1)∞n∗).

As K0(Fi) =
⋃∞

n=1 η
(i)
∞n∗(K0(A

(i)
n )) (since FAin ⊂ A

(i)
n by (2, n)), it follows that

∞⋃
n=1

Im(ι
(0)
∞∗ ◦ η(0)n∗ ) ∩ Im(ι

(1)
∞∗ ◦ η(1)n∗ ) = Im(ι

(0)
∞∗) ∩ Im(ι

(1)
∞∗).

For the same reason, it is straightforward to check that I+ corresponds to

Im(ι
(0)
∞∗) ∩ Im(ι

(1)
∞∗) ∩K0(F )+. Then it follows that (I, I+) is isomorphic to

(Im(ι
(0)
∞∗) ∩ Im(ι

(1)
∞∗), Im(ι

(0)
∞∗) ∩ Im(ι

(1)
∞∗) ∩K0(F )+).

Since Ev
(0)
n+1∗ ◦φn+1∗ = ηn∗ ◦ Ev(0)n∗ and Im(Ev(0)n∗ ) ⊂ Im(ι

(0)
n,∗) ∩ Im(ι

(1)
n,∗), we

obtain a positive group homomorphism Ev(0)∗ from K0(AG) = lim−→(K0(An), φn+1∗)

into (I, I+). We may regard Ev(0)∗ as a positive group homomorphism fromK0(AG)

to Im(ι
(0)
∞∗) ∩ Im(ι

(1)
∞∗). To show the injectivity of Ev(0)∗ , let x ∈ φ∞n∗(K0(An)) ⊂

K0(AG) be such that Ev(0)∗ (x) = 0 and x̄ ∈ K0(An) be such that x = φ∞n∗(x̄).

Since 0 = Ev(0)∗ (x) = η∞n∗◦Ev(0)n∗ (x̄) = η∞n∗◦Ev(1)n∗ (x̄), there existsm > n+1 such

that ηm,n∗◦Ev(0)n∗ (x̄) = ηm,n∗◦Ev(1)n∗ (x̄) = 0. Then it follows that Ev(0)m∗ ◦φm,n∗(x̄) =

Ev(1)m∗ ◦φm,n∗(x̄) = 0. Fix i = 1− im. From the construction of ι
(i)
m , there exists a

unitary y
(i)
m ∈ Am + C1F such that ι

(i)
m (a) = Ad y

(i)
m Um(a⊗ 1(3−i)∞) for a ∈ A

(i)
m .
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From (3, m) for i = 1 − im, it follows that η̄
(i)
m∗ : K0(Im(ι

(i)
m )) → K0(Am) is

injective. Then we have ev
(i)
m∗ ◦φmn∗(x̄) = 0. By Observation 4.7, we see that

ev
(i)
m+1∗ ◦φm+1,n∗(x̄) = 0. By the same argument as for 1−im+1 (= im) in (3,m+1),

we also have ev
(1−i)
m+1∗ ◦φm+1,n∗(x̄) = 0. Because ev

(0)
m+1∗ ⊕ ev

(1)
m+1∗ : K0(Am+1) →

K0(Im(ι
(0)
m+1))⊕K0(Im(ι

(1)
m+1)) is injective, it follows that φm+1,n∗(x̄) = 0, which

implies that x = φ∞,n∗(x̄) = 0.

Let y ∈ Im(ι
(0)
∞∗)∩Im(ι

(1)
∞∗)∩K0(F )+ ∼= G+. To show the surjectivity of Ev(0)∗ ,

since (Im(ι
(0)
∞∗) ∩ Im(ι

(1)
∞∗), Im(ι

(0)
∞∗) ∩ Im(ι

(1)
∞∗) ∩ K0(F )+) is an ordered abelian

group, it suffices to show that y ∈ Ev(0)∗ (K0(AG)
+). Since G+ =

⋃
n∈N Fn, by (2,

n), there exists m ∈ N such that y ∈ ι
(i)
∞∗ ◦ η(i)∞m∗(K0(A

(i)
m )+) for both i = 0, 1.

Thus we have projections p
(i)
m in A

(i)
m ⊗MN , i = 0, 1, for some N ∈ N such that

y = ι
(i)
∞∗ ◦ η(i)∞m∗([p

(i)
m ]0). Since y = η∞,m∗ ◦ ι(i)m∗([p

(i)
m ]0) for i = 0, 1, there exists

l > m such that ηl,m∗ ◦ ι(0)m∗([p
(0)
m ]0) = ηl,m∗ ◦ ι(1)m∗([p

(1)
m ]0). Choose projections p

(i)
l =

η
(i)
l,m ⊗ idMN

(p
(i)
m ) ∈ A

(i)
l ⊗MN , i = 0, 1, which satisfy ι

(0)
l∗ ([p

(0)
l ]0) = ι

(1)
l∗ ([p

(1)
l ]0)

in K0(Al). Then there exists a projection p̃ in C([0, 1]) ⊗ Al ⊗ MN such that

p̃(i) = ι
(i)
l ⊗ idMN

(p
(i)
l ) for i = 0, 1. Regarding p̃ as a projection in Al ⊗MN , we

have Ev
(0)
l∗ ([p̃]0) = ι

(0)
l∗ ([p

(0)
l ]0) and

y = η∞l∗◦ι(0)l∗ ([p
(0)
l ]0) = η∞l∗◦Ev(0)l∗ ([p̃]0) = Ev(0)∗ (φ∞l∗([p̃]0)) ∈ Ev(0)∗ (K0(AG)

+).

Thus, Ev(0)∗ is surjective and Ev(0)∗
−1

is also a positive group homomorphism.

In the rest of the proof, we show that AG is a rationally AF algebra. We only

show that AG ⊗M2∞ is approximately finite-dimensional, because by replacing

even numbers by odd numbers the same argument allows us to see that AG⊗M3∞

is approximately finite-dimensional. Since any separable local AF-algebra is exactly

approximately finite-dimensional ([5, Thm. 2.2]), it suffices to show that for a given

finite subset F of A 1
n and ε > 0, there exist N ∈ N and a finite-dimensional C∗-

subalgebra E of An+N ⊗M2∞ such that φn+N,n(F )⊗1M2∞ ⊂ε E. Because the set

of Lipschitz continuous functions is dense in A 1
n , we may assume that F consists

of Lipschitz continuous functions. Set L = maxf∈F Lip(f), and let m ∈ N be such

that L+2
2m + 4

∑∞
j=m+1 εj < ε. Because of (8, n) and the inequality

∑
n∈N εn < 1,

for any f ∈ F , s, t ∈ [0, 1], and l > m, it follows that

∥φn+m+l,n(f)(s)− φn+m+l,n(f)(t)∥ ≤ Lip(f)

2l+m
+ 2

( n+m+l∑
j=n+1

εj
2n+m+l−j

)

<
L+ 2

2m+1
+ 2

∞∑
j=m+1

εj <
ε

2
.
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Choose l ∈ N such that, in addition to l > m, the number n+m+ l is even (odd

for the case AG ⊗M3∞). Set N = m+ l, k = n+N , and

E = 1C([0,1]) ⊗ ι
(0)
k (A

(0)
k ) ⊂ C([0, 1])⊗Ak.

From the calculation above, it follows that φk,n(F ) ⊂ε/2 E. Let us now modify E

to a finite-dimensional C∗-algebra E in Ak⊗M2∞ . By (3, k) with ik = 0, we obtain

a unitary Uk in F∼ such that Uk ≈εk 1F and AdUk(A
(1)
k ⊗M

2L̃k
) = Ak. By (6,

k) there exists a unitary V
(1)
k ∈ F∼ such that ι

(1)
k (a) = AdV

(1)
k (a⊗ 1M2∞ ) ∈ Ak

for any a ∈ A
(1)
k , and V

(1)
k ∈εk Ak + C1F . Applying Lemma 4.6(v), we obtain a

unitaryW ∈ Ak+C1F such that AdWUk(a⊗1M2∞ ) = AdV
(1)
k (a⊗1) for a ∈ A

(1)
k .

Define an isomorphism ϵ̃ : M
2L̃k

→ Ak∩ Im(ι
(1)
k )′ by ϵ̃(a) = AdWUk(1A(1)

k

⊗ a) for

a ∈M
2L̃k

, and note that Ak = Im(ι
(1)
k ) Im(ϵ̃). Denote by s the self-adjoint unitary

in Im(ϵ̃)⊗M
2L̃k

such that Ad s(ϵ̃(x)⊗ y) = ϵ̃(y)⊗ x for any x, y ∈M
2L̃k

. Choose

a path of unitaries s̃ ∈ C([0, 1]) ⊗ Ak ⊗M
2L̃k

such that s̃(t) ∈ Im(ϵ̃) ⊗M
2L̃k

for

all t ∈ [0, 1], s̃(0) = 1, and s̃(1) = s. Define a finite-dimensional C∗-algebra E by

E = Ad s̃(E ⊗ 1M
2L̃k

) ⊂ C([0, 1])⊗Ak ⊗M
2L̃k

.

We can regard E as a finite-dimensional C∗-subalgebra of Ak ⊗ M
2L̃k

. Indeed,

for e ∈ E, there exists ae ∈ Im(ι
(0)
k ) such that e(0) = ae ⊗ 1M

2L̃k
. Since ae ∈

Ak = Im(ι
(1)
k ) Im(ϵ̃), there are xl ∈ A

(1)
k , yl ∈ M

2L̃k
, l = 1, 2, . . . , L, such that

ae =
∑L

l=1 ι
(1)
k (xl)ϵ̃(yl). Then it follows that

e(1) = Ad s(ae ⊗ 1M
2L̃k

) =

L∑
l=1

ι
(1)
k (xl)⊗ yl ∈ Im(ι

(1)
k )⊗M

2L̃k
.

We conclude that for f ∈ F there exists xf ∈ (A
(1)
k )1 and yf ∈ (A

(0)
k )1 such that

φk,n(f)⊗ 1M
2L̃k

≈ε/2 (1C([0,1]) ⊗ ι
(1)
k (xf ))⊗ 1M

2L̃k

= Ad s̃(1C([0,1]) ⊗ ι
(1)
k (xf )⊗ 1M

2L̃k
)

≈ε/2 Ad s̃(1C([0,1]) ⊗ ι
(0)
k (yf )⊗ 1M

2L̃k
) ∈ E.

In order to adjoin the property of Z-absorption to AG, we only need to

consider AG ⊗ Z instead, which is also an RAF-algebra (as a UHF algebra is

Z-absorbing). Indeed, the orderedK0-group (K0(AG⊗Z),K0(AG⊗Z)+) is isomor-

phic to (G,G+), because, in the proof of Proposition 4.3(ii), for an RAF-algebra

A and the map ι∗ : K0(A) → K0(A⊗Z) induced by the canonical embedding ι of

A into A⊗Z, we saw that for g ∈ K0(A), ι∗(g) ∈ K0(A⊗Z)+ if and only if ng ∈
K0(A)

+ for some n ∈ N. Applying this fact to AG, since (K0(AG),K0(AG)
+) ∼=
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(G,G+) is an unperforated ordered abelian group, we see that the induced map

from K0(AG) to K0(AG ⊗Z) is an isomorphism of ordered abelian groups.

Finally, to make AG ⊗ Z stable, we just need to replace it by the tensor

product AG⊗Z⊗K by the algebra K of compact operators on a separable infinite-

dimensional Hilbert space.

Note that the invariant considered in Theorem 4.4, the ordered K0-group, is

shown in Theorem 5.3 below to be complete, for stable, separable, Z-absorbing

RAF-algebras. Theorem 4.4 is therefore a range of the invariant theorem for the

class in question.

As a consequence of Theorem 4.4, together with its proof, and also the iso-

morphism result Theorem 5.3, we can determine the range of a generalization of

the invariant of [20] for non-stable AF-algebras – referred to in [20] as the dimen-

sion range. In Corollary 5.4 below, we shall show (using Theorem 5.3) that this

analogue of the non-stable AF invariant, what might now be called the matrix

dimension range, is complete – for not necessarily stable, separable, Z-absorbing

RAF-algebras.

Recall that in [20] the invariant for general (separable) AF-algebras, the range

of the Murray–von Neumann dimension – the local abelian semigroup of equiv-

alence classes of projections in the algebra, or, equivalently, the subset of the

K0-group consisting of those equivalence classes – was characterized as an upward

directed, hereditary, generating subset of the positive cone of the orderedK0-group

– and, more abstractly, as an arbitrary such subset of a dimension group (by [21]

and [18], an unperforated countable ordered abelian group with the interpolation

property of [1], equivalent to the decomposition property of [61]).

To extend this invariant to RAF-algebras, since there are fewer projections, we

must keep track of the increasing sequence of dimension ranges of matrix algebras

over the algebra; let us consider these as subsets of the ordered K0-group. Of

course, in the stable case, each of these will be the whole positive cone of the

K0-group. Let us call this structure the matrix dimension range.

Corollary 4.8. The matrix dimension range of a Z-absorbing separable RAF-

algebra can be described in terms of the order-unit K0-group of the algebra with

unit adjoined, tensored with Z, as follows. The nth level of the matrix dimension

range, n ∈ N, is the set of positive elements of the K0-group of the given algebra

which, with respect to the embedding of this in the K0-group of the algebra with

unit adjoined, are majorized by n times the class of the unit. (A Z-absorbing RAF-

algebra has cancellation, so this is the same as comparison in the algebra.) The

matrix dimension range in fact determines the larger ordered abelian group. Hence

for any countable rational dimension group with specified order unit for which there
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exists a positive map onto Z taking the order unit into 1 ∈ Z, there exists a Z-

absorbing separable RAF-algebra with ordered K0-group the kernel of the map onto

Z, and with matrix dimension range as described above with respect to the specified

order unit.

Proof. First, let us check that a Z-absorbing separable RAF-algebra A has can-

cellation of projections – the Murray–von Neumann semigroup of A is mapped

injectively into K0(A). It is enough to consider the stable case. By Proposi-

tion 4.3(ii), K0(A) is a rational dimension group. By Theorem 4.4 together with its

proof there exists a stable, Z-absorbing, RAF-algebra B with K0(B) isomorphic

to K0(A) as an ordered abelian group, and such that B is the inductive limit of

a sequence of point-line algebras (called one-dimensional non-commutative CW

complexes in [19]), each tensored with Z. It is straightforward to show (using that

the Murray–von Neumann semigroup of Z is the same as that of the complex

numbers – recall that Z has stable rank one and therefore cancellation) that the

Murray–von Neumann semigroup of a point-line algebra after tensoring with Z
is the same as before this operation, namely, a certain subsemigroup of the finite

direct sum of copies of the (cancellative) semigroup of natural numbers (including

zero), indexed by the points at infinity in the spectrum – see the discussion of

point-line algebras in [24]. Thus, B has cancellation. By Theorem 5.3 below, A is

isomorphic to B.

Now, given a countable rational dimension group G, by Theorem 4.4 (now

just the statement), there exists a stable, separable, Z-absorbing RAF-algebra B

with K0(B) isomorphic to G as an ordered abelian group. In particular, consider

the case that, as an ordered abelian group, G = H + H ′ where H is an order

ideal and H ′ is isomorphic in the relative order to the ordered group Z. In this

case, since (see proof of Corollary 5.4 below) B has the ideal property (closed

two-sided ideals generated as such by projections), and also (as shown above) has

cancellation (so that the equivalence classes of projections are the same as their

K0-classes), closed two-sided ideals of B are in exact correspondence with the

order ideals of K0(B). With A0 the ideal of B corresponding to the order ideal

H ⊂ H+H ′ = K0(B), denote by A the hereditary C∗-subalgebra eA0e ⊂ A0 ⊂ B

where e ∈ B is a projection with K0(e) = 1 ∈ H ′ ∼= Z. Then A is as desired,

i.e., K0(A
∼ ⊗Z) ∼= G.

§5. Classification of Z-absorbing RAF-algebras

In this section, we prove that the invariant considered in Section 4, the ordered

K0-group together with what we propose to call the matrix dimension range (see
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Corollary 4.8), is complete (Theorem 5.3 in the stable case and Corollary 5.4 in

the non-stable case).

We begin with the observation that the hypothesis of a unit in the otherwise

completely general deformation isomorphism theorem for Z-absorbing separable

C∗-algebras due to Winter – [75, Prop. 4.5] (see also [51]) – is not used, as is

seen on replacing all unitaries appearing in the statement and in the proof by the

corresponding quasiunitaries, with the convention that the inner automorphism

determined by a quasiunitary is just that determined by the corresponding unitary

in the unitization, obtained (by definition) by adding the unit to it.

Proposition 5.1 (Essentially [75, Prop. 4.5], cf. proof of [38, Thm. 14.3]). Let p

and q be relatively prime supernatural numbers. Suppose that A and B are sepa-

rable Z-absorbing C∗-algebras and let φ : A⊗Zp,q → B ⊗Zp,q be a quasiunitarily

suspended C([0, 1])-isomorphism (as in [75, Def. 4.2] with unitaries replaced by

quasiunitaries). Then there is an isomorphism φ̃ : A→ B ⊗Z such that

φ̃ ≈au (idB ⊗σ̄p,q) ◦ φ ◦ (idA ⊗1Zp,q
),

where σ̄p,q is the standard embedding Zp,q ↪→ Z of [75, Prop. 3.4].

Proof. The proof is exactly the same as the proof of [75, Prop. 4.5], with unitaries

replaced by the quasiunitaries which in the present context (quasiunitarily sus-

pended C([0, 1])-isomorphism) they correspond to. Note that, when in the proof

of [75, Prop. 4.5] (spread over [75, Sects 4.3, 4.4, and 4.5]), the product of two (or

three) unitaries appears, these unitaries and therefore also the product correspond

to quasiunitaries, which they should be replaced by.

Lemma 5.2 (Essentially [4, Thm. 2.3]). Let A and B be (separable) AF-algebras,

and let φ0 and φ1 be C∗-algebra homomorphisms from A to B that agree on the

ordered K0-group. It follows that φ0 and φ1 are (one-parameter) asymptotically

quasiunitarily equivalent: there exists a one-parameter family of unitaries ut, t ∈
[0, 1), in B∼ such that ut − 1B∼ ∈ B, 0 ≤ t < 1 (i.e., ut − 1B∼ is a quasiunitary

in B), u0 = 1B∼ , and limt→1 Adut ◦ φ0 = φ1.

Proof. This holds by the proof of [4, Thm. 2.3].

Theorem 5.3 (Cf. [75, Prop. 4.6]). Suppose that A and B are stable separable

RAF-algebras absorbing the Jiang–Su algebra tensorially. If there is an ordered

group isomorphism γ from (K0(A),K0(A)+) to (K0(B),K0(B)+), then A is iso-

morphic to B and there exists an isomorphism α from A to B such that α∗ = γ

at the level of K0-groups.
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Proof. By Definition 4.1, there are relatively prime supernatural numbers p and

q such that A ⊗ Mp and A ⊗ Mq are AF. We may suppose (enlarging them if

necessary) that p and q are infinite. Hence by Lemma 4.2(i), B⊗Mp and B⊗Mq

are AF. It is immediate that the maps

γ⊗ idDp
: K0(A)⊗Dp → K0(B)⊗Dp and γ⊗ idDq

: K0(A)⊗Dq → K0(B)⊗Dq

are isomorphisms of ordered groups, and by Proposition 4.3(i) these maps may be

viewed as ordered group isomorphisms

γp : K0(A⊗Mp) → K0(B ⊗Mp) and γq : K0(A⊗Mq) → K0(B ⊗Mq).

By [20], there are isomorphisms of AF-algebras

φp : A⊗Mp → B⊗Mp with φp∗ = γp and φq : A⊗Mq → B⊗Mq with φq∗ = γq.

Since φp⊗idMq
and φq⊗idMp

give rise to the same K0-map (in the obvious sense),

γ ⊗ idDp
⊗ idDq

: K0(A⊗Mp ⊗Mq) → K0(B ⊗Mp ⊗Mq), by Lemma 5.2 there is

a quasiunitarily suspended C([0, 1])-isomorphism A ⊗ Zp,q → B ⊗ Zp,q agreeing

with φp and φq at the endpoints of the interval [0, 1].

Hence by Proposition 5.1, there exists an isomorphism φ̃ : A → B ⊗ Z such

that φ̃ ≈au (idB ⊗σ̄p,q)◦φ◦(idA ⊗1Zp,q
). Hence (as in [75, Prop. 4.6]), φ̃∗ = γ.

Corollary 5.4. Let A and B be Z-absorbing, separable RAF-algebras (not neces-

sarily stable). Suppose that the invariants of A and B described in Corollary 4.8

are isomorphic. Then this isomorphism is induced by an isomorphism of the C∗-

algebras A and B.

Proof. Note first that A∼ ⊗ Z and B∼ ⊗ Z are RAF, as (see [11]) an extension

of one AF-algebra by another is AF. By definition – see Corollary 4.8 – there is

an isomorphism of order-unit groups K0(A
∼ ⊗ Z) and K0(B

∼ ⊗ Z), respecting

the subgroups K0(A) and K0(B). By Theorem 5.3, there is an isomorphism of the

stabilizations A∼ ⊗Z ⊗K and B∼ ⊗Z ⊗K giving rise to the given isomorphism

of K0-groups. In particular, it takes the cutdown of A∼ ⊗Z ⊗K by 1A∼⊗Z ⊗ e11
into the cutdown of B∼ ⊗ Z ⊗ K by a projection with K0-class equal to the

class of 1B∼⊗Z ⊗ e11, and therefore (by cancellation – Corollary 4.8) Murray–von

Neumann equivalent to it – in fact unitarily equivalent to it as the C∗-algebra is

stable. So we may assume that the isomorphism takes A∼⊗Z = A∼⊗Z⊗e11 onto

B∼ ⊗ Z = B∼ ⊗ Z ⊗ e11, and reproduces the given isomorphism of K0(A
∼ ⊗ Z)

with K0(B
∼ ⊗Z).

Now note that any stable RAF algebra has the ideal property – any closed

two-sided ideal (let us just say “ideal”) is generated (as an ideal) by its projections.
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This holds because it holds in an AF algebra. More precisely, by [5] (see also [15]),

every ideal in an inductive limit C∗-algebra is the inductive limit of its finite-stage

inverse limits, which shows that the ideals of the tensor product of any C∗-algebra

with a UHF algebra are just the tensor products of the ideals of the given algebra

with the UHF algebra (given that this is true for a finite matrix algebra in place of

the UHF). If the given algebra is RAF, so that the tensor product is AF, the ideal

in the tensor product corresponding to a given ideal is generated (as an ideal) by

projections in the AF algebra. By Proposition 4.3(i), a multiple of any K0-element

of the tensor product belongs to the K0-group of the canonical image of the given

algebra. Since the tensor product is AF, and the given algebra is stable, this says

that any projection in the tensor product is equivalent to a projection in the given

algebra, and of course in the same ideal. Such projections therefore generate the

given ideal.

(In fact, this argument shows that, in the stable case, every ideal of an RAF

algebra has an approximate unit consisting of projections. Indeed, in the case of an

ideal with compact spectrum, the corresponding ideal in the (AF) tensor product

with a UHF algebra (which has the same spectrum) is generated by a single pro-

jection – as is seen by looking at the finite-dimensional finite stages in an inductive

limit decomposition – and therefore the given ideal of the RAF algebra is generated

by a single projection. Hence by Brown’s theorem ([10]) the given ideal (assumed

to be separable, as well as stable) is isomorphic to the stabilization of the cutdown

by this projection, which has an approximate unit consisting of projections. Since

the spectrum of a (separable) AF algebra, and therefore of an RAF-algebra, is an

increasing union of compact open sets (the spectra of ideals generated by a sin-

gle projection), and so the algebra is the closure of the corresponding increasing

sequence of ideals, it follows that the whole (stable) RAF-algebra has an approx-

imate unit consisting of projections. This property could also be used to prove

Theorem 5.3 above, using [75, Prop. 4.5] directly (for the unital case), provided

that one also established a uniqueness theorem.)

The proof of the present non-stable isomorphism theorem is now in hand. The

isomorphism of the stabilized algebras A∼⊗Z⊗K and B∼⊗Z⊗K, giving rise to the

given isomorphism of the order-unit groupsK0(A
∼⊗Z) andK0(B

∼⊗Z), since this

respects the canonical order ideals K0(A) = K0(A⊗Z) and K0(B) = K0(B⊗Z),

and since the ideals A⊗Z ⊗K and B ⊗Z ⊗K are generated by their projections

(and because of cancellation – see the proof of Corollary 4.8 – which implies that

equivalence classes of projections are the same as their K0-classes), restricts to an

isomorphism of A = A⊗Z with B = B ⊗Z giving rise to the given isomorphism

of K0(A) with K0(B).
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§6. KMS states of Z-absorbing C∗-algebras

In order to show the main result, Theorem 6.5, let us prepare some facts for ideals

and traces of RAF-algebras. By an ideal of a C∗-algebra, we shall mean a closed

two-sided ideal. For a C∗-algebra A, we shall denote by IA the set of all ideals in A.

For a supernatural number n, we shall consider the map Φn from IA to IA⊗Mn

defined by Φn(I) = I ⊗Mn ⊂ A⊗Mn for I ∈ IA.
Let (G,G+) be an ordered abelian group and let γj , j ∈ J , be automorphisms

of G as an ordered abelian group. If no order ideal of (G,G+) other than 0 or G

is invariant under all γj , j ∈ J , we shall say that (G,G+) is {γj}j∈J -simple. For

a C∗-algebra A and automorphisms αj , j ∈ J , of A, if no ideal of A other than 0

or A is invariant under all αj , j ∈ J , we shall say that A is {αj}j∈J -simple.

Lemma 6.1. The following two statements hold:

(i) For any C∗-algebra A and supernatural number n, the map Φn : IA → IA⊗Mn

is bijective.

(ii) Suppose that A is a Z-absorbing RAF-algebra and αj, j ∈ J , are automor-

phisms of A. If the ordered abelian group (K0(A),K0(A)
+) is {αj∗}j∈J -simple,

then A is {αj}j∈J -simple.

Proof. (i) Given an ideal of I of A⊗Mn, set IA = {a ∈ A : a⊗1Mn
∈ I}, which is

an ideal of A. Then IA ⊗MN = I ∩ (A⊗MN ) for any N ∈ N with N |n. Indeed, if
x ∈ I ∩ (A⊗MN ) is written as x =

∑N
i,j=1 aij ⊗ e

(N)
ij for some aij ∈ A and system

of matrix units {e(N)
ij }Ni,j=1 of MN , then, using an approximate unit hλ, λ ∈ Λ, of

A we have

aij ⊗ e
(N)
ij = lim

λ→∞
(hλ ⊗ e

(N)
ii )x(hλ ⊗ e

(N)
jj ) ∈ I ∩ (A⊗MN ).

It follows that aij ⊗ 1MN
∈ I, which means aij ∈ IA for all i, j = 1, 2, . . . , N . The

converse inclusion IA ⊗MN ⊂ I ∩ (A⊗MN ) is trivial. Thus it follows that

I =
⋃
N |n

I ∩ (A⊗MN ) =
⋃
N |n

IA ⊗MN = Φn(IA)

(see [5, Lem. 3.1], and see also [15, Lem. III 4.1]). It is straightforward to show

the injectivity of Φn. Indeed, for IA, JA ∈ IA with Φn(IA) = Φn(JA), choosing an

approximate unit kλ, λ ∈ Λ, of IA, we have

lim
λ→∞

(akλ)⊗ 1Mn
= lim

λ→∞
(a⊗ 1Mn

)(kλ ⊗ 1Mn
) = a⊗ 1Mn

,

for any a ∈ JA. Then it follows that a = limλ→∞ akλ ∈ IA. This shows that

JA ⊂ IA.
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(ii) Let n be an infinite supernatural number and let I ∈ IA be invariant under

all αj , j ∈ J . Then the ideal Φn(I) ∈ IA⊗Mn
is also invariant under all αj ⊗ idMn

,

j ∈ J . By (i), it suffices to show that A⊗Mn is {αj ⊗ idMn
}j∈J -simple. In the case

that A⊗Mn is an AF-algebra, it is well known that IA⊗Mn
corresponds to the set

of all order ideals of (K0(A⊗Mn),K0(A⊗Mn)
+). Hence it is enough to show that

(K0(A⊗Mn),K0(A⊗Mn)
+) is {(αj ⊗ idMn

)∗}j∈J -simple. By Proposition 4.3(i),

(K0(A⊗Mn),K0(A⊗Mn)
+) is isomorphic to (K0(A)⊗ Dn,K0(A)⊗ Dn

+
) as an

ordered abelian group, and in such a way that (αj ⊗ idMn
)∗, j ∈ J , corresponds to

αj∗ ⊗ idDn
, j ∈ J . Hence we only need to show that (K0(A)⊗ Dn,K0(A)⊗ Dn

+
)

is {αj∗ ⊗ idDn
}j∈J -simple.

Let H be an order ideal of (K0(A) ⊗ Dn,K0(A)⊗ Dn
+
) which is invariant

under all αj∗ ⊗ idDn
, j ∈ J . Set HA = {g ∈ K0(A) : g ⊗ 1Dn

∈ H}, and

H+
A = HA ∩ K0(A)

+. Since H+ = H ∩ (K0(A) ⊗ Dn)
+ is hereditary (i.e., if

g ∈ K0(A)⊗ D n
+

and h ∈ H+ satisfy g ≤ h, then g ∈ H+), it is trivial to see

that H+
A is also hereditary. To show that (HA, H

+
A ) is an ideal of (K0(A),K0(A)

+),

we must show that HA = H+
A −H+

A . We shall use the fact that the ordered abelian

group (K0(A),K0(A)
+) is unperforated, by Proposition 4.3(ii). For x ∈ HA, since

H = H+ − H+ there exist y, z ∈ H+ such that x ⊗ 1Dn
= y − z. From y,

z ∈ K0(A)⊗ Dn
+
, we obtain N ∈ N with N |n and yA, zA ∈ K0(A)

+ such that

Ny = yA ⊗ 1Dn
and Nz = zA ⊗ 1Dn

. Since Nx = yA − zA ≤ NyA, it follows that

x ≤ yA, which implies that x = yA − (yA − x) ∈ H+
A −H+

A . Since H is invariant

under all αj∗ ⊗ idDn
, j ∈ J , we see that HA is also invariant under all αj∗, j ∈ J ,

which implies that HA = 0 or K0(A). Then it follows that H = 0 or K0(A)⊗Dn,

as required.

Proposition 6.2. Let A be a Z-absorbing RAF-algebra, α an automorphism of

A, and σ an automorphism of Z. Suppose that the ordered abelian group (K0(A),

K0(A)
+) is α∗-simple and σ has the weak Rohlin property (see [66, Def. 1.1]).

Then the crossed product C∗-algebra (A⊗Z)⋊α⊗σ Z is simple.

Proof. Since (K0(A),K0(A)
+) is α∗-simple, it follows that (K0(A ⊗ Z),K0(A ⊗

Z)+) (∼= (K0(A),K0(A)
+)) is (α⊗σ)∗-simple. By Lemma 6.1(ii), therefore A⊗Z

is α ⊗ σ-simple. Denote by u the implementing unitary of α ⊗ σ. As in a similar

argument in the proof of [22, Thm. 3.2] (see also [48]), it suffices to show that for

any x ∈ A⊗Z, any finite subset F of Z\{0}, and any finite family {yi}i∈F ⊂ A⊗Z,

∥x∥ ≤ ∥x+
∑
i∈F

yiu
i∥.

Set k = max{|i| : i ∈ F}, k0 = k1 = k, and k2 = k + 1. Applying [50,

Thm. 6.4] to σ ∈ Aut(Z), we obtain positive contractions f
(l)
j,n ∈ Z, l = 0, 1, 2,
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j = 0, 1, . . . , kl, n ∈ N such that

2∑
l=0

kl∑
j=0

f
(l)
j,n = 1Z ,

each (f
(l)
j,n)n∈N is a central sequence in Z for all l = 0, 1, 2 and j = 0, 1, . . . , kl,

limn→∞ ∥σ(f (l)j,n)− f
(l)
j+1,n∥ = 0 for all l = 0, 1, 2 and 0 ≤ j ≤ kl mod (kl + 1), and

limn→∞ ∥f (l)i,nf
(l)
j,n∥ = 0 for all l = 0, 1, 2 and 0 ≤ i ̸= j ≤ kl. Let hn, n ∈ N, be

an increasing approximate unit of A. For any n ∈ N, define a completely positive

map Φn from (A⊗Z)⋊α⊗σ Z to (A⊗Z)⋊α⊗σ Z by

Φn(a) =

2∑
l=0

kl∑
j=0

(hn ⊗ f
(l)
j,n)

1/2a(hn ⊗ f
(l)
j,n)

1/2,

for a ∈ (A ⊗ Z) ⋊α⊗σ Z. Note that Φn is a contraction for each n ∈ N. Since
(hn⊗f (l)j,n)n∈N is a central sequence in A⊗Z, it follows that limn→∞ ∥Φn(a)−a∥ = 0

for any a ∈ A⊗Z. Since

lim
n→∞

∥σi(f
(l)
j,n)f

(l)
j,n∥ = lim

n→∞
∥f (l)i+j,nf

(l)
j,n∥ = 0,

where i + j is considered mod(kl + 1) for i ∈ F and j ∈ {0, 1, . . . , kl}, we have

limn→∞ ∥Φn(u
i)∥ = 0 for any i ∈ F (where Φn(u

i) is defined in a natural way).

Then we have

∥x∥ ≤ lim sup
n→∞

∥∥∥∥Φn

(
x+

∑
i∈F

yiu
i

)∥∥∥∥+

∥∥∥∥Φn

(∑
i∈F

yiu
i

)∥∥∥∥
≤

∥∥∥∥x+
∑
i∈F

yiu
i

∥∥∥∥+ lim sup
n

∑
i∈F

∥yiΦn(u
i)∥

=

∥∥∥∥x+
∑
i∈F

yiu
i

∥∥∥∥.
For a C∗-algebra A, we denote by T (A) the cone of densely defined lower

semicontinuous traces of A. With Ped(A) the Pedersen ideal of A [57], it is well

known that τ(p) < ∞ and p ∈ Ped(A) for any τ ∈ T (A) and projection p in A.

Set Ped(A)+ = Ped(A) ∩ A+. For n ∈ N, taking the normalized trace trn of Mn

we set τ ⊗ trn(a⊗ b) = τ(a)trn(b) for τ ∈ T (A), and a⊗ b ∈ Ped(A)⊗Mn. By the

following Lemma 6.3(i), we shall see that Ped(A) ⊗Mn = Ped(A ⊗Mn), so that

τ ⊗ trn can be regarded as an element of T (A⊗Mn). To simplify, we use the same

symbol τ for τ ⊗ trn.
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For an ordered abelian group (G,G+), we define S0(G) as the set of posi-

tive group homomorphisms from G to R. In the case that (K0(A),K0(A)
+) is an

ordered abelian group, and A has cancellation, we define the standard affine map

ΦT : T (A) → S0(K0(A)) by ΦT (τ)([p]0) = τ(p) for [p]0 ∈ K0(A)
+. Note that,

by the cancellation property of A, projections p and q in A ⊗ Mn, n ∈ N, are
Murray–von Neumann equivalent if and only if [p]0 = [q]0 in K0(A). Then ΦT (τ)

is well defined for τ ∈ T (A). We shall often use the notation τ∗ for ΦT (τ).

Consider the subset A0 of the C∗-algebra A defined by A0 = {a ∈ A :

a ∈ pAp for some projection p ∈ A}. Equip T (A) with the smallest topology such

that T (A) ∋ τ 7→ τ(a) is continuous for any n ∈ N and a ∈ (A⊗Mn)0, and equip

S0(G) with the topology of pointwise convergence.

Lemma 6.3. The following two statements hold:

(i) For a C∗-algebra A and n ∈ N, it follows that Ped(A)⊗Mn = Ped(A⊗Mn).

(ii) If A is a real rank zero C∗-algebra with cancellation, and (K0(A),K0(A)
+) is

an ordered abelian group, then a net τλ ∈ T (A), λ ∈ Λ, converges to τ ∈ T (A)

if and only if the net ΦT (τλ), λ ∈ Λ, converges to ΦT (τ) in S0(K0(A)).

Proof. (i) Let us first check the inclusion Ped(A)⊗Mn ⊂ Ped(A⊗Mn). From the

construction of the Pedersen ideal, one sees that Ped(A) ⊗ e
(n)
ii ⊂ Ped(A ⊗Mn),

i = 1, 2, . . . , n. Since the Pedersen ideal is equal to its square, it is an ideal of the

multiplier algebra of the C∗-algebra. Applying this to Ped(A ⊗Mn), we see that

also Ped(A)⊗ e
(n)
ij ⊂ Ped(A⊗Mn), i, j = 1, 2, . . . , n.

Since the Pedersen ideal is the smallest dense two-sided ideal, the two ideals

are equal.

(ii) The “only if” part of the statement is obvious. Assume that ΦT (τλ), λ ∈ Λ,

converges to ΦT (τ) in S0(K0(A)). Let x be a self-adjoint element in p(A⊗Mn)p

for some n ∈ N and a projection p ∈ A⊗Mn. Without loss of generality, we may

assume that τ(p) > 0. Since p(A⊗Mn)p has real rank zero, for ε > 0 there exists a

self-adjoint element x̄ ∈ p(A⊗Mn)p with finite spectrum such that ∥x−x̄∥ < ε
4τ(p) .

By

x̄− ε

4τ(p)
p ≤ x ≤ x̄+

ε

4τ(p)
p,

it follows that |τλ(x)− τλ(x̄)| ≤ ετλ(p)/(4τ(p)) for any λ ∈ Λ. By limλ→∞ τλ(x̄) =

τ(x̄) and limλ→∞ τλ(p) = τ(p), we have that lim supλ→∞ |τλ(x)− τ(x)| < ε. Since

ε > 0 is arbitrary, a net τλ, λ ∈ Λ, converges to τ in the topology of T (A).

In the case of an RAF-algebra A, we note that for τ ∈ T (A) the map τ∗ on

K0(A) is also well defined. Indeed, for N ∈ N \ {1} and two projections p, q ∈
A⊗MN , if [p]0 = [q]0 in K0(A), then [p⊗1MN∞ ]0 = [q⊗1MN∞ ]0 in K0(A⊗MN∞).
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Since A ⊗MN∞ is an AF algebra, there exists a partial isometry r ∈ A ⊗MN∞

such that r∗r = p ⊗ 1MN∞ and rr∗ = q ⊗ 1MN∞ . Taking a large k ∈ N we

can obtain such an r in A ⊗ MNk . Then it follows that τ(p) = τ ⊗ trNk(p ⊗
1M

Nk
) = τ ⊗ trNk(q ⊗ 1M

Nk
) = τ(q). Thus, for an RAF-algebra A, we can define

ΦT : T (A) → S0(K0(A)).

Proposition 6.4. If A is a Z-absorbing RAF -algebra, then the map ΦT : T (A) →
S0(K0(A)) is an affine homeomorphism.

Proof. Note that, by Proposition 4.3(ii), (K0(A),K0(A)
+) is an ordered abelian

group. Let n be an infinite supernatural number and ι the embedding of A into

A⊗Mn defined by ι(a) = a⊗ 1Mn
for a ∈ A. Since A⊗Mn is an AF-algebra, we

see that the canonical map ΦT ,A⊗Mn
: T (A⊗Mn) → S0(K0(A⊗Mn)) is bijective;

see the last paragraph of [13] and [71, Lem. 3.5], for example.

Denote by τn the unique tracial state ofMn. Regarding (K0(A⊗Mn),K0(A⊗
Mn)

+) as (K0(A) ⊗ K0(Mn),K0(A) ⊗ K0(Mn)
+) by Proposition 4.3(i), define

τ∗ ⊗ τn∗ ∈ S0(K0(A⊗Mn)) for τ ∈ T (A) by τ∗ ⊗ τn∗([p]0 ⊗ [q]0) = τ(p)τn(q) for l,

m ∈ N and projections p ∈ A⊗Ml, q ∈ A⊗Mm. The expression τ⊗τn denotes the

densely defined lower semicontinuous trace on A⊗Mn such that ΦT ,A⊗Mn
(τ⊗τn) =

τ∗ ⊗ τn∗. In the following argument, we shall show that τ ⊗ τn(a⊗ 1Mn
) = τ(a) for

any a ∈ Ped(A), where we note that a⊗ 1Mn
∈ Ped(A⊗Mn) for a ∈ Ped(A).

For ε > 0, consider the continuous function fε defined by

fε(t) = max{0,min{1, (t− ε)}} for t ∈ R,

and set aε = fε(a) for a ∈ Ped(A)+. Since τ ⊗ τn and τ are lower semicontinuous,

it suffices to see that τ ⊗ τn(aε ⊗ 1Mn
) = τ(aε) for any ε > 0 and a contraction

a ∈ Ped(A)+. Fix ε > 0 and a contraction a ∈ Ped(A)+. Then there exists ā ∈
Ped(A)+ such that āaε = aε. Since aεAaε ⊗Mn = (aε ⊗ 1Mn

)A⊗Mn(aε ⊗ 1Mn
)

is an AF-algebra, for n ∈ N there exist Nn ∈ N with Nn|n and a positive element

an ∈ aεAaε ⊗MNn with finite spectrum such that ∥an − aε ⊗ 1Mn
∥ < 1/n. Since

an − 1
n (ā ⊗ 1Mn

) ≤ aε ⊗ 1Mn
≤ an + 1

n (ā ⊗ 1Mn
), we have τ ⊗ τn(aε ⊗ 1Mn

) =

limn→∞ τ ⊗ τn(an). On the other hand, since τ ⊗ τn ∈ T (A ⊗ B) corresponds to

τ∗ ⊗ τn∗ ∈ S0(K0(A)), it follows that τ ⊗ τn(p) = τ ⊗ trNn
(p) for any projection

p ∈ aεAaε ⊗MNn . Thus we have

τ(aε) = lim
n→∞

τ ⊗ trNn(an) = lim
n→∞

τ ⊗ τn(an) = τ ⊗ τn(aε ⊗ 1Mn
).

Define a map Ψ: T (A) → T (A⊗Mn) by Ψ(τ) = τ ⊗ τn for τ ∈ T (A). From

τ(a) = Ψ(τ)(a ⊗ 1Mn
) for any a ∈ Ped(A), it follows that Ψ is injective and

affine. For φ ∈ T (A⊗Mn), setting φA(a) = φ(a⊗ 1Mn
) for a ∈ Ped(A) we obtain
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φA ∈ T (A). Since τn is a unique tracial state, it follows that φ(p⊗x) = φA(p)τn(x)

for any projection p ∈ A and x ∈Mn. Thus we see that Ψ(φA) = φ.

Let ι∗ : K0(A) → K0(A ⊗Mn) denote the induced map defined by ι : A →
A⊗Mn. Let us show that the map ι̂∗ : S0(K0(A⊗Mn)) → S0(K0(A)) defined by

ι̂∗(φ) = φ ◦ ι∗ is bijective. Indeed, for any x ∈ K0(A ⊗Mn) ∼= K0(A) ⊗K0(Mn)

there exists N ∈ N such that Nx ∈ ι∗(K0(A)). Thus we see that ι̂∗ is injective.

Since K0(A) is torsion-free, ι∗ is injective, which implies the surjectivity of ι̂∗.

Since ΦT can be decomposed as ΦT = ι̂∗ ◦ ΦT ,A⊗Mn
◦ Ψ, it follows that ΦT is a

bijective affine map.

It is straightforward to check that ΦT is continuous. It remains to show that

ΦT
−1 is also continuous. Suppose that τλ, λ ∈ Λ is a net in T (A) such that ΦT (τλ)

converges to ΦT (τ) for some τ ∈ T (A). Then it follows that the net τλ∗⊗τn∗, λ ∈ Λ

in S0(K0(A⊗Mn)) converges to τ∗⊗ τn∗ in the topology of pointwise convergence.

Applying Lemma 6.3(ii) to A⊗Mn, we have that τλ⊗τn, λ ∈ Λ converges to τ⊗τn
in T (A ⊗Mn). Since (A ⊗MN )0 ⊗ 1Mn

⊂ (A ⊗MN ⊗Mn)0 for any N ∈ N, we
conclude that limλ→∞ τλ(a) = τ(a) for any a ∈ (A⊗MN )0.

We are now ready to give our application of the RAF-algebra classification.

Theorem 6.5. Let (S, π) be a proper simplex bundle such that π−1(0) is a sin-

gleton. Then there exists a 2π-periodic flow θ on the Jiang–Su algebra whose

KMS-bundle is isomorphic to (S, π).

For a given proper simplex bundle (S, π) with π−1(0) = {τS}, in Section 3

we constructed the rational dimension group (GZ, G
+
Z ) and its shift automorphism

σ such that (Sσ(GZ), πZ) is isomorphic to (S, π) as a simplex bundle (Proposi-

tion 3.6(iii)).

We define a positive group homomorphism Σ0 : GZ → Z by Σ0((zn)n∈Z⊕g) =∑
n∈Z zn = g(τS) for (zn)n ⊕ g ∈ GZ. By the same arguments as in the proofs of

[31, Lem. 4.10], [30, Lem. 3.7], and [31, Lem. 4.14], the rational dimension group

(GZ, G
+
Z ) has the following properties.

Lemma 6.6. The following two statements hold:

(i) (GZ, G
+
Z ) is σ-simple and

(ii) (id−σ)(GZ) = ker(Σ0).

From Theorems 4.4 and 5.3, we obtain a stable Z-absorbing RAF-algebra A

and an automorphism αZ on A such that

(K0(A),K0(A)
+) ∼= (GZ, G

+
Z ) and αZ∗ = σ on K0(A).
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By Proposition 6.2 and the same argument in [54, Rem. 2.8] (see also [30, Lem. 3.6]),

A and αZ can be chosen to have the following properties.

Lemma 6.7. The following three statements hold:

(i) A⋊αZ Z is a simple C∗-algebra,

(ii) the restriction map τ 7→ τ |A from T (A ⋊αZ Z) onto the αZ-invariant traces

in T (A) is bijective, and

(iii) A⋊αZ Z absorbs the Jiang–Su algebra tensorially.

Set C = A⋊αZZ, and denote by P the conditional expectation from C onto A.

Since A is a stable C∗-algebra, for u ∈ G+
Z

∼= K0(A)
+ defined as u = (10, 1) in

Section 3, there exists a projection p in A such that [p]0 = u. Then the unital

C∗-algebra pCp has the following properties.

Proposition 6.8. The following four statements hold:

(i) pCp has a unique tracial state,

(ii) (K0(pCp),K0(pCp)
+) ∼= (Z,Z+), [p]0 = 1 ∈ Z,

(iii) K1(pCp) ∼= 0, and

(iv) therefore pCp is isomorphic to Z.

Proof. (i) Set T 0
αZ
(A) = {τ ∈ T (A) : τ ◦ αZ = τ, and τ(p) = 1}. By Proposi-

tion 6.4, T 0
αZ
(A) corresponds to S1

σ(GZ) = {τS} via ΦT . Because of [14, Prop. 4.7],

the set of tracial states T (pCp) of pCp corresponds to {τ ∈ T (C) : τ(p) = 1} via

the restriction on pCp. By Lemma 6.7(ii), we know that {τ ∈ T (C) : τ(p) = 1} is

a singleton, which implies that T (pCp) is also singleton.

(ii) By Lemma 4.2(ii), we see that K1(A) = 0. Then the Pimsner–Voiculescu

six-term exact sequence allows us to see that

K0(C) ∼= GZ/(id−σ)(GZ) = GZ/ ker(Σ0) ∼= Z.

Consider the quotient map q : GZ → GZ/(id−σ)(GZ) and denote by ι∗ : K0(A) →
K0(C) the map induced by the inclusion ι : A → C. In the exact sequence, pre-

cisely, ι∗ corresponds to q and the above group isomorphism Σ: K0(C) → Z
is determined by Σ ◦ q = Σ0; see also the paragraph after [30, Lem. 3.7]. Set

τ0 ∈ T 0
αZ
(A) which corresponds to τS ∈ S1

σ(GZ) (determined by τ0∗ = τ̂S). For

x ∈ K0(C)
+, now we obtain (yn)n∈Z ⊕ f ∈ GZ such that q((yn)n ⊕ f) = x. Then

it follows that

0 ≤ (τ0 ◦ P )∗(x) = τ0∗ ((yn)n ⊕ f) = f(τS) =
∑
n∈Z

yn ∈ Z,
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which implies that Σ(x) ∈ Z+. The converse inclusion Σ(K0(C)
+) ⊃ Z+ follows

from the properties nu ∈ K0(A)
+ and n = Σ ◦ q(nu) ∈ Σ(K0(C)

+) for any

n ∈ Z+. Then we have that (K0(pCp),K0(pCp)
+) ∼= (K0(C),K0(C)

+) ∼= (Z,Z+).

In particular, since 1 = Σ ◦ q(u), [p]0 corresponds to 1 ∈ Z.
(iii) For the same reason as in [30, Lem. 3.11], we see that the map id−σ is

injective on K0(A) ∼= GZ. From the Pimsner–Voiculescu exact sequence, we see

that K1(C) = 0.

(iv) By Lemma 6.7, we have now shown that pCp is a unital separable simple

nuclear C∗-algebra which absorbs the Jiang–Su algebra tensorially and satisfies the

universal coefficient theorem. By (i), (ii), (iii) above, we see that pCp is monotracial

and the Elliott invariant of pCp is same as for Z. From [63, Cor. 4.6], we also see

that pCp has strict comparison. Then by [56, Cor. 6.2] (see also [68] and [52]), we

conclude that pCp ∼= Z.

Proof of Theorem 6.5. Denote by θ̃ the dual action of αZ on C and by θ the

restriction of θ̃ to pCp ∼= Z. Denote by (Sθ, πθ) the KMS-bundle of the dynamical

system (Z, θ). By Proposition 3.6(iii), (Sσ(GZ), πZ) is a proper simplex bundle

isomorphic to (S, π). It remains to show that (Sσ(GZ), πZ) is isomorphic to (Sθ, πθ).

Set

TαZ(A) =
{
(τ, β) ∈ T (A)× R : τ ◦ αZ = e−βτ, τ(p) = 1

}
,

equipped with the product topology on T (A)×R, and denote by παZ : TαZ(A) → R
the projection. Define a continuous map ΦαZ : TαZ(A) → Sσ(GZ) by ΦαZ(τ, β) =

(ΦT (τ), β) for (τ, β) ∈ TαZ(A). By Proposition 6.4, ΦαZ is a homeomorphism, and

Φ−1
αZ

|π−1
Z (β) is affine for each β ∈ R.

It follows that the projection p ∈ A (of Proposition 6.8) is full in C, i.e., CpC =

C, by the simplicity of C. Define a map Ψ: TαZ(A) → Sθ by Ψ((τ, β)) = (τ ◦
P |pCp, β) for (τ, β) ∈ TαZ(A). By [31, Lem. 4.1], we see that Ψ is bijective and

Ψ|π−1
αZ (β) is an affine homeomorphism from π−1

αZ
(β) onto π−1

θ (β). Since pAp ⊂ A0, if

a sequence τn ∈ T (A), n ∈ N, converges to τ ∈ T (A) then τn◦P |pCp → τ ◦P |pCp in

the topology of pointwise convergence. Thus, Ψ is continuous. We define a bijective

continuous map Φ: Sσ(GZ) → Sθ by Φ = Ψ ◦ Φ−1
αZ

. By Lemma 3.4, we conclude

that (Sσ(GZ), πZ) is isomorphic to (Sθ, πθ), as desired.

Theorem 6.9. Let A be a unital separable C∗-algebra with a unique tracial state.

Suppose that A absorbs the Jiang–Su algebra tensorially. Then for any proper

simplex bundle (S, π) such that π−1(0) is singleton, there exists a 2π-periodic flow

on A whose KMS-bundle is isomorphic to (S, π).

Proof. Let ι̃t = idA, t ∈ R, denote the trivial flow on A and τ the unique tracial

state of A. For a given (S, π), by Theorem 6.5 we obtain a flow θ on Z whose
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KMS-bundle is isomorphic to (S, π). We denote by A ⊗ Z the C∗-algebra tensor

product and define a flow α on A⊗Z as the tensor product action which is defined

by αt(a ⊗ b) = ι̃t(a) ⊗ θt(b) for a ∈ A and b ∈ Z. Let (Sα, πα) denote the KMS-

bundle of α and Sβ
θ (Z) (resp. Sβ

α(A⊗Z)) the set of β-KMS states for θ (resp. α).

Define an affine map Φ from S(Z) to S(A ⊗ Z) by Φ(φ) = τ ⊗ φ. Then it is

straightforward to check that Φ(φ) is a β-KMS state for α for any φ ∈ Sβ
θ (Z), and

Φ|Sβ
θ (Z) : S

β
θ (Z) → Sβ

α(A ⊗ Z) is affine continuous and injective for any β ∈ R.
Define a continuous map ΦA : Sθ → Sα by ΦA((φ, β)) = (Φ(φ), β) for (φ, β) ∈ Sθ.

In order to apply Lemma 3.4 to ΦA, it remains to show surjectivity of Φ|Sβ
θ (Z).

Given ψ ∈ Sβ
α(A⊗Z), x ∈ Z, and a, b ∈ A, note that a⊗1Z and b⊗1Z are analytic

elements for α and ψ(ab ⊗ x) = ψ((b ⊗ x)αiβ(a ⊗ 1Z)) = ψ(ba ⊗ x). Since τ is

a unique tracial state, we have τ(a)ψ(1A ⊗ x) = ψ(a ⊗ x), for any a ∈ A and

x ∈ Z. Set ψZ(x) = ψ(1A ⊗ x), for x ∈ Z. Then ψZ is contained in Sβ
θ (Z),

as ψ(1A ⊗ xy) = ψ((1A ⊗ y)αiβ(1A ⊗ x)) = ψ(1A ⊗ y(θiβ(x))) for any analytic

elements x, y ∈ Z for θ. Thus we see that Φ(ψZ)(a⊗ x) = ψ(a⊗ x) for any a ∈ A

and x ∈ Z.

From [60, Thm. 3.2], [49, Prop. 2.1], and [55, Thm. 1.1], we obtain uncountably

many flows which are not approximately inner on the following classifiable class

of C∗-algebras (cf. the explicit automorphism group computation in [29]).

Corollary 6.10 (Cf. [30, Cor. 4.2]). Any unital separable simple amenable mono-

tracial C∗-algebra with strict comparison has uncountably many flows which are not

approximately inner, up to cocycle conjugacy and the trivial scaling equivalence.
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