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Abstract

In order to realize all possible KMS-bundles on the Jiang—Su algebra, we introduce a class
of C*-algebras which we call rationally approximately finite-dimensional (RAF). Using
these, we show that for a given proper simplex bundle (S, 7) with a singleton 7~ ({0}) and
a unital separable monotracial C*-algebra A absorbing the Jiang—Su algebra tensorially
(for instance, the irrational rotation algebra), there exists a flow on A whose KMS-bundle
is isomorphic to (S, 7).

Mathematics Subject Classification 2020: 46135 (primary); 46140, 46130, 46155, 46160,
46N50 (secondary).
Keywords: C*-algebras, KMS states, classification, Jiang—Su algebra.

§1. Introduction

Approximately finite-dimensional separable C*-algebras (AF algebras) were clas-
sified, roughly 50 years ago, in [34, 16, 5, 20], in terms of the Murray—von Neu-
mann semigroup of equivalence classes of projections — equivalently, the universal
enveloping ordered group that has come to be known (since Murray and von Neu-
mann) as Ky (and in the setting of AF algebras, the dimension group).

A very general class of simple separable C*-algebras, assumed to be well
behaved but satisfying very simple abstract axioms, has now been classified by
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a generalization of this invariant; see [45, 46, 47, 59, 40, 41, 21, 23, 27, 26, 72,
12, 25, 38, 39], all of which follow on substantial earlier work over the last 30 to
40 years. The axioms are amenability, absorption of the Jiang—Su algebra Z, and
the universal coefficient theorem (conceivably redundant in the amenable case).
Recall (see [44]) that the tensor product of any C*-algebra with the Jiang—Su
algebra absorbs the Jiang—Su algebra tensorially. In many examples (see [28]; see
also e.g. [32, 67]), this property already holds. The invariant, in the stable case, is
K, = Ko ® K; together with the natural pairing with traces, where both K, and
K3 are arbitrary countable abelian groups, and the traces constitute an arbitrary
metrizable simplicial cone paired in an arbitrary way with Ky (the natural order
in which is determined by this pairing).

At the same time, considerable progress has been made in the last 30 years
in the classification of non-simple C*-algebras beyond the case of AF algebras. In
the infinite (Ox-stable) case an ideal-related K K-equivalence-based isomorphism
theorem was outlined in [46]; a different proof of this was given in [33]. In the finite
(non-simple) case, after earlier results, a K-theoretical classification of inductive
limits of finite direct sums of matrix algebras over commutative C*-algebras (AH,
or approximately homogeneous, algebras) with no dimension growth in the spectra
and with the ideal property (every closed two-sided ideal generated by projections)
was given in [35]. The next step in this direction would be to classify inductive
limits of sequences of C*-subalgebras of matrix algebras over commutative C*-
algebras (ASH, or approximately subhomogeneous, algebras), with no dimension
growth and with the ideal property.

Unexpectedly, in an investigation of KMS-state behavior of one-parameter
automorphism groups of a C*-algebra, along the lines of [7] and [8], a class of ASH
algebras arose which it was possible to classify. This is the basis of the present
paper, which uses this new classification theorem to construct specified KMS-
state phenomena in the Jiang-Su C*-algebra, and hence in the tensor product of
this algebra with any other monotracial C*-algebra.

The class of algebras in question (see Section 4), to be named rationally
AF algebras (following the terminology of [40] and [41]), or RAF algebras, can
be characterized as those C*-algebras such that the tensor product with every
infinite-dimensional UHF (Glimm uniformly hyperfinite) algebra is AF.

By [36], every C*-algebra which is both RAF and AH with no dimension
growth is AF. (To see this, one may assume that the algebra is stable, and then
as shown in the proof of Corollary 5.4, below, it has the ideal property. By [36]
it is AT, and since by Lemma 4.2, it has zero K; group, by [70] it is AL By [6,
Cor. 1.3] any AH algebra with no dimension growth has real rank zero if it has
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small eigenvalue variation, which holds if the tensor product with a UHF algebra
has real rank zero. It is well known that an Al algebra of real rank zero is AF. AT
algebras of real rank zero were classified in [23].)

The present class, thus, projects directly into the unknown territory of the
non-simple ASH class.

Interestingly (see Theorem 5.3), the classifying invariant for this class — or,
rather, the Jiang—Su stable members of the class — at least up to stable isomor-
phism, is exactly the same as for the class of AF algebras, namely, the ordered
Ky-group, which can be an arbitrary countable ordered abelian group whose tensor
product with every dense subgroup of the rational numbers is a dimension group.
(We use the terminology rational dimension group, following [53] which deals with
the simple case. See Definition 3.2, Lemma 3.1(v), and Theorem 4.4.)

The classification up to isomorphism for non-stable algebras is also almost the
same as for AF algebras, and in the case that there is an approximate unit con-
sisting of projections (for instance if the algebras are stable or unital), it is exactly
the same (namely, the dimension range). The general case (appearing already with
the non-unital algebras stably isomorphic to the Jiang—Su algebra) is slightly more
subtle. See Corollaries 4.8 and 5.4, which introduce what we shall call the matrix
dimension range.

The proof of Theorem 5.3, the Z-absorbing RAF-algebra classification theo-
rem, consists of an application of the Winter deformation technique [75, Prop. 4.5],
extended in a simple way beyond the unital case in which it is at present couched.

Our result concerning KMS-state structure, which follows from the Jiang—Su-
absorbing RAF classification (Corollaries 4.8 and 5.4) is Theorem 6.5. (A precise
statement is given in the abstract.) The method is similar to that of [7] and [8], and
to that of [31] and [30], and there is some overlap in the results. In [7] and [8] the C*-
algebras on which the actions are constructed are not precisely identified. In [30],
the present setting but with only the case of a compact bundle, i.e., bounded set
of admissible inverse temperatures, is dealt with — this uses the known simple C*-
algebra classification referred to above. The case of an infinite Kirchberg algebra
is also dealt with in [30], without the compactness restriction. In [31], the only
overlap is the case of a monotracial simple unital AF algebra.

As a straightforward application of the present paper, we obtain in particular
the following result.

Corollary 1.1. For any irrational rotation algebra, there exists a flow which real-
izes any given proper simplex bundle with singleton fiber over 0 as a KMS-bundle
on it.
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§2. Preliminaries

Let us start with some basic terminology and a fact for ordered abelian groups
with the Riesz interpolation property.

In this paper, a (partially) ordered abelian group (G, GT) will mean an abelian
group G with a positive cone GV satisfying Gt +G™ C G* and GTN—-G* = {0}.
If just the first condition is satisfied, (G, G") will be called a pre-ordered abelian
group (see [42]). If, in addition to both conditions, G = G+ — G, then (G,G™")
will be called an ordered abelian group (see [64, Def. 5.1.3]). For a partially ordered
(or pre-ordered) abelian group (G, GT), we shall denote by < the order relation
defined by g < hif h — g € GT.

A partially ordered abelian group (G, G™) will be said to have the Riesz (or
Birkhoff-Riesz) interpolation property (RIP) if for go, g1, ho, h1 € G satistying
g; < hj for all 4,5 € {0,1}, there exists a € G such that g; < a < h; for all
i,7 € {0,1}. (See [1].)

For a supernatural number n (i.e., a formal infinite product of finite or infinite
powers of prime numbers; see [16, 62, 64]), denote by D, the set of all rational
numbers p/q given by p € Z and ¢ € N with ¢|n, and fix the positive cone D} =
{d € D, : d > 0}. Denote by D,[e*,e "] the group of Laurent polynomials on
R with coefficients in D,,. For a closed subset F' C R, equip Dy[e”, e~ "] with the
strict pointwise order, making it an ordered abelian group:

Dale”, e "5 = {0} U{f € Dyle”, e ] : f(z) > 0 for any z € F}.

We shall have occasion to use the following fundamental lemma in the sequel (in
Lemma 3.5).

Lemma 2.1. Let F C R be a closed subset of R and n an infinite supernatural
number. Then the ordered abelian group (Dy[e®,e~%],Dyle®, e~*]L) has the RIP if
and only if F is semibounded (i.e., either bounded below or bounded above).

Proof. The “if” part of the statement is a variant of the argument of [71, Sect. 5].
We include a proof for the reader’s convenience. Suppose that F' is semibounded,
and set —F = {& € R: —x € F}. In the case that F' is bounded, the Stone—
Weierstrass theorem can be applied directly to show the RIP. So we may assume
that F is unbounded. To simplify notation, set G = Dy[e®,e™*] and G} =
Dle®, e~*]f. Tt is immediate that (G,G}.) has the RIP if and only if (G,GT )
has. Thus, we may assume that F' is bounded below.

Let p;, q; € G, i,5 € {0,1}, be such that p; < ¢; for all ¢,5 € {0,1}. If
Diy = qj, for some ig,jo € {0,1}, then a = p;, = gj, satisfies p; < a < g; for all
i,7 € {0,1}. Therefore, we may suppose that p;(z) < ¢;(x) for all 4,5 € {0,1} and
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x € F. As the first step in the argument which follows, note that for sufficiently
large N € N and R > 0, there exists a9 € G such that

pi(z) +e N < ag(x) < gj(z) — e N7,
for all 4,5 € {0,1} and x € FN[R, ).

Let D3° denote the infinite direct sum €9, .,
equip D$° with the reverse lexicographic order <jo, which means that for ¢ =
(9n)nez and h = (hp)nez € DX, g <jex h if g, = hy, for all n € Z or g, < hn,
for ng = max{n € Z : g, # hn}. If ¢ <iex h and g # h, write g <jex h. Since
F is unbounded (above), it follows that (gn)nez <lex (Pn)nez if, and only if,
there exists » > 0 such that » _, gne™® < >, hpe™® for any x € F N [r,00).
Let p° = (pin)nezs q° = (gj.n)nez € DY° denote the coefficient sequences of
pi(x) = D, cnPine™ and q;(x) = > 7 qime™, 1,5 € {0,1}. Since the reverse
lexicographic order is a total order, reindexing, we may assume that pg® <jex

D, of copies of D, over Z, and

P <iex ¢5° <iex ¢5°. Set ng = max{n € Z : p1,, # qo.n} and note that p; ,, <
Go,ng- For k € Z, set 6, = (0k.n)nez € DY°, where dg,, is the Kronecker delta, and
set al® = pP° +0n,—1. Then we have pi° <iex a3 <iex ¢5°- Let N € N chosen above
be chosen sufficiently large that p° +6_n <iex PT°+0-N <lex a5° <lex ¢5°—0-n <
q7° — d_n also, which is the analogue in D$° of the required condition.

Since by the choice of ag, eN®(p;(z) — ag(z)) < —1 < 1 < e™N?(q;(z) — ao(z))
for all 4,5 € {0,1} and € FN[R, 00), there exist d > 0 and a continuous function
f: R — R with compact support such that eN®(p;(z) — ao(z)) +d < f(x) <
eN*(gj(z) — ap(x)) — d for any x € F. By the Stone-Weierstrass theorem (applied
to the compact space FU{oo} and the subalgebra of Laurent polynomials bounded
on this space), we obtain a; € G such that sup,cp |f(z) — ai(z)| < d. Defining
a € G by a(z) = e N%ay(z) + ag(x), we have p; < a < ¢; for all i,j € {0,1}.

To show the “only if” part, assume that F'is not semibounded. Let N € N and
B € F be such that N < e® < 2N. Define p;, ¢; € G, i,j € {0,1}, by po(z) = —1,
p1(z) = (N — €e®)(e® — 2N), qo(z) = 2%, and q;(z) = N? for € R. Then it
follows that p; < g; for all 4,5 € {0,1}. If there existed a € G with p; < a < g,
for all 7,5 € {0,1}, then, as pg < a < ¢1, a would be a bounded function on F'.
Since F' is not semibounded, a must be a constant function, in contradiction with
p1 < a < qo- O

§3. Rational dimension groups and simplex bundles

The notion of a rationally Riesz group was introduced in [53], and it was shown
that a weakly unperforated simple ordered abelian group G is a rationally Riesz
group if and only if G ® D, has the Riesz interpolation property for every infinite
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supernatural number p. (See [62] for the definition of the supernatural numbers,
which extend the natural numbers, which we shall refer to as finite.) In this sec-
tion, we shall consider a modified definition for non-simple ordered abelian groups
(Definition 3.2), and construct an example which gives rise in a natural way to
a given proper simplex bundle (see below) in Proposition 3.6. In the sequel (see
Theorem 6.5), proper simplex bundles will be shown to give rise to KMS-bundles
on the Jiang—Su algebra.

Recall that the positive cone (G ® H)T of the tensor product of two partially
ordered (or pre-ordered) abelian groups (G, G") and (H, H*) is defined as the set
of all finite sums of {g®@h : g € G, h € H"}, and note that (G® H, (G H)*) is
then a partially ordered (or pre-ordered) abelian group; see [43]. For convenience,
we shall just write G ® H . For an abelian group G we shall denote by G ® 1 the
subgroup of G ® Dy consisting of {g ® 1k : g € G}, where 1y denotes the number
1 € Dy.

Lemma 3.1. Letp and q be relatively prime supernatural numbers. For an abelian
group G, the following fundamental statements hold:

(i) If G®D, and G @ Dy are torsion-free abelian groups, then so also is G.

(i) If G is torsion-free, then the subgroup (G @ Dy, ® 14) N (G ® 1, ® Dy) of
G @Dy, ® Dy is isomorphic to G as an abelian group.

(iii) If a partially ordered abelian group (G,G%) is such that (G ® Dp,G @ D,™")
and (G ®@Dq, G @ Dy are torsion-free ordered abelian groups, then (G,G™)
is an ordered abelian group (i.e., G = Gt — GT).

(iv) If (G,G™") is an unperforated ordered abelian group (i.e., ng > 0 for some
n € N implies g > 0; see [2, Def. 6.7.1]), then so also is (G @ D,,G @D, ™)
for any supernatural number n.

(v) If (G,G™) is an unperforated partially ordered abelian group such that (G ®
Dy, G @Dy ") and (G@ Dy, G @ Dy") are dimension groups, then (G,G%) is
an ordered abelian group and (G ® Dy, G @D, ") is a dimension group for
any infinite supernatural number n.

Proof. (i) Assume that g € G is a torsion element and n € N is the first number
such that ng = 0. Since G ® D, is torsion-free, we have g ® 1, = 0 in (g) ® D,.
Since (9) ® Dy, = (Z/nZ) @ D, = D, /nD,, it follows that 1 € nD,. Similarly, we
have 1 € nID,. Because p and q are relatively prime, this implies that n = 1 and
so g =ng = 0.

(ii) Since G is torsion-free, the canonical embedding ¢: G = G ® 1, ® 14 defined
by ¢(9) = g® 1, ® 14 for g € G is a group isomorphism. Therefore, it suffices
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to show that (G D, ®15)N(G®1,0D;) =G®1, 1. Ifz € (GaD, ®
14) N (G ® 1, ® Dy), then there exist &, | € N such that 1/k € Dy, 1/l € Dy, and
kz,lv € G ®1, ® 1. Since k and [ are relatively prime, there exist a, b € Z such
that 1 = ak+bl. It follows that x = akzr+blx € G®1,®1,. The converse inclusion
(GeaD,®1l)N(G®1l,®Dy) DG ®1, ® 14 is trivial.

(iii) Fix z € G. For i = p, q, since (G ® D;, G ® ;") is an ordered group, there
exist ai, by € G ®D;" such that £ ® 1; = a; — b;. Let n; be such that 1/n; € Dy and
niai, nibi € G ® 1; for i = p, q. Since a;, by € G @ D;, there exist Gais Gb; € GT,
i =p,q, such that nia; = g,, ® 1; and nib; = gp, ® 1;. By (i), G is torsion-free, and
so from niz ® 1i = (ga, — g,) ® 1; it follows that niz = g,, — gs,. Since n, and nq
are relatively prime, there exist ¢,d € N such that 1 = cnp — dngq. Then we have

x = (cga, + dgv,) — (cgp, +dga,) € G* — GT.

(iv) Since (G,G*) and (D,,D,") are torsion-free ordered abelian groups, it is
straightforward to check that (G ® D,,G ®D,") is also a torsion-free ordered
abelian group. Therefore, it suffices to show that there exists d € N such that 1/d €
D, and dz € GD, " if z € G®D, and n € N satisfy nz € G @D, . Let 9; €G
and d; € Dy, j =1,2,..., N, be such that Zjv:l g;®d; = x. Since nx € G ® D, ",
there exist h,, € G4, and e,, € D, ", m =1,2,..., M, such that nz = 2%21 hm ®
em. Choose d € N such that 1/d € D, and dd;, de,,, € Z for all j =1,2,..., N and
m=1,2,..., M. Then it follows that (Zjvzl nddjg;) @ 1, = (Z%Zl demhm) @ 1y.
Since G is torsion-free, we have Zjvzl ndd;g; = 2%21 demhm € GT. Finally, since
G is unperforated, we conclude that dx = (Z;\f:l ddjg;) @1, € (G@Dy)*.

(v) By (i) and (iii), we see that (G, G") is an unperforated ordered abelian group,
and by (iv) so also is (G®D,, G ® D, T). Because the Riesz interpolation property
in an ordered abelian group is equivalent to the Riesz decomposition property
of [61] (see [1]; see also [15, Thm. IV 6.2]), it suffices to show that for z, ao,
a1 € GD,T with 2 < ag + a; there exist two elements z; € G ® ]D),ﬁ, 1=0,1,
such that r = g + x1 and z; < a; for both i =0, 1.

Choose N € N such that 1/N € D,, and Nz, Na; € G ® 1,, and denote by
9zs Ja; € GT, 1= 0,1, the elements such that g, ® 1, = Nz and g,, ® 1, = Na;
for i = 0,1. Since g; ® 1y < (gag + gay) ® 1n, we have g < goy + gay, as G is
unperforated. By the Riesz decomposition property of G ® D, and G ® Dy, for
j = p,q there are ylo) € G®]D)j+, i = 0,1, such that g, ® 1; = y(()j) + ygj) and
yl(j) < ga; ® 1 for both ¢ = 0,1. Choose Nj € N, j = p,q, such that 1/N; € Dj
and Njygj) € G ® 15 for both 7 = 0,1, and denote by glo) € G7 the element
such that Njyz@ = ggj) ® 1j. Thus we have Njg, = g(()j) + ggj) for j = p,q. Since
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N, and N, are relatively prime, if n is infinite, there exist natural numbers ¢, d,
and M (> NpNg) such that 1/(MN) € D, and M = c¢Ny + dN,. The elements
x; = (c l(p) + dg(q)) ® 1/(MN) € GoD,", i = 0,1, then satisfy the desired
conditions. O

Definition 3.2. We shall call a partially ordered abelian group (G, G") a rational
dimension group if (G,G¥) is unperforated and, further, (G ® Dy, G ® D, ") and
(G®@Dy,G®Dy") are dimension groups for some pair of relatively prime infinite
supernatural numbers p and ¢. Note that a partially ordered abelian group is not
necessarily unperforated even if G ® D, is a dimension group for every infinite
supernatural number n. For example, the ordered abelian group (Z, S,) with S, =
{0,n,n+1,...} is not unperforated for n € N\ {1}; however, (Z®@D,, S, ® D, ") is
isomorphic to (D, D, ") as an ordered abelian group for any infinite supernatural
number n.

Remark 3.3. For simple ordered abelian groups, it is enough for the tensor prod-
uct of an unperforated ordered group with D, for a single supernatural number n
to be a dimension group in order for it to be a rational dimension group (see [53,
Prop. 5.7]). However, for non-simple ordered abelian groups, the following example
indicates the necessity of the two tensor products in the definition above.

Let p and g be two relatively prime numbers, and let u denote the universal
supernatural number, with D, = Q. Set H = Q*, H* = {(z,y) € H : x > 0,
Yy = 0}7 ap = (070)7 by = (170)7 ay = (1/]7,1/]7 - 1)7 and by = (1/p71/p) in
H. Define (G,G™) as the ordered subgroup of (H, H") generated by {a1,b1},
which is unperforated and non-simple. Note that, for any supernatural number
n, the ordered abelian group (G ® D,,G ® D, ") is isomorphic to (Dya; + Dyby,
(Dna; + Dpby) N HT), and that ag, by € G. Then the tensor product (G ® Dy,
GeD,") = (H,H") is a dimension group. However, if there exists € G ® Dye
such that a; ® 1o < @ < bj ® 14, for 4,5 € {0,1}, then = must correspond
to (1/p,0) via the identification of G ® Dgee with Dyecaq + Dgeoby. Since p and ¢
are relatively prime,  cannot be contained in G ® Dyeo. This shows that (G ®
Dy, G @ Dy ) does not have the RIP.

Let us recall a few notions concerning simplex bundles, introduced in [7] and
[8] (see also [31, 30]). A pair (S, 7) consisting of a second countable locally compact
Hausdorff space S and a continuous map 7: S — R is called a simplex bundle if
7= 1({B}) is compact and has a structure of Choquet simplex for every 8 € R. To
simplify notation, we shall write 7=1(3) for 7=1({8}). Two simplex bundles (S, )
and (S, ') are said to be isomorphic if there exists a homeomorphism ®: S — S’
such that 7’ o ® = 7 and the restriction of ® to 7—1(f) is affine for all 3 € R.
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For a simplex bundle (S, ), we shall denote by A(S) the set of all continuous
functions f from S to R such that each restriction of f to 7=1(3) is affine for any
5 € R. We also set

Ao(S) = {f € A(S) : f vanishes at infinity},
Ago(S) = {f € A(S) : supp(f) is compact and supp(f) N7~ '(0) = 0}.

A simplex bundle (S, ) will be called proper if 7 is a proper map (i.e., 7 *(K)
is compact for any compact set K C R), and A(S) separates points of S.

Lemma 3.4. Let (S, ) be a simplex bundle, S a locally compact second countable
Hausdorff space, and ©': S’ — R a continuous map. Suppose that 7 is proper and
D is a bijective continuous map from S to S’ such that 1 = 7’ o ®. Then ®
is a homeomorphism. In particular, if (S,7) is a proper simplex bundle and the
restriction of ® to w=(8) is affine for any B € R, then (S',7') is also a proper
simplex bundle.

Proof. For any compact subset K of S/, since 7’ is continuous, there exists a
compact interval I C R such that 7/(K) C I, which implies that @~ (K) c 7= (I).
Since 7=1(I) is compact, so also is ®~!(K). This shows that ® is a proper map.
Let F be a closed subset of S. To show ®~! is continuous, it suffices to show
that ®(F) is closed. For any compact subset K of S’, it follows that ®(F)N K =
O(FN®~1(K)) is compact. Since S’ is locally compact and Hausdorff, this shows
that ®(F') is closed.

As ™ = 7 o ®, it follows that «/ ' (B) = ®(x~1(B)) for any subset B of R.
Then 7/ is also a proper map. If each restriction of ® to 7~!(3) is affine, then we
see that A(S") = {fo®~1: f € A(S)} separates points of S’. O

The concept of a proper simplex bundle was presented as an abstract charac-
terization of the KMS-bundle of a C*-algebra in [7, 8, 31, 30]. On the one hand,
it was shown in [7] and [8] (see also [9, Sect. 5.3]) that a KMS-bundle for a unital
separable C*-algebra is a proper simplex bundle, and on the other hand, in [31],
it was shown that any proper simplex bundle can be realized as a KMS-bundle
on a given unital simple infinite-dimensional AF-algebra. The construction in this
paper is a variant of [31, Sect. 4.2] for rational dimension groups (instead of just
dimension groups). In the rest of this section, we shall consider a proper simplex
bundle (S, ) such that 7=1(0) is a singleton {75}

Let G be a countable additive subgroup of R with 1 € G and let G* denote

the infinite direct sum €, ., G of copies of G over Z. Given a sequence g = (gn)nez

neEZ
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in G*°, define a continuous function L(g) € A(S) by

L(g)(s) = Zgne"”(s) fors e S.

neZ

From now on, we shall denote by e~ the function e~"() € A(S), so that L(g) =
> nez gne"™. Let og denote the automorphism of A(S) defined by os(f) =e " f
for f € A(S), and oge the automorphism of G defined by oge((gn)nez) =
(9n+1)nez for (gn)nez € G*°. Note that

o0soL =Looge.

For k € N, choose positive continuous functions vy, ¥k, ¥r— from R into
0,1] such that (—o0, ~1/k] © i ({1}), [=1/2k,1/2k] € g ({1}), [1/k,00) ©
wk__i({l}), and ¢ +Yr + Yry = low). Denote by Gle™™, (1 —e™™)] the additive
group generated by the functions ge"" (1 — e~ ™)™, g € G, m,n € Z defined on

S\ m710). For h € Gle™™, (1 — e~ ™)], we regard h(¢y+ o) as elements of A(S)
in a canonical way. Consider the countable subgroup of A(S),

G =Gle",(1—e Mgp—om+ L(G®)Yrom+Gle™™, (1 —e ™)ty o .

In the same way as in [8, Lem. 2.2] and [31, Prop. 4.5], choose a countable subgroup
Goo of Ago(.S) satisfying the following conditions:

(1) For any f € Ago(S), € > 0, and N € N with supp(f) € 7 '((=N,N) \
{0}), there exists g € Goo such that sup,cg|f(z) — g(x)| < € and supp(g) C
7 (=N, N)\{0}),

(2) G+ Goo C G351 + Goo for any k € N, and

(3) 5(Goo) = (ida(sy —5)(Goo) = Goo-

Consider the countable subgroup of A(S),
R(G) = | G + Goo.
k=1
Define positive cones A(S)T and R(G)" of A(S) and R(G) by
AS)T ={0yu{f e A(S): f(z) >0 for any z € S},
R(G)T =R(G)NA(S)*.
Lemma 3.5. With G and R(G) as above, the following statements hold:

(i) (R(G),R(G)™) is an unperforated ordered group.
(ii) In the case G =Z, (R(Z),R(Z)") is a rational dimension group.
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Proof. (i) It is straightforward to see that R(G)™ N —R(G)" = 0 and that the
partially ordered abelian group (R(G), R(G)™") is unperforated. We must show that
R(G) =R(G)T —R(G)*. For k € N, let g € Gi° + Goo C R(G) be given, so that

g=h_tpk—om+ hopy om+ hythpt o+ go,

with hy, h € Gle™™, (1 —e™™)], ho € L(G™), and gy € Ggpo. For N € N, let us
fix the notation —[N,o0) := (—oc0, —N] and +[N, c0) := [N, 00). With M a large
enough natural number, we have hy(z) < e*M7™®) for any x € 771 (+[M, 0)).
Since the supports of hgy o m and gg are compact, and 7 is proper, there exists
¢ > 0 such that the function f = c(e ™M™y om + Y om +eM iy, om) € R(G)T
satisfies f —g € R(G)*. Thus, g = f — (f —g) € R(G)T —R(G)*.

(i) Let n be an infinite supernatural number and denote by R(IDy,) the subgroup
of A(S) defined by

R(Dy) = {3N digi € A(S): N €N, d; € Dy, g; € R(Z)}.

We define a positive cone R(Dy)* by R(Dy)* = R(Dy)NA(S)*. First we show that
the partially ordered abelian group (R(Dy), R(Dy)*) is isomorphic to (R(Z) @ Dy,
R(Z) @ Dy ") (as a partially ordered abelian group). Note that, by Lemma 3.1(iv),
(R(Z) @Dy, R(Z) ® D, ") is an unperforated ordered abelian group. Let ®: R(Z)®
D, — R(Dy) denote the group homomorphism determined by ®(g @ d) = dg for
g € R(Z) and d € D,, which is obviously surjective. To show the injectivity of
@, let g, g, € R(Z) and d;, d; € Dy, i = 1,2,..., N, be such that YV | dig; =
SN digh in R(Dy). Choose d € N such that dd;, dd; € Z foralli = 1,2,..., N and
1/d € Dy,. Then it follows that Ef\il dd;g; = vazl dd}g} in R(Z). Thus we have
d(zf\il 9i ®d;) = d(Zf;l g, @d}) in R(Z) ® Dy,. Since R(Z) @ D, is torsion-free,
we have Zf\il g ®@d; = Eivzl g, @ d,. Tt is trivial to see that ®(R(Z) @ D,")
R(Dy) " Since (R(Z)@Dy, R(Z) @ D, ") is unperforated, we also have the converse
inclusion.

What remains to be shown is the RIP of (R(Dy), R(Dy)"). The following
argument is essentially same as that in the proof of [31, Lem. 4.6]. Let f;, g; €
R(Dy), 4, j € {0,1}, be such that fi(z) < g;(x) for any x € S and i,j € {0,1}. At
75 € m1(0), since D, is dense in R, we obtain d € D, such that fi(7s) < d < g;(7s)
for all i,j € {0,1}. By the definition of ﬁ(Dn), there exist N € N and f;y, fi_,
Gity Gj— €Dyle ™, (1 —e~™)], i,5 € {0,1} such that fi(z) = fi(z) and g+ (z) =
gj(z) for any i,j € {0,1} and # € 7 !(£[N,00)). Note that 7(7~!(£[N,)))
are semibounded closed subsets of R, since 7 is a proper map. By Lemma 2.1, we
obtain e_, e; € Dy[e®, e~*] such that

fi(z) < ex(n(x)) < gj(z) for s € 7 H(£[N, 0)).
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Set
h(z) = (e_thp— +dyp + eptbpy) om(x) for x € S;
then it follows that f;(z) < h(x) < g;(z) for any 4,7 € {0,1} and x € 7~ 1((—o0,
—N] U {0} U[N,c0)). By [8, Lem. 2.3] and [31, Lem. 4.4], there exists h € A(S)
such that h(z) = h(z) for z € 7= ((—o0, =NJU{0} U[N, oc)), and f; < h < g; on
S for all i,j € {0,1}. Because 7 ~1([~N, N]) is compact, there exists ¢ > 0 such
that
filz) +e < h(z) < gj(x) -,

for any i, € {0,1} and = € 7='([=N, N]). Set 7(x) = h(x) — h(z) for z € S. Then
it follows that supp(7) C 7= 1((—=N, N)\ {0}). By (1) of the conditions for Goo, we
have r € Goo such that r(x) ~. #(x) for x € S and supp(r) C 7~ 1((—=N, N)\ {0}).
The element h = h 47 € 7%(]1])“) satisfies f; < h < g; for all ¢, € {0, 1}. O

For an infinite supernatural number n, consider the ordered abelian group
(R(Dy), R(Dy) ") introduced in the proof above. Define an ordered group Gp,
and a subgroup Gz C Gp, by

Gp, = {E ®ge (D @7%(]1),1)) :3e>0,for any x e ((—¢,¢)), L(€)(z) = g(m)},
Gz = (Z* & R(Z)) N Gp,
Define positive cones for Gz and Gp, by
G ={0}u{¢@geGp, :geRM)"\{0}},
G% =Gz N Gfgn-

Note that (GZ,GZ) is independent of the choice of infinite supernatural num-
ber n. It is straightforward to check that (Gp,,Gf ) and (Gz,G7) are torsion-
free ordered abelian groups such that (GD“,GH*);“) is isomorphic to (Gz ® Dy,

n?

Gz @ D) (as ordered abelian groups). Since R(Dy) is a dimension group (see
the proof of Lemma 3.5), so also is Gp,, for any infinite supernatural number n,
which means that (Gz,G) is a rational dimension group.

Define an automorphism o of (Gp, , Gﬁn) by

o(§® g) = (o (§) ®os(g)), for @ g e Gp,.

From og(R(Z)*) = R(Z)*, it follows that o(G;) = G4 . Then, using the same
symbol, we may regard o as an automorphism of (Gz, G5).

Set 1o = (00,n)nez € Z°°, using the Kronecker delta d,,,, for m,n € Z, and set
u=(1lg®1) € Gz. Although u is not necessarily an order unit, we may consider a
kind of state space S, (H) for an ordered abelian subgroup (H, H") of (Gp,, G{gn)
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with u € HT defined by
Su(H) = {¢: H— R : a positive group homomorphism with ¢(u) = 1}.

Consider S, (H) with the relative topology from the Cartesian product R¥
(the topology of pointwise convergence). Assuming o(H+) = Ht, fora = e™# € R,
consider the subset S¥(H) of S, (H) and the bundle S,(H) over R defined by

Sy(H) = {p € Su(H) : p o0 = ap},
Sa(H) = {(98) € SulH) x R o € S2(H)}.

Although R¥ is not locally compact, we shall show that S (Gg) is locally compact,
in Proposition 3.6(i) below. Define a projection 7,5 : S, (H) = R by o1 (e, 5) =
B. To simplify notation, let us write 7z and mp, for m,q, and ToGp, -

For a supernatural number n, let ¢, denote the canonical embedding of Gy
into Gp,, and ¢ the induced map from S, (Gp,) to S, (Gz) defined by ¢i(p) =
@ oLy for ¢ € Sy(Gp, ). Define a continuous map ¢, from S,(Gp,) to So(Gz) by
Gis(o, 8) = (Li(p), B) for (¢, B) € Sy (Gp, ). For s € S and g € Gp, withg=£® f
for some £ € D and f € R(Dy), set 3(g) = f(s) and regard 3 as an element
of S¢(Gp,) for a = e~™(*). Define a continuous map ¥p, from S to S,(Gp,) by
Up, (s) = (8,m(s)) for s € S.

Proposition 3.6. As in Remark 3.3, let u denote the supernatural number cor-
responding to the universal UHF algebra, i.e., D, = Q.

(i) The pair (So(Gg),mg) s a proper simplex bundle.

(ii) The induced map ¢},: Sy(Gg) — So(Gz) is a homeomorphism such that
Tzoly, = g and the restriction L30|7r61(,3) is affine for each B € R. Therefore,
the pair (So(Gz),77z) is also a proper simplex bundle that is isomorphic to
(55(Ga), mq)-

(iil) Wz: S — S,(Gz) is an isomorphism of simplex bundles.

To prove the proposition, we shall consider the subgroup of Gg for which
u is an order unit, and its elements of compact support. Let p: Gg — ﬁ(@)
denote the standard projection defined by p(¢ ® f) = f. Set Gf@*‘ ={g € G’(E :
there exists N € N such that z < Nu}, G(Ej ={g € Ga : supp(p(g)) is compact},
Gy = Gf{; — G&’, and G§ = GE; — G(E)Jr. It is straightforward to check that
(G{é,G&“) is an ordered abelian group with order unit u. Since (G@,Ga) is a
dimension group, we also see that (Gg, Gf{;) has the RIP. Let S(Gg) denote the
state space of G, a Choquet simplex (see for example [42, Thm. 10.17], [17]).

To simplify notation, set Qo = Q[e*, e ?] and Q = Q[e~*,(1 — e~ *)]. For
£ = (§n)nez € Q™, define X¢ € Qo by X(x) = >7, 5 &ne"™. Let p € S(Gg). Note
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that, since p(Ng) = N¢(g) for any g € G and N € N, we have p(Ag) = A\p(g)
for A € Q and g € Gg.

Lemma 3.7. Suppose that p, ¢ € S(Gg), A > 0, and B € R satisfy 1¥(g) < Ap(g)
for any g € G&T, and ¢(o(g)) = e Pp(g) for any g € Gg- Then it follows that

P(a(g)) = e Pi(g) for any g € G§.

Proof. For n = (Nn)nez and £ = (&n)nez € Q, let 1 x € denote the convolution

product of  and & (i.e., n*& = (3 cz Mén—k)n)- For g € Qo and g = (£ f) € GG,
setting ¢ = (¢n)n € Q> such that X¢>™ = ¢, we define ¢- g € G§ by ¢-g =
(¢ & @ qonf). Note that, since (e~ - g) = e Py(g) for any g € G, it follows

that ¢(q - g) = q(B)p(g) for any ¢ € Qo and g € Gg.
Fix g € Ggr and define 14(q) = ¥(q - g) for ¢ € Qo. Thus one obtains the
Cauchy—Schwarz inequality

Vylqr)? < by (q*)iby (1)

for any ¢,r € Qo. Choose a sequence a, € Q, n € N, such that lim,,_,o o, = e 7,
T — ay, € Qo. Then we have

Pg(Gn)? < Vg (Gn)1hg(1) < A (s - g)the(1)
=22 (B)e(9)Y(g) = 0 (n— o),

which implies that lim,, . ¥(e™® - g) — any(g) = 0. Since G§ = GE;‘ — G@', we

have (e™® - g) = e P1(g) for any g € G- O

and set ¢, = e~

Proof of Proposition 3.6. (i) First we show that mg: Sy(Gg) — R is a proper map.
Let K C R be a compact set, and sy = (pa, Sr) € W@l(K), A € A be a universal
net (see [58] for the definition). For g € G such that p(g) is bounded on S, there
exists ¢ € N such that |pa(g)| < ¢ for any A € A. Then the net ¢x(g), A € A,
converges to a point in [—c¢, c]. For a general g € G, there are go, g+, g— € Gg
such that g = g_ +go+g+, and p(go), p(c™ (9_)), and p(c~N (g4 )) are bounded on
S. By (px, 8x) € 1y (K) and @i (g+) = eENP 05 (07N (g4)), it follows that oa(g),
A € A, converges in R. Set ¢(g) = limy_o @a(g). Setting § = limy_, B € K,
we have p(a(g)) = e Pp(g) for any g € Gg, which implies that sy converges to
(p,B) € w@l(K). Thus, ﬂ@l(K) is compact.

For s = (¢, B) € So(Gg), we see that w@l([ﬂ—e,ﬂ+6}) for € > 0 is a compact
neighborhood of S, which means that S,(Gg) is locally compact.

It remains to show that mg, 1(B) is a Choquet simplex for any 3 € R. Fix § € R.
Denote by ¢, the canonical embedding of G into Gg and define the induced map
v ﬂ@l(ﬁ) — S(Gg) by 13,(s) = pou, for s = (¢, ) € 7'('@1(,8). From the definition,
it follows that ¢}, is affine and continuous in the topology of pointwise convergence.
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We see that points of ﬂ@l(ﬁ) are separated by Gg, because any g € Gg can be
decomposed as g = 0~V (g_) +go + oV (g4 ) for some go, g_, g4 € Gg and N € N.
Thus ¢}, is injective. Since a compact face of a Choquet simplex is also a Choquet
simplex (see [42, Thm. 10.9]), it suffices to show that Im(¢},) is a face of S(Gg).

Let ¢ € Im(ey,), ¥, n € S(Gg), and A € (0,1) satisfy ¢ = A + (1 — M)n.
In the following argument, we first consider a specific g € Gg with the property
p(9) = Yy om, Yp_om, (Y4 — i) om, or (Y— —ip—)om for k, 1 € Nwith k& > [.
Set f, = p(g), Qg = {1 € Q: 0@ (qo)f, € G}, and ¥y (q) = H(0& (gom) ) for
q € Q4. Thus we obtain the Cauchy—Schwarz inequality, 1,(gr)? < 1,(¢*)4(r?),
for any ¢, r € Q, satisfying ¢r, ¢, r* € Q,. By an argument similar to that in the
proof of Lemma 3.7, we have

(1) w(o S2) (q o ﬂ-)fg) = Q(ﬂ)w(o S2) fg) for any q € Qg-

For general g = £@ f € Gg represented as f = (f_tp—) o+ L(§)Ypom+ (f+ry)o
T+ fo with fy, f- € Q, and fo € Goo, define

U(g) = f-(B)(0& P om) + (€@ L) om) + [1(B) (08 Py o) + (08 fo).

Then {Dv : Ggp — R is well defined (single valued). Indeed, if two elements g1, g2 €
Gq are written as

i = €D @ (FP%k,-) o + LED) W, o) + (fP0p, 1) o + £), i=1,2,

for some f@, fJ(:) € @, and féi) € Gop, and if g1 = g2, then we may assume
that k; < ko and f(il) = iZ) without loss of generality. Applying (1) to f; =
(ko — bk, +) o ™ we have

V(O D fi(hyr — Yryx) o) = fr(B)Y(0© (Yhyt — Yyx) 0 7),

which implies ¥(g2) ~¥(g1) = ¥(ga—g1) = 0. Similarly, applying (1) to fo = VgLom
we see that ¥(g) = ¢ (g) for any g €~GZ@ It is not hard to see that ¢: Gg — R is
a group homomorphism such that ¥ (u) = 1. In the following paragraph we shall
show that J is positive.

Let g = £® f € Gg be such that f > 0 and let k € N, fy, f_ € @, and
fo € Goo satisty f = (f-tk—)om+ L) (¢ om) + (fnt o) + fo. Let N € N
and continuous functions e4, e_ on R satisfy supp(fo) C [-N,N], 0 < ey < 1,
supp(e+) C £[N,00), and e4|4[n41,00) = 1. Set

p= (1= e )ty )om+ LEbyom+ ((1—e)ftbey) om+ fo € A(S),

Since f > 0, we may assume that N € N, e, and e_ also satisfy fier > 0, and
that z > 0. Since there exists (a large) M € N such that e¥M* . are bounded
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on =£[0,00), by approximating e**(1 — e.) on =£[0,00) uniformly, we obtain
sequences dp, d_, € @ such that

sup |dinfe(z) — (1 —ey)fr(z)| < 1/n.
z€+£[0,00)

Set

Yn = (fo(1—d_n)tp=) o T + (f+(1 — dyn)thps) o ™ € R(Q),
Zn = (fod_pp_) om + L(E)Yr om + (frdynPrs) om+ fo € ﬁ(Q)~

Then it follows that 0B y,, E® 2, € Gg and g = (0B y,,) + (£ D 2,,) for any n € N.
Since f1(1 — d4) converge uniformly to ey f1 on £[0,00), we have that

lim inf ¢/(0 @ y,,) = liminf £ (1 —d_)(8)(0 ¢y o)
+ f+(1 = dyn)(B)Y(0 © gy o) > 0.

Since z, converges uniformly to z > 0 on S, and supp(z) is compact, we have
£ 2z, € GY and liminf,, o V(€ ® 2,) = liminf,_eo (€ @ 2,) > 0. Thus we
conclude that ¢(g) > 0

By Lemma 3.7 and ¢(g) < )ﬂ\v_lgo(g) for g € G}é*, we see that ¢(o(g)) =
e‘ﬂ@[}(g)Nfor any g € Gq. From ¢(g9) = ¢¥(g) for any g € Gg, it follows that
P =15 (¢) € Im(¢}). By the same argument, we also see that n € Im(¢}), which
means that Im(cy,) is a face of S(Gg), as asserted, and the proof of (i) is complete.

(ii) For any g € Gg, consider the smallest number Ny € N such that Nyg € Gz.
To show injectivity of ¢f_, let s = (¢, mg(p)), t = (¥, mg(¥)) € S;(Gq) satisfy
tis(s) =15, (t). Then

Ngp(g) = @ 0 tu(Nyg) = ¢ 0 u(Nyg) = Ngb(g),

for any g € Gg, and it follows that s = ¢. To prove surJect1V1ty of ¢}, let s =

(p,B) € S;(Gz) and define a map ¢: Gg — R by ¢(g) = ~; L o(Nyg) for g €
Go. From (g + h) = 5— K, ¢(Ng+nNgNu(g + h)) = &(g) + (h) for any g,
h € Gg, it follows that ¢ is a group homomorphism. It is straightforward to see
that ¢ is a positive group homomorphism satisfying ¢(u) = 1. By @(o(g)) =
v PN No(9)0(9) = 5o e P0(NgNo(g)g) = e~ &(g) for any g € Gg, we
have (5, 8) € 5, (Gg) and (7, 8) = (¢, 8).

By the same argument as in (i), we see that S,(Gz) is also locally compact.

From the definition of ¢, it follows that ¢, is a bijective continuous map such
that 7z o ¢}, = mg and Lug|ﬂ61(ﬁ) is affine for any # € R. Because of Lemma 3.4,

*

LU.O'

is an isomorphism of simplex bundles and (S,(Gz), 7z) is also proper.
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(i) As Uz =1}, 0Pq, it suffices to show that Ug: S — S, (Gp) is an isomorphism
of simplex bundles. From the definition, it is straightforward to check that Uq is
injective and continuous, and the restriction of Wg to 7~1(3) is affine for any
B € R. By Lemma 3.4, it is enough to show that ¥q is surjective. However, this is
done in the proof of [31, Lem. 4.12]. We sketch a proof for the convenience of the
reader.

Let (¢, 3) be in S,(Gg). If g = €& f € Gg satisfies f = 0 € R(Q), then it fol-
lows that ng < u for any n € N, which implies ¢(g) = 0. Thus we obtain a positive
group homomorphism ¢': ﬁ(@) — R such that ¢’ o p = . Denote by Agr(S) the
real Banach space, with the supremum norm, consisting of functions in A(S) which
have a limit at infinity. Since p(G§) N Ar(S) is uniformly dense in Ag(S) (see [31,
Lem. 4.11]), we can extend ¢’ to Ar(S) in such a way that |¢’'(f)| < sup,eg |f(s)]
for any f € Ag(S). By the Hahn-Banach theorem, we can further extend ¢’
to the Banach space C*(S) = {f € C(S,R) : there exists lims_, 1+ f($)}. Since
¢'(1) = 1, the extension of ¢ is also a positive bounded linear functional on C*(.S).
Thus we obtain a Borel measure m,, on S such that

o(f) = /Sf(x) dmy(z) for any f € Cy(S).

For y € Aff(m=1(8)) such that y > 0, by [31, Lem. 4.4(2) and Lem. 4.11], we
obtain a sequence gy, = (§yn ® fyn) € G, n € N, such that supp(fy,) is compact,
Jyn > 0 for any n € N, sup,,cysup,egs [fyn(s)| < 00, and fyn|r-1(s) converges to
y uniformly. Let w be a free ultrafilter on N. For y € Aff(7=1(8)) with y > 0,
we define @(y) = limy, ., ¢’'(fyn). Then @ is independent of the choice of &, and
fyn- Indeed, if we suppose that g,,, = (£, © f,,) € Gq is another choice, then
for ¢ > 0 there exists N € N such that supyc—1(g)[fyn(s) — fy,.(s)| < e, for
any n > N. Set X,, = supp(fyn) Usupp(f,,), which is compact for any n € N,
and let ¢, € Q[e*,e*], m € N, be a sequence such that ¢,,|x, converges to the
characteristic function xg at {8} and such that supp,cy, [gm(s)|, m € N, is a
bounded sequence. Then, by the Lebesgue dominated convergence theorem,

m—o0

lim ¢/ (an 7)) = [ (30
e L(XB °© Tr)fl//n dmg, = w}gnoo L)0/<(qm © W)f;;n>7
for any n > N. It follows that

9/ Uy = £)] < 08D (g 07 (fym = Sy )|+ (L= 4B (i = Fyu)D) <.

Since € > 0 is arbitrary, we have lim,,_,., ¢'(fyn) = lim, ., ¢'( ;n)
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Since @ is well defined, we see that @g(z + y) = @(z) + @(y) for any z,y €
Aff(r=1(B)) with z,y > 0. Because Aff(7~!(3)) is an ordered abelian group in
the strict ordering, we can extend ¢ to a positive group homomorphism from
Aff(7=1(B)) to R. Thus there exist s € 7~1(3) and X € (0,00) such that @(y) =
A\y(s) for any y € Aff(7=1(B)); see [42, Thm. 7.1], for example. From the definition
of ¢ it follows that

M(s) = o(flr1(8) = (€D f),

for any g = € ® f € Gg such that supp(f) is compact. For ¢ = € ® f € Gg
with f € Ag(S) and £ = 0, by property (1) of Gy, there exists a sequence f,, €
Goo, n € N, which converges to f uniformly. Then it follows that ¢(0 @ f) =
lim, 00 ©(0 ® f) = Af(s). For f € Q, there exists a large N € N such that
(feTNeypy) om € Ag(S) for any k € N. Then we have that p(0 @ (firt) o) =
eFNBp(0 @ (eTNT fohps) o ) = Afhr(B), which implies that ¢(g) = Af(s) for
any g =€ @ f € Gg. Since p(u) = 1, it is clear that A = 1, and thus we conclude
that Tg(s) = (v, B). O

§4. Rationally AF algebras

In order to realize a given rational dimension group at the level of Ky-groups
for operator algebras, it seems plausible that a corresponding C*-algebra should
become an AF-algebra after tensoring with a UHF-algebra. This tensoring proce-
dure is called rationalization in [3, 76]. While the rationalization was determined
by a single UHF-algebra in these previous works, we would like to use the term
“rationally” to refer to the tensor products with two UHF-algebras, that are rela-
tively prime in the natural sense. (Cf. Remark 3.3.)

We prepare some facts and notation concerning C*-algebras. For a C*-algebra
C, we let C™ denote the unitization of C, and C! denote the closed unit ball of C.
We denote by id¢e the identity automorphism of C. For a subset F' C C, let P(F)
denote the set of all projections in F, and F'™ the set of all positive elements in
F. When C is a unital C*-algebra, the symbol 1¢ means the unit of C. For two
elements z, y € C, and € > 0, we use the notation = ~. y if ||z — y|| < e. For
subsets F', G in C, and ¢ > 0, the notation F' C. G means that for any x € F
there exists y € G with y ~. z.

For a supernatural number n, let M, denote the uniformly hyperfinite (UHF)
algebra of type n (i.e., (Ko(My), Ko(Mn)", [1ar,]0) & (Dy, D, 1p,)), and K the

C*-algebra of all compact operators on a separable Hilbert space. For a natural

n

number n € N, we let {ez(';) i,j=1

units of M,,.

or {e;;}};_; denote the set of canonical matrix
;
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For two C*-algebras C, D, and a *-homomorphism ¢ from C to D, denote
the induced map from Ky(C) to Ko(D), a homomorphism of pre-ordered abelian
groups (the positive cone of Ky being the canonical image of the Murray—von
Neumann semigroup — see [64]) by ¢..

Definition 4.1. Given a C*-algebra A, we shall say that A is rationally AF
(RAF) if A® M, and A ® M, are AF-algebras for some relatively prime pair
of supernatural numbers p and q.

Lemma 4.2. The following two statements hold:

(i) If A is an RAF-algebra, then A ® M, is approzimately finite-dimensional for
every infinite supernatural number n.

(ii) Any RAF-algebra has trivial K;-group.

Proof. (i) Since A ® M, is also an RAF-algebra for any n € N, to show A ® M,
is approximately finite-dimensional, it suffices to show that for any finite subset F’
of A and € > 0 there exists a finite-dimensional C*-subalgebra B of A ® M,, such
that F ® 1y, Ce B.

Taking large natural numbers m, and mgy with my|p and mq|q, we have finite-
dimensional C*-subalgebras A; of A ® M; for i = p,q such that FF ® 1, C.
A; for both i = p,q. Since m, and mg are relatively prime, there exist natural
numbers a, b, and N such that am, +bmg = N and N|n (cf. proof of Lemma 3.1).
Therefore, there exists a unital embedding ® of M,,, & M,,, into M,. Identifying
A® (M, ® M, ) with (A® M,,, )@ (A® M, ), we obtain a finite-dimensional C*-
subalgebra B = (id4 @®)(A, ® Aq) of A® M, which satisfies the above condition.
(ii) Because of the Kiinneth theorem [69, Thm. 2.14] (see also [2, Thm. 23.1.3)),
we see that Kq(A4) @ Ko(M;) =2 K1(A® M;) = 0 for both i = p,q. From (i) of
Lemma 3.1, it follows that Kj(A) is torsion-free. Therefore the canonical embed-
ding of K (A) into K1(A) ® D, = 0 is injective, and so K;(A) = 0. O

Note that any RAF-algebra is AF-embeddable, and so it is stably finite. Hence
the ordered Ky-group of any RAF-algebra is a partially ordered abelian group. In
combination with Lemma 3.1(iii), the following results show that the ordered K-
group of a Z-absorbing RAF-algebra is an ordered abelian group.

A typical example of an RAF-algebra is the Jiang—Su algebra Z, which is
constructed as a unital separable simple monotracial RAF-algebra whose ordered
Ky-group is (Z,Z"). Gong, Jiang, and Su [37, Thm. 1] showed that the ordered K-
group of a unital simple Z-absorbing C*-algebra is weakly unperforated. Part (ii)
of the following Proposition 4.3 is a variant of their argument for RAF-algebras in
the absence of simplicity.
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In contrast, it is noteworthy that Villadsen algebras of the first kind are
examples of non-type-I simple RAF-algebras which do not absorb the Jiang—Su
algebra Z tensorially [74, 73].

Proposition 4.3. The following two statements hold:

(i) Let A be a C*-algebra and n a supernatural number. Then the pre-ordered
abelian groups (Ko(A® M), Ko(A® My)T) and (Ko(A) @Dy, Ko(A) @ Dy 1)
are isomorphic (in a natural way).

(ii) Let A be a Z-absorbing RAF-algebra. Then the partially ordered abelian group
(Ko(A), Ko(A)") is unperforated, and, furthermore, is a rational dimension
group.

Proof. (i) Tt is enough to note that, for any natural number n, the Murray—von
Neumann semigroup of A ® M, is the same (by definition — with respect to the
map A - A®e;; C A® M,) as that of A (the image of which in Ky(A) is
the positive cone), and the semigroup endomorphism corresponding to the map
A= A®1y, C A® M, is just multiplication by n. (Recall that both the Murray—
von Neumann semigroup functor and the K functor preserve inductive limits.)

(ii) If A is an RAF-algebra, then so also is A ® K. Since the ordered Ky-groups
(Ko(A), Ko(A)T) and (Ko(A ® K), Ko(A ® K)T) are isomorphic, without loss of
generality we may assume that A is stable.

Let ¢ denote the canonical embedding of A into A® Z defined by ¢(a) = a®1z
for a € A, and ¢, the induced map by ¢ from K((A) to Ko(A® Z). As in the proof
of [37, Thm. 1], for g € K((A) it is enough to show that t.(g9) € Ko(A ® Z)*
if and only if ng € Ko(A)" for some n € N. Indeed, if x € K¢(A ® Z) satisfies
nz € Ko(A® Z)" for some n € N, then, since (by [69]) ¢, is a group isomorphism,
there exists g, € Ko(A) such that ¢,(g,) = z. Then we obtain m € N such that
mng, € Ko(A)T which implies z € Ko(A® Z)T.

Suppose that g € Ko(A) satisfies t.(g) € Ko(A® Z)*. Recall that the Jiang—
Su algebra is constructed as the inductive limit C*-algebra lig(an an» Pn) Of prime
dimension drop algebras Z,
Z

nan» 7 € N, and the connecting maps ¢,: Z, 4. —
puiianiis M € N, where p,, and ¢, are relatively prime numbers; see [44]. Note that
A® 2, ,, is stably finite for each n € N: then (Ko(A® Z,,4.), Ko(A® Z, 4.)7")
is a partially ordered abelian group. By the continuity of the functor K, (see
[64, Thm. 6.3.2], for example), there exist embeddings ¢,: A® 2,4, > AQZ
such that Ko(A® Z2)T = U, ¥n«(Ko(A ® Z,,4,)7). Then there exist N € N
and z € Ko(A ® Z,,4y)" such that t.(g) = Yns(x). Let in: A = AR 240
denote the canonical embedding defined by ty(a) = a ® 1 Zyyay fOr @ € A and

evo: A® Zyyqy — A® My, the evaluation map determined by evo(f) ® 1a,, =

ndn
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f(0) for f € A® 2,4y Since evoory(a) = a @ 1y, for any a € A, it follows
that evo. oty (9) = png. Since in.(g9) = 2 € Ko(A® Zppqn) T, we have pyg =
evosx oLy« (g) € Ko(A)T.

Conversely, suppose that g € Ko(A) satisfies ng € Ko(A)™ for some n € N.
Let p and ¢ € N\ {1} be relatively prime natural numbers, and denote by ¢;: A —
A ® M;~, i = p,q, the canonical embeddings defined by ¢;(a) = a ® Lps,.. for
a € A. Since Ko(A ® M;~), i = p,q, are ordered abelian groups, there exist a;,
b; € Ko(A® M; )" such that 1;,(g) = a; —b; for both i = p, q. Since Ko(A® M;)
is unperforated and n(a; — b;) = tx(ng) € Ko(A ® M;)T for i = p,q, it follows
that a; —b; € Ko(A® M;~)*. Because A ® M;~, i = p, q, are stable AF-algebras,
we obtain projections y; € A ® M, i = p, q, such that [y;]o = a; — b;. Identifying
A ® My ® Mgoo with A ® Myeo @ Mpeo canonically, we have [y, ® 1as,.0]o =
[Yq @ 1ar,00 o in Ko(A @ Mpyee @ Mgos). Since A ® Mpe @ My is an AF-algebra,
there exists a projection z € C([0, 1]) ® A® Mpe @ Mye such that 2(0) = y, @ 1as,
and z(1) = y; ® 1p, - Considering the C*-algebra

Zoo ={f €C([0,1]) ® Myoe @ My : f(0) € Mpoo @ Lng, f(1) € lagyee ® My},

introduced in [65], we can regard z as a projection in A® Z.,. Denote by to: A —
A ® Z the canonical embedding defined by too(a) = a® 1z for a € A, and by
Ev;: A® 2o = A® M, i = p,q, the evaluation maps determined by Ev,(f) ®
Inr,ee = f(0) and Evy(f) ® 1as,00 = f(1) for f € A® Zu. Since K1 (A ® My~ @
M) = 0, the induced map (Ev, ®Ev,),: Ko(A®Zx) = Ko(AQMpe ) B Ko(A®
M) is injective. Since

(Evp @ Evg)«([z]o = toox(9)) = ([Yplo © [Yglo) = (1px(9) @ tg+(9)) =0,

considering the embedding tz_: A ® Zoo — A ® Z we conclude that t.(g) =

12 % O loox(9) € Ko(A® Z)7T.
This shows that (K¢(A), Ko(A)") is an unperforated partially ordered abelian
group. On using once more that A is RAF, the second statement follows from (i).
O

Our goal in this section is to provide a construction of RAF-algebras which
exhausts all countable rational dimension groups as Ky-groups. Here we emphasize
that the non-simple cases of RAF-algebras are required in order to realize the
rational dimension group (Gz,G5) of Section 3. The construction is somewhat
analogous to the construction of simple C*-algebras in [24] and [44].

As a corollary, we also show that a natural addition to the invariant in the
non-stable case is exhausted (Corollary 4.8). In Section 5, we shall show that the
augmented invariant (Ko alone in the stable case) is complete.
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Theorem 4.4. For any countable rational dimension group (G, G™T), there exists
a separable stable RAF-algebra Ag such that Ag ® Z = Ag and (Ko(Ag),
Ko(Ag)™) is isomorphic to (G,GT) as an ordered abelian group.

Let (G,G™) be a countable rational dimension group. For i = 0, 1, we obtain a
stable AF-algebra .%; such that (Ko(.%;), Ko(:%;)") is isomorphic to (G ®@D(24 ),
G® ID)(QH-)OC"’) as an ordered abelian group. Because of the Elliott classification
theorem [20] and Proposition 4.3(i), we can see that

Fo @ Mzee = 71 @ Mae.

To simplify notation, we suppress the isomorphism between %y ® M3~ and %1 ®
My in the rest of this section, and set .% = %y ® M3~ = F; ® Maw. We denote
by LS,? the canonical embedding of .%; into % defined by L(OQ (a) =a® L iyo
for i = 0,1 and a € %;. The desired RAF-algebra Ag will be constructed as an
inductive limit whose building blocks are type-I C*-subalgebras of the following
generalized dimension drop algebra Ig.

We define a C*-algebra I by

Ie={feC(0,1))®.ZF : f(i) € Im(:{) for both i = 0,1}.

Proposition 4.5. Let A;, i = 0,1, be two AF-embeddable C*-algebras. Suppose
that there exist an AF-algebra A and embeddings oV, i = 0,1, of A; into A. Then
the C*-algebra J defined by

J={feC(0,1])® A: f(i) € Im(:?) for both i = 0,1}
has the following properties:

(i) Suppose that the induced maps QR Ko(A;) = Ko(A), i = 0,1, are injective.
Let ev;: J — Im(L(i)), i = 0,1, denote the evaluation maps at these two
points: ev;(f) = f(i). Then, on identifying Ko(Im(:®))) with Im(LSf)), the
induced maps ev,: Ko(J) — Im(LEj)), 1 = 0,1, satisfy evo, = evy, and
evo.: Ko(J) — Im(LE‘O)) N Im(Lﬁl)) is a group isomorphism.

(i) If (9, i = 0,1, satisfy the assumption of (i) and W (Ko(A)T) =
Lg)(KO(Ai)) N Ko(A)*t for both i = 0,1, then evo. is an isomorphism of
ordered abelian groups from (Ko(J), Ko(J)™) to (Im(L&O))ﬁIm(LS})), Im(LSP))ﬂ
Im(:£7) N Ko(A)*).

(iii) In particular, for A = F, Ay = F;, and () = Lé@, 1 = 0,1, it follows that
(Ko(Ig), Ko(Ig)™) is isomorphic to (G,GT) as an ordered abelian group.
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Proof. (i) Denote by ¢ the canonical embedding of Cy((0,1)) ® A into J. From the
exact sequence

0= Co((0,1) ® A 4 J =02 11y (,0) g Tm (V) = 0

we obtain the six-term exact sequence of Bott periodicity which implies the fol-
lowing exact sequence:

(evo Devi)«
— T

0 — Ko(J) Im(:\”) & Im(.{Y) % Ko(A) — 0,

where 9 is the exponential map from Ko(Tm(:(?))) @ Ko(Im(:(V)) to K;(Co((0,1))
®A) X KO(A) Then it is not hard to check that d(x ®y) =z —y for z € Im(L,(ko))
and y € Im( ) Set ®: Im(e (O)) NIm(e (1)) — Im(e (0)) ®Im(e (1)) by ®(z) =z dx
for z € Im(e (0)) N Im(es ¢ )) Then the group homomorphism (evo@evy), is an
isomorphism onto Im(®). Thus we see that evo, = @71 o (evgBevy). = evy, is a
group isomorphism.

( i) From the assumption ¢\ (Ko (A4;)+) = o7 (Ko (A4;))NKo(A)*, for z € Im(:{)n
Im(e fkl)) N Ko(A)T, there exist N € N and projections p; € A; ® My, i = 0,1,
such that Lf)([ iJo) = « for both ¢ = 0,1. Since A ® My is an AF-algebra
and 19 @ idpry (po))o = [t @ idasy (p1)]o in Ko(A), there exists a projection
p € C([0,1])® A® My such that p(i) =t @id s, (pi) for i = 0, 1. Regarding j as a
projection in JQ My, we have that (evg @ evy).([plo) = Lio)([p]o)@agl)([p]o) = zhx.
Then it follows that z = @71 o (evo @ evy)«([plo) = evo«([plo) € evox(Ko(J)T),
which implies that evo, (Ko(J)) = Im(:!”) nIm (V) N Ko (A)*.
(iii) For ¢ = 0,1, since Ky(A;) is torsion-free, it follows that the induced map
ng): Ko(Ai) = Ko(A) = Ko(A;) @ D3_j~ is injective. By Proposition 4.3(i), it
follows that

Il

(Ko(A), Ko(A)T) 22 (Ko(Ao) ® Dsee, Ko(Ap) @ D3 )

= (Ko(A1) @ Dase, Ko (A1) @ Dase ™),

as ordered abelian groups. Then, for i = 0,1 and = € Im(¢s @ )) N Ko(A)™T, there
exists d € N such that (3—i)%x € LSK )(Ko(Az) ). Since (Ko (A4;), Ko(A;)™) is unper-
forated, it follows that 2 € ¢!’ )(K()(Ai)Jr)7 which implies that Im(Lg)) NKo(A)T =
Lgf)(KO(Az) ) for both i = 0,1. Applying (i), we see that (Ko(Ig), Ko(Ig)") is
isomorphic to (Im(:”) N Im(LS)) Im(:\”) N Im (M) N Ko(A)).

By Lemma 3.1(i), any rational dlmenblon group is torsion-free, and by
Lemma 3.1(ii), we have Im(/,i ))ﬂIm( ) GRDgee @1p,e NG®1p,a @ D3 = G.
Let U: G — G ®@ Dy ® D300 denote the positive group homomorphism defined
by ¥(g9) = ¢ ® lpye @ lp,o. for g € G. The group isomorphism of (the proof
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of) Lemma 3.1(ii) is just the map ¥. Furthermore, since G is unperforated it is
straightforward to check that ¥(G1) = ¥(G) N (G ® Das ® D3 ). Therefore we
conclude that

Im(!?) N Im (), Im () N Im (V) N Ko (A)h)
=~ (U(G),¥(G)N (G @ Daw @D3e)t) = (G, GY). O

Before going into the proof, we collect some necessary well-known facts con-
cerning finite-dimensional C*-algebras.

Lemma 4.6. The following five statements hold:

(i) If natural numbers P, Q, R and a projection p € Mg ® Mg satisfy R <
rank(p), R|rank(p), % < @, and P|(Q — %), then there exists a
unitary uw € Mp ® Mg ® Mg such that for any C*-algebra A, a € A, and

be A®Mp,
Ad(1a~ @u)((a®@ 1, ®p) @ (b® (Inpemn —P))) € AR L, ® Mg @ 1y,

(ii) For ¢ > 0 and N € N, there exists § > 0 such that if A and B are C*-
subalgebras of a unital C*-algebra </ such that dim(B) < N and B! Cs A,
then there exists a unitary u € & such that u =~ 1o and Adu(B) C A.

(iii) For e > 0 and N € N, there exists § > 0 such that if a finite-dimensional
C*-algebra A and two embeddings vy and t1 of A into a unital C*-algebra <
satisfy dim(A) < N and ||vo(a) — t1(a)|| < & for all a € AL, then there exists
a unitary u € o such that Aduoiyg =11 and |Ju — 14| <e.

(iv) For e > 0 and N € N, there exists § > 0 such that if A, B, and C are
C*-subalgebras of a unital C*-algebra < satisfying C C ANB, B Cs5 A, and
dim(B),dim(C) < N, then there exists a unitaryy € & such thaty € C'N,
Ady(B) C A, and ||y — 1] <e.

(v) Let A and B be C*-subalgebras of a unital C*-algebra of . Suppose that A
and B are finite-dimensional C*-algebras and unitaries u, v € & satisfy
{u,v} Cij16 B + Cly and Adu(A) U Adv(A) C B. Then there exists a
unitary w € B + Cly such that Adwu(a) = Adwv(a) for any a € A.

Proof. (i) Set a projection e € Mg with rank(e) = %. By P|(Q — rank(e)),
we obtain a unital embedding ¢: Mp — (1p, —€)Mq(1a, —e). Since Prank(p) =
PRrank(e), there exists a partial isometry v € Mp @ Mg ® Mg such that v*v =
1y, ® p and vv* = 1y, ® e ® 1ps,. Denote by n the canonical embedding of
Mp into Mp ® (1ap,emy — p) defined by n(a) = a ® (1ymoemy — p) for a € Mp.
Since the multiplicity of n is QR — rank(p), the same as that of 1y, ® ¢ ® 1ps,,,
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there exists a partial isometry w € Mp ® Mg ® Mg such that w*w = n(1a,),
ww* =1y, @e(1p,) @ 1npy, and Adwon = 1y, ® @1y, The unitary v = v+w
in Mp® Mg ® Mg, then satisfies the desired conditions. Indeed, for any C*-algebra
A a,b €A and z € Mp,

Ad(1a~ @) ((a@ 1arp @) & (V @ 2@ (Largonin — D))
=a®ly, @e® 1y, +0 @1y, @uz) @1y, € AR 1y, @ Mo @ 1py,.

(ii) See [15, Lem. IIT 3.2].

(iii) Since A is finite-dimensional, we may identify A with EBzL:1 My, for some
k1,ko,...,k, € N. For given ¢ > 0 and N € N there exists 6 € (0,6/4N) such
that if two projections p and ¢ in 7 satisfy ||p — ¢|| < 0 then there exists a
partial isometry w € &/ such that w*w = p, ww* = ¢, and w ~. 4y p. Let us
show that ¢ is as required. Suppose that A, 1o, and ¢; satisfy the hypotheses.

Then there are partial isometries w; € &/, | = 1,2,...,L, such that wjw;, =
Lo(egll)), wwy = Ll(egll)), and w; ~c 4N Lo(egll)). Consider the partial isometry
w= ZZL:I Ejlzl L1(€§-f)1)’wlbo(€§l’)j) € o/. We have Adwotg = t1 and w =5 to(14).

Since 1o — 19(1a) =5 1oy — t1(14), there exists a partial isometry v € & such
that v*v = 14 —10(14), v0* = 1o —11(14), and v ~. /3 1oy — 10(14). The unitary
u = v+ w € o satisfies the stipulated conditions.

(iv) Applying (iii), we obtain ¢’ € (0, ¢) satisfying the condition of (iii) for £/2 > 0
and N € N. Applying (ii), we also obtain ¢ > 0 satisfying the condition of (ii) for
0’/2 > 0 and N € N. This § satisfies the desired condition. Indeed, if A, B, and
C satisty the assumption of (iv) for § > 0 and N € N, then there exists a unitary
u € &/ such that u =4 /5 1,7 and Adu(B) C A, which implies that Adu(c) ~5 c
for any ¢ € C'. Thus we obtain a unitary w € A + Cl, such that Adwu(c) = ¢
for any ¢ € C and w ~/3 1. The unitary y = wu € &/ satisfies the conditions.

(v) Let A and @lel My, be as in the proof of (iii). Define a unitary w” € &
by w” = vu*. By hypothesis, there exists a unitary w’ in B + Clg such that
w' =y w”. It follows that Adw’u(egll)) ~ Adv(egll)) for all I = 1,2,...,L.

Thus there exists a partial isometry w; € B such that wfw, = Adw’u(egll) )
and ww; = Adv(egll)). Set w = (Zfil 251:1 Adv(eg)l)wl Adw’u(eglj)))w’; w is

a partial isometry in B such that Adwu(a) = Adwv(a) for any a € A. Since B
is finite-dimensional, we can extend w to a unitary w in B + Cl, such that
Adwu(a) = Adv(a) for any a € A. O

In the following proof, for a given C*-algebra A and a Lipschitz continuous
function f € C([0,1]) ® A we denote by Lip(f) the Lipschitz constant of f. We
shall denote by 14 and 1g, the units of the unitizations .#~ and .#/".
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Proof of Theorem 4.4. Let F,,, n € N, be an increasing sequence of finite subsets of
G whose union is G with F; = {0}, and &, > 0, n € N, be a decreasing sequence
such that ) _yen < 1. Let Fa, (resp. Fa,,), n € N, be an increasing sequence
of finite subsets of Z#! (resp. .#}) whose union is dense in F#! (resp. #}) and
Fa1 = {0} (resp. Fa,1 = {0} fori =0, 1). For n € N, we shall inductively construct
numbers L,,, A,,, L, € NU {0}, finite-dimensional C*-subalgebras Al ), BY ¢ i,
i=0,1, and A, C .Z, embeddings €1: {0} = Z, €,: Moz, ® M3z, - A, N.F
(for n > 2), Lﬁf): Aﬁf) — A,, mg): By(f) ® Mi_jysn — F for i = 0,1, a C*-
subalgebra 47, of C(]0,1]) ® A, and an injective *-homomorphism ¢,,: 2,1 —
oy, (where o) = {0}) satisfying the following conditions:
(1,n) Ap > Lo+ Ap_1, Ly > Ly > Appy,
(2,n) fori=0,1, onregarding (Ko (.%;), Ko(Z;) ") as (G@D(Q+i)oo,G®]D)(2+i)oo+),
one has F, ® 1a44)0 C KO(AS))“‘7 ASZI c A ¢ B,(Li), and Fa,, Ce, Agf),
(3,n) if n = 2n’ + i, for some n’ € NU {0} and ¢, € {0,1}, then there exists a
unitary U, in #"~ such that

U, =, lg and (A,-1+Clg)Im(e,) C Ad Un(A,(ll_i")®M(2+in)Ln) =A,,

(4,n) en(l(ar,,, @n,,,))a = aforany a € A,_1, and Fa, Ce, Al
(5,n) 4y, is defined by

= {f€C([0,1]) ® Ay : f(i) € Im(.{?)) for i = 0,1},
(6,m) there are unitaries Véi), Wi e F~,1=0,1, such that
W) =AdV 0|, kPO @ 1, a) = AdWP (b @ 1ag, ),
for any i = 0,1 and b € szi), and
Vi e, A,+Clz and WD €en Im(x) + Clz,
(7,m) A, C Im(m%)) for i = 0,1, and
!D(a) = kW (a® 1M(37i)An) for any i = 0,1, and a € AP,

(8,n) one has
Lip(¢n(f)) < Lip(f)/2 + 2&n
for any Lipschitz continuous function f € 7,1 with || f]] < 1.

For n =1 and i = 0,1, setting Ag = 0, A(()i? = {0}‘C F;, and Ay = {0} C 7,
define L =0, Ay =Ly =1, A, = {0} ¢ 7, A = B = {0} c 71, U1 = V") =
Wl(z) =1z, and & = & = {0}. These choices satisfy (1, 1)—(8, 1).
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For the induction, assume that L,,, Ay, L, Ag), B,(f), Ay, €n, Lﬁf), HSZ), y,,
and ¢, satisfying (1, n)—(8, n) have been constructed. Choose L,+1 € N large
enough that 2F»+1 > 3% Then there are k/,, I, ,; € N such that k], ,; < 3%,
Uy < 28n, 380 |2Lnsr — /0 and 280 (3Lnts — 70 Set Nypyy = Lygq + Ay,
ki1 = 3500 k] 0 Ly = 250100, and my,qq = 657+1. Note that from k], ., <
3/ < 2lnir — g and I < 280 < 3Lwer — 17 it follows that

Mgt — (kg1 + lng1) = (354 — l%+1)(2L"+1 —kpi1) = Lpakngq > 0.

Set N = (dim(BY) + dim(B") + dim(4,,))6%L~+ € N, and 6, = e,11/8.

Applying Lemma 4.6(ii), (iii), (iv) inductively to 67(;21 (=€) > 0and N, we obtain
67(;?11) (= 4) > 0 verifying the estimates of (ii), (iii), (iv) of Lemma 4.6. Refining
the choice of 57(:21 > 0, k € N, making each one smaller in turn, we may suppose

that 57(53:11) < (5,(!21 for kK € N and
N<Z8j5g€j1j)> < 57(1]21 for any k € N.
j=1
Since F; ® M(a44) = F; for i = 0,1, there are embeddings egilz M(2+7;)L,,L+1 —
(BY N .Z;, i=0,1, such that

(Im(ef)1) ® Lae)' Cpo0 (Im(ef))) @ Lagge) 0.7,

n+1

bESJ)rl(lM(zﬂ)Lnﬂ) R ensn b forany i=0,1and bec (BY),
and
(Jb(es_)i_l(1M(2+i)Ln+1 )®1M(3—11)°°) z(;&oi a for any aeA;U U (BT(Lj) ®1M(3_j)m)1'

§=0,1

By Lemma 4.6(ii), we obtain a unitary E; in .#~ such that E; ~go lg and
n+1

AdE (Im(el) ) @ Tagye) € (Im(e!)}) @ Tagyo ) N .F.

Set Euy1(a @b) = €401 (a) ® Laggoo Ad Bi(e1, (b) @ Lagyec) for @ € Myr,y, b €
Mz, ., . Choosing eglOJ)rl and eg}rl almost commuting with Im(/fgf))l and W, we

may further assume that
Im(k{) U{WP} Cy Im(Eni1) N.Z,
n+1

for both ¢ = 0, 1. Because of the inclusion A4,, C Im(ngf)) for i = 0,1 in (7, n), we
have an embedding €,11: My, @ My, — A, N.F such that €, (x) R 5(6)

€nt1(x) for all @ € (Myr,yy ® Mse,.,)". Then it follows that Im(en41)! C;;)l
n+1
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Im(k (1)) F for i = 0,1. Note that, since 1a,en1(lar, enM ., ) Ren la,
2L n

and 67L+1(11\42Ln+1 OM_r,

which implies €n41(1a ., @nm .
27n 3

’ _
) c A ny We have en+1(1M2Ln+1®M3Ln+l)]‘An = 1An7

i Ja = a for any a € A, in (4, n + 1). For
) €

i i
the same reason, from 1A¥i>eglil(1M ) Repin 1,6 and egb_)H(lM

(240) 1

Ag)’7 it follows that eﬁfil(lM(WLw Ja=aforalli=0,1andac A

For ¢ = 0,1, since %#; ® M(3 iyee = F, there exist En+1 € N and a finite-
)-‘r

(240 Fnt1

dimensional C*-subalgebra AW +1 of .%; satlsfymg Frp1 @ Liogp= C KO(AS+1

(27 7’L+1) Ln+1 > Ln+1, An Aﬁlil’ FA1n+1 Cenia A,EL+1, A, Cé(lo) AnJrl ®

M and BY )Im( n+1) C AnJrl When n is an even number (resp an odd

—iyEng1o
nu(rilblér):rwe have 4,1 = 1 (vesp. iny1 = 0). By Lemma 4.6(ii), there exists § > 0
satisfying the condition for 5&2 (=€) >0and dim(Agfif))GZL"“ € N. Enlarging
the choice of L,,;; € N and A,(}HZ”“) further, we may choose L, and Af;__li"“)
such that

(AEZ-HI) ® M(S—in+1)Ln+1 )P U (A + Clgz) Im(ens1)' U Im("‘@g)))l

)31 (1—iny1) _
(2) U Im(lisl )) U Fant1 Cmin{(;i,,l_fi,g} An+1 e M(2+in+1)Ln+1
and
(3) (WO WL 1oy AL @ 0p . .. +C1
n > ¥"Wn s Pl (24ipg1)Ent1 F -

By Lemma 4.6(ii) for 6(+1 > 0 and N € N, there exists a unitary Up41 € F™
satisfying the condition of (3, n + 1) and Up41 =~ N5 1. Define
n+1

Apsr = AdU, 1AV @ M

~ ar
(2+in+1)L"+1) cF.

Note that from Fa,41 C5(10> Anﬂl"“) ® M(2+in+1)i"+1 ,

A} 1 as required for (4, n+1) By the conditions of (3, n+1) and (4, n+1), it follows
that A, C A,41. Since (J,_ 0, 1Im(f$$f))1 C5<g) Ap+1, applying Lemma 4.6(iv) to
A= Aui1, B = Im(k (Z)), and C = A,, we obtam unitaries y() F~NAL,

i = 0,1, such that Ad y(z)( m(x (1))) C Apyq and 3 ~sm  lg. Define embeddmgs

n+41
R BY @ M_ian — Anga, i = 0,1, by &%) = Adyl” o &), Note that, by
(7, n), we also see that 551)( ® 1M(3_i>An) =4 ( ) for any ¢ = 0,1 and a € A(Z
Now we have A, C Im(/%gf)) C An+1’ for both i = 0,1, Im(e,,41) C Apnt1, and
Im(/?agf))l Csta) Apt1 NIm(e,y1) for ¢ = 0,1. Applying Lemma 4.6(iv) to A =
At ﬂIm(enﬁ) B =TIm(k ¢ )) and C = A,,, we obtain unitaries gﬁf) e A NF~,
i=0,1, such that 7 ~ s 1 and Ady(l)( m(R (Z))) C Apt1NIm(€ey41)’. Define

n+1

we see that Fan41 Ce,

1)
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embeddmgs PO 10 ® Mz_jyan = Apy1,1=0,1, by 79 = Ad g 0 &Y, which
satisfy 7\ (a® 1) = W ( ) forany i =0,1and a € A and also 4, C Im(R (Z))
Apg1 NIm(epqq) for both i =0, 1.

To simplify notation, let {em}fnj’;’f be a system of matrix units for My, _,
My, i1 @ Msr,.. . Note that mpq1 > kpi1 + lny1. Define an embedding £ from

C([0,1)) ® A, into C([0,1]) ® Anyr by

n+1 mrz+1_l7l+1 1
Z f( )€n+1 €jj) + Z f<§>€n+1(€jj)
J=1+knt1
Mp41

1+t
+ > f( 5 )6n+1(6jj),
J=l4mpti—lnta
for f € C([O 1]) ® A, and ¢t € [0,1]. Set p = en+1(zk"+1 ej;). Since i )(
I, ) = W0 ( ) for any a € A and 4, ¢ Im( ) for any f € <, there exist
ay € AP BY and by € BY g Ms3a,, such that

kn+t1 Mp41 1
Z f 6n+1 e]j Z f(i)enJrl(ejj)
j=1 J=14+knt1

= & (ay @ )p + & (by) (€ns1 (1) — p).

Since 3En+1|3Lnt1k! = k,4q and 3% |2En+r — k7 | applying Lemma 4.6(i) to
P =3% Q=2+ R=3L+ and p, we obtain a unitary U,(gzl in /%7(10)(13@ ®

Msa, )eni1 (Mo, oy ® Msz,. 1) +Clg C Ayyq + Clg such that

AdU (E(H)(0) € BOBY @ sy, enr (Myr, s ® Lar

n+1 )

for any f € «,. By (6, n), now we have AdWéO)(b@) Iy ) = K (b® I, )
for any € BY and W, €, /4 Im( )—l—(Clgz Since W\ € €5, Im(€y+1) NF~
(from (3)), and €,41(x) ~ ) eny1(x) for all z € (Myz,,, ® M Ln+1) we obtain
a unitary W,S ) € Im(epq1) ﬂJ” such that W( ) ~ Rs(5) W,S ). Then it follows that

n+1

Ad WT(LO)*(’%(O)(Z’ @ 1ag,,, Jentr(a® 1M3Ln+1 )
~s), Ad WO ED (0@ 1ar,,, ))ensa(a® lar,

n+1)

(b ® 1M3°°)6n+1( a®lnm L,Hrl)

(6) +25(9) ( n+1 ® 1M300)( ") (1) & 1M2<>o)

~5010) ben?1(a) @ ngyee
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1
for any b € B andae M21Ln+1. By Lemma 4.6(iii), we obtain a unitary u(®) in

F~ such that v(® ~ ~yw lg and
n+1

Adu®OWO ED (b Lar,, Jensr(a® lag, ) = (bef)1(a) © Tasye

for any b € B © and a € Mz, . Consider the unitary zflo) = W»r(LO)U(O)* in 7,

which satisfies zno) R 5@ Wr(LO) and
n+1

Ad20 (b)) (@) @ Lagge) = B (0@ Lary, Jensa (@@ s,

n+1)

for any b € BY and a € M. oLny1 - Define an embedding L;ll of A(O)1 into % by

zﬁ?j (a) = AdUC +1 z(o)( ® 1y ) forae An+1
From BY) Im(e n+1) Aﬁ?}rl, it follows that £(f)(0) € Im(z ﬁL)rl) for any f € o7,.
In the same way as for i = 0, we also obtain unitaries u(!), Uy(Llle, ,(11) in 77,
and an embedding I,( )1 of AS}A into .# such that
UT(L-le € K‘( )(1B$L1) ® MQA")6n+1(M2L'rL+1 ® M3Ln+1) + Clgv
27(11) = Wél)u(l)* %6(3) W(l)

n o
n+1

Todi(a) = AU, 20 (0@ Lag, )

for a € AnH, and £(f)(1) € Im(z n+1) for any f € o7,.

Note that, since (A;J)rl@)lM( P )1 Cy) Ay 41 for both ¢ = 0,1, and since
3—i) " n+1
z,(f) 2 (3) W,(f) €.s) Apt1+ Clg (from (3)), we have
6n+1 6n+1
Im ( SJ)rl)l Ad U(+1 Zn ((Asll) ® 1M(37¢)Ln+1) Cé,(?)l An‘H'

Although dim(A,(l +1) can be bigger than N, the following argument allows us to
obtain unitaries Ur(i)H € #~,14 = 0,1, such that ﬁr(i)H %6(2) 1z and Ad U(z)
_Sil(ASil) C Apy1. In the case i = 1 —ip41, we fix a unitary

09, = Uppru®WwO'vl) e 7~
Since W(i) 5(8) Apy1 +Clg and v ni1 € Any1 + Clg, there exists a unitary
7% e Apy1 + (Clgz such that 7 ~ 53, Ufl Consider the unitary U(J)r1 =

y( i U()+1a which satisfies U(ll ~5(2) 19 and

Ad U(+1 ° Z;J)A( ) =Ad ??(i)*Unﬂ(a @ 1500 ) € Anta
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for any ac AgLJ)rl In the casef' =ip41, from (2) it follows that (A( 1 @M pyinp !
C; ASJ:)@M@H) £,,, and 0 > 01is chosen for dlm(AflJ)rl)GQL"“. By Lemma 4.6(ii),

there exists a unitary V' € #~ such that V ~;u0) 17 and
n+1

7 1—1
AdV(AY), ® My i) € AL @ Mg, pinin:

It follows that
Ad Un+1V(An+1 ® M(S z)L"+1) - An+1

Set UnJ)rl Un“Vu(i)WT(Li) U(l which is a unitary in .#"~ such that U;J)rl €os®
n+1
An+1 + Clg. Then there exists a unitary y( i) e Ap+1+ Clg such that y( i) ~5<2J;
n+1
+1 Setting U( ) =70 0" U( il, we also see that
Ad U(Jrl o [gw)rl(a) =Ad g(i)*Un_HV(a ® 1M iyoo ) € Anta

for any a € A&)Ll

Define embeddings Lfﬁrl of AS)H into An+1, 1=0,1, by Lfﬁrl = Ad ﬁr(fllolfﬁrl

Then it follows that Ad ﬁgﬁl(g(f)(')) € Tm(u{). ) for any i = o 1and f € .

Define unitaries VTS+)1 = U7(L_~)_1(],(L_~)_1 1(11) i=0,1,in .#"~. Since Ut i1 € An1+Clge
for both i = 0, 1, we see that V,fﬁl, i =0, 1, satisfy the conditions of (6, n+1). We
define a C*-subalgebra 7,1 of C(]0,1]) ® An41 as required for (5, n 4 1). Define
finite-dimensional C*-subalgebras E(*) i = 0,1, of A, 11 by E® = {£(f)(i): f €
o, }. Note that dim(E®) < dim(AY) + dim(BS)(3 — )24 < N for both i = 0, 1
and that £(f) (i) = 252, Ad U,S:)_l(f(f)()) for any f € &/!. By Lemma 4.6(iii) with
(3, n+1), we obtain umtarles UDin A, 1+Clg,i=0,1, such that 4 5o lg

n+1

and AdUD (£(£)(i)) = AAUL) (€(f)(6)) for any i = 0,1 and f € o,. Thus we
obtain a unitary ¢ € C([0,1]) ® (Ant1 + Clg) which is a Lipschitz continuous
function such that U(i) = U@ for i = 0,1, U(t) Renp Lz forall t € [0,1] and
Lip(UU) < e,41. We define an embedding ¢,+1 of &, into o1 by w,r1(f) =
AdU o &(f) for f € o,. Because of the construction of ¢ and the inequality
Lip(Uf) < p41, it follows that ¢, satisfies (8, n + 1).

In the rest of the induction, we construct A, 1, B,(fll, and an 1 satisfying
the conditions (1, n+ 1), (2, n+1), (6, n+ 1), (7, n+1). Set 62)“ =ep+1/8. By
applying Lemma 4.6(ii), (iii), (iv) to 57(1’21 (=€) and N = dim(A4,,;) inductively,
there exists 5n]f11 (= 0) > 0 satisfying the conditions of (ii), (iii), and (iv). Taking
smaller 6,(1+1, k € N, as above, we may assume that ngll) < 5&21 for £ € N and
NZ;‘il 83(5§:1+1]) < (5n+1 Since F# = F; @ M(3_;~ for both i = 0,1, there exist
An41 € N with the condition of (1, n + 1) and finite-dimensional C*-subalgebras
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BY), c F, i =0,1, such that AV}, c BY],, AL, s, B @ Mg janes
and {V,9, vV} S5, B, @ Mgs_janss +Clg.

By Lemma 4. 6(11) there exist unitaries W,(Iil, i = 0,1, in .#~ such that
Wi 50 1e and AW (B, @ My_yanii) D Angr for i = 0, 1. Define
n+1

embeddings 77, B,(Lll ® My paeis = F.i = 0,1, by &), = AdWe),.

By Lemma 4.6(v) and V 1 €52, Im(k gz-)kl) + Clg, there exist unitaries W(-s)-1 €

Im(& @ ) + Clz such that

n+1
@
AAW VD (@@ 1ary o) = AAW, )4 (a @ 1M(3ﬂ.)w)
for any a € Ag’ +1- Define unitaries WT(LQl, = 0,1, in F#~ and embeddings

Ky B, ® Mg iyrnsn = F by

WT(LZL = (Wy(zl+)1) WSJ)rl? ’igil(b ®a)=AdWD(b®a),

for b e Br(f}rl and a € M(gfi)/\n+1 C M(3_;)>. These choices satisfy the conditions
of (6, n+1) and (7, n+1).

Define Ag as the inductive limit C*-algebra liﬂ(dn,apnﬂ) In the proof
of Proposition 4.5(iii), we saw that (G,G*") = (I (ngl) N Im(L(()i)*) Im(ng)*) N
Im(Lg))*) N Ko(F)T), as ordered abelian groups. To show that the right-hand side
is isomorphic to (Ko(Ag), Ko(Ag)T), we need the following observation. Let 7,
denote the canonlcal embeddmg of An into A,+1 which is obtained from (3, n+1)
for n € N. Write evn : gty — Im( ) t = 0,1, to denote the evaluation maps and

_(Z : Im(e (l)) — A, for the canonical embeddings.

Observation 4.7. Fori=0,1 andn € N, the two x-homomorphisms evs)+1 OPn+t1

and AdU(i) oy, o ng) oevi): o, — Im(e n+1) are homotopic.

Proof. Let @gi), t € [0,1],7 =0, 1, be pointwise continuous paths of automorphisms
on o, such that ®\” = &{" =id,,, @V (f)(t) = £(0), t € [0,1/2], &V (f)(t) =
Ft=1), t e [1/2,1], ®V(f)(t) = f(20), t €[0,1/2], and &V (f)(t) = f(1), t €
[1/2,1], for any f € o7,. Then it follows that evé)+1 opp+1 and eviw)r1 OPp41 0 <I>( ?
are homotopic for both ¢ = 0,1. From the construction of ¢, = AdU o0& and
o7 (£)(1/2) = £(i), we have

evil s opni1 0@ (f) = AdUG) (F(D)ent1(Ln,,, ,,)) = AdU(i) oy 071D 0evD (f),
for any i = 0,1 and f € o7,. O

Denote by 7., the canonical embedding of A,, into ﬁ - Fori=0,1, denote
by Evgf): , — A, the evaluation map at . Note that ﬁy(f) oevl) = Evff). Let
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ng) cAD AS)H denote the canonical embeddings of (2, n+1) and n(z) A
Z; the canonical embeddings. For m, n € N with m > n, set @, = @m0
Om—10 "0 Pny1: Dy —> Dy M = Nm—1 O NPm—20 -+ 01y A, — Ay, and
777(711 n = T]in) 1 077( 9 or]( DAY A, By Observation 4.7, Evgl_%_1 oppa1 and
AdU(i) oy, o BVl ) are homotopic as *-homomorphisms from o7, into A,, ;. Since
UG) € Apy1 + Clg, it follows that EV£:3-1* 0@ni1x = Nnx 0 Bv). From (6, n) it
follows that

! 11 ony) = Ad V7£+)1V(l) ou)), and Vn(421vrfi)* €2e, Ant1+Clz.

Then we have Ad Vn Vi = Ny Tin <-)) as group homomorphisms from

A2
|Im(L( >)
Ko(Im(e ¢ ))) to KO(An+1) which implies that Ln+1* o 777(12 = Npx © W8 Tt follows
that

N (I () NI () € Im(),,) N Im((,,).

Denote by (I, ") the inductive limit of ordered groups 1'_n>1(Im(L£LO£ )N Im(LS*) ),
T« ), Where the order in Im(Lgl*)) N Im(L%l*)) is determined by Im(L%O*)) N Im(Lgl*))
Ko(A,)T. By (6, n), we also see that 7sopn« © Lﬁli = L((fo)* o Uoon* Since Ko(%F) =

UnZ; Moons (Ko(Ay)) (from Fa,, C., AL in (4, n)), we have

12 | fooms (Im() N Im(e5)) U m (2, 0 79,.) NTm(, 0 n0h).
n=1

n=1

As Ko(Z:) = U, nne (Ko (AY) (since Fa,, ¢ AY by (2, n)), it follows that
U Tm( LOO* o nn* ) N Im(&,)* o m(Ll*)) =1Im (ng)*) N Im(&)*)

For the same reason, it is straightforward to check that IT corresponds to
Im(L(()g)*) N Im(Lg,)*) N Ko(Z)". Then it follows that (I, I7) is isomorphic to

M) NI (L), m () nIm(E) N Ko(#)h).

Since Ev()1, 0pni1s = fs © Ev(® and Im(Ev(?) ¢ Im L;Ol N Im Lﬁfl we
n+1x* Pn+ n

obtain a positive group homomorphlsm Ev(® from KO(Ag) lﬂ(Ko( )y Prtix)
into (I,11). We may regard Ev(?) as a positive group homomorphism from Ky (Ag)
to Im(ng)*) N Im(Lg)*) To show the injectivity of Ev(?), let 2 € poons (Ko(,)) C
Ko(Ag) be such that Ev? (z) = 0 and Z € Ko(,) be such that & = @uops(Z).
Since 0 = Ev(? () = noon*oEv(O)( ) = noon*OEV( ) (z), there exists m > n+1 such
that 1, n+ oEv( )( ) = N, n*OEV( )(’) = 0. Then it follows that EV(O) Qi (T) =
Ev(l) 0@mn(Z) = 0. Fix i = 1 — ,,. From the construction of LEn), there exists a

unitary ygn € A,, + Clz such that L(l)( )= Ad Q%)Um(a ® 134 ) for a € AW,
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From (3, m) for i = 1 — iy, it follows that n(l) Ko(Im(e ())) — Ko(4,,) is
injective. Then we have evgn)* 0@mn«(Z) = 0. By Observation 4.7, we see that
evgn)_H* 0@m+1,n+(Z) = 0. By the same argument as for 1—i,,+1 (= iy,) in (3, m+1),
we also have 6V£n+1)* 0Ym41,n+(Z) = 0. Because evgnll* @ev&l_l*. Ko(Hppi1) —
Ko(Im(e (722&-1)) ® Ko(Im(e EA}LZH)) is injective, it follows that @11 ,+(Z) = 0, which
implies that £ = Yoo ns(Z) = 0.

Lety € Im(bgo)*)ﬂIm(Loo)*) NKy(Z)* =2 GT. To show the surjectivity of Ev(?)
since (Im(Lg)*) N Im(LOO*) Im(Log)*) N Im(Lg)*) N Ko(Z)1) is an ordered abelian
group, it suffices to show that y € Ev(”) (K (Ag)T). Since G+ = Unen Fn, by (2,

n), there exists m € N such that y € Lg?* ) ng?m*(Ko(A%))"’) for both ¢ = 0,1.
Thus we have pI‘OJeCthHS pﬁ,} in AS,) R My, 1= 0, 1, for some N € N such that

Yy = L(()o)* o 77<(>om*( m] ). Since y = Noo,mx © L»,,il* [p,fl]o) for i = 0,1, there exists

I > m such that 7 Ong)*( 52)] )=m m*oLﬁnl([ 5n)] )- Choose projections p{) =
171(7)n ® 1dMN(p5n)) € A ® My, i = 0,1, which satisfy L ([plo)] ) = Ll(i)([Pll)]o)
in Ko(A;). Then there exists a projection p in C(]0, 1]) ® A; ® My such that
(i) = Ll( % idary (pl ) for i = 0,1. Regarding p as a projection in o ® My, we

have Ev{? ([lo) = +{, ([p{”]o) and
Y = Noot 0402 ([1]0) = Moot OEVIY ([Plo) = EvE? (0ot ([l0)) € EvI® (Ko(Ag)*).

Thus, Evfko) is surjective and Evior1 is also a positive group homomorphism.

In the rest of the proof, we show that Ag is a rationally AF algebra. We only
show that Ag ® My~ is approximately finite-dimensional, because by replacing
even numbers by odd numbers the same argument allows us to see that Ag ® M3~
is approximately finite-dimensional. Since any separable local AF-algebra is exactly
approximately finite-dimensional ([5, Thm. 2.2]), it suffices to show that for a given
finite subset F of &7 and e > 0, there exist N € N and a finite-dimensional C*-
subalgebra E of @7, v ® Mae such that ¢, N n(F)®1p,. Ce E. Because the set
of Lipschitz continuous functions is dense in 7!, we may assume that F consists
of Lipschitz continuous functions. Set L = max e Lip(f), and let m € N be such
that ZE2 + 42;’;7”“ €; < €. Because of (8, n) and the inequality > _yen < 1,
for any f € F, s,t € [0,1], and | > m, it follows that

neN

[ontmsin(F)(3) = Gsmiin(NON < 22 +2(n§+l”)
n+m+l,n n+m+l,n ~ 2l+m jin+1 2n+m+l7j

L+2
2m+1+2 Z 6J<7
j=m+1
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Choose [ € N such that, in addition to [ > m, the number n + m + [ is even (odd
for the case Ag ® M3). Set N =m+1, k=n+ N, and

E = 10([071]) ® LECO) (A;CO)) C C([O, 1]) ® Ag.

From the calculation above, it follows that ¢y ,,(F) C./2 E. Let us now modify £
to a finite-dimensional C*-algebra E in &, ® Ma~. By (3, k) with i, = 0, we obtain
a unitary Uy in #~ such that Uy ~., 1z and Ad Uk(Ag) ® M,z, ) = Ax. By (6,
k) there exists a unitary Vk(l) € .Z"~ such that L,(gl)(a) = Ad Vk(l)(a ® 1y ) € Ag
for any a € Ag), and Vk(l) €e, Ai + Clgz. Applying Lemma 4.6(v), we obtain a
unitary W € Ay+C14 such that Ad WU (a®15s,..) = Ad V) (a®1) fora € AV,
. — A ﬂIm(L,(fl))’ by €(a) = AdWUg(1 ,0) ® a) for
a € M,;:, , and note that A, = Im(Lg)) Im(€). Denote by s the self—adjoiknt unitary
in Im(€) ® M,z, such that Ads(é(z) ® y) = é(y) ® x for any z,y € M,;, . Choose
a path of unitaries § € C([0,1]) ® Ay ® M,z, such that 3(¢) € Im(€) ® M,z, for
all t € [0,1], 5(0) = 1, and 5(1) = s. Define a finite-dimensional C*-algebra E by

Define an isomorphism €: M2 i

E = Adg(E@) 1M2f‘k) C O([O, 1]) ® Ag ®M2Lk~

We can regard E as a finite-dimensional C*-subalgebra of @ ® M,z, . Indeed,

for e € E, there exists a. € Im(L,(CO)) such that €(0) = a. ® 1y e Since a, €
2

A = Im(L](Cl))Im(E), there are z; € A,(fl), y € Myz,, I = 1,2,..., L, such that

Qe = Zle L,(Cl)(acl)g(yl). Then it follows that
L

e(1) = Ad s(a. ® leik) = Z L,(cl)(ccl) Ry € Im(L,(gl)) ® Mz, -
1=1

We conclude that for f € F there exists z € (A,((u,l))1 and y; € (A,(CO))1 such that

Sokn(f) ® 1M2ik %5/2 (10([0’1]) ® Ll(cl)(xf» ® 1M2£,C
= Ad3(lg(o,1)) ® L;gl)(xf) ® 1M2ik)
~ejo Ad3(loqo) @ tf (y) © vz, ) €F.

In order to adjoin the property of Z-absorption to Ag, we only need to
consider Ag ® Z instead, which is also an RAF-algebra (as a UHF algebra is
Z-absorbing). Indeed, the ordered Ky-group (Ko(Ag®Z), Ko(Ag®2Z)™) is isomor-
phic to (G, GT), because, in the proof of Proposition 4.3(ii), for an RAF-algebra
A and the map i, Ko(A) = Ko(A® Z) induced by the canonical embedding ¢ of
Ainto A® Z, we saw that for g € Kq(A), t.(g) € Ko(A® Z)T if and only if ng €
Ko(A)™ for some n € N. Applying this fact to Ag, since (K¢(Ag), Ko(Ag)T)
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(G,G7) is an unperforated ordered abelian group, we see that the induced map
from Ko(Ag) to Ko(Ag ® Z) is an isomorphism of ordered abelian groups.
Finally, to make Ag ® Z stable, we just need to replace it by the tensor
product Ag ® Z® K by the algebra IC of compact operators on a separable infinite-
dimensional Hilbert space. [

Note that the invariant considered in Theorem 4.4, the ordered Kjy-group, is
shown in Theorem 5.3 below to be complete, for stable, separable, Z-absorbing
RAF-algebras. Theorem 4.4 is therefore a range of the invariant theorem for the
class in question.

As a consequence of Theorem 4.4, together with its proof, and also the iso-
morphism result Theorem 5.3, we can determine the range of a generalization of
the invariant of [20] for non-stable AF-algebras — referred to in [20] as the dimen-
sion range. In Corollary 5.4 below, we shall show (using Theorem 5.3) that this
analogue of the non-stable AF invariant, what might now be called the matrix
dimension range, is complete — for not necessarily stable, separable, Z-absorbing
RAF-algebras.

Recall that in [20] the invariant for general (separable) AF-algebras, the range
of the Murray—von Neumann dimension — the local abelian semigroup of equiv-
alence classes of projections in the algebra, or, equivalently, the subset of the
Ky-group consisting of those equivalence classes — was characterized as an upward
directed, hereditary, generating subset of the positive cone of the ordered Ky-group
— and, more abstractly, as an arbitrary such subset of a dimension group (by [21]
and [18], an unperforated countable ordered abelian group with the interpolation
property of [1], equivalent to the decomposition property of [61]).

To extend this invariant to RAF-algebras, since there are fewer projections, we
must keep track of the increasing sequence of dimension ranges of matrix algebras
over the algebra; let us consider these as subsets of the ordered Ky-group. Of
course, in the stable case, each of these will be the whole positive cone of the
Ky-group. Let us call this structure the matriz dimension range.

Corollary 4.8. The matriz dimension range of a Z-absorbing separable RAF-
algebra can be described in terms of the order-unit Ky-group of the algebra with
unit adjoined, tensored with Z, as follows. The nth level of the matrix dimension
range, n € N, is the set of positive elements of the Ky-group of the given algebra
which, with respect to the embedding of this in the Ky-group of the algebra with
unit adjoined, are majorized by n times the class of the unit. (A Z-absorbing RAF-
algebra has cancellation, so this is the same as comparison in the algebra.) The
matriz dimension range in fact determines the larger ordered abelian group. Hence
for any countable rational dimension group with specified order unit for which there
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exists a positive map onto Z taking the order unit into 1 € 7Z, there exists a Z-
absorbing separable RAF-algebra with ordered Ko-group the kernel of the map onto
Z, and with matriz dimension range as described above with respect to the specified

order unit.

Proof. First, let us check that a Z-absorbing separable RAF-algebra A has can-
cellation of projections — the Murray—von Neumann semigroup of A is mapped
injectively into Ko(A). It is enough to consider the stable case. By Proposi-
tion 4.3(ii), Ko(A) is a rational dimension group. By Theorem 4.4 together with its
proof there exists a stable, Z-absorbing, RAF-algebra B with Ky(B) isomorphic
to Ko(A) as an ordered abelian group, and such that B is the inductive limit of
a sequence of point-line algebras (called one-dimensional non-commutative CW
complexes in [19]), each tensored with Z. It is straightforward to show (using that
the Murray—von Neumann semigroup of Z is the same as that of the complex
numbers — recall that Z has stable rank one and therefore cancellation) that the
Murray—von Neumann semigroup of a point-line algebra after tensoring with Z
is the same as before this operation, namely, a certain subsemigroup of the finite
direct sum of copies of the (cancellative) semigroup of natural numbers (including
zero), indexed by the points at infinity in the spectrum — see the discussion of
point-line algebras in [24]. Thus, B has cancellation. By Theorem 5.3 below, A is
isomorphic to B.

Now, given a countable rational dimension group G, by Theorem 4.4 (now
just the statement), there exists a stable, separable, Z-absorbing RAF-algebra B
with K(B) isomorphic to G as an ordered abelian group. In particular, consider
the case that, as an ordered abelian group, G = H + H’ where H is an order
ideal and H’ is isomorphic in the relative order to the ordered group Z. In this
case, since (see proof of Corollary 5.4 below) B has the ideal property (closed
two-sided ideals generated as such by projections), and also (as shown above) has
cancellation (so that the equivalence classes of projections are the same as their
Ky-classes), closed two-sided ideals of B are in exact correspondence with the
order ideals of Ky(B). With Ag the ideal of B corresponding to the order ideal
H C H+ H' = Ky(B), denote by A the hereditary C*-subalgebra eApe C Ag C B
where e € B is a projection with Kqg(e) = 1 € H' = Z. Then A is as desired,
ie, Ko(A™® Z) 2 G. O

§5. Classification of Z-absorbing RAF-algebras

In this section, we prove that the invariant considered in Section 4, the ordered
Ko-group together with what we propose to call the matrix dimension range (see
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Corollary 4.8), is complete (Theorem 5.3 in the stable case and Corollary 5.4 in
the non-stable case).

We begin with the observation that the hypothesis of a unit in the otherwise
completely general deformation isomorphism theorem for Z-absorbing separable
C*-algebras due to Winter — [75, Prop. 4.5] (see also [51]) — is not used, as is
seen on replacing all unitaries appearing in the statement and in the proof by the
corresponding quasiunitaries, with the convention that the inner automorphism
determined by a quasiunitary is just that determined by the corresponding unitary
in the unitization, obtained (by definition) by adding the unit to it.

Proposition 5.1 (Essentially [75, Prop. 4.5], cf. proof of [38, Thm. 14.3]). Let p
and q be relatively prime supernatural numbers. Suppose that A and B are sepa-
rable Z-absorbing C*-algebras and let ¢: A® Z, ¢ = B® Z, 4 be a quasiunitarily
suspended C([0,1])-isomorphism (as in [75, Def. 4.2] with unitaries replaced by
quasiunitaries). Then there is an isomorphism ¢: A — B ® Z such that

(Z au (idB ®6p,q> opo (idA ®1zp,q),
where Gy, 4 is the standard embedding Z, ¢ — Z of [75, Prop. 3.4].

Proof. The proof is exactly the same as the proof of [75, Prop. 4.5], with unitaries
replaced by the quasiunitaries which in the present context (quasiunitarily sus-
pended C([0, 1])-isomorphism) they correspond to. Note that, when in the proof
of [75, Prop. 4.5] (spread over [75, Sects 4.3, 4.4, and 4.5]), the product of two (or
three) unitaries appears, these unitaries and therefore also the product correspond
to quasiunitaries, which they should be replaced by. O

Lemma 5.2 (Essentially [4, Thm. 2.3]). Let A and B be (separable) AF-algebras,
and let wg and @1 be C*-algebra homomorphisms from A to B that agree on the
ordered Ky-group. It follows that po and p1 are (one-parameter) asymptotically
quasiunitarily equivalent: there exists a one-parameter family of unitaries u;, t €
[0,1), in B~ such that uy —1p~ € B, 0 <t < 1 (i.e., us — 1p~ is a quasiunitary
in B), up = 1p~, and limy_y; Ad us o g = 1.

Proof. This holds by the proof of [4, Thm. 2.3]. O

Theorem 5.3 (Cf. [75, Prop. 4.6]). Suppose that A and B are stable separable
RAF-algebras absorbing the Jiang—Su algebra tensorially. If there is an ordered
group isomorphism ~y from (Ko(A), Ko(A)+) to (Ko(B),Ko(B)4+), then A is iso-
morphic to B and there exists an isomorphism « from A to B such that o, = 7y
at the level of Ky-groups.
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Proof. By Definition 4.1, there are relatively prime supernatural numbers p and
q such that A ® M, and A ® M, are AF. We may suppose (enlarging them if
necessary) that p and g are infinite. Hence by Lemma 4.2(i), B ® M, and B ® M,
are AF. It is immediate that the maps

’7®id1[))p : Ko(A)®Dp — Ko(B)®]D)p and ’Y@idﬂ)q : K()(A)@]D)q — Ko(B)®]D)q

are isomorphisms of ordered groups, and by Proposition 4.3(i) these maps may be
viewed as ordered group isomorphisms

Yp: Ko(A®Mp) —)Ko(B®Mp) and Vq: Ko(A®Mq) —>K0(B®Mq)
By [20], there are isomorphisms of AF-algebras
Yp: AOM, — BRM, with ¢, =7, and ¢q: AQM; = BRM, with @q. = vq.

Since p, ®id s, and pq®idyy, give rise to the same Ko-map (in the obvious sense),
7 ®idp, ®idp, : Ko(A® M, ® My) = Ko(B ® M, ® M), by Lemma 5.2 there is
a quasiunitarily suspended C([0, 1])-isomorphism A ® 2, = B ® Z, 4 agreeing
with ¢, and ¢4 at the endpoints of the interval [0, 1].

Hence by Proposition 5.1, there exists an isomorphism ¢: A — B ® Z such
that ¢ <, (idp ®yp,q)0po(ida ®1z, ). Hence (as in [75, Prop. 4.6]), o, =~. O

Corollary 5.4. Let A and B be Z-absorbing, separable RAF-algebras (not neces-
sarily stable). Suppose that the invariants of A and B described in Corollary 4.8
are isomorphic. Then this isomorphism is induced by an isomorphism of the C*-
algebras A and B.

Proof. Note first that A~ ® Z and B~ ® Z are RAF, as (see [11]) an extension
of one AF-algebra by another is AF. By definition — see Corollary 4.8 — there is
an isomorphism of order-unit groups Ko(A~ ® Z) and Ky(B™~ ® Z), respecting
the subgroups Ky(A) and Ko(B). By Theorem 5.3, there is an isomorphism of the
stabilizations A~ ® Z ® K and B~ ® Z ® K giving rise to the given isomorphism
of Kg-groups. In particular, it takes the cutdown of A~ ® Z ® K by 1la~gz ® €11
into the cutdown of B~ ® Z ® K by a projection with Ky-class equal to the
class of 1p~gz ® e11, and therefore (by cancellation — Corollary 4.8) Murray—von
Neumann equivalent to it — in fact unitarily equivalent to it as the C*-algebra is
stable. So we may assume that the isomorphism takes A~ ® Z = A~ ® Z®eq; onto
B~ ® Z = B~ ® Z ® ey1, and reproduces the given isomorphism of Ky(A™ @ Z)
with Ko(B~ ® Z).

Now note that any stable RAF algebra has the ideal property — any closed
two-sided ideal (let us just say “ideal”) is generated (as an ideal) by its projections.
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This holds because it holds in an AF algebra. More precisely, by [5] (see also [15]),
every ideal in an inductive limit C*-algebra is the inductive limit of its finite-stage
inverse limits, which shows that the ideals of the tensor product of any C*-algebra
with a UHF algebra are just the tensor products of the ideals of the given algebra
with the UHF algebra (given that this is true for a finite matrix algebra in place of
the UHF). If the given algebra is RAF, so that the tensor product is AF, the ideal
in the tensor product corresponding to a given ideal is generated (as an ideal) by
projections in the AF algebra. By Proposition 4.3(i), a multiple of any Ky-element
of the tensor product belongs to the Ky-group of the canonical image of the given
algebra. Since the tensor product is AF, and the given algebra is stable, this says
that any projection in the tensor product is equivalent to a projection in the given
algebra, and of course in the same ideal. Such projections therefore generate the
given ideal.

(In fact, this argument shows that, in the stable case, every ideal of an RAF
algebra has an approximate unit consisting of projections. Indeed, in the case of an
ideal with compact spectrum, the corresponding ideal in the (AF) tensor product
with a UHF algebra (which has the same spectrum) is generated by a single pro-
jection — as is seen by looking at the finite-dimensional finite stages in an inductive
limit decomposition — and therefore the given ideal of the RAF algebra is generated
by a single projection. Hence by Brown’s theorem ([10]) the given ideal (assumed
to be separable, as well as stable) is isomorphic to the stabilization of the cutdown
by this projection, which has an approximate unit consisting of projections. Since
the spectrum of a (separable) AF algebra, and therefore of an RAF-algebra, is an
increasing union of compact open sets (the spectra of ideals generated by a sin-
gle projection), and so the algebra is the closure of the corresponding increasing
sequence of ideals, it follows that the whole (stable) RAF-algebra has an approx-
imate unit consisting of projections. This property could also be used to prove
Theorem 5.3 above, using [75, Prop. 4.5] directly (for the unital case), provided
that one also established a uniqueness theorem.)

The proof of the present non-stable isomorphism theorem is now in hand. The
isomorphism of the stabilized algebras A~ ®ZRK and B~ ® ZQK, giving rise to the
given isomorphism of the order-unit groups Ko(A~®Z) and Ky(B~®Z), since this
respects the canonical order ideals Ky(A) = Ko(A® Z) and Ky(B) = Kyo(B® 2),
and since the ideals A® Z® K and B ® Z ® K are generated by their projections
(and because of cancellation — see the proof of Corollary 4.8 — which implies that
equivalence classes of projections are the same as their Ky-classes), restricts to an
isomorphism of A = A® Z with B = B ® Z giving rise to the given isomorphism
of Ko(A) with Ko(B). O
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§6. KMS states of Z-absorbing C*-algebras

In order to show the main result, Theorem 6.5, let us prepare some facts for ideals
and traces of RAF-algebras. By an ideal of a C*-algebra, we shall mean a closed
two-sided ideal. For a C*-algebra A, we shall denote by Z 4 the set of all ideals in A.
For a supernatural number n, we shall consider the map ®, from Z4 to Zagas,
defined by ®,(I) = I @ M, C A® M, for I € Z4.

Let (G, G™) be an ordered abelian group and let 7;, j € J, be automorphisms
of G as an ordered abelian group. If no order ideal of (G, G™) other than 0 or G
is invariant under all 7;, j € J, we shall say that (G,G") is {v;}jes-simple. For
a C*-algebra A and automorphisms «;, j € J, of A, if no ideal of A other than 0
or A is invariant under all «;, j € J, we shall say that A is {a;},es-simple.

Lemma 6.1. The following two statements hold:

(i) For any C*-algebra A and supernatural number n, the map ®n: Ty — Lagwm,
is bijective.

(ii) Suppose that A is a Z-absorbing RAF-algebra and o, j € J, are automor-
phisms of A. If the ordered abelian group (Ko(A), Ko(A)") is {aj. }jes-simple,
then A is {c}jes-simple.

Proof. (i) Given an ideal of I of AQ My, set Iy ={a € A:a®1y, € I}, which is
an ideal of A. Then Iy @ My =IN(A® My) for any N € N with N|n. Indeed, if
z e IN(A® My) is written as z = S

ij=1
(NN of M, then, using an approximate unit hy, A € A, of

a;; ® ez(-;»v) for some a;; € A and system
of matrix units {e

ij  Ji,j=1
A we have
N . N N
ai; @ e = lim (hy @ eiMz(hy @ elY)) e 1N (A® My).

It follows that a;; ® 1y, € I, which means a;; € I4 for all 4,5 =1,2,...,N. The
converse inclusion Iy ® My C I N (A ® My) is trivial. Thus it follows that

I={JInAeMy)=]Is®My=2,(1)
N‘n N\n

(see [5, Lem. 3.1], and see also [15, Lem. III 4.1]). It is straightforward to show

the injectivity of ®,,. Indeed, for T4, J4 € T4 with ®,(I4) = P,(J4), choosing an
approximate unit ky, A € A, of 14, we have

(ak,\) (24 1Mn = /\ILI'H (a® 1]\/[“)(]{)\ X 1M“) =a® lM“,

lim

A—00
for any a € J4. Then it follows that a = limy_. akyx € I4. This shows that
Ja Cly.
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(ii) Let n be an infinite supernatural number and let I € Z4 be invariant under
all o, j € J. Then the ideal ®,(I) € Zagwm, is also invariant under all a; ® iday,,
j € J. By (i), it suffices to show that A® M, is {o; ®1idas, },es-simple. In the case
that A® M, is an AF-algebra, it is well known that Zag s, corresponds to the set
of all order ideals of (Ko(A® M,), Ko(A® M,)™). Hence it is enough to show that
(Ko(A® My), Ko(A® My)") is {(a; ® idas, )« }jes-simple. By Proposition 4.3(i),
(Ko(A® M,), Ko(A® M,)") is isomorphic to (Ky(A) @ Dy, Ko(A) @ D, ") as an
ordered abelian group, and in such a way that (a; ®idas, )«, j € J, corresponds to
@j. ®idp,, j € J. Hence we only need to show that (Ko(A) ® Dy, Ko(A) @ Dy ")
is {aj« ® idp,, } e -simple.

Let H be an order ideal of (Ky(A) ® Dy, Ko(A) ®Dn+) which is invariant
under all a;, ® idp,, j € J. Set Hy = {g € Ko(4) : g® 1p, € H}, and
HX = Ha N Ko(A)*. Since HY = H N (Ko(A) ® Dy)" is hereditary (i.e., if
g € Ko(A) @D 2T and h € H* satisfy g < h, then g € HT), it is trivial to see
that H} is also hereditary. To show that (H4, H) is an ideal of (Ko(A), Ko(A)"),
we must show that H4 = HX — HX. We shall use the fact that the ordered abelian
group (Ko(A), Ko(A)™) is unperforated, by Proposition 4.3(ii). For z € H 4, since
H = HY — H" there exist y, 2 € HT such that z ® 1p, = y — 2. From y,
z € Ko(A) @D,", we obtain N € N with N|n and ya,2z4 € Ko(A)T such that
Ny=ya®lp, and Nz = 24 ® 1p,. Since Nx = y4 — 24 < Nya, it follows that
x < y4, which implies that © = y4 — (ya — ) € Hf — H}. Since H is invariant
under all o, ® idp,, j € J, we see that H4 is also invariant under all o, j € J,
which implies that H4 = 0 or Ko(A). Then it follows that H = 0 or Ky(A) ® Dy,
as required. O

Proposition 6.2. Let A be a Z-absorbing RAF-algebra, o an automorphism of
A, and o an automorphism of Z. Suppose that the ordered abelian group (Ko(A),
Ko(A)T) is a.-simple and o has the weak Rohlin property (see [66, Def. 1.1]).
Then the crossed product C*-algebra (A ® Z) Xago Z is simple.

Proof. Since (Ko(A), Ko(A)T) is a,-simple, it follows that (Ko(A @ Z), Ko(A ®
Z)T) (=2 (Ko(A),Ko(A)™)) is (¢ ® 0)4-simple. By Lemma 6.1(ii), therefore A ® Z
is a ® o-simple. Denote by u the implementing unitary of a ® o. As in a similar
argument in the proof of [22, Thm. 3.2] (see also [48]), it suffices to show that for
any x € A® Z, any finite subset F' of Z\ {0}, and any finite family {y; }ier C AR Z,

2]l < fl+ > yiu’]|-
i€F
Set k = max{|i| : i € F}, ko = k1 = k, and ko = k + 1. Applying [50,
Thm. 6.4] to 0 € Aut(Z), we obtain positive contractions fj(l)l e 2, 1=0,1,2,
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7=0,1,...,k;, n € Nsuch that

2k
> fin=lz,

1=0 j=0

each (f;f%)neN is a central sequence in Z for all [ = 0,1,2 and j = 0,1,...,k,
limy, 00 Ho(fj(l%) — f;?lnﬂ =0forall=0,1,2 and 0 < j < k; mod (k; + 1), and
lim o || /0 £\l = 0 for all 1 = 0,1,2 and 0 < i # j < ky. Let h,, n € N, be
an increasing approximate unit of A. For any n € N, define a completely positive
map P, from (A® Z) Xage Z to (AR® Z) Xage Z by

2 k;
l l
(@) =N (hn @ £ 2alhy @ f10)12,
1=0 j=0
for a € (A® Z) Xage Z. Note that ®,, is a contraction for each n € N. Since
(hn®f;2)n€N is a central sequence in A® Z, it follows that lim,, o [|®,(a)—al| =0
for any a € A® Z. Since

. OO (0 Oy —
dim (lo*(f) frall = Tim (2 S50l =0,

where 7 + j is considered mod(k; + 1) for ¢« € F and j € {0,1,...,k}, we have
limy, 00 || @5 (u?)|| = 0 for any i € F (where ®,,(u) is defined in a natural way).
Then we have

lz]] < limsup
n—oo

oo )| (o)

i€l i€F

< :r:—l—Zyiui —l—limsupZHyi(I)n(ui)H
i€F " ieF

= x—l—Zyiui . [
icF

For a C*-algebra A, we denote by 7 (A) the cone of densely defined lower
semicontinuous traces of A. With Ped(A) the Pedersen ideal of A [57], it is well
known that 7(p) < oo and p € Ped(A) for any 7 € T(A) and projection p in A.
Set Ped(A)™ = Ped(A4) N A*. For n € N, taking the normalized trace tr,, of M,
we set T ® try, (a ®b) = 7(a)tr, (b) for 7 € T(A), and a®b € Ped(A) ® M,,. By the
following Lemma 6.3(i), we shall see that Ped(A) @ M,, = Ped(A ® M,,), so that
T ®tr, can be regarded as an element of T(A® M,,). To simplify, we use the same
symbol 7 for 7 ® tr,.
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For an ordered abelian group (G,GT), we define So(G) as the set of posi-
tive group homomorphisms from G to R. In the case that (Ko(A), Ko(A)1) is an
ordered abelian group, and A has cancellation, we define the standard affine map
7 T(A) — So(Ko(A)) by @7(7)([plo) = 7(p) for [plo € Ko(A)*. Note that,
by the cancellation property of A, projections p and ¢ in A ® M,, n € N, are
Murray—von Neumann equivalent if and only if [p]o = [¢]o in Ko(A). Then &5(7)
is well defined for 7 € T(A). We shall often use the notation 7, for ®+(7).

Consider the subset Ay of the C*-algebra A defined by Ag = {a € A :
a € pAp for some projection p € A}. Equip T (A) with the smallest topology such
that 7(A4) 3 7 — 7(a) is continuous for any n € N and a € (A ® M, ), and equip
So(G) with the topology of pointwise convergence.

Lemma 6.3. The following two statements hold:

(i) For a C*-algebra A and n € N, it follows that Ped(A) ® M,, = Ped(A® M,,).
(ii) If A is a real rank zero C*-algebra with cancellation, and (Ko(A), Ko(A)T) is

an ordered abelian group, then a net 7 € T(A), A € A, converges to T € T(A)
if and only if the net ®(7x), A € A, converges to (1) in So(Ko(A4)).

Proof. (i) Let us first check the inclusion Ped(A4) ® M,, C Ped(A® M,,). From the
construction of the Pedersen ideal, one sees that Ped(4) ® el(-?) C Ped(A ® M,),
1=1,2,...,n. Since the Pedersen ideal is equal to its square, it is an ideal of the
multiplier algebra of the C*-algebra. Applying this to Ped(A ® M,,), we see that
also Ped(4) ® el(;l) C Ped(A® M,), 4,7 =1,2,...,n.

Since the Pedersen ideal is the smallest dense two-sided ideal, the two ideals
are equal.

(ii) The “only if” part of the statement is obvious. Assume that ®7(7y), A € A,
converges to (1) in So(Ko(A)). Let = be a self-adjoint element in p(A @ M,,)p
for some n € N and a projection p € A ® M,,. Without loss of generality, we may
assume that 7(p) > 0. Since p(A® M,,)p has real rank zero, for € > 0 there exists a

_E&

self-adjoint element = € p(A® My )p with finite spectrum such that [z —Z|| < -

By

T — Lp <zx<z+ c
dr(p)” = T 47(p)

it follows that |7x(z) —7a(Z)| < ema(p)/(47(p)) for any A € A. By limy_, o 72 (Z) =

7(Z) and limy_, o 72 (p) = 7(p), we have that limsup,_, ., |7a(z) — 7(z)| < €. Since

b,

¢ > 0 is arbitrary, a net 7\, A € A, converges to 7 in the topology of T (A). O

In the case of an RAF-algebra A, we note that for 7 € T(A) the map 7. on
Ky(A) is also well defined. Indeed, for N € N\ {1} and two projections p, ¢ €
A® My, if [plo = [qlo in Ko(A), then p@1ry0 o = [¢@1arye0]o in Ko(A® Myos).
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Since A ® My« is an AF algebra, there exists a partial isometry r € A ® My
such that r*r = p ® 1y and rr* = ¢ ® 1y Taking a large £ € N we
can obtain such an 7 in A ® Myx. Then it follows that 7(p) = 7 @ trys(p ®
Iy, ) =7 @trye(g® Ly, ) = 7(g). Thus, for an RAF-algebra A, we can define
Or: T(A) = So(Ko(A)).

Proposition 6.4. If A is a Z-absorbing RAF-algebra, then the map ®1: T (A4) —
So(Ko(A)) is an affine homeomorphism.

Proof. Note that, by Proposition 4.3(ii), (Ko(A), Ko(A)") is an ordered abelian
group. Let n be an infinite supernatural number and ¢ the embedding of A into
A ® M, defined by t(a) = a ® 1y, for a € A. Since A ® M, is an AF-algebra, we
see that the canonical map @7 agnr, : T(A® My) — So(Ko(A® M,)) is bijective;
see the last paragraph of [13] and [71, Lem. 3.5], for example.

Denote by 7, the unique tracial state of M,. Regarding (Ko(A® M, ), Ko(A®
My)h) as (Ko(A) @ Ko(My), Ko(A) @ Ko(M,)") by Proposition 4.3(i), define
Te @ Tnx € So(Ko(A® My)) for 7 € T(A) by 7. @ Tai([plo ® [glo) = 7(p)ma(q) for I,
m € N and projections p € AQ M;, ¢ € AR M,,. The expression T ® 7, denotes the
densely defined lower semicontinuous trace on AQ M, such that &7 agr, (TOT,) =
Tx @ Tnx. In the following argument, we shall show that 7 @ 7, (a ® 15,) = 7(a) for
any a € Ped(A), where we note that a ® 1)y, € Ped(A ® M,) for a € Ped(A).

For € > 0, consider the continuous function f. defined by

fe(t) = max{0, min{1, (t —e)}} fort e R,

and set a. = f.(a) for a € Ped(A)*. Since 7 ® 7, and 7 are lower semicontinuous,
it suffices to see that 7 ® m(a: ® 1p1,) = 7(ac) for any € > 0 and a contraction
a € Ped(A)T. Fix € > 0 and a contraction a € Ped(A)T. Then there exists a €
Ped(A)* such that aa. = a.. Since a.Aa. @ M, = (a. ® 1p1,)A @ My(a: ® 1ps,)
is an AF-algebra, for n € N there exist N,, € N with N, |n and a positive element

an, € acAa. ® My, with finite spectrum such that ||a, — ac ® 15, || < 1/n. Since
an — (@ ® 1a,) < ac ® 1y, < an + 2(@® 1a,), we have 7@ To(ae ® 1y,) =
lim, oo 7 ® Tn(an). On the other hand, since 7 ® 7, € T(A ® B) corresponds to
Te @ Tas € So(Ko(A)), it follows that 7 ® 7,(p) = 7 ® try, (p) for any projection
p € asAa. ® My, . Thus we have

T(ae) = nlLH;OT ®try, (ap) = nlLIr;OT ® Tolan) =7 @ Ta(a: @ 1pr,).

Define a map ¥: T(4) - T(A® M,) by ¥(7) =7 ® 1, for 7 € T(A). From
7(a) = U(7)(a ® 1p,) for any a € Ped(A), it follows that ¥ is injective and
affine. For ¢ € T(A® M,), setting p4(a) = p(a® 1,s,) for a € Ped(A) we obtain
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wa € T(A). Since 1, is a unique tracial state, it follows that p(p@z) = wa(p)Ta(z)
for any projection p € A and x € M,,. Thus we see that ¥(p4) = ¢.

Let ty: Ko(A) — Ko(A ® M,) denote the induced map defined by ¢: A —
A ® M,. Let us show that the map i, : So(Ko(A® M,)) = So(Ko(A)) defined by
ix() = @ o i, is bijective. Indeed, for any = € Ko(A ® M,) = Ky(A) @ Ko(M,)
there exists N € N such that Nz € 1,(Ky(A)). Thus we see that i, is injective.
Since Ky(A) is torsion-free, ¢, is injective, which implies the surjectivity of i,.
Since @7 can be decomposed as P = i, 0 P1 agn, © ¥, it follows that @7 is a
bijective affine map.

It is straightforward to check that ® is continuous. It remains to show that
®7 ! is also continuous. Suppose that 7y, A € A is a net in T (A) such that ®,(7y)
converges to (1) for some 7 € T(A). Then it follows that the net Ty, ®@Tns, A € A
in So(Ko(A® M,)) converges to T, ® Ty in the topology of pointwise convergence.
Applying Lemma 6.3(ii) to A® M,, we have that 7\ ®7,, A € A converges to T® 1,
in T(A® M,). Since (A® My)o® 1y, C (A® My ® My)o for any N € N, we
conclude that limy_,o, 7a(a) = 7(a) for any a € (A ® My)o. O

We are now ready to give our application of the RAF-algebra classification.

Theorem 6.5. Let (S,7) be a proper simplex bundle such that 7=1(0) is a sin-
gleton. Then there exists a 2mw-periodic flow 6 on the Jiang—Su algebra whose
KMS-bundle is isomorphic to (S, ).

For a given proper simplex bundle (S, 7) with 771(0) = {5}, in Section 3
we constructed the rational dimension group (Gz, G) and its shift automorphism
o such that (S,(Gz),7z) is isomorphic to (S,7) as a simplex bundle (Proposi-
tion 3.6(iii)).

We define a positive group homomorphism Yg: Gz — Z by Zo((2n)nez®g) =
Y onez #n = 9(7s) for (2n)n ® g € Gz. By the same arguments as in the proofs of
[31, Lem. 4.10], [30, Lem. 3.7], and [31, Lem. 4.14], the rational dimension group
(Gz,G5) has the following properties.

Lemma 6.6. The following two statements hold:
(i) (Gz,GY) is o-simple and
(ii) (id —0)(Gz) = ker(Xo).

From Theorems 4.4 and 5.3, we obtain a stable Z-absorbing RAF-algebra A
and an automorphism ayz on A such that

(Ko(A),Ko(A)T) 2 (Gz,G4) and  az. =0 on Ko(A).
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By Proposition 6.2 and the same argument in [54, Rem. 2.8] (see also [30, Lem. 3.6]),
A and az can be chosen to have the following properties.

Lemma 6.7. The following three statements hold:

(i) A Xq, Z is a simple C*-algebra,
(ii) the restriction map T +— T|a from T (A Xa, Z) onto the ag-invariant traces
in T(A) is bijective, and
(ill) A X, Z absorbs the Jiang—Su algebra tensorially.

Set C = A X, 7Z, and denote by P the conditional expectation from C onto A.
Since A is a stable C*-algebra, for u € G§ = Ko(A)* defined as u = (1p,1) in
Section 3, there exists a projection p in A such that [p]o = u. Then the unital
C*-algebra pCp has the following properties.

Proposition 6.8. The following four statements hold:

(i
(ii

(iii

pCp has a unique tracial state,

(Ko(pCp), Ko(pCp)™") = (Z,27), [plo =1 € Z,
K (pCp) 20, and

therefore pC'p is isomorphic to Z.

—_ — o —

(iv

Proof. (i) Set T2 (A) = {r € T(A) : Toaz = 7, and 7(p) = 1}. By Proposi-
tion 6.4, T2 (A) corresponds to SL(Gz) = {rs} via ®7. Because of [14, Prop. 4.7],
the set of tracial states T'(pCp) of pCp corresponds to {r € T(C) : 7(p) = 1} via
the restriction on pCp. By Lemma 6.7(ii), we know that {r € T(C) : 7(p) = 1} is
a singleton, which implies that T'(pCp) is also singleton.

(ii) By Lemma 4.2(ii), we see that K;(A) = 0. Then the Pimsner—Voiculescu
six-term exact sequence allows us to see that

Ko(C) = Gz/(id —0)(Gz) = Gz/ ker(So) 22 Z.

Consider the quotient map ¢: Gz — Gz/(id —0)(Gz) and denote by t.: Ko(A4) —
K((C) the map induced by the inclusion ¢: A — C. In the exact sequence, pre-
cisely, ¢, corresponds to ¢ and the above group isomorphism 3: Ko(C) — Z
is determined by X o ¢ = Xg; see also the paragraph after [30, Lem. 3.7]. Set
70 € T2 (A) which corresponds to 7¢ € S:(Gz) (determined by 7¢ = 7g). For
z € Ko(C)T, now we obtain (y,)nez @ f € Gz such that ¢((yn)n @ f) = z. Then
it follows that

OS(TOOP)*($):TS((yn)n@f):f(TS):ZynGZa

neEZ
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which implies that 3(x) € ZT. The converse inclusion X(Ky(C)T) D Z* follows
from the properties nu € Ko(A)T and n = ¥ o g(nu) € X(Ko(C)T) for any
n € Z*. Then we have that (Ko (pCp), Ko(pCp)™) = (Ko(C), Ko(C)") 2 (Z,Z7).
In particular, since 1 = X o g(u), [p]o corresponds to 1 € Z.

(iii) For the same reason as in [30, Lem. 3.11], we see that the map id —o is
injective on Ky(A) = Gz. From the Pimsner—Voiculescu exact sequence, we see
that K;(C) = 0.

(iv) By Lemma 6.7, we have now shown that pCp is a unital separable simple
nuclear C*-algebra which absorbs the Jiang—Su algebra tensorially and satisfies the
universal coefficient theorem. By (i), (ii), (iii) above, we see that pCp is monotracial
and the Elliott invariant of pCp is same as for Z. From [63, Cor. 4.6], we also see
that pCp has strict comparison. Then by [56, Cor. 6.2] (see also [68] and [52]), we
conclude that pCp = Z. O

Proof of Theorem 6.5. Denote by 6 the dual action of az on C and by 6 the
restriction of 6 to pCp = Z. Denote by (Sy, m9) the KMS-bundle of the dynamical
system (Z,6). By Proposition 3.6(iii), (S,(Gz),7z) is a proper simplex bundle
isomorphic to (S, 7). It remains to show that (S, (Gz), 7z) is isomorphic to (S, 7).
Set
Tor(A) = {(1,8) e T(A) xR:70az =e P, 7(p) = 1},

equipped with the product topology on T (A) xR, and denote by 7, : Ta,(A) = R
the projection. Define a continuous map @, : 7o, (A) = S;(Gz) by Do, (1,8) =
(®r(1),p) for (1,5) € Ta,(A). By Proposition 6.4, ®,, is a homeomorphism, and
<I>gzl|ﬂ21(ﬁ) is affine for each (3 € R.

It follows that the projection p € A (of Proposition 6.8) is full in C, i.e., CpC =
C, by the simplicity of C. Define a map ¥: 7,,(A) — So by ¥((1,8)) = (10
Plpcp, B) for (1,5) € Tay(A). By [31, Lem. 4.1], we see that ¥ is bijective and
\I/|ﬂ_;zl () Is an affine homeomorphism from T51(B) onto m, (). Since pAp C Ay, if
a sequence T, € T(A), n € N, converges to 7 € T (A) then 7,0 P|p,cp — ToP|pcp in
the topology of pointwise convergence. Thus, ¥ is continuous. We define a bijective
continuous map ®: S,(Gz) — Sy by & = Vo <I>(;Zl. By Lemma 3.4, we conclude
that (S,(Gz),7z) is isomorphic to (S, mp), as desired. O

Theorem 6.9. Let A be a unital separable C*-algebra with a unique tracial state.
Suppose that A absorbs the Jiang-Su algebra tensorially. Then for any proper
simplex bundle (S, ) such that 7=1(0) is singleton, there exists a 2w-periodic flow
on A whose KMS-bundle is isomorphic to (S, ).

Proof. Let Iy = ida, t € R, denote the trivial flow on A and 7 the unique tracial
state of A. For a given (S,7), by Theorem 6.5 we obtain a flow # on Z whose
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KMS-bundle is isomorphic to (S, 7). We denote by A ® Z the C*-algebra tensor
product and define a flow o on A® Z as the tensor product action which is defined
by ai(a ® b) = it(a) ® 04(b) for a € A and b € Z. Let (S,, 7o) denote the KMS-
bundle of « and Sg(Z) (resp. S8(A® Z)) the set of B-KMS states for 0 (resp. ).
Define an affine map ® from S(Z) to S(A® Z) by ®(p) = 7 ® ¢. Then it is
straightforward to check that ®(y) is a 8-KMS state for « for any ¢ € Sg (2), and
@‘55(2): Sg(Z) — SP(A® Z) is affine continuous and injective for any 8 € R.
Define a continuous map ®4: Sy — So by Pa((p,8)) = (P(p), 8) for (v, ) € Sp.

In order to apply Lemma 3.4 to ® 4, it remains to show surjectivity of (I)|Sg(2)'
Given ¢ € S5(A®Z),z € Z,and a,b € A, note that a®1z and b® 1z are analytic
elements for a and ¥ (ab ® z) = Y((b ® r)aig(a ® 1z)) = (ba ® x). Since T is
a unique tracial state, we have 7(a)y(1la ® ) = ¥(a ® x), for any a € A and
x € Z. Set Yz(r) = YP(la ® x), for x € Z. Then 1z is contained in Sg(Z),
as P(la ® zy) = Y((la @ y)aig(la @ x)) = ¥(1a @ y(dig(x))) for any analytic
elements z,y € Z for 6. Thus we see that ®(¢¥z)(a ® x) = Y(a® ) for any a € A
and z € Z. O

From [60, Thm. 3.2], [49, Prop. 2.1], and [55, Thm. 1.1], we obtain uncountably
many flows which are not approximately inner on the following classifiable class
of C*-algebras (cf. the explicit automorphism group computation in [29]).

Corollary 6.10 (Cf. [30, Cor. 4.2]). Any unital separable simple amenable mono-
tracial C*-algebra with strict comparison has uncountably many flows which are not
approximately inner, up to cocycle conjugacy and the trivial scaling equivalence.
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