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On the effects of small perturbation
on low energy Laplace eigenfunctions

Mayukh Mukherjee and Soumyajit Saha

Abstract. We investigate several aspects of the nodal geometry and topology of Laplace eigen-
functions, with particular emphasis on the low-frequency regime. This includes investigations
in and around the well-known nodal line conjecture, opening angle estimates of nodal domains,
saturation of (fundamental) spectral gaps etc., and behaviour of all of the above under small-
scale perturbations. We aim to highlight interesting aspects of spectral theory and nodal phe-
nomena tied to ground state/low energy eigenfunctions, as opposed to asymptotic results.

1. Introduction and preliminaries

Let .M; g/ be a compact Riemannian manifold. Consider the eigenequation

��' D �'; (1.1)

where � is the Laplace–Beltrami operator given by (using the Einstein summation
convention)

�f D 1p
jgj
@i .
p
jgjgij @jf /;

where jgj is the determinant of the metric tensor gij . In the Euclidean space, this
reduces to the usual � D @21 C � � � C @2n. Observe that we are using the analyst’s sign
convention for the Laplacian, namely that �� is positive semidefinite.

If M has a boundary, we will consider either the Dirichlet boundary condition

'.x/ D 0; x 2 @M;

or the Neumann boundary condition

@�'.x/ D 0; x 2 @M;
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where � denotes the outward pointing unit normal on @M . Recall that if M has a
reasonably regular boundary, ��g has a discrete spectrum

0 � �1 � � � � � �k � � � � % 1;

repeated with multiplicity with corresponding (real-valued L2 normalised) eigen-
functions 'k . Also, let N'� D ¹x 2 M W '�.x/ D 0º denote the nodal set of the
eigenfunction '�. Sometimes for ease of notation, we will also denote the nodal set
by N .'�/. Recall that any connected component of M n N'� is known as a nodal
domain of the eigenfunction '� denoted by ��. These are domains where the eigen-
function is not sign-changing (this follows from the maximum principle).

In this paper, we study the nodal topology and geometry associated to Laplace
eigenfunctions, for both curved and flat domains, and with both Dirichlet and/or
Neumann boundary conditions. Most of our results are related to the low frequency
regime (low energy eigenfunctions), though some will also apply to the high fre-
quency asymptotics, but no result is purely asymptotic in nature.

1.1. Notational convention

When two quantitiesX and Y satisfyX � c1Y (X � c2Y ) for constants c1; c2 depend-
ent on the geometry .M;g/, we writeX ..M;g/ Y (respectivelyX &.M;g/ Y ). Unless
otherwise mentioned, these constants will in particular be independent of eigenval-
ues �. Throughout the text, the quantity 1p

�
is referred to as the wavelength and any

quantity (e.g., distance) is said to be of sub-wavelength (super-wavelength) order if it
is ..M;g/ 1p

�
(respectively &.M;g/ 1p

�
).

First, we recall a few basic facts and results that we would need in the sequel.

1.2. Characterisation of eigenvalues

We note that the Sobolev space H 1.M/ can be defined as the completion of C1.M/

with respect to the inner product

hf; giH1 ´ hf; giL2.M/ C hrf;rgiL2.M/

where f; g 2 C1.M/. Next, we introduce a bilinear form in H 1.M/. Consider the
bilinear form on C1.M/ � C1.M/,

D.f; g/´ hrf;rgiL2.M/:

SinceH 1.M/ is the completion ofC1.M/ in the induced norm, given f;g2H 1.M/,
there exists sequence ¹fiº; ¹giº 2 C1.M/ converging to f; g in H 1 norm. Then we
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can define the bilinear form on H 1.M/ �H 1.M/ as

D.f; g/ D lim
i!1
hrfi ;rgi iL2.M/:

Now, we have the following characterisation of Laplacian eigenvalues.

Theorem 1.1. For any k 2 N, let ¹'1; '2; : : : ; 'k�1º be the first k � 1 orthonormal
eigenfunctions. Then for any f 2 H 1.M/; f ¤ 0 such that

hf; '1i D � � � D hf; 'k�1i D 0

we have

�k �
D.f; f /

kf k2 : (1.2)

Moreover, the equality holds if and only if f is an eigenfunction corresponding to �k .

Note that for characterising the Dirichlet Laplacian eigenvalues, the admissible
function class in the above theorem is H 1

0 .M/, which is the completion of C10 .M/

with respect to the induced norm from the above defined inner product. But, for
Neumann boundary condition and manifolds without boundary, we use the above
characterisation as it is.

Moreover, we also note that, in case of a boundaryless manifold or a manifold with
Neumann boundary condition we have that �1 D 0 and for a manifold with Dirichlet
boundary, we have that �1 > 0. This follows from the above characterisation.

1.3. Eigenfunctions and Fourier synthesis

In a certain sense, the study of eigenfunctions of the Laplace–Beltrami operator is the
analogue of Fourier analysis in the setting of compact Riemannian manifolds. Recall
that the Laplace eigenequation is the standing state for a variety of partial differential
equations modelling physical phenomena like heat diffusion, wave propagation or
Schrödinger problems. Below, we note down this well-known method of “Fourier
synthesis”:

heat equation .@t ��/u D 0; u.t; x/ D e��t'.x/;
wave equation .@2t ��/u D 0; u.t; x/ D ei

p
�t'.x/;

Schrödinger equation .i@t ��/uD 0; u.t; x/ D ei�t'.x/:

Further, note that u.t; x/ D e
p
�t'.x/ solves the harmonic equation .@2t C�/u D 0

on R�M . In the interest of completeness, we include one last useful heuristic: if one
considers the eigenequation (1.1) on metric balls of radius

p
�
p
�

and rescale to a ball
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of radius 1, it produces an “almost harmonic” function (see [50, Section 2] for more
details).

A motivational perspective of the study of Laplace eigenfunctions then comes
from quantum mechanics (via the correspondence with Schrödinger operators), where
theL2-normalised eigenfunctions induce a probability density '2.x/dx, i.e., the prob-
ability density of a particle of energy � to be at x 2 M . Another physical (real-life)
motivation of studying the eigenfunctions, dated back to the late 18th century, is based
on the acoustics experiments done by E. Chladni which were in turn inspired from the
observations of R. Hooke in the late 17th century. But what is surprising (at least to the
present authors!) is that the earliest observation of these vibration patterns were made
by G. Galileo in early 17th century. The experiments of Chladni consist of drawing
a bow over a piece of metal plate whose surface is lightly covered with sand. When
resonating, the plate is divided into regions that vibrate in opposite directions causing
the sand to accumulate on parts with no vibration. The study of the patterns formed
by these sand particles (Chladni figures) were of great interest which led to the study
of nodal sets and nodal domains.

1.4. Elementary facts about eigenvalues and eigenfunctions

We now collect some elementary facts about the eigenvalues and eigenfunctions of the
Laplace–Beltrami operator. One well-known global property of the eigenfunctions is
the following theorem which gives an upper bound on the number of nodal domains
corresponding to the kth eigenfunction 'k .

Theorem 1.2 (Courant’s nodal domain theorem). The number of nodal domains of
'k can be at most k. In other words, the total number of connected components of
M nN'k is strictly less than k C 1.

Remark 1.3. '1 is always non sign changing. In the case of Laplace eigenfunctions,
this can be easily observed by replacing '1 by j'1j, which is non-negative and using
the variational characterisation (1.2) above.

Remark 1.4. The multiplicity of �1 is always 1 i.e., �1 is simple (for a manifold
without boundary, �1 D 0 corresponding to the constant eigenfunctions). If not,
then '2 has a constant sign, from the previous remark. This contradicts the fact that
h'1; '2i D 0, since '1 has a constant sign as well. As a result, �1 is characterised as
being the only eigenvalue with eigenfunction of constant sign. For significantly more
general operators (like Schrödinger operators), the result is still true, but this requires
the use of the Krein–Rutman theorem.
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Remark 1.5. The above two remarks in conjunction with the Courant nodal domain
theorem imply that '2 has exactly two nodal domains. Moreover, any 'k has at least
two nodal domains for k � 2.

Theorem 1.6 (Domain monotonicity). Suppose �1 � �2 � M . Then their funda-
mental Dirichlet eigenvalues satisfy

�1.�2/ � �1.�1/;
and the above inequality is strict if the set �2 n�1 has positive capacity.

Theorem 1.7 (Wavelength density). For any .M; g/, there exists a constant C > 0

(depending on g) such that every ball of radius bigger that C=
p
� intersects with the

nodal set corresponding to '�.

We end this section by giving an overview of the paper.

1.5. Overview of the paper

Here we take the space to list some of our main results. First, we discuss the stability of
topological properties of the first Dirichlet nodal set (or, nodal set for any of the second
Dirichlet eigenfunctions) under small perturbations. Among other results, we prove
that satisfying the strong Payne property1 (or not satisfying) are both open conditions
in a one-parameter family of perturbations of a given bounded domain � � Rn: this
is Proposition 2.6 below. Observe that the results hold in all dimensions, and not
restricted to planar domains only.

After a general laying of foundations, we discuss the position and topology of
the nodal set corresponding to the second Dirichlet eigenfunction in the connector or
“handle” region of thin dumbbell domains (for a proper definition, see Section 3.1
below). In particular, we check the validity of the Payne property (see Definition 2.5
below). We quote the result.

Theorem 1.8. Consider two bounded domains�1,�2�Rn .n� 2/withC1 bound-
ary and a one parameter family of smooth dumbbells�� (as described in Section 3.1)
whose connector widths go to zero as � ! 0. Assume that �i ; i D 1; 2 have simple
second eigenvalues. Let ��i2 ; �2;� denote the second eigenvalues of �i , �� corres-
ponding to eigenfunctions '�i2 , '2;� respectively, i D 1; 2. Assume that the connector
does not intersect N .'

�i
2 /\ @�i and�i do not have the same first or second Dirich-

let eigenvalues. If �2;� ! �
�1
2 (without loss of generality) and �1 satisfies the strong

Payne property, then for sufficiently small � > 0, �� satisfies the strong Payne prop-
erty as well.

1See Definition 2.5 below.
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We note that the simplicity assumption of the second eigenvalue is true up to
generic perturbations (see [66], and also Theorem 4.1 below).

Next, we start a discussion about negative results surrounding the Payne property.
In Section 3.2, we first describe the two-dimensional counterexample in [34] and the
higher-dimensional counterexample in [14]. Next, we give a new counterexample to
the Payne property in higher dimensions, which has the merit of being simply connec-
ted as well. Our example is a perturbation of the base domain provided by Fournais
in [14]. We believe that conceptually our example might be simpler than the counter-
example in [40]. We then finally indicate how to jazz it up to get a domain with
prescribed topological complexity which violates the Payne property.

Theorem 1.9. LetG D �1.�/, where� � Rn (n � 3) is some bounded domain with
smooth boundary. Then, we can construct a domain�0 �Rn with fundamental group
G such that �0 does not satisfy the Payne property.

Two remarks are in order. Firstly, since our methods are based on perturbation
theory, we are actually able to get infinitely many (indeed, a one-parameter family) of
domains violating the Payne property. Secondly, in the above theorem, G can be any
finitely presented group, provided we are content with looking for counterexamples
in dimensions n � 4. In other words, given a finitely presented group G, one can
construct a bounded domain �0 � Rn for any n � 4 such that �1.�0/ D G and �0

does not satisfy the Payne property. Recall the fact that for any finitely presented group
G and any n � 4, one can construct a finite 2-complex X which has an embedding
i WX!Rn such that i.X/ is a retract of its neighbourhood in Rn. [27, Corollary A.10]
proves the easier estimate n � 5, and we refer the reader to [18, Theorem 3.5] and the
discussion therein for the sharp estimate of n � 4 (the statement that we need also
follows from a classical result of Stallings from 1965, unpublished). The rest follows
from the proof of Theorem 1.9.

Next, we begin an investigation into some geometric properties of the nodal set of
low energy eigenfunctions. Our discussion is mainly centred around the angular prop-
erties of the nodal set where it meets the boundary. Apart from being of independent
interest, one motivation to consider this question comes from the Payne problem itself.
In the usual perturbative approach to the Payne conjecture, one considers a domain
with embedded first nodal set, if possible, and perturbs this domain to a convex
domain (or a more general domain that satisfies the strong Payne property). Some-
where along the perturbation process, one encounters a configuration where the nodal
set meets the boundary in a “degenerate” way. In dimension n D 2, this looks like a
“teardrop,” where the first nodal set cuts the boundary exactly at one point. In such a
situation, one can ask what are the possible angles formed at the boundary between
the nodal set and the boundary. It was shown by Melas [53] that the nodal domain for
the second Dirichlet eigenfunction which intersects the boundary of a planar domain
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� cannot have an “opening angle” of 0 or � at the point of intersection. First, to set the
stage, we prove the following for the case of the nodal set intersecting the boundary
(the interior case has already been addressed in [21]).

Theorem 1.10. Suppose N' intersects the boundary of the manifold @M at a point p.
When dimM D 3, the nodal set N' at p satisfies an interior cone condition (see
Definition 3.5 below) with angle & 1p

�
. When dimM D 4, N' at p satisfies an interior

cone condition with angle & 1

�7=8
. Lastly, when dimM � 5, N' at p satisfies an

interior cone condition with angle & 1
�

.

The proof of Theorem 1.10 is essentially the same as that of [21, Theorem 1.6],
with the added observation that the classical Bers expansion of eigenfunctions around
nodal critical points (Theorem 3.6 below) also extends to points on the boundary.

In [26] it is established that the nodal set is the union of a smooth hypersurface and
a set of singular points that is countably .n � 2/-rectifiable. In particular, in dimen-
sion 2, the nodal set is the union of a finite collection of embedded arcs and finitely
many nodal critical points. A result by Cheng [7] further states that on a compact
Riemannian surface, the nodal lines form an equiangular system at these nodal critical
points, the angle depending on the order of vanishing of the eigenfunction at the nodal
critical point. In higher dimensions, the nodal geometry around nodal critical points
might have a more complicated structure since the local picture is obtained from mul-
tiple intersections of .n� 1/-dimensional submanifolds and there is no ready notion of
an angle of intersection at such points. So, we focus on finding the angles between any
two nodal hypersurfaces intersecting at a nodal critical point. When restricted to the
latter case, our result below can be regarded as a sharpened version of Theorem 1.10,
as also as an extension of Cheng’s result in higher dimensions.

Theorem 1.11. Let x 2M , where M is a compact manifold of dimension n � 3. Let
x lie at the intersection of two nodal hypersurfaces M1; M2. Let �1; �2 2 Sn�1 be
two unit normal vectors toM1 andM2 at x. If the order of vanishing of '� at x is n0,
then the angle between M1 and M2 at x is arccos h�1; �2i 2 P , where

P D
°p
q
� W q D 1; 2; : : : ; n0; p D 0; 1; : : : ; q

±
:

Roughly, since the angle of intersection cannot change continuously, this result
should be seen as a “perturbation resistant” nodal geometry phenomenon and puts a
constraint on the possible Payne configurations before the possible bifurcation phe-
nomenon, which is the main obstruction in the usual perturbative proofs of the Payne
conjecture.

In the last section of our paper, we use our perturbation theoretic tools in con-
junction with well-known facts about the Payne problem for long convex domains to
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discuss the somewhat related problem of saturation of the fundamental gap, namely,
whether the fundamental gap �2 � �1 is attained on convex domains. We prove the
following. Let P denote the class of strictly convex C 2-planar domains. Then, we
have the following.

Theorem 1.12. Let � 2 P with diameter D D 1 and inner radius �. There exists a
universal constant C � 1 such that if � � C , then � cannot be the minimiser of the
fundamental gap functional in P.

The proof uses some of the ideas on perturbation theory developed in the pre-
ceding parts of the paper, along with Jerison’s investigations into the Payne prob-
lem [35–37]. The popular belief in the community seems that the fundamental gap
is not saturated in the class of all convex domains, and any infimising sequence for
�2 � �1 (under the normalisation D D 1) should degenerate to a line segment. This
intuitively indicates that, as far as ruling out minimisers of the fundamental gap is
concerned, the “difficult regime” to look for is the class of narrow convex domains,
and the case of domains with large inner radius might be easier. However, we are able
to get a result only in the former case and not in the latter, which might (somewhat
counterintuitively) be the harder case. This is not completely surprising, as our meth-
ods are perturbative in nature, and we are using the deep results of Jerison (which hold
in the setting of long narrow domains only) about the Payne problem, which seems
a priori unrelated to the fundamental gap problem. We close Section 4 by showing
that for a broad class of non-convex simply-connected domains, the multiplicity of
the second Dirichlet eigenvalue is � 2 (this is Theorem 4.9 below). This is directly
related to the Payne property via an insight from [47], and might be of some value in
the future studies of the Payne property.

2. Stability, Payne property and some preliminary results

In this section, we will first look into a certain aspect of the nodal sets that remains
stable under perturbation. Note that many aspects of nodal sets of Laplace eigenfunc-
tions are rather unstable under perturbation, which normally disallows perturbative
techniques (like Ricci flow and related geometric flows etc.) in the study of nodal
geometry. However, one is inclined to ask the question that if the perturbations are
“small enough,” are there certain “soft” properties of the nodal set that are still reas-
onably stable? This was answered in [55], where we proved that if the perturbation is
of subwavelength scale, then the nodal sets do not “see it.” The one-parameter family
of perturbations considered in [55] was inspired by the construction in [64]. Below
we provide a more general setting under which the stability arguments go through.
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2.1. Stability under general perturbations

Consider a domain�t0 with a simple spectrum and a one-parameter family of domains
(not necessarily a continuous family) �t . Let ¹tiº ! t0 be a sequence such that for
all k D 1; : : :, we have

lim
ti!t0

�k.�ti / D �k.�t0/: (2.1)

Define

z�´
°
x 2�t0 W there exists "x >0 such that x 2

\
ti

�t where ti 2 .t0� "x; t0C "x/
±
:

Equivalently, let
z�p ´

\
i�p

�ti and z�´ lim
p!1

z�p:

Heuristically, z� is the eventually unperturbed part of �t0 . Consider the following
C1�convergence2 of eigenfunctions 'k;t 2 C1.�t /, where 'k;t is defined as the
k-th Dirichlet eigenfunction of �t :

lim
t!t0

'k;t D 'k;t0 on z�: (2.2)

Note that all the above conditions on the sub-family �ti are met when considering
generic perturbations of a given domain �t0 . But our results below are applicable for
any perturbations family as long as the above criteria are met. All the eigenfunctions
involved are assumed to be L2-normalised, i.e.,

k'k;tkL2.�t / D k'k;t0kL2.�t0 / D 1:

Then we have the following.

Lemma 2.1. Let N .'k;t / and N .'k;t0/ denote the nodal sets corresponding to 'k;t
and 'k;t0 respectively. Consider a sequence of points ¹xiº such that for each i , xi 2
N .'k;ti / \ z�. If a limit point x of ¹xi W i 2 Nº exists, then x 2 N .'k;t0/.

Proof. Denote Q'k;t D 'k;t jz�. We apply the convergence

'k;t ! 'k;t0 in C 0. z�/

to obtain

j'k;t0.xi /j D j'k;t0.xi / � Q'k;ti .xi /j � k'k;t0 � Q'k;ti kC0.z�/ ! 0 as i !1:

2Actually, it turns out that for almost all of our applications, only C 0-convergence would
suffice.
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Now, 'k;t0 being a continuous function, xi ! x implies 'k;t0.xi /! 'k;t0.x/. There-
fore, 'k;t0.x/ D 0, i.e., x 2 N .'k;t0/.

Now, we have the following.

Lemma 2.2. Suppose in addition to (2.1) and (2.2), we have that j�ti n z�j ! 0. If
N .'k;t0/ � z�, then for ti close enough to t0, the nodal set 'k;ti is fully contained
inside z�.

The proof is a variant of the ideas in [42,64] and follows from a limiting argument.

Proof. Our goal is to show that N .'k;t / � z� for t close enough to t0. If possible, let
there exist a sequence ti ! t0 for which N .'k;ti /ª z�. It can happen in the following
three ways.

(A) The nodal set N .'k;ti / passes from z� to �ti n z� in a continuous path and
no other disconnected component of N .'k;ti / is contained in �ti n z�.

(B) A component of the nodal set passes from z� to �ti n z� in a continuous
path but some other disconnected component of N .'k;ti / is also contained
in �ti n z�.

(C) There is no continuous path as a part of the nodal set from z� to �ti n z� but
the nodal set of N .'k;ti / contains at least one disconnected component in
�ti n z�.

First, we show that as ti ! t0 any disconnected component of N .'k;ti / lies inside
z�, i.e., cases B and C hold only for finitely many i ’s. Note that it is enough to show
that case C can hold only for finitely many i ’s. If not, let there exist a subsequence
¹j º � ¹iº such that C holds. By our assumption, as tj ! t0, we have that j�ti nz�j ! 0. By Weyl’s law, any nodal domain contained in �ti n z� has the ground state
Dirichlet eigenvalue go to infinity. However, note that

�1.�ti n z�/ D �k.�ti /! �k.�/;

which contradicts �1.�ti n z�/!1. So, B and C cannot hold for infinitely many j ’s.
From above, if there exists a subsequence ¹j º � ¹iº such that for some yj 2

N .'k;tj /, yj … z�, then N .'k;tj / satisfies only condition A. Now, consider a sequence
of points ¹xj º such that xj 2 N .'k;tj / \ z� for each j . Then for each j , we get a
continuous path from xj to yj contained in N .'k;tj / whose one end is in z� and
the other end in �tj n z�. Then there exists a point zj 2 N .'k;tj / \ @ z�. Choosing a
convergent subsequence of ¹zj º (and renaming it ¹zj º with mild abuse of notation),
we have a limit z 2 @ z�. Now, using Lemma 2.1 we have that z 2 N .'k;t0/.
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This implies that the intersection N .'k;t0/ \ @ z� is non-empty. But we have
assumed that the nodal set N .'k;t0/ is away from the perturbation of �k;t0 , in other
words, away from @ z�. This is a contradiction, and it completes the proof.

Next, we also recall the following convergence theorem from [31] which will play
a crucial role in the upcoming discussion.

Theorem 2.3 ([31, Theorem 2.2.25]). Let Kn be a sequence of compact sets con-
tained in a fixed compact set B . Then there exists a compact set K contained in B
and a subsequence Knk that converges in the sense of Hausdorff to K as k !1.

Note that the above lemma can be interpreted in terms of “positional stability” of
the nodal sets. Next we discuss the “topological stability” of the first nodal set and a
celebrated conjecture of Payne which is related to the topology type of the first nodal
set for bounded planar domains. A substantial portion of our discussion in this paper
will revolve around this conjecture, which states the following.

Conjecture 2.4 ([58, Conjecture 5]). For a bounded domain � � R2, the second
eigenfunction of the Laplacian with Dirichlet boundary condition does not have a
closed nodal line.

We will refer this conjecture as the Payne conjecture or the nodal line conjecture
throughout our text. The second nodal domains represent a 2-partition of � minim-
ising the spectral energy, that is

�2.�/ D inf¹max¹�1.�1/; �1.�2/º W �1; �2 � � open,

�1 \�2 D ;; �1 [�2 D x�º;

where the infimum is attained only when �1; �2 are the nodal domains of some '2.
One idea behind the above conjecture is that it would be suboptimal from the per-
spective of energy minimisation to have one nodal domain concentrated somewhere
in the interior of�, with the other occupying its boundary. Liboff, in [45], conjectured
that the nodal surface of the first excited state of a three-dimensional convex domain
intersects its boundary in a single simple closed curve. The conjecture is analogous to
that of Payne in dimension 3.

2.2. Some previous work on topology of first nodal sets

Now, let us look at some progress made on the above conjecture in a chronological
order.

Payne [59] addressed the conjecture provided the domain � � R2 is symmetric
with respect to one line and convex with respect to the direction vertical to this line.
Lin [47] following a similar approach, proved the conjecture provided the domain
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��R2 is smooth, convex and invariant under a rotation with angle 2� p
q

, where p and
q are positive integers. Both the proofs rely heavily on the symmetry of the domain.
In [48], Lin and Ni provided a counterexample of the nodal domain conjecture for the
Dirichlet Schrödinger eigenvalue problem. For each n � 2, they construct a radially
symmetric potential V in a ball so that the nodal domain conjecture is violated. In
1991, Jerison proved in [36] that the conjecture is true for long thin convex sets in R2.
More specifically, there is an absolute constant C such that given a convex domain
� � R2 with diam.�/

inrad.�/ � C , we have that the nodal set corresponding to the second
eigenfunction intersects the boundary at exactly two points. Here inrad.�/ denotes the
radius of the largest ball that can be inscribed in� and diam.�/ denotes the diameter.
In the following year, Melas relaxed the condition of “long and thin” in [53] and
proved the conjecture for any bounded convex domain � in R2 with C1 boundary.
Alessandrini further relaxed the C1-boundary condition and proved the conjecture
for general convex planar domains in [3].

To the extent of our knowledge, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,
and Nadirashvili in [34] provided the first counterexample of the Payne conjecture in
R2 for the case of Dirichlet Laplacian. We outline the basic idea of their construction
in Section 3.2 below. We mention in passing that the boundedness of the domain is
crucial for results of the Payne type (see [15]).

Regarding the topological properties of the first nodal set in higher dimensions,
Jerison [37] extended his result for long and thin convex sets in higher dimensions
In [14], Fournais extended the result of [34] in higher dimensions and proved that
the first nodal set does not intersect the boundary (we outline his construction in Sec-
tion 3.2 below). The domain constructed by Fournais was not topologically simple,
which was later addressed in [40]. Recently, Kiwan, in [41], proved the nodal domain
conjecture for domains which are of the form A n B where A and B have sufficient
symmetry and convexity.

Let ' be a Dirichlet eigenfunction for a bounded domain � � Rn with smooth
boundary. For any p 2 @�, p 2N' if and only if @'

@�
D 0, where � denotes the outward

normal at p. The proof for dimension n D 2 is covered in [47, Lemma 1.2], and
one can check that a similar proof is true in higher dimensions as well. Let x D
.x1; : : : ; xn/µ .x0; xn/, and let the domain � be tangent to the x0-hyperplane at the
origin. If @'

@�
.0/ ¤ 0, then by the implicit function theorem, xn is uniquely solvable

as a function of x0 in a neighbourhood of 0, which means that the only zeros of '
near the origin occur on @�. The converse case is addressed by a variant of the Hopf
boundary principle (see [23, Lemma H]).

Consider any Dirichlet eigenfunction ' whose nodal set N' divides� into exactly
two nodal domains. In particular, any first nodal set (nodal set corresponding to some
second eigenfunction) always divides the domain � into exactly two components.
Then we have the following three cases.
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(SP) If @'
@�

changes sign on the boundary, then N ' \ @� ¤ ; and N ' divides at
least one component of @� into exactly two components.

(WP) If @'
@�
� 0 (without loss of generality) on the boundary with at least one point

x 2 @� such that @'
@�
.x/D 0, then N ' \ @�¤ ; but @� nN ' has the same

number of connected components as @�.

(NP) If @'
@�
> 0 (without loss of generality) on the boundary, then N ' \ @� D ;.

Definition 2.5. We say that any second eigenfunction ' satisfies the Payne property
if the nodal set of ' intersects the boundary @�, that is either (SP) or (WP) is true. We
say that ' satisfies the strong Payne property if only (SP) is true. Also, we say that
� satisfies the (strong) Payne property if every second eigenfunction ' of � satisfies
the (strong) Payne property.

Now, we will prove below that certain nodal configurations of the first nodal set
remain stable under small enough perturbations.

Proposition 2.6. In the setting of Lemma 2.2, satisfying the property (SP) or (NP) is
an open condition, in the sense that if �t0 satisfies (SP) (or (NP)), so do �ti for ti
sufficiently close to t0.

Proof. By Lemma 2.2, we know that N .'2;t / is eventually inside z� � �t0 . By
precompactness in Hausdorff metric as quoted in Theorem 2.3, one can extract a sub-
sequence called N .'2;ti /, which converges to a set X � �t0 in the Hausdorff metric.
By Lemma 2.1, we already know thatX �N .'2;t0/. It follows that for i large enough,
N .'2;ti / is within any ı-tubular neighbourhood of N .'2;t0/.

Let N .'2;t0/ satisfy (NP). Then N .'2;t0/ does not intersect the boundary @ z�. For
small enough ı, the ı-tubular neighbourhood of N .'2;t0/ does not intersect @ z�. This
implies that given such a ı, for large enough i , N .'2;ti / does not intersect @ z�. The
above argument is schematically described in Figure 1 below.

Now, assume that N .'2;t0/ satisfies (SP). If possible, let (SP) be not an open
condition, that is there exists a subsequence ¹kº � ¹iº such that N .'2;tk / does not
satisfy (SP). This means that one of nodal domains of the second Dirichlet eigen-
function of �tk is within any ı-tubular neighbourhood of N .'2;t0/ and the volume
of such a tubular neighbourhood is going to 0 as ı & 0 (see Figure 2 below). This
contradicts the Faber–Krahn inequality (or the inner radius estimate for the second
nodal domain of ��k ), and implies that for large enough i , N .'2;ti / intersects the
boundary. Moreover, if the first nodal set is a submanifold, then using Thom’s isotopy
theorem (see [1, Section 20.2]) one can conclude that for large enough i , N .'2;ti / is
diffeomorphic to N .'2;t0/.
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z

ı

N2;t0

Figure 1. Property (NP) is an open condition.

ı

N
k

z

Figure 2. Property (SP) is not an open condition.



On the effects of small perturbation on low energy Laplace eigenfunctions 1059

In essence, the goal of the proof described above is two fold: to prove the sta-
bility of the boundary Neumann data in case that the limiting domain satisfies (SP)
or (NP), and to show that the first nodal set of the perturbed domains cannot perturb
(in Hausdorff sense) too much from the limiting nodal set. More precisely, for suf-
ficiently small perturbations the first nodal set of the perturbed domains should lie
in a ı-neighbourhood (ı however small) of the first nodal set of the limiting domain
given that the limiting nodal set satisfies (NP) or (SP). We finish this section with the
following.

Remark 2.7. Let � � Rn be a domain which can be realised as a one-parameter
family of real-analytic perturbations of the ball. Let the unit ball be denoted by �0
and �1 D �. Then ¹t 2 Œ0; 1� W �t satisfies (SP)º is an open set.

3. Applications: Stability on low energy nodal sets

In [55], the present authors proved that certain simply-connected perturbations of
convex planar domains and perforated domains with sufficiently small perforations
satisfy the nodal line conjecture. In what follows, we continue that discussion with
several other classes of domains. Moreover, we also look at several other applications
of our stability results and look at certain “perturbation resistant” features of angle
estimates of the nodal domains in higher dimensions.

3.1. Payne property of domains with narrow connector

As is already pointed out, by the work in [53], the strong Payne property is known to
hold on convex domains. By further work in [55], it is also known to hold on domains
obtained from small perturbations of (strictly) convex domains. Somehow a natural
approach would be to investigate the validity of the conjecture on domains which are
in some sense both “very far” from being convex, or being small perturbations thereof.
A natural class of such domains would be the so-called dumbbell domains.

We consider dumbbells as constructed in [38]. Consider two bounded disjoint
open sets �1 and �2 in Rn; n � 2 with smooth boundary such that the boundary of
each domain has a flat region. More precisely, for some positive constant � > 0,

x�1 \ ¹.x1; x0/ 2 R �Rn�1 W x1 � �1I jx0j < 3�º D ¹.�1; x0/ 2 @�1 W jx0j < 3�º;
and

x�2 \ ¹.x1; x0/ 2 R �Rn�1 W x1 � 1I jx0j < 3�º D ¹.1; x0/ 2 @�2 W jx0j < 3�º:
LetQ be a line segment joining the flat segments (as described above) of @�1 and

@�2. For some small enough fixed � > 0, consider the dumbbell domain�� obtained
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x1 1 x2D 1

Q

Figure 3. Thin connector Q� .

by joining �1 and �2 with a connector Q� denoted by

�� ´ �1 [�2 [Q�:

Here
Q� D Q1.�/ [ L.�/ [Q2.�/

is given by

Q1.�/ D
°
.x1; x

0/ 2 R �Rn�1 W �1 � x1 � �1C 2�I jx0j < ��
��1 � x1

�

�±
;

Q2.�/ D
°
.x1; x

0/ 2 R �Rn�1 W 1 � 2� � x1 � 1I jx0j < ��
�x1 � 1

�

�±
;

L.�/ D ¹.x1; x0/ 2 R �Rn�1 W �1C 2� � x1 � 1 � 2�I jx0j < �º;

where � 2C1..�2;0//\C 0..�2;0�/ is a positive bump function satisfying �.0/D 2
and �.q/ D 1 for q 2 .�2;�1/ (see Figure 3).

Considering now the Dirichlet boundary condition on �� , as pointed out in [25,
Chapter 7] (see also [10] and [29, Chapter 2]),

�k.��/! �k.�1 [�2/ as � ! 0:

Here, �k.�1 [ �2/ denotes the k-th element after rearranging the Dirichlet eigen-
values of �1 and �2 non-decreasingly. Let ƒi denote the spectrum of �i (i D
1; 2), and '�i

k
denote the k-th Dirichlet eigenfunction of �i corresponding to the

eigenvalue ��i
k

. If ƒ1 \ ƒ2 D ;, then each eigenfunction 'k;� on the domain ��
approaches in L2-norm an eigenfunction 'k;0´ '

�i
k0

(for some i D 1; 2 and k0 � k)
which is fully localised in one subdomain �i and zero in the other. The fact that the
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spectra of �1 and �2 do not intersect is important for localisation of the eigenfunc-
tions to exactly one subdomain �i .

We are interested in looking at the nodal sets of the second eigenfunctions of
these dumbbell domains with narrow connectors. Without loss of generality, let the
eigenfunctions '2;�i localise (in the sense described above) on �1 as �i ! 0. Then,
we can rearrange ƒ1 tƒ2 in the following two ways:

Case I: �
�2
1 < �

�1
1 < �

�i
j � � � �, for some i D 1; 2, and j � 2;

Case II: �
�1
1 < �

�1
2 < �

�i
j � � � �, for some i D 1; 2, and j 2 N.

In general, we label the above arrangement as �1;0 � �2;0 � � � �. Now, redefine
'2;�i ; '2;0 on Rn as

'2;�i D
´
'2;�i on ��i ;

0 otherwise,

and

'2;0 D
´
'
�1
1 (or '�12 for Case II) on �1;

0 otherwise.

Since we have assumed that the second eigenfunction localises on �1, we have that

k'2;�i � '2;0kL2.Rn/ ! 0 as �i ! 0:

We now begin proving Theorem 1.8 which deals with Case II.

Proof. Consider a smooth hypersurface � 0 � x�1 such that there exists a ı-tubular
neighbourhood of � 0 (denoted by T�0;ı ) contained in �1 and away from the perturb-
ation. Moreover, � 0 is chosen in such a way that

• � 0 divides every �� into exactly two components with one of the components
being �0 � �1 (see Figure 4);

• @�1 is not a subset of the closure of either components (in other words, we
are not considering � 0 to be a closed smooth hypersurface completely contained
inside �1).

Now, define � D �0 [ T�0;ı , and � D � 0 C ı (the outer boundary of T�0;ı with
respect to �0). Note that the boundary of � can be divided into two parts, namely �
and ��´ x� \ @�1.

We want to prove that '2;� ! '2;0 in C 0.�0/. We divide �0 into two regions, �01
and�02, such that�0 D �01 [�02. Here,�01´ ¹x 2 � W dist.x; @�/ > ıº, the “inner
ı-shell” of �1, and �02´ �0 n�01 (see Figure 4).

We first prove that '2;� ! '2;0 in C 0.�01/. Consider

.�C �2;0/Œ'2;�i � '2;0� D .�2;0 � �2;�i /'2;�i on �01
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ı

2

Figure 4. �0´ interior of �0
1
[�0

2
.

and
.�C �2;�i /'2;�i D 0 on ��i :

Observe that�01 is compactly contained inside� � �1. Now, applying [24, The-
orem 8.24 and Theorem 8.15] in the above two equations consecutively, we have that
for some q > n and � > sup¹�2;0; �2;�i º,

k'2;�i � '2;0kL1.�01/
� C.k'2;�i � '2;0kL2.�/ C k.�2;0 � �2;�i /'2;�i kLq=2.�01//
� C.k'2;�i � '2;0kL2.�/ C C �j.�2;0 � �2;�i /j � k'2;�i kL1.�01//
� C.k'2;�i � '2;0kL2.�/ C C �j.�2;0 � �2;�i /j � k'2;�i kL1.��i //
� C.k'2;�i � '2;0kL2.�/ C C 0j�2;0 � �2;�i j � k'2;�i kL2.��i //
� C.k'2;�i � '2;0kL2.Rn/ C C 0j�2;0 � �2;�i j � k'2;�i kL2.Rn//;

where C; C 0 depends on q; �; ı and j��i j. For each i , j��i j is uniformly bounded
which implies that the constants on the right are independent of i .

Now, using �2;�i ! �2;0 and the fact that k'2;�i � '2;0kL2.Rn/! 0, we have that
as i !1,

k'2;�i � '2;0kL1.�01/ ! 0:

Now, considering the other part �02, note that '2;�i ; '2;0 D 0 on @�02 \ @�1.
Using [68, Theorem 1.1], we have that the supremum norm of the gradients of '2;�i
and '2;0 are bounded above uniformly, which in turn implies that '2;�i ; '2;0 is suf-
ficiently close to 0. This combined with the above uniform convergence gives us our
required C 0-convergence on �0.
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p

Figure 5. Behaviour of nodal line as � ! 0.

From our assumption, we have �2;0D ��12 with '2;�j�1! '
�1
2 inL2.�1/. Addi-

tionally, choose the hypersurface � 0 � �1 such that N .'
�1
2 / lies in �0.

If possible, let N .'2;�i / intersect the connector Q�i for every �i > 0, and let
N .'2;�i / \ � 0 D ¹piº 2 �1. Then there exists a subsequence ¹pj º � ¹piº and some
p 2 �1 such that ¹pj º ! p, and from Lemma 2.1, we have that p 2 N .'

�1
2 /. Recall

that we have assumed that Q� is away from N .'
�i
2 / (i D 1; 2), that is, Q� does not

intersect N .'
�1
2 / for any � > 0. This leads to a contradiction which implies that, there

exists �0 > 0 such that N .'2;�/ � �0 for any � < �0 (see Figure 5).
Now, using Theorem 2.3 one can extract a subsequence called N'2;�i

(�i < �0)
which converges to a setX ��1 in the Hausdorff metric and by Lemma 2.1 we know
that X � N .'

�1
2 /. Now, following the argument as in Proposition 2.6, we conclude

the proof.

Remark 3.1. With some obvious modifications, the above proof also tells us that if
�1 satisfies (NP), then so does �� for sufficiently small �.

So far, we have only looked at the nodal sets of the dumbbells under Case II. Now,
we turn our attention to the location of nodal sets under Case I.

Theorem 3.2. Consider a family of dumbbells as described in Theorem 1.8 with the
condition that �2;� ! �

�1
1 . Then, for sufficiently small �, N .'2;�/ does not enter

�0 � �1.

We would like to point out that the only restriction on the choice of � 0 in this case
is that � 0 divides every�� into exactly two components as described in the beginning
of the proof of Theorem 1.8. In other words, one can choose � 0 � �1 sufficiently
close to the connectors.
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Figure 6. N D 4 ([34, Figure 1]).

Proof. Considering the case when �2;0 D ��11 and '2;�i ! '
�1
1 in L2.�1/, note that

'
�1
1 does not change sign in �1. Without loss of generality, assume that '�11 > 0

in�1. Moreover, we know that N .'2;�/ divides�� into two components. If possible,
let N .'2;�/ enters �0 for every � > 0. Then N .'2;�/ intersects � 0 for every �. Since
'
�1
1 > 0 in �1 and k'2;� � '�11 kC0.�0/ ! 0, it is clear that for small enough �,
'2;� > 0 on � 0, which is a contradiction.

A natural follow-up to the above theorem is that, under Case I, can we say that for
sufficiently small �, N .'2;�/ does not enter �1 at all?

We comment in passing that dumbbell domains have many interesting proper-
ties that are of interest to spectral theorists. For example, they provide examples of
domains which have arbitrarily low second Neumann eigenvalue, and almost satisfy
a weak version of the hot spot conjecture (see [56]). There is also a significant liter-
ature on mass concentration questions in the connector of the dumbbell, for example
see [5, 11, 22, 67].

3.2. Counterexample to the Payne property in higher dimensions

We begin by discussing the planar counterexample as given in [34]. First, we choose
two concentric balls BR1 and BR2 in R2 such that

�1.BR1/ < �1.BR2 n BR1/ < �2.BR1/:

Next, we carve out holes into @BR1 . Let N 2 N and � < �=N . The domain �N;� is
defined as

�N;� D BR1 [ .BR2 nBR1/[
�N�1[
jD0

°
x 2R2 W r DR1;! 2

�2�j
N
� �; 2�j

N
C �

�±�
:

Then the first nodal line does not intersect the boundary for sufficiently large N and
small � (see Figure 6 above).
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In higher dimensions (n � 3), the domain constructed by Fournais was motivated
from the example in [34] described above and defined as follows:

�� D BR1 [ .BR2 n BR1/ [
� N[
iD1

B.xi ; �/
�
;

where BR is a ball of radius R centred at 0, and x1; : : : ; xN 2 Sn�1R1
are chosen in

such a way that the “patches” B.xi ; �/ \ Sn�1R1
are evenly distributed over Sn�1R1

, the
sphere with centre at 0 and radius R1. For convenience, moving forward we will refer
to the sphere Sn�1R1

as S . Also, R1 and R2 are chosen such that

�1.BR1/ < �1.BR2 n BR1/ < �2.BR1/:
Then for small enough �, the second eigenfunction '2;� satisfies

N .'2;�/ \ @�� D ;:
The main idea in [14] is to prove that for small enough ı > 0, there is � > 0 such
that '2;�.x/ > 0 on jxj D R1 � ı. Then using various assumptions made during the
construction along with certain topological restrictions of the first nodal set N .'2;�/,
one concludes that N .'2;�/ is contained inside BR1�ı .

Note that the domain �� described above is not simply connected. Also, �� has
a simple spectrum. Our goal in this section is to produce a simply-connected domain
whose nodal set does not intersect the boundary.

Let �0´ �� , where the nodal set is contained in BR1�ı . Throughout the rest of
the proof, the above � and ı will remain fixed. From �0, we can construct simply-
connected domains by adding .n� 1/-dimensional “tunnels” or “strips” T� along S in
between the “patches”B.xi ; �/ such that every patch is connected to the neighbouring
patches by tunnels (see Figure 7). Our idea is to make these tunnels narrow enough
so that the nodal set of �0 does not get sufficiently perturbed.

Let � > 0. For any i; j 2 ¹1; : : : ; N º .i ¤ j /, let pij .t/W Œ0; 1� ! S be a path
between xi and xj along S such that the length of pij is distS .xi ; xj /, the geodesic
distance between xi and xj on S. Let t0 and t1 2 Œ0; 1� be such that pij .t0/ 2 @B.xi ; �/
and pij .t1/ 2 @B.xj ; �/. Now, consider the path segment Pij D Œpij .t0/; pij .t1/�. Let
�ij .�/ denote the �-tubular neighbourhood of Pij . Define the tunnel T i;j� ´ S \
�ij .�/. Let there be kN tunnels in total. Denote

T� ´
kN[
iD1

T i;j� :

Now, we define a family of domains �� as

�� ´ BR1 [ .BR2 n BR1/ [
� N[
iD1

B.xi ; �/
�
[ T� D �0 [ T�:
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Figure 7. Topologically simple counterexample to Payne.

It is easy to check that �� is simply connected and given any sequence �q & 0

there is a subsequence ¹�pº � ¹�qº such that ��p converges to �0 in Hausdorff met-
ric. Now, we check that the perturbation to the nodal set is controlled.

Let 'j;� , 'j;0 denote the eigenfunction corresponding to eigenvalues �j;� , �j;0 of
the Dirichlet Laplacian ��� , ��0. We assume that the eigenfunctions are L2-norm-
alised. Also note that, from our assumption, we have that '2;0 > 0 in �0 n BR1�ı .

Let ¹�pº & 0 be any strictly monotonically decreasing sequence and

Xp ´ BR2 n��p :

Note that ¹Xpº is an increasing family of compact sets. Define

Pp ´
1[
k�p

Xk and Qp ´
1\
k�p

Xk :
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Using the convention from [63, p. 278], we have that Pp % X D limXp and
Qp & X D limXp where X D BR2 n�00 and �00 ´ �0 [

�S
Pij
�
. Also, for any

p;m 2 N, Xp 4 Xm � T�1 which has finite capacity and cap.�0 4�00/ D 0. Then
using [63, Theorem 2.2], we have that ���p converges to ��0 as p !1 in norm
resolvent sense (recall that if ¹Tpº1nD1 and T are unbounded self-adjoint operators,
then Tp! T in norm resolvent sense means that for some z 2C nR, k.zI � Tp/�1 �
.zI � T /�1k ! 0 as p !1). In particular, for �2;0 there exists a sequence �p ! 0

such that
�2;�p ! �2;0:

Redefining '2;�p ; '2;0 by 0 on Rn n��p ;Rn n�0 we also have that '2;�p ! '2;0 in
L2.Rn/.

We know that N .'2;0/ is completely contained inside BR1�ı . Now, we would
like to show that '2;�p ! '2;0 in C 0.BR1�ı/. Consider

.�C �2;0/Œ'2;�p � '2;0� D .�2;0 � �2;�p /'2;�p on BR1�ı0 ;

and
.�C �2;�p /'2;�p D 0 on ��p

where 0 < ı0 < ı. Now, using [24, Theorem 8.24 and Theorem 8.15] consecutively on
the above equations as done in the proof of Theorem 1.8 we have that for some q > n
and � > sup¹�2;0; �2;�pº,

k'2;�p � '2;0kL1.BR1�ı/
� C.k'2;�p � '2;0kL2.Rn/ C C 0j�2;0 � �2;�p j � k'2;�pkL2.Rn//;

where C; C 0 depends on n; q; �, and j��p j. For each p, j��p j is uniformly bounded
which implies that the constants on the right hand are independent of p. Now, using
�2;�p ! �2;0 and k'2;�p � '2;0kL2.Rn/ ! 0, we have that as p !1,

k'2;�p � '2;0kL1.BR1�ı/ ! 0;

which gives our desired C 0.BR1�ı/ convergence.
Finally, using Lemma 2.1 and Proposition 2.6, we know that N .'2;�n/ converges

to N .'2;0/. So, for sufficiently large n0 2 N, we have

N .'2;�n0 / �� BR1�ı :

In other words, we have a simply-connected domain ��n0 2 Rn.n � 3/ for which

N .'2;�p / \ @��n0 D ; for every p � n0:
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y

Figure 8. Counterexample of Payne property with any prescribed topology.

Proof of Theorem 1.9. Given � � Rn (n � 3), the way to construct the required
domains is by taking the connected sum of ��n0 with the given domain �. But we
note that one cannot blindly attach one domain with another since the attached met-
ric will not be Euclidean (or even flat) in general. So the family of metrics is to be
designed precisely to ensure that each deformation �� D ��n0#�� is a Euclidean
domain.

Consider a one-parameter family of deformations�� , where�� can be written as
a disjoint union ��1 t��2 (see Figure 8), where

• ��1´ ��n0 n B.�; �/, for some � 2 @BR2 ;

• �2 � Rn is another domain defined as � [ B.y; 1/ with y 2 @�, and ��2 is
obtained from �2 by scaling gj��

2
D �2gj�2 .

Then, with some obvious modifications to the proof of [42, Theorem 3.4], we have
that for sufficiently small �, '2;�! '2.��n0 / in C 0-norm. Then applying Lemma 2.1
and Proposition 2.6 again, we have that �� satisfies (NP) for sufficiently small �.
Moreover, since ��n0 is simply connected, we have that ��1 is simply connected
which implies that �� has the same fundamental group as that of �.
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Figure 9. Four equiangular “rays” from p.

3.3. Angle estimates of nodal sets

A consequence of the fact that (SP) is open (as proved in Proposition 2.6) is that the
angle at the nodal critical points of the first nodal set with order of vanishing 2 and
satisfying (SP) remains stable under perturbation.

3.3.1. Opening angles nodal domains in the interior and the boundary. It was
shown by Melas [53] that the nodal domain for the second Dirichlet eigenfunction
which intersects the boundary @� cannot have an “opening angle” of 0 or � at the
point of intersection. Here, we provide a generalisation of this result from a different
perspective, one that was introduced in [21].

Interior cone conditions. In dimension nD 2, a well-known result of Cheng [7] says
the following (see also [62] for a proof using Brownian motion).

Theorem 3.3. For a compact Riemannian surface M , the nodal set N'� satisfies an
interior cone condition with opening angle ˛ & 1p

�
.

Furthermore, in dimension 2, the nodal lines form an equiangular system at a
singular point of the nodal set (see Figure 9). The idea behind Cheng’s proof is the
following: using a local power series expansion due to Bers (see Theorem 3.6 below),
near any point of vanishing the eigenfunction “looks like” a homogeneous harmonic
polynomial whose degree matches the order of vanishing at that point. If the order of
vanishing is k, then in two dimensions such a function would be a linear combination
of rk cos k� and rk sin k� . This gives an equiangular nodal junction.
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The situation is significantly more complicated in higher dimensions. Setting
dimM � 3, we discuss the question whether at the singular points of the nodal set N' ,
the nodal set can have arbitrarily small opening angles, or even “cusp”-like situations,
or the nodal set has to self-intersect “sufficiently transversally.” We observe that in
dimension n � 3 the nodal sets satisfies an appropriate “interior cone condition,” and
give an estimate on the opening angle of such a cone in terms of the eigenvalue �.

Now, in order to properly state or interpret such a result, one needs to define the
concept of “opening angle” in dimension n � 3. We start by defining precisely the
notion of tangent directions in our setting.

Definition 3.4. Let�� be a nodal domain and x 2 @��, which means that '�.x/D 0.
Consider a sequence xn 2N' such that xn! x. Let us assume that in normal coordin-
ates around x, xn D exp.rnvn/, where rn are non-negative real numbers, and vn 2
S.TxM/, the unit sphere in TxM . Then, we define the space of tangent directions
at x, denoted by �xN' as

�xN' D ¹v 2 S.TxM/ W v D lim vn; where xn 2 N' ; xn ! xº:

Observe that there are more well-studied variants of the above definition, for
example, as due to Clarke or Bouligand (for more details, see [60]). With that in
place, we now give the following definition of “opening angle.”

Definition 3.5. We say that the nodal domain �� satisfies an interior cone condition
with opening angle ˛ at x 2 N' � @��, if any connected component of S.TxM/ n
�x@�' has an inscribed ball of radius & ˛.

We will use Bers scaling of eigenfunctions near zeros (see [6]). We quote the
version which appears in [69, Section 3.11].

Theorem 3.6 (Bers). Assume that '� vanishes to order k at x0. Let '�.x/D 'k.x/C
'kC1.x/C � � � denote the Taylor expansion of '� into homogeneous terms in normal
coordinates x centred at x0. Then '�.x/ is a Euclidean harmonic homogeneous poly-
nomial of degree k.

We also use the following inradius estimate for real analytic metrics (see [19]).

Theorem 3.7. Let .M; g/ be a real-analytic closed manifold of dimension at least 3.
If �� is a nodal domain corresponding to the eigenfunction '�, then there exist con-
stants �0; c1 and c2 which depend only on .M; g/, such that

c1

�
� inrad.��/ �

c2p
�
; � � �0:

Since the statement of Theorem 3.7 is asymptotic in nature, we need to justify that
if �<�0, a nodal domain corresponding to �will still satisfy inrad.��/� c3

�
for some
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constant c3. This follows from the inradius estimates of Mangoubi in [50], which hold
for all frequencies. Consequently, we can assume that every nodal domain � on Sn

corresponding to the spherical harmonic 'k.x/, as in Theorem 3.6, has inradius & 1
�

.
Now, we start proving Theorem 1.10.

Proof. Since the eigenequation ��'� D �'� is satisfied at p, one can check that the
proof of Theorem 3.6 above still works at p, for all p 2 M [ @M . We observe that
Theorem 3.7 applies to spherical harmonics, and in particular the function exp�.'k/,
restricted to S.Tx0M/, where 'k.x/ is the homogeneous harmonic polynomial given
by expanding ' at p in terms of x 2 M [ @M given by Theorem 3.6. Also, a nodal
domain for any spherical harmonic on S2 (respectively, S3) corresponding to eigen-
value � has inradius � 1p

�
(respectively, & 1

�7=8
).

With that in place, it suffices to prove that

�x0N' � �x0N'k : (3.1)

Now, by definition, v 2 �x0N' if there exists a sequence xn 2 N' such that xn! x0,
xn D exp.rnvn/, where rn are positive real numbers and vn 2 S.Tx0M/, and vn! v.

This gives us

0 D '�.xn/ D '�.rnexp vn/

D rkn'k.exp vn/C
X
m>k

rmn 'm.exp vn/

D 'k.exp vn/C
X
m>k

rm�kn 'm.exp vn/

! 'k.exp v/; as n!1:

Observing that 'k.x/ is homogeneous, this proves (3.1).

Observe that Theorem 1.10 above tells us that the following two situations in
Figure 10 can never happen at the boundary for the nodal set of any eigenfunction
(there is nothing specific about the second eigenfunction).

Remark 3.8. In dimM D 2, since any point p 2 @M satisfies the eigenequation
��' D �', the local expansion of Bers is true on the boundary as well. Then using
the above ideas of Cheng on the boundary, we have that if p 2 @M has k-th order of
vanishing then N' forms an equiangular junction at p with respect to the tangent at p.

3.3.2. More precise estimates on opening angles. We are now going to investigate
in more detail the angle between two nodal hypersurfaces at a point of intersection. In
some sense, our results here are going to be higher-dimensional analogues of Cheng’s
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(a) Opening angle=0. (b) Opening angle=� .

Figure 10. Impermissible angle of intersections for any bounded domain in R2.

result outlined in Remark 3.8. Very interestingly, such problems have been investig-
ated from a completely different viewpoint in classical Fourier analysis, namely, the
existence of Heisenberg uniqueness pairs.

Now, we begin proving Theorem 1.11. Our proof is a modification of ideas in [13].

Proof. Let
P D

°p
q
� W q D 1; 2; : : : ; n0; p D 0; 1; : : : ; q

±
:

If possible, let cos�1 h�1; �2i … P where �i is a unit normal to Mi at x. Without loss
of generality, we think of x as the origin in Rn. Consider the spherical coordinates
.r; �; '/ in Rn, where r � 0, � ´ .�1; : : : ; �n�2/ 2 Œ0; �/n�2, ' 2 Œ0; 2�/.

It is known that ¹Y˛ W ˛ 2 � ´ Nn�2
0 �Zº forms a basis of spherical harmonics,

where
Y˛.r; �; '/ D r j˛j exp .i˛n�1'/ zY˛.�/;

with zY˛.�/ ´
Qn�2
iD1.sin �n�i /j˛j

iC1
C

i
˛i .cos �i /, and j˛ji D ˛i C ˛iC1C���C˛n�1 ,


i D j˛jiC1 C 1
2
.n � i � 1/, where C 
i˛i are the Gegenbauer polynomials. From the

orthogonality of C 
n , for each n � 1, notice that the set

¹ zY.ˇ;m/ W .ˇ;m/ 2 Nn�1
0 ; jˇj Cm D nº; N0´ N [ ¹0º;

is linearly independent.
Observe that Mi \ B.0; �/ can be parametrised in polar coordinates as

Mi \ B.0; �/ D ¹.r; �;  i .r; �//; 0 � r < �; � 2 Œ0; �/n�2º;
where  i .r; �/ 2 S1 and  i ’s are smooth functions. Defining

'i .�/ WD lim
r!�

 i .r; �/;

from our assumption arccos h�1; �2i … P , it follows that '1 � '2 … P .
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Since the order of vanishing of '� at 0 is n0, using Theorem 3.6, the solution '�
of .�C �/'� D 0 in Mi \ B.0; �/ can be expressed in spherical coordinates in the
form

'�.r; �;  i .r; �// D rn0
n0X

mD�n0

� X
jˇ jCjmjDn0

cˇ;m zYˇ;m.�/
�
eim'i C o.rn0/:

Since, '� D 0 on Mi \ B.0; �/ as r ! 0, it follows that
n0X

mD�n0

� X
jˇ jCjmjDn0

cˇ;m zYˇ;m.�/
�
eim'i D 0;

that isX
jˇ jDn0

cˇ;0 zYˇ;0.�/C
n0X
mD1

� X
jˇ jCmDn0

.cˇ;me
im'i C cˇ;�me�im'i / zYˇ;m.�/

�
D 0

Since ¹ zY.ˇ;m/º is linearly independent, cˇ;0 D 0 whenever jˇj D n0 and for each
m D 1; 2; : : : ; n0, we have n0 system of equations

cˇ;me
im'1 C cˇ;�me�im'1 D 0;

cˇ;me
im'2 C cˇ;�me�im'2 D 0:

Notice that the determinant of each of the above systems is 2i sin m.'1 � '2/,
m D 1; 2; : : : ; n0. If

.'1 � '2/ …
°p
q
� W q D 1; 2; : : : ; n0; p D 0; 1; : : : ; q

±
;

then each of above n0 determinants is non-zero, which forces each cˇ;m D cˇ;�m D 0,
which implies that the coefficient of rn0 is zero. But this contradicts the fact that '�
has n0 order of vanishing at 0. So,

cos�1 h�1; �2i 2 P:

Remark 3.9. Recall the celebrated result of [12] that any �-eigenfunction '� van-
ishes to at most order c.M;g/

p
� for any point inM . Then, using our result above, we

have that whenever two nodal hypersurfaces intersect, the admissible angles between
such intersecting hypersurfaces is from the set

P D
°p
q
� W q D 1; 2; : : : ; Œc

p
��; p D 0; 1; : : : ; q

±
: (3.2)

Also, using Theorem 1.10, we can rule out the cases when p D 0; q for every q D
1; 2; : : : ; c

p
�. Then one sees that the minimum angle (in the sense of Theorem 1.11)

between two nodal hypersurfaces is & 1p
�

.
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To sum up the discussion so far, consider a point x 2 N' . Then the opening angle
of a nodal domain at x will in general be given by Definition 3.5. However, if x
happens to lie at the intersection of some nodal hypersurfaces, then the angle between
any pair of such nodal hypersurfaces will come from the set P in (3.2).

4. Further applications: Perturbation theory and low spectral gaps

We study the variation of the Dirichlet Laplace spectrum and corresponding eigen-
functions with C 2 variations of bounded Euclidean domains, particularly those
domains � which are critical points of �2 � �1.

Let the smooth deformation space of � be given by a Banach manifold B. First,
we prove the following.

Theorem 4.1. The set of points inside B (each represented by a perturbation of our
starting domain �) such that the Dirichlet Laplacian has simple spectrum is a resid-
ual set.

We note that Theorem 4.1 is not new, for example see [66, Example 3, Section 4].
The ideas involved in our proof are based on [17] and are well known by now, though
we have not seen this exact proof in the literature. More importantly, it sets up some
crucial heuristics and ideas used later.

Results of the nature of Theorem 4.1 are ultimately based on transversality phe-
nomena (as illustrated in [66]). Loosely speaking, they can be considered infinite-
dimensional analogues of the following statement: generically, all symmetric matrices
have non-repeated eigenvalues. At a more basic level, an equivalent statement is the
fact that single variable polynomials generically have non-repeated roots.

4.1. Proof of Theorem 4.1

The topic of variation of spectra under perturbation has a long history starting with the
analytic perturbation theory of Kato (see [39]). In the case of rather generic families
of elliptic operators, see pioneering work in [3, 66]. In case the perturbation is non-
generic, such results have been recently studied in, for example, [32, 33, 54] etc. In
this note, we give a slight variant of a proof for Theorem 4.1. To set up the stage, we
start by considering a bounded domain��Rn, and consider a vector field V defined
on Rn, whose coordinates we denote by .V1; : : : ;Vn/, and whose regularity we assume
to be C 2 for immediate purposes. Now, consider the perturbation of the domain �
along the vector field V to the domain �", defined by ¹x" D x C "V W x 2 �º. We
wish to study the variation of the eigenequation

��' D �'
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along the parameter ". However, to fit the language of perturbation theory, instead of
dealing with a one-parameter family of domains, it is much more convenient to pull
back all�" to the original domain�, so that we get a one-parameter family of elliptic
PDEs on�whose coefficients are dependent on ". This lands us in the familiar frame-
work of a family of self-adjoint operators with common domain of definition varying
over a Banach manifold. Upon computation following [17, Sections 4, 5 (particularly
p. 299), and 6], we see that the eigenequation

��"'" D �"'"
on �", when pulled back to �, becomes

A"u D
X
j;k

�@k.Jˇkj @ju/ D �"Ju;

with the Dirichlet boundary condition being preserved, and where J is the determinant
of the Jacobian matrix of the transformation x 7! x", and ǰk D

P
l
@xj
@x"
l

@xk
@x"
l

. To see
this, write

.A"u; v/L2.�/ D .��"u"; v"/L2.�"/ D
Z
�"

��"u"v"dx"

D
X
k

Z
�"

@x"
k
u"@x"

k
v"dx" D

X
i;j;k

Z
�

@xj u
@xj

@x"
k

@xiv
@xi

@x"
k

Jdx

D
Z
�

�@xi
�
J
@xi

@x"
k

@xj

@x"
k

@xj u
�
vdx:

The main idea behind the computation is that since

@x"j

@xi
D ıij C "@Vj

@xi

up to first order errors in ", we can write that

@xj

@x"
k

D ıjk � "
@Vj

@xk
CO."/;

whereas J can be expressed as

J D 1C "
�X
j

@Vj

@xj

�
CO."/;

and

ǰk D ıjk � "
�@Vj
@xk
C @Vk

@xj

�
CO."/;
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and ǰk has a power series expansion

ǰk D ıjk C
1X
iD1

"iˇijk;

where ˇ1
jk
D �� @Vj

@xk
C @Vk

@xj

�
, as mentioned before. For details on the above, see [17,

Section 6].
All told then, the perturbation A" can be expressed as

A"u D ��uC "
�X
j;k

@k..@kVj C @jVk/@ju/C
1

2

X
j

@ju�.Vj /
�
CO."/:

Now, we bring in the Sard–Smale transversality formalism used by Uhlenbeck.
We first quote the following theorem.

Theorem 4.2. Let ˆWH � B ! E be a C k map, where H; B and E are Banach
manifolds with H and E separable. If 0 is a regular value of ˆ and ˆb ´ ˆ.:; b/

is a Fredholm map of index < k, then the set ¹b 2 B W 0 is a regular value of ˆbº is
residual in B .

Here, we wish to check Theorem 4.2 for our domain perturbations in the partic-
ular setting that H D E D D.�/ and B is the collection of parameters for domain
perturbation. For starters, all A" are self-adjoint by the Kato–Rellich theorem, being
relatively bounded perturbations of A0 D ��. Also, ellipticity in such cases implies
the Fredholm property, as is well known.

Now, if 0 is not a regular value as above, we have that for all perturbations given
by V and " small, we have Laplace eigenfunctions ';  ( corresponding to the
eigenvalue �) such that

�
Z
�

X
jk

..@kVj C @jVk/@j'@k /C
' 

2
�
�X
j

@jVj

�
D �

Z
@�

@'

@�

@ 

@�

�X
k

Vk�k

�
D 0:

This basically means that by Holmgren’s uniqueness theorem, ' and  are identically
zero, establishing our claim.

4.2. Fundamental gap, narrow convex domains and small perturbations

Now, we take a look at the problem of minimising the fundamental gap. In this regard,
recall the main result from [4]: for any convex domain � � Rn,

�2 � �1 � 3�2

D2
;

where D D diam�. Now, the following question is natural.



On the effects of small perturbation on low energy Laplace eigenfunctions 1077

Question 4.3. Is the above inequality saturated by some domain?

The popular belief in the community seems that it is not, and any infimising
sequence for �2 � �1 (under the normalisation D D 1) should degenerate to a line
segment. In particular, the correct regime to look for in the search for minimisers is
the class of narrow convex domains. This problem seems quite difficult, as standard
precompactness ideas (e.g., see recent work in [44,52]) do not apply directly. Also, it
is quite resistant to perturbative techniques, as generic perturbations (even small ones)
might destroy convexity. In addition, the problem seems quite sensitive to the class of
domains: it might demonstrate a markedly different behaviour if the overall class of
domains is changed, for example see [49].

Recall that P denotes the class of strictly convex C 2-planar domains. Now, we
begin proving Theorem 1.12. We finish the proof in two steps. First, we prove the
following.

Theorem 4.4. Let � 2 P with diameter D D 1 and inner radius � which minimises
the fundamental gap functional �2 ��1 in P. There exists a universal constantC � 1

such that if � � C , then �2.�/ is not simple.

Proof. Recall the Hadamard formula (see [29, Section 2.5.2]) which expresses the
evolution of Laplace spectrum with respect to perturbation of a domain� by a vector
field V :

�0k.0/ D �
Z
@�

�@'
@�

�2
V � � dS:

Suppose �i ; �j are Dirichlet eigenvalues of � with corresponding eigenfunctions
'i ; 'j respectively. If �j � �i considered as a function of domains has a critical point
at a domain �, then we must have that

0 D .�j � �i /0.0/ D �
Z
@�

��@'j
@�

�2
�
�@'i
@�

�2�
V � �dS;

for all perturbation vector fields V . Now, we specify to the special case j D 2; i D 1,
and the above calculation with the Hadamard formula holds true under the assumption
that �2 is simple.

Now, consider a small perturbation vector field V such that V D 0 at x1; x2 (see
Figure 11 below) and V � � is non sign-changing away from x1; x2. Note that the
aforementioned V constrains the diameter to be fixed along the perturbation. Then,
this implies that ˇ̌̌@'1

@�

ˇ̌̌
D
ˇ̌̌@'2
@�

ˇ̌̌
on @� away from ¹x1; x2º:
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y-axis

x-axis

1/

1

p1

Figure 11. Small perturbation of a narrow convex domain.

Using the maximum principles and the Hopf Lemma, we find that without loss of
generality, @'1

@�
> 0 on @�. Moreover, since convex domains or their small perturba-

tions satisfy the strong Payne property (as proved in [3,53,55]), using [47, Lemma 1.2]
there exist exactly two points p1; p2 2 @� such that

'2.p1/ D '2.p2/ D 0; and
@'2

@�
.p1/ D @'2

@�
.p2/ D 0:

From work in [35–37] (and perturbation arguments based on [55]), it is known that
p1; p2 cannot be near x1; x2 once the domain � is long and narrow enough (which is
encoded in the statement by the universal constant C ). This is a contradiction since

0 D
ˇ̌̌@'2
@�
.pi /

ˇ̌̌
D
ˇ̌̌@'1
@�
.pi /

ˇ̌̌
> 0:

Question 4.5. The following interesting question comes up in connection to the proof
of the last theorem. On a domain �, can there be two Dirichlet eigenfunctions (cor-
responding to different eigenvalues) such that they also have the same Neumann data?
One is tempted to speculate that such an event should not happen unless � is a ball.
As pointed out by Antoine Henrot, the first and sixth eigenfunctions on the planar disc
are both radially symmetric, so they can be scaled to have the same Neumann data.
This is in turn related to a conjecture due to Schiffer.

We augment the above result by the following observation.

Theorem 4.6. Let��Rn be aC 2-domain. Assume that� has a multiple eigenvalue
of the Dirichlet Laplacian

�kC1.�/ D �kC2.�/ D � � � D �kCm.�/:

Then, for each fixed 1 � l � m, there exists a deformation field �t passing through
�0´ � generated by a C 2-vector field V such that for small enough t ,

�kC1.�t / < �kC1.�0/; : : : ; �kCl.�t / < �kCl.�0/;
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and
�kClC1.�t / > �kClC1.�0/; : : : ; �kCm.�t / > �kCm.�0/:

Furthermore, we can ensure that

j�0j D j�t j:

Suppose �0 2 P is a long narrow domain as in Theorem 4.4 above. Then, we can
additionally ensure that �t 2 P and

diam.�0/ D diam.�t /:

The proof is based on some ideas in [30, Lemma 1].

Proof. We begin by observing that because of the existence of multiple eigenvalues,
�kCp.�t / is not differentiable at t D 0 in the usual Frechet sense, but there is a nice
formula giving directional derivatives, in the sense of the limit �kCp.�t /��kCp.�t /

t
as

t ! 0. Such directional derivatives are precisely the eigenvalues of them�m-matrix

M D
�
�
Z
@�

@ui

@�

@uj

@�
V � � d�

�
; p D 1; 2; : : : ; m; (4.1)

where ui ; 1 � i � m denotes the eigenspace for the repeated eigenvalue �kC1.
Let us consider pointsA1;A2; : : : ;Am 2 @� the choice of which will be explained

below. Also, consider a deformation vector field V such that V � � D 1 in a "-neigh-
bourhood of A1; A2; : : : ; Al and V � � D �1 in a "-neighbourhood of AlC1; : : : ; Am,
V:� D 0 outside a 2�-neighbourhood of A1; : : : ; Am, and regularised in a 2"-neigh-
bourhood around each such point maintaining j�0j D j�t j. To preserve the diameter
also, one just needs to choose the points Aj sufficiently away from x1; x2 (see the
figure above).

By (4.1) above, it suffices to prove that the symmetric matrix M has signature
.l; m � l/. When "! 0, M converges to the matrix

M D
�
�

lX
kD1

@ui

@�
.Ak/

@uj

@�
.Ak/C

mX
kDlC1

@ui

@�
.Ak/

@uj

@�
.Ak/

�
:

Consider the column vectors

vAk ´
�@u1
@�
.Ak/; : : : ;

@um

@�
.Ak/

�T
:

Note that M D V �W , where

V D .vA1 ; : : : ; vAm/ and W D .�vA1;; : : : ;�vAl ; vAlC1 ; : : : ; vAm/T :
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It is enough to ensure that the vectors ¹vAk W k D 1; : : : ; mº are linearly independent.
Then the signature of M is .l; m � l/.

If the columns in the matrix V are not independent, then they satisfy a homogen-
eous linear equation, which means in turn that there is a homogeneous linear relation
among the rows of V , namely that, on an open set S � @� away from x1; x2, we have
that

mX
pD1

cp
@up

@�
D @

@�

� mX
pD1

cpup

�
D 0 on S:

This is a contradiction from Hölmgren’s uniqueness theorem.

The following question seems interesting.

Question 4.7. Could we also ensure that �kCl.�t / D �kCl.�0/ < �kClC1.�t / at
the expense of changing the volume of �t?

Proof of Theorem 1.12. Now, if we observe the way that the vector field was chosen
in the proof of Theorem 4.6, it is clear that if one wants to fix only the diameter,
one can choose such a V easily such that �1.�t / > �1.�0/ for small enough t . This
reduces the gap even further, contradicting that �0 is a minimiser. Finally, putting
Theorems 4.4 and 4.6 together, we conclude the proof.

Remark 4.8. Theorem 4.6 is not essential for the proof of Theorem 1.12, but it might
be of independent interest to few. The topological restrictions on the first nodal set
imposed by Jerison in [36] is enough to prove Theorem 1.12, and the idea of the
proof is as follows: from Theorem 4.4, we know that the second eigenvalue of any
minimising domain � cannot be simple. Let '1; '2 be any two linearly independent
second eigenfunctions of �. From choosing any point p 2 � sufficiently close to
the “ends” x1 or x2, there exists a second eigenfunction ' D c1'1 C c2'2 (for some
c1; c2 2 R) such that '.p/ D 0. This leads to contradiction, since from [36] we know
that the first nodal set stays away from the ends x1; x2. This in turn implies that �
cannot be a minimiser, which concludes the proof of Theorem 1.12.

In line with Theorems 4.4 and 4.6, we make some general remarks about the
multiplicity of eigenvalues. An important component in the proof of [53] is a res-
ult from [47] which states that if the Neumann data of a second Dirichlet eigen-
function is non sign-changing on the boundary of a convex planar domain �, then
the second eigenvalue of � is simple. So, studying the multiplicity of eigenvalues
might prove important for future work on the Payne conjecture. It is clear that on
a simply-connected domain, satisfaction of the strong Payne property implies that
the multiplicity of the second Dirichlet eigenvalue is at most two. Suppose there are
three eigenfunctions 'j ; j D 1; 2; 3 corresponding to �2. Then picking any two points
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p; q 2 @�, one can find an eigenfunction  pq D
P
j j̨'j such that  intersects @�

exactly at p;q. Now, consider a sequence pn; qn approaching a common point o2 @�.
Then in the limit one gets an eigenfunction  which intersects @� at exactly o, and
vanishes to order at least 2 there, which would be a contradiction to the strong Payne
property.

It is natural to wonder when the Laplace–Beltrami operator of a compact manifold
has repeated spectrum. Firstly, it is a well-known fact that generic spaces have simple
spectrum. This is a well-known transversality phenomenon investigated in [2,66] (also
Theorem 4.1 above). On the other hand, it is a well-known heuristic (by now folklore)
that the presence of symmetries of the space M leads to repetitions in the spectrum.
An explicit proof of this heuristic using a variant of the Peter–Weyl argument has been
recorded in [65]. The main claim is that the presence of a non-commutative group G
of isometries of the space will lead to infinitely many repeated eigenvalues of the
Laplace–Beltrami operator.

With that in place, we look at the following multiplicity result.

Theorem 4.9. Consider a bounded simply-connected domain��R2 and let .0;0/ …
� satisfying the following:

• the boundary @� contains exactly two distinct points P;Q dividing @� into two
components �j ; j D 1; 2 such that the outward unit normal at P (respectively,Q)
is in the direction of the vector joining .0; 0/ to P (respectively, vector joining Q
to .0; 0/);

• at every point .x; y/ 2 �1, the outward normal � makes an acute angle with
.�y; x/ and at every point .x; y/ 2 �2, the outward normal � makes an obtuse
angle with .�y; x/.

In such domains, the multiplicity of the second Dirichlet eigenvalue is at most 2.

Remark 4.10. Observe that the above theorem includes in particular domains which
are convex in one direction, when the origin is taken arbitrarily far from the domain
(point at infinity).

Proof. Let � � R2 be a bounded simply-connected domain. Let .0; 0/ … � be a
point such that the boundary @� contains exactly two distinct points P;Q dividing
@� into two components �j ; j D 1; 2 in a way that the unit outward normal at P is
in the direction to the vector joining .0; 0/ to P and the unit outward normal (blue
arrows in Figure 12) at Q is opposite to the vector joining .0; 0/ to Q (green arrows
in Figure 12). In particular, for the points P D .P1; P2/ and Q D .Q1;Q2/, we haveD

�P ;
.P1; P2/

jP j
E
D 1 and

D
�Q;

.Q1;Q2/

jQj
E
D �1:
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Q

O

1

2

P

.0; 0/

N 

Figure 12. A non-convex domain satisfying the assumptions of Theorem 4.9.

Considering the rotational vector field

X D �y @
@x
C x @

@y
;

from our second assumption, we have that h�.x;y/; X.x;y/i > 0 (respectively, < 0)
when .x; y/ 2 �1 (respectively, �2), and h�P ; XP i D h�Q; XQi D 0.

Suppose to the contrary, that the multiplicity of �2 is at least 3. Up to forming
linear combinations, let  be a second eigenfunction whose nodal set intersects @�
at P;Q. Also, given O 2 @�, one can find a second eigenfunction ' whose nodal set
intersects @� at O , as discussed above.

One can check that Œ�;X� D 0, which gives us thatZ
�

'�.X / �X �' D
Z
�

'X� �X �' D
Z
�

��2'X �X �'

D
Z
�

�'X ��'X D 0:

Then we have

0 D
Z
�

'�.X / �X �' D
Z
@�

X 
@'

@�
D
Z
@�

hX; �i @ 
@�

@'

@�
:

Since hX;�i@ 
@�

does not change sign on @�, @'
@�

must, which leads to a contradiction.
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