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Asymptotics for the spectral function on Zoll manifolds
Yaiza Canzani, Jeffrey Galkowski, and Blake Keeler

Abstract. On a smooth, compact, Riemannian manifold without boundary (M, g), let Az be
the Laplace—Beltrami operator. We define the orthogonal projection operator

H1A1L2(M) — EBker(Ag + )LJZ-)

)LJ'EI)L

for an interval I centered around A € R of a small, fixed length. The Schwartz kernel,
Iy, (x, y), of this operator plays a key role in the analysis of monochromatic random waves, a
model for high energy eigenfunctions. It is expected that Iy, (x, y) has universal asymptotics
as A — oo in a shrinking neighborhood of the diagonal in M x M (provided 7, is chosen
appropriately) and hence that certain statistics for monochromatic random waves have univer-
sal behavior. These asymptotics are well known for the torus and the round sphere, and were
recently proved to hold near points in M with few geodesic loops by Canzani—Hanin. In this
article, we prove that the same universal asymptotics hold in the opposite case of Zoll manifolds
(manifolds all of whose geodesics are closed with a common period) under an assumption on
the volume of loops with length incommensurable with the minimal common period.

1. Introduction

Let (M, g) be a compact, Riemannian manifold without boundary and let Ag be the
associated, negative definite, Laplace—Beltrami operator. Denote the eigenvalues of
—Ag by 0 =23 < A% < A3 < --- repeated according to multiplicity. For / C R, let

NU):=#j A eI}
The Weyl law states that
N([0,A]) = (27) " vol(B,) volg (M)A" + R(A),

where R(A) = O(A" 1) as A — oo [1, 20, 25, 37]. This remainder term is sharp
and is saturated, for example, on the round sphere, S”. However, when the set of
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closed geodesics has measure zero in S*M, the remainder, R(1), can be improved
to o(A""1) [16,22]. The improved remainder also allows for asymptotics on short
windows: for w > 0,

N(A—w, A+ w]) = 2w(2r) " vol(S" 1) volg (M)A" ™! 4+ 0,(A"™Y).  (1.1)

A Zoll manifold (M, g) is a smooth, compact, Riemannian manifold without
boundary such that all of its geodesics are periodic with a common period. This is
a rich class of manifolds that includes compact rank one symmetric spaces. Indeed,
while the most well-known example of a Zoll manifold is the round sphere, S2, the
moduli space of Zoll metrics on S? is infinite-dimensional [19].

It is well known that, like on the sphere of radius 7/(2m), the eigenvalues of
—Ag on a Zoll manifold with minimal common period T are strongly clustered near

the sequence
2

Vy - T

where a is the common Maslov index of the closed geodesics [14-16, 35, 36]. The

(£+%), (=012, ..., (1.2)

remainder estimate R(A) = O(A"1) is saturated on any Zoll manifold. As proved
in [16], if the set of periodic trajectories with period < T has zero measure, then a
modified version of (1.1) which takes into account the clustering holds: for all 0 <
w< (2m)/T,

N([ve —w, v +wW]) = 2771(27r)_” vol(S™™1) Volg(M)vZ_1 + ow(vg_l). (1.3)

A Zoll manifold all of whose geodesics do not self-intersect before time 7 is
called simply closed, or SCr, in the language of [41]. In particular, (1.3) (and much
stronger estimates) hold for an SCz manifold. Many Zoll manifolds are SCyr man-
ifolds. Indeed, all known smooth Zoll metrics on simply connected manifolds yield
SCr manifolds. However, as far as the authors are aware, the only topological mani-
fold on which all Zoll metrics are known to be SC7 metrics is S2 [18].

The example of the disjoint union of two simply connected Zoll manifolds with
different, rationally related minimal common periods shows that (1.3) cannot hold
without additional assumptions. One would like to know whether all connected,
smooth, compact, Zoll manifolds satisfy (1.3). However, we do not know whether
such metrics must have a zero measure set of periodic geodesics of period < T'. Nev-
ertheless, an analog of (1.3) holds for every Zoll manifold provided that one is willing
to sum over a finite number of small windows. In what follows, inj(M) denotes the
injectivity radius of M.

Theorem 1. Let (M, g) be a smooth, compact, Zoll manifold of dimension n > 2 with
minimal common period T > 0. Then, there is an integer 0 < Ng < T/ inj(M) such



Asymptotics for the spectral function on Zoll manifolds 997

that forall N > Noand 0 < w < 2m)/ T,

N-1
D N (egj = Wover; + w))
Jj=0

2n N
= HT(ZJT)_n vol(S™™ 1) volg (M)VZ_1 + ow(vf_l), ast —o0o. (1.4)

We note that Ny can be taken to be the smallest integer such that the set of trajec-
tories with period smaller than 7'/ Ny has zero Liouville measure on S*M . Indeed,
for any SC7 manifold, Ny = 1, and this recovers (1.3).

Although it is not stated there, Theorem 1 can be derived from [29, Theorem 1]
(see also [30, Theorem 1.7.6]). These references handle much more general geome-
tries than the Zoll manifolds considered here. We choose to include Theorem 1 and
state it as shown because it helps to motivate Conjecture 1.1 below. We give a com-
plete proof of Theorem 1 in Section 7 because it is an easy consequence of the analysis
leading to Theorem 2. In Theorem 2, we require uniform estimates on the derivatives
of the spectral function in small neighborhoods of the diagonal. Because of this, the
analysis leading to Theorem 2 necessarily differs from that used in the references
above, where the authors consider on-diagonal estimates.

We also note that the estimate (1.4) captures the majority of the eigenvalues in the
window [v; — W, vg+ y—1 + W], since

N-1

Z N(egj — W vegj + W) = N([ve — w,vgey—1 + W) + o)1), (1.5)
j=0

In fact, substantially stronger estimates than (1.5) hold (see e.g. [15, 16]).
Next, we describe a refinement of Theorem 1 with applications to the theory of
random waves. For this, we let {¢; }}";0 be an orthonormal basis of L?(M) such that

—Agpj = /\ffpj, j=012,..., (1.6)
and for / C R consider the orthogonal projection operator

M;: L*(M) — @Pker(Ag + A7)
/leI

The Schwartz kernel of I1; takes the form

Mr(x,y) =Y ¢ (»). x.y€M.
AjEI

Since trace I1; = N (1), the operator I1; plays a crucial role in studying both Weyl
laws and monochromatic random waves.
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We study the asymptotics as A — oo of spectral projectors of the form Iy, (x, y),
where [ is an interval, centered at A, with length uniformly bounded from above and
below. These spectral projectors appear as the covariance kernels of monochromatic
random waves (see (1.12)). The asymptotics of Iz, (x, y) are intimately connected to
the dynamics of the geodesic flow on (M, g).

The most classical random wave studies occur on the round sphere, S”, and flat
torus, T”. In the case of the sphere,

AMf=Ll+n-1) €£=0,1,...,

and it is known that, with vp ;=€ + (n — 1)/2 and 0 < w < 1 for x, y € S”, with
dg (%, y) < rg and im0 re = 0,
My (e, ) = Hppwovp+wl (X, )

_ T Ja—ay2(vedg (x. p)))
(Zn)n/Z (de(x’y))(n—z)/z

+o(w}™h), € — co. (1.7)

Here, we write dg (x, y) for the Riemannian distance between x and y and J, for the
Bessel function of the first kind with index «.

Despite the fact that the dynamics of the geodesic flow on the n-dimensional flat
torus are dramatically different than those on the sphere, we also have for w > 0,
x,y € T" withdg(x,y) < ry, and limy,_oo 1, = 0,

2w Juay 2 (Jvdg (x, y)])
Qm)"/2 (vdg(x,y))n=2/2

Mpy—wptw (X, y) = +o(" Y, v—>o0. (1.8)

Indeed, one expects that the local behavior of Iy, is, in some sense, universal.

Conjecture 1.1. Let (M, g) be a smooth, compact, Riemannian manifold of dimen-
sion n without boundary and xo € M. Then, there exist C > 0, a sequence vy — o0,
and a sequence 0 < wy < C such that for any positive sequence ry — 0, a, B € N9,

sup
X, y€B(x0,r¢)

U—\a|+|ﬂlaaaﬂ( Tl —w,ve+wed (X, )
FIAN (v — we,ve + we])

@) Jagypa(vedg (x, y)l))‘ — o(l);
= oo
VOl(Sn_l) (V{dg (x’ y))(n—Z)/Z o0
(1.9)
Observe that for any 0 < w < 1 on the round sphere, we have
vol(S" 1) _
N([ve —w,ve +w]) = WV? T+o0}™h),
and on the torus we have
vol(S*—1yyr—t
N([ve —w, v +w]) = 2W(—)Z + o(vz’_l).

@m)"
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Hence, in both cases, (1.7) and (1.8) yield

My —wp+w (X, Y) 2m)"? Ju—2)/2(|vedg (x. y)))
N([ve —w.vg + W) vol(S™=1)  (vedg(x, y))(n—2)/2

+ o(1),

and the conjecture holds in these examples.

In [10, 11], Canzani and Hanin showed that the asymptotics (1.9) hold whenever
x is a non-self focal point. That is, the set of directions § € Sy M that generate a
geodesic loop that returns to x has Liouville measure zero. As for the flat torus, in the
case of non-self focal points, one can take any sequence v, — oo and wy = 1.

On a Zoll manifold every point is, in some sense, the opposite of non-self focal.
Because of the sphere-like clustering of the spectrum, it is too much to hope that (1.9)
holds for any choice of v, — oo and, as in the case of the Weyl law, we should instead
work with spectral projectors for a well-chosen sequence v;. In particular, we take vy
asin (1.2).

Our goal is to show that Conjecture 1.1 holds at certain points on Zoll manifolds.
As discussed above, many Zoll manifolds of period 7" are SCz manifolds. However, it
is possible that some may have geodesics with shortest periods 7/ N for some N > 1
or closed geodesics of length T that are not simple (i.e., that pass over the same base
point more than once). Indeed, the (albeit trivial) example of the disjoint union of two
Zoll manifolds with rationally related periods shows that, at least in principle, there
may be a large set of closed geodesics of period smaller than 7'. However, these must
have period 7/ N for some fixed N.

In order to handle this type of situation, we formulate our next theorem in a way
that allows for large sets of loops at times rationally related to 7', as well as a zero-
volume set of loops with non-rationally related looping time. For N ¢ N, T" > 0,
& > 0, define the sets

K{,:={ET:p,qu,OfpSN,0<q§N},
q

Ky o= ((—7.7) + Kf) U (—00,0) U (T, 00).

Let (M, g) be a smooth Zoll manifold of dimension n > 2 with minimal common
period T > 0 and ¢;: S*M — S*M, ¢; = eXp((I/Z)HIE@) denote the geodesic
flow for time ¢. Fix a metric on 7*M, and define

Ln(x0) :=1{p € Sy, M : ¢:(p) € Sy, M for some t € (K{,J)C}.

Note that a direction p € Sy M is in Ln,;(xo) if there is a time 7 € [0, T] that is
at least 7-far from every element in K}\; such that a7 (;(p)) = Xo.

Our next result gives pointwise estimates on the spectral projector near any xg €
M such that for each v > 0, ps*pr(Ln,-(x0)) = 0.
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Theorem 2. Let (M, g) be a smooth, compact, Zoll manifold of dimension n > 2
with minimal common period T > 0 and v, defined in (1.2). For x,y € M and w > 0,
define
=,
RN,W(K; X, )/) = N Z H[Vg+j-W,l)g+j+W](xa )’)
j=0
2 Vi T2 (vede (x, )

T Q2u)"/2 (vedg(x,y))n=2)/2
Let N > 0 and xo € M such that for each t > 0
ps*m(Ln,z(x0)) = 0. (1.10)

Then, forany 0 <w < 27)/T and a, p € N",

lim limsup  sup |vl}_"_|a|_|ﬂ|3§3£RN,w(€§x’y)| = 0.
§—-0F (5o x,y€B(x0,8)

Our next theorem gives two examples where the assumptions of Theorem 2 hold.

Theorem 3. Let (M, g) be a smooth, compact, Zoll manifold of dimension n > 2.
(1) If (M, g) is an SCT manifold, then for every xo € M (1.10) holds with N = 1.

) If (M, g) is a real analytic, then there is N such that for every xo € M (1.10)
holds.

For SCr manifolds, there are no sub-periodic loops and hence it easy to see
that (1.10) holds with N = 1. We recall that even though all known smooth Zoll
metrics on simply connected manifolds yield SC7 manifolds, the only topological
manifold on which all Zoll metrics are known to be SC7 is the 2-sphere.

We also note that, for SCr manifolds, the on-diagonal version of Theorem 2,
without derivatives, was also proved in [41, Theorem 2]. Part (2) of Theorem 3 is
proved in Section 8.

As a corollary of Theorems 1 and 2, we obtain that Conjecture 1.1 holds whenever
(1.10) holds on a Zoll manifold.

Corollary 1.2. Let (M, g) be a smooth, compact, Zoll manifold of dimension n > 2
with minimal common period T > 0 and xo € M, N > 0 satisfy s+ p (L n,z(x0)) =0
for each T > 0. Then Conjecture 1.1 holds at xy.

As discussed briefly before, a motivation for proving Theorem 2 is its application
to the theory of random waves on manifolds. A monochromatic random wave on
(M, g) is a Gaussian random field of the form

Vaw(@) = N(A = w2+ W) T2 aj0;(x), (1.11)
Aj€[A—w,A4+w]



Asymptotics for the spectral function on Zoll manifolds 1001

where the g; are i.i.d. standard Gaussian random variables and the ¢; are the eigen-
functions in (1.6).

Monochromatic random waves were created to model eigenfunction behavior.
Although ¥, ,, is not an actual eigenfunction, it is expected to behave like one. (For
a careful account of the history, see [8, 38] and references there.) In particular, much
research has been dedicated to understanding the behavior of the zero sets and critical
points of random waves. The corresponding features of deterministic eigenfunctions
are very difficult to study, and their analysis becomes much more tractable for the
monochromatic random counterparts.

The statistics of V¥, y, are completely determined by the associated two-point cor-
relation function

M —wa+w (X, y)
N —w. A +w])

Kyw(x.y) 1= Cov(Yi,w(x). ¥a,w(y) = x,yeM. (1.12)
Most research is typically done on the round sphere or the flat torus since K} , is
well understood for these spaces [2,3,5-7,24,26,28]. Studying features like the zero
sets and critical points of v, y, relies on having asymptotics for K (x, y) when
X,y € B(xo,1/A) with x¢ fixed. Although treating K, ,, on general manifolds is quite
challenging, Conjecture 1.1 would imply that, when the eigenvalue intervals defining
the sum in (1.11) are appropriately chosen,

i 3/3 (K%W (expr (‘%) €XPxo (v%))

)" Jgaya(u— vl))‘ _0
Vol(S* M) (ju — v]) =72 :

lim  sup
£=>00 1y |v|<r¢

(1.13)

Here, exp,: Tx*( /M — M denotes the exponential map with footpoint at xo. Corol-
lary 1.2 shows that for appropriately chosen intervals these asymptotics do, in fact,
hold at points on a Zoll manifold where (1.10) is satisfied.

Results about Conjecture 1.1 yield corresponding asymptotics for the covariance
function of monochromatic random waves. Indeed, for a general manifold (M, g),
when the interval in (1.11) is [A — 1/2, A + 1/2], the asymptotics from [10, 1 1] show
that (1.13) holds when the point x¢ is non-self-focal. In the case where (M, g) has
no conjugate points [23] (or more generally there are ‘very’ few loops, see [9]), the
asymptotics in (1.13) hold at every point with a logarithmic improvement on the rate
of decay to 0.

In the language of Nazarov and Sodin [27], if the asymptotics in (1.13) hold at
every xo € M, then the random waves v, ,, have translation invariant local limits.
For ensembles with such translation invariant local limits, Zelditch [42], Nazarov
and Sodin [27], Sarnak and Wigman [31], Gayet and Welschinger [17], Canzani and
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Sarnak [13], Canzani and Hanin [12], as well as others, prove detailed results on non-
integral statistics of the nodal sets of random waves. Such nodal set statistics include
the number of connected components, Betti numbers, and topological types.

1.1. Comments on the proof

Since our long term goal is to approach Conjecture 1.1, we aim to implement a method
that uses only the dynamical information obtained from the fact that (M, g) is Zoll.
In particular, to prove Theorem 2, we avoid using the fact that one can find Q, a pseu-
dodifferential operator of order —1, such that \/—A, + Q has spectrum contained in
Ug{ve} [15]. This extra structure was used in [41] to obtain a full asymptotic expan-
sion of Ty, —w,v,+w](x, x) in the SC7 case.

Using standard Tauberian arguments, the analysis reduces to understanding
the singularities of e”\/__Ag(x, y) for t € [-o7',07!] with 0 — 0 very slowly as
A — oo. These singularities are located at times ¢ when there is a geodesic loop from
x to y. We analyze these singularities in three steps. (1) We use the periodicity of
the flow to study the singularities near k7', k € Z. (2) We show that zero measure
sets of loops do not to contribute to the main asymptotics using methods similar to
those in [11,33,34,39,40]. (3) By summing of the windows [vgy; — W, vgy; + W],
j =0,...,N — 1, we are able to incorporate the function sin(wN¢/T)/ sin(zt/T)
into the amplitude multiplying e~ VB (see (3.5)). Using this extra structure, we
then show that even positive measure sets of loops at times j 7/ N do not contribute to
the leading term of the asymptotics. Note that, when considering asymptotics for the
counting function Theorem 1, only periodic trajectories need to be analyzed. Thus,
since periodic trajectories must have minimal period 7/N for some N, we need no
extra assumption to obtain asymptotics for the counting function.

1.2. Organization of the paper

We begin in Section 2 by analyzing the implications of the assumption (1.10), namely
that it allows us to construct a pair of microlocal cutoffs which localize near, and
respectively away from, the measure zero set of geodesics which have looping times
outside of K. Section 3 proceeds with an analysis of the asymptotic contributions of
the smooth spectral projector microlocalized away from all subperiodic loops. This is
complemented by Section 4 which studies the contributions near both types of sub-
periodic looping times: those which lie near Ky (which may have positive measure),
and those which do not (and must therefore have zero measure by assumption). We
take a brief detour in Section 5 to prove some estimates on the spectral projector
restricted to the diagonal, which are necessary for estimating the difference between
the smooth and rough projectors. These on-diagonal estimates do not depend on the
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subperiodic loops assumption and slightly generalize similar results in [16]. In Sec-
tion 6, we assemble the pieces produced in the previous sections to complete the proof
of Theorem 2. Theorem 1 is proved in Section 7.

2. Microlocalization near subperiodic loops

In this section, we discuss a technical construction that is essential for the asymp-
totic analysis in the subsequent parts of the proof of Theorem 2. Our assumption on
L0,z (xo) allows for the existence of subperiodic loops with looping times which
do not lie near Ky, as long as the set of such loops is sufficiently small in mea-
sure. It is therefore crucial to construct a pair of pseudodifferential cutoffs which
localize near and away from these loops. This idea is analogous to the constructions
done in [10, 34], although our procedure is somewhat different because we cannot
rely solely on the upper semicontinuity of the reciprocal of the return-time function.
Define

Lyer(xo) = {p €SI M: U‘Pt(BS*M(P’S)) N Spxo.e0M # @}'

te(K[(,’T)C

and write
Ln,0,z(x0) := Ly, (x0).

We start by showing that we can relate ¥ M (LN.ez(x0)) to St M (Ln,0,:(x0)) as
e —0.

Lemma 2.1. Forall t > 0, we have
psr om(Lno,c(x0)) = lim prge pr(L£neo)-
e—>0T Y

Proof. Observe that £y ¢ ¢ (x0) C L£n.e.:(xo) for 0 < & < &. Hence, we need only
show that

fsz,m(Lno(x0)) = m pgy ar(Lwec(X0))-
e—>0T 0

To do this, observe that

1_i)1(1)1+ tsz, M (LNec(x0)) = Ms;:OM( ﬂ fN,s,r(xo))-

&
>0

Suppose that p € (-9 £n,e,c(X0). Then, there are p, € Sy M with d(p, pn) < 1/n
and 1, € (K{,’r)C such that

1
d(7wp (@1, (Pn)), Xo0) < o
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Since (K}\;, )¢ s compact, we may assume that 7, — f € (1(17\;;)C and hence
Proo () = lim @1, (pn) = Xo.
n—>oo

In particular, p € £ n,0,¢(xX0) and hence (), o £,z (¥0) C £n,0,c(X0). This finishes
the proof of the lemma. ]

Next, we prove the following lemma, which shows that the assumption (1.10)
implies a more concrete fact in local coordinates. Below, m denotes the Lebesgue
measure on S”71,

Lemma 2.2. Fix T > 0, let K € R be a closed set, and define
K :=((—7,7) + K) U (—00,0) U (T, 00).

Let
Ape(xo) i= {p € S2M 1| o (Bs a(p.©)) N Shisy )M # @}.

teK3

Fix xg € M, let y be a diffeomorphism from a neighborhood of x¢ into R", and set

Ler(xo) :={€ € S" ' :3x € B(x¢,8),t € K¢,
s (@ (y ™1 (x), By (x))'6)) € B(xo, )} 2.1
Then,
lim KUsx M(AS,‘E(XO)) =0 = lim m(Ls,t(xO)) =0.
s—0t 0 e—0+

Ne

Proof. Let a > 0 to be chosen small and consider {§;};Z, an e-maximal separated

setin S”~!. Then there is © > 0, depending only on 7, and {3’@}4%1 such that

Ng °
Sn_lCUB(gj?(Xg)’ {1""’N8}:U3’£,
=1

j=1
B(&;,10ae) N B(§k, 10ae) =0, i #k, ik € gy

First, we claim there exists ag > 0 such that if @ < ¢, then
1
B(§j.) N Lasc(x0) # 0 = B(1(§). 3¢) C Asclxo).  (22)

where (: S77! — Sy M is the map ((§) := (xo, (37(0))"§).
Indeed, let € Lgg 7 (X0) with | — &;| < ce. Then, there are [x| < g and ¢ € K¢

such that
@:(y(»), @y (»)'n) € B(xo, e).
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Now, d(y(y), x0) < Caeg, and d(t(n), (dy(y))'n) < Cae. Similarly, d(¢(§;),t(n)) <
Cuae, so that

(y(»). @y(»)'n) € B(t(§)). Cae).
Choosing a9 < 1/(2C), then implies that for any p € B(.(§;),1/2¢) N SE M,

(y(»). @y(y))'n) € B(p.€)

which, in turn, implies that B(t(§;),e/2) C Ag(x0). This proves the claim in (2.2).
Notice that there is a C > 0 such that for all £ and any p € S¢ M

[{j € de: B((&), @) N B(p,)}| < Ca'™". (2.3)

Now, define
I:={je{l,....Ng}: B(§j,ae) N Lys,c(x0) # 0},
Io:={j € $u: B(j,ae) N Loe,c(x0) # 0}

Then, by (2.3),

1
U B(pj, 58)‘ > ca ' max |I|e" !
Jel, ¢

I, m (Aec(X0)) = max

> can_lgn_1|I|/j) > CM'

With Lemma 2.2 in hand, we construct the desired pseudodifferential cutoffs. Fix a

point xo € M which satisfies (1.10) and choose a diffeomorphism y from a neighbor-
hood U of xg into R”. Then, by Lemma 2.1 and Lemma 2.2, the measure of the sets
L (xp) tends to 0 as ¢ — 0" and then T — 0. Thus, for any > 0 and r > 0 there is
&> 0and an open set O, C S"=1 such that Ler(x0) € Ogr and m(Oe,r) < r.Hence,
we can find some l;g,r € C%(S™1) that is identically 1 on O;,r and zero outside of
a slightly larger open set V; ; with m(V; ;) < r. Now, let y € C*° (M) be supported
in the coordinate neighborhood U and equal to 1 on a slightly smaller neighborhood,
and choose some 8 € C°°(R) which vanishes on a neighborhood of 0 and is equal to
1 outside [—1/2, 1/2]. Then, setting

£
6]

we define the pseudodifferential operators B ; and Cg:

bere(,6) = 2OBUEDDec (), o6 8) = 1 = bu(x.6),

1 .
Becf (1) = o [ VOO, (x.6)£(3) dy d.

Co () = 5= f FIOTDE, (x.£) £() dy dE.



Y. Canzani, J. Galkowski, and B. Keeler 1006

Note that
Be:+Cer=1. 2.4)
Observe that
Supp Ce,z N La,r(xo) =0, (2.5)
lim sup |1 — ¢ (x, ‘)”Ll(Sn—l) =0. (2.6)
e—0t xeM

3. Analysis of the smoothed projector away from subperiodic loops

By the construction in the preceding section, for any fixed ¢ > 0, we have a microlocal
partition of unity near xg in the form of B, ; and C, . By (2.4),

=z

N—-1

1
My —weqatwl (X, ) = N Z Myey;—woweq a+wl(Bie + Co)(x, y).
0 j=0

1
N “
J

Since B;, has small microsupport, we expect the contribution from this term to be
negligible from the perspective of the asymptotics. We prove this rigorously in Sec-
tion 4. The bulk of our analysis is dedicated to studying the C*, term. In fact, we will
study a smoothed version of this object, which involves a convolution with a suitably
chosen Schwartz-class function.

We introduce p € $(R) with the property that p is supported in [—2, 2] and equal
to one on [—1, 1]. Then, for any ¢ > 0, let ps (1) = (1/0)p(it/0), so that

po (1) = p(ot) (3.1

is supported in [-2 /0,2 /0] and equal to one on [—1/0, 1/0]. The goal of this section
is to study the asymptotic behavior of

1 N-1

N Z Po * My j—wover ;+w]Cor-
j=0

This is done in Proposition 3.4 below. In preparation for this result, in Section 3.1
we first rewrite pg * IT[y—w, 1+w] in terms of the kernel of the half wave operator and
its singularities. Later, in Section 3.2, we find the asymptotic behavior of the kernel
when localized to each singularity. We finally state and prove Proposition 3.4 which
combines these estimates to obtain asymptotics for the full projector.
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3.1. Singularities of the half-wave operator

To study the smoothed projector, for any w, o > 0 we define

1ﬂU(M) ‘= Po * ﬂ[—w,w] (/j“)7

which is Schwartz-class and has Fourier transform

To(t) = (2, (3.2)

Then, if U;(x, y) denotes the kernel of the half-wave operator U; = e iR , We

have
o0

po 4 My i Coalr) = - [ M aOUCE G dr (33
—0Q
for all € > 0, by Fourier inversion. Note that on the left-hand side of (3.3), the convo-
lution is taken with respect to the A variable. From [16], we have that U; is a Fourier
integral operator of class [/ -1 4(R X M, M ; €), where the canonical relation € is
given by

€ ={(t.1).(x.8).(y.m) : (t.7) € T*R\ {0},
(6. (. e T*M\{0}, T+ [&| = 0. (x.§) = "(y.m},  (34)

where ®': T*M — T*M denotes the geodesic flow. For any A > 0,
N-1

Z Po * Mptanj/T—wa+27j/ T+w)Cog (X, ¥)
=0

N-1
1 Yo /)y Y
L X2 (1)U, CE (x, y) dt
—

|
g 8°—g3g

1 Sln(nNt)
— | pit+(v— 1)ﬂ/T)—%(t)U,C (x,y)dt, 3.9
2 s1n( T ) o

—0o0

where the final equality follows from the Dirichlet kernel identity
N-1 - (N
Z ol/% — S(N=Dx/2 sin(5") .
— sin(%)

Later, we will set A = vy, for vy defined as in (1.2). We have

o] aNt
L/ it(A+(N— l)ﬂ/T)Mx//a(t)UtC (x,y)dt
2 sm( T ) o

—00

=Aer(A,05x,y) + Be (A, 05x,y)
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for
‘AS,‘C(A”G;xvy)
1 o0 - Nt
- — / 10+ 2 SNCT) 5 e ) Y e~ KTy dr, G
2w sm( ) & B
N €Z
BS,‘L’(A”O-;-X:?y)
o0
1 ” Nt
_ _/ lt(,l_’_(N 1) )sm( T )WU(I)Ut *,(X,y)<1—z,5(t—kT)) dt
2w sm(”—) ’ =

3.7)

We can think of A and B as being localized near to and away from times which
are integer multiples of 7', respectively. We first consider A, (A, 0; x, y). Changing
variables, t — ¢t + kT,

‘AE,T(A’v G; x’ y)
k _ o0
_ e KT A+ N =1m/T) eit(/H-(N—l)zr/T)(_1)(N—1)k
2
kez —o0 Sln(”TNt) 7 A *
X — 2 Vo (t + kT)p(D)Ur 117 Cp (X, y) di
SIH(T)
eikT)L
= tHA(fk(t)UH-kTCgr(x ),
keZ 2w
(3.8)

where we define

v sin(5)
sin(%)

and ¥, A is the inverse Fourier transform mapping ¢ to A. Then, we can use that

—is /(p to obtain

fet)y = ¢ Vot + kT)p(0), 3.9)

Us(p] =e

o0
‘?z:A(fk(t)UH-kTCsfr(x’ y) = 371_;—11 (fk(t) Ze_ikj(t—i_kT)(pj (x)Ce r9; (y))
=0

= fix (2280 =2)e T4 9, (1) Cerry )
j=0

= fi * 8A< Y 0i()Ce Uity (y))

Aj <A
= 04 (fr * Mo,y UsrCy(x. ).
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Therefore, if d(x, y) <4, (3.8) yields

Aec(hooix.y) = Y ¥4, (fie * Mo Ukt CFo (x. 1))
keZ

By [16, p. 53], with a as in (1.2) and

b= 20 (3.10)
YA '

we have that U, — ¢!®T U, 1 is a Fourier integral operator of one order lower than
U,, namely —1/4 — 1. In particular, we have that Uy — e'®T Uy is a pseudodifferential
operator of order —1, and

Up — T Upr € U1 (M),
for any k € Z. Since Uy is the identity map, we can write
Urr = ¢ T (1 + Q)
for Qi € W1 (M) with polyhomogeneous symbol. Thus, we obtain

Aechooix.y) =Y eFTOD0, (fi s« Mo + Q)CE)(x.y).  (B.11)
keZ

Therefore, we must determine the asymptotic behavior of
I (fre * Mo (I + Qr)Cerp).

Remark 3.1. Note that for each fixed o, > 0, the fk are identically O for sufficiently
large k. Therefore, the sum in (3.11) is finite for each 0,8 > 0.

3.2. Pseudodifferential perturbations of the spectral projector

The goal of this section is to find the asymptotic behavior of

I (fx * T + Qu)Cl)(x. y)

for each k. We are interested in working with points x, y € M for which dg(x, y)
is small. Therefore, we will assume that we work with coordinates y = (y1,..., ¥n)
on M and dual coordinates (&1, ...,&,) on Ty*M . The Riemannian volume form in
these coordinates takes the form \/@ dy, where |g,| denotes the determinant of the
matrix representation of g(y). We also define the function

O(x, y) := [detg Dy —1(,) eXpyl,
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where the subscript g means that we use the metric to choose an orthonormal basis on
T. 1 (y)(TxM ) and Ty*M (cf. [4, Chapter 2, Proposition C.III.2]). The determinant

€Xpx

is then independent of the choice of such a basis. We note that O(x, y) = \/@ in
normal coordinates centered at y.

If § € T M is represented as § = ro with (r,w) € (0, +00) x SyM, then we
endow S M with the measure dw such that d§ = rldwdr.

Remark 3.2. We note that dw is not a coordinate invariant measure, but it behaves
like a density in y under changes of coordinates. Thus, dw should be regarded as a
measure taking values in the space of densities on M. Despite this, we note that for
v eR”

1 Ja—p(v) 1 0.0)
Qmyn/2  |y|m-2)/2 T @2 /e dogn—1(w).
Sn—l
Hence,
;/ gt @ 40 1 Ja-2p(Adsx p))
()" Jol @ (g (e, )22

SEM
and the right-hand side is clearly coordinate invariant. Here, we used that
do = |gy|1/2 dogn-1
and that in local coordinates

(exp ' (x), w)g = (g5 /% exp; " (x). g} /2 w)me

/

with g;l 20 € S" 1 and |gy_1/2 expy_l(x)|Rn =dg(x,y).

Proposition 3.3. Let (M, g) be a compact, smooth Riemannian manifold of dimen-
sion n > 2 without boundary. Let C and Q be pseudodifferential operators with poly-
homogeneous symbols ¢ and q of orders 0 and —1, respectively. Fix § < inj(M, g)/2.
Then, for each pair of multi-indices o, B € N", there exist constants Cy, Ca, 1o > 0,
such that for any function f € C*°(R) with f smooth and compactly supported, and
any x,y € M with dg(x,y) < § we have

OY2(x, y)d,u(f * Mo (I + Q)C)(x,y)

—1 4/
T
Sy M

dw

+ R(i, x, ),
|gy|
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with

sup  [0%0% R(u, x, )]
dg(x,y)<é

< C181|3; f || oo (s sy 1 HIHHIBl L 0y =2 FlelHIBI (3.12)

Sforall i > [uo. Here, C; is independent of §, Q and f.

Proof. We prove the statement first in the case where « = = 0. Observe that

oo

1 AN
0u(f * Moy + QICNxy) = 5 [ M FOUI + Q)Cx.p) dr. (13)

—00

Using the parametrix for U; constructed in [10, Proposition 8], we have that if

|
dg(x,y) < Ean(M’ ).

then
O~ 1/2(x, o= , d
Uz(x,y)=2—(xny) o D —iMEley 41y £) -5 (3.14)
(2m) vV gy
M

modulo smoothing kernels, for some symbol 4 € S® with a polyhomogeneous expan-

sion
o0
A~ E A_j.
Jj=0

In particular, Ag(¢,y,&) = 1forall¢,and whent =0, A_;(0,y,&) =0forall j > 1.
Since C and Q are pseudodifferential, we can use the same parametrix construction
to write

—-1/2
OT2()) [ jitows 080 —ilEley sy £y L5
Y e €
(2m) |gy]

T} M
(3.15)
for some D € S°. Note that since the principal symbol of U, is identically 1 and C, Q
are pseudodifferential, the principal symbols of U;C and U; QC are each indepen-

dent of t. At ¢t = 0, we have UyC = C and UyQC = QC, and hence the principal
symbol of U;C is co(y, &) for all ¢. Furthermore, since the subprincipal symbol of C

Uil + Q)C(x,y) =

is identically zero and all lower order terms of A vanish at t = 0, we have that the
symbol of U; (I + Q)C satisfies

D(t,y.§) —co(y.§) — D_1(t.y.€) € S,
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where D_; € S~! is homogeneous degree —1. From (3.13) and (3.15), we obtain

Ou(f * (I + Q)C)(x,y)

@_I/Z(X’y)/ / e iexpy ! (x).6) gy —it €] dgdt
- _ 77 l leXy X gy 1 gy tDt
g | ] fope..0 =
% T}
T O(u™). (3.16)

To control the integral on the right-hand side above, we change variables via § — urw
for (r,w) € R x Sy M, which yields that the left-hand side of (3.16) is

e w+1/ /kaW“1”"]

sim vV lgyl

Noting that since the phase is nonstationary for r # 1 we may introduce a cutoff
function { € C2°(R) which is equal to one on a neighborhood of r = 1, and supported

) drdt. (3.17)

in [1/2,3/2]. This results in an error which is @ (u~°) as u — oo.
Let S(¢,y,&) = co(y, &) + D_1(¢, y, §) be the first two terms in the polyhomo-
geneous expansion of D. Since D — S is a symbol of order —2, we have

ID(t.y, prw) — S@t, y, pro)| < Cu™>

uniformly for all 7, y. Combining this fact with an application of stationary phase in
(t,r), we see that the left-hand side of (3.16) is equal to

(2 )n+1 / f(t)ely,t(l r) n— lé-(r)

—00 —00 « ( / z,ur(expy (x),0) gy S(t,y, urw)
Sy M

do )a’r dt
vV |gy|
+ 0" ),

where { € C2°(R) is a cut-off function that is equal to 1 near r = 1 and vanishes for
r ¢ [1/2,3/2]. Notice that by homogeneity in the fiber variable, we have that for any
(y.m) eT*M,

/e ey S(t, y, pro) ——
P \/|gy|

v
. 1 d
— /el(n’w)gy (CO(y9a)) =+ _D—l(ty Yy, Cl))) @
ur gy

SiM
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Then, following the proof of [32, Theorem 1.2.1], there exist smooth functions a+ €
C®(T*M) and b+ € C*®(R x T*M) such that

. d :
/e’(’?’w)gyco(y, Cl)) e = Zeillnlgyaﬂ:(yv ’7)’ (318)
SEMm |gy| +
y
and J
/ei(""”)gy D_(t,y,w) g - Zeii‘”lgy bi(t,y, w), (3.19)
S* M |gy| +
y
satisfying the estimates
07 ax(y. )| < Cy(1 + [nlg, )~ "~D/27], (3.20a)
18507 ba(t, v, | < Cpr(1+ [lg, )~V (3.20b)

for any multi-index y, any integer kK > 0, and some constants C,,, C, x which are
independent of ¢, y, and 5. Therefore, by (3.13), (3.14), (3.15), (3.18), and (3.19),

I (f * Ipo,1(1 + Q)C)(x. y)

o0
w" :
= —(271)"‘*‘1 Z//emwi(t,r,x,y)gi(t, rx,y, ) drdt,
£R O

where
Ya(t,r,x,y) =t(1—r) £rdg(x,y)
and
gx(t.r,x,y, 1)
- r”—lg(r)f(t)(ai(y,/xr exp, ' (x)) + %bﬂ:(f’ Vo ur expy_l(x)))- (3.2D)

+ r:l:):

c’'c

Observe that for any fixed x, y € M, the critical points of ¥+ occur at (¢
(£dg(x,y),1), and that

det(Hess wi(tci, rf, x,y)) = 1.
Therefore, by the method of stationary phase, we see that
A (f * Mo (1 + Q)C)(x, y)

Mn—l . i
Y etdeloy) (gi(tci, rE Xy ) — ;aratg:i:(tci, rE Xy, M))
+

~ @)

+0Ou").
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From (3.21) and (3.20), we have that
|aral‘gﬂ:(zét’ rc:-t’xv Y, /“L)l
R C, R
< Ci|9: f(Fdg (x. ) + f(lf(idg(x,y))l +10: f(£dg (x. y))D)
. Cy . »
< Cil|0: fllLoo=s.81) + FHfHCl([—S,&])»
and we remark that C; is independent of Q due to the definition of a4. Therefore,
@1/2(x y)au(f * Mo, (1 + 0)C)(x. )
Z i) f(ddg (x, y))

x (@ (v, pexpy () + biac v wexpy! ()

(27t)”

+ Ri(,x,y).

where

sup Ry )| < Crll Fllen g sy + Call Fller s spi™™ + O™,
dg(x,y)<8

with C; independent of Q. Next, let us Taylor expand f near 0, which yields
f(@Edg(x.7)) = f(0) £ dg(x.7)d, f(52)

for some s+ between 0 and +d, (x, y). Combining this with the fact that

Z ej:iudg(x,y)ai(y, Mexp;l(x))
+
= /ei“(expy_l(x)’w)co(y’w)

SiM

dw

\/|gy|’

we obtain
OY2(x, y)au(f * Mo (I + 0)C)(x,y)

ur- lf(O)( / dw
ellexpy 1(x), ®ey ¢ w
Qr) o(y, w) Flgyl
SEM

+ Ze:l:ill«dg(xgy)bi(tél:, ¥, MeXp;l(X)))
+

+ Ri(u, x,y) + Ra(p, x, y), (3.22)
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where R; is as above, and R, satisfies

sup  |Ra(pe, x, ¥)| < 81|0s f | Loo(—s,67 (Cop™ " + C1p™2)
dg(x,y)<é

for some Cy > 0 which is independent of Q and C; > 0. Next, we Taylor expand
be(tE, y. pwexpy (1) = b (0. y. prexpy (x)) & de (x. )3ebs (5. v, pexpy’ ()
for some s/, between 0 and tF = £dg(x, y). Recalling (3.20), we have that

|8:b (s, v, pexpy, ' ()] < Ca(1 + pdg (x, y)) V72,

since |s+| < dg(x, y). Therefore, we obtain

n—2 ¢
(0) indg (x -
% Zei nde N, (1F y, Hexp,, '(x))
n 2 0 dw
5 f,g ) wlexpy ! (x),0) D_1(0,y,w)——— + R3(u,x,y), (3.23)
(2m) Vigyl

SiM

where

sup | Rs(u, x, y)| < C28 F(O)u" 2,
dg(x,y)<§

after potentially increasing C,. Therefore, we have that (3.22) and (3.23) yield

©'2(x, )3 (f * Mo + Q)C)(x,y)

1" £(0)

S @uy
SiM

d ~
expy (x)w gch(y w) |C() | =+ R(/.L, X, y)9
8y

where R satisfies

sup |§(u,x,y)| = Cl(g”f”(jl([_g,s])/f‘n_l + C2||f||(jl([_5,5])lf‘n_2
dg(x,y)<é
+ C38f O+ Call fllcrqusspi” > + O™ ),
for some C1, C,, C3, C4 > 0, with C; independent of 6, f, and Q. This completes the

proof in the case where @ = § = 0.
To include derivatives in x, y, we observe that

aaaﬂ ifexpy 1 (x),6) _ O(|&| 1+ 18Ty

as |£] — oo. Therefore, we can repeat the preceding argument where the orders of the
symbols involved are increased by at most || + |B| to obtain the desired result. m
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3.3. Asymptotics for Ag (A,0;x,y)

With Proposition 3.3 in hand, we are equipped to prove the main result of this section,
namely the asymptotic behavior of A (A, 0; x, y), which accounts for the contribu-
tions near each multiple of the period 7. In particular, we set A = vy for£ =0,1,2,....
Then, we can define

27N vl . _ d
Rex(0.01x,) 1= Ago(vp 05X, y) — o o L /e’““expy‘(x)’w’g—”.
| T (2m)" lgy]

SiM
(3.24)

Proposition 3.4. Let (M, g) be a smooth Zoll manifold with minimal common period
T >0.Fix0<w< 2n)/T. Let Ay, ¢ as in (3.6) with C; satisfying (2.6). Then, for
any multi-indices o, B € N”,

li lim li lim i —1 9298 R « ) 0
im lim lim lim limsu su L0 X, =0.
6—>0t >0 e>01t §—>07F Z—)oopdg(x,)rz))<8 v” I+|al+[g] "x 7y 8T Y

Proof. Fix two multi-indices «, 8 € N”. First, note that for b as in (3.10) we have
that for all k € Z

GIKT®=vp) _ kT (=27¢/T) _ ,~2mikt _ |

Combine (3.11) with Proposition 3.3 to obtain

A 0:x,9) =] Ao (€%, 7)Y fi0) + 0772 fe(O) Wi (€, x. y)

keZ keZ
+ > Rl x.9), (3.25)
keZ
where
dw

Aee(l,x,y) = / velewy (.0)e 0 () )2

oF (27f)”®1/2(x y) e Vigyl
Wksr(e X y)

ivg (expy 1(x),0)¢ sr(y a))O(Qk)(.% )

/ dw
(2ﬂ)”®1/2(x y) Vigyl

and Ry . . satisfies

Sup |8z8£Rk,€,r(£a xv y)|
dg(x,y)=<é

< C1810c fellpooqs,spvp TP 4 Coup 2P
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with C; independent of § and k. Recalling that the summation in k is actually finite
and that supy, - 5<1 kezy 19¢ fi | Loo((—5,67) < 00 (see Remark 3.1) we have that if we
define

1 . ~
Fe(L,x,y) = m(%’ ? Z fk(O)aiaf Wi e,c(ve, X, )
Ve keZ

+ 3 0808 i (0., ),

keZ

then we have for each fixed o > 0

lim limsup sup |Fe.(£,x,y)| =0. (3.26)
§=0F (500 dg(x.y)<é
Define
1 ; —1 dw
A, x,y) = /eWe(eXpy (x),0) g '
Q2m)"eV2(x, y)S*M /|gy|
y

To deal with the first term in (3.25), we claim that

lim, lim lim lim limsup sup v, "™ 71P19208 4, (¢, x,y) — 8298 A(¢, x, )]

00T s>06—085>0 4, de(x,y)<8

=0. (3.27)
and

lim lim lim lim limsup  sup v, 13288 42, x, ) 3 £2(0)
0>0t 5506508550 ;o dg(x,y)<8 ¢ vy kEZZ

2N
- Tl A X))

=0. (3.28)
Observe that (3.27) follows from the fact that

. —|e|— i —1
limsup v, *71P19288 (e1e ey 0)s (1 — 0 (y, w)))| < Capl(1 — 2, (3, @)

{—o0
and that
11— Cg,f(y7w)||Ll(§g)—l) 8—_:6’ 0.
To prove (3.28), first note that, by (3.9) and (3.1), we have
; . iﬂt(N—l)/TSin(ﬂTNt) » - 7
D S0 =) lime — Vot + kT)ps(0) = N Y Yo (kT).
T

keZ keZ Sm( ) keZ
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Using the Poisson summation formula and the definition of ¥, o := ¥ in (3.2),

N Doty =N 3 D sk = S 1y ()

Tw
keZ keZ keZ
271N (2nk>
T Lo\ Ty
keZ

Motivated by the form of the above expression, we replace o by wo, which is permit-
ted since w is fixed throughout this argument. Thus,

N Y o Ty = 22 ST (5.
keZ

Since Y1,6 = 1[—1,1] * po and 0 < w < 27/ T, we have that for k # 0,

‘T%a( )’EC;V/(1+T|LW|U)_N/ for any N'.

Thus, if we choose N’ > 2, we obtain

1 k , Ik|\—N’
% 7he(gg)| = v %ZO(W“)N T (wo + )

= cwwor T Y (K1)
keZ
k#0

which converges to 0 as ¢ — 0. Also, when k = 0, we have

o) = 5 / B o) di — §(0) = 1

—00

as 0 — 0, and this finishes the proof of the claim in (3.28).

Combining (3.24), (3.25), (3.26), and (3.28) yields that the final step in the proof
is to eliminate the factor of ®~'/2(x, y) implicit in the definition of L. For this, we
observe that ®~1/2(x, x) = 1 and its differential vanishes on the diagonal in M x M.
Hence, for small dg (x, y), we have

O72(x,y) = 1 + dg(x.y)*G(x, y)

for some smooth, bounded function G. Thus, it suffices to show that

. _ dw
B (d (x’y)Z/eWg(expyl(x),w) )‘ —0.
|a|+|ﬁ| xTy\"E /gy

SiM

lim limsup sup
§=0F Yoo de(x,y)=slV
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In the case where at most one derivative falls on the factor of dg(x, y)?, the above
statement holds trivially. If two or more derivatives fall on this factor, then at most
la| + |B| — 2 factors of v can appear from differentiating the integral over S; M, and
so (3.29) also holds in this case. ]

4. The contributions of subperiodic loops

4.1. Subperiodic loops near Ky

In this section, we analyze the asymptotic behavior of the contributions to the spectral
projector from times which are bounded away from integer multiples of 7', which are
characterized by the quantity

T xNt
Beclh 7%, ) = o / 0T 5 OUCE ) (1= e —kT)) .

Jo sin(F) =
“.1)
We can rewrite this as
(k+1)T N
oith sin T b *
81’()' 05X, y) Z 2 n 1/f (I)Ufce,r(xvy)
i n sin T
x(1—p(t—kT)—p(t —(k+ 1)T)) dt.

Changing variables via t + ¢t + kT, we obtain

st,r(AvU;x7Y) =

ikT sin(ZN1) . .
E / i e AT ar

kezZ 0 T x (1= p(t) — p(t — T)) dt.
Similarly to Section 3, we use the fact that we can write

Upsir = e **T (U, + 01 (1)) (4.2)

for some Qp (¢) which is an FIO of order —1/4 — 1. Thus,

B&‘,‘L’(A" G;x7 y) =
keZ

. T .
kT (2—D) / i Sm(nm)

 C2 ey~ ) — Pl —T)) .

Note that due to the support properties of o, we can extend the integral over [0, T] to
be performed over the whole real line. Let us define

sin(2ZL)

sm(”T)

gk, (1) = Volt +kT)(1 = p(t) =t = T)o,y(t)  (4.3)
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so that

JKTOB)
Ber(A.oix,y) =) > Teal8en U+ Ok(M)CL]. (44
keZ

Lemma 4.1. Suppose that in some coordinate chart,

Ut(xvy) =

[ e eDate . a

R”

2m)"

for some nondegenerate homogeneous phase function ¢ and some symbol a € S°.
Then,

UiCl(x,y) = / e P, (x,y,§) dE,

R7

Q2m)"
where
e (x,y.8) —a®(x, v, 6)cl (y.—0yp) € ST

This lemma follows from the standard FIO calculus (cf. [21, Chapter 25]). With this
in hand, we have the following proposition.

Proposition 4.2. Let (M, g) be a smooth, compact, Zoll manifold with minimal com-
mon period T. Suppose that xo € M and for each s satisfies

lim pus+p (£ n,e,(X0)) = 0,
e—>0
and let cg ; satisfy (2.5) and Bg ¢ be as in (4.1). Then, forallo,f € N, 0 > 0,

lim lim lim limsup  sup )kl_"_l"‘l_lﬁlwzagﬁg,r(/\,o;x,y)| =0.

=0 e—0 60T Ao0 x,y€B(x0.8)

Proof. We claim that for w > 0, 0 > 0, and any k € Z fixed, we have
Ft_l—l)(, [§k,N U; C;:r (X, J’)] = DE,‘C,k (k » X, y)l"_l + Rg,r,k (k , X, Y)y 4.5)
where D, . x and R, . are functions satisfying

lim lim lim limsup  sup A"le=1Bl 19298 p kA, x,¥) =0
§s=>0&e>08—-0 j-9 x,yEB(xo,S)Xk: et

lim sup Al_n_lal_lﬁl|3z35Rs,r,k(A’x’J’)| =0.

A—00 x,y€B(x0,5)

Moreover, we claim that if Qg is as in (4.2), then

lim  sup  [AMTTERlOYR FL (2 v Qi C L (x, )] = 0. (4.6)

X t—>A
A—00 x,y€B(x0,5)



Asymptotics for the spectral function on Zoll manifolds 1021

We start proving the proposition given the claim. Notice that, since o > 0, the sum
in (4.4) is finite; we have

limsup  sup Al_”_l"‘l_lﬁuazag‘l%s,t(k,o;x,y)|
A—>00 x,y€B(x0,8)

< Zlim sup  sup A_la‘_|ﬁ||8‘jc‘8£D8,,,k(k, x, y)|.
k A—>00 x,y€B(x0,5)

The proposition then follows since

lim lim lim th sup  sup l_|“|_|ﬂ||8§‘85D6,,,k(k,x,y)|

t—=0e—08—>07T A—>00 x,y€B(x0,8)

= Z lim lim lim limsup  sup k‘la‘_|ﬂ||8§8£D8,r,k(k,x,y)| =0.

12062085501 ) 500 x,yeB(x0,8)

Fix &, 7 > 0. Note that since C¢ ; is a pseudodifferential operator, the canonical
relation of U, C/ is identical to that of Uy, which we denote by

C={(x.Ey.nt.0) ] =[Elg,. O (r.m) = (x.8)},

and hence Uy C;ft (x, y) can be represented as a locally finite sum of expressions of
the form

1 ,
o [ et eDa, ) de
Rn

where ag’r(x, v, t,§) =a(x,y, £)c? (v, —dygp) with a® and ¢? being the principal
symbols of U; and Cg, respectively. Here, ¢ is some nondegenerate phase function
parameterizing C. Thus, we have that

o0

1 (A X 1 .
F U] = o [ 80U CE ) dr

—0o0

can be expressed as a locally finite sum of terms of the form

/ / zt,l+z<p(xyf$)gkN(z)agr(x y.t,§)dE dt

—o0o R”

(27f )"

/ / lA(z+¢(xyt$))gkN(1)a$r(x y.1,8)dedt + OA"™ 2)

—oo R”

(27r )"

since the subprincipal symbol of C; . is zero in a neighborhood of x,. To see this,
observe that the principal symbol is independent of x in a neighborhood of x¢ and is
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homogeneous degree O for |£| large enough. Let us convert to polar coordinates via
¢ = rw forr > 0 and w € R”, which gives

/ / ML g (1)al (x,y,1,8) dE di

—oo R

(2ﬂ )"

/ / / z)t(t—i—r(p(x,ytw))gkN([)ast(x y,t,0)r"” Vdrdt do.

—00 0 gn—1

(27T )"

Let ysr € C®(S™™!) be such that |V,@(x, v, ¢, w)| < 8 for all @ € supp ys . Then,

oo o0
/ / /e"’l(t“L”"(x’y’t""))gk,N(t)ag,t(x,y, to)yr" Vdrdt do

—00 0 Sn—l

@2n)"

[e,o 2o ¢]
[ [ [y @anwad .yt dr di do

—00 0 gn—1

+0O(A™), “4.7)

~ @)

since |V, ¢| is bounded below on the support of 1 — ys/, and so we may integrate by
parts arbitrarily many times in @ using the operator (Vo - Vo) /(i Ar|Vye|?). Now,
for each fixed w, we aim to perform stationary phase in (¢, 7). The critical points of
the phase function ¢ =t + re(x, y,t, ®) occur when

1
drp(x,y,t,w) = — and ¢(x,y,t,w) =0.

The Hessian at such points is given by

rdze g
8[(p 0 ’

and hence the critical points are nondegenerate. Since ¢ is homogeneous of degree
1 in the fiber variable, we have that d,¢(x, y,, rw) = ¢(x, y,t,w) = 0 at any of
the critical values of z. Also, since |V,@(x, y,t, rw)| < § on supp ys/, we have that
|dep| < & at the critical points, and hence the points

(xs dx(p, y7 _dy‘p’ t? at(p)

are very close to the canonical relation C. Thus, for §’ sufficiently small, we have that
at each critical point (z, r.),

/&
dg (9" (7. —dyp). (x.dz¢)) < min(3.6).
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Thus, if (x, y) € B(xg, /2), this implies that ®* (y, —dy¢) € B(x, €). Due to the
support properties of ¢g (¥, —d, @) (see (2.5)), we have that —d, ¢ ¢ L, - (xo), (see
(2.1) for the definition of L, ;). In particular, the only critical points which contribute
a nonzero term to the sum are those for which |z, — (p/¢q)T| < t for some 0 < p <
q < N. Therefore, by stationary phase, the leading term in (4.7) can be expressed as
a finite sum of terms of the form

/\n—l 1 ) . ‘ . R B
@) /Z Ggpe e gy )8 (1)ag (x. v te )™ do
t
n—1

a
+ Op e (A"72), (4.8)

where the sum is taken over all critical points (¢, (@), 7. (@)) for which

ag,r(x, VY, te,w) # 0.

Since, for dg (x,y) < &/2 small enough, |tc — (p/q)T| <t forsome0 < p <g <N,
we have that | sin(Nnt./T)| < Nmt/T, and hence

lim lim lim  sup @y (te)al (X, . te, @)
s—>05—>08—>0dg(x’y)<8 >

L sin( %)
= lim lim lim  sup — 7
§s—>0e—>05—-0 dg(x,y)<8 sm(T")

Volte +kT)

X (1= plte) = pltc = T))ag (x, y, te, )
=0,

which completes the proof of (4.5). The estimate (4.6) follows by a similar argument
if we note that Qg (¢) is an FIO of one order lower than U, with the same canonical
relation.

This completes the proof for |«| = |8| = 0. To handle derivatives, observe that if
a derivative falls on the amplitude, then the kernel is smaller than the main term by a
power of A and hence does not contribute after taking the A — oo. Therefore, the only
term we need to consider is when all of the derivatives fall on the exponential. In this
case, we obtain (4.8) with A"~ replaced A"~ *1#I+I8l and the symbol a® replaced by
another (uniformly bounded) symbol @2 with the same support properties. Hence, the
proof is completed in the same way as for |«| = |B]| = 0. [

4.2. Looping times outside of K

By the assumptions of Theorem 2, we know that there must be at most a small measure
set of subperiodic loops with lengths which are outside of Ky = {(p/¢)T : 1 < p <
q < N}, and thus we expect their contributions to be negligible. In this section, we
demonstrate this rigorously by utilizing analysis similar to [10, 34].
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Proposition 4.3. Let B, ; € W°(M) be any pseudodifferential operator such that the
principal symbol B 2 L (x., &) satisfies

. 0 _
iﬂ%fﬂ& 1 Bg, (x. ) L1 (gn-1) = 0.

Then, for any a > 0, a, B € N, there exist constants Lo, C > 0 such that

sup (0208 TTp va By (x. )| < c1p,op" FIHBL ¢y | =2l +181,

x,yEM
with limg_s¢ Clye,r = 0.

Remark 4.4. Note that this proposition holds on any Riemannian manifold, not only
Zoll manifolds.

First, we claim that for any p € S(R) with Fourier transform p supported in
[—inj(M, g)/2,inj(M, g)/2] with p = 1 in a neighborhood of 0, we have

©2(x, )3, (Mo BE ) (x. ¥)

/L”_l ) . . da)
= (27[)” /elﬂ(expy (x),w)Bgr(y, w)ﬁ + Rs,‘[(/»l/, X, y)’
Yy
S;M

where
099 Re (11, x, y)| < Cop" > HeI+1A]

for some Cp > 0. This follows by a repetition of the proof of Proposition 3.3 with
(I + Q)C replaced by B;, and f replaced by p. Since p = 1 near 0, the first term in
the remainder estimate (3.12) vanishes. Then, since Bg . is supported in a set of small
we have that

10,0205 (p # o,y BE (6, )| < c1,0,0p™  HIHEl ¢y o pun2FleIHBL (4.9

for sufficiently large p, where limg 0 ¢1,¢,: = 0.
To control the difference 9, o ;1 B, — 9, (p * T1[o 4 B ), we invoke general
Tauberian theorems in the exact same fashion as in [10].

Lemma 4.5 (Tauberian theorem for non-monotone functions). Let 6 be a piecewise
continuous function such that there exists A > 0 with 0(t) = 0 for |t| < A. Suppose
further that there exist constants m € N and ¢y, ¢y > 0 such that for all p € R

0 +5) — 0| < cr (1 + )™ 4+ c2(1 + [w)"™" foralls €[0.1]. (4.10)

Then, there exists a positive constant ¢y, 4, depending only on m and A, such that for
all p we have

0G| < emaler(I+ )™ + c2(1 + )™ ™).



Asymptotics for the spectral function on Zoll manifolds 1025

Proof. Let p be a Schwartz function with p € C2°(—A, A) and 0 ¢ supp(1 — p). Then,
p*6 =0and

j+1
0601 = 1060 — p = 60 = 3 [ 19(6)OGx =)~ 0] ds
jer
Jj+1
< Cow XN [ 16G0-9) = 6= )l ds

j > f
Jj=0 ¥

j—1
+ (VY 10— k) = 6 — (k + 1)

k=0
J+1
+Con YU [ 1802 =9~ 600~ 1 ds
j<0 j
[jl=1
YN Y 10+ Ky — 0+ K + 1)
k=0

J
<Con YV D (er( A+ =KD" + (1 + [ — k™)
J k=—j

<Cpmcr(1+ k)™ + c2(1 + [w))™ ). n
To apply this lemma, we first set
Os,x (x, y, 1) = 0208 (Mo ) By L (x. y) — p x Mo BE  (x. ).
We must then demonstrate that 6, , satisfies the hypotheses listed above. Note that
Frurt Oc 2 (x, 7, )(0)) = (1 = (1) Fpurs (3595 (Mo, B, (x, ) ().
Since p = 1 near 0, we therefore have that
Furst(Oe(x,y,)) =0

for ¢ in some interval around 0. Then, ¥,»;(6,,¢(x, y,-)) vanishes in a neighborhood
of t = 0. We now verify the hypothesis (4.10) for ;.
Next, let s € [0, 1] and i € R, and notice that

Qe,r(x, Y.+ s)— es,r()@ V. )
= 008 (Mo By, (x, y. o+ 8) — Mo, By L (x, y, 1))
+ 0500 (p * Tpo . BY o (x, y, i+ 8) — p* T, BE (%, y, ).
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To control the first difference, we apply Cauchy—Schwartz, which gives
19595 (Mo, BS ¢ (x, y. ju +5) = Mo B (x. y. )|
= Y90 0 B ()]

u<A;<p+s
1/2 1/2
=( X1eoP) (Y10 BaemP)
M<A;<pts W<A; <p+s
Applying the local Weyl law (cf. [32, Theorem 5.2.3]), we have

10208 (Mg, BY  (x. y. pu + 5) — Moy B (x. y. )

< Cpp T IHAHIBL o n2lal B

with limg— c1,6 = 0, for u > 1 and s € [0, 1]. To estimate the derivatives of

ﬁ * H[OsM]B:,‘[(‘x’ y’ /‘L + S) - ﬁ * H[O,M]B;t(x’ y? M)7
we simply integrate (4.9) from p to i + s to obtain

0208 (p * T(o,uy BY ;(x.y. 4 5) — p* Mo BY . (x. v, 10))]
< Crp ANTIHRIHIBL | o yne2tlal Bl

for all s € [0, 1], all u sufficiently large, and some new constants ci’“, Cé,s,t where
limg—,¢ ¢} . , = 0. Therefore, we have that

106 (X, ¥, 1t 4 5) = Be(x, y, 10)] < €1, TIHEFIBL ) o punm2HleIHIB

after potentially increasing ¢ ¢ r and ¢, ¢ . (but still with lim,_,¢ ¢1 ¢, = 0). Applying
Lemma4.5 withm =n — 1+ |a| + |B|, A = inj(M, g)/2, and 8 = 0, ;, we obtain,
using n > 2, that

l n—1+|a|+ n—2+a|+
06,2 (11, X, ¥)| < okt lel+IB] Caenih || Iﬂl’

where limg_,¢ c’l,s’r = 0, which completes the proof of Proposition 4.3.

5. On-diagonal analysis of the spectral projector

The goal of this section is to establish a lower bound for the spectral function restricted
to the diagonal, which is critical for the purposes of comparing the smoothed projector
to the original. In particular, we show that most of the “mass” of the spectral function
is concentrated near

U [ve — r12, Ve + rZ_l/z],

teN
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with vy as defined in (1.2). This is similar to the original eigenvalue clustering result
1/2 replaced
with 7£~! should hold, but we do not prove this here as the refined statement is not

of [16, Theorem 3.1]. We expect that a stronger cluster estimate with r{~

needed. We also note that the results of this section do not depend on any assumptions
about superiodic loops. We need only that all geodesics are periodic with minimal
common period 7.

Proposition 5.1. Let (M, g) be a Zoll manifold with minimal common period T > 0
and let {¢;}; be the corresponding Laplace eigenfunctions defined in (1.6). Let r > 0
and fix a multi-index @ € N". Then, there exist K, C, Ay > 0 so that for all x € M
and A > Ag

D150 P = (1= Cr72) ) 135, (1)1,

A €AK, ) 1A —Al<K

where

AK, 1, 2) = {Aj A=Al < Ky e e —reV2 v + re—l/Z]}.
teN
Proof. We begin by considering the case where o = 0 separately. For this, we proceed

in close analogy to the proof of [16, Theorem 3.1]. Let y € S(R) with y > 0 and
% € C2°(R) with (0) > 0. Repeating previous calculations, we have that for x € M

oo 1 o0 -
> -Alp P =5 [ @ pve ar 5.1)
j=0 _oo

Similarly,

© A 1 T o
DO = Al P = — / e Uy (x,x)dt. (5.2)

Recalling that U; — eibTU[J,_T is an FIO defined by € of order —1/4 — 1 (see (3.4)),
we know that we can write

. 1 .
U(x,x) — ™ U7 (x,x) = W/‘EWO’X’X’S)B(LLX’&) dé,
T M

where B is a symbol of order —1 and ¢ is any admissible phase function which

parametrizes € (cf. [16, p. 45]). As in the proof of Proposition 3.3, we can use the
phase function

¢(t.x.y.£) = (exp, ' (x).)g, —tlElg,-
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Hence,

% / ith A(t)(U,(x x)—e’BTUH—T(x x)) dt

= / [ tO—ED (1) B(t, x, x, €) d€ dt

/ / /)((t)e“lt(l D"V B(t, x, x, Asw) ds dw dt

—%© 0 SyM
= 0O(\"?), (5.3)

(zn)n-i-l

Here, to obtain the bound in the last line we used the fact that B is a symbol of order
—1 and repeated the calculations from the proof of Proposition 3.3 that follow (3.17).
From (5.1) and (5.2), it follows that

o0
D xA =2 = ORI g (x)F = 0" 7). (54)
j=0
Thus, we can take real parts to obtain that
o0
D (L= cos(T(b = AN x(* = A)lg; (0> = O("?) (5.5
j=0
as A — oo. For any r, £ > 0, define the set
E(L,r) = {A; € Spec(y/=Ag) : r{™V2 < T|Xj —vy| < 7}

Recall that vy = 27/ T + b by (3.10). Thus, if A; € E({, r), we have that

1 1
1 —cos(T(b—Aj)) =1—cos(T(vg —A;) —2mL) > ErZZ_l — ﬂr“ﬁ_z,
since 1 — cos(f — 2ml) > (1/2)0? — (1/24)0* for § € [~m, ] and all £ € N. There-
fore, using that vy > c£ for £ large enough, together with (5.5), we obtain that for
every r > 0 there exist C, £o > 0 such that for all £ > £, we have

[y . T 2
Z Er £ mm()((pc) Dl = 7)|§0](X)|
A €EU.r)

< C Y (1 —cos((b— 1)) x(ve — A))lg; (x)[> < Ce" 2.
A €E(L,r)
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If we adjust y so that y(u) > O for all || < /T, we obtain that

D lo ) < cr e (5.6)
A;€€XL,r)

for all » > 0 and all £ large enough.
Next, observe that for any K, r > 0,

AK. L) =X [A A < Kyn () &(L.r).
=1

Therefore,

oo

SNlo P =Y o P -3 3 lei (0. (5.7)

Aj EA(K,r,A) [A;—Al<K (=1 A;€{lA;—AI<K}INEE,r)
Note that
{Aj A=Al <K}NEWU,r)=0 if|lvy—A| > K + 7.
Thus, if we define
VA, K)={L:|vg—A| < K + 7},
by (5.7)

Sl P =Y g P =Y. Slg@P.  68)

A €AK,r,A) |Aj—Al<K LeV(A,K) AjeflA;—AI<KINEL,r)

In addition, for each £ € V(A, K), we have that v, ~ A, and so by (5.6) that

> lgi) = Cr2an! (5.9)
Aje{lA;—AI<K}INE(XL,r)

since £ ~ vy &~ A. Next, we need the following lemma whose proof we postpone until
the end of this section.

Lemma 5.2. Let (M, g) be any compact smooth manifold of dimension n with La-
place eigenfunctions {¢;}; as in (1.6). Then, for every multi-index o € N there exist
K, C, Ay > 0 so that

Z |a§(pj (x)|2 > CAn—H—ZIaI
A=A |<K

forall A > Ay.
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Returning to the proof of Proposition 5.1, we can combine Lemma 5.2 with (5.9)
to obtain that for K sufficiently large,

e P = Cr2 ) g (02, (5.10)

A €flA; —AI<KINE(L,r) | —Al<K

Furthermore, since the cardinality of V(A, K) is proportional to K, we can com-
bine (5.10) with (5.8) to obtain

Yl = (1-5) Yl

A €AK,7A) 1Aj—Al<K

which completes the proof in case where || = 0.
In order to prove the statement for higher order derivatives d%, one need only show
the appropriate analog of (5.4). In particular, this will follow from

o0

E/ ()55 (Ur(x,y) = T Uiz (x.9)|y=x d1 = OA" 24200 (5.11)

—00

This follows directly from the off-diagonal analog of (5.3), which is given by

o
1 P9 A i
E/elm)((t)(Ut(X,y)—ebTUt+T(X,y))dt

= / / iA((expy ! (x),€)+1(1—-[€]) 5 (t)B(t x, y, AE) dE dt.

O TIM

Thus, each derivative in x or y yields at most one additional power of A, and so by
previous arguments we obtain (5.11). The rest of the argument proceeds identically to
the || = 0O case. ]

Proof of Lemma 5.2. The proof of this lower bound relies on the generalized local
Weyl law, which states that if A is a classical polyhomogeneous pseudodifferential
operator of order zero, then

Ao 1 A* (x.x) = Y |Ag; (x)|* = La(x. })A" + Ra(X. x). (5.12)
Aj=A

where
La(x) = C / o0 (A)(x. )2 d

SEiM
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for some C > 0, and sup,.cps |Ra(A, x)| < C4 )" ! for some C4 > Oand all A > 1
(cf. [32, Theorem 5.2.3]). We note that since A is of order zero, |L4(x)| < Cj for
some C /’1 > 0. Given these facts, we define for each multi-index « the operator

A= 35(1+ Ag) 2 € W(M)

whose principal symbol is a homogeneous function in C*°(7*M \ 0) which can be
written in local coordinates as

jlelge
55

oo(A)(x,§) =

By the local Weyl law, we have
Al p-ka+k1A"(x, X)
= (AT g A (x,x) — La(x)(X + K)")
— (AT g A (x, x) = La(x)(A — K)")
+ La(x)((A + K)" = (A — K)")
= Ra(A + K. x) = Ra(A = K. x) + La(x)(KA"™! + O, 4(A"72)).
Since |[R4(A,x)| < C4A" Vand L4(x) > 8 > Oforall x € M and all A > 1, we have

that
A p_g a+k1A(x,x) = (8K — Co)A"™! + Ok 4(A"72).

Thus, if we choose K large enough so that K — C4 > 0, there exists a A¢g > 0 so that
AMlp_g a+x)A*(x, x) > CA ! (5.13)

for some C > 0 and all A > A¢. On the other hand, we can use the functional calculus
for Ag to write

ATIp—g a1 A (. x) = D (1 + 207 0%; (0],
A-2; 1<K

Observe that

1+ A2 )_Ilz—k§|< KA+ K)
1+22 I+ A2 T+ (- K)?

Since 1 + (A — K)? > A2/2if A > K /4, we obtain

‘1+AZ

— 1| < CKA '+ 0172
2
l—I—kj ‘
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as A — oo. Using binomial expansion, we also obtain

(1 4 A2)lel

-1 -2
U+—W_1 < CoeKA7" + Ok (A7)

for any «. Therefore,
1+ A2 AT e gy A", 2) = 3 0% ()2
[Aj—Al<K

< (CaKA™' + Ok (A7) D [0%0; (x)|2. (5.14)
[Aj—Al<K

Hence, by (5.13),
can=t2lel < (1 4 A2 AT g x4 (3, x)

< (14 CoKA™ + Oxa (7)Y 19%; (1) 2
[Aj—AlI<K

Since Cu KA1 + Ok o(A72) tends to zero as A — oo for any fixed K > 0, this proves
the claim. ]

6. Proof of the main results

In this section we complete the proof of Theorem 2.

6.1. Proof of Theorem 2

Let us recall that our goal is to compute the asymptotic behavior of

N-1

D M wwey, 491 (X2 9)- (6.1)
j=0

1
N

Recalling our pseudodifferential cutoffs B, ; and C, as well as the definitions of A .
and B ; in (3.6) and (3.7), respectively, we have shown previously that for any o > 0,
the smoothed projector satisfies

1 N-1

Po * N Z H[V£+A/—W,Ve+j +w] (xv y)
j=0
1 N-—1

= N}OU * Z H[vg+j—w,vg+j+w](c‘::t + B:,z)(xv y)
Jj=0
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1 1
= Nﬂa,z(w,a,x,y) + NBS,T(/\,G,x, y)

1 N—-1

T N Z Mo w4l Be o (X, 9)-
Jj=0

By Proposition 3.4, we have that for any multi-indices «, 8,

B . —
magay&,,(ﬁ,a,x,y) =0,
4

lim lim lim lim limsup sup
0—0t 150t 601+ §—>0+ oo dg (x,y)<8

6.2)
where we recall that R, ; is given by

27N vl . _ do
Reo(L,05%,y) 1= Ae e (vg, 03X, y) = ——— - E—n/e’”‘f(eXPyl(x)"‘”g—.
T e ) Jg]
y

Additionally, we know by Proposition 4.2 that

lim lim lim limsup sup vl}_"_lal_w|3§8yﬁB“(w,o;x,y)| =0. (6.3)
T—>0e—>0§—>0t+ 00 dg(x,y)<8

Finally, we have that

N-1
lim sup v, " 9208 N T, v Bl ()| =0 (64)
8—>0x’y€M

j=0
by Proposition 4.3. Therefore, if we combine (6.2), (6.3), and (6.4), we have that the
proof of Theorem 2 reduces to the following lemma.

Lemma 6.1. Suppose that (M, g) is smooth, compact, Zoll manifold with minimal

period T. Then, for any w < 7 /(2T) and each pair of multi-indices «, B, we have
li li 1—n—|a|—|B] aaaﬂ I
im limsupv, sup |95 0% (T [y —w,vp+w] (X5 ¥)
o0—0t 00 X, yEM

— Po * H[vg—w,vg—l—w] (X, y))l =0. (6.5)

Note Lemma 6.1 this is sufficient to complete the proof because the summation
over j in (6.1) is finite. Thus, we proceed to prove (6.5).

Proof. Noting that

w . in(s
\(FrHt(]l[_ij](‘[)) = /e—ltt dr = w’

—W
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we can rewrite

Mia—wa+w] (X, ¥) = po * Tp—w, 14w (X, ¥)

oo

= hwo (= 2))g (x)g; (), (6.6)

for any A > 0, where

o0
1 " s1n(tw)
hain(©) = Lew @) = [ €500 (67
—00
We claim that h,, ; satisfies a bound of the form
_ -N
|hw,o(T)] < CN(I + M) forany N € N. (6.8)
o

To see this, recall that p is a Schwartz-class function with [, p df = p(0) = 1 and
po(t) = (1/0)p(z/0). Thus,

! 1) ) ( ) w1 (t+w)/o
L sin(tw T—U
= ene 0™ ar = [ Lo(“TE)aw = [ o0 du.
b4 t o o
—00 —w —w/o
Suppose T > w. Then,
(z+w)/o
wh —N
[ pw du’ < [ ol dp = (14 7=Y)
T—w/o —w/o

for any N since p is Schwartz. The analogous estimate clearly holds in the case where
7 < —w. If instead || < w, then since p integrates to 1 and is rapidly decaying, along
with the fact that 1[_,,  is identically one on [—w, w], we have that

(t+w)/o
|hw,o(T)| = ‘ﬂ[—w,w](r) - / p(1) a’u‘
—w/o
e le] = w\-N
Tl —W -
/Ip(u)ldu+/|p(u)ldu < o1+ =2
o
—00 t+w/o

for any N. Finally, in the case where |7| = w, (6.8) only claims that &, (7) is uni-
formly bounded in w, o, which follows immediately from the fact that

2w/o

g (W)] = ‘1 _ / p(1) d

0

<1

along with the analogous statement for r = —w. Therefore, we have proved (6.8).
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Observe that by (6.6) and (6.7) we have

|ag 85 (H[l—w,l—i-w] (X, y) — Po * H[A—W,X—I—w] (X, y))l

= (D lhuo (= Al (x)|2>1/2(z o (= 4))]188 ¢, (y)lz)l/z-
Jj=0 Jj=0

Thus, the claim in (6.5) would follow once we prove that given o € N, setting A = vy
gives

- I+
lim limsup — 134l Z 1o (Ve — A7)][0%; (x)]* = 0. (6.9)
j=0

o—0t {—00 le—l

For each ¢, decompose N = J;({) U J>(£) U J3(£) with

. T
(O = {72y vl > T}
Jo(€) 1= {j 2 1A —vel <€V,

. — T
J3(l) = {] Y2 <A —wg| < 7}

Note that

> Vo (ve = A)[[0%g; ()2

jeJi®)

> D o (ve = 2)110%; (). (6.10)

m=1 |A; —v|€[mn/T,(m+1)x/T]

Whenever |A; —vy| € [mr/T,(m + 1)n/T] withm > 1 and w < 7/(2T), we have
that

1 ymn —-N m~—N
ot =l = en(1+ 270 —wl) =i (T)
for some Cj, > 0 by (6.8). For the same range of A, we also have that

E ma\ n—1+2|a|
|8gé(p](x)|2 = C(l + vy + T)
|Aj—vel€lmn/T,(m+1)x/T]

for some C, C’ > 0 by the local Weyl law (5.12). Therefore, by (6.10),

o
~ mm\n—1+2la|
3 o (v = A1, O = G 3 (14 v + 7)™
Jen® ot
for some Cy > 0. Taking any N > n + 1 + 2a, we thus obtain
3 Vo (v = 2)I[3%0; () < Cro vy~ 42 6.11)

jeJi®)

for some C; > 0 and any o > 0 small.
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Next, to estimate the sum over J,(£), we note that for each fixed r, w > 0, one can
take ¢ sufficiently large so that [r£~1/2 — w| > w/2, in which case by (6.8) that

|hw,o(ve — A7) < CN(I + g)_N = CN(%)N

for vy — A;| < r€~1/2. By the local Weyl law, we have

N
3 Vo (e = 210505 ()P = Co((S ) vy 7120 (6.12)
Jed2(0)

for some C, > 0 and all ¢ sufficiently large.
Finally, to estimate the sum over J3({) we apply Proposition 5.1, which implies
that there exist K > 0 and £ > 0 such that for all £ > £,

Z |8x‘!’1(x)|2 = Cr_zZ |8 ®; (x)|2 < C'r 2y n 1+2|oc|
jels® [A;—vel<K

where the final inequality follows from the local Weyl law (5.12). Therefore, since
hy.o is bounded by a uniform constant for all w, o > 0, we have

3 Vo (v = A7) [[0%0; (x0)|* < Cyr=2v] 712 (6.13)
Jj€J3 ()

for some C3 > 0, all » > 0, and all £ sufficiently large. Combining (6.11), (6.12),
and (6.13),

lim - HZMZI/@W,G(W AN ()

{—o00
< CioV + Cz(;) + Car?

forallw < 7/(2T) and all o, 7 > 0. Recalling that w > 0 was fixed in the statement
of the proposition, we may send ¢ — 0 and r — oo to obtain (6.9), which completes
the proof. ]

7. Proof of Theorem 1

The proof of Theorem 1 follows the same steps as Theorem 2, but is somewhat simpler
since the structure of trajectories with period smaller than T is simpler than that of
subperiodic loops. In fact, if p € $*M is periodic with some minimal period ¢ < T'.
Then,t = T/N. Since ¢ > inj(M ), this implies N < T/N.
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We start by integrating (3.5) with respect to x with C, ; replaced by the identity

Z /Pa * I 2mj) T—w At 2/ T+w] (X, X)d X

// it G (N—1)z/T) S0 (( ))%(t)U,(x x)dt dx

= A, 0) + B(A,0),

where (similar to (3.11))

AG.0) = 30 eHTED [0, (s Mo + Q) x.x) d

keZ
and (similar to (4.4))
eikT()L—f)) —
BG.0) = Y [ Tkl U+ Qe 0] dx.
keZ T

where gi n is given in (4.3).
The term A(A, o) is analyzed by integrating (3.24) and using the estimate from
Proposition 3.4 with x = y and C, = [ to obtain

2 N n—1
(Aweo) -5 2

lim lim sup T (2 %

o0t 400

vol(S"1) vol (M)) — 0.

To handle B(A, o), we proceed as in Proposition 4.2, but the analysis is consid-
erably simpler. Let y5s € C°°(M X w) be such that |V ,¢(x, x, 1, w)| < §' for all
(x, w) € supp xs/. We then arrive at the next formula by following the analysis that
led to (4.7), we obtain that [ %} A [8x,nU:(x, x)] dx can be expressed as a locally
finite sum of terms of the form

/ / / / xA(t+rcp(xytw))gkN(;)a0(x y. L) Vdrdt do dx

(27T)”
—00 0 gn—l1
(2n)n f f f / e HFTOBLO) 3 (x, ) Gy (1)
—00 0 gn—1 xa’(x,x,t,0)r" Y dr dt dw dx

+O(A™). (7.1)
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Then, performing stationary phase in (r, ¢), we arrive at the analog of (4.8). Then, the
expression in (7.1) equals

(27)"
sn—

+ Og (A"72),

An—l 1 . . 3 A )
/Z memﬁl%lsgnHeleS’(xva’)gk,N(tc)ao(X,x,zc,a))rf Vdw dx
t¥
1

where the sum is taken over all critical points (¢, (x, ®), r.(x, w)). Since

o= (27| <w
q

for some 0 < p < g < N, we obtain

/?t;lk[gk,NUt(X,x)]dx =o(A"h).
The identical argument, but with U; replaced by U; Oy shows that

[ Tt Ui Qer ) dx = 0,2
The proof of Theorem 1 is now completed by Lemma 6.1 which implies

lim limsup vt}_n|n[v(—w,vg+w] (x,X) — po * H[vz—w,vg+w](xvx)| =0.
0—>0T (o0

8. Assumption (1.10) on real analytic manifolds
We now assume that (M, g) is a real analytic Zoll manifold and show that (1.10)
holds for all xo € (M, g). The goal of this section is to prove the following result.

Proposition 8.1. Suppose that (M, g) is a real analytic Zoll manifold with minimal
common period T. Then, there is N > 0 such that for all xo € M and t > 0,

ws*m (L, (x0)) = 0.

We start by showing that on a real analytic manifold (Zoll or not) having a positive
measure of set of loops at x¢ implies that all geodesics through x¢ loop at some fixed
time. We follow the analogous proof in [34, Theorem 5.1].

Lemma 8.2. Let (M, g) be real analytic. Then, for all 0 <ty < t1, if

MS;OM(FII) > Ov
Lo, i=1{p € S;‘OM : there exists ¢ € (g, t1) such that was (¢;(p)) = X0},
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then there is ty < s < t; such that
M (@s(p)) = xo, forallp e Sy M. (8.1
Proof. First, observe that
Tip = 1{£ € Te,M :to < [§|g < 11 such that mas (¢1(x0, §)) = xo},

is an intersection of two subanalytic sets, in fact, it is an intersection of the zero set of
an analytic function with the subanalytic set {§ € T M : 1o < |§|g <t1}. In particular,
I'so,z, 1s stratified and hence contains an embedded open submanifold Yy, C I’y
of maximal dimension. The arguments in [34] show that dim(Y;,) < n — 1 and that
['4y,¢, has the same dimension as its radial projection to Sy M which we identify with

Ity 1, - Therefore, if I'y, ;, has positive measure, we conclude dim(Y;, ;) =n — 1.
Next, consider the collection of rays

Crowy = JUE:0=1 <1},

§€Y1y.1y

Then, each ray in Cy, s, exponentiates to a loop that returns at # = 1 and hence since
return times must be constant on open sets (see e.g. [34, Proposition 4.2]), we have
|&| = s on Yy, s, . Using again that (M, g) is real analytic, we have s (91 (xo, §)) is
constant on |£[g(x,) = s from which the claim (8.1) follows. [

Next, we show that any common looping time at a point xo on a Zoll manifold
must be a rational multiple of the minimal common period.

Lemma 8.3. Suppose that (M, g) is a Zoll manifold with minimal common period T .
Then for all xo € M and 0 < ty < T such that

M (P10 (p)) = Xo, forallp € Sy M.

there are 0 < p < q € Zy suchthatty = (p/q)T and g < T/ inj(M).

Proof. We first show that ¢y is a rational multiple of 7.
Suppose by contradiction #¢ is not a rational multiple of 7. Then, there are p,,q, €
Z 4 such that g, — oo and

T T
0<|Pm —no| < = (82)
qn qn

Then, observe that

M (Pg,10(P)) = X0, 7T (9p,T(p)) = X0, forallpe Sy M.
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In particular,
M (Panto—pat (P)) = Xo, forall p € ST M

and hence |g,t9 — p,T| > inj(M). This contradicts (8.2).
Now, suppose to = pT/q with gcd(p, q) = 1. Then, there are n, k € Z such that
np = kq + 1. Hence,

nto(P) = Gnty © P—kT(P) = Cnig—kT(P) = ©1/4(P).

In particular, since mas (¢ns,(P)) = X0, we have T/q > inj(M ) which completes the
proof. ]

Next, we show that, apart from a finite set of geodesics lengths, the geodesic loops
through a point xo with length strictly between 0 and T have zero measure.

Lemma 8.4. There exist0 < N and0 =rg <ry <---<ry = T such that

7y (pr, (p)) = Xo, forallp e Sy M (8.3)

and

/LS;OM({,O € Sy M :thereexist0 <t < T
such thatt ¢ {ro,...,rn}, (s (p)) = x0}) = 0. (8.4)

Proof. Lets; :=inf{0 <t <T: /LS;OM(FO,,) > 0}. Note that either s; = oo in which
case we set N = 1 and observe that (8.4) holds.
If s;1 < o0, set r; = s1. Then, inj(M) < s; < T and we claim that

7 (s, (p)) = xo. forall p e S3 M.
Suppose by contradiction that
there exists p € S;OM such that s (¢, (p)) # Xo. (8.5)

Then there are ¢,, | 51 such that ¥, M (I'z,,) > 0 and hence, by Lemma 8.2, there are
inj(M) <t < t, such that

mm (@ () = xo. forallp e S M.
In particular, ¢, — ¢ € [inj(M), s1] and hence, by continuity of ¢,

7y (¢1(p)) = xo. forall p e S} M.

By (8.5), this implies inj(M') < ¢t < s; which contradicts the definition of s7. There-
fore, (8.3) holds for ;.
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Suppose by induction that we have found r; < --- < rj_; such that (8.3) holds
forn=1,...,J —1land

/LS;OM({,O € Sy, M : thereexist 0 <t <1y
such thatt ¢ {ro,...,rj—2}, mp (¢:(p)) = xo}) = 0.

Now, define for
sy :=inf{t > ry_q : /JLS;OM(FrFI’,) > 0}.

If sy = oo then (8.4), holds with N = J — 1. If not, then T > s; > ry_1 + inj(M)
and we set rj = s7. The same argument as above then yields (8.1) forn = J.

Since J inj(M) < rjy < T, this process terminates after finitely many steps and
the proof is complete. |

Finally, we combine all the lemmas above to prove Proposition 8.1.

Proof of Proposition 8.1. Combining Lemmas 8.3 and 8.4, there is L > 0 and 0 =
ro <ri <---<rp =T such that

I’j = &T
qj
for some 0 < p; < q; < T/inj(M), pj,q; € Z4 and (8.4) holds. Letting N be the
least common multiple of 1,2, ..., T/ inj(M), the proposition follows. ]
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