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Lieb–Thirring inequalities
for the shifted Coulomb Hamiltonian

Thiago Carvalho Corso, Timo Weidl, and Zhuoyao Zeng

Abstract. In this paper we prove sharp Lieb–Thirring (LT) inequalities for the family of shifted
Coulomb Hamiltonians. More precisely, we prove the classical LT inequalities with the semi-
classical constant for this family of operators in any dimension d � 3 and any 
 � 1. We
also prove that the semi-classical constant is never optimal for the Cwikel–Lieb–Rozenblum
(CLR) inequalities for this family of operators in any dimension. In this case, we characterize
the optimal constant as the minimum of a finite set and provide an asymptotic expansion as the
dimension grows. Using the same method to prove the CLR inequalities for Coulomb, we obtain
more information about the conjectured optimal constant in the CLR inequality for arbitrary
potentials.

1. Introduction and statement of the main results

Let V WRd ! R be a potential, such that the Schrödinger operator �� � V is lower
semi-bounded with a compact negative part. We denote the negative eigenvalues of
�� � V in increasing order by

�0 < �1 < �2 < � � � < 0

and the corresponding finite multiplicity of each �j by �j 2 N. In the study of this
negative spectrum the so-called Lieb–Thirring inequalities play an important role.
Assume that 
 � 1=2 for d D 1, 
 > 0 for d D 2 or 
 � 0 for d � 3. Then for any
such admissible pair of d and 
 , there exists a finite constant R 2 RC, such that for
all V 2 L1loc.R

d / with VC 2 L
Cd=2.Rd /, it holds

Tr.�� � V /
� � RL
cl

;d

Z
Rd

V

Cd=2
C dx: (1.1)

Mathematics Subject Classification 2020: 35J10 (primary); 35P15, 47A75,
81Q10 (secondary).
Keywords: Cwikel–Lieb–Rozenblum inequalities, Lieb–Thirring inequalities,
Schrödinger operators, Coulomb Hamiltonian, spectral estimates.

https://creativecommons.org/licenses/by/4.0/


T. Carvalho Corso, T. Weidl, and Z. Zeng 1140

(For the positive and negative parts of real numbers or self-adjoint operators we write
a˙´ .jaj ˙ a/=2.) Here Lcl


;d
stands for the semi-classical constant

Lcl

;d ´

�.
 C 1/

.4�/d=2 �.
 C 1C d=2/
(1.2)

with � denoting the standard gamma function.
If 
 > 0, the expression Tr.�� � V /
� D

P
j �j j�j j


 is often called the Riesz
mean of order 
 of the negative eigenvalues, taking into account their multiplicities.
On the other hand, if 
 D 0, the left-hand side Tr.�� � V /0� D

P
j �j equals the

total multiplicity of all negative eigenvalues. In this case, (1.1) is commonly known
as Cwikel–Lieb–Rozenblum (CLR) inequality.

The CLR-inequality was proven independently by Cwikel [4], Lieb [8], and Rozen-
blum [10]. Lieb and Thirring [9] proved the cases 
 > 1=2 in d D 1 and 
 > 0 in d � 2.
The “limit” case 
 D 1=2 in d D 1 was solved by Weidl [14]. Note that (1.1) fails for

 < 1=2 if d D 1 and for 
 D 0 if d D 2.

As the validity of the bound (1.1) has been completely settled, nowadays research
focuses on the optimal values R
;d of the constants R. For the best known bounds
on the optimal constant up to date, we refer the reader to the book [6], to the art-
icle [5], and to the recent works [2,3]. In particular, semi-classical analysis shows that
R
;d � 1.

In this paper, we are interested in the family of CLR and LT inequalities for a
special kind of Schrödinger operators, namely the shifted Coulomb Hamiltonian in
L2.Rd /, defined as

�� �
�

jxj
Cƒ for �;ƒ > 0:

This operator stands out for two reasons. For one thing, its spectrum can be com-
puted explicitly, which allows for a direct analysis of the resulting expressions. For
another, it is one of the physically most relevant Schrödinger operators, as it serves
as a basic quantum model for non-interacting electrons bound to a point nucleus with
charge � > 0. Despite these facts, there are (to the best of our knowledge) only few
works attempting to explicitly compute optimal constants in CLR and LT inequalities
restricted to this family of operators, namely [6, 11].

The goal of this work is to fill in this gap. More precisely, our main contributions
here are the following.

(i) We prove that for the family of shifted Coulomb potentials V D �jxj�1 �ƒ
the LT inequality (1.1) holds true with R D 1 for all dimensions d � 3 if

 2 Œ1; d=2/.

(ii) On the other hand, we prove that in any dimension d � 3 the CLR inequality
(i.e., 
 D 0) restricted to the full class of shifted Coulomb Hamiltonians
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does not hold with R D 1. Moreover, we characterize the optimal constant
in this case and give an asymptotic expansion as the dimension increases.

(iii) We prove that the conjectured value of the optimal CLR constant for arbit-
rary potentials [7], which is given by the minimization of a specific function
over integers, can be reduced to a minimization on an interval of length of
order d around the point d2=6. As a by-product of this analysis, we obtain
an explicit asymptotic expansion of the conjectured optimal value as the
dimension d grows.

We now present the precise statements of our main results.

1.1. Main results (i)

Our first result shows that the semi-classical constant is optimal for the Lieb–Thirring
inequalities for the family of shifted Coulomb Hamiltonians with 
 � 1. This result
extends a result by Frank, Laptev, and Weidl [6, Section 5.2.2] for the case d D 3 to
all dimensions d � 3.

Theorem 1.1 (Optimal LT inequalities for the shifted Coulomb Hamiltonian). Let
d � 3 and 
 2 Œ1; d=2/. Then for any �;ƒ > 0, we have

Tr
�
�� �

�

jxj
Cƒ

�

�
< Lcl


;d

Z
Rd

� �
jxj
�ƒ

�
Cd=2
C

dx; (1.3)

where Lcl

;d

is the semi-classical constant defined in (1.2).

We refer to (2.2) and (2.7) below for the explicit formulae of both sides in (1.3).
Since the family of shifted Coulomb potentials is closed with respect to the shift

in energy, the general case 
 2 Œ1; d=2/ follows by the Aizenman–Lieb argument [1]
from (1.3) with 
 D 1.1 This case is of particular interest. Here one has, see (2.8),

Lcl
1;d

Z
Rd

� �
jxj
�ƒ

�1Cd=2
C

dx D
22�dƒ1�d=2�d

dŠ.d � 2/
: (1.4)

We point out that the bound (1.3) is strict. For d � 4, this also follows via the
Aizenman–Lieb argument from the following somewhat stronger inequality in the
case 
 D 1, which we shall actually prove, cf. (2.18).

1The upper restriction 
 < d=2 follows naturally from the fact that .�jxj�1 � ƒ/C 2
Lp.Rd / only for p < d .
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Proposition 1.2 (Improved estimate). For d � 4, it holds that

Tr
�
�� �

�

jxj
Cƒ

�
�
�

�22�dƒ1�d=2�d
dŠ.d � 2/

�
�2

4.d � 1/.d � 2/2

�
C

(1.5)

for any �;ƒ > 0.

For d D 3, the bound (1.5) itself does not hold. However, straightforward compu-
tations yield the following modified elementary upper and lower bounds.

Proposition 1.3 (Sharp corrections to Lieb–Thirring for d D 3). For all �;ƒ > 0 we
have

Tr
�
�� �

�

jxj
Cƒ

�
�
�

� �3

12
p
ƒ
�
�2

8
C

p
ƒ~

24

�
C
; ~ D

p
ƒ
�
2
l �

2
p
ƒ

m
� 1

�
;

(1.6)

Tr
�
�� �

�

jxj
Cƒ

�
�
�

� �3

12
p
ƒ
�
�2

8
�

p
ƒ�

12

�
C
: (1.7)

These inequalities are sharp as equality is achieved in (1.6) whenever �=
p
ƒ is an

odd natural number and in (1.7) whenever �=
p
ƒ is an even natural number.

Note that for d D 3 the expression (1.4) turns into �3=12
p
ƒ, see (2.9). Since

�2=8 �
p
ƒ~=24 � �2=8 � ƒ.�=

p
ƒ C 1/=24 > 0 whenever the left-hand side

of (1.6) is positive, that is for �=
p
ƒ > 2, the bound (1.3) is strict for d D 3, too.

The term ��2=8 in (1.6) and (1.7) is related to the Scott correction [12]. The
bounds in Proposition 1.3 are instructive, since the asymptotic envelopes of the eigen-
value sum, including the semi-classical term, the Scott correction, and the oscillatory
third term serve also as sharp universal upper and lower bounds. For an illustration,
see Figure 1.

Finally, let us point out that for d � 4 the correction term in (1.5) is not related
to a Scott-type term, since the asymptotics of the eigenvalue sums for the Coulomb
Hamiltonian show a different behavior in higher dimensions [13]. The sole purpose
of this term is to show strictness of (1.3).

1.2. Main results (ii)

Our next result concerns the CLR inequality for the Coulomb Hamiltonian. In [11] it
is claimed that the optimal constant of the CLR inequality for the shifted Coulomb
Hamiltonian is given by the semi-classical constant in case of d � 6. However, this
turns out to be incorrect.2 In fact, as we shall see, for any d � 3 one can find (uncount-

2For instance, for d D 6 and �=
p
ƒ D 11:1, we have Tr.�� � �=jxj C ƒ/0� D 121, but

Lcl
0;d

R
.�=jxj �ƒ/

d=2

C
dx � 81:81.
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Figure 1. Behavior of the difference between left-hand side and right-hand side in (1.5) for
d D 3, ƒ D 1 and � 2 .2; 20� oscillating between the correction terms from Proposition 1.3.

ably many) �;ƒ > 0, such that

Tr
�
�� �

�

jxj
Cƒ

�0
�
> Lcl

0;d

Z
Rd

� �
jxj
�ƒ

�d=2
C

dx;

see Figure 2.
Let us perform the corresponding analysis. For d � 3, we define the function

Qd .t/´
�
t C

d � 1

2

��d�
t C

d

2

� d�1Y
jD1

.t C j /; t 2 R; t ¤ �
d � 1

2
: (1.8)

One of the main points of our analysis will be to show that Qd .t/ has a unique max-
imum for t 2 Œ0;C1/, at which it is larger than one. In fact, for sufficiently large d
we can localize the corresponding non-negative real argument t , at which the max-
imum is attained, in an interval of length d � 2 around the point d2=6 � d C 5=6,
see Lemma 3.1. The optimal value of R in the CLR inequality (1.1) restricted to the
shifted Coulomb Hamiltonian will correspond to the maximal value of Qd .t/ over a
corresponding set of natural numbers.

Indeed, set Q�3 ´ Q3.0/ as well as, for d � 4,

Q�d ´ max
°
Qd .`/ W ` 2 N0 ^

jd2
6
�
3d

2
C
7

3

k
� ` �

ld2
6
�
d

2
�
2

3

m±
:

It turns out that Q�
d

is the optimal choice for the factor R and that Q�
d
> 1 for all

d � 3, see Remark 3.2. In particular, the optimal constant in the CLR inequality for
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the family of shifted Coulomb Hamiltonians is strictly larger than the semi-classical
constant in any dimension d � 3.

Theorem 1.4 (Optimal CLR inequalities for the shifted Coulomb Hamiltonian). For
all d � 3, it holds that

inf
²
R W Tr

�
�� �

�

jxj
Cƒ

�0
�
� RLcl

0;d

Z
Rd

� �
jxj
�ƒ

�d=2
C

dx for all �;ƒ > 0

³
D Q�d > 1:

We can also derive the following asymptotic expansion for Q�
d

as d !C1.

Proposition 1.5 (Asymptotic expansion in high dimensions). It holds

Q�d D 1C
3

2d
C

45

8d2
CO.d�3/ as d !C1:

Remark 1.6. In the process of proving Theorem 1.4, we shall see that the max-
imal excess factor R D Q�

d
in the CLR inequality (1.1) restricted to the shifted

Coulomb Hamiltonian is achieved in a regime of d2=6C O.d/ distinct eigenvalues
as d !C1. Hence, Theorem 1.4 provides – besides the one in [7] – another class of
potentials for which the optimal constant in the CLR inequality is strictly larger than
both the semi-classical constant and the one-particle constant in high dimensions.

1.3. Main results (iii)

Our last result concerns a hypothesis on the optimal CLR constant for arbitrary poten-
tials proposed by Glaser, Grosse, and Martin [7]. We briefly recall their conjecture.
As above, let R0;d be the optimal value of the constant R in (1.1) with d � 3 and

 D 0 considered on all potentials V 2 L1loc.R

d / with VC 2 Ld=2.Rd /.
For d � 3, we define the function

Ad .t/´
�
t C

d

2

�1�d=2�
t C

d

2
� 1

��d=2 d�1Y
kD1

.t C k/; (1.9)

with

t 2 R; t ¤ �
d

2
; t ¤ �

d

2
C 1;

and set A�
d
´ sup¹Ad .`/ W ` 2 N0º.

Conjecture 1.7 ([7]). It holds that

R0;d D A
�
d :
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The structure of the function Ad and the constant A�
d

in the aforementioned con-
jecture are quite similar to the one of Qd and Q�

d
from Theorem 1.4. In fact, it is not

hard to see that Qd � Ad . Therefore, our results in Theorem 1.4 do not contradict
this conjecture.

Adapting our analysis ofQd toAd , we can show thatA�
d

andQ�
d

behave similarly
to the dimension increases. The following theorem gives the precise formulation of
this result.

Theorem 1.8 (On the conjectured optimal CLR excess factor). For d D 3; 4, we have
A�
d
D Ad .0/ and for d � 5, we have

A�d D max
°
Ad .`/ W ` 2 N0 ^

jd2
6
�
3d

2
C
5

3

k
� ` �

ld2
6
�
d

2
� 1

m±
:

Moreover, A�
d

and Q�
d

satisfy the asymptotic relations

A�d D Q
�
d CO.d�3/ D 1C

3

2d
C

45

8d2
CO.d�3/ as d !C1: (1.10)

Remark 1.9. Theorem 1.8 shows that the conjectured value of the optimal constant
in the CLR inequality approaches the semi-classical constant with convergence rate
of order 1=d as the dimension increases, and that this value is (almost) achieved by
the shifted Coulomb Hamiltonian up to an error of order 1=d3. To the best of our
knowledge, both results are new.

1.4. Outline of the paper

In Section 2 we shall first recall some basic facts about the spectrum of the shifted
Coulomb Hamiltonian. Then we study the case 
 � 1 and prove Theorem 1.1. In
Section 3 we study the case 
 D 0 and prove Theorem 1.4 as well as Proposition 1.5.
In Section 4 we study the conjectured optimal excess factor in the CLR inequality for
general potentials and prove Theorem 1.8.

Auxiliary properties and some elementary calculations will be presented in the
appendix.

2. On the sharp LT inequalities for the shifted Coulomb Hamiltonian

2.1. Spectrum of the shifted Coulomb Hamiltonian

Let d � 3 and � > 0. The negative spectrum of the Coulomb Hamiltonian �� �
�jxj�1 consists precisely of the eigenvalues

�
�2

.2j C d � 1/2
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with multiplicities

.d � 2C j /Š .d � 1C 2j /

.d � 1/Š j Š
for j D 0; 1; 2; : : : :

For a detailed derivation of these formulae, see [6, Section 4.2.3].
Applying an energy shift ƒ > 0, we see that �� � �jxj�1 C ƒ does not have

negative spectrum at all as long as

�´
�
p
ƒ
� d � 1:

Assume now that � > d � 1, or equivalently,

`´
l� � d C 1

2

m
� 1 � 0:

Then the negative spectrum of the shifted Coulomb Hamiltonian is given by the eigen-
values

�j D �
�2

.2j C d � 1/2
Cƒ for j D 0; 1; : : : ; `;

with the corresponding multiplicities

�j D
.d � 2C j /Š .d � 1C 2j /

.d � 1/Š j Š
D

�
d � 1C j

d � 1

�
C

�
d � 2C j

d � 1

�
:

Using elementary properties of binomial coefficients and the hockey-stick identity,
namely

Pn
iDr

�
i
r

�
D
�
nC1
rC1

�
for n; r 2 N and n � r , the total multiplicity for the

lowest k C 1 eigenvalues �0; : : : ; �k can be computed as follows:

Nk ´

kX
jD0

�j D
.d C 2k/.d C k � 1/Š

d Š kŠ
for k D 0; 1; 2; : : : ; `:

In particular, we see that

Tr
�
�� �

�

jxj
Cƒ

�0
�
D N` D

.d C 2`/.d C ` � 1/Š

d Š `Š
: (2.1)

For 
 > 0, the Riesz means of the shifted Coulomb Hamiltonian are given by

Tr
�
�� �

�

jxj
Cƒ

�

�
D

X̀
jD0

�j

� �2

.2j C d � 1/2
�ƒ

�

: (2.2)
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For 
 D 1 this simplifies as follows:

Tr
�
�� �

�

jxj
Cƒ

�
�

D

X̀
jD0

�j �
2

.2j C d � 1/2
�N`ƒ (2.3)

D

X̀
jD0

�2.d � 2C j /Š

.d � 1/Š j Š .d � 1C 2j /
�
.d C 2`/.d C ` � 1/Š

d Š `Š
ƒ: (2.4)

In the case d D 3, this turns into

Tr
�
�� �

�

jxj
Cƒ

�
�
D
.`C 1/�2

4
�
.`C 1/.`C 2/.2`C 3/ƒ

6
: (2.5)

2.2. Phase space integrals

The integral in the right-hand side of (1.3) can also be computed explicitly. It is finite
for 0 � 
 < d=2 and a standard variable transformation and the properties of the beta
function yieldZ

Rd

� �
jxj
�ƒ

�
Cd=2
C

dx D .4�/d=2
ƒ
�d

2d�1

�
�

 C 1C d

2

�
�
�
d
2
� 


�
�.d C 1/�

�
d
2

� : (2.6)

Combining (2.6) with the semi-classical constant (1.2), we see that the right-hand
side of (1.3) reads as follows:

Lcl

;d

Z
Rd

� �
jxj
�ƒ

�
Cd=2
C

dx D
ƒ
�d

2d�1

�.
 C 1/�
�
d
2
� 


�
�.d C 1/�

�
d
2

� : (2.7)

For 
 D 1, this gives

Lcl
1;d

Z
Rd

� �
jxj
�ƒ

�1Cd=2
C

dx D
ƒ�d

2d�2
1

dŠ .d � 2/
; (2.8)

and in the case of d D 3, we get

Lcl
1;3

Z
R3

� �
jxj
�ƒ

�5=2
C

dx D
ƒ�3

12
: (2.9)

On the other hand, for 
 D 0 and d � 3 one has

Lcl
0;d

Z
Rd

� �
jxj
�ƒ

�d=2
C

dx D
�d

2d�1 dŠ
: (2.10)
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2.3. Proving the optimal LT inequality for the shifted Coulomb Hamiltonian

Proof of Proposition 1.3. We have d D 3. Using the notation � D �=
p
ƒ > 0 and

` D d.� � 2/=2e � 1 D d�=2e � 2, we write ` D �=2C ı� � 2 with ı� ´ d�=2e �
�=2 2 Œ0; 1/. For � � 2, the negative spectrum of �� � �jxj�1 C ƒ is empty. For
� > 2, we have ` 2 N0 and the identity (2.5) gives

Tr
�
�� �

�

jxj
Cƒ

�
�
D ƒ

��2.`C 1/
4

�
.`C 1/.`C 2/.2`C 3/

6

�
D ƒ

��3
12
�
�2

8
C '.�/

�
(2.11)

with

'.�/´
�ı�.1 � ı�/

2
�
1

12

�
� �

ı�.1 � ı�/.1 � 2ı�/

6
; � > 2:

Rewriting �D 2`� 2ı� C 4D 2mC 2" withmD `C 1 2N and "D 1� ı� 2 .0; 1�,
this turns into

'.�/ D '.2mC 2"/ D �
2

3
"3 C

1 � 2m

2
"2 Cm" �

m

6
:

Elementary computations show that for fixed m 2 N and " 2 .0; 1�, we have

�
�

12
D �

mC "

6
� '.�/ �

2mC 1

24
D
2
˙
�
2

�
� 1

24
:

Equality is attained for each m 2 N on the left-hand side for " D 1 and in the limit
"!C0, while on the right-hand side for " D 1=2. If we put this back into (2.11), we
arrive at

ƒ
��3
12
�
�2

8
�
�

12

�
� Tr

�
�� �

�

jxj
Cƒ

�
�

� ƒ
��3
12
�
�2

8
C
2
˙
�
2

�
� 1

24

�
for � > 2.

It remains to observe that for 0 < � � 2 the left term is less or equal to zero and the
middle term vanishes.

Proof of Theorem 1.1. It remains to prove (1.5) for d � 4 and � D �=
p
ƒ > d � 1.

Step 1. In what follows, it is convenient to use the following (shifted) Pochhammer
symbols. Let t 2 R. We define

p0.t/´ 1
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and

pm.t/´

mY
kD1

.t C k/ for m 2 N:

By definition, we see that pm.�1/ D 0 for m 2 N and that

pm.t/ D .t Cm/pm�1.t/ for all t 2 R; m 2 N:

A key property of pm, which can be directly verified from its definition, is the recurs-
ive relation

mpm�1.t/ D pm.t/ � pm.t � 1/ for all t 2 R; m 2 N: (2.12)

In particular, this identity allows us to explicitly evaluate the following sum:

m
X̀
jD0

pm�1.j / D
X̀
jD0

.pm.j / � pm.j � 1// D pm.`/; m 2 N; ` 2 N0: (2.13)

Step 2. Let us use this property to evaluate the sum in (2.3) and (2.4). Note that

.d � 1/Š�j

.2j C d � 1/2
D

.d � 2C j /Š

j Š .d � 1C 2j /
D

pd�2.j /

d � 1C 2j
D
.d � 2C j / pd�3.j /

d � 1C 2j
:

This yields

.d � 1/Š�j

.2j C d � 1/2
D
pd�3.j /

2
C
.d � 3/ pd�3.j /

2.d � 1C 2j /
:

Taking the sum in j from 0 to `, in view of (2.13), the contribution of the first term
on the right-hand side can be computed explicitly

.d � 2/
X̀
jD0

.d � 1/Š�j

.2j C d � 1/2
D
pd�2.`/

2
C
.d � 2/.d � 3/

2

�X̀
jD0

pd�3.j /

d � 1C 2j

�
:

To treat the second term on the right-hand side, we first apply (2.12) to each summand
individually,

.d � 2/
X̀
jD0

.d � 1/Š�j

.2j C d � 1/2

D
pd�2.`/

2
C
d � 3

2

�X̀
jD0

pd�2.j / � pd�2.j � 1/

d � 1C 2j

�
: (2.14)
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Now, we use Abel’s formula of summation by parts, i.e.,

X̀
jD0

Aj .Bj � Bj�1/ D A`B` C

`�1X
jD0

.Aj � AjC1/Bj ; Aj ; Bj 2 R; B�1 D 0;

with the choice Aj ´ .d � 1 C 2j /�1 and Bj ´ pd�2.j /. If ` D 0, we use the
convention that sums of the type

P�1
jD0 vanish. This gives

X̀
jD0

pd�2.j / � pd�2.j � 1/

d � 1C 2j
D

pd�2.`/

d � 1C 2`
C 2

`�1X
jD0

pd�2.j /

.d � 1C 2j /.d C 1C 2j /
:

In view of the elementary estimate

4.j C 1/.d � 2C j / � .d � 1C 2j /.d C 1C 2j /

and the definition of the Pochhammer symbol, we claim that

pd�2.j /

.d � 1C 2j /.d C 1C 2j /
�

pd�2.j /

4.j C 1/.d � 2C j /
D
pd�3.j /

4.j C 1/
D
pd�4.j C 1/

4

and by (2.13),

X̀
jD0

pd�2.j / � pd�2.j � 1/

d � 1C 2j
�

pd�2.`/

d � 1C 2`
C
1

2

`�1X
jD0

pd�4.j C 1/

D
pd�2.`/

d � 1C 2`
C
pd�3.`/ � pd�3.0/

2.d � 3/
:

Finally, we make use of the identities pd�2.`/D .d � 2C `/pd�3.`/ and pd�3.0/D
.d � 3/! and get

d � 3

2

X̀
jD0

pd�2.j / � pd�2.j � 1/

d � 1C 2j

�
.d � 3/pd�2.`/

2.d � 1C 2`/
C

pd�2.`/

4.d � 2C `/
�
.d � 3/Š

4
:

Inserting this back into (2.14), we finally arrive at

.d � 1/Š .d � 2/
X̀
jD0

�j

.2j C d � 1/2
� ˛ pd�2.`/ �

.d � 3/Š

4
(2.15)

with

˛´
1

2
C

.d � 3/

2.d � 1C 2`/
C

1

4.d � 2C `/
: (2.16)
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Step 3. We turn now to the full expression in (2.3)–(2.4). Using the identity

dŠN` D
.d C 2`/.d C ` � 1/Š

`Š
D .d C 2`/.d C ` � 1/pd�2.`/

together with (2.15), we find that

Tr
�
�� �

�

jxj
Cƒ

�
�
D

X̀
jD0

�j �
2

.2j C d � 1/2
�N`ƒ

�
ƒ�d

dŠ.d � 2/
pd�2.`/ ! �

�2

4.d � 1/.d � 2/2
: (2.17)

Here

! ´ d�2�d˛ � ��d .d � 2/ˇ;

where ˛ is given in (2.16) and ˇ´ .d C 2`/.d C ` � 1/. We can now use the fact
that

! � sup
��0

.d�2�d˛ � ��d .d � 2/ˇ/ D 2 ˛d=2ˇ1�d=2

to further estimate (2.17) from above. We obtain

Tr
�
�� �

�

jxj
Cƒ

�
�
�
22�dƒ�d

dŠ.d � 2/
G.`/ �

�2

4.d � 1/.d � 2/2
(2.18)

with ` D d.�C 1 � d/=2e � 1 2 N0 as before and G being defined, for t � 0, as

G.t/´ pd�2.t/
�
1C

d � 3

d � 1C 2t
C

1

2.d � 2C t /

�d=2
�

��d
2
C t

��
d C t � 1

��1�d=2
: (2.19)

The coefficient in front ofG.`/ is precisely the value of the semi-classical phase space
integral, see (2.8). The upcoming Lemma 2.1 shows that G.`/ � 1 for all ` 2 N0.
Consequently, (1.5) is proven.

Lemma 2.1. For d � 4, the function G defined in (2.19) is strictly increasing for
t � 0 and satisfies limt!C1G.t/ D 1.

Proof. To simplify some calculations, it is more convenient to work with the trans-
lated function

g.t/´ G
�
t �

d � 1

2

�
;
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which, after an index shift in the definition of the Pochhammer symbol, is given as
follows:

g.t/ D
h d�3Y
kD0

�
t �

d � 3

2
C k

�i�
1C

d � 3

2t
C

1

2
�
t C d�3

2

��d=2
�

��
t C

1

2

��
t C

d � 1

2

��1�d=2
:

Our goal is then to show that g.t/ � 1 for t � .d � 1/=2 and limt!C1 g.t/ D 1.
The limit is immediate to compute. To prove the inequality, it suffices to show that

the derivative of logg.t/ is non-negative for t � .d � 1/=2. To this end, we note that

.logg/0.t/ D
d�3X
kD0

� 1

t � d�3
2
C k

�
C
d

2

� 4t C 2d � 5

2t2 C .2d � 5/t C .d�3/2

2

�
1

t
�

1

t C d�3
2

�
�
d � 2

2

� 1

t C 1
2

C
1

t C d�1
2

�
: (2.20)

Then, we use two elementary inequalities to find a simpler lower bound for .logg/0.t/.
The first inequality is immediate to verify and reads, for t � 0, as follows:

4t C 2d � 5

2t2 C .2d � 5/t C .d�3/2

2

�
4t C 2d � 5

2t2 C .2d � 5/t C .d�2/.d�3/
2

D
1

t C d�2
2

C
1

t C d�3
2

: (2.21)

The second inequality follows from the relation between harmonic and arithmetic
means:

d�3X
kD1

�
t �

d � 3

2
C k

��1
� .d � 3/2

� d�3X
kD1

�
t �

d � 3

2
C k

���1
D
d � 3

t C 1
2

for t �
d � 3

2
: (2.22)

Hence, applying (2.21) and (2.22) to (2.20), we find that

.logg/0.t/ �
1

t � d�3
2

C
d � 3

t C 1
2

C
d

2

� 1

t C d�2
2

�
1

t

�
�
d � 2

2

� 1

t C 1
2

C
1

t C d�1
2

�
D

1

t � d�3
2

�

d
2

t
C

d
2
� 2

t C 1
2

C

d
2

t C d�2
2

�

d
2
� 1

t C d�1
2

D
h.t/�

t � d�3
2

�
t
�
t C 1

2

��
t C d�2

2

��
t C d�1

2

�
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with

h.t/ D
.d � 2/.d � 4/

4
t2 C

.5d � 16/.d � 1/.d � 2/

16
t C

d.d � 1/.d � 2/.d � 3/

32
:

One can easily see that all coefficients of h.t/ are non-negative for d � 4. Therefore,
we obtain .logg/0.t/ � h.t/ � 0 for t � .d � 1/=2, which completes the proof.

3. On the sharp CLR inequalities for the shifted Coulomb Hamiltonian

Proof of Theorem 1.4. By (2.1) and (2.10), we need to study the behaviour of the
quotient

Rd .�/´
Tr
�
�� � �

jxj
Cƒ

�0
�

Lcl
0;d

R
Rd
�
�
jxj
�ƒ

�d=2
C

dx
D
d C 2`

21�d�d

d�1Y
jD1

.`C j /:

Here we use again the notation � D �=
p
ƒ > 0 and ` D d�e � 1 with � ´ .�C 1 �

d/=2. Observe that, in view of � � `, we have

Rd .�/ D
d C 2`

21�d�d

d�1Y
jD1

.`C j / �
� C d

2�
� C d�1

2

�d d�1Y
jD1

.� C j / D Qd .�/

with Qd defined in (1.8). Moreover, we note that, even though Qd .�/ ¤ Rd .2� C
d � 1/ for any � > 0, we have the equality

Qd .�0/ D lim
�#�0

Rd .2� C d � 1/ for any �0 2 N0.

AsRd .2� C d � 1/ is strictly decreasing in any interval .�0; �0C 1�with �0 2N0,
the identity above implies that the supremum ofQd over N0 gives the optimal excess
factor in the CLR inequality. For a visual illustration ofQd andRd , see Figure 2. The
proof is then completed with the upcoming Lemma 3.1.

Lemma 3.1. For d D 3, the function Qd defined in (1.8) is strictly decreasing in
.�1;C1/. For d � 4, Qd has a unique maximum at t�

d
2 .�1;C1/ satisfying

d2

6
�
3d

2
C
7

3
< t�d <

d2

6
�
d

2
�
2

3
: (3.1)

Proof of Lemma 3.1. We proceed in three steps.
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Figure 2. Comparison of Rd .2� C d � 1/;Qd .�/ for d D 5; 6. The bold marked dots emphas-
ize where Rd takes values.

Step 1. Let us define the set

P ´
°
�
d

2
;�
d � 1

2

±
[ ¹�.d � 1/;�.d � 2/; : : : ;�1º

D

°
�

ld
2

m
C
1

2

±
[ ¹�.d � 1/;�.d � 2/; : : : ;�1º;

which consists of d elements. Then, for t 2 R n P , an explicit calculation yields the
representation

Q0d .t/ D Qd .t/ fd .t/ (3.2)

with fd WR n P ! R given by

fd .t/´
1

t C d
2

�
d

t C d�1
2

C

d�1X
kD1

1

t C k
: (3.3)

For d D 3, one can immediately verify that f3.t/ < 0 for all t > �1. Since
Q3.t/ > 0 for t > �1, we have Q03.t/ < 0 for t > �1 and the case d D 3 is proven.

Consider now d � 4. Since Qd .t/ > 0 for t > �1, by (3.2) it suffices to prove
that fd has a unique zero in .�1;C1/ located in the interval (3.1), where it changes
from positive to negative values for increasing argument. To this end, we rewrite the
rational function fd as a quotient of co-prime polynomials, i.e.,

fd .t/ D
p.t/

q.t/
:
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The set of poles of fd .t/ matches the set P and all these poles are of order one.
Hence, the polynom q.t/ is of degree d and can be chosen as follows:

q.t/´
�
t C

ld
2

m
�
1

2

� d�1Y
kD1

.t C k/:

Due to the cancellation of the terms of order 1=t at infinity in (3.3), we have fd .t/ D
O.t�2/ as t !1, and the degree of the polynomial p is at most d � 2. In fact, a
calculation provided in Appendix A shows that

p.t/ D �
d

2

�
td�2 C

�d2
3
�

jd
2

k
�
1

3

�
td�3 C r.t/

�
; (3.4)

where r is a polynomial of degree at most d � 4.

Step 2. Every zero of fd must be a zero of p and, in particular, the function fd has
at most d � 2 zeros. Analysing the sign changes of fd in the intervals between two
consecutive poles, we can infer the location of the zeros of fd . Indeed, from (3.3) we
conclude that

lim
t"�k

fd .t/ D �1 and lim
t#�k

fd .t/ D C1 for �k 2 P n
°
�
d � 1

2

±
; (3.5)

as well as

lim
t"�.d�1/=2

fd .t/ D C1 and lim
t#�.d�1/=2

fd .t/ D �1:

Let us define the disjoint open intervals Ij D .�j � 1;�j / for j D 1; : : : ; d � 1 with
j 62 ¹bd=2c � 1; bd=2cº and

Ij ´

8̂<̂
:
�
�
d

2
;�
jd
2

k
C 1

�
for j D

jd
2

k
� 1;�

�

jd
2

k
� 1;�

d

2

�
for j D

jd
2

k
:

Note that �.d � 1/=2 2 Ij for j D bd=2c � 1, while each open interval Ij for j 2
¹1; : : : ; d � 2º n ¹bd=2c � 1º has two poles of the type (3.5) as its endpoints and does
not contain any poles inside. By the intermediate value theorem, we see that fd .t/
has at least one zero in each of the latter intervals. This means that fd .t/ has at least
d � 3 distinct zeros inside the interval .�d C 1;�1/.

Moreover, the leading coefficient of p is negative and therefore

lim
t!C1

p.t/ D �1:

Since q.t/ > 0 for t > �1, we see that fd .t/ is negative for sufficiently large t .
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f6

zeros of f6

Figure 3. The function fd for d D 6 and its four zeros: 3 negative ones and 1 positive one, as
stated in the proof of Lemma 3.1.

On the other hand, in view of d � 4 we have limt#�1 fd .t/ D C1. Again, by the
intermediate value theorem we deduce that fd has at least one zero in the interval
.�1;C1/. Since fd has at most d � 2 zeros in total, we conclude that fd must have
exactly one zero in each of the intervals Ij for j 2 ¹1; : : : ; d � 2º n ¹bd=2c � 1º and
additionally one zero in the interval .�1;C1/ (see Figure 3 for an example of fd ),
where it changes from positive to negative sign as the argument increases. Hence,
this rightmost zero corresponds to the unique local maximum of Qd in the interval
.�1;C1/.

Step 3. We now proceed to prove the bound in (3.1). To this end, note that the previous
arguments do not only give us a qualitative picture of the function fd , but they also
allow for a quantitative estimate on the negative zeros of the polynomial p.

From the previous discussion, we know that p has together with fd exactly d � 2
distinct zeros, one in each interval Ij for j ¤ d.d � 1/=2e � 1 and one zero t�

d
> �1.

Since p has the degree d � 2, all these zeros are of order one. Therefore, taking the
leading coefficient in (3.4) into account, we can write p in the factorized form

p.t/ D �
d

2
.t � t�d /

d�2Y
kD1

k¤bd=2c�1

.t C k C "k/; (3.6)

where all "k 2 .0; 1/.3

3Note that we include the factor for k D bd=2c directly in the product, as all points from
I
b d2 c
D .d=2; bd=2c C 1/ permit the necessary representation as well.
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To estimate t�
d

, we compare (3.6) with (3.4) and apply Vieta’s formula applied to
the term of order td�3. This gives

�t�d C

d�2X
kD1

k¤bd=2c�1

.k C "k/ D
d2

3
�

jd
2

k
�
1

3
:

In view of 0 < "k < 1, the upper and lower bounds (3.1) follow.

Remark 3.2. Since by our analysis Qd .t/ is strictly increasing for all t > t�
d

and
limt!C1Qd .t/ D 1, we conclude that Qd .`/ > 1 for all ` 2 N with ` > t�

d
. There-

fore, Q�
d
> 1 for all d � 3.

Let us now turn to the proof of Proposition 1.5.

Proof of Proposition 1.5. By Lemma 3.1, for d � 4, the point t�
d

at which Qd max-
imizes over the positive real numbers satisfies

d2

6
�
3d

2
C
7

3
� t�d �

d2

6
�
d

2
�
2

3
:

Let us estimate logQd .t�d /. For this, we use the Taylor expansion ofQd .t/ around t�
d

.
Since fd is the logarithmic derivative ofQd and fd .t�d /D 0, the Lagrange remainder
term gives for t D d2=6ˇ̌̌

logQd
�d2
6

�
� logQd .t�d /

ˇ̌̌
�
1

2
sup

s2Œt�
d
;d2=6�

jf 0d .s/j �
ˇ̌̌d2
6
� t�d

ˇ̌̌2
�
9d2

8
sup

s2Œt�
d
;d2=6�

jf 0d .s/j: (3.7)

By (3.3), the derivative f 0
d
.s/ is equal to

f 0d .s/ D �
1�

s C d
2

�2 C d�
s C d�1

2

�2 � d�1X
kD1

1

.s C k/2

D
4s � 1C 2d

4
�
s C d

2

�2�
s C d�1

2

�2 C d � 1�
s C d�1

2

�2 � d�1X
kD1

1

.s C k/2
; s 2 R n P:

Note that, for s > 0, the sum
Pd�1
kD1 .s C k/

�2 can be estimated from above and below
as follows:

d � 1

.s C 1/.s C d/
D

dZ
1

1

.s C k/2
dk �

d�1X
kD1

1

.s C k/2
�

d�1Z
0

1

.s C k/2
dk

D
d � 1

t.s C d � 1/
: (3.8)
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In particular, for values s from 	 D Œd2=6 � 3d=2; d2=6�, the lower bound in (3.8)
leads to

f 0d .s/ �
4s � 1C 2d

4
�
s C d

2

�2�
s C d�1

2

�2 C d � 1�
s C d�1

2

�2 � d � 1

.s C 1/.s C d/

D
4s � 1C 2d

4
�
s C d

2

�2�
s C d�1

2

�2 C .d � 1/
�
2s C d �

�
d�1
2

�2��
s C d�1

2

�2
.s C 1/.s C d/

� CCd
�5; s 2 	;

(3.9)

with some uniform constant CC > 0 for all sufficiently large d . In a similar way, the
upper bound in (3.8) gives for the same admissible values of s

f 0d .s/ �
4s � 1C 2d

4
�
s C d

2

�2�
s C d�1

2

�2 C d � 1�
s C d�1

2

�2 � d � 1

s.s C d � 1/

D
4s � 1C 2d

4
�
s C d

2

�2�
s C d�1

2

�2 � .d � 1/3

4
�
s C d�1

2

�2
s.s C d � 1/

� �C�d
�5; s 2 	;

(3.10)

with some uniform constant C� > 0 for all sufficiently large d . Thus, by (3.7), (3.9),
and (3.10), it holdsˇ̌̌

logQd
�d2
6

�
� logQd .t�d /

ˇ̌̌
D O.d�3/ as d !C1:

By the way fd changes sign at t�
d

, we see that Qd .t/ is strictly increasing for
0 � t < t�

d
and strictly decreasing for t > t�

d
. Hence, the maximum of Qd over all

non-negative integers is taken at ` D bt�
d
c or at ` D dt�

d
e. Using again the Taylor

expansion of Qd .t/ at t�
d

, (3.9), and (3.10), we see that

j logQd .`/ � logQd .t�d /j

�
1

2
sup

s2Œbt�
d
c;dt�

d
e�

jf 0d .s/j � j` � t
�
d j
2
� Cd�5 as d !C1:

Therefore,

Qd .`/ D Qd

�d2
6

�
.1CO.d�3// as d !C1:

It remains to compute that

Qd

�d2
6

�
D 1C

3

2d
C

45

8d2
CO.d�3/ as d !C1:

This is best done computing the asymptotics for logQd .d2=6/ and inserting the result
into the Taylor expansion for the exponential function at zero.
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4. On the CLR conjecture

Proof of Theorem 1.8. LetAd be the function given in (1.9). For t 2R n ¹�1;�2; : : : ;

�d C 1º the derivative of Ad satisfies the identity A0
d
.t/ D Ad .t/gd .t/ with

gd .t/´
1 � d

2

t C d
2

�

d
2

t C d
2
� 1
C

d�1X
kD1

1

t C k
:

AsAd is positive for t � 0, it suffices to study the behavior of gd for t � 0. For d � 4,
it is immediate to see that gd � 0 and therefore Ad is decreasing, which completes
the proof in this case.

For d � 5, we divide the proof into two cases. First, we consider the case when d
is even. Later, we deal with the case when d is odd. In the even case, the proof follows
the exact same steps of the proof of Theorem 1.4. For convenience of the reader, we
sketch these steps below.

Step 1. The case d > 5 even. For d even, we note that the poles of the first two terms
also appear as poles within the sum term. Rewriting gd as a quotient of co-prime
polynomials, we obtain

gd .t/ D
p.t/

q.t/
;

where q.t/´
Qd�1
kD1.t C k/ and p.t/ is a polynomial of order d � 3 satisfying

p.t/ D �
d

2

�
td�3 C

�d2
3
� d C

2

3

�
td�4 CO.td�5/

�
: (4.1)

Thus, p (and consequently gd ) has at most d � 3 zeros. Analysing the behavior of
gd near its poles and using the intermediate value theorem, as we did in the proof
of Theorem 1.4, we conclude that gd has at least one zero in each of the intervals
.�k � 1;�k/ for k 2 ¹1; : : : ; d � 2º n ¹d=2; d=2 � 2º, and at least one zero in the
interval .�1;C1/. Therefore, gd (and consequently p) has exactly one zero of order
one in each of the described intervals. Hence, p.t/ can be written as a product as
follows:

p.t/ D �
d

2
.t � Qtd /

d�2Y
kD1

k…¹d=2;d=2�2º

.t C k C "k/; (4.2)

where Qtd is the unique zero in the interval .�1;C1/. Expanding the right-hand side
of (4.2) then yields

p.t/ D �
d

2
td�3 C

d

2

�
Qtd �

d�2X
kD1

k…¹d=2;d=2�2º

.k C "k/
�
td�4 CO.td�5/: (4.3)
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By comparing the coefficient in front of td�4 in (4.3) with the corresponding one
in (4.1) and using the estimates 0 � "k � 1, we conclude that

d2

6
�
3d

2
C
7

3
� Qtd �

d2

6
�
d

2
�
5

3
;

which is within the interval in Theorem 1.8.

Step 2. The case d � 5 odd. For d odd, we cannot apply the same argument because
gd .t/ has five consecutive poles with different sign, namely°

�
d C 1

2
;�
d

2
;�
d � 1

2
;�
d

2
C 1;�

d � 3

2

±
;

and therefore the counting poles argument does not add up. Hence, we shall first use
a simple estimate to get rid of the middle pole t D ¹�.d � 1/=2º, and then proceed as
in the previous step. To this end, it is more convenient for calculations to work with
the shifted function

Qgd .s/´ gd

�
s �

d � 1

2

�
D
1 � d

2

s C 1
2

�

d
2

s � 1
2

C

jD.d�1/=2X
jD�.d�3/=2

1

s C j
:

Note that it suffices to study the behaviour of the shifted function for s � .d � 3/=2.
Moreover, the set of poles of Qgd .s/ is

P ´
°
�
d � 1

2
;�
d � 1

2
C 1; : : : ;�1;�

1

2
; 0;

1

2
; 1; : : : ;

d � 3

2

±
;

and the pole at t D �.d � 1/=2 is now located at s D 0. The simple estimate we use
to get rid of this pole is the following:

1 � ad

s � 1
2

C
ad

s C 1
2

�
1

s
�

1=2

s � 1
2

C
1=2

s C 1
2

; for s �
d � 3

2
; (4.4)

where
ad ´

1

2
C

1

2.d � 3/
:

Precisely, we note that by (4.4) we have

had .s/ < Qgd .s/ < h1=2.s/ for s >
d � 3

2
; (4.5)

where ha.s/ is the function defined for s 2 .R n P / [ ¹0º by

ha.s/´
1 � d

2

s C 1
2

�

d
2

s � 1
2

C
1 � a

s � 1
2

C
a

s C 1
2

C

.d�1/=2X
kD�.d�3/=2

k¤0

1

s C k
:
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We can now apply the “counting poles” argument to the function ha.s/ for 0 � a � 1
to show that ha.s/ has a unique zero inside the interval .� .d�3/

2
;C1/ and to localize

this zero. More precisely, by following the arguments in the previous step, one can
show that

ha.s/ � 0 for s �
�d � 1

2
C a

��1�d3 � 6d2 C 11d � 3
12

�
d � 2

2
a
�

(4.6)

and

ha.s/ � 0 for s �
�d � 1

2
C a

��1�d3 � 6d2 C 11d � 3
12

�
d � 2

2
a
�
C d � 3:

(4.7)

Hence, by setting a D 1=2 in (4.7) and using (4.5), we find that

Qgd .s/ < 0 for s �
d2

6
�
5

3
C

1

2d
:

Shifting back, gd .t/D Qgd .t C .d � 1/=2/, and using the trivial estimate 1=2d � 1=6
we obtain

gd .t/ < 0 for t �
d2

6
�
d

2
� 1: (4.8)

Similarly, by setting

a D ad D
1

2
C

1

2.d � 3/

in (4.6) and using (4.5) we find

Qgd .s/ > 0 for
d � 3

2
< s �

d2

6
� d C

7

6
C

3d � 10

6.d2 � 3d C 1/
:

Shifting back and using the trivial estimate

3d � 10

6.d2 � 3d C 1/
� 0

(valid for d � 4) we get

gd .t/ > 0 for � 1 < t �
d2

6
�
3d

2
C
5

3
: (4.9)

In particular, any zeros of gd .t/ for t > �1 are within the interval in Theorem 1.8.
Together with (4.8) and (4.9), this implies that the maximum of Ad .t/ is achieved
inside the desired interval.
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Step 3. Proving the asymptotic expression (1.10). Let now t � 0. We note that

Ad .t/

Qd .t/
D

�
t C d�1

2

�d�
t C d

2

�d=2�
t C d

2
� 1

�d=2 D �1C 1

.2t C d � 1/2 � 1

�d=2
:

Thus, one has Ad .t/ > Qd .t/. We know the maximizing points of both Qd and Ad
are contained within the interval J ´ Œd2=6 � 3d=2; d2=6�. For such t , we see that

logAd .t/ � logQd .t/ D
d

2
log
�
1C

1

.2t C d � 1/2 � 1

�
� Cd�3; t 2 J;

with some uniform C > 0 for sufficiently large d . This implies the first equality
in (1.10). The second equality in (1.10) follows from the expansion from Proposi-
tion 1.5.

A. Proof of (3.4)

Proof of equation (3.4). First let us rewrite fd from (3.3) as follows

fd .t/ D
1

t C d
2

�
1

t C d�1
2

C

d�1X
kD1

� 1

t C k
�

1

t C d�1
2

�
D �

1

2
�
t C d�1

2

��
t C d

2

� C d�1X
kD1

d�1
2
� k�

t C d�1
2

�
.t C k/

:

Multiplying this expression by q.t/ yields

p.t/ D fd .t/
�
t C

ld
2

m
�
1

2

� d�1Y
kD1

.t C k/

D �
1

2

d�1Y
kD1

k¤bd=2c

.t C k/C

d�1X
kD1

�d � 1
2
� k

� t C d
2

t C
�
d
2

˘ d�1Y
jD1
j¤k

.t C j /:

Note that the two different shapes the summand for k D bd=2c takes for odd and even
d can be combined into one expression:�d � 1

2
�

jd
2

k� d�1Y
kD1

k¤bd=2c

.t C k/:
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Hence, we have p.t/ D I.t/C J.t/ with

I.t/´
�d � 1

2
�

jd
2

k
�
1

2

� d�1Y
kD1

k¤bd=2c

.t C k/;

J.t/´

d�1X
kD1

k¤bd=2c

�d � 1
2
� k

��
t C

d

2

� d�1Y
jD1

j…¹k;bd=2cº

.t C j /:

The term I.t/ expands as follows:

I.t/ D
�d
2
�

jd
2

k
� 1

�
td�2 C T1.d/t

d�3
C r1.t/;

where the polynomial r1 is at most of degree d � 4. Let

S.d/´

d�1X
kD1

k¤bd=2c

k D
.d � 1/d

2
�

jd
2

k
:

By Vieta’s theorem, the factor in front of td�3 in I.t/ is then given by

T1.d/ D
�d
2
�

jd
2

k
� 1

�
S.d/ D

jd
2

k2
C

�
�
d2

2
C 1

�jd
2

k
C
d3

4
�
3d2

4
C
d

2
:

Regarding J.t/, we find that

J.t/ D

d�1X
kD1

k¤bd=2c

�d � 1
2
� k

��
td�2 C

�d
2
C

d�1X
jD1

j…¹k;bd=2cº

j
�
td�3 C r2;k.t/

�

D

�
1 � d C

jd
2

k�
td�2 C T2.d/ t

d�3
C r3.t/;

where r2;k and r3 are polynomials of degree of at most d � 4. We compute the factor
in front of td�3 in J.t/ as follows:

T2.d/ D

d�1X
kD1

k¤bd=2c

�d � 1
2
� k

��d
2
C S.d/ � k

�

D
d2 � 3d C 2

2

�d
2
C S.d/

�
�

�
d �

1

2
C S.d/

�
S.d/C

.d � 1/d.2d � 1/

6
�

jd
2

k2
D � 2

jd
2

k2
C

�d2
2
C
3d

2
�
3

2

�jd
2

k
�
5d3

12
C
d2

2
�
d

12
:
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Combining these results, we find that

I.t/C J.t/ D �
d

2
td�2 C .T1.d/C T2.d//t

d�3
C .r1.t/C r3.t//;

where

T1.d/C T2.d/ D �
jd
2

k2
C

�3d
2
�
1

2

�jd
2

k
�
d3

6
�
d2

4
C
5d

12

D �
d

2

�d2
3
�

jd
2

k
�
1

3

�
:

This implies (3.4).
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