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Several isoperimetric inequalities of Dirichlet and Neumann
eigenvalues of the Witten Laplacian

Ruifeng Chen and Jing Mao

Abstract. In this paper, by mainly using the rearrangement technique and suitably constructing
trial functions, under the constraint of fixed weighted volume, we successfully obtain several
isoperimetric inequalities for the first and the second Dirichlet eigenvalues, the first non-zero
Neumann eigenvalue of the Witten Laplacian on bounded domains in space forms. These spec-
tral isoperimetric inequalities extend the classical ones (i.e., the Faber–Krahn inequality, the
Hong–Krahn–Szegő inequality, and the Szegő–Weinberger inequality) of the Laplacian.

1. Introduction

The study of extremum problems for prescribed functionals is of great significance in
mathematics. For instance, a well-known isoperimetric problem, familiar to nearly all
mathematicians, in the n-dimensional (n � 2) Euclidean space Rn involves the study
of the following extremum problem:

min¹j@�jn�1 j j�jn D const.º (1.1)

for bounded domains��Rn with smooth boundary @�. Here, with a slight abuse of
notation, j � j denotes the Hausdorff measure of a given geometric object, with dimen-
sion information included as a subscript when necessary. This extremum problem can
also be formulated in an alternative way.

Among all bounded domains in Rn with fixed volume, which one minimises the
area functional of the boundary?

This classical problem has been answered completely and one knows that the unique
minimiser of the area functional should be a ball with the volume equal to j�jn D
const. – see, e.g., [35, Chapter 1] for an interesting derivation of classical isoperimetric
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inequalities in Euclidean space by using the Schwarz symmetrization. In fact, for any
bounded domain � in Rn with smooth boundary, one has

j@�jn=j�jn�1 � jSn�1jn=jBnjn�1; (1.2)

with equality holding if and only if � is a Euclidean ball. Obviously, the right-
hand side of (1.2) is independent of the choice of radius for the Euclidean n-ball
Bn and the corresponding Euclidean .n� 1/-sphere Sn�1. That is to say, the quantity
jSn�1jn=jBnjn�1 is scale invariant. So, for convenience and simplification, we denote
by Bn and Sn�1 the unit Euclidean n-ball and the unit Euclidean .n � 1/-sphere,
respectively. By (1.2), one easily sees that

• among all bounded domains in Rn having the same volume, Euclidean balls min-
imise the boundary area;

• among all bounded domains in Rn having the same boundary area, Euclidean balls
maximise the volume.

Clearly, (1.2) gives the answer to the problem (1.1) completely – for a ball B� with
jB�jn D j�jn D const., it follows that1

j@�jn�1 � j@B�jn�1; (1.3)

with equality holding if and only if � is a ball in Rn (which is congruent with B�).
Following the convention in [12], we wish to call (1.2)–(1.3) the geometric isoperi-
metric inequalities.

The purpose of this paper is to investigate isoperimetric inequalities from the
viewpoint of spectral quantities of the Witten Laplacian. In order to state our con-
clusions clearly, we wish to first recall several classical results on the Laplacian.

Let .M n; h�; �i/ be an n-dimensional (n � 2) complete Riemannian manifold with
the metric g´ h�; �i. Let� �M n be a bounded domain inM n with smooth2 bound-
ary @�. Denote by� and r the Laplace and the gradient operators onM n associated

1Clearly, @B� stands for the boundary sphere of the ball B�.
2The smoothness assumption for the regularity of the boundary @� is strong enough to

consider the eigenvalue problems (1.4) and (1.8). For instance, a weaker regularity assumption
that @� is Lipschitz continuous can also assure the validity about the description of discrete
spectrum of the Neumann eigenvalue problem (1.8) of the Laplacian on the fourth page of
this paper. However, the Lipschitz continuous assumption might not be enough to consider
some other geometric problems involved Neumann eigenvalues of (1.8). Therefore, to avoid
excessive focus on the regularity of the boundary @� – which is not central to the topic of this
paper – we assume, unless otherwise stated, that @� is smooth. This framework suggests that
certain conclusions of this paper may remain valid even under a weaker regularity assumption
for the boundary @�. Readers who are interested in this situation could try to seek the weakest
regularity.
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with the metric g, respectively. On�, one can consider the following Dirichlet eigen-
value problem of the Laplacian:8<:�uC �u D 0 in � �M n;

u D 0 on @�;
(1.4)

which is also known as the fixed membrane problem of the Laplacian. In fact, for the
eigenvalue problem (1.4), when M n is chosen to be R3, this system can be used to
describe the vibration of a membrane with boundary fixed, and this is the reason why
it is called fixed membrane problem. Because of this physical background, eigenvalues
of a prescribed eigenvalue problem of some self-adjoint differentiable elliptic operator
are called frequencies. It is well known that the operator �� in (1.4) only has a dis-
crete spectrum and all the elements (i.e., eigenvalues) can be listed non-decreasingly
as follows:

0 < �1.�/ < �2.�/ � �3.�/ � � � � " 1: (1.5)

For each eigenvalue �i .�/, i D 1; 2; : : : , all the non-trivial functions satisfying (1.4)
form a vector space, which has finite dimension and is called eigenspace of �i .�/.
Moreover, all the elements in this eigenspace are called eigenfunctions belonging
to �i .�/. The dimension of this eigenspace is called multiplicity of the eigenvalue
�i .�/. Each eigenvalue �i .�/ in the sequence (1.5) is repeated according to its mul-
tiplicity. By variational principle, the k-th Dirichlet eigenvalue �k.�/ is characterised
as follows:

�k.�/ D inf
²R

�
jrf j2dvR
�
f 2dv

ˇ̌̌̌
f 2 W

1;2
0 .�/; f ¤ 0;

Z
�

ffidv D 0

³
;

where dv denotes the Riemannian volume element ofM n, and fi , i D 1;2; : : : ; k � 1,
denotes an eigenfunction of �i .�/. Here, as usual, W 1;2

0 .�/ stands for a Sobolev
space, which is the completion of the set of smooth functions (with compact support)
C10 .�/ under the following Sobolev norm:

kf k1;2´

�Z
�

f 2dv C

Z
�

jrf j2dv

�1=2
: (1.6)

See, e.g., [12] for the above fundamental facts of the eigenvalue problem (1.4).
Moreover, for simplicity and without causing confusion, we will henceforth write �i
instead of �i .�/, except where otherwise specified. This convention will also apply
when encountering other potential eigenvalue problems.
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Similar to (1.1), for bounded domains��Rn with a smooth boundary @�, n� 2,
it is interesting and important to consider the following extremum problem:

min¹�k.�/ j j�jn D const.º (1.7)

for each k D 1; 2; 3; : : :. In fact, (1.7) is a natural and classical isoperimetric problem
in the study of spectral geometry. To the best of our knowledge, for k D 1; 2, one has
the following affirmative answers to problem (1.7).

• (Faber–Krahn inequality, [17, 23]) �1.�/ � �1.B�/, and the equality holds if
and only if � is a ball in Rn (which is congruent with B�, jB�jn D j�jn D
const.). That is to say, among all bounded domains in Rn having the same volume,
Euclidean balls minimise the first Dirichlet eigenvalue of the Laplacian.

• (Hong–Krahn–Szegő inequality, [21,24]) �2.�/ � �1. zB�/, where zB� is a ball in
Rn such that 2j zB�jn D const. D j�jn. Moreover, the minimum of the second
Dirichlet eigenvalue of the Laplacian on bounded domains � (whose volume
equals some prescribed positive constant) should be equal to the first Dirichlet
eigenvalue of the Laplacian on a ball zB� with j zB�jn D j�jn=2.

The Hong–Krahn–Szegő inequality implies that under the constraint that the volume
of bounded domains is fixed, the second Dirichlet eigenvalue (of the Laplacian) is
minimised by two balls of the same volume. However, if one additionally requires that
� is connected, then under the constraint of volume fixed (j�jnD const.), this minim-
iser of �2.�/ cannot be attained but can be approximated by the domain�", obtained
by joining the union of the two congruent balls (whose volumes equal j�jn=2) by a
thin pipe of width " (sufficiently small) – see [20] for the precise description of this
interesting example and see, e.g., [9, 10] for the strict proof of this approximation (as
"! 0). In two-dimensional case, it has long been conjectured that the ball minim-
ises �3.�/, but there did not have much progress in this direction. For higher order
Dirichlet eigenvalues, not much is known. However, there is an interesting result we
wish to mention, that is, Berger [3] proved that for planar bounded domain � � R2,
the i -th (i > 4) Dirichlet eigenvalue �i .�/ is not minimised by any union of disks.

For a bounded domain � (with smooth boundary) on a given complete Rieman-
nian n-manifold M n, one can also consider the Neumann eigenvalue problem of the
Laplacian as follows: 8<:�uC �u D 0 in � �M n;

@u

@E�
D 0 on @�;

(1.8)

which is also known as the free membrane problem of the Laplacian. Here, E� stands
for the outward unit normal vector of the boundary @�. In fact, for the eigenvalue
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problem (1.8), when M n is chosen to be R3, this system can be used to describe the
vibration of a membrane with free boundary, and this is the reason why it is called free
membrane problem. It is well known that the operator �� in (1.8) only has a discrete
spectrum and all the eigenvalues can be listed non-decreasingly as follows:

0 D �0.�/ < �1.�/ � �2.�/ � � � � " 1: (1.9)

The eigenvalue�0.�/D 0 has non-zero constant functions as its eigenfunctions. Each
eigenvalue�i .�/ in the sequence (1.9) is repeated according to its multiplicity (which
is finite and actually equals the dimension of �i .�/’s eigenspace). By variational
principle, the k-th non-zero Neumann eigenvalue �k.�/ is characterised as follows:

�k.�/ D inf
²R

�
jrf j2dvR
�
f 2dv

ˇ̌̌̌
f 2 W 1;2.�/; f ¤ 0;

Z
�

ffidv D 0

³
;

where fi , i D 0; 1; : : : ; k � 1, denotes an eigenfunction of �i .�/. Here, as usual,
W 1;2.�/ denotes a Sobolev space which is the completion of the set of smooth func-
tions C1.�/ under the Sobolev norm k � k1;2 defined by (1.6).

Similar to (1.7), for bounded domains� � Rn with smooth boundary @�, n � 2,
the extremum problem

max¹�k.�/ j j�jn D const.º (1.10)

can be asked for each k D 1; 2; 3; : : :. To the best of our knowledge, for k D 1; 2, one
has the following affirmative answers to the problem (1.10).

• (Szegő–Weinberger inequality, [38,39]) �1.�/ � �1.B�/, and the equality holds
if and only if � is a ball in Rn (which is congruent with B�, jB�jn D j�jn D
const.). That is to say, among all bounded domains in Rn having the same volume,
Euclidean balls maximise the first non-zero Neumann eigenvalue of the Laplacian.

• (Bucur and Henrot [8]) Let � � Rn be a bounded open set such that the Sobolev
space W 1;2.�/ is compactly embedded3 in L2.�/. Then,

j�j2=nn �2.�/ � 2
2=n
jBj2=nn �1.B/; (1.11)

where B is any ball in Rn. If equality in (1.11) occurs, then � coincides a.e. with
the union of two disjoint, equal balls. Clearly, the quantity 22=njBj2=n�1.B/ is
scale invariant. Using (1.11) directly, one has �2.�/ � 22=n�1.B�/, with a ball
B� satisfying jB�jn D j�jn D const., which gives an affirmative answer to the
problem (1.10) for k D 2.

3In fact, the regularity that @� is Lipschitz continuous is sufficient such that W 1;2.�/ is
compactly embedded in L2.�/. Therefore, the smoothness assumption for the boundary @� is
much enough to investigate the maximum of �2.�/ under the constraint of fixed volume.
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For higher order (k � 3) Neumann eigenvalues, not much is known. However, recent
years, some works have shown numerical approaches which propose candidates for
the optimisers for Dirichlet/Neumann eigenvalues of the Laplacian and related spec-
tral problems, and which also suggest conjectures about their qualitative properties –
see, e.g., [1, 5, 34] for details.

As mentioned above, in some situation, the eigenvalue problems (1.4) and (1.8)
have physical backgrounds, and hence eigenvalues in discrete spectrum are called fre-
quencies. So, sometimes, spectral isoperimetric inequalities introduced above are also
called physical isoperimetric inequalities. There is also one more thing we wish to say
here, that is, spectral isoperimetric inequalities mentioned above hold may not only
in Euclidean spaces but also some curved spaces – for instance, at least one also has
the Faber–Krahn inequality in hyperbolic spaces and spheres. In fact, a more general
version of Faber–Krahn inequality says the following (see, e.g., [12, Chapter IV]).

Let Mn.�/ be the complete, simply connected, n-dimensional (n � 2) space form
of constant sectional curvature �, and let D denote a geodesic disk in Mn.�/. For
a complete Riemannian n-manifold M n, n � 2, and each open set �, consisting
of a finite disjoint union of regular4 domains in M n, and satisfying

j�jn D jDjn: (1.12)

(If � > 0, then only consider those� for which j�jn < jMn.�/jn.) If, for all such
� in M n, equality (1.12) implies the geometric isoperimetric inequality

j@�jn�1 � j@Djn�1; (1.13)

with equality in (1.13) if and only if � is isometric to D, then we also have, for
every normal domain � in M n, that equality (1.12) implies the inequality

�1.�/ � �1.D/; (1.14)

with equality in (1.14) if and only if � is isometric to D.

This fact can be simply summarised as under the constraint of volume fixed, the geo-
metric isoperimetric inequality (1.13) would imply the physical isoperimetric inequal-
ity (1.14). It is known that, in space forms, (1.13) holds once j�jn D jDjn. Hence, in
space forms, one has the physical isoperimetric inequality (1.14) under the volume
constraint (1.12). From this example, one might have a recognition that geometric

4Here, following the convention in [12], regular means that the domain considered has
compact closure and smooth boundary, while the word normal also in this statement means that
the domain considered has compact closure and piecewise smooth boundary.
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isoperimetric inequalities have a close relation with physical isoperimetric inequalit-
ies (of differential operators). A natural question is: except space forms, whether one
could find other spaces on which the geometric isoperimetric inequality (1.13) holds
under the volume constraint (1.12)? One might refer to [12, Chapter IV] for some
interesting progresses on this question.

In the sequel, we will show a way to extend the Faber–Krahn inequality, the Hong–
Krahn–Szegő inequality and the Szegő–Weinberger inequality of the Laplacian to the
case of the Witten Laplacian.

For a given complete Riemannian n-manifold (n � 2) with the metric g, let � �
M n be a bounded domain (with boundary @�) inM n, and � 2C1.M n/ be a smooth5

real-valued function defined on�. In this setting, one can define the following elliptic
operator

�� ´ � � hr�;r�i

on �, which is called the Witten Laplacian (also called the drifting Laplacian or the
weighted Laplacian) with respect to the metric g. Consider the Dirichlet eigenvalue
problem of the Witten Laplacian as follows:8<:��uC �u D 0 in � �M n;

u D 0 on @�I
(1.15)

it is not hard to check that the operator �� in (1.15) is self-adjoint with respect to the
inner product

.h1; h2/� ´

Z
�

h1h2d� D

Z
�

h1h2e
��dv; (1.16)

with h1; h2 2 W
1;2
0;� .�/, where d�´ e��dv is the weighted measure, and W 1;2

0;� .�/

stands for a Sobolev space, which is the completion of the set of smooth functions
(with compact support) C10 .�/ under the following Sobolev norm:

kf k
�
1;2´

�Z
�

f 2e��dv C

Z
�

jrf j2e��dv

�1=2
D

�Z
�

f 2d�C

Z
�

jrf j2d�

�1=2
:

(1.17)

5In fact, one might see that � 2 C 2.�/ is suitable to derive our main conclusions in this
paper. However, in order to avoid putting too much attention on discussion for the regularity
of the boundary @�, and following the assumption on conformal factor e�� for the notion of
smooth metric measure spaces in many literatures (including of course those cited in this paper),
without specification, we wish to assume that � is smooth on the domain �.
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Then, using similar arguments to those of the classical fixed membrane problem of the
Laplacian (i.e., the discussions about the existence of discrete spectrum, Rayleigh’s
theorem, Max-min theorem, etc. Those discussions are standard, and for details, please
see for instance [12]), it is not hard to see the following.

• The self-adjoint elliptic operator��� in (1.15) only has discrete spectrum, and all
the eigenvalues in this discrete spectrum can be listed non-decreasingly as follows:

0 < �1;�.�/ < �2;�.�/ � �3;�.�/ � � � � " C1: (1.18)

Each eigenvalue �i;� , i D 1; 2; : : :, in the sequence (1.18) was repeated according
to its multiplicity (which is finite and equals the dimension of the eigenspace of
�i;�). By applying the standard variational principles, one can obtain that the k-th
Dirichlet eigenvalue �k;�.�/ can be characterised as follows:

�k;�.�/ D inf
²R

�
jrf j2e��dvR
�
f 2e��dv

ˇ̌̌̌
f 2 W

1;2
0;� .�/; f ¤ 0;

Z
�

ffie
��dv D 0

³
;

where fi , i D 1; 2; : : : ; k � 1, denotes an eigenfunction of �i;�.�/. Moreover, the
first Dirichlet eigenvalue �1;�.�/ of the eigenvalue problem (1.15) satisfies

�1;�.�/ D inf
²R

�
jrf j2d�R
�
f 2d�

ˇ̌̌̌
f 2 W

1;2
0;� .�/; f ¤ 0

³
:

It is interesting and important to study spectral geometric problems related to the
Witten Laplacian – we refer to [13, Introduction] for a detailed explanation. We
already have some interesting works about spectral estimates and geometric func-
tional inequalities related to the Witten Laplacian – see, e.g., [16, 26, 29, 30, 33, 40].

On �, one can also define weighted volume (or �-volume) as follows:

j�jn;� ´

Z
�

d� D

Z
�

e��dv:

Using the constraint of fixed weighted volume, we can obtain several spectral iso-
perimetric inequalities for the first and the second Dirichlet eigenvalues of the Witten
Laplacian. However, in order to state our conclusions clearly, we need to impose an
assumption on the function � as follows.

Property 1. � is a function of the Riemannian distance parameter t ´ d.o; �/ for
some point o 2M n.

Clearly, if a given open Riemannian n-manifold .M n; g/ was endowed with the
weighted density e��dv, where � satisfies Property 1, then � would be a radial func-
tion defined onM n with respect to the radial distance t , t 2 Œ0;1/. In particular, when
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the given open n-manifold is chosen to be Rn or Hn (i.e., the n-dimensional hyper-
bolic space of sectional curvature �1), we additionally require that o is the origin of
Rn or Hn.

First, we have the following Faber–Krahn-type inequality for the Witten Laplacian
in the Euclidean space.

Theorem 1.1. Assume that the function � satisfies Property 1 (with M n chosen to
be Rn) and is concave. Let � be a bounded domain with smooth boundary in Rn,
and let BR.o/ be a ball of radius R and centred at the origin o of Rn such that
j�jn;� D jBR.o/jn;� , i.e.,

R
�
d� D

R
BR.o/

d�. Then,

�1;�.�/ � �1;�.BR.o//;

and the equality holds if and only if (up to measure zero) � is the ball BR.o/, which
lies entirely in the region BR.h/ defined by (1.19).

Remark 1.2. (1) Unlike the Neumann case described in Theorems 1.11 and 1.12
below, for the Dirichlet case we do not need to require that the point o locates in the
convex hull of the domain � in Theorem 1.1. The same situation also happens in
Theorem 1.3.

(2) From the previous introduction on the Faber–Krahn inequality of the Lapla-
cian, one knows that under the volume constraint (1.12), the geometric isoperimetric
inequality (1.13) makes an important role in the derivation process. What about the
Witten Laplacian case? Does some weighted geometric isoperimetric inequality play
an important role also? The answer is affirmative. We would like to recall a recent
breakthrough of Chambers [11] to the log-convex density conjecture. Given a pos-
itive function h in Rn, n � 2, one can define the weighted perimeter and weighted
volume of a set A � Rn of locally finite perimeter as

Per.A/ D
Z
@A

hdHn�1; Vol.A/ D
Z
A

hdHn;

where following the usage of notations in [11], Hm indicates the m-dimensional
Hausdorff measure, and @A denotes the essential boundary of A. Such positive func-
tion h is called a density on Rn. If one fixes a positive weighted volume m > 0, does
there exist a set A � Rn such that Vol.A/ D m and

Per.A/ D inf
Q�Rn

Vol.Q/Dm

Per.Q/‹

Rosales, Cañete, Bayle, and Morgan considered this problem and gave a partial answer
that in Rn with the density ecjxj

2
, c > 0, round balls about the origin uniquely minim-

ise perimeter for a given volume (see [36, Theorem 5.2]). Moreover, they showed that
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for any radial, smooth density h D ef .jxj/, balls around the origin are stable6 if and
only if f is convex ([36, Theorem 3.10]). This fact motivates the following conjecture
(Conjecture 3.12 in their article), first stated by Kenneth Brakke.

Conjecture (Log-convex density conjecture). In Rn with a smooth, radial, log-con-
vex7 density, balls around the origin provide isoperimetric regions of any given
volume.

Chambers [11, Theorem 1.1] gave an answer to the above conjecture as follows.

Fact A. Given a density h.x/D ef .jxj/ on Rn with f smooth, convex and even, balls
around the origin are isoperimetric regions with respect to weighted perimeter and
volume.

Moreover, Chambers [11, Theorem 1.2] characterised the uniqueness of isoperi-
metric regions as follows.

Fact B. Up to sets of measure 0, the only isoperimetric regions are balls centred at
the origin, and balls that lie entirely in

BR.h/ D ¹x j jxj � R.h/º; (1.19)

where R.h/ D sup¹jxj j h.x/ D h.0/º.

Fact A and Fact B would make an important role in the proof of Theorem 1.1 –
see Section 2.1 for details.

(3) Since Chambers’ weighted geometric isoperimetric inequality in Rn (i.e.,
Fact A) plays an important role in the proof of Theorem 1.1, it implies that, similar
to the potential precondition of [11, Theorem 1.1], we also need to require that the
boundary @� has finite area (or, following the convention in [11], perimeter). How-
ever, we believe this assumption is so natural when considering isoperimetric prob-
lems that we prefer not to list it explicitly in every statement of our main conclusions
in this paper. Nevertheless, @� should maintain this natural assumption throughout
the paper, which we will not mention again.

We can prove the following.

Theorem 1.3. Let SnC be an n-dimensional hemisphere of radius 1, and let��SnC be
a bounded domain whose boundary @� has positive constant mean curvature. Assume
that the function � satisfies Property 1 (with M n chosen to be SnC) and moreover

6Here stable means that Per00.0/ � 0 under smooth, volume-conserving variations.
7Clearly, for a density h here, the log-convex assumption means .logh/00 � 0.
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� D � log cos t , where the point o mentioned in Property 1 should additionally be
required to be the base point of SnC. Then,

�1;�.�/ � �1;�.BR.o//;

where BR.o/ denotes a geodesic ball of radius R and centred at the base point o of
SnC such that j�jn;� D jBR.o/jn;� . The equality holds if and only if � is isometric to
the geodesic ball BR.o/.

Remark 1.4. (1) When investigating the above Faber–Krahn-type isoperimetric
inequality, there is no essential difference between SnC and a hemisphere with radius
not equal to 1.

(2) To help readers who may be unfamiliar with the concept of the base point, we
provide an explanation here. A natural starting point is spherically symmetric mani-
folds, also known as generalised space forms, as suggested in the work of Katz and
Kondo [22]. For a detailed definition, fundamental properties, and notable applica-
tions of spherically symmetric manifolds, we refer readers to [18, 27, 32]. The cor-
responding author has utilised spherically symmetric manifolds as model spaces to
establish various interesting comparison theorems – covering volume, eigenvalues of
different types, the heat kernel, and other geometric quantities (see, e.g., [18, 28, 31,
40]).

Definition ([18, Definition 2.1]). For a given complete n-manifold M n, a domain

D D expp.Œ0; l/ � S
n�1
p / �M n

n Cut.p/;

with l < inj.p/, is said to be spherically symmetric with respect to a point p 2D if the
matrix A.t; �/ satisfies A.t; �/D f .t/I , for a function f 2 C 2.Œ0; l// with f .0/D 0,
f 0.0/ D 1 and f j.0;l/ > 0.

Here Sn�1p denotes the unit sphere of the tangent space TpM n, Cut.p/ stands for
the cut-locus of the point p, inj.p/ denotes the injectivity radius at p, � 2 Sn�1p , and
A.t; �/W �?! �? is the path of linear transformations well defined in [18, Section 2].
A standard model for spherically symmetric manifolds is given by the quotient of the
warped product Œ0; l/ �f Sn�1 with the metric

ds2 D dt2 C f 2.t/jd�j2; for all � 2 Sn�1p ; 0 < t < l;

where as usual jd�j2 denotes the round metric of the unit .n� 1/-sphere Sn�1. In this
model, all pairs .0; �/ are identified with the single point p, which is called the base
point of the spherically symmetric domain D D Œ0; l/ �f Sn�1. Clearly, as already
shown in [18, (2.12)], a space form with constant sectional curvature � is also a spher-
ically symmetric manifold, and in this particular situation, the warping function f
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satisfies

f .t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

sin.
p
�t/

p
�

; l D
�
p
�
; � > 0;

t; l D C1; � D 0;

sinh.
p
��t/

p
��

; l D C1; � < 0:

(3) Since o is required to be the base point of SnC, then for the domain � � SnC
in Theorem 1.3, the range of the Riemannian distance parameter t D d.o; �/ should
be .0; �=2/, which implies that the choice of the function � D � log cos t makes
sense. Besides, in fact, SnC can be modelled as Œ0; �=2� �sin t Sn�1 with the metric
dt2 C .sin t /2jd�j2, and its base point o should be the vertex of SnC.

We also get the following.

Theorem 1.5. Assume that the function � satisfies Property 1 (with M n chosen to
be Hn) and is strictly concave, where the point o mentioned in Property 1 should
additionally be required to be the origin of Hn. Let � � Hn be a bounded domain
with boundary. Then,

�1;�.�/ � �1;�.BR.o//;

where BR.o/ denotes a geodesic ball of radius R and centred at the origin o of Hn

such that j�jn;� D jBR.o/jn;� . The equality holds if and only if � is isometric to the
geodesic ball BR.o/.

Remark 1.6. (1) The hyperbolic space Hn can be modelled as Œ0;1/ �sinh t Sn�1

with the metric

dt2 C .sinh t /2jd�j2:

Since hyperbolic spaces are two-point homogenous, the base point of Hn is not unique
and any point of Hn can be chosen as the base point, which is different with the case
of hemisphere SnC. However, for Hn once its globally defined coordinate system was
set up, the origin o would be determined uniquely with respect to this system. As
shown above, in order to get the main conclusion in Theorem 1.5, we need to assume
that � is radial with respect to some fixed point and is also concave, which leads to
the situation that in the statement of Theorem 1.5, it is better to choose the point o to
be the origin of Hn (might not the base point), and correspondingly � is concave with
respect to the radial Riemannian distance parameter t D d.o; �/.

(2) As mentioned before, one knows two facts: (a) under the constraint of fixed
volume, the Faber–Krahn inequality for the first Dirichlet eigenvalue of the Laplacian
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also holds in hyperbolic spaces; (b) under the constraint of fixed weighted volume,
Fact A (i.e., a weighted geometric isoperimetric inequality in Rn) makes an important
role in the proof of the Faber–Krahn-type inequality for the Witten Laplacian in Rn

(i.e., Theorem 1.1). So, it is natural to ask the following.

Could one expect to get a hyperbolic version of Fact A which makes a contribution
in the proof of Theorem 1.5?

The answer is affirmative. In fact, Li and Xu [25, Theorem 1.1] obtained a partial res-
ult to the hyperbolic version of Fact A for specified density through suitably applying
Chambers’ result [11] by projecting the hyperbolic space onto Rn and employing a
comparison argument. Very recently, L. Silini [37] solved the above question com-
pletely. For an arbitrary base point o 2 Hn, and a density h given by h´ ef .d.o;�//,
where hWR! R is a smooth, (strictly) convex, even function, and, similar to before,
d.o; �/ denotes the Riemannian distance to the point o on Hn, one can define the
weighted perimeter and weighted volume of a set with finite perimeter E � Hn as

Ph.E/ D
Z
@�E

hdHn�1; Vh.E/ D
Z
E

hdHn;

where following the usage of notations in [37], @�E denotes the reduced boundary of
E, and Hm indicates them-dimensional Hausdorff measure. Silini [37, Theorem 1.1]
proved the following.

Fact C. For any strictly radially log-convex density h, geodesic balls centred at o 2
Hn uniquely minimise the weighted perimeter for any given weighted volume with
respect to Ph and Vh.

Fact C would make an important role in the proof of Theorem 1.5 – see Section 3
for details. Using a comparison argument between Hn

C D U.n; 1/=U.n/ (i.e., the
n-dimensional complex hyperbolic space of constant curvature�1) and H2n, together
with Fact C, Silini [37] can get further.

In Hn
C , geodesic balls are uniquely isoperimetric in the class of Hopf-symmetric

sets for all volumes.

This conclusion gives a partial answer to an open conjecture proposed by Gromov
and Ros in [19] as follows.

Conjecture. Geodesic balls are isoperimetric for all volumes in the complex hyper-
bolic space Hn

C .

Silini’s above result on the isoperimetric problem for the class of Hopf-symmetric
sets in Hn

C might inspire readers to try to extend the spectral isoperimetric inequality
in Theorem 1.5 to a more general space, which we think it is possible. However, due
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to the structure of this paper, here we just focus on investigating spectral isoperimetric
inequalities for the Witten Laplacian on bounded domains in space forms.

(3) As explained in [37, Remark 1.7], since technical difficulties arise from the
presence of regions with constant weight, for simplicity it was decided to assume
the weight to be strictly log-convex rather than simply log-convex in extending the
proof of Brakke’s conjecture from the Euclidean space to the hyperbolic space. This
is the reason why in Theorem 1.5 we assume that the radial function � is strictly
concave (i.e., �.log �/00 > 0). Besides, if the domain � has a constant weight (i.e.,
a constant density), then the Witten Laplacian degenerates into the classical Laplacian,
and correspondingly, in Hn one naturally has the Faber–Krahn inequality for the first
Dirichlet eigenvalue. In this situation, it is no need to write down Theorem 1.5 any
more. Based on this truth, in Theorem 1.5 it is acceptable to assume that the radial
function � is strictly concave.

Inspired by the technique used in [4], under other assumptions on � and the con-
straint of weighted volume fixed, we can also get the following Faber–Krahn-type
inequality for the Witten Laplacian in the Euclidean space, which can be seen as a
complement to Theorem 1.1.

Theorem 1.7. Assume that the function � satisfies Property 1 (withM n chosen to be
Rn), � is monotone non-increasing, and for z � 0, the function

.e��.z
1=n/
� e��.0//z1�1=n

is convex. Let � be a bounded domain with Lipschitz boundary in Rn, and let BR.o/
be a ball of radiusR and centred at the origin o of Rn such that j�jn;� D jBR.o/jn;� .
Then,

�1;�.�/ � �1;�.BR.o//:

Remark 1.8. Since � satisfies Property 1 and moreover when M n is chosen to be
Rn, we additionally require that o is the origin of Rn, so o corresponds to z D 0, and
then �.0/ is actually the value of the function � at the origin o.

For the second Dirichlet eigenvalue of the Witten Laplacian, we can obtain the
following Hong–Krahn–Szegő-type inequalities.

Theorem 1.9. Assume that the function � satisfies Property 1 (with M n chosen to
be Rn) and is concave. Let � be a bounded domain with smooth boundary in Rn,
and let B zR.o/ be a ball of radius zR and centred at the origin o of Rn such that
j�jn;�=2 D jB zR.o/jn;� , i.e., .1=2/

R
�
d� D

R
B zR.o/

d�. Then,

�2;�.�/ � �1;�.B zR.o//:
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That is to say, under the assumptions for � described above, the minimum of the
second Dirichlet eigenvalue of the Witten Laplacian on bounded domains � in Rn,
whose weighted volume equals some prescribed positive constant, should be equal to
the first Dirichlet eigenvalue of the Witten Laplacian on a ball B zR.o/ (of radius zR
and centred at the origin o 2 Rn) such that j�jn;�=2 D jB zR.o/jn;� .

Theorem 1.10. Assume that the function � satisfies Property 1 (with M n chosen to
be Hn) and is strictly concave, where the point o mentioned in Property 1 should
additionally be required to be the origin of Hn. Let � � Hn be a bounded domain
with boundary. Then,

�2;�.�/ � �1;�.B zR.o//;

where B zR.o/ denotes a geodesic ball of radius zR and centred at the origin o of
Hn such that j�jn;�=2 D jB zR.o/jn;� . That is to say, under the assumptions for �
described above, the minimum of the second Dirichlet eigenvalue of the Witten Lapla-
cian on bounded domains � in Hn, whose weighted volume equals some prescribed
positive constant, should be equal to the first Dirichlet eigenvalue of the Witten Lapla-
cian on a geodesic ball B zR.o/ (of radius zR and centred at the origin o 2 Hn) such
that j�jn;�=2 D jB zR.o/jn;� .

For a bounded domain � (with boundary @�) on a given n-dimensional (n � 2)
complete Riemannian manifold M n, we can also consider the following Neumann
eigenvalue problem of the Witten Laplacian:8<:��uC �u D 0 in � �M n;

@u

@E�
D 0 on @�:

(1.20)

It is easy to check that the operator�� in (1.20) is self-adjoint with respect to the inner
product (1.16) with h1; h2 2 W

1;2
� .�/. Here W 1;2

� .�/ stands for a Sobolev space,
which is the completion of the set of smooth functions C1.�/ under the Sobolev
norm k � k�1;2 defined by (1.17). Then, using similar arguments to those of the classical
free membrane problem of the Laplacian (see, e.g., [12]), it is not difficult to see the
following.

The operator ��� in (1.20) only has discrete spectrum, and all the eigenvalues in
this discrete spectrum can be listed non-decreasingly as follows:

0 D �0;�.�/ < �1;�.�/ � �2;�.�/ � �3;�.�/ � � � � " C1: (1.21)

Each eigenvalue �i;� , i D 0; 1; 2; : : : , in the sequence (1.21) is repeated according
to its multiplicity (i.e., the dimension of the eigenspace of �i;�). In particular, the
zero eigenvalue �0;� has multiplicity 1 and has non-zero constant function as its
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eigenfunction. By applying the standard variational principles, one can obtain that
the k-th Neumann eigenvalue �k;�.�/ can be characterised as follows:

�k;�.�/ D inf
²R

�
jrf j2e��dvR
�
f 2e��dv

ˇ̌̌̌
f 2 W

1;2
� .�/; f ¤ 0;

Z
�

ffie
��dv D 0

³
;

where fi , i D 1; 2; : : : ; k � 1, denotes an eigenfunction of �i;�.�/. Moreover,
the first non-zero Neumann eigenvalue �1;�.�/ of the eigenvalue problem (1.20)
satisfies

�1;�.�/ D inf
²R

�
jrf j2d�R
�
f 2d�

ˇ̌̌̌
f 2 W

1;2
� .�/; f ¤ 0;

Z
�

fd� D 0

³
: (1.22)

In fact, the above facts have been explained more clearly in [13, Section 1]. How-
ever, we wish to restate this content for two reasons: the first is to complete the brief
introduction to the eigenvalue problem (1.20) presented here; the second is that the
characterization (1.22) will be used to derive spectral isoperimetric inequalities for
the first non-zero Neumann eigenvalue �1;�.�/ below.

We can prove the following Szegő–Weinberger-type inequalities for the Witten
Laplacian.

Theorem 1.11. Let � be a bounded domain with smooth boundary in Rn. Assume
that the function � satisfies Property 1 (withM n chosen to be Rn and additionally the
point o required to be in the convex hull of �, i.e., o 2 hull.�/), and � is also a non-
increasing convex function defined on Œ0;1/. Let BR.o/ be a ball of radius R and
centred at the origin o of Rn such that j�jn;� D jBR.o/jn;� , i.e.,

R
�
d� D

R
BR.o/

d�.
Then,

�1;�.�/ � �1;�.BR.o//;

with equality holding if and only if � is the ball BR.o/.

Theorem 1.12. Let � be a bounded domain with smooth boundary in Hn. Assume
that the function � satisfies Property 1 (with M n chosen to be Hn and additionally
o 2 hull.�/), and � is also a non-increasing convex function defined on Œ0;1/. Let
BR.o/ be a geodesic ball of radius R and centred at the origin o of Hn such that
j�jn;� D jBR.o/jn;� . Then,

�1;�.�/ � �1;�.BR.o//;

with equality holding if and only if � is isometric to the geodesic ball BR.o/.

Remark 1.13. (1) In fact, in our very recent work [13, Theorems 1.1 and 1.5], we can
prove an isoperimetric inequality for the sums of the reciprocals of the first .n � 1/
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non-zero Neumann eigenvalues of the Witten Laplacian on bounded domains in Rn

or Hn, which, together with the monotonicity of the sequence (1.21) of Neumann
eigenvalues, yields directly our Theorem 1.11 and Theorem 1.12 here. This fact has
been already pointed out in [13, Corollaries 1.2 and 1.6], and readers can check there
for details.

(2) For two reasons, we insist on writing down Theorem 1.11 and Theorem 1.12
here. The first is to complete the overall structure of this paper, and the second is that
our approach to proving Theorem 1.11 and Theorem 1.12 differs somewhat from the
one used in [13].

(3) Unlike the Dirichlet case, we need to require that o 2 hull.�/ in Theorem 1.11
and Theorem 1.12. This is because we must use the Brouwer fixed point theorem to
ensure the existence of an orthonormal frame field such that the origin of the coordin-
ate system (corresponding to the orthonormal frame field) is located in the convex
hull of �. Then, all the computations involving trial functions constructed are valid.
See the proofs of Theorem 1.11 and Theorem 1.12 in Section 3 for details.

The paper is organised as follows. The proofs of the Faber–Krahn-type inequali-
ties, the Hong–Krahn–Szegő-type inequalities, and the Szegő–Weinberger-type
inequalities for the Witten Laplacian will be given in Sections 2, 3, and 4, respectively.
Besides, in Section A, we will give the detailed information about the first non-zero
Neumann eigenvalue and its eigenfunctions of the Witten Laplacian on prescribed
(geodesic) balls in space forms.

2. The Faber–Krahn-type inequalities for the Witten Laplacian

2.1. The Euclidean case

Assume that f is an eigenfunction corresponding to the first Dirichlet eigenvalue
�1;�.�/. Since f does not change sign on �, without loss of generality, we can
assume f > 0 on � (see Lemma 3.1 below for the explanation). Consider the sets
�s ´ ¹x 2 �jf .x/ > sº, and let ��s be balls in Rn with centre at the origin o and
satisfying j�sjn;� D j��s jn;� . Let BR.o/ be a ball of radius R and centred at o of
Rn such that j�jn;� D jBR.o/jn;� , i.e.,

R
�
d� D

R
BR.o/

d�. Define a function f � on
BR.o/ having the following properties:

• f � is a radial decreasing function;

• f � takes the value s on the boundary sphere @��s of the ball ��s (for a fixed s).

It is not hard to see that �0 D � and correspondingly ��0 D BR.o/. The existence
of the balls ��s can be assured by using the Schwarz symmetrization. Readers can
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check e.g., [4, 20] for details on how to use symmetrization to get balls ��s under the
constraint of having the same weighted volume.

Now, we agree on the notations used below. Denote by cdv the .n � 1/-dimen-
sional Hausdorff measure of the boundary associated to the Riemannian volume ele-
ment8 dv. This convention will be used throughout the paper. Similarly, cd�D e��cdv
would be the weighted volume element of the boundary. Besides, for convenience,
set G.s/´ @�s , St.s/ ´ .G.s//� D G�.s/ D @��s , which denotes the sphere with
centre at the origin and radius t .s/. The following formula is known as the co-area
formula (see, e.g., [7, 12]).

For any continuous function h defined on �, one hasZ
�

hdv D

supfZ
0

Z
G.s/

hjrf j�1bdvsds;

where following the above agreement, bdvs denotes the volume element of the
hypersurface G.s/ D f �1.s/.

Clearly, taking h D jrf j2 and then applying the co-area formula, one hasZ
�

jrf j2dv D

supfZ
0

Z
G.s/

jrf jbdvsds:

Denote by the Schwarz symmetric rearrangement mapping t W Œ0;supf �! Œ0;R�, with
R the radius of BR.o/, and  the inverse transformation of t , where t additionally
satisfies t .0/ D R, t .sup f / D 0.

Lemma 2.1. If � is a bounded region in Rn, and � satisfies Property 1 (with M n

chosen to be Rn), then Z
�

f 2d� D

Z
BR.o/

.f �/2d�; (2.1)

where BR.o/ � Rn is the ball defined as in Theorem 1.1.

Proof. By a direct calculation, one can obtainZ
BR.o/

.f �/2d� D

RZ
0

Z
@Bt .o/

.f �/2e��.t/bdvtdt D
RZ
0

 2.t/

Z
@Bt .o/

e��.t/bdvtdt

8In fact, for domains �s and � D �0, they should have the same volume element dv.
However, in order to emphasise that the domain�s depends on s, we wish to additionally write
the volume element of �s as dvs (except s D 0).
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D �

supfZ
0

 2.t.s//t 0.s/

� Z
@Bt.s/.o/

e��.t.s//bdvt
�
ds

D �

supfZ
0

s2
�
�

Z
G.s/

jrf j�1e��jG.s/bdvs
�
ds D

Z
�

f 2d�;

which implies (2.1) directly.

Now, together with Fact A and Fact B, we can prove Theorem 1.1.

Proof of Theorem 1.1. Applying the co-area formula, we have

Z
�

jrf j2e��dv D

supfZ
0

Z
G.s/

jrf je��bdvsds: (2.2)

We can obtain, by using the Cauchy–Schwarz inequality, thatZ
G.s/

jrf je��jG.s/bdvs �
�R
G.s/

e��jG.s/bdvs
�2R

G.s/
jrf j�1e��jG.s/bdvs

: (2.3)

By Fact A and Fact B, we haveZ
G.s/

e��jG.s/bdvs �
Z

G�.s/

e��.t.s//bdvs;

with equality holding if and only ifG.s/ nE.s/D G�.s/, where the set E.s/ denotes
a set of measure zero. Substituting this into (2.3) yieldsZ

G.s/

jrf je��jG.s/bdvs �
�R
G�.s/

e��.t.s//bdvs
�2R

G.s/
jrf j�1e��jG.s/bdvs

: (2.4)

On the other hand, one hasZ
G�.s/

jrf �je��.t.s//bdvs D
�R
G�.s/

e��.t.s//bdvs
�2R

G�.s/
jrf �j�1e��.t.s//bdvs

;

since jrf �j and e��.s/ are constant on the sphere G�.s/. We notice that

j�r jn;� D

Z
�r

e��dv D

supfZ
r

Z
G.s/

jrf j�1e��jG.s/bdvsds;
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and so it follows that

.j�r jn;�/
0.s/ D �

Z
G.s/

jrf j�1e��jG.s/bdvs;

which implies

�

Z
G.s/

jrf j�1e��jG.s/bdvs D d

ds
j�sjn;� D

d

ds
j��s jn;� : (2.5)

Since

j��s jn;� D

t.s/Z
0

Z
@Bz.o/

e��.z/bdvzdz;

one has

d

ds
j��s jn;� D t

0.s/

Z
St.s/

e��.t.s//bdvs: (2.6)

We wish to point out the following fact.

Lemma 2.2. For the function t .s/ in (2.6), one has t 0.s/ ¤ 0.

Proof. Denote by T the set consisting of points, where the function f attains its
critical values. By Sard’s theorem (i.e., the set of critical points of a smooth function
has measure zero), we can conclude that T has measure zero. Therefore, one knowsZ

T

jrf j�1e��jG.s/bdvs D 0;

and thenZ
G.s/

jrf j�1e��jG.s/bdvs D
Z

G.s/nT

jrf j�1e��jG.s/bdvs C
Z
T

jrf j�1e��jG.s/bdvs

D

Z
G.s/nT

jrf j�1e��jG.s/bdvs: (2.7)

This implies that there is no essential difference when doing integrations over
G.s/ n T or over G.s/. Based on this reason, in the sequel, for convenience and sim-
plicity, we wish to integrate over G.s/ directly.
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Therefore, combining (2.7) with (2.5)–(2.6), one hasZ
G.s/nT

jrf j�1e��jG.s/bdvs D t 0.s/
Z

St.s/

e��.t.s//bdvs;

which implies t 0.s/ ¤ 0 since the LHS of the above equality cannot be zero.

Now, let us go back to our discussion. Putting (2.5)–(2.6) into (2.4) results in9Z
G.s/

jrf je��jG.s/bdvs �
�R
G�.s/

e��.t.s//bdvs
�2R

G.s/
jrf j�1e��jG.s/bdvs

D

R
St.s/

e��.t.s//bdvs
�t 0.s/

:

The above expression makes sense since t 0.s/ ¤ 0 by Lemma 2.2. Therefore, by sub-
stituting the above inequality into (2.2), one obtainsZ

�

jrf j2d� D

supfZ
0

Z
G.s/

jrf je��jG.s/bdvsds � �
supfZ
0

R
St.s/

e��.t.s//bdvs
t 0.s/

ds

D �

supfZ
0

. 0.t.s///2t 0.s/

Z
St.s/

e��.t.s//bdvsds

D

RZ
0

. 0.t//2
Z

St.s/

e��.t.s//bdvsdt D
Z

BR.o/

jrf �j2d�: (2.8)

The equality case in (2.8) implies thatZ
G.0/

e��jG.0/cdv D Z
G�.0/

e��.t/cdv
holds. So, one has G.0/ nE.0/ D G�.0/, that is, � nE.0/ D BR.o/. Moreover, this
domain should lie entirely in the region BR.h/ defined by (1.19). Furthermore, by
Lemma 2.1, we have

�1;�.�/ D

R
�
jrf j2d�R
�
f 2d�

�

R
BR.o/

jrf �j2d�R
BR.o/

.f �/2d�
� �1;�.BR.o//;

which completes the proof of Theorem 1.1.

9One would see that similar conclusions can be obtained in the hemisphere case and also
the hyperbolic case.
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Proof of Theorem 1.7. Use an almost the same argument as that in the above proof of
Theorem 1.1 except replacing the usage of Fact A and Fact B by the following fact.

([4]) Assume that the function aW Œ0;C1/ ! Œ0;C1/ satisfies preconditions
a.t/ is non-decreasing for t � 0, .a.z1=n/ � a.0//z1�1=n is convex, z � 0, and
moreover, assume that � � Rn is a bounded open set with Lipschitz boundary
@�. Then, Z

@�

a.jxj/dx �

Z
@��

a.jxj/dx;

where @�� is a sphere with centre at the origin and enclosing the weighted volume
equal to that of �.

Then the conclusion in Theorem 1.7 follows naturally by choosing a.t/ D e��.t/.

2.2. The hemisphere case

As we know, Schwarz symmetrization can also be carried out on hemispheres and
hyperbolic spaces. For convenience, we will continue to use the notions and notations
introduced at the beginning of Section 2.1 to investigate Faber–Krahn-type inequalit-
ies for the Witten Laplacian in the hemisphere and hyperbolic cases.

Lemma 2.3. Assume that the function � satisfies Property 1 (with M n chosen to be
SnC), where the point o mentioned in Property 1 should additionally be required to be
the base point of SnC. Then we haveZ

�

f 2d� D

Z
BR.o/

.f �/2d�;

where BR.o/ � SnC is the geodesic ball defined as in Theorem 1.3.

Proof. Formally, the computation for the assertion in Lemma 2.3 is almost the same
as that for (2.1), and so we omit the details here.

We also need the following fact.

Lemma 2.4 ([6]). Let � � SnC be a compact n-dimensional domain with smooth
boundary @�. Let H be the normalised mean curvature of @�. Let

V.x/ D cos distSn.x; o/:
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If H is positive everywhere, then10Z
@�

V

H
dA � n

Z
�

Vd�: (2.9)

The equality in (2.9) holds if and only if � is isometric to a geodesic ball.

Proof of Theorem 1.3. Applying the co-area formula, we haveZ
�

jrf j2 cos tdv D

supfZ
0

Z
G.s/

jrf j cos.t jG.s//bdvsds: (2.10)

By using the Cauchy–Schwarz inequality, we obtain thatZ
G.s/

jrf j cos.t jG.s//bdvs �
�R
G.s/

cos.t jG.s//bdvs
�2R

G.s/
jrf j�1 cos.t jG.s//bdvs

: (2.11)

By Lemma 2.4 and the assumption that H is a positive constant, one hasZ
G.s/

cos.t jG.s//bdvs �
Z

G�.s/

cos t .s/bdvs;

and then (2.11) becomesZ
G.s/

jrf j cos.t jG.s//bdvs �
�R
G�.s/

cos t .s/bdvs
�2R

G.s/
jrf j�1 cos.t jG.s//bdvs

: (2.12)

On the other hand, one hasZ
G�.s/

jrf �j cos t .s/bdvs D
�R
G�.s/

cos t .s/bdvs
�2R

G�.s/
jrf �j�1 cos t .s/bdvs

;

since jrf �j and cos t .s/ are constant on the sphere G�.s/. Notice that

j�r jn;� D

Z
�r

cos t .r/dv D

supfZ
r

Z
G.s/

jrf j�1 cos.t jG.s//bdvsds;

10In (2.9), the Hausdorff measures of the domain� and its boundary @� are given by d� and
dA respectively. This usage of notations does not match the convention made at the beginning
of Section 2.1, and the reason is that we wish to list here the original statement of the conclusion
in Lemma 2.4 proven firstly in the reference [6].
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and so it follows that

.j�r jn;�/
0.s/ D �

Z
G.s/

jrf j�1 cos.t jG.s//bdvs;

which implies

�

Z
G.s/

jrf j�1 cos.t jG.s//bdvs D
d

ds
j�sjn;� D

d

ds
j��s jn;� : (2.13)

Since

j��s jn;� D

t.s/Z
0

Z
@Bz.o/

cos zbdvzdz;

one has
d

ds
j��s jn;� D t

0.s/

Z
St.s/

cos t .s/bdvs: (2.14)

Putting (2.13)–(2.14) into (2.12) results inZ
G.s/

jrf j cos.t jG.s//bdvs �
�R
G�.s/

cos t .s/bdvs
�2R

G.s/
jrf j�1 cos.t jG.s//bdvs

D

R
St.s/

cos t .s/bdvs
�t 0.s/

:

Therefore, by substituting the above inequality into (2.10), one hasZ
�

jrf j2d� D

supfZ
0

Z
G.s/

jrf j cos.t jG.s//bdvsds � �
supfZ
0

R
St.s/

cos t .s/bdvs
t 0.s/

ds

D �

supfZ
0

. 0.t.s///2t 0.s/

Z
St.s/

cos t .s/bdvsds

D

RZ
0

. 0.t//2
Z

St.s/

cos t .s/bdvsdt D
Z

BR.o/

jrf �j2d�:

Together with Lemma 2.3, it follows that

�1;�.�/ D

R
�
jrf j2d�R
�
f 2d�

�

R
BR.o/

jrf �j2d�R
BR.o/

.f �/2d�
� �1;�.BR.o//: (2.15)

In particular, if the equality in (2.15) is achieved, then the equality in (2.11) and (2.12)
can be attained simultaneously, and the rigidity assertion in Theorem 1.3 follows dir-
ectly from Lemma 2.4. This completes the proof of Theorem 1.3.
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2.3. The hyperbolic case

Proof of Theorem 1.5. It is not hard to see that similar to Lemma 2.1, in the hyper-
bolic case one also has the L2 integral (with respect to the weighted density d�)
unchanged after the Schwarz symmetrization under the constraint of fixed weighted
volume. Besides, if one looks at the proofs of Theorems 1.1 and 1.3, one finds that in
the two different cases (i.e., the case of Euclidean spaces and the case of hemispheres),
the co-area formula, and most subsequent calculations look similarly in form. The
key difference for those two cases is the usage of weighted isoperimetric inequalities
(i.e., the way of dealing with (2.4) and (2.11)) properly. Based on these facts, using
almost the same argument as in the proof of Theorem 1.1, together with the help of
Fact C (i.e., the geometric isoperimetric inequality in Hn under the constraint of fixed
weighted volume), we obtain the spectral isoperimetric inequality and the rigidity in
Theorem 1.5.

3. The Hong–Krahn–Szegő-type inequalities for the Witten Laplacian

For the Dirichlet eigenvalue problem (1.15), we know from Section 1 that its admiss-
ible space is the Sobolev space W 1;2

0;� .�/. Using the inner product (1.16), one can
define the L2 space yL2.�/ with respect to the weighted density as follows: we say
that u 2 yL2.�/ if Z

�

u2e��dv <1:

Before giving the proof of the Hong–Krahn–Szegő-type inequalities for the second
Dirichlet eigenvalue of the Witten Laplacian, we need the following facts.

Lemma 3.1 (Nodal domain theorem for the Witten Laplacian, [14]). For the Diri-
chlet eigenvalue problem (1.15), the eigenvalues consist of a non-decreasing sequence
(1.18). Denote by fi an eigenfunction of the i -th eigenvalue �i;� , i D 1; 2; 3; : : : ,
and ¹f1; f2; f3; : : :º forms a complete orthogonal basis of yL2.�/. Then, for each
k D 1; 2; 3; : : : , the number of nodal domains of fk is less than or equal to k.

Remark 3.2. (1) By Lemma 3.1, one easily sees that the eigenfunction f1 does not
change sign on �, and �1;� has multiplicity 1. Without loss of generality, we can
assume f1 > 0 on�. Besides, in�, the complement of the nodal set of eigenfunction
f2 of the second Dirichlet eigenvalue �2;� has precisely two components. That is to
say, f2 has two nodal domains.

(2) By the way, we have pointed out in of [14, Remark 1.3] that maybe spectral
geometers have already known the conclusion of Lemma 3.1, and we still formally
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write it down therein for the completion of the structure of [14]. In fact, by making
necessary changes to the proof of Courant-type theorem for the characterization of
nodal domains to eigenfunctions of the Laplacian in the Riemannian case given by
Bérard and Meyer [2], one might get our proof for the conclusion of Lemma 3.1
shown in [14].

Lemma 3.3 ([15]). Domain monotonicity of eigenvalues with vanishing Dirichlet
data also holds for the Dirichlet eigenvalues of the weighted Laplacian.

A proof of Theorem 1.9 or 1.10. By Lemma 3.1, one knows that the eigenfunction f2
has two nodal domains and its nodal set lies inside�. Denote by � the nodal set of f2.
� divides the domain� into two partsD1 andD2. Without loss of generality, assume
that f2jD1 > 0 and f2jD2 < 0. Then, it is easy to see that8<:��f2 C �2;�.�/f2 D 0 in D1;

f2 D 0 on @D1;
(3.1)

and 8<:��f2 C �2;�.�/f2 D 0 in D2;

f2 D 0 on @D2:
(3.2)

In fact, the nodal set � also divides the boundary @� into two parts; let us call them
C1 and C2. It is not hard to see that C1 and � surround one ofD1 andD2, and without
loss of generality, let us say D1. This implies that the boundary @D1 of D1 satisfies
@D1 D C1 [ � . Correspondingly, one has @D2 D C2 [ � . From (3.1) and (3.2), one
knows that f2 satisfies the eigenvalue problem (1.15) with � D D1 or � D D2,
and moreover, f2 does not change sign on Di , i D 1; 2. Hence, we have �1;�.D1/ D
�2;�.�/D �1;�.D2/, and f2 can be treated as an eigenfunction of �1;�.Di /, i D 1; 2.
Denote by BRi .o/ the (geodesic) ball in Rn (or Hn) centred at the origin o and radius
Ri such that its weighted volume equals that of Di , i D 1; 2, that is, jBRi .o/jn;� D
jDi jn;� . Then, by Theorem 1.1 (or Theorem 1.5), we know that

�2;�.�/ � �1;�.BR1.o//; �2;�.�/ � �1;�.BR2.o//

hold simultaneously. Hence, one has

�2;�.�/ � max¹�1;�.BR1.o//; �1;�.BR2.o//º:

We may suppose that jD1jn;� � jD2jn;� . So, R1 � R2, and by Lemma 3.3 we have
�1;�.BR1.o// � �1;�.BR2.o//. Therefore, in this setting, finding the greatest lower
bound for the second eigenvalue �2.�/ among domains with the fixed weighted
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volume j�jn;� D const., it is sufficient to minimise �1;�.BR1.o//. Since one has
jD1jn;� � jD2jn;� and jD1jn;� C jD2jn;� D j�jn;� , the maximal possibility for the
weighted volume ofD1 is that jD1j� D j�jn;�=2. Hence, there exists zR > 0 such that
jB zR.o/j�Dj�jn;�=2, and by Lemma 3.3, in this situation, the eigenvalue �1;�.B zR.o//
minimises the eigenvalue functional �1;�.BR1.o// as R1 changes. Hence, one has
�2;�.�/ � �1;�.B zR.o//, and the eigenvalue �1;�.B zR.o// equals the minimum value
of the eigenvalue functional �2;�.�/ under the constraint of weighted volume
j�jn;� D const. fixed. This completes the proof.

4. The Szegő–Weinberger-type inequalities for the Witten Laplacian

This section is devoted to presenting isoperimetric inequalities for the first non-zero
Neumann eigenvalue of the Witten Laplacian under the constraint of fixed weighted
volume. Before that, we need the following fact.

Theorem 4.1. Assume that BR.o/ is a geodesic ball of radius R and centred at
some point o in the n-dimensional complete simply connected Riemannian mani-
fold Mn.�/ with constant sectional curvature � 2 ¹�1; 0; 1º, and that � is a radial
function with respect to the distance parameter t ´ d.o; �/, which is also a non-
increasing convex function. Then, the eigenfunctions of the first non-zero Neumann
eigenvalue �1;�.BR.o// of the Witten Laplacian on BR.o/ have the form T .t/xi=t ,
i D 1; 2; : : : ; n, where T .t/ satisfies8̂<̂

:T
00
C

� .n � 1/C�
S�

� �0
�
T 0 C .�1;�.BR.o// � .n � 1/S

�2
� /T D 0;

T .0/ D 0; T 0.R/ D 0; T 0jŒ0;R/ ¤ 0:

(4.1)

Here C�.t/ D .S�.t//0 and

S�.t/ D

8̂̂<̂
:̂

sin t if Mn.�/ D SnC;

t if Mn.�/ D Rn;

sinh t if Mn.�/ D Hn;

with SnC the n-dimensional hemisphere of radius 1.

The proof of the above fact is somewhat long and does not appear to have a close
relation to the main content of this section. Hence, we choose to leave the proof in
Appendix A.

Remark 4.2. It is not hard to see (cf. Section A) that xi , i D 1;2; : : : ;n, are coordinate
functions of the globally defined orthonormal coordinate system set up in Mn.�/.
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We construct an auxiliary function h.t/ such that

h.t/ D

´
T .t/; 0 � t � R;

T .R/; t > R:
(4.2)

Lemma 4.3. Assume that the function � satisfies Property 1 (with M n chosen as Rn

and the point o additionally required to be in the convex hull of �, i.e., o 2 hull.�/).
Assume that T .t/ is a monotonically non-decreasing function determined by the sys-
tem (4.1). Then, h.t/ is monotonically non-decreasing, and .h0/2 C .n � 1/h2=t2 is
monotonically non-increasing.

Proof. First, it is easy to check that h.t/ defined by (4.2) is non-decreasing. Besides,
by a direct calculation, one has

d

dt

h
.h0/2 C

.n � 1/h2

t2

i
D 2h0h00 C 2.n � 1/

thh0 � h2

t3
:

Together with (4.1), we have

d

dt

h
.h0/2 C

.n � 1/h2

t2

i
D �2�1;�.BR.o//hh

0
� .n � 1/

.th0 � h/2

t3
C 2.h0/2�0 � 0;

which implies the second assertion of the lemma directly.

Lemma 4.4. Assume that� is a bounded domain in Rn (or Hn) with smooth bound-
ary. If j�jn;� D jBR.o/jn;� , with BR.o/ be the (geodesic) ball defined as in The-
orem 1.11 (or Theorem 1.12), and the non-constant functions u.t/ and v.t/ defined
on Œ0;C1/ are monotonically non-increasing and non-decreasing respectively, thenZ

�

v.jxj/d� �

Z
BR.o/

v.jxj/d�;

Z
�

u.jxj/d� �

Z
BR.o/

u.jxj/d�:

The equality holds if and only if � D BR.o/ (or � is isometric to BR.o/).

Proof. Assume that Q D � \ BR.o/. Then we haveZ
�

v.jxj/d� D

Z
Q

v.jxj/d�C

Z
�nQ

v.jxj/d� �

Z
Q

v.jxj/d�C v.R/

Z
�nQ

d�:

Similarly, one hasZ
BR.o/

v.jxj/d� D

Z
Q

v.jxj/d�C

Z
BR.o/nQ

v.jxj/d� �

Z
Q

v.jxj/d�C v.R/

Z
BR.o/nQ

d�:
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Since j�jn;� D jBR.o/jn;� , then
R
�nQ

d� D
R
BR.o/nQ

d�, and substituting this into
the above two inequalities yieldsZ

�

v.jxj/d� �

Z
BR.o/

v.jxj/d�:

In particular, when the equality holds, one hasZ
�nQ

v.jxj/d� D v.R/

Z
�nQ

d�;

Z
BR.o/nQ

v.jxj/d� D v.R/

Z
BR.o/nQ

d�

simultaneously. Since the non-constant function v is non-increasing, � is the ball
BR.o/ (or� is isometric to BR.o/). The situation for the non-constant function u can
be dealt with similarly.

Proof of Theorem 1.11. Define f .t/´ h.t/xi=t , where i is chosen to be an integer of
the set ¹1;2; : : : ; nº. Then, applying the Brouwer’s fixed point theorem and choosing a
suitable coordinate origin o 2 hull.�/, we can assure

R
�
fd�D 0. This can be seen by

using a very similar argument to that on [39, pp. 634–635]. In fact, one can also check
our another work [13], where we have given a detailed explanation on how to get the
suitable coordinate system such that

R
�
fd� D 0. By the characterization (1.22), and

by using a similar calculation to [39, (2.9)–(2.10), p. 635], one has

�1;�.�/ �

R
�

�
.h0/2 C .n�1/h2

t2

�
d�R

�
h2d�

:

On the other hand, by Lemma 4.3 and Lemma 4.4, we haveZ
�

h
.h0/2 C

.n � 1/h2

t2

i
d� �

Z
BR.o/

h
.h0/2 C

.n � 1/h2

t2

i
d�

and Z
�

h2d� �

Z
BR.o/

h2d�:

Therefore, we have

�1;�.�/ �

R
�

�
.h0/2 C .n�1/h2

t2

�
d�R

�
h2d�

�

R
BR.o/

�
.h0/2 C .n�1/h2

t2

�
d�R

BR.o/
h2d�

D �1;�.BR.o//;

which, together with the description of the equality case in Lemma 4.4, implies the
assertion of Theorem 1.11.
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Proof of Theorem 1.12. We still use f .t/ as the trail function, but now the distance
should be the Riemannian distance in the hyperbolic space Hn. In the hyperbolic case,
using a similar argument to that in the proof of Theorem 1.11, we have

�1;�.�/ �

R
�

�
.h0/2 C .n�1/h2

.sinh t/2
�
d�R

�
h2d�

: (4.3)

On the other hand,

d

dt

h
.h0/2 C

.n � 1/h2

.sinh t /2

i
D 2h0h00 C 2.n � 1/

hh0 sinh t � h2 cosh t
.sinh t /3

:

Putting (4.1) into the above equality and using the facts sinh t � 0, cosh t � 1 for
t � 0, one has

d

dt

h
.h0/2 C

.n � 1/h2

.sinh t /2

i
D �2�1;�.BR.o//hh

0
C 2.h0/2�0 �

2.n � 1/ cosh t
sinh t

.h0/2

�
2.n � 1/ cosh t

sinh3 t
h2 C

4.n � 1/

sinh2 t
hh0

� �2�1;�.BR.o//hh
0
C 2.h0/2�0 �

2.n � 1/

sinh t
.h0/2

�
2.n � 1/

sinh3 t
h2 C

4.n � 1/

sinh2 t
hh0

D �2�1;�.BR.o//hh
0
C 2.h0/2�0 � 2.n � 1/

.h0/2 sinh2 t C h2 � 2hh0 sinh t
sinh3 t

D �2�1;�.BR.o//hh
0
C 2.h0/2�0 � 2.n � 1/

.h0 sinh t � h/2

sinh3 t
� 0:

Then, by applying Lemma 4.4, we haveZ
�

h
.h0/2 C

.n � 1/h2

sinh2 t

i
d� �

Z
BR.o/

h
.h0/2 C

.n � 1/h2

sinh2 t

i
d�

and Z
�

h2d� �

Z
BR.o/

h2d�:

Therefore, from (4.3), we obtain

�1;�.�/ �

R
�

�
.h0/2 C .n�1/h2

sinh2 t

�
d�R

�
h2d�

�

R
BR.o/

�
.h0/2 C .n�1/h2

sinh2 t

�
d�R

BR.o/
h2d�

D �1;�.BR.o//;

which together with the description of the equality case in Lemma 4.4 implies the
assertion of Theorem 1.12 directly.
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A. Appendix

We give a proof of Theorem 4.1 in details. Assume that f is an eigenfunction of the
Witten Laplace operator �� , and f can be decomposed into T .t/G.�/, where t ´
d.o; �/ stands for the Riemannian distance to the point o, and � 2 Sn�1o � ToMn.�/.
A simple calculation gives us that

0 D ��f C �f D S
1�n
� .Sn�1� T 0/0G � S2� T vlG � �

0T 0G C �TG;

where vl denotes the closed eigenvalue of the Laplacian on the unit .n � 1/-sphere
Sn�1, i.e., vl D l.l C n � 2/, l D 0; 1; 2; : : : . Simplifying the above equation gives
us a second-order ODE as follows:

T 00 C
h .n � 1/C�

S�
� �0

i
T 0 C

�
� �

vl

S2�

�
T D 0; (A.1)

where C�.t/ D S 0�.t/. For the Neumann eigenvalue problem of the Witten Laplacian
�� , in order to ensure the smoothness of the function T , we have the following:

• when l D 0, T 0.0/ D 0;

• T .t/ Ï t l , l D 1; 2; : : :;

• T satisfies the Neumann boundary condition T 0.R/ D 0.

Choosing a sufficiently small positive number " and letting

p.t/ D e
R t
" ...n�1/C�/=S���

0/ds;

we can simplify (A.1) into a Sturm–Liouville equation

.pT 0/0 C .� � vlS
�2
� /pT D 0: (A.2)

Assume that for a fixed vl , �l;j;� , j D 1; 2; : : :, is the j -th eigenvalue related to vl ,
and Tl;j;� denotes an eigenfunction belonging to �l;j;� . Here, the purpose of placing
the symbol � in the subscript of �l;j;� is to emphasise that, theoretically, �l;j;� and
Tl;j;� have a close relation to the function �, since the function p.t/ in equation (A.2)
depends on �0.t/. In this setting, equation (A.2) can be rewritten as

.pT 0l;j;�/
0
C .�l;j;� � vlS

�2
� /pTl;j;� D 0; (A.3)

which implies

RZ
0

Tl;j;� Tl;k;�pdt D 0; when �l;j;� ¤ �l;k;� : (A.4)
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Moreover, one can normalise T so that

RZ
0

Tl;j;�Tl;j;�pdt D 1:

For an equation of the form similar to (A.3), we have the following fact.

Lemma A.1. Assume that the functions f and g satisfy separately the equations

.pf 0/0 C .˛ � �.t//pf D 0; (A.5)

.pg0/0 C .ˇ � �.t//pg D 0; (A.6)

and also the boundary conditions given as in the system (4.1). Then we have

p.fg0 � f 0g/.t/ D

tZ
0

Œ˛ � ˇ C .� � �/�pfgds:

Proof. Multiplying both sides of equation (A.5) by g, multiplying both sides of equa-
tion (A.6) by f , and then taking their difference yields

.pf 0/0g � .pg0/0f C Œ˛ � ˇ C .�.t/ � �.t//�pfg D 0:

Integrating both sides of the above equality from 0 to t , and using the boundary condi-
tions given as in the system (4.1), one can get the assertion of Lemma A.1 directly.

By the standard Sturm–Liouville theory for second-order ODEs, we know that
Tl;j;� has exactly j � 1 zeros on the interval .0;R/. So, Tl;1;� keeps its sign unchanged
on .0; R/. Without loss of generality, we may assume that Tl;1;� and Tk;1;� are both
greater than 0, where l < k. Then, by Lemma A.1, when t D R, we have �l;1;�.R/ <
�k;1;�.R/, l < k. Since for the eigenvalue problem (1.20), we know from its sequence
(1.21) that �1;� D �0;1;� D 0. Hence, if one wants to get the first non-zero Neumann
eigenvalue �1;� of the Witten Laplacian on BR.o/, one only needs to know exactly
which one is smaller between �0;2;� and �1;1;� .

The following lemma is fundamental.

Lemma A.2. When l � 1, T 0
l;j;�

has only j � 1 zeros in the interval .0; R/.

Proof. From (A.3), one has

pT 00l;j;� C p
0T 0l;j;� C �l;j;�pTl;j;� � vlS

�2
� pTl;j;� D 0: (A.7)

Since Tl;1;� has no zero points on the interval .0; R/, we can assume that Tl;1;� is
greater than 0. According to the boundary conditions, if T 0

l;1;�
is not constantly greater
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than 0 on the interval .0; R/, then there exists a t0 < t1 such that T 00
l;1;�

.t0/ � 0,
T 0
l;1;�

.t0/ D 0, and T 00
l;1;�

.t1/ � 0, T 0
l;1;�

.t1/ D 0 hold true. Together with (A.7), we
obtain

S2� .t0/ �
vl

�l;1;�
� S2� .t1/:

Due to the increasing property of S�.t/, this contradicts t0 < t1. Thus, T 0
l;1;�

has no
zero points in the interval .0; R/. For the case T 0

l;j;�
, j > 1, one only needs to repeat

the above argument in each nodal domain.

It is not hard to see that the function T0;2 satisfies´
.pT 00;2;�/

0 C �0;2;�pT0;2;� D 0;

T 00;2;�.0/ D T
0
0;2;�.R/ D 0:

(A.8)

Since T0;1;� is a non-zero constant function, and T0;2;� is orthogonal to T0;1;� in the
sense of (A.4), we know that T0;2;� changes sign on the interval .0; R/. Therefore,
we may assume that T0;2;� is positive on some interval .0; r0/ and T0;2;�.r0/ D 0,
0 < r0 < R. If there exists r� 2 Œ0; r0/ such that T 000;2;�.r

�/ � 0 and T 00;2;�.r
�/ D 0,

then substituting this into (A.8) yields ..pT 00;2;�/
0 C �0;2;�pT0;2;�/.r

�/ > 0, which
contradicts with the first equation in the system (A.8). Hence, we conclude that T 00;2;�
is negative on the interval .0; r0/. Since � is non-increasing, p0 � 0 can be obtained,
and then from (A.8) again, we have T 000;2;�.r0/ � 0 at r0.

We notice that the function T1;1;j satisfies the following equation

.pT 01;1;�/
0
C .�1;1;� � .n � 1/S

�2
� /pT1;1;� D 0: (A.9)

Differentiating both sides of the first equation in the system (A.8) results in

.pT 000;2;�/
0
C

�
�0;2;� C

�p0
p

�0�
pT 00;2;� D 0: (A.10)

Combining (A.9)–(A.10), and applying Lemma A.1, we can obtain at r0 that

p.T1;1;�T
00
0;2;� � T

0
1;1;�T

0
0;2;�/.r0/

D

r0Z
0

h
�1;1;� � �0;2;� C

��
�
p0

p

�0
� .n � 1/S�2�

�i
pT1;1;�T

0
0;2;�dt: (A.11)

Since � is a convex function, �00 � 0, and so we have

�

� .n � 1/C�
S�

� �0
�0
� .n � 1/S�2� � 0:
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Substituting

p.t/ D e
R t
" ...n�1/C�/=S���

0/ds

into the above inequality, one has�
�
p0

p

�0
� .n � 1/S�2� � 0:

Together with the fact that at r0, T1;1;� > 0, T 01;1;� � 0, T0;2;� > 0, T 00;2;� � 0 and
T 000;2;� � 0, it follows from (A.11) that �1;1;� < �0;2;� . That is to say, the first non-
zero Neumann eigenvalue �1;�.BR.o// of the Witten Laplacian on BR.o/ should be
�1;� D �1;1;� . Substituting into (A.1) results in

T 00 C
h .n � 1/C�

S�
� �0

i
T 0 C .�1.BR.o// � v1S

�2
� /T D 0;

which is exactly the first equation in the system (4.1). This completes the proof of
Theorem 4.1.
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