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Nodal count for a random signing
of a graph with disjoint cycles

Lior Alon and Mark Goresky

Abstract. A recent conjecture, inspired by quantum chaos and the Bogomolny–Schmit conjec-
ture, suggests that the nodal count of operators on signed graphs exhibits a universal Gaussian-
like behavior. We establish this result for the family of graphs composed of disjoint cycles,
which serves as a natural starting point by analogy with quantum graphs. Let G be a simple,
connected graph with disjoint cycles, and let h be a real symmetric matrix supported on G
(e.g., a discrete Schrödinger operator) that satisfies a certain generic condition. The nodal count
�.h; k/ is defined as the number of edges .i; j / where the k-th eigenvector � changes sign with
respect to h, i.e., hij�i�j > 0. We consider the distribution of nodal counts �.h0; k/ over ran-
dom signings h0 of h, obtained by changing the sign of some off-diagonal elements.We prove,
for each k that �.h0; k/ D �.h0; k/ � .k � 1/ has a binomial distribution Bin

�
ˇ; 1
2

�
, where ˇ is

the first Betti number of G. Consequently, the conjecture is validated for graphs with disjoint
cycles.

1. Introduction

A celebrated theorem of R. Courant [17] states that the k-th eigenfunction for the
Dirichlet Laplacian in a planar domain has at most k nodal domains. Over the years,
considerable progress has been made in refining, generalizing and applying this result
to related questions. U. Smilansky, S. Gnutzmann, and G. Blum [14] proposed that
nodal count statistics should predict quatum chaos. They found numerical evidence
that the fluctuations of the nodal count, for a chaotic planar domain, obey a universal
Gaussian law, a statement that is now known as the Bogomolni–Schmit conjecture
[8, 15]. Various models (e.g., percolation) and special cases (e.g. tori and spheres)
have been studied but the general conjecture remains wide open.

A more approachable model may be the 1-dimensional case: a quantum graph.
A finite quantum graph G with edge lengths ` has infinitely many eigenvalues which,
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for large graphs with incommensurate edge lengths, exhibit the spectral properties of
a chaotic system. The k-th eigenfunction has k � 1C �.k/ zeroes, where the nodal
surplus �.k/ is known [9] to be uniformly bounded, 0� �.k/�ˇ.G/ by the first Betti
number of the graph. In this setting the nodal surplus distribution � can be rigorously
defined [1] as the N !1 limit of the distribution of �.k/ when k 2 ¹1; : : : ; N º is
chosen uniformly at random. The universality conjecture for quantum graphs ([2,19])
states that the nodal surplus distribution � should approach a Gaussian centered at
ˇ.G/=2, when ˇ.G/ is large.

Even for quantum graphs, despite considerable numerical evidence in its favor,
this conjecture remains open. The nodal surplus distribution is only known in a sin-
gle situation: when the graph has disjoint cycles. In this case, the distribution � was
found [1] to equal the binomial distribution Bin

�
ˇ.G/; 1

2
b
�

– and is independent of
edge lengths! – verifying the conjecture for quantum graphs with disjoint cycles.

It is natural to ask the analogous question for discrete Schrödinger operators on
finite graphs since the nodal count (see §1.1) of the k-th eigenfunction differs from
k � 1 by a nodal surplus 0 � �.k/ � ˇ.G/, just as in the case of quantum graphs [9].
But a discrete operator on a finite graph has only n (the number of vertices) eigenval-
ues so the distribution of values �.k/ for very large k no longer makes sense. In fact,
Alon and Urschel [6] found examples, for arbitrarily large n and ˇ, where the nodal
distribution of �.k/ 2 ¹0; 1; : : : ; ˇ.G/º for random k 2 ¹1; : : : ; nº has mean equal to
ˇ.G/=n, which is very far from ˇ.G/=2 as one might naïvely hope. The lesson for
discrete graphs is that randomizing with respect to k (the choice of eigenvalue) does
not provide a good model for understanding the distribution of the nodal surplus.

In [4], the present authors randomized an operator on a graph by assigning a ran-
dom sign1 to each edge of the graph independently. In [4] it is conjectured that the
distribution of �.k/ over random signings and random k should approach a Gaussian
centered at ˇ.G/=2. However, a surprising recent result [5] proves the distribution
of �.k/, for random k, and for GOE-random n � n matrices converges to a semi-
circular distribution as n!1. This means the conjecture in [4] is false, since the
GOE distribution is invariant under sign changes of the matrix entries. Numerics sug-
gest, nevertheless, that for each fixed k, with random signings and large ˇ.G/, the
distribution of values �.k/ 2 ¹0; 1; : : : ; ˇ.G/º appears to be Gaussian.

This was verified in [4] in the special case of complete graphsG with (very) dom-
inant on-site potential. In the present paper, inspired by [1], we prove (Theorem 1.3)
the same holds for almost all operators supported on a connected graph G, provided

1The nature of the spectrum of a graph with a random signings was investigated by Y. Bilu
and N. Linial [13] and later used by A. Marcus, D. Spielman and N. Srivastava in their resolu-
tion [23] of the Kadison–Singer problem.
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G has disjoint cycles. In other words, for any fixed k, and with random signings,
the nodal surplus distribution � � Bin

�
ˇ.G/; 1

2

�
is binomial (and hence converges to

Gaussian for large ˇ.G/).
Graphs with disjoint cycles do not, to our knowledge, arise naturally. But they

may be considered to be the simplest generalization of the fundamental work of
Fiedler [18] who analyzed the nodal count on “acyclic” graphs, that is, trees, or graphs
with no cycles.

1.1. Graph setting and notations

LetG D G.Œn�;E/ be a simple graph on n ordered vertices Œn�´ ¹1; 2; : : : ; nº with a
set of edgesE and first Betti number ˇ D rank.H1.G;R//. Write r � s if the vertices
r ¤ s are connected by an edge .rs/2E. An n� nmatrix h is supported (resp. strictly
supported) on G if for any r ¤ s, hrs ¤ 0 H) r � s (resp. hrs ¤ 0 () r � s for
r ¤ s). Let �.G/ (resp. A.G/, resp. H .G/) denote the vector space of real symmetric
(resp. antisymmetric, resp. Hermitian) matrices supported on G. The eigenvalues of a
symmetric matrix h 2 �.G/ are real and ordered, �1.h/ � �2.h/ � � � � � �n.h/. We
say that � 2 Rn is nowhere-vanishing if �j ¤ 0 for all j . If � is a nowhere-vanishing
eigenvector of h, with simple eigenvalue �k , then its nodal (edge) count is

�.h; k/ D j¹.rs/ 2 E W �rhrs�s > 0ºj:

(If hrs < 0, as in the case of the graph Laplacian or more generally, a discrete Schrö-
dinger operator, the nodal (edge) count is the number of edges on which � changes
sign.) If the graphG is a tree, the nodal count is exactly �.h;k/D k � 1 [18], however,
this is not the case if G is not a tree [7]. Consequently, the nodal surplus for the k-th
eigenvalue of h is defined to be

�.h; k/´ �.h; k/ � .k � 1/;

and by [9] it is bounded: 0 � �.h; k/ � ˇ.
A signing of h 2 �.G/ is a symmetric matrix h0 obtained from h by changing the

sign of some of its off-diagonal elements. When considering a random signing h0, we
choose an element from the set of 2jE j signings uniformly at random. In this way,
�.h0; k/ is a random variable supported on ¹0; 1; : : : ; ˇº.

A cycle is a path along the graph starting and ending at the same vertex, and it
is simple if no other vertex is repeated. We say that G has disjoint cycles if distinct
simple cycles do not share any vertex. See §3 and Figure 1.
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Figure 1. A graph with disjoint cycles.

1.2. Main result

If � 2 Rn is an eigenvector of h 2 �.G/, in order to avoid double subscripts, we
sometimes write �.r/ D �r . To define the nodal count for all signing of h 2 �.G/,
the matrix h must satisfy the following generic spectral condition.

[GSC] The matrix h is strictly supported onG, and every eigenvalue of every sign-
ing of h is simple with nowhere vanishing eigenvector.

In Proposition 6.3 we establish that condition [GSC] is indeed generic. The main
result of this paper is the following.

Theorem 1.3. LetG be a simple connected graph with n vertices and disjoint cycles.
Suppose h 2 �.G/ satisfies [GSC], and let h0 be a random signing of h. Then for
any k 2 Œn�, the random variable �.h0; k/ is binomially distributed: the fraction of
those signings h0 such that �.h0; k/ D j is 2�ˇ

�
ˇ
j

�
. Consequently, as ˇ !1, this

distribution converges to a Gaussian centered at ˇ=2 with variance ˇ=4.

1.4. Nodal-magnetic relation

Given a graph G with a matrix h as above, the various signings of h lie in a single
torus2 Th � H .G/ of so-called magnetic perturbations of h. It consists of elements
h˛ with .h˛/rs D ei˛rshrs with ˛ 2A.G/, see §2.4. We may consider the eigenvalue
�k to be a sort of Morse function on Th. A signing h0 2 Th occurs when all phases are
˛rs 2 ¹0;�º. These are the “real” points, or “symmetry points” in Mh, the points fixed

2Defined (in [10]) by allowing off-diagonal elements hrs to vary by a phase ei�rshrs .
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under complex conjugation. It is a theorem of Berkolaiko [10], further explained by
Colin de Verdière [16], that each signing h0 2Th is a critical point of �k , whose Morse
index coincides with the nodal surplus for h0. Unfortunately, due to the existence of a
group of gauge transformations that acts on Th and preserves �k , each critical point
h0 is highly degenerate.

The degeneracy in the critical points can be removed by dividing the torus Th by
the gauge group, §2.5. The result is a torus Mh whose dimension

ˇ D jEj � nC 1 D rank.H1.G//

is the first Betti number of G. The genericity condition [GSC] now implies ([4, The-
orem 3.2]) that, for each signing h0 of h, the corresponding point Œh0� 2 Mh is a
non-degenerate critical point of �k WMh! R. One might hope that these are the only
critical points of �k . If this were the case, then we would conclude that �k is a perfect
Morse function, that each critical point contributes to the homology of Mh in a single
degree and hence the nodal surplus is binomially distributed. This situation occurs in
[4, Theorem 3.2 and §3.4], where it was proven that the nodal surplus distribution is
binomial when G is a complete graph and h has a dominant diagonal.

For generic graphs with a complex cycle structure, experiments indicate the exis-
tence of many critical points of �k (in addition to the signings of h), which casts doubt
on the possibility of using Morse theory to understand the nodal surplus distribution
in general.

For generic graphs with disjoint cycles, we believe that each �k is a perfect Morse
function, but we do not prove it. In [3] it is shown that there are no other smooth
critical points on Mh, but there may be many points where �k has higher multiplicity.
The analysis near these points is very complicated, but one expects such points to be
topologically regular in the sense of [12]. If this could be established, then it would
give a Morse theoretic proof of our main theorem.

1.5. Hypercube toolkit

Instead, we develop a different approach using the combinatorics of the Boolean lat-
tice (§3.6) and two technical steps: (a) the monotonicity lemma (Lemma 5.1), adapted
from [22], and (b) the local-global theorem (Theorem 7.3), adapted from [11]. These
results allow us to focus on the one-dimensional trajectories that connect neighboring
signings h0 and h00 as described in Propositions 3.4 and 3.5. The proof is then outlined
in §3.6.
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1.6. Bloch variety of periodic operators

The spectral analysis of magnetic operators on finite graphs has an equivalent formu-
lation in terms of periodic graphs, which we briefly review for the sake of complete-
ness, see [22]. The universal abelian cover yG of the graph G is a Zˇ periodic graph.
The matrix h lifts to a Zˇ -periodic operator, Oh, on yG. In Bloch theory, the space
L2. yG/ decomposes into an orthogonal sum (or direct integral) of subspaces L2

�
. yG/

corresponding to characters � 2 Tˇ of Zˇ . A natural identification Tˇ Š Mh, is
described in §2.6 below, say, � 7! ˛. The operator Oh restricted to L2

�
. yG/ is unitarily

equivalent to the magnetic operator h˛ . The spectrum of Oh is therefore the union over
the spectrum of h˛ for all ˛.

The graph of the eigenvalues of h˛ as functions on Mh is called the Bloch variety
(also known as the dispersion relation manifold). It is a subset of Mh � R and its
projection to R consists of “bands” corresponding to different k. There is considerable
interest in determining the edges of these bands, that is, the maxima and minima of
the various �k. Oh/ over the torus Mh.

When translated into this language, a simple consequence of our main theorem is
the following. If yG is the universal abelian cover of a graph G with disjoint cycles,
and h is a generic operator on G, then the edges of the spectral bands for . yG; Oh/ all
arise from the symmetry points in Mh, that is, from the signings of h.

1.7. Probability current

An important ingredient in the proof of Theorem 1.3 is the probability current J.h;�/

(Definition 4.1), a real anti-symmetric matrix supported on G, which may be inter-
preted as a gauge invariant divergence-free vector field or as a harmonic 1-form. It
is defined for any h 2 H .G/ and every eigenvector of h and has a special structure.
It vanishes on every bridge3 and is constant on the edges of each simple separated
cycle. If the eigenvalue � is simple and the eigenvector is normalized, then �2J is the
derivative of �, cf. Proposition 4.2.

2. Recollections on graphs

2.1. As in §1, we consider a simple connected graph G on n ordered vertices num-
bered 1; 2; : : : ; n. We write Hn; �n;An for the Hermitian, real symmetric, and real
antisymmetric n � n matrices, and we write H .G/, �.G/, A.G/ for those matrices
supported on G. If .rs/ is an edge in G, write EŒrs� for the matrix that is zero except

3A bridge is an edge whose removal disconnects the graph.
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for EŒrs�rs D 1 and let AŒrs� D EŒrs� � EŒsr� be the corresponding antisymmetric
matrix.

2.2. The space C0.G;R/ of real valued 0-chains consists of (real) linear combinations
of vertices. It has a basis ¹erº (1 � r � n) with one basis vector per vertex. A 0-chain
a 2 C0.G;R/ is a formal linear combination of vertices,

a D

nX
rD1

arer :

Each edge .rs/ ofG has a natural orientation (C or �) which is the sign of s � r . The
space C1.GIR/ of 1-chains consists of formal (real) linear combinations of oriented
edges. It has a basis ¹e.rs/º with one element for each edge .rs/ with r < s. A typical
1-chain is a linear combination


 D
X
r�s
r<s


rse.rs/ with 
rs 2 R:

The boundary map, @WC1.G/! C0.G/ is defined by @e.rs/ D es � er .
We may consider the space of real antisymmetric matrices A.G/ to be the space

of (real valued) 1-forms �1.GIR/, dual to C1.G/ with respect to the bilinear pairingZ



˛´
X
r�s
r<s


rs˛rs

where 
 2 C1.GIR/ and ˛ 2 A.G/.
The space of real valued functions defined on the vertices of G is denoted

�0.G;R/ Š Rn

and it is naturally identified with the dual space of C0.G;R/. The differential

d W�0.G/! �1.G/

is

.d�/rs D

´
�.s/ � �.r/ if r � s;

0 otherwise.

If ˛ 2�.G;R/ is a 1-form, its divergence is d�˛ 2�0.G;R/ where d� is the adjoint
of d with respect to the natural inner products4 on �0.G/ and �1.G/, that is,

.d�˛/r D
X
s

˛rs:

4Given by h�; � 0i D
P
r �r�

0
r and h˛; ˛0i D

P
r<s ˛rs˛

0
rs for � 2 �0.G;R/ and ˛ 2

�1.G;R/.
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2.3. Stokes’ theorem
R


d� D

R
@

� implies that the integration pairing passes to a

non-singular dual pairing between the cohomology H 1.G;R/ D �1.G/=d�0.G/

and the homology H1.G;R/ D ker.@/. Consequently, given ˛ 2 A.G/, there exists
� 2 �0.G;R/ such that ˛ D d� if and only if

R


˛ D 0 for every cycle 
 .

2.4. Action of A.G/

The space An.R/ of real n � n antisymmetric matrices acts on the space Hn of Her-
mitian matrices by

.˛ � h/rs D e
i˛rshrs

with ˛0 � ˛ � h D .˛0 C ˛/ � h. Let An.2�Z/ be the set of antisymmetric matri-
ces whose entries are integer multiples of 2� . The action factors through the torus
An.R/=An.2�Z/ so that

T .G/ D ¹˛ 2 An.R/=An.2�Z/ W ˛rs ¤ 0 H) r � sº

acts on H .G/. The mapping

�WT .G/ � �.G/! H .G/

is a finite surjective covering. For each h 2 �.G/, the orbit

Th D T .G/ � h

is a torus of perturbations5 of h. The torus Th is preserved under complex conjugation
and the fixed points are the intersection Th \ �.G/, which consists of the signings
of h.

2.5. Gauge equivalence

If � D .�1; �2; : : : ; �n/ 2 �0.G;R/ Š Rn and h 2 H .G/ then

d� � h D ei�he�i�

is conjugate to h, where ei� D diag.ei�1 ; ei�2 ; : : : ; ei�n/. Therefore, �k.d� � h/ D
�k.h/. If V�.h/ D ker.h � �I/, then

V�.d� � h/ D e
i�V�.h/: (1)

5Referred to in [10] as the torus of “magnetic perturbations of h” because, for the
Schrödinger operator, these perturbations arise from the introduction of a magnetic field, cf. [4].
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We say the elements h and h0 D d� � h are gauge equivalent and differ by the gauge
transformation d� . Geometrically, equation (1) says that eigenvectors �; �0 of h and
h0 differ by changing the phases, �0r D ei�r�r . Since their eigenvalues �k; �0k are
equal, the eigenvalue passes to a well-defined function on the set of gauge-equivalence
classes of matrices.

We may formally define the gauge group G D .R=2�Z/n with action � ˘ h D
d� � h, whose orbits are gauge equivalence classes. The quotient of Th under gauge
equivalence is an abstract torus Mh D Th == G , of dimension ˇ, the manifold of mag-
netic perturbations modulo gauge transformations. We sometimes write Œh� 2Mh for
the gauge-equivalence class of h.

Equation (1) reflects an action of the gauge group on vectors � 2Cn with � ˘ � D
ei��.

2.6. The function ƒk and choice of basis for Tˇ

Fix a spanning tree in G. Its complement consists of a single edge in each simple
cycle. The elements ˛ 2 T .G/ that are supported on these edges form a torus Tˇ

that projects isomorphically to the quotient torus Mh. In other words, every element
˛ � h 2 Th is gauge equivalent to some ˛0 � h where ˛0 is supported on these chosen
edges. Thus, Tˇ is a “lift” to T .G/ of the manifold Mh, as in the following diagram.
The composition across the top row is denoted ƒk WTˇ ! R:

Tˇ T .G/ Th Hn R

Mh

 - !

 

!
�h

 !

 - !

 

!
�k

 

!

Š  

!

�k

3. Disjoint cycles

3.1. We say a graph G has disjoint cycles if distinct simple cycles do not share a
vertex, cf. §1.2. Thus, each edge in G is a bridge unless it is contained in a simple
cycle. Throughout this section, we fix a graph G with disjoint cycles and a matrix
h 2 �.G/. We also fix k 2 Œn�D ¹1;2; : : : ; nº and consider the eigenvalue function �k .

3.2. Combinatorics of Tˇ

Choose an ordering of the edges identified in §2.6 (with one edge in each simple
cycle). This gives a particular choice of identification

.S1/ˇ Š Tˇ �h
�!Mh: (2)
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Let e1; e2; : : : ; eˇ 2 Tˇ denote the image in Rˇ=.2�Z/ˇ of the standard basis6

vectors. Points " D
Pˇ
iD1 "iei 2 Tˇ with coordinates "i 2 ¹0; �º are called sym-

metry points. By abuse of notation, we write " 2 ¹0;�ºˇ . The corresponding matrices
h" D " � h are the signings of h modulo gauge equivalence.

There are 2ˇ symmetry points in Tˇ . They form the vertices of a (hyper-)cube

� �Mh

whose 1-skeleton consists of edges that connect a symmetry point " to a neighbor
"C �ej .mod 2�/ (where j 2 Œˇ�). A choice of eigenvalue �k determines a partial
ordering on the symmetry points,

" � "0 () �k." � h/ � �k."
0
� h/:

For " 2 ¹0; �ºˇ � Tˇ , let

J�."/ D J�."; k; h/ D ¹j 2 Œˇ� W �k.."C �ej / � h/ < �k." � h/º:

The set J�."/ identifies those neighbors "C �ej of " in the 1-skeleton for which the
eigenvalue �k.h"/ decreases.

3.3. Although the proof of our main result (Theorem 1.3) has many technical steps,
the ideas are relatively simple, requiring only the following two propositions whose
proofs appear in §7. Let G be a simple connected graph with disjoint cycles and
suppose h 2 �.G/ is generic in the sense of [GSC]. Fix k 2 Œn� and recall the notation
ƒk.˛/ D �k.˛ � h/ for ˛ 2 Tˇ .

Proposition 3.4. Each " 2 ¹0; �ºˇ is a non-degenerate critical point of the function
ƒk WT

ˇ ! R. Its Morse index is ind.ƒk/."/ D jJ�."/j. The Hessian of the function
ƒk is diagonal with respect to the decomposition (2).

Proposition 3.5. The mapping ¹0; �ºˇ ! P Œˇ� (the set of subsets of Œˇ�), given by
" 7! J�."/ is bijective. This implies that ¹0; �ºˇ becomes a Boolean lattice7 under
the above partial order.

3.6. Proof of Theorem 1.3

First, we consider the nodal distribution of ƒk."/ as " varies in ¹0; �ºˇ � Tˇ . By [4,
10, 16] the function ƒk has a non-degenerate critical point at each " 2 ¹0; �ºˇ and

6Each ej D AŒrj sj � D EŒrj sj � �EŒsj rj � is in fact a matrix in A.G/ defined modulo 2� ,
and corresponds to one of the particular edges identified in §2.6.

7The Boolean lattice on a finite set S is the partially ordered set P .S/ of subsets of S
ordered by inclusion.
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its Morse index equals the nodal surplus �.h; k/ at that point. By Proposition 3.4,
this means that the nodal surplus distribution coincides with the distribution of the
numbers jJ�."/j. Proposition 3.5 implies that the distribution of the numbers jJ�."/j,
and hence also the nodal surplus distribution for �k , is binomial as " varies in ¹0;�ºˇ .

Next, we consider the set of signings of h. The set ¹0; �ºˇ � h is the quotient of
the set of signings of h by the action of the gauge group, or more accurately, the action
by a certain subgroup of the gauge group. If � D ."1; "2; : : : ; "n/ 2 �0.GIR/ with
"i 2 ¹0; �º and if h0 2 A.G/ is a signing of h, then d� � h0 is another signing. The
set of such � form a group under addition modulo 2� . If h is properly supported onG
then this defines a free action of .Z=.2//n on the set of signings (cf. [4, §§2.6–2.7]).
Each symmetry point " 2 ¹0; �ºˇ � Tˇ corresponds to exactly the same number,
2n�ˇ of signings. Therefore, the binomial distribution on ¹0; �ºˇ becomes the same
binomial distribution on the set of signings.

4. Probability current and criticality

Throughout this section, we fix a simple connected graph G with n vertices and h 2
�.G / strictly supported on G.

Definition 4.1. Let ˛ 2 A.G/ and set h˛ D ˛ � h. Given an eigenvector � of h˛ ,
define the probability current J D J.h˛; �/ 2 A.G/ D �1.G;R/ by

Jrs D =..h˛/rs N�r�s/ D =.e
i˛rshrs N�r�s/:

We say that the eigenvector � satisfies the criticality condition at an edge .rs/ if
Jrs D 0.

We remark that the probability current is defined for any eigenvector whether or
not the eigenvalue is simple.

Proposition 4.2. The probability current J D J.h˛; �/ satisfies the following:

(1) J is gauge-invariant, namely J.d� � h˛; ei��/ D J.h˛; �/;

(2) J is divergence free, meaning that d�J D 0;

(3) Jrs D 0 for every bridge .rs/;

(4) J is constant along the edges of any simple cycle of G that is disjoint from all
others;

(5) if �.h˛/, the eigenvalue of �, is simple, then J is proportional to its derivative,

@�.h˛/

@˛rs
D

@ƒ

@˛rs
D �2k�k2Jrs:
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We remark, in particular, if the criticality condition holds on an edge of a disjoint
cycle, then it holds on all the edges of that cycle. The proof of Proposition 4.2 will
appear after a short review (§4.3) on derivatives of eigenvalues, which is used in the
proof.

4.3. Derivatives of eigenvalues

Recall that AŒrs� is the antisymmetric matrix with zero entries except for AŒrs�rs D 1
and AŒrs�sr D �1. Fix ˛ 2 A.G/, and consider the one-parameter family ˛.t/ D
˛ C tAŒrs� that goes through ˛ in the .rs/ direction. The t -dependence of ˛.t/ � h
occurs only in the .rs/ and .sr/ entries with

.˛.t/ � h/rs D e
itei˛rshrs D e

it .h˛/rs:

If �k.h˛/ is a simple eigenvalue, then t 7! �k.˛.t/ � h/ is an analytic function of t
around t D 0, and its derivative at t D 0 is the directional derivative of �k.˛ � h/.

If �k.h˛/ has a non-trivial multiplicity, then the function �k.˛.t/ � h/ may fail to
be differentiable. The theorem of Kato ([21, Theorem 1.8]) and Rellich ([24, Theo-
rem 1]) implies that it is possible to find analytic families of eigenvalues �k.t/ 2 R

and eigenvectors �k.t/, for all t 2 R, so that .˛.t/ � h/�k.t/ D �k.t/�k.t/. How-
ever, the curves �k.t/ may cross, when there are multiple eigenvalues, so the index
k does not necessarily correspond to the order of these eigenvalues. In other words,
as t varies, �k.˛.t/ � h/ jumps between various analytic branches �j .˛.t/ � h/. Let
us choose one such analytic family or “branch,” .�; �/, and drop the subscript k, and
define

ƒWTˇ
! R; ƒ.˛0/ D �.˛0 � h/:

Using Leibniz’ dot notation to denote derivative with respect to t , and differenti-
ating h.t/� D �.t/�.t/ gives

. Ph.t/ � P�.t//�.t/C .h.t/ � �.t// P�.t/ D 0 (3)

As in [11, Lemma 2.5] or [4, §5.2], taking the inner product with � where k�k D 1,
using that h is Hermitian, and evaluating at t D 0 gives the directional derivative of
the eigenvalue � along this branch:

@ƒ

@˛rs
.˛/ D P� D

d

dt
�.˛ C t .AŒrs�/ � h/

ˇ̌̌
tD0
D h�; Ph�i

D i. N�r�s.h˛/rs � N�s�r. Nh˛/rs/ D �2=..h˛/rs N�r�s/ (4)

where �r D �.r/ denotes the value of � on the vertex .r/.
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For later applications in equation (12), consider the case when @ƒ
@˛rs

.˛/ D 0. We
can differentiate (3) once again to obtain, as in [11, Lemma 2.6],

h�; Rh�i D �<..h˛/rs N�r�s/ D �..h˛/rs N�r�s/ (5)

and
@2ƒ

@˛2rs
D R� D h�; Rh�i C 2<.h�; Ph P�i/: (6)

4.4. Proof of Proposition 4.2

The gauge invariance, J.ei�h˛e�i� ; ei��/ D J.h˛; �/, is straightforward from the
definition. The divergence is

.d�J/r D
X
s

=. N�r.h˛/rs�s/ D =
�
N�r
X
s

.h˛/rs�s

�
D =. N�r��r/ D �=.j�r j

2/ D 0:

If removing an edge E D .rs/ separates the graph into two pieces, say GA and GB ,
let � 2 �0.G/ take the value 1 on GB and 0 on GA. Then d� is supported on E and

Jrs D hd�; Ji D h�; d
�Ji D 0:

Similarly, if E;E 0 are two edges in a simple cycle that is disjoint from all others, then
removing both separates the graph into two pieces. Taking � as above,

J.E/ � J.E 0/ D hd�; Ji D 0:

Part (5) is a restatement of equation (4).

Lemma 4.5 (Partial criticality). Let ˛ 2A.G/ and set h˛ D ˛ � h. Let � be an eigen-
vector of simple eigenvalue of h˛ and let J D J.h˛; �/ be the probability current.
Suppose there is a bridge that splits the graph G into GA and GB . If h˛ is real on the
GB �GB block, then J vanishes on that block:

h˛jGB 2 �.GB/ H) J jGB D 0:

Proof. Let .rs/ denote the bridge with s 2 GA and r 2 GB . By changing gauge and
scaling h˛ if needed, we can assume that .h˛/rs D 1. Let es and er be the corre-
sponding standard basis vectors. In the block decomposition to GA; GB , we write
h˛ D A˚ B C ere

�
s C ese

�
r .

Suppose the simple eigenvalue of interest is � D 0 (otherwise replace h˛ with
h˛ � �I ), and let � D .�A; �B/ denote its normalized eigenvector. We need to show
that if B is real, then �B is (proportional to) a real vector, in which case J jGB D 0.
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If �A D 0, then �B 2 ker.B/ and we are done. So, assume �A ¤ 0. By Proposi-
tion 4.2 (3), we know that ImŒ.h˛/rs N�r�s� D ImŒ N�r�s� D 0. By scaling � if needed,
we can therefore assume that �.r/ and �.s/ are real.

We will now show that �0 ´ .�A; N�B/ is also in ker.h˛/. Since the kernel is
one-dimensional and �A ¤ 0, this will mean that �0 D � so �B D N�B . Calculate

h˛� D .A�A C �.r/es; B�B C �.s/er/ D .0; 0/:

But �.r/ D �0.r/; �.s/ D �0.s/, so

h˛�
0
D.A˚ B C ere

�
s C ese

�
r /�
0

D.A�A C �.r/es; B N�B C �.s/er/

D.0; B N�B C �.s/er/:

Since B and �.s/ are real, B N�B C �.s/er D .B�B C �.s/er/ D 0.

We now return to the special case of G that has disjoint cycles. Recall that each
" 2 ¹0; �ºˇ is a non-degenerate critical point of ƒk WTˇ ! R.

Corollary 4.6. Suppose G has disjoint cycles and h 2 �.G/ satisfies [GSC]. Then
for each k, the Hessian ofƒk at any " 2 ¹0;�ºˇ � Tˇ is diagonal with respect to the
basis of Tˇ that was chosen in §2.6.

Proof. Fix k and ". We work in the previously chosen (§2.6) basis of T"Tˇ Š Rˇ

given by the choice of a single edge per cycle of G, say .rj ; sj / 2 
j . We will show
that

@2ƒk

@˛r1s1@˛r2s2
."/ D 0: (7)

(All other off-diagonal terms vanish for the same reason.)
Since the cycles are disjoint, there exists a bridge that separates the graph into

two parts, GA; GB with 
1 � GA and 
2 � GB . Let ˛.t/ D " C tAŒr1; s1� and let
ht D ˛.t/ � h. The matrix ht is real except for the .r1; s1/ and .s1; r1/ entries so we
may apply Lemma 4.5 and Proposition 4.2 (5) to conclude that

@ƒk

@˛r2;s2
.˛.t// D 0

for all t around 0. Differentiating with respect to t at t D 0 gives equation (7).
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5. Monotonicity

Lemma 5.1 (Monotonicity). Suppose G has a cycle 
 disjoint from all others and
let h 2 �.G/ that satisfies [GSC]. Consider any one-parameter family ht D ˛t � h
with ˛t supported on 
 and

R


˛t D t for all t 2 Œ0; ��. Then, t 7! �k.ht / is strictly

monotone in t 2 Œ0; �� for all k 2 Œn�.

We remark that, up to gauge equivalence, we may suppose that ˛ is supported on a
single edge of 
 . This means the family ht traverses a single segment in the 1-skeleton
of the hypercube � �Mh from §3.2. The monotonicity lemma only applies to these
special paths. The rest of §5 is devoted to the proof Lemma 5.1, which appears finally
in §5.4.

Lemma 5.2 (Flat band criteria). SupposeG has a cycle 
 disjoint from all others, and
.12/ is an edge in 
 . Let h 2 �.G/ and consider a one-parameter family ht D ˛t � h
where ˛t 2 A.G/ satisfies ˛t D ˛0 outside of 
 and

R


˛t D t for all t 2 Œ0; ��.

Suppose there exists t0 2 .0; �/, and an eigenvector � of ht0 with eigenvalue �, such
that J.ht0 ; �/12 D 0. Then � is a common eigenvalue of all ht with t 2 Œ0; ��.

Proof. Without loss of generality, assume that � D 0, so that ht0� D 0. We need to
provide a family of vectors �t such that ht�t D 0 for all t . We will show that J12 D 0

implies that

(i) either there is an edge .rs/ in 
 such that �.r/ D 0 and �.s/ D 0,

(ii) or there is a vertex r in 
 such that �.r/ D 0 and deg.r/ � 3.

We will also show that each of these conditions is sufficient for constructing �t such
that ht�t D 0 for all t . To ease notation, let ˛ D ˛t0 . To avoid triple subscripts, write
˛.rs/ for ˛rs .

First, we show that (i) is sufficient. Let .rs/ be an edge in 
 such that �.r/ D
�.s/ D 0. Up to gauge equivalence, we may assume that ˛t D ˛ on G n 
 , that
˛t .rs/D t , and that ˛t vanishes on all the other edges in 
 . Then ht� D ht0� D 0 for
all t so we may take �t D �. Next, we show, using J12 D 0, that if (i) fails, then (ii)
must hold. Assume (i) fails, namely,

(A) for every edge .rs/ in 
 , �.r/ and �.s/ are not both zero.

By Proposition 4.2, J D J.ht0;�/ is gauge invariant and constant on 
 , so we have
Jrs D J12 D 0 for every edge .rs/ in 
 . To prove that (ii) holds, up to change of
gauge, we may assume that � is real, cf. equation (1). In this case,

Jrs D �.r/�.s/hrs sin.˛.rs// D 0 for any .rs/ 2 
 ,
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so ˛.rs/ D 0 .mod�/ when �.r/�.s/ ¤ 0, and so (A) givesX
�.r/D0

˛.sr/C ˛.rt/ D

Z



˛t0 D t0 ¤ 0 .mod�/; (8)

where s < r < t denote the neighbors of r . Now, suppose r is a vertex in 
 of degree
2 with �.r/ D 0. Let s < r < t be the two vertices attached to r . Then �.s/ ¤ 0 and
�.t/ ¤ 0 by (A) so .ht0�/r D 0 reads

�.s/hsre
i˛.sr/

C 0C �.t/hrte
i˛.rt/

D 0

which implies
˛.sr/C ˛.rt/ D 0 .mod�/

whenever deg.r/ D 2 and �.r/ D 0. Adding over all vertices r of degree 2 such that
�.r/ D 0 gives X

�.r/D0
deg.r/D2

˛.sr/C ˛.rt/ D 0 .mod�/ (9)

where, as before, s < r < t denote the neighbors of r . The terms in this sum are
disjoint by (A). Since the sums in (9) and (8) are not equal, then there must be a
vertex r 2 
 with deg.r/ ¤ 2 and �.r/ D 0, so (ii) holds.

Finally, assuming (ii), we construct �t . Without loss of generality, we may sup-
pose that we have consecutive vertices 1 < 2 < 3 in 
 with �.2/ D 0; deg.2/ � 3. Up
to gauge equivalence, we may assume that .˛t /12 D t , .˛t /rs D 0 for all other edges
.rs/ in 
 , and ˛t D ˛ on G n 
 .

Let H denote the union of connected components of G n 
 that are connected to
vertex 2 in G. We will show there exists c.t/ 2 C with c.t0/D 1 so that the vector �t
defined by

.�t /r D

´
c.t/�r for r 2 H;

�r for r … H;

satisfies ht�t D 0 for all t . By our assumption on G, the only vertex in G nH with a
neighbor in H is the vertex 2 on which �.2/ D 0. Therefore, for any t and any edge
.r; s/,

.ht /rs�t .s/ D

´
.ht0/rs�.s/ for r 2 H; r ¤ 2;

C.t/.ht0/rs�.s/ for r 2 G nH;

from which we conclude that .ht�t /r / .ht0�/r D 0 for all r ¤ 2. To understand the
situation at vertex 2, let

F2.˛; �/ D
X
r2H
r�2

h2re
i˛.2r/�.r/:
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Then F2.˛t ; �t / D c.t/F2.˛; �/ and at vertex 2 we have

.ht0�/2 D �.1/h12e
ito C �.3/h23 C F2.˛; �/ D 0:

Therefore,
�F2.˛; �/ D �.1/h12e

ito C �.3/h23 ¤ 0;

since eito is not real. The eigenvalue equation at vertex 2 becomes

.ht�t /2 D �.1/h12e
it
C �.3/h23 C F2.˛t ; �c/

D �.1/h12e
it
C �.3/h23 C c.t/F2.˛; �/:

It is left to choose c.t/ so that .ht�t /2 D 0, namely

c.t/ D �
�.1/h12e

it C �.3/h23

F2.˛; �/
D
�.1/h12e

it C �.3/h23

�.1/h12eit0 C �.3/h23
:

Lemma 5.3. In the setting of Lemma 5.1, if .rs/ is an edge in 
 and � is a normalized
eigenvector of ht , for some t 2 .0; �/, then J D J.ht ; �/ has Jrs ¤ 0.

In particular, if � and �0 are eigenvectors of the same eigenvalue of ht , then
J.ht ; �/rs and J.ht ; �0/rs share the same sign.

Proof. Since h satisfies [GSC], then each of the eigenvalues has ƒk.˛/ D �k.˛ � h/
has a non-degenerate critical point at ˛ D 0, namely at h D h0, whose Hessian is
diagonal by Corollary 4.6. In particular, for any k 2 Œn�, ƒk.˛t / D �k.ht / is not
constant around t D 0. This means that Jrs ¤ 0 for any normalized eigenvector of any
ht with t 2 .0;�/, otherwise we would get a “flat band,” namely a constant eigenvalue
�k.ht / � � for all t around t D 0 by Lemma 5.2. This concludes the first part.

Now, let V D ker.ht ��k.ht // be some eigenspace of some ht with t 2 .0;�/, and
assume dim.V / � 2. Then the map � 7! J.ht ; �/ is a continuous map from V n ¹0º

(which is connected) to R n ¹0º so its image must lie either in R>0 or in R<0.

5.4. Proof of Lemma 5.1

The statement is gauge invariant, so we may fix the gauge such that ˛ is supported on
a single edge, say, .12/. By Kato [21, Theorem 1.8] or Rellich [24, Theorem 1], or
Wimmer [25], since this is a one-parameter analytic family of Hermitian matrices, the
ordered eigenvalues .�1 � � � � � �n/ and eigenvectors .�1; : : : ; �n/ of h extend analyt-
ically to eigenvalues and normalized eigenvectors .�k.t/; �k.t//nkD1 of ht , although
a priori their order may not be preserved. The derivative

P�k.t/ D
d

dt
�k.t/ D h�k.t/; Pht�k.t/i D �2J.ht ; �k.t//12 (10)
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was calculated in (4). Since J.ht ; �k.t//12 ¤ 0 for all k and all t 2 .0; �/ by
Lemma 5.3, then each �k.t/ is strictly monotone in t 2 Œ0; ��. If all eigenvalues are
simple, this proves that �k.ht / D �k.t/ is monotone for t 2 Œ0; ��.

If the eigenvalue has a non-trivial multiplicity, say �k.t/D �k0.t/, then it suffices
to know that the derivatives �2J.ht ; �k.t//12 and �2J.ht ; �0k.t//12 have the same
signs. The second part of Lemma 5.3 ensures this is the case.

5.5. Remark

Lemma 5.3 and equation (10) mean that the restriction of the Hermitian form Pht to
the eigenspace of ht is sign-definite, which is exactly the condition of [12] for a point
of multiplicity to be topologically regular (the BZ condition), see Appendix B.

6. Genericity

6.1. The purpose of this section is to show that the conditions [GSC] of §1.2 are
indeed generic. The first (surprisingly tricky) step is to prove the existence of [GSC]
matrices on a tree.

Lemma 6.2. If a graph G of n vertices is a connected tree, there exists a strictly
supported matrix h 2 �.G/ with simple spectrum and non-vanishing eigenvectors.

Proof. For n D 2 take h D
�
0 1
1 0

�
. Now, assume the lemma holds for graphs with

� n � 1 vertices. Consider a connected graph G with n vertices. Without loss of
generality, we may assume that vertex ¹nº is a leaf and that .n� 1;n/ is an edge ofG.
Let G0 be the tree obtained by removing vertex n from G. By induction, there exists
A 2 �.G0/ that is strictly supported, with simple eigenvalues �1.A/; : : : ; �n�1.A/ and
non-vanishing eigenvectors 1; : : : ; n�1. By changingA 7!A� cIn�1 and choosing
c to avoid8 finitely many values, we may assume that �j < 0 for all j , and that

u D A�1en�1 D

n�1X
jD1

��1j h j ; en�1i j ;

is nowhere vanishing on G0, where en�1 2 Rn�1 is the standard unit vector. Define
the analytic one-parameter family with t 2 R,

ht D

�
A t en�1

t eTn�1 0

�
2 �.G/:

8For each s, with 1 � s � n � 1, c ¤ �s and c is not a root of the non-zero polynomial
c 7!

Pn�1
jD1  j .s/h j ; en�1i

Q
t¤j .�t � c/.
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The eigenvalues of h0 are simple and are equal to �j .h0/ D �j .A/ for j � n � 1
and �n.h0/ D 0, with eigenvectors

�
 1
0

�
; : : : ;

�
 n�1
0

�
and en. By the Kato–Rellich

theorem ([21,24,25]), these extend analytically to eigenvalues and eigenvectors of ht .
For sufficiently small t > 0, the spectrum will remain simple, and the first n � 1
eigenvectors of ht will remain non-zero on the vertices of G0. All eigenvectors of ht
are non-zero on the last vertex, ¹nº, since G is a tree, the spectrum is simple, and the
vertex ¹nº is not of degree two [18, Corollary 2.7]. The n-th eigenvector of ht has the
form

v D en C tv
0
CO.t2/:

We claim v0 D �. u0 / (so does not vanish on any vertices of G0). In fact,

ht .en C tv
0/ D ht

�
�tA�1en�1

1

�
D

�
0

t2.A�1/n�1;n�1

�
D O.t2/:

Proposition 6.3. Let G D G.Œn�; E/ be a finite simple connected graph. The set of
matrices

O D ¹h 2 �.G/ W h satisfies [GSC]º

is open and dense in �.G/. Its complement is contained in a closed semi-algebraic9

subset of �.G/ of codimension � 1.

Proof. When eigenvalues are simple, the eigenvalues and eigenvectors vary contin-
uously with the matrix, so the set of matrices satisfying [GSC] is open. If a matrix
h0 2 �.G/ fails to satisfy [GSC] then there is a signing "2 ¹0;�ºE for which hD "� h0

lies in at least one of the following sets:

(i) the set of matrices in �.G/ that are not strictly supported on G, that is,
hij D 0 for some .ij / 2 E,

(ii) the set of matrices in �.G/ that have a multiple eigenvalue,

discriminant.h/ D 0;

or

(iii) the set of matrices in �.G/ that have a simple eigenvalue with an eigenvec-
tor that vanishes at some vertex.

The sets (i) and (ii) are zero sets of polynomials that are not the zero polynomial10

on �.G/, so these are algebraic subsets of �.G/ with positive codimension in �.G/.

9A semi-algebraic subset of a real vector space is a finite Boolean combination of sets
defined by polynomial equalities f .x/ D 0 and inequalities f .x/ < 0.

10To see that discriminant.h/ ¤ 0 for some h 2 �.G/, take h D diag.1; 2; : : : ; n/.
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Since the class of semi-algebraic subsets is preserved by any change of signing, it
suffices to show that the set (iii) is semi-algebraic with positive codimension in �.G/.

Recall (see for example, [20, §0.8.2]) that if � is a simple eigenvalue of h with
eigenvector v, then the adjugate is defined as

A´ adj.h � �:I / D cvv�

where c 2 C is non-zero. If v does not vanish at any vertex, then Aij D cviv�j ¤ 0
for all .i; j /. This gives a collection of algebraic subsets Z0ij � �.G/ �R,

Z0ij D ¹.h; �/ 2 �.G/ �R W det.h � �:I / D 0 and .adj.h � �:I //ij D 0º:

For a given h, only finitely many � occur, so this is an algebraic subset of �.G/ �R

and its projection Zij to �.G/ is semi-algebraic by the Tarski–Seidenberg theorem.
We claim that the union

Z´
[
i;j

Zij � �.G/

has codimension � 1. This will complete the proof of the theorem, for if an element
h 2 �.G/ does not lie in this union, and if it has simple eigenvalues, then the corre-
sponding eigenvectors do not vanish on any vertex.

Let h 2 Z. Choose a spanning tree in G and apply Lemma 6.2 to find a matrix
B 2 �.G/ with simple eigenvalues and nowhere vanishing eigenvectors. Consider the
family ht D .1 � t /hC tB where t 2 R. We claim, for sufficiently small t > 0, that
ht also has simple eigenvalues and nowhere vanishing eigenvectors. This will prove
that Z does not contain an open neighborhood of h so its codimension at h is � 1.

According to the theorem of Kato and Rellich [21, 24, 25], it is possible to find
eigenvalues �i .t/ and eigenvectors  i .t/ (1 � i � n) of ht D .1 � t /h C tB that
vary analytically with t 2 R. Therefore, the numbers �i .t/ � �j .t/ vary analytically
with t and the values of  i .t/ on each vertex also vary analytically. For t D 1, the
eigenvalues of ht are distinct and the eigenvectors are nowhere vanishing.

It follows that there is a discrete set of values t 2 R for which ht has a multiple
eigenvalue and there is a discrete set of values t 2 R such that ht has an eigenvector
that vanishes at one or more vertices. Consequently, for t > 0 sufficiently small (so as
to miss these discrete sets), the matrix ht will have distinct eigenvalues and nowhere
vanishing eigenvectors, as claimed.

6.4. Let G be a finite graph. Let B denote the set of matrices h 2 �.G/ that satisfy

(z) any two gauge-inequivalent signings " � h; "0 � h have distinct eigenvalues.

Lemma 6.5. The set B is open and dense in �.G/ and its complement is contained
in an algebraic subset of codimension � 1.
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Proof. We may assume that G is connected. If G is a tree and h 2 �.G/, then every
signing of h is gauge equivalence to h so we may assume ˇ.G/ � 1. First, consider
the case that ˇ.G/ D 1 so that G contains a unique cycle. Fix an edge .rs/ in this
cycle. For any h 2 �.G/, there is only one gauge-equivalence class of signings " � h
of h and it corresponds to changing the sign of hrs (and of hsr ).

Let Q".h/ denote the discriminant of the 2n � 2n matrix .h/ ˚ ." � h/. The
set Q�1" .0/ is an algebraic subset of �.G/ which contains the complement of B.
If Q�1" .0/ contains an open subset of �.G/, then it is all of �.G/; otherwise it has
codimension � 1. We will assume that Q".h/ D 0 for all h 2 �.G/ and arrive at a
contradiction.

In this one-dimensional case, the hypercube of §3.2 is just an interval whose end-
points are h and " � h. Let V D diag.1; 2; : : : ; n/. Let � 2 �.G/ (strictly supported
on G) sufficiently small such that h´ V C � 2 O and " � h 2 O (such � exists by
Proposition 6.3). The eigenvalues of h are distinct; the eigenvalues of "� h are distinct.
Therefore, ifQ".h/D 0, then h and "� h share an eigenvalue, say, �k.h/D�k0."� h/.
If � is sufficiently small, the eigenvalues of h and of " � h are small perturbations of
the eigenvalues of V , which are distinct integers, hence k D k0. But this contradicts
the monotonicity Lemma 5.1.

We conclude that for any graph G with ˇ.G/D 1, the functionQ" vanishes iden-
tically on �.G/. Now, consider the case of a general graph ˇ.G/ � 1. For a general
signing "; "0 2 ¹0; �ºˇ , set

Q";"0.h/ D discr.." � h/˚ ."0 � h//:

The complement of B is contained in the algebraic set

Z´
[

";"02¹0;�ºˇ

"¤"0

Q�1";"0.0/ D
� Y
";"02¹0;�ºˇ

"¤"0

Q";"0
��1

.0/:

The setZ is a finite union of sets of the formQ�1" .0/. To see that each of these sets has
codimension � 1, suppose otherwise. Then there exists a signing " so thatQ".h/D 0

for all h 2 �.G/.
Choose a spanning tree inG. Label the edges e1; e2; : : : ; eˇ in the complement and

express "D
P
"iei as in §2.6 and §3.2. Arrange the labeling so that "1¤ 0. The graph

G0 obtained fromG by removing the edges e2; e3; : : : ; eˇ has ˇ.G0/D 1. The signing
" of G becomes a signing � D "1 on G0, that is, a change of sign on the remaining
edge e1. Moreover, any h0 2 �.G0/ can be obtained as a limit of h 2 �.G/ by allowing
hrs ! 0 where .rs/ varies over the edges e2; e3; : : : ; eˇ . SinceQ".h/ is a continuous
function of h, it vanishes on this limiting value, h0. This proves that Q�.h0/ D 0 for
all h0 2 �.G0/ which contradicts the conclusion from the first paragraph.
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7. Proofs of Propositions 3.4 and 3.5

7.1. Proof of Proposition 3.4

Recall from §3.6 that G is a simple connected graph with disjoint cycles, h 2 �.G/ is
generic in the sense of [GSC], and ƒk WTˇ ! R is ƒk.˛/ D �k.˛ � h/.

It was shown in [4,10,16] that each " 2 ¹0;�ºˇ � Tˇ is a non-degenerate critical
point ofƒk and its Morse index equals the nodal surplus. In Corollary 4.6 it is shown
that the Hessian of ƒk is diagonal with respect to the decomposition (2). Therefore,
the Morse index at " 2 ¹0; �ºˇ is the number of segments in the 1-skeleton of the
Boolean lattice that start at ˛ and descend. By the monotonicity Lemma 5.1, this is
the same as the number of segments whose endpoints have a lower eigenvalue, which
is jJ�.˛/j.

7.2. A main tool that we will use in proving Proposition 3.5 is the local-global theo-
rem of [11], which can be stated in a simplified manner as follows.

Theorem 7.3 ([11, Theorem 3.10]). Suppose G is a simple, connected graph and
h 2 �.G/ has a simple eigenvalue �k.h/ with a nowhere-vanishing eigenvector. Let
J � Œˇ�, let TJ �Tˇ be the subtorus spanned by ¹ej ºj2J , and consider the restriction
ofƒk to the subtorus TJ (withƒk.˛/D �k.˛ � h/ as before). Then, ˛ D 0 is a local
minimum (resp. maximum) of ƒk on TJ if and only if it is a global minimum (resp.
maximum) on TJ .

The statements in [11] involve a different but equivalent graph model, and apply in
a situation of greater generality, where the eigenvector is permitted to vanish at various
vertices. We therefore provide the proof for Theorem 7.3, adapted to our situation, in
Appendix A. Theorem 7.3 together with the monotonicity lemma gives the following.

Corollary 7.4. Fix h 2 �.G/. Fix " 2 ¹0;�ºˇ and write h" D " � h. Let T�."/ denote
the sub-torus of Tˇ that is spanned by those basis elements ej for j 2 J�."/ and
similarly for TC."/. Then,

�k.˛ � h"/ � �k.h"/ for any ˛ 2 T�."/

�k.˛ � h"/ � �k.h"/ for any ˛ 2 TC."/:

7.5. Proof of Proposition 3.5

SupposeG is simple, connected, and has disjoint cycles, and suppose that h is generic
in the sense of [GSC]. Let "; "0 2 ¹0; �ºˇ . We need to show that

JC."/ D JC."
0/ () " D "0:
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The definition of J˙."/ implicitly requires a choice of k 2 Œn� and h 2 �.G/ so to
be explicit we temporarily denote it J˙."; k; h/. For fixed "; k, this set is constant
(in h) on connected components of the open set O of h 2 �.G/ which satisfy condi-
tion [GSC], because the eigenvalues �k.h/; �k." � h/ vary continuously with h. As a
result, it is enough to prove the statement for h 2B \O as this is set is dense in O by
Lemma 6.5. Recall that h 2 B \O if and only if it satisfies [GSC] and condition (z)
which we repeat here:

(z) for each k 2 Œn�, the eigenvalue �k takes distinct values on distinct gauge-
equivalence classes of signings of h.

Thus, we may assume that h satisfies [GSC] and (z). Given "; "0 2 ¹0; �ºˇ , suppose
JC."/D JC."

0/. Assume for the sake of contradiction that "¤ "0 soƒk."/¤ƒk."0/.
Assume that ƒk."/ < ƒk."

0/ and let us show that there is "00 such that ƒk."/ >
ƒk."

00/ > ƒk."
0/ which provides the needed contradiction. Since JC."/ D JC."

0/,
then the intersection TC."0/\T�."/ contains a signing, call it "00. Then, Corollary 7.4
implies ƒk."00/ > ƒk."0/ because "00 2 TC."0/. However, ƒk."00/ < ƒk."/ because
"00 2 T�."/.

A. Proof of Theorem 7.3

A.1. We follow the proof in [11] but reorder the steps. Theorem 7.3 begins with a real
symmetric matrix h 2 �.G/. Recall that the choice of edge .rj ; sj / 2 
j determines
a basis e1; e2; : : : ; eˇ of Tˇ D Rˇ=.2�iZ/ˇ . The subset J � Œˇ� determines the
subtorus TJ � Tˇ which is spanned by the coordinates ej for j 2 J . We therefore
have an analytic family of magnetic perturbations, h˛ D ˛ � h for ˛ 2 TJ , and an
eigenvalue function ƒk WTJ ! R defined by ƒk.˛/´ �k.h˛/. Since � D �k.h/ is
a simple eigenvalue, the function ƒk is analytic near ˛ D 0 and is piecewise analytic
on all of TJ . We may choose the corresponding eigenvector � of h to be real. By
assumption, it is nowhere vanishing.

The point ˛ D 0 is a critical point of ƒk . Assume it is a local minimum. Theo-
rem 7.3 states that it is also a global minimum. (The case of a maximum can be proven
analogously.) So we need to show

� � �k.h˛/ for all ˛ 2 TJ : (11)

A.2. The proof in [11] involves several auxiliary matrices. Holding � constant, the
function h�; h˛�iWTJ ! R has a critical point at ˛ D 0 (cf. equation (4)) and we set

� D
1

2
Hess.h�; h˛�i/

ˇ̌̌
˛D0

:
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The matrix � is a real diagonal jJ j � jJ j matrix. It is diagonal since each entry of h˛
depends on at most one j̨ coordinate, so @2h˛

@˛i@ j̨
D 0 for i ¤ j . It is real and invertible

since its diagonal entries are

�jj D �hrj sj �.rj /�.sj / ¤ 0 (12)

as calculated in (5). (Recall that both h and � are real, and � is nowhere-vanishing.)
For each j 2 J , let Rj .t/ be the hermitian n � n matrix supported on the block

Œrj rj ; rj sj I sj rj ; sj sj �

on which it is given by

Rj .t/ D hrj sj

 
�
�.sj /

�.rj /
eit

e�it �
�.rj /

�.sj /

!
:

To ease notation, let us assume that J D¹1;2; : : : ; jJ jº. Writing ˛D .˛1;˛2; : : : ;˛J /2
TJ , the sum X

j2J

Rj . j̨ /

is a family of Hermitian n � n matrices depending on ˛ 2 TJ .
Define the real symmetric n � n (constant) matrix S by

S D h �
X
j2J

Rj .0/:

This collection of matrices satisfies the following properties:

(a) for any ˛ D .˛1; ˛2; : : : ; ˛jJ j/ 2 TJ ,

h˛ D ˛ � h D S C
X
j2J

Rj . j̨ /I

(b) for any j ¤ j 0, Rj .t/ and Rj 0.t 0/ commute for all t; t 0;

(c) Rj .0/� D 0 for every j 2 J , and hence S� D ��;

(d) det.Rj .t// D 0 so Rj .t/ has rank one;

(e) the semi-definite sign ofRj .t/ is independent of t since trace.Rj .t//D 2�jj .

(See equation (12).) Let

m D j¹j 2 J W �hri si�.ri /�.si / < 0ºj D ind.�/

be the number of negative semi-definiteRj ’s. Then the sum of these commuting rank-
one matrices has m negative eigenvalues and n � jJ j > 0 zero eigenvalues (recalling
that jJ j � ˇ < n by the assumption of disjoint cycles), so

�mC1

�X
j2J

Rj . j̨ /
�
D 0 for all ˛ 2 TJ :
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The Weyl inequalities for h˛ D S C
PjJ j
iD1Rj . j̨ / may be expressed as follows:

�p.S/C �q.†Rj /� �k.S C†Rj /� �s.S/C �r.†Rj /

.p C q � k C 1/ .k C n � r C s/:

Only the first inequality is required for the case of a local minimum. Taking qDmC 1
gives

�k�m.S/ � �k.h˛/ for all ˛ 2 TJ :

By (11), the proof of Theorem 7.3 now comes down to the following statement.

Lemma A.3. If ˛ D 0 is a local minimum of ƒk.˛/ then �k�m.S/ D �k.h/ D �.

The proof involves the next few paragraphs.

A.4. Holding � constant gives a mapping ih˛�WTJ ! Cn. Define B to be its deriva-
tive B D iD.h˛�/j˛D0. It is a real n � jJ j matrix with

Bvj D
@

@ j̨

.h˛�/v

ˇ̌̌
˛D0
D

8̂̂<̂
:̂
�hrj sj �.rj / if v D sj ;

hsj rj �.sj / if v D rj ;

0 otherwise.

A direct but messy calculation involving double subscripts as in [11, Lemma 2.7]
gives X

j2J

Rj .0/ D B�
�1BT ;

and, therefore,
S D h � B��1BT :

A.5. A primary insight in [11] is the identification of the generalized Schur comple-
ments in the real symmetric .nC jJ j/ � .nC jJ j/ matrix

M D

�
h � � B

BT �

�
: (13)

These complements are defined to be

M=.h � �/ D � � BT .h � �/CB;

M=� D .h � �/ � B��1BT D S � �;

where “C” denotes the Moore–Penrose pseudo-inverse.11

11The Moore–Penrose pseudo-inverse of a real symmetric matrix A is zero on .Im.A//? and
is the inverse of the isomorphism .ker.A//? ! Im.A/.
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Proposition A.6 ([11, Lemma 2.3]). The Schur complement to h � � may be identi-
fied,

M=.h � �/ D
1

2
Hess.ƒk.0//:

Proof. The proof in [11] requires [21, Remark II.2.2, p. 81] but it is actually ele-
mentary and we provide it here for completeness. The Lemma is equivalent to the
statement that

1

2
h�;Hess.ƒk.0//�i D h�;��i � hB�; .h � �/CB�i for all � 2 T0TJ

D RJ :

To calculate h�;Hess.ƒk.0/�/i, choose an analytic one parameter family ˛t with
�D P̨ .0/ and write ht D ˛t � hwith simple eigenvalueƒk.˛t / and normalized eigen-
vector �t (so that � D �0). From (3) and (6), the second derivative is

h�;Hess.ƒk.0/�/i D
d2

dt2
ƒk.˛t /

ˇ̌̌
tD0
D
d2

dt2
.h�t ; ht�t i/

ˇ̌̌
tD0

D h�; Rh�i C 2<Œh�; Ph P�i�jtD0;

where
Ph D

d

dt
ht

ˇ̌̌
tD0
; P� D

d

dt
�t

ˇ̌̌
tD0
;

and Rh D Rht jtD0 (This is the formula from [21] that is referenced in [11].) The first
term agrees with the first term in 2h�; .M=h � �/�i:

1

2
h�; Rh�i D

1

2

d2

dt2
h�; ht�i

ˇ̌̌
tD0
D h�;��i:

The t -derivative of iht� (keeping � fixed) is

B� D i@�.h˛�/ D i Ph�

So, we need to compare

�h�;B�.h � �/CB�i D �h Ph�; .h � �/C Ph�i

with h�; Ph P�i D h Ph�; P�i. From (3),

P� C .h � �/C Ph� D c�

for some constant c, because � spans the (one-dimensional) kernel of h � �. Taking
the inner product with Ph� and using (4) with P� D 0 gives

h Ph�; P�i C h Ph�; .h � �/C Ph�i D 0

as claimed.
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A.7. Proof of Lemma A.3

The Hainsworth theorem for the matrix M in (13) gives,

ind.M/ D ind.M=.h � �//C ind.h � �/ D ind.M=�/C ind.�/;

which yields
ind.S � �/ D ind.M=.h � �//C k � 1 �m:

Since ˛ D 0 is a local minimum of ƒk , Proposition A.6 gives

ind.M=.h � �// D 0:

Property (c) of the matrices Rj .t/ implies � is an eigenvalue of S . Therefore,

�k�m.S � �/ D 0:

B. The BZ condition

The argument in Lemma 5.3 concerning eigenvalues with non-trivial multiplicity is
essentially the same as that of [12, Theorem 1.5], which we state here for complete-
ness because it is an important observation about singular critical points that may
appear. We are interested in the Morse theory of the composition ƒk WTˇ ! R,

Tˇ
! H .G/

�k
�! R:

Fix ˛ 2 Tˇ and suppose that �k.˛ � h/ is an eigenvalue of multiplicity m � ˇ.
Let V denote the m-dimensional eigenspace. Consider the set of all Hermitian forms
on V that are given by D

�;
d

dt
Œ.˛ C tv/ � h��

E
for �; � 2 V; (14)

as v varies within T˛Tˇ . According to [12, Theorem 1.5], if there exists v 2 T˛Tˇ

such that the form (14) is positive definite (which we refer to as the BZ condition),
then the point ˛ 2 Tˇ is topologically regular, meaning that for sufficiently small
ı > 0 the set Tˇ

���ı
is a strong deformation retract of Tˇ

��Cı
. (Here, Tˇ

�t D ¹˛
0 2

Tˇ W ƒk.˛
0/ � tº and � D ƒk.˛/.)
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