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Nodal count for a random signing
of a graph with disjoint cycles

Lior Alon and Mark Goresky

Abstract. A recent conjecture, inspired by quantum chaos and the Bogomolny—Schmit conjec-
ture, suggests that the nodal count of operators on signed graphs exhibits a universal Gaussian-
like behavior. We establish this result for the family of graphs composed of disjoint cycles,
which serves as a natural starting point by analogy with quantum graphs. Let G be a simple,
connected graph with disjoint cycles, and let & be a real symmetric matrix supported on G
(e.g., a discrete Schrodinger operator) that satisfies a certain generic condition. The nodal count
v(h, k) is defined as the number of edges (i, j) where the k-th eigenvector ¢ changes sign with
respect to &, i.e., hjj¢;¢; > 0. We consider the distribution of nodal counts v(k’, k) over ran-
dom signings h’ of h, obtained by changing the sign of some off-diagonal elements.We prove,
for each k that o' (h’,k) = v(h’, k) — (k — 1) has a binomial distribution Bin(g, 5 ), where f is
the first Betti number of G. Consequently, the conjecture is validated for graphs with disjoint
cycles.

1. Introduction

A celebrated theorem of R. Courant [17] states that the k-th eigenfunction for the
Dirichlet Laplacian in a planar domain has at most k£ nodal domains. Over the years,
considerable progress has been made in refining, generalizing and applying this result
to related questions. U. Smilansky, S. Gnutzmann, and G. Blum [14] proposed that
nodal count statistics should predict quatum chaos. They found numerical evidence
that the fluctuations of the nodal count, for a chaotic planar domain, obey a universal
Gaussian law, a statement that is now known as the Bogomolni—Schmit conjecture
[8, 15]. Various models (e.g., percolation) and special cases (e.g. tori and spheres)
have been studied but the general conjecture remains wide open.

A more approachable model may be the 1-dimensional case: a quantum graph.
A finite quantum graph G with edge lengths £ has infinitely many eigenvalues which,
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for large graphs with incommensurate edge lengths, exhibit the spectral properties of
a chaotic system. The k-th eigenfunction has k — 1 + o (k) zeroes, where the nodal
surplus o (k) is known [9] to be uniformly bounded, 0 < o (k) < B(G) by the first Betti
number of the graph. In this setting the nodal surplus distribution ¢ can be rigorously
defined [1] as the N — oo limit of the distribution of o (k) when k € {1,..., N} is
chosen uniformly at random. The universality conjecture for quantum graphs ([2, 19])
states that the nodal surplus distribution o should approach a Gaussian centered at
B(G)/2, when B(G) is large.

Even for quantum graphs, despite considerable numerical evidence in its favor,
this conjecture remains open. The nodal surplus distribution is only known in a sin-
gle situation: when the graph has disjoint cycles. In this case, the distribution o was
found [1] to equal the binomial distribution Bin(B(G), %b) — and is independent of
edge lengths! — verifying the conjecture for quantum graphs with disjoint cycles.

It is natural to ask the analogous question for discrete Schrodinger operators on
finite graphs since the nodal count (see §1.1) of the k-th eigenfunction differs from
k — 1 by anodal surplus 0 < o (k) < B(G), just as in the case of quantum graphs [9].
But a discrete operator on a finite graph has only n (the number of vertices) eigenval-
ues so the distribution of values o (k) for very large k no longer makes sense. In fact,
Alon and Urschel [6] found examples, for arbitrarily large n and 8, where the nodal
distribution of o (k) € {0, 1, ..., B(G)} for random k € {1,...,n} has mean equal to
B(G)/n, which is very far from 8(G)/2 as one might naively hope. The lesson for
discrete graphs is that randomizing with respect to k (the choice of eigenvalue) does
not provide a good model for understanding the distribution of the nodal surplus.

In [4], the present authors randomized an operator on a graph by assigning a ran-
dom sign' to each edge of the graph independently. In [4] it is conjectured that the
distribution of o (k) over random signings and random k should approach a Gaussian
centered at 8(G)/2. However, a surprising recent result [5] proves the distribution
of o(k), for random k, and for GOE-random n x n matrices converges to a semi-
circular distribution as n — oco. This means the conjecture in [4] is false, since the
GOE distribution is invariant under sign changes of the matrix entries. Numerics sug-
gest, nevertheless, that for each fixed k, with random signings and large B8(G), the
distribution of values o (k) € {0, 1, ..., B(G)} appears to be Gaussian.

This was verified in [4] in the special case of complete graphs G with (very) dom-
inant on-site potential. In the present paper, inspired by [1], we prove (Theorem 1.3)
the same holds for almost all operators supported on a connected graph G, provided

'The nature of the spectrum of a graph with a random signings was investigated by Y. Bilu
and N. Linial [13] and later used by A. Marcus, D. Spielman and N. Srivastava in their resolu-
tion [23] of the Kadison—Singer problem.
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G has disjoint cycles. In other words, for any fixed k, and with random signings,
the nodal surplus distribution 0 ~ Bin (ﬂ (G), %) is binomial (and hence converges to
Gaussian for large 8(G)).

Graphs with disjoint cycles do not, to our knowledge, arise naturally. But they
may be considered to be the simplest generalization of the fundamental work of
Fiedler [ 18] who analyzed the nodal count on “acyclic” graphs, that is, trees, or graphs
with no cycles.

1.1. Graph setting and notations

Let G = G([n], E) be a simple graph on n ordered vertices [n] := {1,2,...,n} witha
set of edges E and first Betti number 8 = rank(H;(G, R)). Write r ~ s if the vertices
r # s are connected by an edge (rs) € E. Ann X n matrix & is supported (resp. strictly
supported) on G if forany r # s, hys 20 = r ~ s (resp. h,s #0 < r ~ s for
r #5).Let $(G) (resp. A4(G), resp. #(G)) denote the vector space of real symmetric
(resp. antisymmetric, resp. Hermitian) matrices supported on G. The eigenvalues of a
symmetric matrix 41 € §(G) are real and ordered, A;(h) < Ay(h) < --- < A, (h). We
say that ¢ € R” is nowhere-vanishing if ¢; # 0 for all j. If ¢ is a nowhere-vanishing
eigenvector of &, with simple eigenvalue A, then its nodal (edge) count is

v(h,k) = [{(rs) € E : ¢rhrs¢s > 0.

(If hs < 0, as in the case of the graph Laplacian or more generally, a discrete Schro-
dinger operator, the nodal (edge) count is the number of edges on which ¢ changes
sign.) If the graph G is a tree, the nodal count is exactly v(h, k) = k — 1 [18], however,
this is not the case if G is not a tree [7]. Consequently, the nodal surplus for the k-th
eigenvalue of / is defined to be

o(hk):=v(h, k)—(k—1),

and by [9] it is bounded: 0 < o(h, k) < B.

A signing of h € $(G) is a symmetric matrix 4’ obtained from 4 by changing the
sign of some of its off-diagonal elements. When considering a random signing 4/, we
choose an element from the set of 2/ signings uniformly at random. In this way,
o (I, k) is a random variable supported on {0, 1, ..., B}.

A cycle is a path along the graph starting and ending at the same vertex, and it
is simple if no other vertex is repeated. We say that G has disjoint cycles if distinct
simple cycles do not share any vertex. See §3 and Figure 1.



L. Alon and M. Goresky 1340

*——=0

Figure 1. A graph with disjoint cycles.

1.2. Main result

If ¢ € R” is an eigenvector of & € §(G), in order to avoid double subscripts, we
sometimes write ¢(r) = ¢,. To define the nodal count for all signing of & € S(G),
the matrix 4 must satisfy the following generic spectral condition.

[GSC] The matrix # is strictly supported on G, and every eigenvalue of every sign-
ing of / is simple with nowhere vanishing eigenvector.

In Proposition 6.3 we establish that condition [GSC] is indeed generic. The main
result of this paper is the following.

Theorem 1.3. Let G be a simple connected graph with n vertices and disjoint cycles.
Suppose h € $(G) satisfies [GSC], and let ' be a random signing of h. Then for
any k € [n], the random variable o (I, k) is binomially distributed: the fraction of
those signings b’ such that o (W', k) = j is 27P (’j) Consequently, as f — oo, this
distribution converges to a Gaussian centered at /2 with variance /4.

1.4. Nodal-magnetic relation

Given a graph G with a matrix & as above, the various signings of /4 lie in a single
torus’ Ty, C H(G) of so-called magnetic perturbations of h. It consists of elements
he with (hg)rs = €'%sh,s with a € A(G), see §2.4. We may consider the eigenvalue
Ak to be a sort of Morse function on Ty,. A signing 4’ € T}, occurs when all phases are
ars € {0, }. These are the “real” points, or “symmetry points” in My, the points fixed

Defined (in [10]) by allowing off-diagonal elements /¢ to vary by a phase e s ..
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under complex conjugation. It is a theorem of Berkolaiko [10], further explained by
Colin de Verdiére [16], that each signing i’ € T}, is a critical point of A5, whose Morse
index coincides with the nodal surplus for 4’. Unfortunately, due to the existence of a
group of gauge transformations that acts on T}, and preserves A, each critical point
I’ is highly degenerate.

The degeneracy in the critical points can be removed by dividing the torus Ty by
the gauge group, §2.5. The result is a torus Mj whose dimension

B =|E|—n+1=rank(H{(G))

is the first Betti number of G. The genericity condition [GSC] now implies ([4, The-
orem 3.2]) that, for each signing 4’ of h, the corresponding point [A'] € M, is a
non-degenerate critical point of A;: M; — R. One might hope that these are the only
critical points of Ax. If this were the case, then we would conclude that Ay is a perfect
Morse function, that each critical point contributes to the homology of M, in a single
degree and hence the nodal surplus is binomially distributed. This situation occurs in
[4, Theorem 3.2 and §3.4], where it was proven that the nodal surplus distribution is
binomial when G is a complete graph and / has a dominant diagonal.

For generic graphs with a complex cycle structure, experiments indicate the exis-
tence of many critical points of A, (in addition to the signings of /), which casts doubt
on the possibility of using Morse theory to understand the nodal surplus distribution
in general.

For generic graphs with disjoint cycles, we believe that each Ay is a perfect Morse
function, but we do not prove it. In [3] it is shown that there are no other smooth
critical points on My, but there may be many points where A; has higher multiplicity.
The analysis near these points is very complicated, but one expects such points to be
topologically regular in the sense of [12]. If this could be established, then it would
give a Morse theoretic proof of our main theorem.

1.5. Hypercube toolkit

Instead, we develop a different approach using the combinatorics of the Boolean lat-
tice (§3.6) and two technical steps: (a) the monotonicity lemma (Lemma 5.1), adapted
from [22], and (b) the local-global theorem (Theorem 7.3), adapted from [11]. These
results allow us to focus on the one-dimensional trajectories that connect neighboring
signings &’ and 4" as described in Propositions 3.4 and 3.5. The proof is then outlined
in §3.6.
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1.6. Bloch variety of periodic operators

The spectral analysis of magnetic operators on finite graphs has an equivalent formu-
lation in terms of periodic graphs, which we briefly review for the sake of complete-
ness, see [22]. The universal abelian cover G of the graph G is a 7B periodic graph.
The matrix A lifts to a Zﬂ-periodic operator, ﬁ, on G. In Bloch theory, the space
Lz(é) decomposes into an orthogonal sum (or direct integral) of subspaces Lg(@)
corresponding to characters § € T# of Z#. A natural identification T# =~ M, is
described in §2.6 below, say, 8 +— «. The operator h restricted to Lé(@) is unitarily
equivalent to the magnetic operator /,. The spectrum of h is therefore the union over
the spectrum of A, for all .

The graph of the eigenvalues of 4, as functions on My, is called the Bloch variety
(also known as the dispersion relation manifold). It is a subset of Mj x R and its
projection to R consists of “bands” corresponding to different k. There is considerable
interest in determining the edges of these bands, that is, the maxima and minima of
the various A (ﬁ) over the torus Mj,.

When translated into this language, a simple consequence of our main theorem is
the following. If G is the universal abelian cover of a graph G with disjoint cycles,
and £ is a generic operator on G, then the edges of the spectral bands for (@, ﬁ) all
arise from the symmetry points in My, that is, from the signings of 4.

1.7. Probability current

An important ingredient in the proof of Theorem 1.3 is the probability current J (h, )
(Definition 4.1), a real anti-symmetric matrix supported on G, which may be inter-
preted as a gauge invariant divergence-free vector field or as a harmonic 1-form. It
is defined for any & € J(G) and every eigenvector of /& and has a special structure.
It vanishes on every bridge® and is constant on the edges of each simple separated
cycle. If the eigenvalue A is simple and the eigenvector is normalized, then —2J is the
derivative of A, cf. Proposition 4.2.

2. Recollections on graphs

2.1. Asin §1, we consider a simple connected graph G on n ordered vertices num-
bered 1,2, ...,n. We write #,, S, A, for the Hermitian, real symmetric, and real
antisymmetric n X n matrices, and we write #(G), S(G), A(G) for those matrices
supported on G. If (rs) is an edge in G, write E[rs] for the matrix that is zero except

3A bridge is an edge whose removal disconnects the graph.
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for E[rs];s = 1 and let A[rs] = E|[rs] — E[sr] be the corresponding antisymmetric
matrix.

2.2. The space Co(G, R) of real valued O-chains consists of (real) linear combinations
of vertices. It has a basis {e,} (1 < r < n) with one basis vector per vertex. A 0-chain
a € Cy(G,R) is a formal linear combination of vertices,

n
a = E aréyr.
r=1

Each edge (rs) of G has a natural orientation (+ or —) which is the sign of s — 7. The
space C1(G;R) of 1-chains consists of formal (real) linear combinations of oriented
edges. It has a basis {e(,)} with one element for each edge (rs) with r < s. A typical
1-chain is a linear combination

y = Zyrse(”) with VYrs € R.

r~s
r<s

The boundary map, d: C1(G) — Co(G) is defined by de(,5) = e5 — er.
We may consider the space of real antisymmetric matrices #4(G) to be the space
of (real valued) 1-forms Q!(G;R), dual to C;(G) with respect to the bilinear pairing

/Ol = Zyrsars
Y

r~s
r<s

where y € C1(G;R) and o € A(G).
The space of real valued functions defined on the vertices of G is denoted

Q%G.R) = R”
and it is naturally identified with the dual space of Cy(G, R). The differential
d:Q°%G) - QY(G)
is

@)y = {z(s) —0(r) ifr ~s,

otherwise.

If o € Q(G,R) is a 1-form, its divergence is d*a € Q°(G,R) where d* is the adjoint
of d with respect to the natural inner products* on Q°(G) and Q!(G), that is,

(d*a), = Za”‘

*Given by (0,6') = 3, 6,0/ and (a,a’) = 3, _ arse.s for 6 € Q°(G,R) and & €
QY(G,R).
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2.3. Stokes’ theorem fy do = ./By 0 implies that the integration pairing passes to a
non-singular dual pairing between the cohomology H'(G,R) = Q1(G)/dQ°(G)
and the homology H;(G, R) = ker(d). Consequently, given o € A(G), there exists
0 € Q°(G,R) such that « = dO if and only iffy a = 0 for every cycle y.

2.4. Action of A(G)

e space A, of real n x n antisymmetric matrices acts on the space 4, of Her-
The space 4, (R) of real tisy t t t the space #, of H
mitian matrices by

(o * h)ps = e’ hyg

with o' x @ * h = (¢/ + @) * h. Let A, (27Z) be the set of antisymmetric matri-
ces whose entries are integer multiples of 27r. The action factors through the torus
An(R)/ A, (27 Z) so that

T(G) ={a e A,R)/A,2TZ) :0rs 0 = r ~ 5}
acts on # (G). The mapping
*:T(G) x §$(G) — H(G)
is a finite surjective covering. For each h € §(G), the orbit
Ty, =T(G)*h

is a torus of perturbations’ of /1. The torus T}, is preserved under complex conjugation
and the fixed points are the intersection Ty N §(G), which consists of the signings
of h.

2.5. Gauge equivalence
If0 = (01,0,,....0,) € Q°G,R) = R” and h € #(G) then
df xh = e'he™?

is conjugate to /1, where ¢’ = diag(e??, e!%2, ... %), Therefore, Ay (df * h) =
Ax(h). If V) (h) = ker(h — AT), then

Vi(dO % h) = €0V, (h). 1)

SReferred to in [10] as the torus of “magnetic perturbations of A” because, for the
Schrodinger operator, these perturbations arise from the introduction of a magnetic field, cf. [4].
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We say the elements & and ' = d6 * h are gauge equivalent and differ by the gauge
transformation df. Geometrically, equation (1) says that eigenvectors ¢, ¢’ of & and
I’ differ by changing the phases, ¢, = % ¢,. Since their eigenvalues Ay, A are
equal, the eigenvalue passes to a well-defined function on the set of gauge-equivalence
classes of matrices.

We may formally define the gauge group ¥ = (R/27Z)" with action 8 ¢ h =
df = h, whose orbits are gauge equivalence classes. The quotient of T under gauge
equivalence is an abstract torus My = T}, / &, of dimension 8, the manifold of mag-
netic perturbations modulo gauge transformations. We sometimes write [1] € M}, for
the gauge-equivalence class of 4.

Equation (1) reflects an action of the gauge group on vectors ¢p € C" with 6 ¢ ¢ =

€i9¢.

2.6. The function A ; and choice of basis for T#

Fix a spanning tree in G. Its complement consists of a single edge in each simple
cycle. The elements o € T (G) that are supported on these edges form a torus T#
that projects isomorphically to the quotient torus Mj. In other words, every element
a * h € Ty, is gauge equivalent to some o’ * h where o is supported on these chosen
edges. Thus, T# is a “lift” to T (G) of the manifold .M, as in the following diagram.
The composition across the top row is denoted Ag: T# — R:

T« T(G) —*> T, « ¥, 55 R
= l /
Mp,

3. Disjoint cycles

3.1. We say a graph G has disjoint cycles if distinct simple cycles do not share a
vertex, cf. §1.2. Thus, each edge in G is a bridge unless it is contained in a simple
cycle. Throughout this section, we fix a graph G with disjoint cycles and a matrix
he$(G). Wealso fix k € [n] ={1,2,...,n} and consider the eigenvalue function Ag.

3.2. Combinatorics of T#

Choose an ordering of the edges identified in §2.6 (with one edge in each simple
cycle). This gives a particular choice of identification

(SHE = TF 2 p,. 2)
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Let ey, e, ...,eg € T# denote the image in R? /(27 Z)# of the standard basis®
vectors. Points ¢ = Zle eie; € TP with coordinates &; € {0, 7} are called sym-
metry points. By abuse of notation, we write ¢ € {0, n}ﬂ. The corresponding matrices
he = € x h are the signings of # modulo gauge equivalence.

There are 28 symmetry points in T#. They form the vertices of a (hyper-)cube

O C My

whose 1-skeleton consists of edges that connect a symmetry point € to a neighbor
e+ me; (mod2m) (where j € [B]). A choice of eigenvalue Ay determines a partial
ordering on the symmetry points,

/

e>¢& & A(exh)>Ai(e xh).

Fore € {0, 7} c T4, let
J_(e) =J_(e,k.h) ={j €[B]: A((e + me;) x h) < Ag(e x h)}.

The set J_(¢) identifies those neighbors € + me; of € in the 1-skeleton for which the
eigenvalue Ay (h.) decreases.

3.3. Although the proof of our main result (Theorem 1.3) has many technical steps,
the ideas are relatively simple, requiring only the following two propositions whose
proofs appear in §7. Let G be a simple connected graph with disjoint cycles and
suppose i € §(G) is generic in the sense of [GSC]. Fix k € [r] and recall the notation
Ap(o) = Ag(a % h) fora € T,

Proposition 3.4. Each ¢ € {0, 7} is a non-degenerate critical point of the function
Ar: TR — R. Its Morse index is ind(Ay)(¢) = |J_(¢)|. The Hessian of the function
Ay is diagonal with respect to the decomposition (2).

Proposition 3.5. The mapping {0, w}8 — P[B] (the set of subsets of [B]), given by
e > J_(e) is bijective. This implies that {0, 7}# becomes a Boolean lattice’ under
the above partial order.

3.6. Proof of Theorem 1.3

First, we consider the nodal distribution of Ay (¢) as & varies in {0, 7} c T#. By [4,
10, 16] the function A has a non-degenerate critical point at each ¢ € {0, 7}# and

®Bach e; = A[r;s;] = E[rjs;] — E[s;r;] is in fact a matrix in 4(G) defined modulo 27,
and corresponds to one of the particular edges identified in §2.6.

"The Boolean lattice on a finite set S is the partially ordered set $(S) of subsets of S
ordered by inclusion.
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its Morse index equals the nodal surplus o (%, k) at that point. By Proposition 3.4,
this means that the nodal surplus distribution coincides with the distribution of the
numbers |J_(g)|. Proposition 3.5 implies that the distribution of the numbers |J_(¢)],
and hence also the nodal surplus distribution for A, is binomial as & varies in {0, 77 }2.

Next, we consider the set of signings of 4. The set {0, 7}# % h is the quotient of
the set of signings of / by the action of the gauge group, or more accurately, the action
by a certain subgroup of the gauge group. If § = (g1, 2, ...,,) € Q%(G;R) with
e; € {0, 7} and if i’ € A(G) is a signing of /, then d6 = h’ is another signing. The
set of such 6 form a group under addition modulo 2. If / is properly supported on G
then this defines a free action of (Z/(2))" on the set of signings (cf. [4, §§2.6-2.7]).
Each symmetry point & € {0, 7}# < T# corresponds to exactly the same number,
2" of signings. Therefore, the binomial distribution on {0, 7 }# becomes the same
binomial distribution on the set of signings.

4. Probability current and criticality

Throughout this section, we fix a simple connected graph G with n vertices and / €
S (9) strictly supported on G.

Definition 4.1. Let @ € A(G) and set iy, = o * h. Given an eigenvector ¢ of g,
define the probability current J = J (hy, ¢) € A(G) = Q1(G,R) by

Jrs = S((ht>z)rs¢_’r¢s) = S(eiwrshrsﬁi_)r¢s)-

We say that the eigenvector ¢ satisfies the criticality condition at an edge (rs) if
Jrs = 0.

We remark that the probability current is defined for any eigenvector whether or
not the eigenvalue is simple.
Proposition 4.2. The probability current J = J (hy, ¢) satisfies the following:

(1) J is gauge-invariant, namely J(d * hy, e'%$) = J (he., ¢);

(2) J is divergence free, meaning that d*J = 0;

3) J,5 = 0 for every bridge (rs);

(4) J is constant along the edges of any simple cycle of G that is disjoint from all
others;

(5) if Mhy), the eigenvalue of ¢, is simple, then J is proportional to its derivative,

M(he)  OA

= —2||$|I*Js.
aars aars ||¢|| rs
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We remark, in particular, if the criticality condition holds on an edge of a disjoint
cycle, then it holds on all the edges of that cycle. The proof of Proposition 4.2 will
appear after a short review (§4.3) on derivatives of eigenvalues, which is used in the
proof.

4.3. Derivatives of eigenvalues

Recall that A[rs] is the antisymmetric matrix with zero entries except for A[rs],, = 1
and A[rs]s, = —1. Fix « € A(G), and consider the one-parameter family o(¢) =
« + tA[rs] that goes through « in the (rs) direction. The z-dependence of «(¢) * h
occurs only in the (rs) and (sr) entries with

(a(t) * h)pg = 1™ sh,g = ' (hy)rs.

If Ax(hy) is a simple eigenvalue, then ¢ — Ay (x(¢) * &) is an analytic function of ¢
around ¢ = 0, and its derivative at # = 0 is the directional derivative of A (a * k).

If Ax (hy) has a non-trivial multiplicity, then the function A («(¢) * &) may fail to
be differentiable. The theorem of Kato ([21, Theorem 1.8]) and Rellich ([24, Theo-
rem 1]) implies that it is possible to find analytic families of eigenvalues () € R
and eigenvectors ¢ (¢), for all ¢ € R, so that («(?) * h)dg(t) = wx ()i (t). How-
ever, the curves g () may cross, when there are multiple eigenvalues, so the index
k does not necessarily correspond to the order of these eigenvalues. In other words,
as t varies, A (a(t) * h) jumps between various analytic branches w; («(t) * h). Let
us choose one such analytic family or “branch,” (i, ¢), and drop the subscript k, and
define

ATP SR, A) = (@ *h).

Using Leibniz’ dot notation to denote derivative with respect to ¢, and differenti-
ating h(t)p = u(t)p(t) gives
(h(t) = ()¢ (@) + (h(t) — p() (1) = 0 3)

Asin [11, Lemma 2.5] or [4, §5.2], taking the inner product with ¢ where ||¢|| = 1,
using that / is Hermitian, and evaluating at ¢t = 0 gives the directional derivative of
the eigenvalue | along this branch:

oA
dotpg

d .
(@ = fo = e+ 1As) # 0| _ = (9.5)
= i(‘isr‘ﬁs(ha)rs - ésﬁbr (ﬁa)rs) = _ZS((ha)rs‘]Sr(ps) “4)

where ¢, = ¢(r) denotes the value of ¢ on the vertex (7).
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For later applications in equation (12), consider the case when a?)[—I:S(oc) =0. We
can differentiate (3) once again to obtain, as in [1 1, Lemma 2.6],

(@, hd) = —R((ha)rsprds) = —((ha)rsbros) (5)
and
92A . . ..
sz = L= (. ho) +2R((p. hp)). (6)

4.4. Proof of Proposition 4.2

The gauge invariance, J(¢!®hqae™9, '?¢) = J(hq, ¢), is straightforward from the
definition. The divergence is

@ D)y =33 (hadrsts) = (67 Y (a)rss)

N

= S(Q_Srk‘i)r) = A%(|¢r|2) =0.

If removing an edge £ = (rs) separates the graph into two pieces, say G4 and G,
let 0 € Q°(G) take the value 1 on Gp and 0 on G,4. Then d6 is supported on E and

Jps = (d6,J) = (8,d*J) = 0.

Similarly, if E, E’ are two edges in a simple cycle that is disjoint from all others, then
removing both separates the graph into two pieces. Taking 6 as above,

J(E)—J(E") ={df,J) = 0.
Part (5) is a restatement of equation (4).

Lemma 4.5 (Partial criticality). Let o € A(G) and set hy = « * h. Let ¢ be an eigen-
vector of simple eigenvalue of hy and let J = J(hy, ¢) be the probability current.
Suppose there is a bridge that splits the graph G into G4 and Gp. If hy is real on the
Gpg x Gp block, then J vanishes on that block:

ha|GB S S(GB) = J|GB =0.

Proof. Let (rs) denote the bridge with s € G4 and r € Gp. By changing gauge and
scaling hq if needed, we can assume that (hy),s = 1. Let e5 and e, be the corre-
sponding standard basis vectors. In the block decomposition to G4, Gp, we write
hae = A® B + eref + ese).

Suppose the simple eigenvalue of interest is A = 0 (otherwise replace h, with
hq — Al), and let ¢ = (¢4, ¢p) denote its normalized eigenvector. We need to show
that if B is real, then ¢p is (proportional to) a real vector, in which case J|Gp = 0.
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If ¢4 = 0, then ¢p € ker(B) and we are done. So, assume ¢4 # 0. By Proposi-
tion 4.2 (3), we know that Im[(hg),spr¢s] = Im[¢,ps] = 0. By scaling ¢ if needed,
we can therefore assume that ¢ (r) and ¢ (s) are real.

We will now show that ¢’ := (¢4, ¢p) is also in ker(hy). Since the kernel is
one-dimensional and ¢4 # 0, this will mean that ¢’ = ¢ so ¢pp = ¢p. Calculate

hot = (Apa + ¢(r)es, Bép + Pp(s)er) = (0,0).
But¢(r) = ¢'(r).¢(s) = ¢'(s), so

ha¢/ =(Aé B+ ere;k + ese;k)d)/
=(A¢a + ¢(r)es, B(IJ;B + ¢ (s)er)
=(0, Bgp + ¢ (s)er).

Since B and ¢ (s) are real, Bop + ¢(s)e, = (Bop + ¢(s)e;) = 0. [

We now return to the special case of G that has disjoint cycles. Recall that each
¢ € {0, w}# is a non-degenerate critical point of Ag: T# — R.

Corollary 4.6. Suppose G has disjoint cycles and h € $(G) satisfies [GSC]. Then
for each k, the Hessian of Ay at any € € {0, n}ﬁ c T is diagonal with respect to the
basis of T# that was chosen in §2.6.

Proof. Fix k and e. We work in the previously chosen (§2.6) basis of T,T# ~ RF
given by the choice of a single edge per cycle of G, say (r;,s;) € y;. We will show
that

02 Ax
Barrs trss (e) =0. @)
(All other off-diagonal terms vanish for the same reason.)

Since the cycles are disjoint, there exists a bridge that separates the graph into
two parts, G4, Gg with y; C G4 and y, C Gp. Let a(t) = ¢ + tA[r1, s1] and let
h; = a(t) * h. The matrix h, is real except for the (r1, s1) and (s1, r1) entries so we
may apply Lemma 4.5 and Proposition 4.2 (5) to conclude that

AL

(a()) =0

72,52

for all ¢ around 0. Differentiating with respect to ¢ at ¢+ = 0 gives equation (7). |
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5. Monotonicity

Lemma 5.1 (Monotonicity). Suppose G has a cycle y disjoint from all others and
let h € $(G) that satisfies [GSC]. Consider any one-parameter family h; = a; = h
with oy supported on y and fy ar =t forallt € [0, 7). Then, t v Ar(h;) is strictly
monotone int € [0, ] for all k € [n].

We remark that, up to gauge equivalence, we may suppose that « is supported on a
single edge of y. This means the family %, traverses a single segment in the 1-skeleton
of the hypercube (0 C M}, from §3.2. The monotonicity lemma only applies to these
special paths. The rest of §5 is devoted to the proof Lemma 5.1, which appears finally
in §5.4.

Lemma 5.2 (Flat band criteria). Suppose G has a cycle y disjoint from all others, and
(12) isan edge in y. Let h € §(G) and consider a one-parameter family hy = oy * h
where a; € A(G) satisfies ay = o outside of y and fy ar =t forallt €0, 7]
Suppose there exists ty € (0, ), and an eigenvector ¢ of hy, with eigenvalue A, such
that J(hyy, $)12 = 0. Then A is a common eigenvalue of all h; witht € [0, ].

Proof. Without loss of generality, assume that A = 0, so that s,,¢ = 0. We need to
provide a family of vectors ¢; such that i;¢, = 0 for all t. We will show that J;, =0
implies that

(i)  either there is an edge (rs) in y such that ¢(r) = 0 and ¢(s) = 0,
(ii) orthere is a vertex r in y such that ¢ (r) = 0 and deg(r) > 3.

We will also show that each of these conditions is sufficient for constructing ¢; such
that ;¢ = 0 for all ¢. To ease notation, let @ = o,. To avoid triple subscripts, write
a(rs) for oyg.

First, we show that (i) is sufficient. Let (rs) be an edge in y such that ¢(r) =
¢(s) = 0. Up to gauge equivalence, we may assume that ; = o on G \ y, that
o (rs) =t, and that ; vanishes on all the other edges in y. Then h;¢ = h;,¢ = 0 for
all # so we may take ¢; = ¢. Next, we show, using J1» = 0, that if (i) fails, then (ii)
must hold. Assume (i) fails, namely,

(A) for every edge (rs) in y, ¢ (r) and ¢ (s) are not both zero.

By Proposition 4.2, J = J (hy,,4) is gauge invariant and constant on y, so we have
Jrs = J12 = 0 for every edge (rs) in y. To prove that (ii) holds, up to change of
gauge, we may assume that ¢ is real, cf. equation (1). In this case,

Jrs = @) (s)h,ssin(a(rs)) =0 forany (rs) € y,
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so a(rs) = 0 (mod ) when ¢ (r)¢(s) # 0, and so (A) gives

Zoc(sr) 4+ a(rt) = /oz,o =19 # 0 (mod ), 8)
¢ (r)=0 y

where s < r < t denote the neighbors of . Now, suppose r is a vertex in y of degree
2 with ¢(r) = 0. Let s < r < t be the two vertices attached to r. Then ¢ (s) # 0 and

¢(t) # 0by (A) so (hsy¢), = 0 reads
G ()hsre S £ 0+ (t)hye D =0

which implies
a(sr) + a(rt) = 0 (mod )

whenever deg(r) = 2 and ¢(r) = 0. Adding over all vertices r of degree 2 such that
¢(r) = 0 gives
Za(sr) 4+ a(rt) = 0 (mod ) )

é(r)=0
deg(r)=2

where, as before, s < r < t denote the neighbors of r. The terms in this sum are
disjoint by (A). Since the sums in (9) and (8) are not equal, then there must be a
vertex r € y with deg(r) # 2 and ¢ (r) = 0, so (ii) holds.

Finally, assuming (ii), we construct ¢,. Without loss of generality, we may sup-
pose that we have consecutive vertices 1 < 2 < 3 in y with ¢(2) = 0,deg(2) > 3. Up
to gauge equivalence, we may assume that (o;)12 = ¢, (®;)rs = 0 for all other edges
(rs)iny,anda; =aonG \ y.

Let H denote the union of connected components of G \ y that are connected to
vertex 2 in G. We will show there exists c¢(¢) € C with c(z9) = 1 so that the vector ¢,
defined by
c(t)p, forre H,

(¢t)r = {¢r for r ¢ H.

satisfies /1;¢p; = O for all ¢. By our assumption on G, the only vertex in G \ H with a
neighbor in H is the vertex 2 on which ¢ (2) = 0. Therefore, for any ¢ and any edge

(r,s),
(he)rs(s) forr € H, r # 2,
C(t)(ht())rs¢(s) forr e G \ H,

from which we conclude that (h;¢;), o (hs¢), = 0 for all r # 2. To understand the
situation at vertex 2, let

(ht)rs¢t (S) = {

Fr(a,¢) = Y hyre' g (r).

reHd
r~2
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Then Fa (o, ¢;) = c(t) Fo(a, ¢) and at vertex 2 we have
(hie®)2 = p(Dh12e"™ + ¢(3)ha3 + Fa(a. $p) = 0.
Therefore,
—F(a.¢) = ¢p(Dh12e'™ + ¢ (3)ha3 # 0,
since e'% is not real. The eigenvalue equation at vertex 2 becomes

(hege)2 = d(Dhi2e’ + ¢(3)has + Falay, de)
= ¢(Dhize' + ¢(3)haz + c(t) Falcr. §).

It is left to choose ¢(¢) so that (i;¢;)> = 0, namely

_¢(1)h12€it + ¢(3)ha3 _ ¢(Dhi2e’ + ¢(3)has
Fa(a, ¢) d(1)hiaet’o + ¢(3)ha3

Lemma 5.3. In the setting of Lemma 5.1, if (rs) is an edge in y and ¢ is a normalized
eigenvector of hy, for some t € (0, ), then J = J(h;, ¢p) has J,s # 0.

In particular, if ¢ and ¢’ are eigenvectors of the same eigenvalue of hy, then
J(he, @) rs and J(hy, ¢')rs share the same sign.

c(t) =

Proof. Since h satisfies [GSC], then each of the eigenvalues has Ay () = Ag (o * k)
has a non-degenerate critical point at « = 0, namely at & = ho, whose Hessian is
diagonal by Corollary 4.6. In particular, for any k € [n], Ag(a;) = Ar(hy) is not
constant around ¢ = 0. This means that J,; 7 0 for any normalized eigenvector of any
h; with t € (0, ), otherwise we would get a “flat band,” namely a constant eigenvalue
Ak (hs) = A for all ¢t around ¢ = 0 by Lemma 5.2. This concludes the first part.

Now, let V =ker(h; — Ar(h;)) be some eigenspace of some /; withz € (0, ), and
assume dim(V') > 2. Then the map ¢ +— J (h;, ¢) is a continuous map from V' \ {0}
(which is connected) to R \ {0} so its image must lie either in R~ or in R<o. [

5.4. Proof of Lemma 5.1

The statement is gauge invariant, so we may fix the gauge such that « is supported on
a single edge, say, (12). By Kato [21, Theorem 1.8] or Rellich [24, Theorem 1], or
Wimmer [25], since this is a one-parameter analytic family of Hermitian matrices, the
ordered eigenvalues (A, <--- < A,) and eigenvectors (¢1,. . ., ¢, ) of h extend analyt-
ically to eigenvalues and normalized eigenvectors (u (1), ¢k (¢));—, of &, although
a priori their order may not be preserved. The derivative

d .
pue(t) = E,ka(f) = (e (). hipr (1)) = =2T (hs. Pic (1)) 12 (10



L. Alon and M. Goresky 1354

was calculated in (4). Since J (hy, ¢r(¢))12 # 0 for all k and all ¢ € (0, 7) by
Lemma 5.3, then each g (¢) is strictly monotone in ¢ € [0, r]. If all eigenvalues are
simple, this proves that A (h;) = g (¢) is monotone for ¢ € [0, ].

If the eigenvalue has a non-trivial multiplicity, say ug (¢) = wx/(¢), then it suffices
to know that the derivatives —2J (h;, ¢x (¢))12 and —2J (h,, d),’( (t))12 have the same
signs. The second part of Lemma 5.3 ensures this is the case. |

5.5. Remark

Lemma 5.3 and equation (10) mean that the restriction of the Hermitian form h ; to
the eigenspace of %, is sign-definite, which is exactly the condition of [12] for a point
of multiplicity to be topologically regular (the BZ condition), see Appendix B.

6. Genericity

6.1. The purpose of this section is to show that the conditions [GSC] of §1.2 are
indeed generic. The first (surprisingly tricky) step is to prove the existence of [GSC]
matrices on a tree.

Lemma 6.2. If a graph G of n vertices is a connected tree, there exists a strictly
supported matrix h € $(G) with simple spectrum and non-vanishing eigenvectors.

Proof. For n = 2 take h = ( ) Now, assume the lemma holds for graphs with
< n — 1 vertices. Consider a connected graph G with n vertices. Without loss of
generality, we may assume that vertex {n} is a leaf and that (n — 1,n) is an edge of G.
Let G’ be the tree obtained by removing vertex n from G. By induction, there exists
A € §(G’) that is strictly supported, with simple eigenvalues A (A4), ..., A,—1(A) and
non-vanishing eigenvectors ¥4, . . ., ¥,—1. By changing A — A — cI,— and choosing
¢ to avoid® finitely many values, we may assume that A; < 0 for all j, and that

u==~4 en 1—2:A WJyen IWJa

is nowhere vanishing on G’, where ¢,—1 € R”~1 is the standard unit vector. Define
the analytic one-parameter family with ¢ € R,

h, =( 4 ’e”‘l) € S(G).

te, ; 0

8For each s, with 1 <s<n—1,¢ # Ag and c is not a root of the non-zero polynomial

c 27;11 Y (V). en—1) l_[t?éj(xt —o).
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The eigenvalues of h( are simple and are equal to A;(ho) = Aj(A) for j <n —1
and A, (hg) = 0, with eigenvectors ("6‘), el ('/’"0*1) and e,. By the Kato—Rellich
theorem ([21,24,25]), these extend analytically to eigenvalues and eigenvectors of /;.
For sufficiently small # > 0, the spectrum will remain simple, and the first n — 1
eigenvectors of &, will remain non-zero on the vertices of G’. All eigenvectors of /i,
are non-zero on the last vertex, {n}, since G is a tree, the spectrum is simple, and the
vertex {n} is not of degree two [18, Corollary 2.7]. The n-th eigenvector of /; has the
form
v=r¢e, +1v + O@t?).

We claim v = —(§) (so does not vanish on any vertices of G'). In fact,

, —tA Ve, _ 0
hien + V') = ht( le 1) = (zZ(A—l) - _1) = 0(1?). n

Proposition 6.3. Let G = G([n], E) be a finite simple connected graph. The set of
matrices

O = {h € $(G) : h satisfies [GSC]}

is open and dense in §(G). Its complement is contained in a closed semi-algebraic’
subset of $ (G) of codimension > 1.

Proof. When eigenvalues are simple, the eigenvalues and eigenvectors vary contin-
uously with the matrix, so the set of matrices satisfying [GSC] is open. If a matrix
h' € §(G) fails to satisfy [GSC] then there is a signing ¢ € {0, 7} £ for which h = & % i’
lies in at least one of the following sets:

(i)  the set of matrices in §(G) that are not strictly supported on G, that is,
h;j = 0forsome (ij) € E,

(i) the set of matrices in § (G) that have a multiple eigenvalue,
discriminant(#) = 0,

or

(iii) the set of matrices in § (G) that have a simple eigenvalue with an eigenvec-
tor that vanishes at some vertex.

The sets (i) and (ii) are zero sets of polynomials that are not the zero polynomial'’
on §(G), so these are algebraic subsets of §(G) with positive codimension in §(G).

A semi-algebraic subset of a real vector space is a finite Boolean combination of sets
defined by polynomial equalities f(x) = 0 and inequalities f(x) < 0.
10To see that discriminant(k) # O for some i € $(G), take h = diag(1,2,...,n).
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Since the class of semi-algebraic subsets is preserved by any change of signing, it
suffices to show that the set (iii) is semi-algebraic with positive codimension in S (G).

Recall (see for example, [20, §0.8.2]) that if A is a simple eigenvalue of 2 with
eigenvector v, then the adjugate is defined as

A:=adj(h —A.I) = cov*

where ¢ € C is non-zero. If v does not vanish at any vertex, then 4;; = cv; v;-‘ #0
for all (i, j). This gives a collection of algebraic subsets Z ; C3(G) xR,

Z}; = {(h,2) € S(G) x R : det(h — A.I) = 0 and (adj(h — A.));; = O}.

For a given /4, only finitely many A occur, so this is an algebraic subset of § (G) x R
and its projection Z;; to $(G) is semi-algebraic by the Tarski—Seidenberg theorem.
We claim that the union
z:=|Jz;jcsG)
i,

has codimension > 1. This will complete the proof of the theorem, for if an element
h € §(G) does not lie in this union, and if it has simple eigenvalues, then the corre-
sponding eigenvectors do not vanish on any vertex.

Let 7 € Z. Choose a spanning tree in G and apply Lemma 6.2 to find a matrix
B € §(G) with simple eigenvalues and nowhere vanishing eigenvectors. Consider the
family h; = (1 —t)h + tB where t € R. We claim, for sufficiently small ¢ > 0, that
h, also has simple eigenvalues and nowhere vanishing eigenvectors. This will prove
that Z does not contain an open neighborhood of /4 so its codimension at 4 is > 1.

According to the theorem of Kato and Rellich [21, 24, 25], it is possible to find
eigenvalues A;(¢) and eigenvectors ¥;(z) (1 <i <n)of h, = (1 —t)h + tB that
vary analytically with # € R. Therefore, the numbers A;(¢) — A; (¢) vary analytically
with ¢ and the values of v;(¢) on each vertex also vary analytically. For t = 1, the
eigenvalues of /1, are distinct and the eigenvectors are nowhere vanishing.

It follows that there is a discrete set of values # € R for which 4, has a multiple
eigenvalue and there is a discrete set of values ¢ € R such that /s, has an eigenvector
that vanishes at one or more vertices. Consequently, for ¢ > 0 sufficiently small (so as
to miss these discrete sets), the matrix /2, will have distinct eigenvalues and nowhere
vanishing eigenvectors, as claimed. ]

6.4. Let G be a finite graph. Let B denote the set of matrices 2 € §(G) that satisfy

("K) any two gauge-inequivalent signings ¢ * i, &’ * h have distinct eigenvalues.

Lemma 6.5. The set B is open and dense in $(G) and its complement is contained
in an algebraic subset of codimension > 1.
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Proof. We may assume that G is connected. If G is a tree and & € §(G), then every
signing of / is gauge equivalence to & so we may assume B(G) > 1. First, consider
the case that B(G) = 1 so that G contains a unique cycle. Fix an edge (rs) in this
cycle. For any i € §(G), there is only one gauge-equivalence class of signings € * h
of h and it corresponds to changing the sign of /,¢ (and of Ag,).

Let Q.(h) denote the discriminant of the 2n x 2n matrix (h) @ (¢ * h). The
set 07 1(0) is an algebraic subset of $(G) which contains the complement of B.
If 0;1(0) contains an open subset of §(G), then it is all of §(G); otherwise it has
codimension > 1. We will assume that Q.(h) = 0 for all # € §(G) and arrive at a
contradiction.

In this one-dimensional case, the hypercube of §3.2 is just an interval whose end-
points are /2 and ¢ x h. Let V = diag(1, 2,...,n). Let £ € §(G) (strictly supported
on G) sufficiently small such that 7 :=V 4+ & € @ and ¢ x h € O (such £ exists by
Proposition 6.3). The eigenvalues of / are distinct; the eigenvalues of ¢ * /4 are distinct.
Therefore, if Q.(h) =0, then & and ¢ * h share an eigenvalue, say, Ag (h) = Ag/ (e * h).
If £ is sufficiently small, the eigenvalues of & and of ¢ x & are small perturbations of
the eigenvalues of V, which are distinct integers, hence k = k’. But this contradicts
the monotonicity Lemma 5.1.

We conclude that for any graph G with 8(G) = 1, the function Q. vanishes iden-
tically on §(G). Now, consider the case of a general graph B(G) > 1. For a general
signing e, &’ € {0, )8, set

Qe (h) = discr((e x h) & (&' * h)).

The complement of B is contained in the algebraic set

Z = U Q;;,(O) = ( 1_[ Qe,s’)_l(o)-

£,6’€{0,m}8 ,6'€{0,n}B
e#g’ e#e’

The set Z is a finite union of sets of the form Qe_1 (0). To see that each of these sets has
codimension > 1, suppose otherwise. Then there exists a signing ¢ so that Q. (h) =0
forall i € $(G).

Choose a spanning tree in G. Label the edges e, e, . . ., eg in the complement and
express e = Y _g;e; asin §2.6 and §3.2. Arrange the labeling so that &1 # 0. The graph
G’ obtained from G by removing the edges e, e3, ..., eg has B(G’) = 1. The signing
¢ of G becomes a signing n = &; on G’, that is, a change of sign on the remaining
edge e1. Moreover, any i’ € §(G’) can be obtained as a limit of 4 € §(G) by allowing
hrs — 0 where (rs) varies over the edges ez, e3, ..., eg. Since Q¢(h) is a continuous
function of 4, it vanishes on this limiting value, 4". This proves that Q,(h") = 0 for
all i’ € $(G’) which contradicts the conclusion from the first paragraph. [
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7. Proofs of Propositions 3.4 and 3.5

7.1. Proof of Proposition 3.4

Recall from §3.6 that G is a simple connected graph with disjoint cycles, & € §(G) is
generic in the sense of [GSC], and Ax: T# — R is Ag(a) = Ag(a * h).

It was shown in [4, 10, 16] that each ¢ € {0, 7}# C T#isa non-degenerate critical
point of Ay and its Morse index equals the nodal surplus. In Corollary 4.6 it is shown
that the Hessian of Ay is diagonal with respect to the decomposition (2). Therefore,
the Morse index at & € {0, 7} is the number of segments in the 1-skeleton of the
Boolean lattice that start at o and descend. By the monotonicity Lemma 5.1, this is
the same as the number of segments whose endpoints have a lower eigenvalue, which
is |J_(a)]. ]

7.2. A main tool that we will use in proving Proposition 3.5 is the local-global theo-
rem of [11], which can be stated in a simplified manner as follows.

Theorem 7.3 ([11, Theorem 3.10]). Suppose G is a simple, connected graph and
h € $(G) has a simple eigenvalue Ay (h) with a nowhere-vanishing eigenvector. Let
J C[B), let Ty C TB be the subtorus spanned by {e;}jes, and consider the restriction
of A to the subtorus Ty (with A (@) = Ar(a * h) as before). Then, @ = 0 is a local
minimum (resp. maximum) of Ay on Ty if and only if it is a global minimum (resp.
maximum) on T j.

The statements in [1 1] involve a different but equivalent graph model, and apply in
a situation of greater generality, where the eigenvector is permitted to vanish at various
vertices. We therefore provide the proof for Theorem 7.3, adapted to our situation, in
Appendix A. Theorem 7.3 together with the monotonicity lemma gives the following.

Corollary 7.4. Fix h € $(G). Fix ¢ € {0, }# and write h, = & * h. Let T_(¢) denote
the sub-torus of T# that is spanned by those basis elements e; for j € J_(g) and
similarly for T+ (g). Then,

Ao x he) < Ap(he) foranya € T_(g)
A (o x he) > Ag(he) forany a € Ty (e).

7.5. Proof of Proposition 3.5

Suppose G is simple, connected, and has disjoint cycles, and suppose that % is generic
in the sense of [GSC]. Let ¢, ¢’ € {0, 7}#. We need to show that

Ji(e) =Ji1(€) < e=¢.
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The definition of J4 (&) implicitly requires a choice of k € [n] and & € $(G) so to
be explicit we temporarily denote it J1 (g, k, h). For fixed e, k, this set is constant
(in /) on connected components of the open set O of & € §(G) which satisfy condi-
tion [GSC], because the eigenvalues Ay (h), Ag (& * h) vary continuously with /. As a
result, it is enough to prove the statement for # € 8 N O as this is set is dense in O by
Lemma 6.5. Recall that 2 € 8 N O if and only if it satisfies [GSC] and condition (*%¢)
which we repeat here:

(X)) for each k € [n], the eigenvalue Aj takes distinct values on distinct gauge-
equivalence classes of signings of 4.

Thus, we may assume that % satisfies [GSC] and (*%). Given ¢, &’ € {0, 71’}'3, suppose
J+ (&) = J+(&). Assume for the sake of contradiction that & # &’ so A (¢) # Ar(e').
Assume that Ag(g) < Ag(¢’) and let us show that there is &’ such that Ag(g) >
Ar (") > Ay (¢") which provides the needed contradiction. Since Jy(g) = J4(¢'),
then the intersection T (¢") N T—(¢) contains a signing, call it ¢”. Then, Corollary 7.4
implies Ay (¢”) > Ag(¢') because ¢” € T4 (¢). However, Ag(¢”) < Ag(g) because
" e T_(e). [

A. Proof of Theorem 7.3

A.1. We follow the proof in [11] but reorder the steps. Theorem 7.3 begins with a real
symmetric matrix & € $(G). Recall that the choice of edge (r;,s;) € y; determines
a basis e, e, ..., eg of T# = RP/(2niZ)B. The subset J C [B] determines the
subtorus T; C T# which is spanned by the coordinates e; for j € J. We therefore
have an analytic family of magnetic perturbations, by = « * h for « € Ty, and an
eigenvalue function Ag: Ty — R defined by Ay (@) := Ag(hg). Since A = A (h) is
a simple eigenvalue, the function Ay is analytic near « = 0 and is piecewise analytic
on all of Ty. We may choose the corresponding eigenvector ¢ of & to be real. By
assumption, it is nowhere vanishing.

The point ¢ = 0 is a critical point of Ag. Assume it is a local minimum. Theo-
rem 7.3 states that it is also a global minimum. (The case of a maximum can be proven
analogously.) So we need to show

A < Ar(hy) foralla e Ty. (11

A.2. The proof in [11] involves several auxiliary matrices. Holding ¢ constant, the
function (¢, hup): Ty — R has a critical point at « = 0 (cf. equation (4)) and we set

Q= % Hess({¢), ho @)

o=
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The matrix 2 is a real diagonal |J| x |J| matrix. It is diagonal since each entry of /,

. 2 e . .
depends on at most one «; coordinate, so Z,—gﬁ, =0fori # j.Itisreal and invertible

since its diagonal entries are
Qj]' = _hrjsj¢(rj)¢(sj) #0 (12)

as calculated in (5). (Recall that both 4 and ¢ are real, and ¢ is nowhere-vanishing.)
For each j € J, let R;(¢) be the hermitian n x n matrix supported on the block

[rjrj rjsjisiri,s;s;]

on which it is given by

_%G)) oil
R;(t) = herj ( Z—(irz{) _M)
(s;)
To ease notation, let us assume that J = {1,2,...,|J|}. Writing ¢ = (¢1,02,...,05) €
Ty, the sum
> Rj(a))

jeJ
is a family of Hermitian n x n matrices dependingon o« € T}.
Define the real symmetric n X n (constant) matrix S by

S=h->Y_ R;0).
jeJ

This collection of matrices satisfies the following properties:

(a) foranya = (a1,a2,...,0p7) €Ty,

he =axh=3S +2Rj(aj);
jeJ

(b) forany j # j’, R;(¢) and R;/(t") commute for all ,¢';

(¢©) R;(0)¢p =O0forevery j € J, and hence S¢ = A¢;

(d) det(R;(t)) = 0so Rj(¢) has rank one;

(e) the semi-definite sign of R, (¢) is independent of ¢ since trace(R; (1)) = 2L2;;.
(See equation (12).) Let

m=j €l ~hyyd(r)d(s:) < 0} = ind()

be the number of negative semi-definite R;’s. Then the sum of these commuting rank-
one matrices has m negative eigenvalues and n — |J| > 0 zero eigenvalues (recalling
that |J| < B < n by the assumption of disjoint cycles), so

km“(Z Rj(oej)> =0 foralla € Ty.
jeJ
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The Weyl inequalities for iy, = S + Zle\

i—1 Rj(aj) may be expressed as follows:

Ap(S) + A4(BR;) < Ak(S + ZR;) < A5(S) + A, (ZR))
(p+qg=<k+1 (k+n<r+ys).

Only the first inequality is required for the case of a local minimum. Takingg =m + 1
gives
Ae—m(S) < Ag(hy) foralla € Ty.

By (11), the proof of Theorem 7.3 now comes down to the following statement.
Lemma A.3. If a = 0 is a local minimum of Ay () then Ax_,,, (S) = Ap(h) = A.
The proof involves the next few paragraphs.

A.4. Holding ¢ constant gives a mapping i hg¢p: T; — C”. Define B to be its deriva-
tive B = iD(hq@)|e=0. Itis areal n x |J| matrix with

—hr;s;¢(r;) ifv=s;,
hs;r#(sj)  ifv=ry,
0 otherwise.

a=

d
Bv'=_ha v
= g had)

A direct but messy calculation involving double subscripts as in [11, Lemma 2.7]
gives
Y R;(0) = BQ'BT,
jeJ
and, therefore,
S=h-BQ 'BT.

A.5. A primary insight in [11] is the identification of the generalized Schur comple-
ments in the real symmetric (n + |J|) x (n + |J|) matrix

h—A B
M=(BT Q) (13)

These complements are defined to be

M/(h—1)=Q—BT(h—1)TB,
M/Q=h-2)—-BQ 'BT =5 -2,

where “4-” denotes the Moore—Penrose pseudo-inverse.'!

""The Moore—Penrose pseudo-inverse of a real symmetric matrix A is zero on (Im(A4))= and
is the inverse of the isomorphism (ker(A4))~ — Im(A).



L. Alon and M. Goresky 1362

Proposition A.6 ([11, Lemma 2.3]). The Schur complement to h — A may be identi-
fied,
1
M/(h—A) == Hess(Ak(O))

Proof. The proof in [11] requires [21, Remark I1.2.2, p. 81] but it is actually ele-
mentary and we provide it here for completeness. The Lemma is equivalent to the
statement that

1
5 {0, Hess(Ax(0))n) = (n.Qn) — (B, (h—2)" Bn) foralln € ToT/ =R’

To calculate (1, Hess(Ag(0)n)), choose an analytic one parameter family o, with
n = a(0) and write h; = o, * h with simple eigenvalue A (c;) and normalized eigen-
vector ¢; (so that ¢ = ¢g). From (3) and (6), the second derivative is

2 d2
T =g hid)|

= (¢, he) + 2m[<¢,k¢3>1|t=0,

(n. Hess(Ax(0)n)) =

where 4
h=—
dr '

and h = ﬁt |¢=0 (This is the formula from [21] that is referenced in [11].) The first
term agrees with the first term in 2(n, (M/h — A)n):

= 4
) ¢_d[¢t

bl
t=0 t=0

1d?
2de?
The t-derivative of i h,¢ (keeping ¢ fixed) is

Bn = idy(ha¢) = ihe

1 .
S(@Jig) = ST (@ )| = (n.2m).

So, we need to compare
—(n, B*(h = 1)t Bn) = —(h¢, (h — 1) * )
with (¢, h¢) = (h¢. ). From (3),
¢+ (h—0The = co

for some constant ¢, because ¢ spans the (one dimensional) kernel of 7 — A. Taking
the inner product with ~¢ and using (4) with A = 0 gives

(he.$) + (hp, (h—2)The) =0

as claimed. [
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A.7. Proof of Lemma A.3
The Hainsworth theorem for the matrix M in (13) gives,
ind(M) =ind(M/(h — 1)) + ind(h — A) = ind(M/ Q) + ind(R2),
which yields
ind(S —A) =ind(M/(h—A1)) +k—1—m.
Since @ = 0 is a local minimum of Ay, Proposition A.6 gives
ind(M/(h— 1)) =0.
Property (c) of the matrices R;(t) implies A is an eigenvalue of S. Therefore,

Meem(S — X) = 0.

B. The BZ condition

The argument in Lemma 5.3 concerning eigenvalues with non-trivial multiplicity is
essentially the same as that of [12, Theorem 1.5], which we state here for complete-
ness because it is an important observation about singular critical points that may
appear. We are interested in the Morse theory of the composition Ag: T# — R,

A
T? — 3(G) =5 R.

Fix o € T# and suppose that Ax(a * &) is an eigenvalue of multiplicity m < B.
Let V' denote the m-dimensional eigenspace. Consider the set of all Hermitian forms
on V that are given by

<¢, %[(a +1v) * h]v> forg,v eV, (14)

as v varies within TaTFB. According to [12, Theorem 1.5], if there exists v € Toﬂfﬁ
such that the form (14) is positive definite (which we refer to as the BZ condition),
then the point « € T# is topologically regular, meaning that for sufficiently small
6 > 0 the set TﬁA—s is a strong deformation retract of T£A+8' (Here, Tsﬂ, ={a €
TA: Ar(e) <tyand A = Ag().) -
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