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A hot spots theorem for the mixed eigenvalue problem
with small Dirichlet region

Lawford Hatcher

Abstract. We prove that on convex domains, first mixed Laplace eigenfunctions have no inte-
rior critical points if the Dirichlet region is connected and sufficiently small. We also find two
seemingly new estimates on the first mixed eigenvalue to give explicit examples of when the
Dirichlet region is sufficiently small.

1. Introduction

Let � � R2 be a bounded Lipschitz domain. Let D � x� (where x� is the closure of
� in R2) be a compact set such that � n D is connected. Consider the eigenvalue
problem 8̂̂<̂

:̂
��u D � in � nD;

u � 0 in D;

@�u � 0 in @� nD:

(1.1)

When D has non-empty interior relative to x�, we interpret this problem as deleting
the relative interior ofD from� and enforcing Dirichlet boundary conditions on @D.
We will suppose thatD is chosen such that this eigenvalue problem admits a discrete,
increasing sequence of non-negative eigenvalues ¹�Dn º and a corresponding orthonor-
mal basis of eigenfunctions ¹uDn º for L2.� n int.D// that (weakly) solve (1.1). When
we wish to emphasize the dependence on the domain, we may write �Dn .�/´ �Dn .
Note that because we did not place strong restrictions on D, the (weak) eigenfunc-
tions may not vanish pointwise on D (see [7]). We will assume throughout the paper
thatD is chosen such that eigenfunctions of (1.1) vanish everywhere onD. For exam-
ple, this holds if D is the closure of a relatively open subset of @� or if D � � and
� n D is a Lipschitz domain. However, one can show that D may be a somewhat
more pathological set, such as a line segment in the interior of �.
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For some subset E � R2, define the diameter of E to be the quantity

sup¹jx � yj W x; y 2 Eº:

Theorem 1.1. Suppose that� is convex. There exists "> 0 such that ifD is connected
with diameter at most ", then uD1 has no critical points in � n D.1 Moreover, if d
denotes the diameter of � and j0 � 2:40483 is the first zero of the Bessel function of
order zero, then it suffices to take

" D

r
1

�
j�j � exp

�
�
4�

j 20
�
d2

j�j

�
:

Remark 1.2. If D is compactly contained in �, then the hypothesis that D be con-
nected is necessary. We demonstrate this in Example 4.1 below. If D is contained
in @�, then it is unclear to us whether connectivity is a necessary condition or if its
requirement is merely an artifact of the proof.

Remark 1.3. Our proofs of Theorems 1.1, 1.6, and 2.3 are heavily inspired by the
proof of Miyamoto’s [15, Theorem A]. By extension, Theorems 1.6 and 2.3 are modi-
fications of Weinberger’s proof of the maximality of the second Neumann eigenvalue
of a Euclidean ball [21].

The well-known hot spots conjecture of J. Rauch (see [20]) states that extrema
of solutions to the heat equation (with generic initial conditions) on a free membrane
tend toward the boundary of the membrane as time tends toward infinity. It is not hard
to see (see [3]) that this statement is equivalent to second Neumann eigenfunctions of
the Laplace operator (i.e., second eigenfunctions of (1.1) withD D;) having extrema
only on the boundary. A natural generalization of this problem is to ask for which sets
D does the heat equation with perfect refrigeration on D and perfect insulation on
@� nD have solutions with extrema tending toward the boundary over time. Theo-
rem 1.1 shows that if� is convex andD is connected and sufficiently small, then this
is the case.

There has been recent interest by researchers in variants of the hot spots conjecture
for the mixed problem. In 2024, the following pre-prints appeared: [1,8,9,14]. To our
knowledge, these are the first papers on the topic since a handful of results in the early
2000s: [4, 5, 18].

Theorem 1.1 is the combination of Propositions 1.5 and 2.4 below.

1Recall that a domain is, by definition, open, so the theorem does not prohibit critical points
in @�.
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Definition 1.4. Let � � R2 be a simply connected, bounded Lipschitz domain. Let
D � x� be as above. For each y in the smooth part of @�, let �.y/ be the outward
normal vector to the boundary at y. We say that the pair .�;D/ is Neumann convex if
for any x 2� nD and for any y 2 @� nD for which �.y/ is defined, the dot product
.y � x/ � �.y/ is non-negative. Equivalently, .�;D/ is Neumann convex if and only
if @� nD is contained in the boundary of the convex hull of � nD.

For instance, if � is convex, then .�;D/ is Neumann convex for any choice of
D � x�. The converse, however, is not true. For example, if � is a nodal domain of
a second Neumann eigenfunction of a convex domain z� (which one often expects
to be non-convex) and D equals the nodal set of the eigenfunction, then .�; D/ is
Neumann convex. For other examples of non-convex but Neumann convex domains,
see Examples 4.1, 4.2, and 4.4 in Section 4 below.

Proposition 1.5. Suppose that .�;D/ is Neumann convex and that D is connected.
Let d be the diameter of�, and let j0 � 2:4048 be the first zero of the Bessel function
J0.x/. If

�D1 �
�j0
d

�2
;

then uD1 has no critical points in � nD.

In Section 2, we solve two shape optimization questions for the mixed problem
that appear to be new. Using these estimates, we show some explicit examples where
this inequality holds, and we use these results to prove some new results on the hot
spots conjecture. Roughly speaking, Theorem 1.6 applies when � is long and narrow
with D contained near an end of �, while Proposition 2.4 applies when the diameter
of D is small.

Theorem 1.6. Let .�; D/ be a Neumann convex pair embedded in the upper half
plane ¹.x;y/ j y � 0º such thatD is contained in the closed second quadrant ¹.x;y/ j
x � 0; y � 0º. Let ` be the length of the projection of � onto the y-axis. Let A be
the area of the intersection of � with the first quadrant ¹.x; y/ j x; y � 0º. The first
mixed eigenvalue satisfies

�D1 �
��`
2A

�2
:

This inequality is sharp, and equality is uniquely achieved when � is the rectangle
.0; A=`/ � .0; `/ with D D ¹0º � Œ0; `�. Moreover, if

d`

A
�
2j0

�
� 1:531;

then �D1 � .j0=d/
2, so first mixed eigenfunctions have no critical points in � nD.
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Let Pn denote a regular polygon with n edges for n � 3. Let e be the relative
interior of an edge of Pn, and let Qn be the reflection of Pn over e. Let Kn D Pn [
e [Qn. An application of Theorem 1.6 above and [8, Theorem 1.1] is the following,
which we prove in Section 4.

Theorem 1.7. Second Neumann eigenfunctions of the Laplace operator on Kn have
no interior critical points. In particular, the hot spots conjecture holds for these
domains. Moreover, the second Neumann eigenvalue of these domains is simple.

We now give a brief outline of the paper. In Section 2, we make estimates on the
first mixed eigenvalues, showing in particular that this eigenvalue tends to zero with
the diameter of the Dirichlet region. In Section 3, we provide proofs of Theorem 1.1
and Proposition 1.5. To end the paper in Section 4, we provide a number of examples
and counterexamples illustrating our results.

2. First mixed eigenvalue estimates

In this section, we prove an eigenvalue estimate that, together with Proposition 1.5,
proves Theorem 1.1. We begin by recalling the variational characterization of the first
mixed eigenvalue and eigenfunction. Let H 1

D.�/ be the completion of the set of C1

functions in x� that vanish on D with respect to the norm

kuk2
H1

D

D

Z
�

.juj2 C jruj2/:

Then we have

�D1 D inf
u2H1

D
.�/n¹0º

R
�
jruj2R
�
juj2

; (2.1)

and the minimizers of the functional above are exactly the first mixed eigenfunctions
of the Laplacian. Constructing appropriate test functions for this functional allows us
to give upper bounds on the first mixed eigenvalue.

Let B.0; R1/ denote the ball in R2 centered at the origin with radius R1 > 0.
Consider the class of all pairs .�; D/ as in Section 1 such that D � B.0; R1/ and
such that the area of � n B.0; R1/ is some fixed positive number V . Theorem 2.3
below shows that the annulus of inner radiusR1 and area V maximizes the first mixed
eigenvalue over all such pairs. This estimate is particularly useful when� is a doubly
connected domain with D equal to its inner boundary.

The existing literature on eigenvalue optimization for the mixed problem is some-
what limited, but there do exist previous results in this area; see [2,10,16,19]. Hersch’s
result in [10] solves a similar problem to Theorem 2.3 in which the area of � itself
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as well as the length L of the inner boundary are both fixed quantities. Using simple
estimates on the eigenvalues of annuli (see equation (2.2) and Remark 2.5 below),
Theorem 2.3 gives a smaller upper bound on the first mixed eigenvalue than Hersch’s
theorem does when R1 is small and L is large.

Notation 2.1. For 0<R1 <R2, letA.R1;R2/D¹R1 < j.x;y/j<R2º be the annulus
with inner radius R1 and outer radius R2 centered at the origin.

Hypothesis 2.2. Let � be a bounded Lipschitz domain, and let D � x� be as in
Section 1. We may translate � and D such that D is contained in the closed ball
B.0;R1/, where R1 equals the diameter of D. Let �C D � n B.0;R1/, and let

R2 D

q
R21 C j�Cj=�:

Theorem 2.3. Let �, R1, and R2 be as in Hypothesis 2.2. Then

�D1 .�/ � �
@B.0;R1/
1 .A.R1; R2//:

Equality holds if and only if � D A.R1; R2/ with D D @B.0;R1/.

Proof. Let � be a non-negative first mixed eigenfunction for A.R1; R2/ with D D
@B.0; R1/. Since the first mixed eigenvalue is simple and � does not change signs,
� must be a radial function. We claim that � is strictly monotonic in the radial direc-
tion. Indeed, if not, then the set of critical points of � contains a circle of radius
R3 2 .R1; R2/. The restriction of � to the annulus A.R3; R2/ is a non-constant,
nowhere vanishing Neumann eigenfunction of A.R3; R2/. Such a function cannot
exist, so the claim must hold.

Extend � to ¹j.x; y/j > R2º by setting it equal to its (constant) value on the outer
boundary of A.R1; R2/. Extend � to vanish in the disk ¹j.x; y/j < R1º. Note that
A.R1; R2/ has area j�Cj, so

jA.R1; R2/ n�Cj D j�C n A.R1; R2/j:

Then the estimatesZ
�

jr�j2 D

Z
�\A.R1;R2/

jr�j2 �

Z
A.R1;R2/

jr�j2

and Z
�

j�j2 D

Z
�\A.R1;R2/

j�j2 C

Z
�nA.R1;R2/

j�j2

�

Z
�\A.R1;R2/

j�j2 C

Z
A.R1;R2/n�

j�j2 D

Z
A.R1;R2/

j�j2
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combine to give

�D1 .�/ �

R
�
jr�j2R
�
j�j2

�

R
A.R1;R2/

jr�j2R
A.R1;R2/

j�j2
D �

@B.0;R1/
1 .A.R1; R2//:

If each of the above inequalities is actually equality, then either � D A.R1; R2/ or �
equals the union of A.R1; R2/ with a subset of B.0; R1/ with non-empty interior. In
the latter case, unique continuation implies that the eigenvalue inequality is strict.

Proposition 2.4. Let �, R1, and R2 be as in Hypothesis 2.2. Suppose that R1 �
e�2 �R2. Then

�D1 .�/ �
4

R22 ln.R2=R1/
:

In particular, for fixed �, �D1 .�/ approaches 0 as the diameter of D approaches 0.

Proof. We begin by bounding �@B.0;"/1 .A."; 1// from above when " < e�2. Let .r; �/
denote polar coordinates on R2. Let �.r; �/ D 1 � ln.r/= ln."/. Then � vanishes on
¹r D "º, so its restriction to the annulus is a valid test function. We haveZ

A.";1/

jr�j2 D
�2�

ln "
:

Note that for each fixed r , � is increasing in ". Moreover, r 7! r�.r/2 is a convex
function whose derivative at r D 1 equals 1 � 2= ln."/. Since " < e�2, this implies
that r�2 > 2r � 1 � 0 for r 2 .1=2; 1/. Hence,Z

A.";1/

�2 � 2�

1Z
1=2

.2r � 1/dr D
�

2
:

We then have
�
@B.0;"/
1 .A."; 1// �

�4

ln "
:

Scaling a domain by a positive value C rescales its eigenvalues by 1=C 2. Thus, the
more general annulus A.R1; R2/ satisfies the inequality

�
@B.0;R1/
1 .A.R1; R2// D

1

R22
�
@B.0;R1=R2/
1 .A.R1=R2; 1// �

4

R22 ln.R2=R1/
: (2.2)

Theorem 2.3 then gives the desired estimate.



A hot spots theorem for the mixed eigenvalue problem with small Dirichlet region 1373

Remark 2.5. Using a Poincaré-type inequality, one can show that the first mixed
eigenvalue of the annulus is bounded below by

�
B.0;R1/
1 .A.R1; R2// �

2

R22 ln.R2=R1/
:

Hence, the estimate on �B.0;R1/
1 .A.R1; R2// obtained in the proof of Proposition 2.4

is sharp up to a constant multiple. This should be compared with the more general
result in [7], which is stated in terms of the Sobolev capacity of D.

3. Proofs of main results

By Proposition 2.4, Theorem 1.1 follows from Proposition 1.5, which we prove in this
section. We begin by reviewing some preparatory results on nodal sets (i.e., zero-level
sets) of Laplace eigenfunctions.

Nodal sets of Laplace eigenfunctions have been studied for many years. It is well
known that non-constant functions satisfying ��u D �u on an open set have nodal
sets that are unions of real-analytic arcs (see, e.g., [6]) and, in particular, have no
isolated points. If such u vanishes at a critical point p, then there exists a disk neigh-
borhood U of p such that .U \ u�1.¹0º// n ¹pº is the union of at least four arcs.
Moreover, U can be chosen such that u is positive in half of the connected compo-
nents of U n u�1.¹0º/ and negative in the other components. The following lemma
places an additional restriction on the nodal sets of eigenfunctions whose eigenvalue
is �D1 .

Lemma 3.1. Let u be a pointwise solution of��uD �D1 u (u is not necessarily equal
to uD1 ) in � that extends continuously to x�. Identify u with its extension. If u�1.¹0º/
contains a loop intersecting �, then the region bounded by this loop intersects D.

Proof. Recall the variational formulation (2.1) for �D1 and the fact that the only min-
imizers of the functional are scalar multiples of uD1 . Suppose for contradiction that
u�1.¹0º/ does contain a loop that bounds a topological disk B that does not inter-
sect D. Then � ´ u�B (where �B is the indicator function for B) is an element of
H 1
D.�/, and integration by parts givesZ

�

jr�j2 D �D1

Z
�

j�j2

since � D 0 on @�. This implies that � is a scalar multiple of uD1 . Since the loop
intersects �, the set � n B is non-empty and open, so we obtain a contradiction to
unique continuation.
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Let J0 be the order zero Bessel function of the first kind (see, for instance, [17,
Chapter 10]), and let j0 � 2:4048 be the first positive zero of J0.x/. Note that
J0.0/ D 1, so J0 is positive on Œ0; j0/. Note also that J 00.0/ D 0 and that J 00.x/ < 0
on .0; j0�. Let d be the diameter of �, and suppose that D is chosen such that
�D1 �

�
j0

d

�2.

Proof of Proposition 1.5. Suppose toward a contradiction that uD1 has a critical point
p 2 �. Since u does not vanish anywhere in � nD, we may suppose without loss
of generality that uD1 � 0. By translating �, we may suppose without loss of gen-
erality that p equals the origin. Using polar coordinates, let w.x; y/ D J0.

p
�D1 r/.

For .x; y/ 2 x�, we have r < d (with strict inequality since p is an interior point),
from which it follows that w > 0 in x�. By definition, w satisfies ��w D �D1 w in �.
Define f .x; y/ D uD1 .0/w.x; y/ � u

D
1 .x; y/. Then ��f D �D1 f . Moreover, f is

non-constant since �1 > 0 and f > 0 onD. We will use f to construct a test function
that contradicts the variational formulation (2.1) for �D1 .

We have f .0/ D 0 and rf .0/ D 0 since 0 is a critical point for both uD1 and w.
Thus, there exists a neighborhood U of 0 such that U n f �1.¹0º/ has at least four
connected components, with f taking alternating signs on each connected compo-
nent. By Lemma 3.1 and using that f > 0 on D, � n f �1.¹0º/ has at least four
connected components, and f is positive in at least two of these components. Since
D is connected, there exists a unique connected component of � n f �1.¹0º/ whose
closure contains D. Thus, there exists a connected component B of � n f �1.¹0º/ on
which f is positive and whose closure does not intersectD. Let � D f�B 2H 1

D.�/.
We claim that @�� < 0 almost everywhere on @�\ @B . Indeed, since j.x;y/j< d

on @� and since uD1 is Neumann on @� nD, the following holds for almost every
.x; y/ 2 @� nD:

@��.x; y/ D u
D
1 .0/@�w.x; y/ D u

D
1 .0/

q
�D1 J

0
0

�q
�D1 j.x; y/j

� .x; y/
j.x; y/j

� �:

Because .�;D/ is Neumann convex, we have .x; y/ � � � 0 for all .x; y/ 2 @� nD,
so @�� � 0 on @� \ @B . Using integration by parts and our knowledge of where �
vanishes, we have Z

�

jr�j2 D �D1

Z
�

�2 C

Z
@�\@B

�@�� � �
D
1

Z
�

�2:

Dividing both sides of this inequality by
R
�
�2 gives a contradiction to the variational

characterization (2.1) of �D1 since � vanishes on a non-empty open set.

Proof of Theorem 1.1. The first statement follows from Propositions 1.5 and 2.4. We
now quantify which values of " are sufficiently small for the first statement of the
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theorem to hold. LetR1 andR2 be as in Hypothesis 2.2, and let d denote the diameter
of �. Then the inequality j�Cj � j�j � �R21 implies that R2 �

p
j�j=� . Recall

that the ratio d2=j�j is minimized by a Euclidean disk, so d2=j�j � 4=� . Since
4�=j 20 > �=2, we get

R1 �
p
j�j=� exp

�
�
4�

j 20
�
d2

j�j

�
�
p
j�j=� exp

�
�
�

2
�
4

�

�
D e�2

p
j�j=� � e�2R2:

Thus, by Proposition 2.4, we have

�D1 .�/ �
4

R22 ln.R2=R1/
: (3.1)

By hypothesis, we have

R1 �
p
j�j=� � exp

�
�
4�

j 20
�
d2

j�j

�
� R2 exp

�
�
4�

j 20
�
d2

j�j

�
;

which may be rearranged to give

4

.j�j=�/ ln.R2=R1/
�

�j0
d

�2
:

Concatenating this with equation (3.1) gives

�D1 .�/ �
4

.j�j=�/ ln.R2=R1/
�

�j0
d

�2
;

and the result follows from Proposition 1.5.

We next prove Theorem 1.6, which in some cases gives a more relaxed geometric
condition than Theorem 1.1 under which a Neumann convex pair .�; D/ has first
mixed eigenfunctions with no interior critical points.

Proof of Theorem 1.6. Orient .�;D/ in the plane as in the paragraph preceding the
theorem statement. Let R denote the rectangle .0; A=`/ � .0; `/. Let �C D � \

¹.x;y/ 2R2 j x > 0º. ThenR and�C have the same area, and jR n�Cj D j�C nRj.
Define a test function

�.x; y/ D

8̂̂̂<̂
ˆ̂:
0 if x � 0;

sin
��`x
2A

�
if 0 < x < A=`;

1 if A=` � x:

Then, �j� 2 H 1
D.�/. The two estimatesZ

�

jr�j2 D

Z
�\R

jr�j2 �

Z
R

jr�j2 and
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�

j�j2 D

Z
�C\R

j�j2 C

Z
�CnR

j�j2 �

Z
�C\R

j�j2 C

Z
Rn�C

j�j2 D

Z
R

j�j2

combine to give

�D1 �

R
�
jr�j2R
�
j�j2

�

R
R
jr�j2R
R
j�j2

D

��`
2A

�2
:

The sharpness of the estimate and uniqueness of the extremizer follow from a similar
argument to that given in the proof of Theorem 2.3.

Now, suppose that, d`=A � 2j0=� . Then we have

�D1 �
��`
2A

�2
�

�j0
d

�2
:

The last statement follows from this estimate combined with Proposition 1.5.

4. Examples

In this section, we construct several examples that satisfy the hypotheses of Proposi-
tion 1.5 and Theorem 1.1 as well as examples illustrating the necessity of the connec-
tivity hypothesis in these results. We begin with the latter.

Example 4.1. Let� be the square given by the product of intervals .�1;1/� .�1;1/.
We first show that if we allow D to have two connected components, then there exist
arbitrarily small sets D in � such that uD1 has an interior critical point. However, we
do not know whether this critical point is a local extremum.

Let 0< "< 1=2. LetD" equal the union of the disksB..˙";0/;"=2/. See Figure 1.
Then the first eigenfunction uD"

1 is even about both the x- and y-axis since it is non-
negative. Hence, @xu

D"

1 � 0 on the y-axis and @yu
D"

1 � 0 on the x-axis. In particular,
the origin is a critical point of u for all such ".

Example 4.2. We now show that if D is allowed to have three connected compo-
nents, then there exists a convex domain with the diameter of D arbitrarily small and
such that the first mixed eigenfunction has an interior local extremum. Let � be an
equilateral triangle, and let " > 0. Number the vertices v1, v2, v3. For each i D 1; 2; 3,
let Bi denote the angle bisector at vertex vi . Let pi be the point on Bi between vi
and the incenter of � such that pi is distance 2"=

p
3 from the incenter. Let D" equal

the union of the closed disks of radius "=2 centered at the pi . For " sufficiently small,
D" is contained in � and has three connected components. See Figure 1. Since D
is invariant under the isometry group of � and a first mixed eigenfunction u1 does
not change signs in �, it follows that u1 is invariant under the isometry group of �.
Thus, u1 restricts to a first mixed eigenfunction of each fundamental domain �0 for
this group action with Dirichlet conditions on �0 \D" and Neumann conditions on
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Figure 1. The pairs .�;D/ constructed in Examples 4.1 and 4.2 – each with "D 0:1. The dotted
lines show the lines of symmetry for each figure. These graphics were created with Desmos
(2024).

@�0 nD". By [12, Proposition 2.1], each acute vertex of�0 is a local extremum of u1.
It follows that the incenter of � is a local extremum of u1.

Example 4.3. Let � denote the unit disk, and let D be a subarc of @� of length
˛ � � . Then, using the notation of Theorem 1.6, we have

d`

A
D

4

� � ˛=2C sin.˛=2/ cos.˛=2/
:

Numerical computation shows that d`=A� 2j0=d as long as ˛ � 1:976. In particular,
if D is a subarc of @� of length at most �=2, then uD1 has no interior critical points.

Example 4.4. The definition of Neumann convexity allows Theorem 1.6 to apply to
quite wild domains. Let 1 < a, and letR be the rectangle .0;a� 1/� .0;1/. LetR� be
the closed square Œ�1; 0� � Œ0; 1�. Let 
 be any simple curve contained in R� joining
the points .0; 0/ and .0; 1/ that can be locally expressed as the graph of a Lipschitz
function. Let � be the region bounded by the edges of R not contained in the y-axis
and by 
 . See Figure 2. Then

d`

A
�

p
a2 C 1

a � 1
! 1 as a!1:

Thus, for a sufficiently large,D D 
 defines an eigenvalue problem for which uD1 has
no critical points.

Theorem 4.5. Let Pn denote a regular n-gon with n � 4, and letD be a line segment
contained in an edge of Pn (D may equal the entire edge). Then

�D1 �
� j0
dn

�2
;

where dn is the diameter ofPn. In particular, corresponding first mixed eigenfunctions
have no interior critical points by Proposition 1.5.
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Figure 2. An example of a Neumann convex pair .�;D/ discussed in Example 4.4. The dashed
line segments show the square R�, and the solid black curve denotes D D 
 . Created with
Adobe Illustrator (2024).

Proof. NormalizePn so that the distance from the center ofPn to each vertex equals 1.
Suppose that Pn is embedded in the first quadrant of R2 with D contained in the
y-axis as in Theorem 1.6. Using the notation of Theorem 1.6, we have

d`

A
�
4

A
D

4

n sin.�=n/ cos.�=n/

for all n� 4. The right-hand side of this inequality is decreasing in n. One can numer-
ically check that we then have

d`

A
�
4

A
<
2j0

�

for n D 7 and therefore for all n � 7. However, the latter inequality fails to hold for
n � 6, so the cases n D 4; 5; 6 require other arguments.

One can check the n D 4 case directly using the first mixed eigenfunction with D
equal to an edge of P4 as a test function when D is a subset of an edge.

For n D 5 with P5 normalized as above, we have

d`

A
D
2 sin.2�=5/.1C cos.�=5//

5 sin.�=5/ cos.�=5/
<
2j0

�

by numerical computation.
The case n D 6 is the most involved. We will show directly that �D1 � .j0=d/

2

without reference to Theorem 1.6. Rescale, translate, and rotate P6 such that D is
contained in the y-axis, P6 has a vertex at the origin, and such that the length ` of
the projection of Pn onto the x-axis equals 1. So P6 has diameter 2=

p
3. Let R be

the rectangle .0; 1/ � .0; 1=
p
3/. Let zR be the rectangle .0; 1=2/ � .0; 1=2

p
3/. Note

that R � P6 (perhaps after reflecting P6 about the y-axis) and that P6 n R has twice
the area of zR. Define a test function �.x; y/D sin.�x=2/ 2H 1

D.P6/. Then using the
monotonicity of �jP6

and its derivative in x, we haveZ
P6

jr�j2 �

Z
R

jr�j2 C 2

Z
zR

jr�j2 D
1

2
p
3

��
2

�2�3
2
C
1

�

�
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and Z
P6

�2 �

Z
R

�2 C 2

Z
zR

�2 D
1

2
p
3

�3
2
�
1

�

�
;

so we have

�D1 �

R
P6
jr�j2R
P6
�2

�

��
2

�2
�

3
2
C

1
�

3
2
�

1
�

<
�j0
d

�2
;

where the last inequality holds by direct numerical computation.

Proof of Theorem 1.7. Let u denote a second Neumann eigenfunction of Kn. Let e
be the line of reflection of Kn as in the definition given in Section 1, and suppose
that e is contained in the x-axis. Then u decomposes into a sum of even and odd
eigenfunctions about this line:

ueven.x; y/ D
1

2
.u.x; y/C u.x;�y//;

uodd.x; y/ D
1

2
.u.x; y/ � u.x;�y//:

We claim that ueven is identically equal to zero. If not, then it restricts to a second Neu-
mann eigenfunction of Pn. In this case, every second Neumann eigenfunction of Pn
extends via reflection to a second Neumann eigenfunction ofKn. By [11, Lemma 3.3],
the nodal set of ueven cannot have distinct endpoints in e. Thus, the nodal set of ueven

has end points in two disjoint edges of Pn. By precomposing ueven by an appropri-
ate rotational symmetry, there exists another second Neumann eigenfunction v of Pn
whose nodal set does not intersect e. Since the extension of v to Kn by reflection has
three nodal domains, we get a contradiction to Courant’s nodal domains theorem, and
the claim holds.

Thus, the second Neumann eigenspace of Kn is spanned by extensions of first
mixed eigenfunctions of Pn with Dirichlet conditions on e. By the simplicity of the
first mixed eigenvalue, the second Neumann eigenvalue of Kn is simple. By the Hopf
lemma, these eigenfunctions have no critical points in e. By Theorem 4.5, the theorem
holds for n � 4. For n D 3, the theorem is a special case of [8, Theorem 1.1] or of
[14, Corollary 1.6].

We end the paper by using Proposition 1.5 to prove a more general result pertain-
ing to the hot spots conjecture.

Theorem 4.6. Let� be a convex domain, and let u be a second Neumann eigenfunc-
tion of �. Let �C D ¹x 2 � j u.x/ > 0º. If the diameter of �C is at most half of
the diameter of �, then u has no interior critical points in �C. The same statement
applies to the set on which u is negative.
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Remark 4.7. We do not know of any examples of a domain with a second Neumann
eigenfunction satisfying the hypothesis of Theorem 4.6. It would be interesting to find
out whether or not such a pair exists.

Before proving Theorem 4.6, we remind the reader of an upper bound on the
second Neumann eigenvalue on convex domains that appears as [3, Corollary 2.1]
and as Theorem 1 of Kröger’s paper [13].

Lemma 4.8. Let� be a convex domain with diameter d . The second Neumann eigen-
value �2 of the Laplacian on � is at most 4.j0=d/2.

Proof of Theorem 4.6. Let �, u, and �C be as in the theorem statement. Let �2 be
the eigenvalue associated to u. Because the restriction of u to �C is a first mixed
eigenfunction with Dirichlet conditions on u�1.¹0º/, we have �u

�1.¹0º/
1 .�C/ D �2.

Let d be the diameter of �, and let dC be the diameter of �C. Since dC � d=2, we
have

�
u�1.¹0º/
1 D �2 � 4

�j0
d

�2
� 4

� j0

2dC

�2
D

� j0
dC

�2
by Lemma 4.8. By the discussion in Section 1, .�C; u�1.¹0º// is Neumann convex,
so we may apply Proposition 1.5 to see that uj�C has no critical points in �C. To
get the second statement of the theorem, we simply apply the same argument to the
eigenfunction �u.

Acknowledgments. The author would like to thank Matthew Lowe for illustrating
Figure 2. He would also like to thank Mark Ashbaugh for providing several helpful
references on the mixed shape optimization problem.
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