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On existence of minimizers for weighted Lp-Hardy inequalities
on C 1;
-domains with compact boundary

Ujjal Das, Yehuda Pinchover, and Baptiste Devyver

Abstract. Let p 2 .1;1/, ˛ 2 R, and � ¨ RN be a C 1;
 -domain with a compact boundary
@�, where 
 2 .0; 1�. Denote by ı�.x/ the distance of a point x 2 � to @�. Let �W 1;pI˛

0
.�/

be the closure of C1c .�/ in �W 1;pI˛.�/, where�W 1;pI˛.�/ WD ¹' 2 W
1;p

loc .�/ W .kjr'jk
p

Lp.�Iı�˛� /
C k'k

p

Lp.�Iı
�.˛Cp/
� /

/ <1º:

We study the following two variational constants: the weighted Hardy constant

H˛;p.�/ WD inf
²Z
�

jr'jpı�˛� dx W
Z
�

j'jpı
�.˛Cp/

�
dx D 1; ' 2 �W 1;pI˛

0
.�/

³
;

and the weighted Hardy constant at infinity

�1˛;p.�/ WD sup
Kb�

inf
W
1;p
c .�n xK/

² Z
�n xK

jr'jpı�˛� dx W
Z

�n xK

j'jpı
�.˛Cp/

�
dx D 1

³
:

We show that H˛;p.�/ is attained if and only if the spectral gap �˛;p.�/ WD �1˛;p.�/ �

H˛;p.�/ is strictly positive. Moreover, we obtain tight decay estimates for the corresponding
minimizers. Furthermore, when� is bounded and ˛CpD 1, then �1

1�p;p
.�/D 0 (no spectral

gap) and the associated operator ��1�p;p is null-critical in � with respect to the weight ı�1
�

,
whereas, if ˛ C p < 1, then �1˛;p.�/ D

ˇ̌
˛Cp�1
p

ˇ̌p
> 0 D H˛;p.�/ (positive spectral gap)

and ��˛;p is positive-critical in � with respect to the weight ı�.˛Cp/
�

.

1. Introduction

Let N � 2 and � ¨ RN be a C 1;
 -domain with a compact boundary @�, where

 2 .0; 1�. Denote by ı�.x/ the distance of a point x 2 � to @�. Fix p 2 .1;1/ and
˛ 2 R. We say that the L˛;p-Hardy inequality (or the weighted Hardy inequality) is
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satisfied in � if there exists C > 0 such thatZ
�

jr'jp ı�˛� dx � C
Z
�

j'jp ı
�.˛Cp/
� dx for all ' 2 C1c .�/: (1.1)

The one-dimensional weighted Hardy inequality was originally proved by Hardy (see
[27, p. 329]). The celebrated papers [37, 42] should also be mentioned in connec-
tion with one-dimensional weighted Hardy-type inequalities, where general weights
in place of the distance function to the boundary are studied. A comprehensive review
on weighted Hardy inequalities is presented in [10]. For ˛ D 0, inequality (1.1) is
often called the Hardy inequality for domains with boundary. We note that (1.1)
can also be viewed as a geometric Caffarelli–Kohn–Nirenberg-type inequality for
domains with boundary (cf. [22]). The validity of (1.1) indeed depends on ˛ and
the domain �. For instance, if ˛ C p � 1, then (1.1) does not hold on bounded Lip-
schitz domains [29], see also Proposition 3.2. On the other hand, for ˛ C p > 1,
(1.1) is established for various types of domains: bounded Lipschitz domains [38],
domains with Hölder boundary [31], general Hölder conditions [44], unbounded John
domains [33], domains with sufficiently large visual boundary [29], domains having
uniformly p-fat complement [34, 43] and also for uniform domains with a locally
uniform Ahlfors regular boundary and p D 2 [41], see also the references therein.

Let�W 1;pI˛.�/´ ¹' 2 W
1;p

loc .�/ W

k'k �W 1;pI˛.�/
´ .kjr'jk

p

Lp.�Iı�˛
�
/
C k'k

p

Lp.�Iı
�.˛Cp/
�

/
/1=p <1º;

and let �W 1;pI˛
0 .�/ be the closure of C1c .�/ in �W 1;pI˛.�/. Set

H˛;p.�/ D inf
²Z
�

jr'jpı�˛� dx W
Z
�

j'jpı
�.˛Cp/
� dx D 1; ' 2 �W 1;pI˛

0 .�/

³
: (1.2)

It is clear thatH˛;p.�/ � 0. As mentioned above, if ˛C p � 1, then the L˛;p-Hardy
inequality does not hold for a bounded smooth domain (in other words, one has
H˛;p.�/ D 0). However, if H˛;p.�/ > 0 for a given domain �, then by means of
a standard density argument, it turns out that (1.1) holds with H˛;p.�/ as the best
constant for inequality (1.1). We call the constant H˛;p.�/ the L˛;p-Hardy constant
(or simply the weighted Hardy constant) of �.

For m 2 N, let

c˛;p;m´
ˇ̌̌˛ C p �m

p

ˇ̌̌p
:

We recall that if ˛ C p > N , then for any domain � ¨ RN , we have H˛;p.�/ �
c˛;p;N [6, Theorem 5] and [26, Theorem 1.1]. Further, if� ¨ RN is a convex domain
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and ˛Cp > 1, thenH˛;p.�/D c˛;p;1 [7, Theorem A]. There have been many efforts
towards the estimation of H˛;p.�/ for various domains, see for example, [9, 11, 18]
and references therein.

The main aim of the present article is to address the question of the attainment
in �W 1;pI˛

0 .�/ of H˛;p.�/ for C 1;
 -domains with compact boundary and study the
asymptotic behaviour of the corresponding minimizers when they exist. Consider
another variational constant, the weighted Hardy constant at infinity, namely,

�1˛;p.�/´ sup
Kb�

inf
W
1;p
c .�n xK/

² Z
�n xK

jr'jpı�˛� dx W
Z

�n xK

j'jpı
�.˛Cp/
� dx D 1

³
:

Remark 1.1. At this point, the above definition of the weighted Hardy constant at
infinity requires a short explanation. By the Agmon–Allegretto–Piepenbrink-type the-
orem (see, Theorem 2.1), we have

�1˛;p.�/ D sup
°
� 2 R W 9K b � and u 2 W 1;p

loc .� n
xK/ such that u > 0 and

� div.ı�˛� jruj
p�2
ru/ �

�

ı˛Cp
up�1 � 0 in � n xK

±
:

Indeed, this key property will play a central role throughout the paper.

Consider the spectral gap �˛;p.�/, defined by

�˛;p.�/ D �
1
˛;p.�/ �H˛;p.�/:

Since any u 2 W 1;p
c .� n xK/ for K b � can be extended by zero outside K and

considered as a �W 1;pI˛
0 .�/-function, it follows that one has �1˛;p.�/�H˛;p.�/, i.e.,

�˛;p.�/ � 0.

Remark 1.2. The .˛; p/-Laplacian

�˛;p.u/´ div.ı�˛� jruj
p�2
ru/

is clearly related to the energy functional
R
�
jr'jpı�˛� dx. Consider the linear case

p D 2, and let P be the Friedrichs extension of �ı.˛C2/� �˛;2 in L2.�I ı�.˛C2/� /.
Then the best Hardy constant H˛;2.�/ and �1˛;2.�/ are, respectively, the bottom of

the spectrum and the bottom of the essential spectrum of P in L2.�I ı�.˛C2/� / (see
for example [1]). Hence, �˛;2.�/ is indeed a spectral gap of P .

We show that for any domain� ¨ RN with compact C 1;�-boundary, the follow-
ing “gap phenomenon” holds true.
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Theorem 1.3. Let � ¨ RN be a domain with compact C 1;�-boundary. Then the
variational problem (1.2) admits a unique (up to a multiplicative constant) positive
minimizer in �W 1;pI˛

0 .�/ if and only if �˛;p.�/ > 0.

Moreover, we obtain the tight decay estimates of the minimizers (when exist) for
bounded domain in Theorem 6.1 and for unbounded domain in Theorem 7.2. These
results extend the main results of [32], which deals with the case ˛ D 0, to the case
˛ 2 R. The proofs of the theorems strongly rely on the fact that for C 1;�-domains
with compact boundary, one can compute explicitly the weighted Hardy constant at
infinity �1˛;p.�/. We will first prove the case of bounded C 1;�-domains, and then
the case of unbounded C 1;
 -domains with compact boundary, which we call exterior
domains by analogy with the case where the boundary is connected.

In the course of the paper, we also show some other results that are significant
in their own right and which we now describe. Besides the fact that the explicit esti-
mate of the weighted Hardy constant at infinity is crucial for our approach, there is
independent interest to analyze this constant in the weighted case (˛ ¤ 0), see [41].
First, we prove that if � is a C 1;�-bounded domain, then �1˛;p.�/ D c˛;p;1 (Corol-
lary 5.2), while for a C 1;�-exterior domain (i.e., an unbounded domain with compact
boundary), we have (Theorem 7.1)

�1˛;p.�/ D c˛;p ´ min¹c˛;p;1; c˛;p;N º:

Note that if ˛ C p D 1, then c˛;p;1 D 0 and hence H˛;p.�/ D 0, i.e., the Hardy
inequality (1.1) fails to hold in this case. In fact, the Hardy inequality (1.1) does not
hold for C 1;�-bounded domains when ˛ C p � 1 (see [29] and also Theorem 3.1).
Moreover, for such .˛;p/, we show that��˛;p is null-critical (resp., positive critical)
in � with respect to the weight ı�.˛Cp/� if ˛ C p D 1 (resp., ˛ C p < 1), see Propo-
sition 3.2. Similarly, in C 1;
 -exterior domains, if ˛ C p 2 ¹1;N º, then c˛;p D 0 and
the Hardy inequality (1.1) does not hold (Corollary 3.4 and Theorem 7.1).

Let us discuss now the behavior of a minimizer. We show in Theorem 6.1 that
a positive minimizer u (if exists) satisfies u � ı�� near the compact boundary @�,
where either � 2

�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1 or � 2

�
˛Cp�1
p

; 0
�

if ˛ C p < 1 is
the unique solution of the (transcendental) indicial equation

j�jp�2�Œ˛ C .1 � �/.p � 1/� D H˛;p.�/:

In fact, if ˛ C p < 1, then H˛;p.�/ D 0 for C 1;
 -bounded domains, and therefore,
� D 0. In addition, when � is a C 1;�-exterior domain, we prove in Theorem 7.2
that the minimizer u also satisfies u � jxjQ� � ı Q�� near1, where either Q� 2

�
˛Cp�N
p�1

;
˛Cp�N

p

�
if ˛C p < N or Q� 2

�
0; ˛Cp�N

p

�
if ˛C p > N is the unique solution of the
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indicial equation

j Q�jp�2 Q�Œ.˛ �N C 1/C .1 � Q�/.p � 1/� D H˛;p.�/:

The gap phenomenon for Hardy-type inequalities has a long history. For instance,
for ˛ D 0 and bounded C 2-domains, the gap phenomenon has been established in
[35, p D 2] and [36, p 2 .1;1/]. In C 2-exterior domains, one-way implication of
the gap phenomenon was established in [15], which was extended to the weighted
case for p D 2 in [16]. One of the crucial difficulties occurs in the weighted case due
to the simultaneous concentrations at the boundary and at infinity, see [16]. A related
gap phenomenon for weighted Hardy-type inequalities for C 2-bounded domains and
˛ C p > 1 is proved in [5]. See also [14] where the gap phenomenon is established
under the Neumann boundary condition. It is important to mention that indeed there
are C 1;�-bounded domains with a positive spectral gap (Remark 6.5). However, to
our knowledge, it has not been clear whether there are exterior domains with a positive
spectral gap. In fact, we observe that there is no such C 1;�-exterior domains if ˛ C
p � N . Nevertheless, when ˛ C p < N , we show that such exterior domains exist,
see Remark 7.7.

Now, we briefly describe our approach, which is based on the criticality theory.
Having a C 2-domain, the authors in [35,36] used the existence of tubular coordinates
near the boundary and the C 2-smoothness of the distance function near the boundary,
which allowed them to construct suitable sub- and supersolutions of the correspond-
ing Euler–Lagrange equation using the so called Agmon trick, see [35, 36] for more
details. Therefore, going from C 2-domains to C 1;
 for some 
 2 .0; 1� was indeed
significantly challenging. In [32], the authors used criticality theory to prove the gap
phenomenon in a C 1;
 -domain with a compact boundary and ˛ D 0. One of the key
steps of their proof is to show that the corresponding Euler–Lagrange equation admits
an Agmon ground state u provided there is a spectral gap, and under this assump-
tion, u in fact belongs to the right function space, see [32, Theorems 4.1, 4.4, 5.1,
and 5.4] for the details. For the first part of the proof, the authors used criticality the-
ory [32, Lemma 2.3], and for the second one they used Agmon’s trick to construct
suitable sub- and supersolutions of ([32, Lemmas 3.4 and 3.5]) of the correspond-
ing Euler–Lagrange equation followed by a weak comparison principle due to [36]
to compare the Agmon ground state and these sub- and supersolutions. Since the dis-
tance function is only Lipschitz continuous near a C 1;�-boundary, they replaced the
distance function by the Green function of ��p (for exterior domains the authors
also used certain power functions of jxj to investigate the behaviour near infinity). It
is important to note that this replacement was effective due to the fact that the Green’s
function of ��p is C 1; Q�-smooth near @� and satisfies the Hopf-type lemma and
therefore behaves asymptotically near @� as the distance function ([32, Lemma 3.2]).
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Our main tool of the present paper for proving the gap phenomenon is criticality
theory for equation (2.1). As it is done in [32] for the case of ˛ D 0, we first recall
that if there is a spectral gap, then the operator ��˛;p �H˛;p.�/ı

�.˛Cp/
� 	p is crit-

ical in � and therefore, it admits an Agmon ground state (Lemma 2.8). In the next
step, we construct, with the help of the Agmon trick, suitable sub- and supersolutions
of the corresponding Euler–Lagrange equation (2.1), in order to obtain the asymp-
totic behaviour of a minimizer near the boundary. To perform the Agmon trick in the
weighted case (˛ ¤ 0), we first derive the basic tool, a chain rule (2.3) for �˛;p , in
Lemma 2.10. In view of (2.3), one may anticipate using the powers of Green’s func-
tion of ��˛;p (or the powers of ı�) to exploit the Agmon trick when the domain
is bounded. But, this does not help as the Green’s function of ��˛;p (or the powers
of ı�) for certain ˛ and p does not satisfy Hopf-type lemma, see Remark 8.1 (ii).

One of our crucial ideas is to realize that the powers of the Green function of
��p in� is the right comparison functions for our purpose near @�, see Lemma 5.1.
This realization comes from the identity (2.5) in Remark 2.11. As the identity (2.5)
shows, one needs to take care of the extra singular terms in this identity to successfully
perform the Agmon trick in the weighted case. Additionally, for exterior domains, a
standard analysis of the function t 7! jt jp�2t Œ.˛ �N C 1/C .1� t /.p � 1/� on cer-
tain compact interval leads us to determine the appropriate power function of jxj to
apply the Agmon trick near infinity, see Lemma 5.4. Finally, in order to compare the
Agmon ground state and these sub- and supersolutions, we derive the weak compari-
son results in Lemma 4.2 and Lemma 4.3 which extend the weak comparison results
of [36] to the weighted case. Certain estimates of the integral of some powers of the
distance function near the boundary play a crucial role in extending these results to
the weighted case.

In Table 1, we summarize the spectral gap phenomenon as a function of the bound-
edness of � and the values of ˛ C p. We use the notation �˛;p.�/ � 0 for cases in
which we give examples of domains with and without a positive spectral gap.

Throughout the paper, we use the following notation and conventions.

• For R > 0, we denote by BR � RN the open ball of radius R centered at 0, and
let BcR D RN n BR.

• For r > 0, we set �r ´ ¹x 2 � W 0 < ı�.x/ < rº, �r ´ ¹x 2 � W ı�.x/ > rº,
and

†r ´ ¹x 2 � W ı�.x/ D rº; Dr ´
°
x 2 � W

1

2
r < ı�.x/ < r

±
:

• �S denotes the characteristic function of a set S � RN .

• We write A1 b A2 if A1 is a compact set, and A1 � A2.
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• For a Lebesgue measurable set A � RN , its Lebesgue measure is denoted by
jAjN .

• C refers to a positive constant which may vary from line to line.

• Let g1; g2 be two positive functions defined in �. We write g1 � g2 in � if there
exists a positive constant C such that C�1g2.x/� g1.x/� Cg2.x/ for all x 2�.

• Let g1; g2W�! R. If x0 2 x� [ ¹1º and limx!x0
g1.x/
g2.x/

D 1, we write g1 � g2
as x ! x0.

• For any real valued measurable function u and � � RN , we define

inf
�
u D ess inf

�
u; sup

�

u D ess sup
�

u; uC D max.0; u/; u� D max.0;�u/:

• For a subspace X.�/ of measurable functions on �, Xc.�/´ ¹f 2 X.�/ j
supp f b �º.

• For a real valued function u, we define 	p.u/ D juj
p�2u.

• The operator �p.u/´ div.jrujp�2ru/ is called the p-Laplacian.

• The operator �˛;p.u/´ div.ı�˛� jruj
p�2ru/ is called the .˛; p/-Laplacian.

• Lp.�I!/ denotes the weighted Lp space on � with respect to the weight func-
tion !.

2. Preliminaries

Let V 2 L1loc.�/. Consider the functional

Q˛;p;V .'/´

Z
�

.ı�˛� jr'j
p
C V j'jp/dx for all ' 2 C1c .�/:

In particular, for V D ��ı�.˛Cp/� with � 2 R, we study the functional

Q
˛;p;��ı

�.˛Cp/
�

.'/ D

Z
�

.ı�˛� jr'j
p
� �ı

�.˛Cp/
� j'jp/dx for all ' 2 C1c .�/:

The associated Euler–Lagrange equations (up to the multiplicative constant p) are

Q˛;p;V .w/´ .��˛;p C V 	p/w D 0 in �;

and

Q
˛;p;��ı

�.˛Cp/
�

.w/´
�
��˛;p �

�

ı
˛Cp
�

	p

�
w D 0 in �: (2.1)
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A function u 2 W 1;p
loc .�/ is called a (weak) subsolution (resp., supersolution) of the

equation
.��˛;p C V 	p/w D 0 in � (2.2)

if Z
�

.ı�˛� jruj
p�2
ru � r' C V jujp�2u'/dx � 0 .resp., � 0/

for all non-negative ' 2 C1c .�/, and in this case we write Q˛;p;V .u/ � 0 (resp.,
� 0). A function u 2 W 1;p

loc .�/ is a (weak) solution of (2.2) if u is both subsolution
and supersolution of (2.2). Furthermore, we write Q˛;p;V � 0 in � if the equation
Q˛;p;V .w/ D 0 in � admits a positive (super)solution in �.

2.1. Basic notions in criticality theory

First, we quote the Agmon–Allegretto–Piepenbrink (AAP)-type theorem (see [39,
Theorem 4.3]) stated for our particular case.

Theorem 2.1 (AAP-type theorem). The following assertions are equivalent:

(i) Q˛;p;V � 0 on C1c .�/;

(ii) the equation Q˛;p;V .w/ D 0 in � admits a positive (weak) solution;

(iii) the equation Q˛;p;V .w/ D 0 in � admits a positive (weak) supersolution.

We recall some basic results of criticality theory for the operatorQ˛;p;V in�. The
operator Q˛;p;V � 0 in � is subcritical in � if there exists a non-zero non-negative
W 2 C1c .�/ such that Q˛;p;V�W � 0 in �, otherwise Q˛;p;V is critical in �. It
follows from the AAP theorem (Theorem 2.1), thatQ˛;p;V is critical in� if and only
if the equation Q˛;p;V .w/ D 0 in � admits a unique (up to a multiplicative constant)
positive supersolution, and this supersolution is in fact a (unique) positive solution of
the above equation (see [39] and references therein). It is called the Agmon ground
state (or simply ground state) of Q˛;p;V in �.

Definition 2.2 (Positive solution of minimal growth at infinity). Let K0 be a com-
pact set in � such that � n K0 is connected. A positive solution u of the equation
Q˛;p;V .w/ D 0 in � n K0 is said to be a positive solution of minimal growth in a
neighborhood of infinity in� (and denote it by u 2M�nK0) if for any compact setK
in �, with a smooth boundary, such that � nK is connected and K0 b int.K/, and
any positive supersolution v 2 C..� nK/ [ @K/ of the equation Q˛;p;V .w/ D 0 in
� nK, the inequality u � v on @K implies that u � v in � nK.

A positive solution u of minimal growth at infinity with respect to K0 D ;

(u 2M�) is called a global minimal solution.
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It turns out that Q˛;p;V admits a global minimal solution in � if and only if
Q˛;p;V is critical in � ([39, Theorem 5.9]). Hence, a global minimal solution is a
ground state of the corresponding critical operator Q˛;p;V . In [39, Theorem 5.9],
it was moreover proved, under the assumption that Q˛;p;V is non-negative, that for
any given x0 2 �, there exists a positive solution ux0 2M�n¹x0º. However, a subtle
issue concerning ux0 was left aside in this work and appears to be lacking also in the
current literature, namely, the possibility that ux0 has a removable singularity at x0
(i.e., extends to a global solution in the whole �), but is not in M�. We address
this issue in Appendix D; namely, we show that if ux0 2M�n¹x0º has a removable
singularity at x0 2�, then ux0 2M�, and therefore,Q˛;p;V is critical. As a corollary,
we can complete the results of [39, Theorem 5.9] and obtain the following theorem.

Theorem 2.3 ([39] and Theorem D.2). Let V 2 L1loc.�/, and assume that Q˛;p;V
is non-negative in �. Then for any x0 2 �, the equation Q˛;p;V .w/ D 0 admits a
positive solution ux0 in � n ¹x0º of minimal growth in a neighborhood of infinity
in �.

Moreover, we have the following dichotomy:

(i) either ux0 has a removable singularity in x0, and this occurs if and only if
Q˛;p;V is critical in �, and ux0 is an Agmon ground state,

(ii) or ux0 has a nonremovable singularity at x0, and this occurs if and only
if Q˛;p;V is subcritical in �, and ux0 is called a minimal positive Green
function of the operator Q˛;p;V in � with singularity at x0 2 �.

Remark 2.4. If� ¨ RN is a C 1;
 -domain, then clearly ��p is subcritical in�. Let
0 < ‰ 2 W

1;p
loc .�/ be a minimal positive Green function of the operator ��p in �

with a singularity at some x0 2 �. It is known that ‰ 2 C 1; Q
 .x� n ¹x0º/ for some
0 < Q
 � 1. Furthermore, the Hopf boundary point lemma holds for ��p in � (see
[32, Section 2]).

Next we recall the notion of a null-sequence.

Definition 2.5 (Null-sequence). A non-negative sequence .'n/ 2 W 1;p.�/\ Cc.�/

is called a null-sequence with respect to the non-negative functional Q˛;p;V if

• there exists a subdomain O b � such that k'nkLp.O/ � 1 for all n 2 N, and

• limn!1Q˛;p;V .'n/ D 0.

Definition 2.6 (Null vs. positive-criticality). We call an operatorQ˛;p;V null-critical
(respectively, positive-critical) in�with respect to a weight functionW � 0 ifQ˛;p;V

is critical in � with a ground state ˆ satisfying ˆ 62 Lp.�;W dx/ (respectively, ˆ 2
Lp.�;W dx/).
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Remark 2.7. The non-negative functional Q˛;p;V is critical in � if and only if it
admits a null-sequence in �. Moreover, any null-sequence converges weakly in
L
p
loc.�/ to the unique (up to a multiplicative constant) positive (super)solution of the

equation Q˛;p;V .w/ D 0 in �, hence, it converges to the ground state. Furthermore,
there exists a null-sequence which converges locally uniformly in � to the ground
state [39].

The following lemma, which is not new, asserts that if the spectral gap is strictly
positive, then the operator Q

˛;p;�H˛;p.�/ı
�.˛Cp/
�

is critical in �.

Lemma 2.8. If the spectral gap condition

�˛;p.�/ D �
1
˛;p.�/ �H˛;p.�/ > 0

is satisfied, then the operatorQ
˛;p;�H˛;p.�/ı

�.˛Cp/
�

is critical in�. In particular, the
equation

.��˛;p �H˛;p.�/ı
�.˛Cp/
� 	p/w D 0

admits a ground state in �.

Proof. The proof follows arguments similar to those in [32, Lemma 2.3].

It turns out that a ground state of a critical operator admits a null-sequence which
is pointwise bounded by the ground state.

Lemma 2.9 ([17, Lemma 5.5]). Let .'n/ 2 W 1;p.�/ \ Cc.�/ be a null-sequence
with respect to the non-negative functional Q˛;p;V , and let ˆ 2 W 1;p

loc .�/\ C.�/ be
a corresponding Agmon ground state. For each n 2 N, let O'n D min¹'n; ˆº. Then
. O'n/ is a null-sequence for Q˛;p;V .

2.2. A chain rule

The following lemma is an extension of [21, Lemma 2.10] to the operator�˛;p which
will be used frequently in this article.

Lemma 2.10. Let 0 < u 2 W 1;p
loc \ C.�/, and let F 2 C 2.RC/ satisfy F 0 � 0 and

.F 0/p�2F 00 is continuous on .0;C1/. Suppose that jF 0.u/jp�2jrF 0.u/j 2 L1loc.�/.
Then the following formula holds in the weak sense:

��˛;p.F.u// D �jF
0.u/jp�2Œ.p � 1/F 00.u/ı�˛� jruj

p
C F 0.u/�˛;p.u/�: (2.3)

Moreover, if �˛;p.u/ 2 L1loc.�/, then �˛;p.F.u// 2 L1loc.�/.
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Proof. Denote ��˛;p.u/ by g, and let ' 2 C1c .�/. By the product and chain rules,
we haveZ
�

jrF.u/jp�2rF.u/ � r'd� D �
Z
�

jrujp�2ru � r.jF 0.u/jp�2F 0.u//'d�

C

Z
�

jrujp�2ru � r.jF 0.u/jp�2F 0.u/'/d�;

where d� D ı�˛� dx. By our assumption on F and u, it follows that

jF 0.u/jp�2F 0.u/' 2 W 1;p
c .�/ \ C.�/:

Consequently, the second term of the right-hand side in the above equality equalsZ
�

jrujp�2ru � r.jF 0.u/jp�2F 0.u/'/d� D
Z
�

gjF 0.u/jp�2F 0.u/'dx:

Therefore,Z
�

jrF.u/jp�2rF.u/ � r'd� D �
Z
�

jrujp�2ru � r.jF 0.u/jp�2F 0.u//'d�

C

Z
�

gjF 0.u/jp�2F 0.u/'dx:

Consequently, in the weak sense we have

��˛;p.F.u//

D �ı�˛� jruj
p�2
ru � r.jF 0.u/jp�2F 0.u// ��˛;p.u/jF

0.u/jp�2F 0.u/:

Note that for p � 2 and s � 0, the function 	p.s/´ jsj
p�2s is continuously differ-

entiable, and 	0p.s/ D .p � 1/jsjp�2, so the chain rule in W 1;p implies that in this
case

r.jF 0.u/jp�2F 0.u// D .p � 1/jF 0.u/jp�2F 00.u/ru;

Therefore, in the weak sense,

ı�˛� jruj
p�2
ru � r.jF 0.u/jp�2F 0.u//D .p � 1/jF 0.u/jp�2F 00.u/ı�˛� jruj

p: (2.4)

Consider the case p < 2. In light of (A.6) in Appendix A (or by [28, Theorem 2.2.6]
which is applicable under the hypotheses on F ), it follows that (2.4) still holds true.
This implies (2.3), and hence clearly completes the proof of Lemma 2.10.
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Remark 2.11. Let‰ > 0 be a minimal positive Green function of the p-Laplacian in
� with a singularity at some x0 2 �. We have in � n ¹x0º

�˛;p.‰/ D div.ı�˛� jr‰j
p�2
r‰/ D ı�˛� �p.‰/ � ˛jr‰j

p�2r‰ � rı�

ı˛C1�

D �˛jr‰jp�2
r‰ � rı�

ı˛C1�

: (2.5)

Taking uD‰ in Lemma 2.10 with F 2C 2.RC/ satisfying its assumptions, we obtain
that the following formula holds in the weak sense in � n ¹x0º:

��˛;p.F.‰//

D � ı�˛� jF
0.‰/jp�2jr‰jp�2

h
.p � 1/F 00.‰/jr‰j2 � ˛F 0.‰/

r‰ � rı�

ı�

i
:

(2.6)

In the sequel, we will apply (2.6) to F.t/ D t� ˙ tˇ > 0, where � and ˇ will be
two well-chosen real exponents such that F meets near @� all the requirements of
Lemma 2.10 needed to obtain (2.6).

2.3. Some integrability results

We say a function gW� ! R is integrable near @� if there exists t > 0 such thatR
�t
jgjdx < 1. Let f W .0;1/! .0;1/ be a Lipschitz function. In the following

proposition, we discuss the integrability of f ı ı� near @�.

Proposition 2.12. Let� be a domain with compact C 1;
 -boundary and f W .0;1/!
.0;1/ be a Lipschitz continuous function. Then, f ı ı� is integrable near @� if and
only if f is integrable near 0.

Proof. Let a > 0, by the coarea formula we haveZ
�a

f .ı�/dx D

aZ
0

HN�1.†t /f .t/dt ; (2.7)

where†t ´¹x 2� W ı�.x/D tº and HN�1 denotes the .N � 1/-dimensional Haus-
dorff measure. Let z�t ´ ¹x 2 � W 0 < ı�.x/ < tº [�c . By [30, Theorem 3], we
have

HN�1.†t / � P.z�t ;R
N /

for all t > 0, where P.�;RN / is the De Giorgi perimeter with respect to RN [2,
Definition 3.35]. From the lower semicontinuity of P [2, Proposition 3.38], we obtain

HN�1.†t / � P.�;R
N / D P.�c ;RN / D HN�1.@�/; (2.8)
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where the equality P.�;RN / D P.�c ;RN / is well known [2, Proposition 3.38]
and the last equality holds as � 2 C 1;
 [20, see the discussion on p. 246]. Further,
since @� is compact, we have HN�1.@�/ <1 [20, Theorem 5.7], and subsequently,
P.�;RN / D P.�c ;RN / <1. Note that either � or �c is bounded in RN . Hence,
it follows from the isoperimetric inequality [2, Theorem 3.46] that HN�1.@�/ > 0.

Now, we claim that � has uniform lower density with respect to the boundary,
i.e., there exists t0; � > 0 such that

� �
jBr.x/ \ x�

cjN

jBr.x/jN
(2.9)

for all r 2 .0; t0/ and x 2 @� [30]. Note that for any C 1;
 -domain �, the reduced
boundary coincides with the usual boundary (see, for example, [23, Example 3.1])
and hence, C 1;
 -domains satisfy (2.9) with � D 1

2
and t0 D 1 [2, see the proof

of Theorem 3.61]. Thus, it follows from [30, Theorems 3 and 4] that there exists
t0; C > 0 such that

HN�1.†t / � C <1 for all t 2 .0; t0/; (2.10)

provided P.x�c ;RN / <1. Using [2, Proposition 3.38], we observe that

P.x�c ;RN / D P.x�;RN / D P.�;RN /;

which is shown above to be equal HN�1.@�/ <1. Hence, (2.10) holds.
Therefore, (2.7), together with (2.8), and (2.10) imply the proposition.

Remark 2.13. Let � be a domain with compact C 1;
 boundary. As an immediate
consequence of the above proposition, we infer that ı�a� is integrable near the bound-
ary if a 2 Œ0; 1/ and it is not integrable if a D 1. This fact will be used extensively in
the subsequent sections.

3. The case ˛C p � 1

In the present section we show that for C 1;
 -bounded domain, the weighted Hardy
inequality (1.1) does not hold if ˛ C p � 1. In fact, in this case, the corresponding
operator is critical.

The following theorem is known for bounded Lipschitz domains [29]. However,
we give a short proof for the reader’s convenience.

Theorem 3.1. Let � � RN be a C 1;
 -bounded domain. If ˛ C p � 1, then one has
H˛;p.�/ D 0.
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Proof. Following [6], we consider the test function u" D ı
"=p
� , where " > 0 is fixed.

Clearly, u" 2 C
0;1
loc .�/ (that is, u" is locally Lipschitz continuous function in �).

We claim that u" 2 �W 1;pI˛
0 .�/. Since � is a C 1;
 -bounded domain, it follows from

Proposition 2.12 that u" 2 �W 1;pI˛.�/. Moreover, note that C 0;1c .�/ � �W 1;pI˛
0 .�/,

and consider a function G 2 C1.R/ such that G.t/ � jt j, G.t/ D 0 if jt j � 1 and
G.t/ D t if jt j � 2. Define un;"´ 1

n
G.nu"/. Obviously, un;" 2 C

0;1
c .�/. The dom-

inated convergence theorem implies that un;" ! u" in �W 1;pI˛
0 .�/. Hence, we get

u" 2 �W 1;pI˛
0 .�/.

Next, we use the function u" 2 �W 1;pI˛
0 .�/ to prove that H˛;p.�/ D 0. Observe

that � "
p

�p Z
�

u
p
"

ı
˛Cp
�

dx D
Z
�

jru"j
p

ı˛�
dx:

This implies that H˛;p.�/ �
�
"
p

�p for all " > 0. Hence, H˛;p.�/ D 0.

Actually, for C 1;
 -bounded domains the following stronger result holds.

Proposition 3.2. Let � be a C 1;
 -bounded domain and suppose that ˛ C p � 1.
Then,

(i) ��˛;p is positive-critical in � with respect to the weight ı�.˛Cp/� when
˛ C p < 1;

(ii) ��˛;p is null-critical in� with respect to the weight ı�1� when ˛C p D 1.

In particular, under the above conditions, we have H˛;p.�/ D 0.

Proof. It can be verified that the sequence .un;1=n/ in the proof of Theorem 3.1 (with
"D 1

n
), is in fact a null-sequence with respect to the functional Q˛;p;0 when ˛Cp�1.

Hence, ��˛;p is critical with a ground state ˆ D 1 (alternatively, one can simply see
that 1 is a global solution of ��˛;p.'/ D 0 of minimal growth at infinity in �).

Now, if ˛C p < 1, then ˆ D 1 2 �W 1;pI˛.�/, and by the dominated convergence
theorem, it follows that un;1=n ! ˆ D 1 in �W 1;pI˛

0 .�/. Hence, ˆ 2 �W 1;pI˛
0 .�/ and

it is a minimizer. This proves (i).
On the other hand, if ˛CpD 1, then as we just noticed,ˆD 1 is a ground state of

��˛;p , and clearly,ˆ 62 �W 1;pI˛
0 .�/ (by Remark 2.13). Therefore, in this case,��˛;p

is null-critical in � with respect to the weight ı�1� . This completes our proof.

The next proposition gives the weighted Hardy constant and the Hardy constant
at infinity for the case � D RNC (the half-space). The value of the weighted Hardy
constant H˛;p.RNC / is well known for ˛ C p > 1 and it seems to be also known for
˛ C p � 1 ([8, inequality (5)], [10, Assertion 3.2.5, for ˛ D 0]). However, since we
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could not find an appropriate proof, we provide it here for the reader’s convenience.
The result for �1˛;p.R

N
C / seems to be new.

Proposition 3.3. H˛;p.RNC / D �1˛;p.R
N
C / D c˛;p;1, where RNC is the half-space

in RN .

Proof. We first prove that H˛;p.RNC / D c˛;p;1. It is well known that H˛;p.RC/ D
c˛;p;1, i.e.,

c˛;p;1

1Z
0

j'.t/jp

t˛Cp
dt �

1Z
0

j'0.t/jp

t˛
dt for all ' 2 C1c .RC/;

where the constant c˛;p;1 is sharp [24]. Since any positive solution of the equation

d
dt
.t�˛jf 0jp�2f 0/ � c˛;p;1t

�˛�p
jf jp�2f D 0 in RC;

clearly yields a positive solution of the equation�
��˛;p �

c˛;p;1

ı
˛Cp

RN
C

	p

�
w D 0 in RNC ;

it follows from the AAP-type theorem (Theorem 2.1) that

H˛;p.R
N
C / � H˛;p.RC/ D c˛;p;1:

Next, we show the converse inequality. We can of course assume that N � 2, oth-
erwise the problem is trivial. Our proof relies on the construction of suitable “almost
minimizing” sequences. Fix an arbitrary " > 0; we will show that

H˛;p.R
N
C / � H˛;p.RC/C ";

by evaluating both sides of the Hardy inequality along a suitable sequence .un/n2N .
We first make some preliminary remarks. Consider a function u 2 C1c .R

N
C /, which

is of the form
u.x/ D v.x0/'.xN /;

where x D .x0; xN / and v 2 C1c .R
N�1/, ' 2 C1c ..0;1//. Then, by Fubini, one hasZ

RN
C

ju.x/jp

x
˛Cp
N

dx D kvkpp

1Z
0

j'.t/jp

t˛Cp
dt: (3.1)

On the other hand,
jrujp D .j'rx0vj

2
C jv'0j2/p=2:
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Upon using the elementary inequality

.a2 C b2/p=2 � C."/ap C .1C "/bp; a > 0; b > 0;

and integrating, we conclude thatZ
RN
C

jru.x/jp

x˛N
dx � C."/kjrx0vjkpp

� 1Z
0

j'.t/jp

t˛
dt
�
C .1C "/kvkpp

� 1Z
0

j'0.t/jp

t˛
dt
�
:

(3.2)
We now fix the function ' 2 C1c ..0;C1//, and let .vn/n2N be a sequence of func-
tions with vn 2 C1c .R

N�1/ such that kvnkp D 1 and kjrvnjkp ! 0 as n! C1.
Such a sequence is easily constructed e.g., by taking 0 � � 2 C1c .R/ with

�.x/ D

´
1 jxj � 1;

0 jxj � 2;

and letting vn.x/D c
nN�1

�
�
jxj
n

�
, cD

�R
R�
��1. Now, considering the quotient of (3.2)

by (3.1) with the choice u.x/D vn.x0/'.xN / and letting n!C1 yields the inequal-
ity

H˛;p.R
N
C /

1Z
0

j'.t/jp

t˛Cp
dt � .1C "/

1Z
0

j'0.t/jp

t˛
dt:

Taking the minimum over all functions ' 2 C1c ..0;1//, it follows that

H˛;p.R
N
C / � .1C "/H˛;p.RC/:

Finally, letting "! 0 gives

H˛;p.R
N
C / � H˛;p.RC/:

We now prove that �1˛;p.R
N
C / D H˛;p.R

N
C /. First, one trivially has

�1˛;p.R
N
C / � H˛;p.R

N
C /:

For the converse, let us fix K b RNC , and let ' 2 C1c .R
N
C / be such thatZ

RN

j'.x/jp

x
˛Cp
N

dx D 1:

Let s > 0, and consider the function

 .x/´ s�
˛CpC1
p '.sx/:
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Then Z
RN

j .x/jp

x
˛Cp
N

dx D 1 and
Z

RN

jr .x/jp

x˛N
dx D

Z
RN
C

jr'.x/jp

x˛N
dx:

Moreover, if one chooses the parameter s large enough, then  has compact support
in RNC nK. Hence,

�1˛;p.R
N
C / �

Z
RN

jr .x/jp

x˛N
dx D

Z
RN
C

jr'.x/jp

x˛N
dx:

Taking the infimum over all '’s, we obtain the inequality

�1˛;p.R
N
C / � H˛;p.R

N
C /:

Thus, �1˛;p.R
N
C / D H˛;p.R

N
C /, which concludes the proof.

By localizing everything near a boundary point of a C 1;
 domain, which admits a
tangent hyperplane at every boundary point, we obtain the following result.

Corollary 3.4. Let � be a C 1;�-bounded or exterior domain. Then,

H1�p;p.�/ D �
1
1�p;p.�/ D H1�p;p.R

N
C / D 0:

Proof. In light of Proposition 3.3, it is sufficient to prove that �11�p;p.�/D 0. We give
only a rough sketch of the proof and refer to the literature for more details. Since any
boundary point admits a tangent hyperplane, one can apply the same arguments as in
[32, Theorem 4.1] and [35, Theorem 5] and use Proposition 3.3 for ˛CpD 1 to show
that locally around any point x0 2� it is possible to construct a minimizing sequence
concentrating at x0 such that the corresponding Rayleigh–Ritz quotient tends to zero.

4. Local a-priori estimates and weak comparison principles

First, we prove a local integral estimate for positive (super)solutions of��˛;p.'/D 0
in �. An analogous result for ˛ D 0 is proved in [36, Proposition 2.1].

Lemma 4.1. Let � ¨ RN be a domain, and 0 < u 2 W 1;p
loc .�/ be such that one has

��˛;p.u/ � 0 in � in the weak sense. Then the following statements hold.

(i) There exists C0 > 0 such that, for every x 2 �,Z
Br=2.x/

�
jruj

u

�p
ı�˛� dx � C0r�˛CN�p for all r 2 .0; ı�.x//: (4.1)
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(ii) If, in addition, @� is C 1;
 for some 
 2 .0; 1� and compact, then there exists
C1 > 0 such thatZ

Dr

�
jruj

u

�p�1
ı�˛� dx � C1r2�˛�p for all r > 0; (4.2)

where Dr ´
®
x 2 � W r

2
< ı� < r

¯
.

Proof. (i) Fix x 2 � and r 2 .0; ı�.x//. Consider a cutoff function � 2 C 1.Br.x//
satisfying

0 � � � 1; � D 1 on Br=2.x/; supp.�/ � B2r=3.x/; sup.jr� j/ �
C

r
: (4.3)

For every " > 0, �p

.uC"/p�1
2 W

1;p
0 .Br.x//. Testing ��˛;p.u/ � 0 against this func-

tion, we obtain Z
Br .x/

jrujp�2ru � r
� �p

.uC "/p�1

�
ı�˛� dx � 0:

This impliesZ
Br .x/

jrujp�2
�
p
� �

uC "

�p�1
ru � r� C .1 � p/�p

jruj2

.uC "/p

�
ı�˛� dx � 0:

Now, by (4.3), recalling in particular that � is supported in B2r=3.x/, and using the
Hölder inequality we get

.p � 1/

Z
Br .x/

�� jruj
uC "

�p
ı�˛� dx

�
Cp

r

Z
Br .x/

�� jruj
uC "

�p�1
ı�˛� dx

�
Cp

r

� Z
B2r=3.x/

ı�˛� dx
�1=p� Z

Br .x/

�� jruj
uC "

�p
ı�˛� dx

�.p�1/=p
:

Since ı� � r
3

on B2r=3.x/, we easily getZ
B2r=3.x/

ı�˛� � Cr
�˛CN :
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Therefore, Z
Br .x/

�� jruj
uC "

�p
ı�˛� dx � Cr�˛CN�p

for some C > 0 independent of ". Thus, letting "! 0 and recalling that � � 1 in
Br=2.x/, we obtain (4.1).

(ii) Let x 2 Dr . By Hölder inequality and (4.1)Z
Br=2.x/

�
jruj

u

�p�1
ı�˛� dx �

� Z
Br=2.x/

ı�˛� dx
�1=p� Z

Br=2.x/

�
jruj

u

�p
ı�˛� dx

�.p�1/=p
� Cr .N�˛/=pr .�˛CN�p/.p�1/=p D Cr1�˛CN�p:

Since @� is compact, the set Dr can be covered by a finite number of balls belong-
ing to the family

®
Br=3.x/ W x 2 � such that ı�.x/ D 3

4
r
¯
. Let N.r/ be the minimal

number of balls needed for such a cover. Since � is a C 1;�-domain with a compact
boundary, it follows thatN.r/� Cr1�N , where C > 0 depends only on the geometry
of � (see Appendix C). Thus, we have (4.2).

Next, we prove two “non-standard” weak comparison principles (WCP). The first
one concerns WCP in a neighborhood of @� (similar result for ˛ D 0 can be found in
[36, Proposition 3.1]) and the second concerns WCP near infinity.

Lemma 4.2. Let � ¨ RN be a domain with compact C 1;
 -boundary @�, and let
N@� �� be a relative neighborhood of @�. Assume that g 2L1.N@�/ and u1; u2 2
W
1;p

loc .N@�/ \ C.N@�/ be two positive functions such that�
��˛;p �

g

ı
˛Cp
�

	p

�
u1 � 0 �

�
��˛;p �

g

ı
˛Cp
�

	p

�
u2 in N@� \�:

In addition, suppose that the following growth condition holds true

lim inf
r!0

1

r

Z
Dr

u
p
1

h�
jru1j

u1

�p�1
C

�
jru2j

u2

�p�1i
ı�˛� dx D 0; (4.4)

where Dr D
®
x 2 � W 1

2
r < ı�.x/ < r

¯
. If

u1 � u2 on †a; (4.5)

for some a > 0 sufficiently small such that �a [†a � � \N@�, then

u1 � u2 in �a: (4.6)
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Proof. Let a > 0 be such that �a [†a � � \N@�. First, let us assume

u1 < u2 on †a: (4.7)

Consider h 2 C 1.R/ such that

0 � h � 1; h.t/ D 1 if t � 1; h.t/ D 0 if t �
1

2
; h0.t/ � 0 if t > 0:

For r 2 .0; a/, let  r be the function given by  r.x/ D h
�
ı�.x/
r

�
for x 2 �. Then  r

is a Lipschitz continuous function and

rkr rk1 � C0´ sup jh0j: (4.8)

Notice that  r D 0 in
®
x 2� W 0 < ı�.x/ <

r
2

¯
. By continuity, the inequality u1 < u2

still holds in a neighborhood of†a. In what follows, we assume that r 2 .0;a/ is close
enough to a, so that u1 < u2 on †r . For such an r , let

w D ��r .u
p
1 � u

p
2 /C:

Since u1; u2 2W
1;p

loc .N@� \�/\ C.N@� \�/ are positive, it follows that the func-
tions up1 ; u

p
2 2 W

1;p
loc .N@� \�/ \ C.N@� \�/. Thus, in view of (4.5),

w 2 W
1;p

loc .N@� \�/ \ C.N@� \�/

and

rw D

´
r.u

p
1 � u

p
2 / if x 2 N@� \� and u1 > u2;

0 otherwise:
(4.9)

In view of (4.7), w D 0 in a neighborhood of †a. Hence,  rwu
1�p
2 2 W

1;p
0 .�a/.

Testing the inequality
�
��˛;p �

g

ı
˛Cp
�

	p
�
u2 � 0 against this test function, we obtainZ

�a

jru2j
p�2
ru2 � r. rwu

1�p
2 /ı�˛� dx �

Z
�a

g

ı
˛Cp
�

 rwdx:

Testing the inequality �
��˛;p �

g

ı
˛Cp
�

	p

�
u1 � 0

against the function  rwu
1�p
1 which is in 2 W 1;p

0 .�a/, we obtainZ
�a

jru1j
p�2
ru1 � r. rwu

1�p
1 /ı�˛� dx �

Z
�a

g

ı
˛Cp
�

 rwdx:
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Subtracting the latter two inequalities, we getZ
�a

jru2j
p�2
ru2 � r. rwu

1�p
2 /ı�˛� dx �

Z
�a

jru1j
p�2
ru1 � r. rwu

1�p
1 /ı�˛� dx

� 0: (4.10)

Now, suppose that (4.6) does not hold. Then E D ¹x 2 �a W u1 > u2º has a positive
measure. Consider

I1.r/ D

Z
E

Œjru2j
p�2
ru2 � r.wu

1�p
2 / � jru1j

p�2
ru1 � r.wu

1�p
1 /� rı

�˛
� dx;

I2.r/ D

Z
E

w
h
jru2j

p�2ru2

u
p�1
2

�
jru1j

p�2ru1

u
p�1
1

i
� r rı

�˛
� dx:

By (4.10), we have

I1.r/C I2.r/ � 0 for all r 2 .0; a/:

Using (4.8), we estimate

jI2.r/j �
C0

r

Z
Dr

u
p
1

h�
jru1j

u1

�p�1
C

�
jru2j

u2

�p�1i
ı�˛� dx for all r 2 .0; a/:

Consequently, by (4.4), we have lim infr!0 jI2.r/j D 0. On the other hand, we claim
that I1.r/ � 0 for all r 2 .0; a/. Indeed, using (4.9) one sees that I1.r/ can be written
in the form

I1.r/ D �

Z
E

H.u1; u2;ru1;ru2/ rı
�˛
� dx;

where the function H is given by

H.t1; t2; x1; x2/ D
h
1C .p � 1/

� t2
t1

�pi
jx1j

p

� p
h
jx1j

p�2
� t2
t1

�p�1
C jx2j

p�2
� t1
t2

�p�1i
x1 � x2

C

h
1C .p � 1/

� t1
t2

�pi
jx2j

p

for all t1; t2 2 RC, x1; x2 2 RN . It was proved by Anane [4] thatH.t1; t2; x1; x2/ � 0
for all t1; t2 2 RC, x1; x2 2 RN . Thus, I1.r/ � 0. Since I1.r/ is non-decreasing,
it follows that either I1.r/ D 0 for all r 2 .0; a/, or there exist a0 > 0 and 
0 > 0

such that I1.r/ � �
0 for all r 2 .0; a0/. This is not possible as I1 C I2 � 0 and
therefore, lim supr!0 I1.r/ � 0. On the other hand, if I1.r/ D 0 for all r 2 .0; a/,
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then H.u1; u2;ru1;ru2/ D 0 on E. Thus, it follows from [4, Proposition 1] that
u1ru2 � u2ru1 D 0 in E. Hence, u2

u1
is constant in every connected component of

the open set E. Furthermore, there exists such a component E 0 with @E 0 \ � ¤ ;,
and if � 2 @E 0 \� ¤ ;, then u1.�/ D u2.�/. Since u2

u1
is constant in E 0, it follows

that u1 D u2 in E 0, a contradiction to the definition of E. This contradiction shows
that E cannot have a positive measure. Since E is open, it is empty.

In the general case, assuming only (4.5), we apply the above result to the functions
u1 and .1 C "/u2 where " > 0. It follows that u1 � .1 C "/u2 in �a and " > 0 is
independent of a. Since this inequality holds for arbitrary " > 0, we obtain the desired
result.

Next, we prove a similar WCP near infinity for an exterior domain � ¨ RN . Let
us recall that for R > 0, set

�R ´ ¹x 2 � W ı�.x/ > Rº; †R ´ ¹x 2 � W ı�.x/ D Rº:

Lemma 4.3. Let � ¨ RN be an exterior domain with compact boundary and let
R0 > 0 be sufficiently large. Assume that g 2 L1.�R0/ and u1; u2 2 W

1;p
loc .�

R0/\

C.�R0/ be two positive functions such that�
��˛;p �

g

ı
˛Cp
�

	p

�
u1 � 0 �

�
��˛;p �

g

ı
˛Cp
�

	p

�
u2 in �R0 :

In addition, suppose that the following growth condition holds true

lim inf
R!1

1

R

Z
DR

u
p
1

h�
jru1j

u1

�p�1
C

�
jru2j

u2

�p�1i
ı�˛� dx D 0; (4.11)

where DR D
®
x 2 � W 1

2
R < ı�.x/ < R

¯
. If u1 � u2 on †R1 for some R1 > R0,

then u1 � u2 in �R1 .

Proof. We replace r; �r ; †r , etc., in the proof of Lemma 4.2, with R;�R; †R, etc.,
and take h 2 C 1.R/ such that

0 � h � 1; h.t/ D 0 if t � 1; h.t/ D 1 if t �
1

2
; h0.t/ � 0 if t > 0:

Then the proof of the lemma is literally the same as the proof of Lemma 4.2, and
therefore, it is omitted.
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5. Construction of sub and supersolutions

We assume that ˛ C p ¤ 1. First, we construct sub and supersolutions near the com-
pact boundary of a domain � 2 C 1;� for the equation

.��˛;p � �ı
�.˛Cp/
� 	p/w D 0 in � (5.1)

using Agmon’s trick (see, [32, Lemma 3.4] and references therein). As a motivation,
we note that in the model case�DRNC , the function ı�

RN
C

D x�N is a solution of (5.1),

if and only if � and � satisfy the following indicial equation

j�jp�2�Œ˛ C .1 � �/.p � 1/� D �:

We note that for every p 2 .1;1/, the function � 7! j�jp�2�Œ˛ C .1 � �/.p � 1/� is
non-negative and strictly decreasing either on the interval

�
˛Cp�1
p

; ˛Cp�1
p�1

�
if

˛ C p > 1, or
�
˛Cp�1
p

; 0
�

if ˛ C p < 1, and attains its maximum value c˛;p;1 Dˇ̌
˛Cp�1
p

ˇ̌p at � D ˛Cp�1
p

. Therefore, the equation

j�jp�2�Œ˛ C .1 � �/.p � 1/� D � for � 2 Œ0; c˛;p;1�

has exactly one root in
�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1 or in

�
˛Cp�1
p

; 0
�

if ˛ C p < 1.
This root will be denoted by �˛;p.�/. Notice that �˛;p.c˛;p;1/ D ˛Cp�1

p
.

Lemma 5.1. Let� be a C 1;
 -domain with compact boundary, with ‰ 2W 1;p
loc .�/\

C 1; Q
 .�/ a minimal positive Green function of ��p in �. Let � < ˇ < � C Q
 , such
that either �; ˇ 2

�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1, or �; ˇ 2

�
˛Cp�1
p

; 0
�

if ˛ C p < 1.
Then there exists an open neighborhood N@� � � of @� such that the functions
‰� C‰ˇ , and ‰� �‰ˇ are positive subsolution and supersolution, respectively, for
the equation

�
��˛;p �

�
��

ı
˛Cp
�

�
	p
�
w D 0 in � \N@�, where

�� D j�j
p�2�Œ˛ C .1 � �/.p � 1/�:

Moreover, N@� can be chosen to be independent of small perturbations of � and ˇ.

Proof. First, we consider the case of subsolutions. By (2.6), it follows that

��˛;p.‰
�
C‰ˇ /

D � j�‰��1 C ˇ‰ˇ�1jp�2
h
.p � 1/.�.� � 1/‰��2

C ˇ.ˇ � 1/‰ˇ�2/jr‰j2

� ˛.�‰��1 C ˇ‰ˇ�1/
�
r‰ � rı�

ı�

�i
ı�˛� jr‰j

p�2
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D ‰�.p�1/j� C ˇ‰ˇ�� jp�2
h
.p � 1/.�.1 � �/C ˇ.1 � ˇ/‰ˇ��/jr‰j2

C ˛.� C ˇ‰ˇ��/
�
‰
r‰ � rı�

ı�

�i
ı�˛�
jr‰jp�2

‰p
:

Now, from [32, Lemma 3.2 and Assertion (3.16)] it follows that

ı�r‰ � rı�

‰
D 1CO.ı

Q

�/ and

jr‰j2ı2�
‰2

D 1CO.ı
Q

�/; (5.2)

uniformly in a relative neighborhood of @� as @� is compact. Consequently,

��˛;p.‰
�
C‰ˇ /

D ‰�.p�1/j� C ˇ‰ˇ�� jp�2Œ.p � 1/.�.1 � �/C ˇ.1 � ˇ/‰ˇ��/

C ˛.� C ˇ‰ˇ��/.1CO.ı
Q

�//�ı

�˛
�

ˇ̌̌
r‰

‰

ˇ̌̌p
D ‰�.p�1/j� C ˇ‰ˇ�� jp�2

h ��

j�jp�2
C

�ˇ

jˇjp�2
‰ˇ�� C ˛.� C ˇ‰ˇ��/O.ı

Q

�/
i

�

h 1

ı
˛Cp
�

CO.ı
Q
�.˛Cp/
� /

i
;

in a relative neighborhood of @� close to @�.
Thus, in order to guarantee that ‰� C‰ˇ is a subsolution as required in the state-

ment, it suffices to impose the condition

‰�.p�1/j� C ˇ‰ˇ�� jp�2
h ��

j�jp�2
C

�ˇ

jˇjp�2
‰ˇ�� C ˛.� C ˇ‰ˇ��/O.ı

Q

�/
i

�

h 1

ı
˛Cp
�

CO.ı
Q
�.˛Cp/
� /

i
�

��

ı
˛Cp
�

.‰� C‰ˇ /p�1;

which can be written in the form

j� C ˇ‰ˇ�� jp�2
h ��

j�jp�2
C

�ˇ

jˇjp�2
‰ˇ�� C ˛.� C ˇ‰ˇ��/O.ı

Q

�/
i
Œ1CO.ı

Q

�/�

� ��.1C‰
ˇ��/p�1:

Since ‰ˇ�� D 0 on @�, by expanding both sides of the above inequality in ‰ˇ�� to
the first order, we obtain

Œ�� C A‰
ˇ��
C o.‰ˇ��/CO.ı

Q

�/�Œ1CO.ı

Q

�/�

� ��.1C .p � 1/‰
ˇ��
C o.‰ˇ��//; (5.3)
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where

A D .p � 2/
��ˇ

�
C �ˇ

j�jp�2

jˇjp�2
:

Note that since ‰.x/ is asymptotic to ı�.x/ as x ! @� (by a Hopf-type lemma,
see [32]) and ˇ � � < Q
 , we have that ı�.x/

Q


‰ˇ��.x/
! 0 as x! @�. Moreover, by a direct

computation and using the choice of �;ˇ (depending on ˛C p < 1 or ˛C p > 1) and
the condition ˛Cp�1

p
� � < ˇ, one verifies that A < ��.p � 1/, see Proposition B.1

in Appendix B.
Thus, it follows that condition (5.3) is satisfied in N@� � � where N@� is a suit-

able relative neighborhood of @�which can be chosen to be independent of � and ˇ if
�;ˇ are as in the statement and belong to small neighborhoods of two fixed parameters
�0; ˇ0 satisfying the conditions ˛Cp�1

p
� �0 < ˇ0.

We now consider the case of supersolution. Proceeding as above, we see that in
order to guarantee that ‰� � ‰ˇ is a positive supersolution as required in the state-
ment, without loss of generality, we may assume that‰� �‰ˇ is positive in a relative
neighborhood of @�. So, it suffices to impose the condition

‰�.p�1/j� � ˇ‰ˇ�� jp�2

�

h ��

j�jp�2
�

�ˇ

jˇjp�2
‰ˇ�� � ˛.� � ˇ‰ˇ��/O.ı

Q

�/
i
Œ1 �O.ı

Q

�/�

� ��.‰
�
�‰ˇ /p�1

in a relative neighborhood of @�. The latter inequality can be written as

j� � ˇ‰ˇ�� jp�2
h ��

j�jp�2
�

�ˇ

jˇjp�2
‰ˇ�� � ˛.� � ˇ‰ˇ��/O.ı

Q

�/
i
Œ1 �O.ı

Q

�/�

� ��.1 �‰
ˇ��/p�1:

Expanding both sides we arrive at

Œ�� � A‰
ˇ��
C o.‰ˇ��/ �O.ı

Q

�/�Œ1 �O.ı

Q

�/�

� ��.1 � .p � 1/‰
ˇ��
C o.‰ˇ��//:

Again, since A < ��.p � 1/, where A is the same constant defined above, it follows
as in the case of subsolution that ‰� �‰ˇ is a positive supersolution as desired.

Corollary 5.2. Let � be a C 1;
 -bounded domain. Then �1˛;p.�/ D c˛;p;1.

Proof. The case ˛ C p D 1 follows from Corollary 3.4. Therefore, we may assume
that ˛ C p ¤ 1. In view of Lemma 5.1, we see that for any � < ˇ < � C Q
 such that
either �;ˇ 2

�
˛Cp�1
p

; ˛Cp�1
p�1

�
when ˛Cp > 1, or �;ˇ 2

�
˛Cp�1
p

; 0
�

when ˛Cp < 1,
we have a positive supersolution ‰� �‰ˇ of the equation ��˛;p.'/ D ��

ı
˛Cp
�

	p.'/
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near the boundary of�, where �� D j�jp�2�Œ˛C .1� �/.p � 1/� 2 Œ0; c˛;p;1�. Thus,
�� � �

1
˛;p.�/ for all � � ˛Cp�1

p
. Choosing �� D c˛;p;1, it follows �1˛;p.�/ � c˛;p;1.

The converse inequality follows from Proposition 3.3 by using arguments similar
to those used in the proof of Corollary 3.4.

The rest of this section concerns exterior domains. The first proposition gives the
asymptotic behaviour at infinity of the distance function.

Proposition 5.3. Let � be an exterior domain. Then,

rı� � x

ı�.x/
D 1CO.ı�1� .x// as jxj ! 1:

Proof. For any x 2 �, let P.x/ be a point on @� such that ı�.x/ D jx � P.x/j. It
is well known (see for example, [3]) that ı� is differentiable at x if and only if the
nearest point P.x/ is achieved uniquely on the boundary, and in this case

rı� D
x � P.x/

jx � P.x/j
D
x � P.x/

ı�.x/
:

Since ı� is differentiable a.e. in �, the above identity is valid a.e. in �. Thus,

rı� � x

ı�.x/
D
x � P.x/

ı2�.x/
� x D

jxj2

ı2�.x/
�
P.x/ � x

ı2�.x/
for a.e. x 2 �:

Since jxj � ı�.x/ at infinity and jP.x/j is bounded, it follows that rı��x
ı�.x/

D 1 C

O.ı�1� .x// near infinity.

In the following lemma, we assume ˛ C p ¤ N . Using Agmon’s method, we
construct sub and supersolution near infinity for the operator ��˛;p � �ı

�.˛Cp/
� 	p

in an exterior domain. If ˛ C p < N (resp., ˛ C p > N ), the function

� 7! j�jp�2�Œ.˛ �N C 1/C .1 � �/.p � 1/�

is non-negative and strictly increasing on
�
˛Cp�N
p�1

; ˛Cp�N
p

�
, resp.,

�
0; ˛Cp�N

p

�
, and

attains its maximum over
�
˛Cp�N
p�1

; ˛Cp�N
p

�
, resp.,

�
0; ˛Cp�N

p�1

�
at � D ˛Cp�N

p
, and

its maximum value is c˛;p;N D
ˇ̌
˛Cp�N

p

ˇ̌p . Therefore, the indicial equation

j�jp�2�Œ.˛ �N C 1/C .1 � �/.p � 1/� D �; � 2 Œ0; c˛;p;N �;

has exactly one root in
�
˛Cp�N
p�1

; ˛Cp�N
p

�
, resp.,

�
0; ˛Cp�N

p

�
. This root is denoted by

�˛;p;N .�/. Notice that �˛;p;N .c˛;p;N / D 1
p
.˛ C p �N/.



U. Das, Y. Pinchover, and B. Devyver 1116

Lemma 5.4. Let� ¨ RN be a C 1;
 -exterior domain, and suppose that ˛C p ¤ N .
Assume that � 2

�
˛Cp�N
.p�1/

; ˛Cp�N
p

�
if ˛C p < N , and � 2

�
0; ˛Cp�N

p

�
if ˛C p > N

respectively, and ˇ 2 R be such that ˇ < � < ˇ C 1. Then there exists R > 0 such
that the function UC´jxj� C jxjˇ (resp., U�´jxj� � jxjˇ ) is a positive sub (resp.,
supersolution) of the equation�

��˛;p �
O��

ı
˛Cp
�

	p

�
w D 0

in �R uniformly in �, where O�� D j�jp�2�Œ.˛ �N C 1/C .1 � �/.p � 1/�.

Proof. First, we consider the case of subsolution. By taking

F.t/ D t� C tˇ and u.x/ D jxj

in (2.3), it follows that

��˛;p.UC/

D �j�jxj��1 C ˇjxjˇ�1jp�2Œ.p � 1/.�.� � 1/jxj��2

C ˇ.ˇ � 1/jxjˇ�2/ı�˛� jrjxjj
p

C .�jxj��1 C ˇjxjˇ�1/�˛;p.jxj/�

D �j�jxj��1 C ˇjxjˇ�1jp�2
h
.p � 1/.�.� � 1/jxj��2 C ˇ.ˇ � 1/jxjˇ�2/

C
.�jxj��1 C ˇjxjˇ�1/

jxj

�
.N � 1/ � ˛

x � rı�

ı�

�i
ı�˛�

D jxj�.p�1/j� C ˇjxjˇ�� jp�2
h
.p � 1/.�.1 � �/C ˇ.1 � ˇ/jxjˇ��/

C .� C ˇjxjˇ��/
�
˛
x � rı�

ı�
� .N � 1/

�i ı�˛�
jxjp

:

Therefore, there exists R > 0 large enough such that

��˛;p.UC/

D jxj�.p�1/j� C ˇjxjˇ�� jp�2Œ.p � 1/.�.1 � �/C ˇ.1 � ˇ/jxjˇ��/

C .� C ˇjxjˇ��/.˛.1CO.ı�1� // � .N � 1//�
ı�˛�
jxjp

D jxj�.p�1/j� C ˇjxjˇ�� jp�2
h O��

j�jp�2
C

O�ˇ

jˇjp�2
jxjˇ��C ˛.� C ˇjxjˇ��/O.ı�1� /

i
�

h 1

ı
˛Cp
�

CO.ı�1� /ı
�.˛Cp/
�

i
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in �R. The first asymptotic uses Proposition 5.3 and the latter one uses the fact that

ı
�p
� D jxj

�p
CO.ı�1� /ı

�p
� as jxj ! 1;

which is valid as @� is compact. Thus, in order to guarantee that jxj� C jxjˇ is a
subsolution as required in the statement, it suffices to impose the condition

jxj�.p�1/j� C ˇjxjˇ�� jp�2
h O��

j�jp�2
C

O�ˇ

jˇjp�2
jxjˇ�� C ˛.� C ˇjxjˇ��/O.ı�1� /

i
� Œ1CO.ı�1� /�

� O��.jxj
�
C jxjˇ /p�1;

in a suitable neighborhood of infinity. The above condition can be written in the form

j� C ˇjxjˇ�� jp�2
h O��

j�jp�2
C

O�ˇ

jˇjp�2
jxjˇ�� C ˛.� C ˇjxjˇ��/O.ı�1� /

i
� Œ1CO.ı�1� /�

� O��.1C jxj
ˇ��/p�1: (5.4)

By the assumptions on �; ˇ, we have jxjˇ�� ! 0 as jxj ! 1. Thus, by expanding
both sides of (5.4) in jxjˇ�� to the first order, we obtain

Œ O�� C Ajxj
ˇ��
C o.jxjˇ��/CO.ı�1� /�Œ1CO.ı�1� /�

� O��.1C .p � 1/jxj
ˇ��
C o.jxjˇ��//; (5.5)

where

A D .p � 2/
O��ˇ

�
C O�ˇ

j�jp�2

jˇjp�2
:

Now, by a direct computation and using the choice of �; ˇ (depending on ˛ C
p < N or ˛ C p > N ) and the condition ˇ < � �

�
˛Cp�N

p

�
, one can verify that

A < O��.p � 1/, see Proposition B.1 in Appendix B. Thus, in order to verify that (5.5)
is satisfied near infinity, it suffices to verify that O.ı�1� /jxj��ˇ D o.1/ as jxj ! 1.
This is satisfied as � � ˇ < 1 and jxj is asymptotic to ı�.x/ near infinity.

We now consider the case of supersolution. Proceeding as above, we see that due
to the choice of �; ˇ, the function U� D jxj� � jxjˇ is indeed positive in a neighbor-
hood of infinity. So, it suffices to impose the condition

jxj�.p�1/j� � ˇjxjˇ�� jp�2
h O��

j�jp�2
�

O�ˇ

jˇjp�2
jxjˇ�� � ˛.� � ˇjxjˇ��/O.ı�1� /

i
� Œ1 �O.ı�1� /�

� O��.jxj
�
� jxjˇ /p�1
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in a neighborhood of infinity. The latter inequality can be written in the form

j� � ˇjxjˇ�� jp�2
h O��

j�jp�2
�

O�ˇ

jˇjp�2
jxjˇ�� � ˛.� � ˇjxjˇ��/O.ı�1� /

i
� Œ1 �O.ı�1� /�

� O��.1 � jxj
ˇ��/p�1 (5.6)

By the assumptions on �; ˇ, we have jxjˇ�� ! 0 as jxj ! 1. Thus, by expanding
both sides of (5.6) in jxjˇ�� to the first order, we obtain

Œ O�� � Ajxj
ˇ��
C o.jxjˇ��/ �O.ı�1� /�Œ1 �O.ı�1� /�

� O��.1 � .p � 1/jxj
ˇ��
C o.jxjˇ��//;

where A is the same constant defined above. Using arguments similar to those above,
it follows that A < O��.p � 1/, and hence, one obtains the desired assertion.

6. Bounded domains

We start with the first main result of this section.

Theorem 6.1. Let � � RN be a bounded domain with a compact C 1;�-boundary.
Assume that the spectral gap �˛;p.�/´ �1˛;p.�/ �H˛;p.�/ is strictly positive.

Then, equation (1.2) admits a unique (up to a multiplicative constant) positive
minimizer u 2 �W 1;pI˛

0 .�/, and u � ı�� in a relative neighborhood of @�, where
� D �˛;p.H˛;p.�//.

Proof. By our assumption and Corollary 5.2,H˛;p.�/ < c˛;p;1. According to Corol-
lary 3.4, one necessarily has ˛Cp¤ 1. Lemma 2.8 implies that the operator��˛;p �
H˛;p.�/

ı
˛Cp
�

	p is critical in �, and therefore, it admits a ground state u 2 W 1;p
loc .�/. In

particular, u is a minimal positive solution in �. Moreover, u is a unique (up to a
multiplicative constant) positive (super)solution of the equation�

��˛;p �
H˛;p.�/

ı
˛Cp
�

	p

�
w D 0

in �. We prove the following claims, which ultimately imply the result.

Claim. (i) u 2 Lp.�I ı�.˛Cp/� /, (ii) u 2 �W 1;pI˛
0 .�/, and (iii) u � ı�� in a relative

neighborhood of @�, where � D �˛;p.H˛;p.�//.

For the proof of the claim, we let ˇ 2
�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1 or ˇ 2�

˛Cp�1
p

; 0
�

if ˛ C p < 1, be such that � < ˇ < � C Q
 , where � D �˛;p.H˛;p.�//,
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and Q
 is such that the Green function ‰ is C 1; Q
 . Note that by definition of �, one has
�� D H˛;p.�/ and moreover, the spectral gap assumption implies that ˛Cp�1

p
< �.

(i) By Lemma 5.1, it follows that ‰� �‰ˇ is a supersolution of

��˛;p.'/ D
��

ı
˛Cp
�

	p.'/ D
H˛;p.�/

ı
˛Cp
�

	p.'/

in N@�, where N@� �� is a suitable neighborhood of @�. Since u is a positive solu-
tion of minimal growth in a neighborhood of infinity in �, it follows that
u � C.‰� � ‰ˇ / � C‰� in a neighborhood of @�. Since ‰ is asymptotic to ı�
as x ! @� (by Hopf’s lemma, see [32]), we infer that

u � Cı�� (6.1)

for some C > 0 in a suitable neighborhood of @�. As � is bounded and � > ˛Cp�1
p

,
it follows from Remark 2.13 that u 2 Lp.�I ı�.˛Cp/� /.

(ii) In view of Lemma 2.9, there exists a null-sequence .un/ in �W 1;pI˛
0 .�/ with

un � u such that un ! u in Lploc.�/. Hence,

kunk
p�W 1;pI˛
0

.�/
D Q

˛;p;�H˛;p.�/ı
�.˛Cp/
�

.un/C .H˛;p.�/C 1/kunk
p

Lp.�;ı
�.˛Cp/
�

/

� Q
˛;p;�H˛;p.�/ı

�.˛Cp/
�

.un/C .H˛;p.�/C 1/kuk
p

Lp.�;ı
�.˛Cp/
�

/
:

Since
lim
n!1

Q
˛;p;�H˛;p.�/ı

�.˛Cp/
�

.un/ D 0;

we infer that .un/ is a bounded sequence in �W 1;pI˛
0 .�/. Due to the reflexivity of�W 1;pI˛

0 .�/, there exists v 2 �W 1;pI˛
0 .�/ such that, up to a subsequence, un * v in�W 1;pI˛

0 .�/. Consequently, up to a subsequence, un ! v a.e. in �. However, since
un ! u in Lploc.�/, it follows that u D v 2 �W 1;pI˛

0 .�/. This proves (ii).

(iii) Notice that, in view of (6.1), it remains to prove that there exists zC > 0 such
that

u � zCı�� (6.2)

in a relative neighborhood of @�. By Lemma 5.1, it follows that ‰� C ‰ˇ is a sub-
solution of

��˛;p.'/ D
��

ı
˛Cp
�

	p.'/ D
H˛;p.�/

ı
˛Cp
�

	p.'/

in a suitable neighborhood �a � � of @� for some a > 0. Certainly, u is a posi-
tive supersolution of the same equation, and let zC > 0 sufficiently small such that
zC.‰� C‰ˇ /�u on†a. Now, we verify that (4.4) is satisfied with u1D zC.‰� C‰ˇ /
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and u2 D u. Since ˛Cp�1
p

< � < ˇ < � C Q
 and‰ is asymptotic to ı� as ı�.x/! 0

(by Hopf’s lemma, see [32]), Lemma 4.1 (ii) implies

lim inf
r!0

1

r

Z
Dr

.‰� C‰ˇ /p
�
jruj

u

�p�1
ı�˛� dx D 0: (6.3)

Again, using the fact that ‰ is asymptotic to ı� as ı�.x/! 0 and (5.2), it follows
that

.‰� C‰ˇ /jr.‰� C‰ˇ /jp�1 � Cı
�C.��1/.p�1/
� near @� for some C > 0:

Consequently, as ˛Cp�1
p

< � < ˇ < � C Q
 , we get

lim inf
r!0

1

r

Z
Dr

.‰� C‰ˇ /p
�
jr.‰� C‰ˇ /j

‰� C‰ˇ

�p�1
ı�˛� dx D 0: (6.4)

Observe that (6.3) and (6.4) yield (4.4) with u1 D zC.‰� C‰ˇ / and u2 D u. Hence,
the WCP (Lemma 4.2) implies that zC.‰� C‰ˇ /� u on�a. This yields (6.2). There-
fore, (6.1), together with (6.2), imply that u � ı��.

Remark 6.2. Suppose that ˛ C p < 1, and � is a C 1;
 -bounded domain. Then, by
Theorem 3.1, we have H˛;p.�/ D 0. Consequently, we always have a spectral gap
since �˛;p.�/D �1˛;p.�/�H˛;p.�/D �

1
˛;p.�/D c˛;p;1 > 0. Hence, by the above

theorem, the ground state u D 1 2 �W 1;pI˛
0 .�/ is a minimizer. Therefore, ��˛;p is

positive-critical in � with respect to the weight ı�1� . This gives an alternate proof of
Proposition 3.2 (i).

We now show that the converse of Theorem 6.1 holds.

Theorem 6.3. Let � � RN be a C 1;�-bounded domain. Assume that there exists a
minimizer u2 �W 1;pI˛

0 .�/ of (1.2). Then there is a spectral gapH˛;p.�/<�1˛;p.�/D
c˛;p;1.

Proof. If ˛ C p D 1, then by Theorem 3.1, it follows that ��1�p;p is null-critical
in � with respect to the weight ı�1� . Hence, there does not exist any minimizer in
this case. Thus, the theorem’s hypothesis necessarily implies that ˛ C p ¤ 1. Let
u 2 �W 1;pI˛

0 .�/ be a positive minimizer for (1.2) i.e.,�
��˛;p �

H˛;p.�/

ı
˛Cp
�

	p

�
u D 0

in �. By Theorem 6.1, we have H˛;p.�/ � c˛;p;1. Assume by contradiction that
H˛;p.�/ D c˛;p;1. Let � 2

�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1 and � 2

�
˛Cp�1
p

; 0
�

if
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˛ C p < 1 be such that ˛Cp�1
p

< � < ˇ < � C Q
 . It follows that �� < H˛;p.�/.
Further, by Lemma 5.1, ‰� C‰ˇ is a subsolution of�

��˛;p �
��

ı
˛Cp
�

	p

�
w D 0 in �a � �

for some a > 0 uniformly with respect to �, and u is a positive supersolution of this
equation. Let zC > 0 be a constant (which can be taken to be independent of �) such
that zC.‰� C‰ˇ / � u on†a. As in the proof of Theorem 6.1, the WCP (Lemma 4.2)
implies that zCı�� � u. Thus, by taking � ! ˛Cp�1

p
, we get

zCı
˛Cp�1
p

� � u:

This implies that u … Lp.�I ı�.˛Cp/� /, and hence u … �W 1;pI˛
0 .�/, which is a contra-

diction. Therefore, H˛;p.�/ < c˛;p;1.

We conclude the present section with a proof of Theorem 1.3 for bounded domains
along with some consequences.

Proof of Theorem 1.3 for C 1;
 -bounded domains. The proof is a direct consequence
of Theorems 6.1 and 6.3.

As mentioned in the introduction, it has been proved by Avkhadiev that if�¨ RN

is convex and ˛ C p > 1, then H˛;p.�/ D c˛;p;1. Moreover, it is well known that if
there exists at least one tangent hyperplane for @� (and in particular, if � has C 1

boundary), then �1˛;p.�/ � c˛;p;1. Since the inequality H˛;p.�/ � �1˛;p.�/ always
holds, it follows that if ˛ C p > 1, then H˛;p.�/ D �1˛;p.�/ D c˛;p;1 for convex
C 1-domains, i.e., there is no spectral gap. One can in fact generalize a little bit this
argument, and show the following result.

Proposition 6.4. Let�¨ RN be a C 1;�-domain. Assume either that ˛C p � 1 and
� is bounded with mean convex boundary, or that ˛ C p � 1 and � is an exterior
domain with mean concave boundary. Then, there is no spectral gap, i.e.,H˛;p.�/D
�1˛;p.�/.

Proof. Assume first that ˛ C p � 1 and � is a bounded mean convex domain. By
Corollary 5.2,

�1˛;p.�/ D c˛;p;1:

Since there always holds that H˛;p.�/ � �1˛;p.�/, it is enough to prove that one has
H˛;p.�/ � c˛;p;1. For this, according to the AAP-type theorem (Theorem 2.1), it is
enough to find a positive supersolution to the equation

.��˛;p � c˛;p;1ı
�.˛Cp/
� 	p/w D 0 in �: (6.5)
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Note that since � is mean-convex, one has ��ı� � 0 in the sense of distributions
(see [40, Theorem 3.4]). Also, note that ı� 2 C.�/ \W 1;1.�/ and that jrı�j D 1
a.e. Then, according to Lemma 2.10, one computes that in the sense of distributions,

��˛;p.ı
�
�/ D j�j

p�2�ı
.��1/.p�1/
� Œ.p � 1/.1 � �/ı�˛�1� ��˛;p.ı�/�:

Moreover,
�˛;p.ı�/ D �˛ı

�˛�1
� C ı�˛� �ı� � �˛ı

�˛�1
� :

Hence, as � D �˛;p.c˛;p;1/ D 1
p
.˛ C p � 1/ � 0, we obtain

��˛;p.ı
�
�/ � j�j

p�2�Œ.1 � �/.p � 1/C ˛�ı
�˛�p
� 	p.ı

�
�/ D c˛;p;1	p.ı

�
�/:

Therefore, ı�� is a positive supersolution of (6.5), and this concludes the proof in this
case. The proof for exterior domains is similar and will be omitted.

Remark 6.5 (Bounded domains with positive spectral gap). Here we provide some
examples of bounded domains where the spectral gap condition holds. Let ˛ D 0,
and p D N D 2. From [19, Theorem 4.1] and [11] respectively, it follows that cer-
tain sectorial regions and non-convex quadrilateral in two dimension have the Hardy
constant H0;2.�/ < 1

4
. Then, using the same smooth approximation arguments as

in [35, Example 6], we can have a family of smooth domains .�n/n2N such that
H0;2.�n/ � H0;2.�/ <

1
4

. Since .�n/ are smooth, �10;2.�n/ D
1
4

for all n. Hence,
.�n/ satisfy the spectral gap condition. Also, there are annular domains that admit a
positive spectral gap, see [35, Example 4]. Moreover, we have seen in Remark 6.2 that
any smooth bounded domain satisfies the spectral gap condition when ˛ C p < 1.

7. Unbounded domains

In this section, we prove Theorem 1.3 for the case of exterior domains. We start with
the following result, which allows us to compute �1˛;p.�/ for all values of ˛ and p.

Theorem 7.1. Let � be a C 1;
 -exterior domain with a compact boundary. Then,

�1˛;p.�/ D c˛;p D min¹c˛;p;1; c˛;p;N º:

In particular, if ˛ C p 2 ¹1;N º, then H˛;p.�/ D �1˛;p.�/ D 0.

Proof. First assume that ˛ C p D 1. Then, by Corollary 3.4, we have �1˛;p.�/ D
c˛;p;1 D c˛;p D 0. Next, we consider ˛ C p ¤ 1. We write RN� D RN n ¹0º.
It is well known that H˛;p.RN� / D c˛;p;N , see [6] for instance. Notice that for every
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' 2 C1c .R
N
� / and every compact setK � RN , there exists a constant c > 0 such that

the function  defined by
 .x/ D '.cx/

has support in RN� nK. Hence, by using the scale invariance of the Rayleigh quotient
defining the Hardy constant, one sees that

�1˛;p.R
N
� / D H˛;p.R

N
� / D c˛;p;N :

Now, we write @�D �1 [ � � � [ �`, where by assumption �i \ �j D ; for i ¤ j , and
�i is compact, connected, and C 1;
 . There exists a compact set K � � such that

� nK D N1 [ � � � [N`C1;

where Ni \Nj D ; for i ¤ j , the set Ni is a relatively compact neighborhood of �i
for 1 � i � `, and N`C1 is the exterior of a large ball centered at the origin in RN .
For 1 � j � `C 1, define �1;j˛;p , the Hardy constant of � at infinity around �j for
1 � j � ` (resp., the best Hardy constant of � when jxj ! C1 for j D `C 1) by

�1;j˛;p .�/´ sup
UbNj

inf
W
1;p
c .U /

²Z
U

jr'jpı�˛� dx W
Z
U

j'jpı
�.˛Cp/
� dx D 1

³
:

Then, one sees easily from the support consideration that

�1˛;p.�/ D min
1�j�`C1

�1;j˛;p .�/:

However, by the scale invariance of the Hardy constant,

�1;`C1˛;p .�/ D �1˛;p.R
N
� / D c˛;p;N :

Moreover, the proof of Corollary 5.2 implies that for every 1 � j � `,

�1;j˛;p .�/ D c˛;p;1:

Thus, we obtain that �1˛;p.�/ D min¹c˛;p;1; c˛;p;N º D c˛;p .

We are now ready to prove the analogue of Theorem 6.1 for the C 1;
 -exterior
domain.

Theorem 7.2. Let � ¨ RN be a C 1;
 -exterior domain. Assume that �˛;p.�/ > 0,
i.e., there is a spectral gap. Then, there exists a unique (up to a multiplicative con-
stant) positive minimizer u 2 �W 1;pI˛

0 .�/ for (1.2). Furthermore, u� ı�� in a relative
neighborhood of @�, where � D �˛;p.H˛;p.�//, and u � jxjQ� near infinity, where
Q� D �˛;p;N .H˛;p.�//.
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Proof. By Theorem 7.1, we have �1˛;p.�/ D c˛;p , so the assumption that there is a
spectral gap is equivalent toH˛;p.�/ < c˛;p . In particular, since c˛;p D 0 for ˛Cp 2
¹1; N º, the assumptions necessarily imply that ˛Cp…¹1; N º. Also, if ˛Cp>N ,
then by [26, Theorem 1.1] H˛;p.�/ � c˛;p;N D c˛;p and therefore in this case,
H˛;p.�/D c˛;p D �

1
˛;p.�/. Thus, the assumptions of the theorem necessarily imply

that 1 ¤ ˛ C p < N .
According to Lemma 2.8, the operator

��˛;p �
H˛;p.�/

ı
˛Cp
�

	p

admits a ground state u 2 W 1;p
loc .�/ in �. In particular, u is the unique (up to a mul-

tiplicative constant) positive (super)solution of the equation�
��˛;p �

H˛;p.�/

ı
˛Cp
�

	p

�
w D 0

in �. Thus, it remains to show that (i) u 2 Lp.�I ı�.˛Cp/� /, (ii) u 2 �W 1;pI˛
0 .�/, and

(iii) that u satisfies the required asymptotics near @� and infinity.

(i) Repeating the arguments of Theorem 6.1, it follows that

u � ı�� (7.1)

in a relative neighborhood of @�, where � D �˛;p.H˛;p.�// 2
�
˛Cp�1
p

; ˛Cp�1
p�1

�
if

˛ C p > 1, and � D �˛;p.H˛;p.�// 2
�
˛Cp�1
p

; 0
�

if ˛ C p < 1. On the other hand,
sinceH˛;p.�/ < c˛;p;N , it follows from Lemma 5.4 that U� D jxjQ� � jxjˇ is a super-

solution of
�
��˛;p �

O� Q�

ı
˛Cp
�

	p
�
w D 0 near infinity, where Q� 2

�
˛Cp�N
p�1

; ˛Cp�N
p

�
is

such that ˇ < Q� < ˇ C 1 and

O�Q� D jQ�j
p�2
Q�Œ.˛ �N C 1/C .1 � Q�/.p � 1/� D H˛;p.�/; (7.2)

so Q� D �˛;p;N .H˛;p.�//. Being a positive solution of minimal growth at infinity,
u satisfies

u.x/ � CU�.x/ � C jxj
Q� in BcR (7.3)

for some C > 0 and R large enough. Therefore, combining (7.1) (as � > ˛Cp�1
p

)

and (7.3) (as Q� < ˛Cp�N
p

), we infer that u 2 Lp.�I ı�.˛Cp/� /. Now, part (ii) follows
from the same arguments as in the proof of Theorem 6.1.

(iii) Recall that the required asymptotic (7.1) of u near the boundary was demon-
strated above. In light of (7.3), it remains to show that there exists zC > 0 such that

u.x/ � zC jxjQ� (7.4)
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near infinity, where Q� D �˛;p;N .H˛;p.�// 2
�
˛Cp�N
p�1

; ˛Cp�N
p

�
satisfies (7.2). Let

ˇ < Q� < min
°
ˇ C 1;

˛ C p �N

p

±
< 0;

and note that this choice of ˇ; Q� is possible as H˛;p.�/ < c˛;p;N . It follows from
Lemma 5.4 that UC D jxjQ� C jxjˇ is a subsolution of

�
��˛;p �

H˛;p.�/

ı
˛Cp
�

	p
�
w D 0

in a suitable neighborhood �R of infinity for some R > 0 large enough. Clearly, u is
a positive supersolution of the same equation. Let zC > 0 be sufficiently small such
that zCUC � u on †R.

In order to apply the appropriate WCP (Lemma 4.3), we need to verify that the
growth condition (4.11) is satisfied with u1 D zCUC and u2 D u. Due to the choice of
Q� and ˇ, and using Lemma 4.1 (ii), we infer that

lim inf
R!1

1

R

Z
DR

U
p
C

�
jruj

u

�p�1
ı�˛� dx D 0: (7.5)

Notice that UCjrUCjp�1 � C jxjQ�C.Q��1/.p�1/ near infinity for some C > 0. Conse-
quently, by the choice of Q� and ˇ, we get

lim inf
R!1

1

R

Z
DR

U
p
C

�
jrUCj

UC

�p�1
ı�˛� dx D 0: (7.6)

Therefore, (7.5) and (7.6) yield (4.11) with u1 D zCUC and u2 D u. Hence, the WCP
(Lemma 4.3) implies that zCUC � u in�R. This yields (7.4). Therefore, (7.3) together
with (7.4) implies that u � jxjQ� near infinity.

As a simple but quite surprising corollary of the above theorem, we obtain the
following result when ˛ C p < 1. Recall that in this case, if � is a C 1;
 -bounded
domain, then H˛;p.�/ D 0 (Theorem 3.1), i.e., the weighted Hardy inequality (1.1)
does not hold. However, (1.1) does hold if� is aC 1;
 -exterior domain and ˛Cp < 1.

Corollary 7.3. Let 1 ¤ ˛ C p < N and � be a C 1;
 -exterior domain. Then,

H˛;p.�/ > 0:

Proof. Let� be a C 1;
 -exterior domain. We give a proof for ˛Cp < 1. The case 1 <
˛ C p < N , follows using similar arguments. By Theorem 7.1, we have �1˛;p.�/ D
c˛;p D c˛;p;1. Suppose that H˛;p.�/ D 0, then the corresponding spectral gap
�˛;p.�/ D c˛;p;1 is positive. Hence, ��˛;p is critical in � (by Lemma 2.8). Fur-
ther, it follows from Theorem 7.2 that there exists a minimizer u 2 �W 1;pI˛

0 .�/ such
that u� 1 near @� and u� jxj.˛Cp�N/=.p�1/ near infinity. Notice thatwD 1 is also a
positive solution of the equation��˛;pwD 0. But, since��˛;p is critical in�, there
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exists a unique (up to a multiplicative constant) positive supersolution in W 1;p
loc .�/ to

the equation ��˛;pw D 0 [39, Theorem 4.15]. Thus, we arrived at a contradiction.
Hence, H˛;p.�/ > 0.

Remark 7.4. As a consequence of the above corollary and the fact that H˛;p.�/ �
c˛;p;N for C 1;
 -exterior domain if ˛ C p > N , it follows that the weighted Hardy
inequality holds in C 1;
 -exterior domain for any ˛ 2 R; p 2 .1;1/ with ˛ C p …
¹1;N º.

Theorem 7.5. Let � ¨ RN be an exterior domain with a compact C 1;�-boundary.
Assume that either ˛CpD 1 or ˛Cp �N . Then (1.2) does not admit any minimizer
in �W 1;pI˛

0 .�/.

Proof. We consider two cases.

The case ˛ C p D 1 or ˛ C p D N . By Theorem 7.1, H˛;p.�/ D �1˛;p.�/ D 0.
Assume that u 2 �W 1;pI˛

0 .�/ is a positive minimizer. In particular, ��˛;p is critical,
and consequently, the equation ��˛;pw D 0 admits a unique positive (super)solution
in �. Therefore, u D constant > 0, which is a contradiction as 1 … Lp.�r ; ı�1� / [

Lp.�r ; ı
�N
� /. Hence, (1.2) does not admit any minimizer in �W 1;pI˛

0 .�/.

The case ˛ C p > N . Suppose by contradiction that u 2 �W 1;pI˛
0 .�/ is a minimizer

of (1.2). Since ˛C p >N , it follows thatH˛;p.�/D c˛;p;N (see [26, Theorem 1.1]).
Lemma 5.4 implies that for every �; ˇ close to ˛Cp�N

p
with ˇ < � � ˛Cp�N

p

there exists R > 0 (independent of �) such that the function UC D jxj� C jxjˇ is a
positive subsolution of

�
��˛;p �

O��

ı
˛Cp
�

	p
�
w D 0 in �R for some R > 0 sufficiently

large, where
O�� D j�j

p�2�Œ.˛ �N C 1/C .1 � �/.p � 1/�:

Since O�� � H˛;p.�/, it is clear that u is a supersolution of the same equation above.
Let zC be a positive constant (independent of �) such that zCUC � u on†R. Using the
WCP (Lemma 4.3) as in the proof of Theorem 7.2, for ˇ < � < ˛Cp�N

p
, it follows

that zC jxj� � u near infinity (uniformly in �). Thus, by taking � ! ˛Cp�N
p

, we get

zCı
˛Cp�N

p

� � u

near infinity. But, this implies that u … Lp.�I ı�.˛Cp/� /, and hence u … �W 1;pI˛
0 .�/,

which is a contradiction. Therefore, (1.2) does not admit a minimizer in �W 1;pI˛
0 .�/.

Theorem 7.6. Let � � RN be an exterior domain with a compact C 1;�-boundary,
and assume that (1.2) admits a minimizer in �W 1;pI˛

0 .�/. Then H˛;p.�/ < c˛;p .
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Proof. In view of Theorem 7.5, it is clear that we need to consider only the case
1 ¤ ˛ C p < N . Let u 2 �W 1;pI˛

0 .�/ be a positive minimizer of (1.2). By Theo-
rem 7.1,H˛;p.�/ � c˛;p . Suppose thatH˛;p.�/D c˛;p . By repeating the arguments
of Theorem 6.3, it follows that H˛;p.�/ < c˛;p;1. Thus, H˛;p.�/ D c˛;p;N . In this
case, following the arguments of part (iii) in the proof of Theorem 7.2 we obtain that
there exist zC > 0 and R > 0 such that

u.x/ � zC jxjQ� in �R for all Q� such that
˛ C p �N

p � 1
� Q� <

˛ C p �N

p
:

Letting

Q� !
1

p
.˛ C p �N/;

we obtain that u.x/ � zC jxj.˛Cp�N/=p in �R. Consequently, u 62 �W 1;pI˛
0 .�/ which

is a contradiction to our assumption. Hence, H˛;p.�/ < c˛;p .

We can now give the proof of Theorem 1.3 for the case of exterior C 1;
 -domains.

Proof of Theorem 1.3 for exterior domain with compact C 1;
 -boundary. It is a direct
consequence of Theorems 7.2 and 7.6.

Remark 7.7. (i) In the case of exterior domains, we observe that if ˛ C p � N ,
then there is no spectral gap ([9, Theorem 4] and also [26, Theorem 1.1]), since in
this case c˛;p;N � H˛;p.�/ � �1˛;p.�/ D c˛;p;N . However, it remains open whether
there are exterior domains with a positive spectral gap when 1 < ˛ C p < N . We
consider ˛ D 0;p D 2. ForN � 7, Robinson [41, Example 6.5] showed that there are
exterior domains � that have the Hardy constant near the compact boundary (see the
precise definition in [41]) strictly less than 1

4
. Then it follows that �10;2.�/ <

1
4

for
these domains, and consequently, H0;2.�/ < 1

4
. Now, using the smooth approxima-

tion arguments as in [35, Example 6], we can have family of smooth exterior domains
.�n/ satisfying H0;2.�n/ < 1

4
. Since all the �n are smooth, �10;2.�n/ D

1
4

. There-
fore, each �n admit a positive spectral gap.

(ii) At a first glance, it may seem to be not worthy to study the spectral gap phe-
nomenon for exterior domains when ˛C p �N , since in this case there is no spectral
gap. However, this is not the case as we give both necessary and sufficient condition
for the existence of minimizers. For instance, when ˛ C p � N , using our results we
conclude that the weighted Hardy constant H˛;p.�/ is not attained in the exterior
domains.

(iii) In light of the above remark, one might think that it is not useful to carry
out the decay analysis for the existence of minimizers in exterior domains when
˛ C p � N . However, the reason why this analysis is still relevant is justified by
considering a perturbation of ��˛;p by a potential W with compact support (see
Remark 8.1 (ii)).
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8. Concluding remarks

We conclude with some remarks that summarize our main results concerning the spec-
tral gap phenomenon for domains with compact C 1;
 -boundary, and with a number
of open problems.

Remark 8.1. (i) For domains with compactC 1;
 -boundary, we proved thatH˛;p.�/,
the L˛;p-Hardy constant, is attained in �W 1;pI˛

0 .�/ if and only if there is a posi-
tive spectral gap (�˛;p.�/ > 0). The weighted Hardy constant at infinity is obtained
explicitly as �1˛;p.�/ D c˛;p;1 for C 1;
 -bounded domains and �1˛;p.�/ D c˛;p for
C 1;
 -exterior domains. In both the bounded and exterior domain cases, the sharp
two-sided decay estimates of a minimizer (whenever exists) are obtained. In the case
of bounded domains, for ˛ C p � 1 we have H˛;p.�/ D 0 and 0 < �1˛;p.�/! 0 D

�11�p;p.�/ as ˛Cp! 1˙. It turns out that the gap phenomenon holds rather trivially
for the case ˛ C p � 1, while it is more subtle for ˛ C p > 1 as it depends on the
geometry of the boundary. Whereas, for exterior domains, we see that H˛;p.�/ D 0
if and only if ˛ C p is either 1 or N , and �1˛;p.�/! 0 as ˛ C p ! 1˙ or N˙. In
exterior domains, the gap phenomenon holds trivially if ˛ C p is either 1 or N , while
all the other cases need special attention.

(ii) For 1 � p < ˛ < 0, we remark that the Green’s function of ��˛;p on a C 1;


bounded or exterior domain does not satisfy the Hopf’s lemma. Because if it does,
then one can follow the arguments of [32, Lemma 3.4] and obtain that �1˛;p.�/ ��
p�1
p

�p . But, we have seen in the previous remark that �1˛;p.�/ � c˛;p;1. This leads
to a contradiction.

(iii) One can verify that our analysis also goes through if we consider the following
minimization problem for a given W 2 Cc.�/:

H˛;p;W .�/´ inf
²

Q˛;p;W .'/ W

Z
�

j'jpı
�.˛Cp/
� dx D 1; ' 2 �W 1;pI˛

0 .�/

³
;

where Q˛;p;W .'/´
R
�
Œjr'jpı�˛� C W j'j

p�dx. Such minimization problems are
related to the following perturbation problem:

��˛;p' CW 	p.'/ D
�

ı
˛Cp
�

	p.'/ in �W 1;pI˛
0 .�/:

In this case, following the same arguments of the proof of Theorem 1.3, we can
prove the spectral gap phenomenon in a domain with compact C 1;
 -boundary i.e.,
H˛;p;W .�/ is attained in �W 1;pI˛

0 .�/ if and only if H˛;p;W .�/ < �1˛;p.�/. More-
over, we can obtain the tight decay estimates for the corresponding minimizers which
are actually solutions of the above PDE.
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(iv) The assumption that the domain has C 1;
 -regularity is crucial for our results.
We recall that the tubular neighborhood theorem holds for C 2-domains, but not for
C 1:�-domains with 0 <�< 1 (see the discussion of this point in [32]). Moreover,
the distance function ı� is not guaranteed to be differentiable near the boundary.
Therefore, we replace the distance function with the minimal positive Green function
of the p-Laplacian and use the Hopf-type lemma substantially in our analysis. It is
important to mention that the minimal positive Green function of the p-Laplacian
does not satisfy the Hopf-type lemma on C 1-domains, see [25, Section 3.2]. One
may also observe that the C 1;
 -regularity of the domain is essential for the estimates
of the weighted Hardy constant at infinity which plays a significant role in the gap
phenomenon.

Finally, we propose three open problems.

(1) Does the gap phenomenon hold in domains with compact C 1-boundary?

(2) For 1 < ˛ C p < N with N < 7, are there C 1;
 -exterior domains with a
positive spectral gap? (cf. Remark 7.7).

(3) Let � be C 1;
 -exterior domain and ˛ C p 2 ¹1;N º. Is ��˛;p critical in �?

A. A chain rule

In this appendix we prove a chain rule for 	p . In the case p � 2, the mapping t 7!
jt jp�2t is of class C 1, so the chain rule for 	p simply follows from the standard chain
rule in W 1;p . In the case p < 2, one needs to take care of the singularity at zero of
t 7! jt jp�2t . We prove the chain rule in the framework of a smooth manifold M . For
our purposes, one should take M D �.

Lemma A.1. Let v 2 C1.M/, and jvjp�2jrvj 2 L1loc.M/; p 2 .1;1/. Then, in the
sense of distributions, we have

r	p.v/ D .p � 1/jvj
p�2
rv:

Proof. Take X 2 C1c .TM/ a vector field. Since 	p.v/ is continuous, we have

�

Z
M

	p.v/divXdx D � lim
"!0

Z
¹jvj>"º[¹vD0º

	p.v/divXdx

D � lim
"!0

Z
¹jvj>"º

	p.v/divXdx: (A.1)
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The last equality follows as 	p.0/ D 0. According to the coarea formula,Z
supp.X/

jrvjdx D

1Z
�1

�.¹jvj D tº \ supp.X//dt :

Since rv 2 L1loc.M/ (because it is continuous), the left-hand side of the above
equality is finite. Hence, one can choose a sequence "n ! 0 such that the sequence
.�.¹jvjD "nº \ supp.X///n2N is bounded. Moreover, by Sard’s theorem (which can
be applied since v 2 C1.M/), one can assume that the sequence ."n/n2N is chosen
such that ¹jvj > "nº are C 1-domains. Then, by Green’s formula,

�

Z
¹jvj>"nº

	p.v/divXdx D
Z

¹jvj>"nº

	0p.v/hrv;Xidx �
Z

¹jvjD"nº

	p.v/h�;Xid�; (A.2)

where � is the exterior normal to ¹jvj D "nº. Now,ˇ̌̌̌ Z
¹jvjD"nº\supp.X/

	p.v/h�;Xid�
ˇ̌̌̌
� �.¹jvj D "nº \ supp.X//	p."n/kXkL1 : (A.3)

Since 	p."n/! 0, we obtain

	p."n/�.¹jvj D "nº \ supp.X//! 0 as n!1:

Consequently, from (A.3), (A.2), and (A.1) we get

�

Z
M

	p.v/divXdx D lim
"n!0

Z
¹jvj>"nº

	0p.v/hrv;Xidx: (A.4)

Define

�.x/´

8̂<̂
:
rv.x/

jrv.x/j
if rv.x/ ¤ 0;

0 if rv.x/ D 0:

Then, Z
¹jvj>"nº

	0p.v/hrv;Xidx D
Z

¹jvj>"nº

	0p.v/h�;Xijrvjdx D
Z

¹jt j>"nº

	0p.t/g.t/dt ;

where g.t/ D
R
¹vDtº
h�;Xid� . The last equality follows from the coarea formula. Let

T > 0 be such that vjsupp.X/ 2 Œ�T; T �. Then, in the above integral one can replaceR
jt j>"n

by
R
¹jt j>"nº\Œ�T;T �

. Now, we claim that

�¹t¤0º	
0
p.�/ g.�/ 2 L

1.Œ�T; T �/: (A.5)
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Indeed, again by the coarea formula,Z
¹t¤0º\Œ�T;T �

j	0p.t/jjg.t/jdt �
Z

¹t¤0º\v.supp.X//

j	0p.t/j

� Z
¹vDtº

kXkL1d�
�

dt

D kXkL1

Z
supp.X/\¹v¤0º

.p � 1/jvjp�2jrvjdx <1;

since by assumption jvjp�2jrvj 2 L1loc.M/. This proves (A.5). Subsequently, the
dominated convergence theorem implies that

lim
"n!0

Z
¹jt j>"nº

	0p.t/g.t/dt D
Z
¹t¤0º

	0p.t/g.t/dt D
Z
R

	0p.t/g.t/dt;

even if 	0p.0/ D 1. Indeed, one has
R
A
.C1/ � d� D 0 if �.A/ D 0. Then, by (A.4)

and the coarea formula, we get

�

Z
M

	p.v/divXdx D
Z
R

	0p.t/g.t/dt D
Z
M

	0p.v/hrv;Xidx:

Hence, in the distribution sense, we have r	p.v/ D 	0p.v/rv D .p � 1/jvj
p�2rv.

Suppose now that F satisfies the assumptions of Lemma 2.10, and set v D F 0.u/,
where u 2 W 1;p

loc .�/ \ C.�/. We need to prove that in the sense of distributions,

r.	p.v// D r.	p.F
0.u/// D .p � 1/jF 0.u/jp�2F 00.u/ru: (A.6)

Note that we have rv D F 00.u/ru 2 Lploc.�/. Thus, v 2 W 1;p
loc .�/ \ C.�/.

To prove the above assertion, take a smooth compactly supported vector field X
on �, and a sequence .un/ 2 C1.�/ such that un * u in W 1;p

loc .�/ and un ! u

uniformly on the support of X . Let vn D F 0.un/. Then, for every n 2 N, according
to the previous lemma, we get

�

Z
�

	p.vn/divXdx D
Z
�

.p � 1/jvnj
p�2
hrvn; Xidx: (A.7)

We have vn ! v uniformly on supp.X/ and

rvn D F
00.un/run ! F 00.u/ru in Lp.supp.X//:

So, 	p.vn/ D vnjvnj
p�2 ! 	p.v/ uniformly on the support of X , and the left-hand

side of (A.7) converges to �
R
�

	p.v/divXdx. The right-hand side of (A.7) reads as

.p � 1/

Z
�

jF 0.un/j
p�2F 00.un/hrun; Xidx:
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By the assumption on F , the function jF 0jp�2F 00 is continuous on .0;1/, and since
there exists �> 0 such that u.supp.X// � ."; "�1/, one concludes that

jF 0jp�2.un/F
00.un/! jF

0
j
p�2.u/F 00.u/

uniformly on the support of X . Since run ! ru in Lp.supp.X//, we conclude by
the dominated convergence theorem that the right-hand side of (A.7) converges to

.p � 1/

Z
�

jF 0.u/jp�2F 00.u/hru;Xidx:

Hence, we infer that (A.6) holds in the distribution sense.

Remark A.2. Actually, the above proof shows that it is enough to assume X 2
W 1;q.�/ with compact support and q D p0´ p

.p�1/
.

B. Auxiliary inequalities

In this appendix we prove two elementary inequalities that play crucial role in the
proofs of Lemma 5.1 and Lemma 5.4.

Proposition B.1. The following holds.

(i) Let � < ˇ, such that, either � 2
�
˛Cp�1
p

; ˛Cp�1
p�1

�
if ˛ C p > 1, or � 2�

˛Cp�1
p

; 0
�

if ˛ C p < 1, respectively. Then,

.p � 2/
��ˇ

�
C �ˇ

j�jp�2

jˇjp�2
< ��.p � 1/; (B.1)

where �� D j�jp�2�Œ˛ C .1 � �/.p � 1/�.

(ii) Let ˇ < �, such that either � 2
�
˛Cp�N
p�1

; ˛Cp�N
p

�
if ˛ C p < N , or � 2�

0; ˛Cp�N
p

�
if ˛ C p > N respectively. Then,

.p � 2/
O��ˇ

�
C O�ˇ

j�jp�2

jˇjp�2
< O��.p � 1/; (B.2)

where O�� D j�jp�2�Œ.˛ �N C 1/C .1 � �/.p � 1/�.

Proof. (i) Notice that (B.1) holds if

.p � 2/
ˇ

�
C
�ˇ

��

j�jp�2

jˇjp�2
< .p � 1/: (B.3)
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An elementary computation shows that (B.3) is true if�ˇ
�

�
�1Œ˛ C .1 � �/.p � 1/�C Œ˛ C .1 � ˇ/.p � 1/�

˛ C .1 � �/.p � 1/
<
.p � 1/.� � ˇ/

�
;

which is equivalent to �ˇ
�

� .� � ˇ/

˛ C .1 � �/.p � 1/
<
.� � ˇ/

�
: (B.4)

Since � < ˇ and �Œ˛ C .1 � �/.p � 1/� is non-negative, (B.4) holds if

ˇ > ˛ C .1 � �/.p � 1/;

which is indeed true as ˛ C .1 � �/.p � 1/ � �.

(ii) The proof of (B.2) follows from analogous computation as above.

C. Covering lemma

Lemma C.1. Let � � RN be a C 0;1-domain with a compact boundary. Then the
minimal number of balls of radius r to cover Dr D

®
x 2 � W 1

2
r � ı�.x/ � r

¯
is

O.r1�N /.

Proof. By our assumption, � is a Lipschitz domain. Therefore, locally at the bound-
ary, the domain is a subgraph of a Lipschitz continuous function '. Thus, there is a
small neighborhood U � � of the boundary (up to a translation and rotation) which
is given by U D ¹x 2 � W 0 < xN < '.x1; : : : ; xN�1/º.

Moreover, in the neighborhood U , the Euclidean distance to the boundary
ı� is equivalent to the graph distance dN .x/ ´ j'.x1; : : : ; xN�1/ � xN j (see
[13, Lemma 7.2]). Namely, there exists a constant C > 0 such that

ı�.x/ � dN .x/ � Cı�.x/ for all x 2 U:

Consequently, it is enough to cover the set DN;r ´
®
x 2 U W 1

2
r � dN .x/ � r

¯
by

O.r1�N / balls of radius r .
Recall that any compact set in RN�1 can be covered byO.r1�N / balls of radius r .

So, we can cover the .N � 1/-dimensional base domain byO.r1�N / balls of radius r .
Using the Lipschitz continuity of ', there is a parallelpiped with sides of order r which
covers DN;r by O.r1�N / balls of radius r .



U. Das, Y. Pinchover, and B. Devyver 1134

D. Subcriticality implies the existence of Green function

Definition D.1 (Q-capacity [17]). Let Q be a non-negative functional onW 1;p.�/\

Cc.�/ of the form

Q.'/´

Z
�

Œjr'j
p
A C V j'j

p�dx; ' 2 W 1;p.�/ \ Cc.�/;

where A WD .aij / 2 L
1
loc.�IR

N�N / be a symmetric and locally uniformly positive
definite matrix, and

j�j2A´

NX
i;jD1

aij .x/�i�j ; � 2 RN :

Let u 2 W 1;p
loc .�/ \ C.�/ be a positive function. For a compact set F b �, the

Q-capacity of F with respect to .�; u/ is defined by

Cap.F;�; u/´ inf¹Q.'/ W ' 2 W 1;p.�/ \ Cc.�/; ' � u on F º:

Theorem D.2. Let Q � 0 in �, x0 2 � and u 2 M�n¹x0º. If u has a removable
singularity at x0, then Q is critical in �. In other words, if Q is subcritical, then it
admits a minimal positive Green function at x0.

Proof. Let ! b � be a smooth subdomain such that� n ! is connected, and x0 2 !.
Let u!n be the solution of the Dirichlet problem:

Q0w D 0 in �n n x!; w D u on @!; w D 0 on @�n:

Then 0 < u!n � u and u!n % u! � u in � n !. On the other hand, by the definition
of minimal growth, u � u! in � n !. Therefore, u! D u in � n !.

Without loss of generality, we may assume B1.x0/ � �1. Denote

umn D u
B1=m.x0/
n :

Extend umn by u and 0 in B1=m.x0/ and outside �n, respectively, and denote this
extension by Numn . Then by the pasting lemma [12, Lemma 3.1], we have that Numn 2
W
1;p
0 .�n/ and Q0. Numn / � 0 in �n.

For a fixed m � 1 we have

lim
n!1

Numn D u in �:

Using Cantor’s diagonal argument, it follows that there is an increasing subsequence
¹m.n/º1nD1 of integers such that Num.n/n ! u in � as n!1.
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Moreover, Numn is the Qp;A;V -capacitor of .B1=m;�n; u/, see [12, Proposition 4.1].
That is,

Cap.B1=m; �n; u/ D Qp;A;V . Nu
m
n /:

Since

Cap.B1=m.n/; �1; u/ � Cap.B1=m.n/; �n; u/;

and Cap.B1=m.n/;�1; u/! 0 as n!1, it follows that Qp;A;V . Nu
m.n/
n /! 0. In addi-

tion, Num.n/n ! u in �. Therefore, ¹ Num.n/n º1nD1 is a null-sequence for Qp;A;V . Hence,
Qp;A;V is critical, and u is the ground state.

We note that for the linear case (p D 2), the theorem follows easily using the
strong comparison principle (which follows from the strong maximum principle).
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