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Upper bound on the second Laplacian eigenvalue
on real projective space

Hanna N. Kim

Abstract. In this paper, we prove an upper bound on the second nonzero Laplacian eigenvalue
on n-dimensional real projective space. The sharp result for 2-dimensions was shown by Nadi-
rashvili and Penskoi and later by Karpukhin when the metric degenerates to that of the disjoint
union of a round projective space and a sphere. That conjecture is open in higher dimensions,
but this paper proves it up to a constant factor that tends to 1 as the dimension tends to infin-
ity. Also, we introduce a topological argument that deals with the orthogonality conditions in a
single step proof.

1. Introduction and results

For n-dimensional real projective space RPn, consider a round metric g and its con-
formally equivalent metrics wg where w is the conformal factor. Throughout the
paper, the metric is normalized so that the volume Vol.RPn; wg/ � Voln.w/ is equal
to the volume Vol.RPn;g/ of the round projective space. The Laplace–Beltrami oper-
ator ��wg on .RPn; wg/ has a discrete sequence of eigenvalues:

0 D �0.w/ < �1.w/ � �2.w/ � � � � ! 1:

This paper provides an upper bound for the second nonzero eigenvalue �2.w/ for
all RPn, n � 2. The strategy of the proof is to find nC 1 trial functions, which we
construct using Veronese embeddings to map projective spaces to higher-dimensional
spheres followed by a fold and a Möbius transformation. We rely on topological argu-
ments to show that the trial functions are orthogonal to the first two modes.

1.1. Results on the second eigenvalue

In this section, we review isoperimetric inequalities of the Laplacian eigenvalues
related to spheres and projective spaces, and state our main result.
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Theorem 1 (Li and Yau [14] for n D 2 and El Soufi and Ilias [5] for n � 2; first
eigenvalue on RPn). Assume that the metric wg is normalized so that Voln.w/ D
Voln.1/. Then the first nonzero eigenvalue of ��wg satisfies

�1.w/ � �1.1/ D 2nC 2:

The upper bound is attained when the metric is round on RPn. For the next higher
eigenvalue on 2-dimensional projective space, we have the following result.

Theorem 2 (Nadirashvili and Penskoi [17]; second eigenvalue on RP2). Assume that
the metric wg is normalized so that Vol2.w/ D Vol2.1/ on RP2. Then the second
nonzero eigenvalue of ��wg satisfies

�2.w/ � 10:

The upper bound can be obtained by a sequence of metrics approaching to that
of the disjoint union of a round projective space and a sphere having ratio of radii
p
6 W
p
2. A natural conjecture is that the upper bound can be extended to all dimen-

sions.

Conjecture 3 (Second eigenvalue on RPn, n � 3). Assume that the metric wg is
normalized so that Voln.w/ D Voln.1/ on RPn. Then the second nonzero eigenvalue
of ��wg satisfies

�2.w/ < ..2nC 2/
n=2
C 2nn=2/2=n: (1)

The upper bound can be obtained by a sequence of metrics approaching to that
of disjoint union of a round projective space and a round sphere having ratio of radii
p
2nC 2 W

p
n.

We prove the following bound on �2.w/, with a right-hand side that is larger than
in the conjecture.

Theorem 4 (Second eigenvalue on RPn, n � 3). Assume that the metric wg is nor-
malized so that Voln.w/ D Voln.1/ on RPn. Then the second nonzero eigenvalue of
��wg satisfies

�2.w/ < 2
2=n.2nC 2/: (2)

In dimension 2, the above theorem gives �2.w/ < 12, which is weaker than the
sharp bound 10 in Theorem 2. In Lemma 20, we confirm that Conjecture 3 is stronger
than Theorem 4, and that the theorem is asymptotically sharp as n tends to1 because
the ratio between the two upper bounds approaches 1.

Subsequent to this paper, Eddaoudi and Girouard [4] proved a generalization to
rank one symmetric manifolds and some other manifolds, again using the folding
technique. Recall that Colbois and El Soufi [3] earlier maximized the first eigenvalue
on rank one symmetric manifolds within the standard conformal class.

To conclude this introduction, we summarize some related literature.
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Higher eigenvalues on the 2-dimensional real projective space RP 2

For the higher eigenvalues on RP2, it is known by Karpukhin [8] that k-th eigenvalue
has a sharp upper bound when a sequence of metrics converges to the disjoint union
of a real projective space and k � 1 identical round spheres, where the ratio of radii
between the projective space and the spheres is

p
6 W
p
2.

First and second eigenvalue on Sn

For the first eigenvalue �1, Hersch in 2-dimensions [7] and El Soufi and Ilias [5] in
higher dimensions proved that the sharp upper bound of the first nonzero eigenvalue
�1 is attained by the round metric (within that conformal class). They found trial
functions orthogonal to the constant by composing the eigenfunctions of the round
sphere (which are the mC 1 coordinate functions) with a Möbius transformation to
move the center of the mass to the origin.

For maximizing �2 on the 2-sphere, Nadirashvili [15] and later Petrides [19]
showed that there exists a maximizing sequence of metrics degenerating to a disjoint
union of two equal round spheres. In my work [11], the analogous result for the second
eigenvalue �2 on the higher-dimensional sphere Sn is proved. Inspired by the prior
works on constructing trial functions, the method in this paper relies on building trial
functions satisfying the orthogonality conditions by composing the eigenfunctions of
the round sphere with a fold map and a Möbius transformation.

Higher eigenvalues on 2-sphere

Nadirashvili and Sire [16] confirmed the analogous result for the third nonzero eigen-
value �3. For all eigenvalues, by using the work of Petrides [20], Karpukhin, Nadi-
rashvili, Penskoi, and Polterovich [9, Theorem 1.2] showed that the k-th eigenvalue
on S2 is maximal when a sequence of metrics degenerates to the disjoint union of k
identical round spheres.

2. Overview of the proof

Let us preview the trial functions, which are the components in Rm.n/ of the vector
valued map

.Y ı T�c ı FH ıˆ/.y/; y 2 RPn; (3)

where T�c is a Möbius transformation on the ball Bm.n/, FH is a fold map on Sm.n/�1,
ˆ�ˆnWRPn! Sm.n/�1 is a generalized Veronese map and Y.y/D y is the identity
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map on the sphere. Note that each component Yj .y/ D yj is an eigenfunction for the
round sphere. We drop the identity map “Y ” in the work that follows since its role
in (3) is mainly to emphasize that the trial functions are the mC 1 components of the
vector field in (3).

In this paper, we generalize Veronese embedding to all dimensions by induction,
building on the work of Zhang [25]. We adapt the conformal factors so that the images
of Veronese embeddings lie on higher-dimensional spheres of radius 1. The construc-
tion of trial functions relies on my earlier work [11]. We build m.n/-number of trial
functions that satisfy the conditions for the variational characterization of the second
nonzero eigenvalue: orthogonality to the constant and to the first excited state on RPn

with the metric wg.
Let us mention again some relevant previous works. For RP2, Li and Yau [14]

used the well-known Veronese embedding, which is a minimal immersion of RP2

to S4, to show that the round metric maximizes the first eigenvalue. El Soufi and
Ilias [5] generalized the result to RPn for all n � 2, showing that since RPn can be
minimally immersed to a higher-dimensional sphere by its first eigenfunctions, the
standard metric induces the sharp upper bound. We combine this idea of mapping real
projective space to a higher-dimensional sphere with the method of constructing trial
functions from my previous paper [11].

3. Veronese embedding of projective space into a sphere

Our goal in this section is to construct a “generalized Veronese” map ˆnWRPn !

Sm.n/�1 that is a conformal embedding. We first defineˆnWRnC1!Rm.n/, and show
that when the map is restricted on the real projective space, the image lies in a higher-
dimensional sphere.

We denote m.n/ as the multiplicity of the first eigenvalue of the round RPn,

m.n/ D
n.nC 3/

2

for all n� 1 (see [24, Corollary 7.4.3]). And note that the first eigenvalue of the round
RPn is 2nC 2. Readers may wish to skip this section since the explicit formulas are
not needed and we only need the conformal embedding property in Proposition 6.

Definition 5. For n D 1, define ˆ1WR2 ! R2 by

ˆ1.x1; x2/ D 2
�
x1x2;

x21 � x
2
2

2

�
:

For n D 2, define ˆ2WR3 ! R5 by

ˆ2.x1; x2; x3/ D
p
3
�
x1x2;

1

2
.x21 � x

2
2/; x1x3; x2x3;

1

2
p
3
.x21 C x

2
2 � 2x

2
3/
�
:
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For n � 2, define ˆnWRnC1 ! Rm.n/ inductively by

ˆn.x1; : : : ; xnC1/ D an

� 1

an�1
ˆn�1.x1; : : : ; xn/; x1xnC1; : : : ; xnxnC1;

1

nan
.x21 C x

2
2 C � � � C x

2
n � nx

2
nC1/

�
; (4)

where the constant is

an D
�2nC 2

n

�1=2
:

As a remark, when n D 1, one can see that the image consists of coordinates of
the square of the complex number z D x1 C ix2. Note that when n D 2, the map ˆ2
is the well-known Veronese conformal embedding. The inductive definition ofˆn for
n � 2 involves a normalized ˆn�1, the cross terms xixnC1 and then the final term.
Notice that ˆn.�x/ D ˆn.x/ and so ˆn is well defined on RPn.

Proposition 6. If the domain of ˆn in (4) is restricted from RnC1 to the projective
space RPn, then

ˆnWRPn ! Sm.n/�1

is a conformal embedding with constant conformal factor an, meaning that the deriva-
tive map preserves angles and scales the length of tangent vectors by an.

Lemma 7. The Veronese map ˆnWRnC1 ! Rm.n/ satisfies jˆn.x/j D jxj2. In par-
ticular, the image of the mapˆn restricted to the projective space RPn lies in the unit
.m.n/ � 1/-sphere and the map ˆn is injective on RPn.

The proposition follows by combining the next two lemmas.

Proof. One can check that the result holds easily for n D 1. Now, assume that the
lemma holds for n � 1 � 1. We show that it also holds for n.

We have jˆn�1.x1; : : : ; xn/j D j.x1; : : : ; xn/j2 by the induction hypothesis. The
square of jˆnj is written as follows:

jˆn.x1; : : : ; xnC1/j
2
D
2nC 2

n

�n � 1
�n�1

.x21 C � � � C x
2
n/
2
C .x21 C � � � C x

2
n/x

2
nC1

C
1

n.2nC 2/
.x21 C : : : � � � C x

2
n � nx

2
nC1/

2
�
:

After replacing x21 C � � � C x
2
n with jxj2 � x2nC1 and simplifying the above, one

finds jˆn.x1; : : : ; xnC1/j2 D jxj4, where x D .x1; : : : ; xnC1/
| is a column vector.

One can easily see that the map is injective on RP1 since on the complex plane,
the map can be written as ˆ1.z/ D i Nz2 which is injective on RP1. Using a short
induction argument, we find ˆn is injective on RPn.
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Next, we compute the properties of Dˆn and show the Veronese map ˆn is con-
formal on RPn.

Lemma 8. For n � 1,

.Dˆn.x//
|Dˆn.x/ D

2.nC 1/

n
jxj2I C

2.n � 1/

n
xx|; x 2 RnC1:

In particular, ˆn restricted to the projective space RPn is a conformal map into an
.m.n/ � 1/-sphere with conformal factor an.

Proof. We prove by induction. For n D 1,

Dˆ
|

1Dˆ1 D 4

�
x2 x1

x1 �x2

��
x2 x1

x1 �x2

�
D 4

�
x21 C x

2
2 0

0 x21 C x
2
2

�
D 4jxj2I;

where the conformal factor is a1D2. Assume that the lemma holds for n�1�1. Recall
that an D

p
2.nC 1/=n and define bn D

p
2.n � 1/=n. By the induction hypothesis,

.Dˆn�1.xn//
|Dˆn�1.xn/ D a

2
n�1jxnj

2In C b
2
n�1xnx

|
n;

where In is an n � n identity matrix and xn D .x1; : : : ; xn/
| 2 Rn.

Let x D .xn; xnC1/
| 2 RnC1. The derivative of ˆn is written as a 3 � 2 block

matrix,

Dˆn.x/ D an

0B@a�1n�1Dˆn�1 0

xnC1In xn
dnx

|
n �bnC1xnC1

1CA ;
where dn D

p
2=n.nC 1/. We write Dˆ|

nDˆn as a 2 � 2 block matrix,

Dˆ
|
nDˆn

D a2n

�
a�2n�1Dˆ

|

n�1Dˆn�1 C x
2
nC1In C d

2
nxnx

|
n .1 � bnC1dn/xnC1xn

.1 � bnC1dn/xnC1x
|
n x

|
nxn C b

2
nC1x

2
nC1

�
: (5)

Next, we use the induction hypothesis to expand Dˆ|

n�1Dˆn�1 on the upper left
term in (5), having

a�2n�1Dˆ
|

n�1Dˆn�1 C x
2
nC1In C d

2
nxnx

|
n

D jxnj
2In C a

�2
n�1b

2
n�1xnx

|
n C x

2
nC1In C d

2
nxnx

|
n

D jxj2In C .a
�2
n�1b

2
n�1 C d

2
n /xnx

|
n:

Hence, we can write the matrix in (5) as follows:

Dˆ
|
nDˆn

D a2njxj
2InC1 C a

2
n

�
.a�2n�1b

2
n�1 C d

2
n /xnx

|
n .1 � bnC1dn/xnC1xn

.1 � bnC1dn/xnC1x
|
n .b2nC1 � 1/x

2
nC1

�
: (6)
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We only need to check all four coefficients of the second matrix in (6) are equal
to b2n=a

2
n, which is straightforward. So, the conclusion of the Lemma holds for all n.

Finally, we show that the map is conformal on RPn. Let x 2 Sn. For all u; v 2

RnC1 that are tangential to the sphere at x,

u|Dˆ
|
nDˆnv D u|

�2.nC 1/
n

jxj2I C
2.n � 1/

n
xx|

�
v D a2nu|v ;

where jxj2 D 1 and the term including u|x and x|v vanished since the vectors u; v

of the tangent space are orthogonal to the point x on the sphere. This proves that the
generalized Veronese map ˆn on RPn preserves angles and scales distances by the
conformal factor an.

Proposition 9. The map .1=an/ˆn is an isometric minimal immersion from RPn to
.1=an/S

m.n/�1.

Proof. Based on Proposition 6, the embeddingˆn can be made isometric by dividing
constant by the constant conformal factor an. Minimality follows from the result of
Takahashi [23, Theorem 3].

4. Trial functions and orthogonality

Relying on the techniques from Freitas and Laugesen [6] for domains in hyperbolic
space, I constructed the trial functions on the sphere in my previous paper [11]. In
this paper, we adapt the method by first composing the Veronese embedding, since
the embedding takes RPn into Sm.n/�1. Then, we can apply a similar argument from
the sphere to this context: fold the image across some spherical cap and compose it
with a suitable Möbius transformation. Now, we reintroduce the definitions of these
maps to help the reader’s understanding.

4.1. Möbius transformations

Write Bm for the unit ball in Rm and Sm�1 D @Bm. Define the Möbius transforma-
tions on the closed ball [22, eq. (2.1.6)], parametrized by x 2 Bm, as

Tx W xB
m
! xBm; Tx.y/ D

.1C 2x � y C jyj2/x C .1 � jxj2/y

1C 2x � y C jxj2jyj2
; y 2 xBm: (7)

As a remark, T0 becomes just the identity map on the ball. Also, Tx.0/ D x, T�x D
.Tx/

�1, and Tx maps Sm�1 to Sm�1, fixing the points y D ˙x=jxj.
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4.2. Spherical caps, reflection, and folding

The following material is drawn from [11] and is included here for the reader’s con-
venience. We describe spherical caps. For any unit vector p on the sphere, the closed
hemisphere can be written as

Hp D ¹y 2 Sm�1 W y � p � 0º; p 2 Sm�1:

Next, define the spherical caps as the image of the hemisphereHp under some Möbius
transformation:

H � Hp;t D Tpt .Hp/; p 2 Sm�1; t 2 Œ0; 1/:

Here, the Möbius transformation sends boundaries to boundaries, that is, Tpt .@Hp/D
@Hp;t . Then we can write the spherical cap explicitly as

Hp;t D
°
y 2 Sn W y � p �

2t

1C t2

±
;

which can be easily calculated by (7). Note that as t approaches to 1, the spherical cap
Hp;t covers almost all the sphere toward p.

Given b 2 Rm n ¹0º, the reflection Rb in the hyperplane through the origin and
perpendicular to the vector b is defined as

Rb.y/ D y � 2
.y � b/

jbj2
b; y 2 Sm�1:

By conjugation, we can define a reflection map across the boundary of the general
spherical cap Hp;t : let

RH � Rp;t D Tpt ıRp ı .Tpt /
�1
WSm�1 ! Sm�1:

Note that RHp;t
.p/ D �p, which says that the reflection map sends p to its antipodal

point. Lastly, we define a “fold map” that reflects the complement of the spherical cap
across the boundary:

FH .y/ � Fp;t .y/ D

´
y; y 2 H;

RH .y/; y 2 Sm�1 nH:

Observe that the image of the boundary of the spherical cap @H is itself. For simplic-
ity, we use different notations FH and Fp;t to denote the same map when it is clear
from the context (similarly for RH ).
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4.3. Center of mass and trial functions

A point c 2 Bm is the (hyperbolic) center of mass of a Borel measure � on the sphere
if Z

Sm�1

T�c.y/ d�.y/ D 0: (8)

The trial functions are defined to be the components in Rm.n/ of the vector valued
map

y 7! .T�c ı FH ıˆn/.y/; y 2 RPn; (9)

where T�c is a Möbius transformation on the ball Bm.n/, FH is a fold map on Sm.n/�1,
and ˆ � ˆnWRPn ! Sm.n/�1 is the generalized Veronese map defined in Section 3.
How the center of mass c and spherical cap H are chosen is explained below.

Next, we present two different topological proofs that the trial functions satisfy the
orthogonality conditions. The first argument is based on the idea of Hersch [7] and
the reflection symmetry lemma by Petrides [19]. The second argument is essentially
from a result of Karpukhin and Stern [10, Lemma 4.2]. We give a new proof.

4.4. Orthogonality of the trial functions by two-step proof

Based on the construction above, we need to show that the trial functions are orthog-
onal to the constant and the first eigenfunction with respect to the metric wg, so
that we can use the variational characterization of the second eigenvalue. The first
proof of orthogonality of trial functions (9) proceeds similarly to my previous work
[11, p. 3506], as we now explain.

Define a push-forward measure � on Sm.n/�1 by � D .FH ı ˆ/�vwg where
vwg is the volume measure on RPn with respect to the metric wg. A center of
mass c D cH in (8) exists by Hersch’s lemma; see Laugesen [13, Corollary 5] for
the precise statement. The assumptions of the corollary are satisfied by extending �
outside FH .ˆ.RPn// to all of the sphere with zero, noting that this extended push-
forward measure is a finite Borel measure and 0 D �.¹yº/ < �.Sm.n/�1/=2 for all
y 2 Sm.n/�1. The result of the corollary gives the existence and uniqueness of the cen-
ter of mass cH D cp;t , and the center of mass depends continuously on the parameters
of the spherical cap, .p; t/ 2 Sm.n/�1 � Œ0; 1/.

We later need the continuity of the center of mass as t ! 1. The Möbius transfor-
mation and the fold map do not extend continuously when t D 1, but nonetheless, the
center of mass cp;t converges to a point c.w/ which depends only on the measure and
is independent of p; see [11, p. 3506]. The underlying point is that the push-forward
measure is weakly convergent as t ! 1.
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The orthogonality of trial functions to the first excited state f of ��wg on RPn

requires that the following vector field vanishes at some point .p; t/ 2 Sm.n/�1 �

Œ0; 1/:

V.p; t/ D

Z
RPn

T�cH .FH .ˆ.y///f .y/ dvwg.y/; (10)

where H D Hp;t . Note that from the continuous dependence on the parameters, the
vector field (10) is continuous. Since the image of the Veronese map is in the sphere,
the argument in my previous paper [11, Section 2.8], which is based on the topological
argument by Petrides [19, Claim 3], applies with obvious changes. We skip the details
and state the result below from [11, Proposition 8].

Proposition 10 (Vanishing of the vector field). V.p; t/ D 0 for some p 2 Sm.n/�1

and t 2 Œ0; 1�.

This result finishes the first argument for the orthogonality conditions. Before
we proceed to the second argument, I would like to introduce different approaches
to the orthogonality conditions for trial functions. Petrides [19] showed that a map
with reflection symmetry has nonzero degree, leading to the two-step argument above.
Freitas and Laugesen [6] gave a new proof of Petrides’s Lemma by a global approach
using the de Rham definition of the degree.

Karpukhin and Stern [10, Lemma 4.2] relied instead on the Lefschetz–Hopf fixed
point theorem, obtaining both orthogonality conditions in a one-step proof. In the next
section, we give a proof similar to their lemma by adapting a method for proving the
Borsuk–Ulam theorem. A third approach by Bucur, Martinet, and Nahon [2] relies on
the index theorem to give a one-step proof in a closely related orthogonality situation.

4.5. Orthogonality of the trial functions by one-step proof

We rely on Theorem 12 in Section 5 to prove that for some choice of parameters, the
trial functions are orthogonal to both the constant and the first excited state. Compared
to the previous vector field defined in (10), we assume now that the center of mass is
an independent variable in the vector field

V.x; p; t/ D

� Z
RPn

T�x.FH .ˆ.y/// dvwg ;

Z
RPn

T�x.FH .ˆ.y///f .y/ dvwg

�
;

which is a map from Bm.n/ � Sm.n/�1 � Œ0; 1/ to R2m.n/. Here H D Hp;t . Now,
we extend V continuously to t D 1 and jxj D 1. When t D 1, the vector field is
continuous and independent of p, by a similar argument to that in the previous section.
As x! Qx 2 Sm.n/�1, the vector field can be extended continuously by the dominated
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convergence similarly and then the vector field becomes independent of p and t . In
fact, the vector field at x D Qx is

V. Qx; p; t/ D Voln.w/.� Qx; 0/

since the Möbius transformation degenerates and
R

RPn f .y/ dvwg D 0. In the next
proposition, we again use the fact that the degree is a homotopy invariant to show that
the vector field vanishes at some choice of parameters.

Proposition 11 (Vanishing of the vector field). V.x; p; t/ D 0 for some .x; p/ 2
xBm.n/ � Sm.n/�1 and t 2 Œ0; 1�.

Proof. Let m D m.n/. We endow the following equivalence relation on xBm � Sm�1.
For any x 2 @xBm and p; q 2 Sm�1, we say .x;p/ � .x; q/. Define a homeomorphism
xBm � Sm�1=� ! S2m�1 as .x; p/ 7! .

p
2 � jxj2x; .jxj2 � 1/p/ D .a; b/. (This

homeomorphism makes the boundary points of the ball collapse onto the points in the
sphere such that the second part of the coordinates are zero.) The inverse parameters
are

x.a/ D �
ap

1C jbj
and p.b/ D �

b

jbj
:

When b ¤ 0, x.a/ only depends on a since jbj2 D 1 � jaj2. When b D 0, we have
x.a/ D �a and p.b/ is undefined.

Next, we precompose V with the inverse of the homeomorphism and denote the
map as

zV.a; b; t/ D V.x.a/; p.b/; t/; .a; b/ 2 S2m�1;

where for b D 0, we have jaj D 1, x.a/ D �a, jx.a/j D 1, and so zV.a; 0; t/ D
Voln.w/.a; 0/.

Suppose V.x;p; t/ does not vanish, so that zV does not vanish. We obtain a contra-
diction later. For each t , let Wt .a; b/´ zV.a; b; t/=j zV.a; b; t/j be a map from S2m�1

to itself. When b D 0, note Wt .a; 0/ D .a; 0/.
When t D 1, the fold map becomes identity on all of the sphere except at one

point, so we have

W1.a; b/ D

� Z
RPn

T�x.a/.ˆ.y// dvwg ;

Z
RPn

T�x.a/.ˆ.y//f .y/ dvwg

�
:

The mapW1 is not surjective onto S2m�1 since it is smooth and the right side depends
only on them-dimensional parameters a, while 2m� 1 >m. Hence,W1 is homotopic
to a constant map and so has degree zero, which implies thatW0 also has degree zero.
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When t D 0, the map .a; b/ 7! W0.a; b/ satisfies the reflection symmetry condi-
tion (11) below, by the following calculation. When b ¤ 0, we calculate that

zV.Rb.a/;�b; 0/ D

� Z
RPn

T�x.Rb.a//.Fp.�b/;0.ˆ.y/// dvwg ;

Z
RPn

T�x.Rb.a//.Fp.�b/;0.ˆ.y///f .y/ dvwg

�

D

� Z
RPn

T�Rb.x.a//.RbFp.b/;0.ˆ.y/// dvwg ;

Z
RPn

T�Rb.x.a//.RbFp.b/;0.ˆ.y///f .y/ dvwg

�
(since x.Rb.a// D Rb.x.a// by linearity of Rb , and Fp.�b/;0 D RbFp.b/;0)

D

�
Rb

Z
RPn

T�x.a/.Fp.b/;0.ˆ.y/// dvwg ;

Rb

Z
RPn

T�x.a/.Fp.b/;0.ˆ.y///f .y/ dvwg

�
(by the property TRba.Rby/ D RbTa.y/ in [11, p. 3507])

D .Rb �Rb/ zV.a; b; 0/:

Now, the reflection symmetry condition for W0 follows by dividing each side by its
norm. When b D 0, W0.a; 0/ D .a; 0/. Thus, (11) holds for W0.

Hence, the map W0 has nonzero degree by Theorem 12, which is a contradiction.

5. Calculation of the degree of the self-maps

In this section, we calculate the degree of the continuous maps between odd-dimen-
sional spheres with reflection symmetry. Recall the following facts about the toplogi-
cal degree of continuous maps on a sphere. See Outerelo and Ruiz [18, Chapter IV.4].
Let 'W xBnC1 ! RnC1 be a continuous map such that '.Sn/ � RnC1 n ¹0º. Define a
continuous map �WSn! Sn as �.x/D '.x/=j'.x/j for x 2 Sn. It is well known that
for any point p 2 Sn, d.'; xBnC1; 0/ D deg.�;Sn; p/. Moreover, since the degree of
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� is consistent on any p 2 Sn, we may write deg.�/ D deg.�;Sn; p/. The main goal
of this section is to show the following theorem.

Theorem 12. Let �WS2nC1 ! S2nC1 be a continuous map and assume that the map
satisfies the following reflection symmetry property:

.Rb �Rb/�.a; b/ D �.Rb.a/;�b/ when b ¤ 0,

�.a; 0/ D .a; 0/ when b D 0,
(11)

for all a; b 2 RnC1 with .a; b/ 2 S2nC1. Then deg.�/D 1 when n is odd, and deg.�/
is odd when n is even.

As a remark, Karpukhin and Stern [10, Lemma 4.2] showed that the degree is odd
with a similar reflection symmetry condition.

The strategy of the proof is derived from an extension proof of the well-known
Borsuk–Ulam theorem. See [18, Theorem 5.2]. The goal is to extend the map on the
sphere to the one on the closed ball while preserving continuity and the reflection
symmetry. We focus on the fact that on the hyperplane R2nC1 D ¹.a; b/ W a 2 RnC1;

b 2 Rn � ¹0ºº, the reflection map Rb can be written as a Cartesian product of the
reflection on Rn and an identity on R. Considering this hyperplane allows us to
extend the map step-by-step by induction on dimension of the domain. In particular,
the dimension of the parameter of the reflection map determines the inductive step.
The extension of the map to all of xB2nC2 consists of an identity map on an "-ball at
the origin and a continuous map with reflection symmetry on the remaining domain.
After proving these extension lemmas, we calculate the degree of the extended map
using the reflection symmetry.

A simplified proof of Theorem 12 is given by the author and Laugesen [12, The-
orem 5.1] in the special case when n D 1, for maps from S3 to S3. That newer
approach, which also would work in higher dimensions, avoids the regularity con-
cerns and explicit degree calculations in Lemma 17 below.

For simplicity, i is used for an inclusion map or identity map depending on the
context. We use Rn instead of R2nC1 in the next lemma to keep the notation simple
for now, and return to using R2nC1 again after the next lemma.

Definition 13. Let D � Rn be a set and k be a fixed integer such that 1 � k � n=2.
Consider .a; b/ 2Rn where a 2Rn�k and b 2Rk . The domain is called k-symmetric
if

.a; b/ 2 D () ..Rb � i/.a/;�b/ 2 D; whenever b ¤ 0.

In the special case when n is even and k D n=2,D �Rn being n=2-symmetric means

.a; b/ 2 D () .Rb.a/;�b/ 2 D:
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Let us first extend a map when the dimension of its k-symmetric domain is lower
than that of the codomain.

Lemma 14. Let D � Rn (n � 3) be bounded, open and k-symmetric with fixed 1 �
k < n=2 such that 0 … xD. Let �W @D! Rm n ¹0º, n < m (m is even) be a continuous
map with the following reflection symmetry property:

.Rb � i �Rb � i/�.a; b/ D �..Rb � i/.a/;�b/ when b ¤ 0,

�.a; 0/ D .a; 0/ 2 Rm when b D 0,
(12)

for all .a; b/ 2 @D with a 2 Rn�k and b 2 Rk . Then there exists a continuous map
'W xD ! Rm n ¹0º which extends � and satisfies the properties (12) for .a; b/ 2 xD.

Here are a few remarks about the statement to illustrate the lemma. The reason
for assuming n < m and m is even is due to the definition of reflection symmetry
property: on the left-hand side of (12), Rb acts on k-dimensional space and i acts
on .m=2 � k/-dimensional space; on the right side, i is an identity map acting on
.n � 2k/-dimensional space.

Proof. Define �.a; 0/D .a; 0/ for all a 2Rn�k , noting this extended � is still contin-
uous. We begin induction on n with the case when n D 3. Here, we only consider the
case when k D 1, since 1� k < 3=2: a 2R2 and b 2R. For convenience, we identify
the plane R2 with the hyperplane R2 � ¹0º in R3. Let �1W @D [ . xD \R2/! Rm be
defined as

�1 D

´
� on @D,

i on xD \R2:

Note that the map is well defined and continuous, satisfying the reflection symmetry.
The image does not contain 0 since � does not vanish on @D and 0 … xD. Let DC´
¹.a; b/ 2 D W b > 0º and D�´ ¹.a; b/ 2 D W b < 0º. We can rewrite xD as

xD D @D [DC [D� [ . xD \R2/:

By the continuous extension lemma [18, Lemma 5.1 (1)] and since @DC is a compact
set, there exists a continuous extension of �1j@DC to �2W xDC ! Rm that is nowhere
zero. Using the fact that Rb is simply the map N WR! R, N.x/ D �x, when b ¤ 0,
let 'W xD ! Rm be defined as

'.a; b/ D

´
�2.a; b/ when .a; b/ 2 xDC,

.N � i �N � i/�2..N � i/.a/;�b/ when .a; b/ 2 xD n xDC.

One can check that the map is continuous, nowhere-zero and satisfies the reflection
symmetry.
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Suppose by induction that the lemma holds for domains in Rn�1, n� 4. We prove
the result for D � Rn. Consider k to be any integer such that 1 � k < n=2. Let
a 2 Rn�k and b 2 Rk . Denote the last coordinate of b as bk and identify Rn�1 with
¹.a; b/ 2 Rn W bk D 0º.

By the induction hypothesis, we may extend the map from @D \ Rn�1 to xD \
Rn�1, as follows. Note that when bk D 0, the reflection map Rb can be written as a
Cartesian product of the reflection map and identity or inclusion map on the last coor-
dinate. We first check the case when k > 1. By the induction hypothesis with k � 1
and n � 1, we can extend the map on @D \ Rn�1 to the map on all of xD \ Rn�1 so
that it is continuous, nowhere-zero and satisfies the reflection symmetry. When k D 1,
the map can simply be extended as �.a; 0/D .a; 0/ 2 Rm on xD \Rn�1 since b 2 R.
In either case, we denote the extension map of �j@D\Rn�1 as �1W xD \Rn�1 ! Rm.

The extension from previous step allows us to define �2W . xD \Rn�1/[ @D!Rm

as

�2 D

´
� on @D,

�1 on xD \Rn�1.

Let DC´ ¹.a; b/ 2 D W bk > 0º and D�´ ¹.a; b/ 2 D W bk < 0º. We can rewrite
xD as xD D @D [DC [D� [ . xD \ Rn�1/. Similarly, by the continuous extension

lemma [18, Lemma 5.1 (1)], there exists an extension of �2j@DC to �3W xDC ! Rm

that is nowhere-zero. Define 'W xD ! Rm as

'.a; b/ D

´
�3.a; b/ when .a; b/ 2 xDC,

.Rb � i �Rb � i/�3..Rb � i/.a/;�b/ when .a; b/ 2 xD n xDC.

One can check that the map is nowhere-zero and satisfies the reflection symmetry,
and is continuous where bk ¤ 0. Showing continuity where bk D 0 requires a careful
argument. We only need to check the direction from D� since the other direction is
easy due to the continuity of �3. When k D 1, the reflection map Rb D N does not
depend on b and the continuity from D� follows easily. When k ¤ 1, we want to
show that as .a; b/! . Qa; Qb/ where bk > 0 and Qbk D 0, we have

.Rb � i �Rb � i/�3..Rb � i/.a/;�b/! �3. Qa; Qb/:

Note that when Qb ¤ 0, Rb ! R Qb continuously and so the norm of the difference

j.Rb � i �Rb � i/�3..Rb � i/.a/;�b/ � �3. Qa; Qb/j

D j�3..Rb � i/.a/;�b/ � .Rb � i �Rb � i/�3. Qa; Qb/j

approaches 0 as .a;b/! . Qa; Qb/ by the reflection symmetry of �2 on xD \Rn�1. When
b D 0, it is enough to consider a sequence ¹.aj ; bj /º1jD1 in D� converging to . Qa; 0/.
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By the extension �3. Qa; 0/ D . Qa; 0/ for all a 2 Rn�k , we may write the norm of the
difference as

j.Rbj � i �Rbj � i/�3..Rbj � i/.a
j /;�bj / � . Qa; 0/j

D j�3..Rbj � i/.a
j /;�bj / � ..Rbj � i/. Qa/; 0/j

D j�3..Rbj � i/.a
j /;�bj / � �3..Rbj � i/. Qa/; 0/j: (13)

We want to show that this quantity approaches 0. Note that the last line holds even
though ..Rbj � i/. Qa/; 0/ might not be in DC, since we extended �3 to all of b ¤ 0.
Moreover, we have that the quantity

j..Rbj � i/.a
j /;�bj / � ..Rbj � i/. Qa/; 0/j D j.a

j ; bj / � . Qa; 0/j

approaches 0 as j !1. By the uniform continuity of �3 on compact sets, the quan-
tity (13) approaches 0 as j !1.

The next lemma shows that the map can be extended from the boundary to the
interior when the dimensions of the domain and the codomain are equal. For conve-
nience, we identify R2nC1 with the hyperplane R2nC2 \ ¹bnC1 D 0º.

Lemma 15. Let D � R2nC2 (n � 1) be bounded, open and .nC 1/-symmetric set
such that 0 … xD. Let �W @D ! R2nC2 n ¹0º be a continuous map with the reflection
symmetry property (12). Then � can be extended to 'W xD! R2nC2 which is continu-
ous with reflection symmetry and ' ¤ 0 on xD \R2nC1.

Proof. Let DC´ ¹.a; b/ 2 D W bnC1 > 0º and D�´ ¹.a; b/ 2 D W bnC1 < 0º. By
Lemma 14, extend �j@D\R2nC1 to �1W xD \R2nC1 ! R2nC2 so that it is continuous,
nowhere-zero and satisfies the reflection symmetry. Define �2W . xD \R2nC1/[ @D!

R2nC2 by

�2 D

´
� on @D,

�1 on xD \R2nC1.

Let yD D @D [ . xD \ R2nC1/ [ xDC. Next, we use the Tietze extension theorem to
extend the map �2j@D[. xD\R2nC1/ to �3W yD ! R2nC1 since @DC � yD are both com-
pact sets. As a remark, the extension theorem used here is different from the one
used earlier since the dimensions are now the same between the domain and the
codomain, so the nowhere-zero property only holds at xD \R2nC1 instead of xD. Let
'W xD ! R2nC2 be defined as

'.a; b/ D

´
�3.a; b/ when .a; b/ 2 yD,

.Rb �Rb/�3.Rb.a/;�b/ when .a; b/ 2 D�.
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It is easy to check that the map ' is nowhere-zero in xD \ R2nC1 and satisfies the
reflection symmetry. Continuity follows by a similar argument to the previous lemma.

Next, for Lemma 17 we rely on the following proposition from [18, Proposi-
tion:3.2].

Proposition 16. Let f W xD! RnC1 be a continuous mapping whose restriction to D
is C 1 and let a 2RnC1 n f .@D/ be a regular value of f jD . Then f �1.a/ is finite and

d.f;D; a/ D
X

x2f �1.a/

signdet.Jf .x//:

For the next lemma, we use the same notations DC and D� for the sets with a
certain reflection relationship (not necessarily depending on the sign of the last coor-
dinate). They are more general sets compared to the ones in the previous extension
lemmas.

Lemma 17 (Change of variables of the degree). Let DC � R2nC2 be a bounded and
open set such that for .a; b/ 2 RnC1, we have b ¤ 0 whenever .a; b/ 2 DC. Define
D�´¹.Rb.a/;�b/ W .a;b/2DCº and let �W xD�!R2nC2 be a continuous map with
�.a; 0/D .a; 0/ whenever .a; 0/ 2 xD�, and 0 … �.@D�/. If the map‰W xDC!R2nC2

is defined as

‰.a; b/ D .Rb �Rb/�.Rb.a/;�b/; for b ¤ 0;

‰.a; 0/ D .a; 0/; for b D 0;

then the degrees are related by d.�;D�; 0/ D .�1/nd.‰;DC; 0/.

Note that whenever b D 0 on xDC, the point lies on the boundary @DC, similarly
for xD�. Moreover, 0 … ‰.@DC/ due to the assumption 0 … �.@D�/.

Proof. We proceed in four steps.

Step 1. Continuity of the maps. To show that ‰ is continuous on xDC, we only need
to check boundary points where b D 0, due to continuity of � and the assumption that
b ¤ 0whenever .a; b/ 2DC. The continuity of‰ follows by arguing like in the proof
of Lemma 14.

For the next step, define  WDC ! R2nC2 as

 .a; b/ D �.Rb.a/;�b/

As a remark, might not be extended to the closure but is introduced for convenience.
We write �.a; b/ D .�1.a; b/; �2.a; b// and similarly for  and ‰.
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Step 2. The degree of ‰ in terms of  . We first assume that � 2 C. xD�/ \ C 1.D�/
and that 0 is a regular value. By Proposition 16 applied to ‰, and using that b ¤ 0
on DC,

d.‰;DC; 0/ D
X

.a;b/2‰�1.0/

sign det.J‰.a; b//

D

X
.Rb�Rb/ .a;b/D0

sign det
�
@aRb 1.a; b/ @bRb 1.a; b/

@aRb 2.a; b/ @bRb 2.a; b/

�
D

X
 .a;b/D0

sign det
�
Rb.@a 1.a; b// Rb.@b 1.a; b//

Rb.@a 2.a; b// Rb.@b 2.a; b//

�
; (14)

as follows. In the first column of the matrix in (14), the reflection map Rb is inde-
pendent of the variable a. For the second column, the terms including  .a; b/ vanish
because we evaluate the derivatives at  .a; b/ D 0; this allows us to take Rb outside
the partial derivatives.

Step 3. The degree of in terms of �. We calculate the sign of the determinants inside
the sum in (14),

sign det
�
Rb.@a 1.a; b// Rb.@b 1.a; b//

Rb.@a 2.a; b// Rb.@b 2.a; b//

�
D sign det

�
Rb 0

0 Rb

��
@a 1.a; b/ @b 1.a; b/

@a 2.a; b/ @b 2.a; b/

�
D sign detJ .a; b/; (15)

where Rb is the matrix for the reflection map Rb and the determinant of the block
matrix is 1 since detRb D �1. Next, we calculate the Jacobian J .a; b/ in (15):

J .a; b/ D

�
@a.�1.Rb.a/;�b// @b.�1.Rb.a/;�b//

@a.�2.Rb.a/;�b// @b.�2.Rb.a/;�b//

�
D J�.Rb.a/;�b/

�
Rb @bRb.a/

0 �I

�
; (16)

by the chain rule. The determinant of the second matrix in (16) is .�1/nC2 since the
determinant of the block matrix can be calculated as for a 2�2 matrix when the lower
left submatrix is 0. So we can conclude that d.�;D�; 0/ D .�1/nd.‰;DC; 0/.

Step 4. Smooth approximation of continuous �. We now assume that � is just contin-
uous on xD� and 0 is not necessarily a regular value.

First, suppose there is no point of the form .a;0/ in xD�. That is, if .a;b/2 xD� then
b ¤ 0. Choose a C 1. xD�/-map Q� homotopic to � such that 0 is a regular value with
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0 … Q�.@D�/. To recall briefly about the existence of such functions, we use the exten-
sion theorem to extend � outside the domain D� and then we use mollification. We
can choose Q� close enough to � so that the image of the boundary does not contain 0.
Also, if 0 is not a regular value, by Sard’s theorem, there exists a close enough value
p near 0 that is a regular value. We shift the map by �p and hence make 0 a regular
value of Q�. Due to the assumption that there is no point of the form .a; 0/ in xD�, the
condition �.a; 0/ D .a; 0/ does not need to be considered for mollification.

Define z‰WDC ! R2nC2 from Q� similarly to how ‰ is constructed from �. Note
that this map is C 1.DC/ and continuous on xDC. We conclude that d. Q�; D�; 0/ D
.�1/nd.z‰;DC; 0/ by repeating Steps 2 and 3.

Next, based on the fact that Rb is a linear isomorphism when b ¤ 0, we show that
z‰ is homotopic to‰. Consider a continuous homotopy ht .a;b/ defined on xD� � Œ0;1�
where h0.a; b/ D Q� and h1.a; b/ D �. We may choose that 0 … ht .@D�/ for all t 2
Œ0; 1�.

Define kt .a; b/´ .Rb �Rb/ht .Rb.a/;�b/. We want to show that kt is a homo-
topy from z‰ to‰ and 0 … kt .@DC/ for all t 2 Œ0; 1�. The continuity of kt follows since
ht is continuous and Rb � Rb is continuous when b ¤ 0. We show 0 … kt .@DC/

by contradiction. Suppose 0 2 kt .@DC/, say kt .a; b/ D 0 for some .a; b/ 2 @DC.
Then ht .Rb.a/; �b/ D 0, which is impossible since .Rb.a/; �b/ 2 @D�. Hence,
0 … kt .@DC/. We have d.�; D�; 0/ D d. Q�; DC; 0/ and similarly for ‰ and z‰, so
we have the conclusion in Step 3.

Next suppose there does exist a point of the form .a; 0/ in xD�, define a set
D�;" � D� where jbj > " for all D�;" such that 0 … �.D� n D�;"/. Such an "
exists since � is continuous and 0 … �.@D�/. By the excision property [18, p. 44],
d.�jD�;"

;D�;"; 0/ D d.�;D�; 0/ and d.‰jDC;"
;DC;"; 0/ D d.‰;DC; 0/. Note that

D�;" was explained above as the case when b ¤ 0. By combining the degree rela-
tionship between D� and D�;", and the previous case, we have the conclusion of the
lemma.

As a remark, we are not assuming any reflection symmetry for � in the previous
lemma since we only want to understand the relationship of the degrees between �
and ‰.

Proof of Theorem 12. Fix 0 < " < 1 and define U ´ B.0; "/ � B2nC2 and D1 ´
B2nC2 n U .

Define �1WU [ S2nC1 ! R2nC2 by

�1 D

´
i on U ;

� on S2nC1:
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Then �1 is a continuous function on @D1 D S2nC1 [ @U that is the identity near the
origin and �1 satisfies the reflection symmetry. By Lemma 15, there exists a continu-
ous extension �2 of �1j@D1

such that �2W xD1 ! R2nC2 with the reflection symmetry
and �2 ¤ 0 on xD1 \R2nC1.

Define the following continuous map �3 on B2nC2 D U [ xD1:

�3 D

´
i on U ,

�2 on xD1:

It is easy to check that the map is well defined, continuous, and satisfies the reflection
symmetry.

We first show that d.�2; D1; 0/ is 0 when n is odd and even when n is even. Let
DC1 ´ ¹.a; b/ 2 D1 W bnC1 > 0º and D�1 ´ ¹.a; b/ 2 D1 W bnC1 < 0º. Using the
additivity property [18, Proposition 2.5], we deduce

d.�2;D1; 0/ D d.�2;D
C
1 ; 0/C d.�2;D

�
1 ; 0/;

since 0 … �2. xD1 n .DC1 [D
�
1 //. Next, using Lemma 17, we conclude

d.�2;D1; 0/ D

´
0 when n is odd,

2d.�2;D
C
1 ; 0/ when n is even.

Denote int as the interior of a set. By applying the additivity property again, we have

deg.�/ D d.�3;B2nC2; 0/

D d.�3;B
2nC2

n U; 0/C d.�3; intU; 0/

D d.�2;D1; 0/C d.i; intU; 0/

D d.�2;D1; 0/C 1;

where the additive property holds since 0 … �3.xB2nC2 n .D1 [ intU//. Hence, we get
deg.�/D 1 when n is odd and deg.�/ is odd when n is even, which finishes the proof
of Theorem 12.

6. Estimating the Rayleigh quotient – proof of Theorem 4

Recall that the Veronese map ˆ maps RPn into Sm�1 where m.n/ is written as m
for simplicity. We apply the trial functions constructed in Section 4 to the Rayleigh
quotient, to estimate the second eigenvalue from above.

The variational characterization states that

�2.RPn; w/ �

R
RPn jrwg uj

2
wg dvwgR

RPn u2 dvwg
; (17)
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where u is a trial function in H 1.RPn/ which satisfies the orthogonality condition
to the constant and to the first excited state. By substituting the definition of trial
functions (3) into (17), we have

�2.RPn; w/ �

R
RPn jrwg .T�c ı FH ıˆ/j j

2
wg dvwgR

RPn.T�c ı FH ıˆ/
2
j dvwg

; j D 1; : : : ; m: (18)

For each j , we multiply by the denominator on both sides of the inequality (18)
and sum for all j ’s. Note that .T�c ı FH ı ˆ/.y/ is a point on the unit sphere. This
implies that the sum of the denominators is equal to the volume of RPn with the
metric wg, that is,

R
RPn

P
j .T�c ı FH ıˆ/

2
j dvwg D Vol.RPn; wg/. Recall that by

our normalization, Vol.RPn; wg/ D Voln.1/. Hence, the inequality in (18) can be
written as

�2.RPn; w/Voln.1/ �
Z

RPn

m.n/X
jD1

jrwg .T�c ı FH ıˆ/j j
2
wg dvwg :

By applying Hölder’s inequality to the right-hand side,

�2.RPn; w/Voln.1/

�

� Z
RPn

�m.n/X
jD1

jrwg .T�c ı FH ıˆ/j j
2
wg

�n=2
dvwg

�2=n
Voln.1/1�2=n:

(As a remark, the application of Hölder is not needed when n D 2.) We introduce a
new notation: for an n-dimensional manifold .M; g/ and a map F WM ! Sm�1, we
denote

jrgF jg D

p
mX
jD1

jrg .F /j j
2
g :

The inequality becomes

�2.RPn; w/n=2 Voln.1/ �
Z

RPn

jrwg .T�c ı FH ıˆ/j
n
wg dvwg

D

Z
RPn

jrg .T�c ı FH ıˆ/j
n
g dvg ;

by changing wg to the round metric g on RPn and using conformal invariance. We
again change the variables from RPn toˆ.RPn/, which is an embedded submanifold
of Sm�1. Denote n-dimensional Hausdorff measure on the submanifold as dHn and
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write r for the gradient on the embedded submanifold. Since ˆ is conformal by
Proposition 6,

�2.RPn; w/n=2 Voln.1/ �
Z

ˆ.RPn/

jr.T�c ı FH /j
n dHn

D

Z
ˆ.RPn/\H

jr.T�c/j
n dHn C

Z
ˆ.RPn/\Hc

jr.T�c ıRH /j
n dHn;

where H c D Sm�1 nH .
By changing variable in each part and using the fact that the reflection RH and

Möbius transformation T�c are conformal, we have the following inequality:

�2.RPn; w/n=2 Voln.1/

�

Z
T�c.ˆ.RPn/\H/

jryjn dHn.y/C

Z
T�c.RH .ˆ.RPn//\H int/

jryjn dHn.y/ (19)

whereH intDRH .H
c/ is the interior ofH . Recall that the Veronese surface is embed-

ded into Sm�1. At each point Qy in the surface, the tangent space has dimension n, and
after rotating the coordinate system, we may suppose Qy D .0; : : : ; 0; 1/ and the tangent
space can be written as the span of ¹@y1

; : : : ; @yn
º where y D .y1; : : : ; yn; ynC1; : : : ;

ym/. At Qy, we compute

jryjn D
� nX
jD1

jryj j
2
�n=2

D nn=2: (20)

Now, substitute (20) into (19). Then we have

�2.RPn; w/n=2 Voln.1/

� nn=2
�
Voln.T�c.ˆ.RPn/ \H//C Voln.T�c.RH .ˆ.RPn// \H int//

�
< nn=2

�
Voln.T�c.ˆ.RPn///C Voln.T�c.RH .ˆ.RPn////

�
; (21)

where we dropped the intersections withH andH int. Note that the last inequality (21)
is strict, as follows. Either ˆ.RPn/ \H c has positive n-volume or else ˆ.RPn/ \

H does, or both, and so after reflecting the second set with RH we deduce that
ˆ.RPn/ \H c or RH .ˆ.RPn// \ .H int/c or both have positive n-volume. Hence,
when we drop the intersections with H and H int in (21), at least one of the vol-
umes becomes strictly larger. This last line is bounded above by 2nn=2 times the
.m � 1/-conformal volume of ˆ (see El Soufi and Illias [5, p. 259]), since T�c and
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T�c ı RH are conformal diffeomorphisms of the sphere Sm�1. Recall by Proposi-
tion 9 that ˆ is a minimal immersion. Hence, the .m � 1/-conformal volume of ˆ
equals .an/n Voln.1/ by [5, Corollary 2.3 and p.267], and so

�2.RPn; w/n=2 Voln.1/ < 2nn=2.an/n Voln.1/

D 2Voln.1/.2nC 2/n=2;

which finishes the proof of Theorem 4.

7. Remark about Conjecture 3

The conjecture is based on the hope that in (21), the sum of the volumes is maximized
when jcj< 1, p 2ˆ.RPn/, and t ! 1. In that limit,ˆ.RPn/\H (non-reflected set)
tends to the image of n-projective space under the Veronese map andRH .ˆ.RPn//\

H int (reflected set) tends to an n-sphere embedded in the higher-dimensional sphere,
as explained below. This kind of “bubbling” is motivated by the proof of the conjec-
ture in dimension 2 by Nadirashvili and Penskoi [17]. Also, Petrides [21] proved that
under certain Palais–Smale condition, the k-th eigenvalue for the compact n-dimen-
sional manifold is maximal with a sequence of metrics that converges to that of
“bubbling.”

We have not been able to show that the sum of the volumes in (21) is maximal in
the bubbling situation. In this section, though, we estimate the volume when the fold
map degenerates (t ! 1) and separately when the Möbius transformation degenerates
(jcj ! 1). Both cases support our conjecture.

First, we calculate that as the fold map Fp;t degenerates when t ! 1, the volume
approaches at most the volume of the projective space and a sphere.

Proposition 18 (Fold map degenerates). Given an N -dimensional imbedded smooth
surface 
 W xBN ! SM , 1 � N < M , we have

lim sup
t!1

HN .Fp;t ı 
.xB
N // � HN .S

N /CHN .
.xB
N //; (22)

where p 2 SM is fixed.

Here, we use the closed ball xBN for its compactness, and the fold map Fp;t acts
on SM (that is, M is the “m � 1” in Section 4.2).

Proof. Our main strategy is to decompose the image 
.xBN / into two pieces, inside
the cap Hp;t and outside. Inside the cap, the fold map is the identity and so that part
of Fp;t ı 
.xBN / has volume at most HN .
.xB

N //. We will show that the fold of the
piece outside has volume at most HN .SN / as t ! 1. For the rest of the proof, we
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may suppose the image 
.xBN / contains p, since otherwise the image will lie entirely
inside the cap when t is close to 1 and there is nothing to prove. In fact, we may
suppose 
.BN / contains p, since if p 2 
.@BN /, we may enlarge the surface slightly
so that p lies in the interior of the image and then reparametrize 
 .

Let us consider when the image Fp;t ı 
.xBN / is mapped onto the Euclidean space
RM under the stereographic projection …, with p mapping to the origin and @Hp;t
mapping to the sphere of radius " centered at the origin, where " ! 0 as t ! 1.
Write �´ … ı 
 W xBN ! RM . After some appropriate reparametrization of 
 , we
may assume that �.0/ D 0 and its Jacobian D�.0/ D .I 0/|, which is an M � N
matrix.

Write BM ."/ as the image of the smaller spherical cap (the piece outside Hp;t )
projected to the Euclidean space RM . The part of the surface intersecting the "-ball is
written as �W�" ! BM ."/ where �" � xBN .

Let the smooth surfaceR" ı �W�"! RM nBM ."/ be the fold of � under the map
R"WRM !RM that reflects (inverts) the points in RM across the boundary of BM ."/.
It can be written as

R" ı �.z/ D
"2

j�.z/j2
�.z/

where z 2 �". Note that R" ı � D … ı Fp;t ı 
 on �" since R" ı… D … ıRp;t . We
want to estimate the limit of the weighted volume of R" ı �.�"/ from above,

lim sup
"!0

Z
R"ı�.�"/

� 2

1C jzj2

�N
dHN � HN .S

N /; (23)

where HN is a Hausdorff measure for N -dimensional surface and 2=.1C jzj2/ is the
conformal factor for stereographic projection.

The idea of the following proof is that the smooth surface near 0 can be approxi-
mated as a flatN -plane and soR" applied to that surface is approximately anN -plane
outside the ball of radius ".

Write R D R1 for inversion in the unit sphere, so that R" D "2R and R.z/ has a
conformal factor of 1=jzj2. Hence, the integral (23) becomesZ

�.�"/

� 2

1C j"2R.z/j2

�N� "
jzj

�2N
dHN

D

Z
�"

� 2

1C j"2R.�.z//j2

�N� "

j�.z/j

�2N
jD�.z/j dHN

D

Z
�"

� 2"2=j�.z/j2

1C "4=j�.z/j2

�N
jD�.z/j dHN ; (24)
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where jD�.z/jWRN ! R is the Jacobian determinant of �. By a change of variable
with z D "2�, the integrand in (24) becomes� 2"2=j�."2�/j2

1C "4=j�."2�/j2

�N
jD�."2�/j"2N D

� 2"4

j�."2�/j2 C "4

�N
jD�."2�/j: (25)

Note the domain �"="2 approaches all of RN when " ! 0 since the points in �"
have norm at most O."/. The linear approximation of �.z/ � .z; 0/ at 0 implies that
there exists a lower bound such that j�.z/j2 � jzj2=2 for small enough ", with z 2�".
Hence, we can find an integrable dominator on RN for the right-hand side of (25) as

1�"="2.�/
� 2"4

j�."2�/j2 C "4

�N
jD�."2�/j �

� 2"4

j"2�j2=2C "4

�N
2

�

� 2

j�j2=2C 1

�N
2 where � 2 RN : (26)

By using the upper bound (26), we apply the dominated convergence to (25) as "! 0.
To find the limit of the integrand, we expand with the Taylor expansion �."2�/ D
"2�CO."4/when " is close enough to 0 and � is fixed. Then we evaluate the limit (25)
as "! 0 as Z

RN

� 2

j�j2 C 1

�N
dHN (27)

by dominated convergence. The last integral is equal to HN .SN /.
Note that RN n�" approaches to all of RN as "! 0 by the weak convergence of

the measure in Section 4.4. The volume of this part becomes HN .
.RN //, and added
with (27), we have (22) as "! 0.

Next, we show that as the Möbius transformation degenerates, the volume of the
image of the surface is at most that of Sm. Recall that any point y 2 SM under the
Möbius transformation Tx.y/ approaches Qx as x! Qx with j Qxj D 1, except at Qy D�Qx.
This implies that for anyN -dimensonal submanifold whereN �M in SM , the image
under Tx collapses to a point as x approaches to the boundary unless the submanifold
contains Qy, in which case the image stretches out to an N -sphere as x ! Qx.

Proposition 19 (Möbius transformation degenerates). Let !W xBN ! SM , 1�N �M
be N -dimensional embedded smooth surface. We have the following upper bound:

lim sup
jxj!1

HN .Tx ı !.xB
N // � HN .S

N /: (28)

Proof. We write the south pole of SM as s and its north pole as n. Without loss of
generality, we may assume that x ! n. Then first assume that s 2 !.BN /. We deal
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with the case when s … !.BN / later. We may parametrize the surface so that !.0/D s

and D!.0/ D .I 0/|. The left side of (28) becomesZ
Txı!.BN /

dHN

(see [22, 2.1.7] and [1, (30)])

D

Z
!.BN /

� 1 � jxj2

1C jxj2 C 2x � s

�N
dHN .s/

D

Z
BN

� 1 � jxj2

1C jxj2 C 2x � !.z/

�N
jD!.z/j dHN .z/; (29)

where jD!.z/j is the Jabobian determinant of !. Note that the integrand is similar to
the Poisson kernel. We want to show that the integral in (29) is bounded above by the
volume of the sphere as x ! n. Note that the factor in (29) can be rewritten as

1 � r2

1C r2 � 2r cos �.y; !.z//

in terms of r D jxj, y D �x=jxj, and the angle � between y and !.z/. Since x ! n,
we have y ! s and so y � s! 1 and r ! 1.

The main idea of the proof is that when x is close to n, we divide xBN into two
parts: the ball at 0 with some radius ı and the rest of xBN . We prove the following
statement: for fixed ı > 0, there exist parameters C.ı/ and ˛.ı/ such that C.ı/! 1

and ˛.ı/! 1 as ı ! 0 and

lim sup
x!n

Z
BN nBN .ı/

� 1 � r2

1C r2 � 2r cos �.y; !.z//

�N
jD!.z/j dHN .z/ D 0; (30)

lim sup
x!n

Z
BN .ı/

� 1 � r2

1C r2 � 2r cos �.y; !.z//

�N
jD!.z/j dHN .z/

�

�C.ı/
˛.ı/

�N
HN .S

N /; (31)

where y D �x=jxj ! s and r ! 1 as x ! n. Hence, the limsup of (29) as x ! n is
at most .C.ı/=˛.ı//NHN .SN /, which tends to HN .SN / as ı ! 1.

To show (30), we use the fact that the angle �.y; !.z// is bounded below away
from 0 when y is near s and jzj � ı. Hence, the integrand in (30) tends to 0 uniformly
as x ! n.
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To show (31), the first step is to show that the distance on the sphere �.y; !.z//
can be approximated by the Euclidean distance from z.y/ to z, where for y close
to s, z.y/ is the unique point z 2 xBN .ı/ such that jy � !.z/j is minimal. That is,
!.z.y// is a closest point to y on the surface, and such that z.y/ is unique for y near
the surface.

We claim that there exists ˛.ı/ > 0 such that

�.y; !.z//

jz.y/ � zj
� ˛.ı/ (32)

for all y near s and z 2 xBN .ı/. We show that ˛.ı/! 1 as ı ! 0. Since spherical
distance is greater than Euclidean distance,

�.y; !.z//

jz.y/ � zj
�
jy � !.z/j

jz.y/ � zj
� ˇ.ı/

jy � !.z/j

j!.z.y// � !.z/j
;

where the constant satisfies ˇ.ı/ ! 1 as ı ! 0, since ˇ.ı/ is a lower bound of
j!.z.y//�!.z/j=jz.y/� zj andD!.0/D .I 0/|. Consider the triangle with vertices
at y, !.z.y// and !.z/. Write the sidelengths as a D jy � !.z.y//j, b D j!.z.y//�
!.z/j, and c D jy � !.z/j, so that the last quantity displayed is ˇ.ı/c=b. By the law
of sines,

c2 � b2 sin2 �;

where the angle � at point !.z.y// is close to �=2 because the side from !.z.y// to
y is normal to the surface and the vector from !.z.y// to !.z/ is nearly tangential to
the surface. In this case, our lower bound ˛.ı/ is defined as ˇ.ı/c=b � ˇ.ı/j sin�j ´
˛.ı/, where ˛.ı/! 1 because ˇ.ı/! 1 and �.ı/! �=2 as ı! 0. This finishes the
proof of (32).

Based on the lower bound (32), the second step is to show that the integral in (31)
has the following upper bound:Z

BN .ı/

� 1 � r2

1C r2 � 2r cos �.y; !.z//

�N
jD!.z/j dHN

�

Z
BN .ı/

� 1 � r2

1C r2 � 2r cos.˛."/jz � z.y/j/

�N
jD!.z/j dHN

� C.ı/N
Z

BN .ı/

� 1 � r2

1C r2 � 2r cos.˛."/jz � z.y/j/

�N
dHN ;

where C.ı/ denotes the maximum of jD!.z/j on BN .ı/. Note C.ı/! 1 as ı ! 0.
Next, we change the variable with ˛.ı/.z � z.y//D .1� r/� to write the upper bound
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as follows:Z
BN .ı/

� 1 � r2

1C r2 � 2r cos �.y; !.z//

�N
jD!.z/j dHN

�

�C.ı/
˛.ı/

�N Z
BN .2ı˛.ı/=.1�r//

� 1 � r2

1C r2 � 2r cos.1 � r/j�j

�N
.1 � r/N dHN :

The domain approaches to all of RN as r ! 1. By considering the Maclaurin series,
we use dominated convergence and find the limit of the upper bound. Note that
cos.1 � r/j�j � 1 � .1 � r/2j�j2=2C .1 � r/4O.j�j4/, since .1 � r/j�j � 2ı˛.ı/ is
small. Then the last integral has the following upper bound:Z

BN .2ı˛.ı/=.1�r//

� .1 � r/2.1C r/

1C r2 � 2r.1 � .1 � r/2j�j2=2C .1 � r/4O.j�j4//

�N
dHN .�/

D

Z
BN .2ı˛.ı/=.1�r//

� .1 � r/2.1C r/

.1 � r/2 C r.1 � r/2j�j2 � .1 � r/4O.j�j4/

�N
dHN .�/

D

Z
BN .2ı˛.ı/=.1�r//

� 1C r

1C j�j2.r � .1 � r/2O.j�j2//

�N
dHN .�/

!

Z
RN

� 2

1C j�j2

�N
dHN .�/

as r ! 1, by dominated convergence. The last integral is equal to HN .SN /.
Lastly, assume that south pole s … !.BN /. In case when s … !.xBN /, there exists

ı small enough so that the volume vanishes in the limit. In case when s 2 !.@xBN /,
consider a bigger ball containing xBN to enlarge the surface !.xBN /. The south pole
lies in the interior of this bigger ball and so the volume satisfies the conclusion (28)
by our work above.

A. Calculations

Here, we check that ratio of the right-hand sides of (1) and (2) approaches 1 as the
dimension n tends to1.

Lemma 20. For n � 2, let us denote An D ..2n C 2/n=2 C 2nn=2/2=n and Bn D
22=n.2nC 2/. Then An=Bn is strictly smaller than 1 and approaches 1 as n!1.
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Proof. Note that An=Bn < 1 for all n � 2 because

An D ..2nC 2/
n=2
C 2nn=2/2=n

(since 2 � 2n=2 and 2n < 2nC 2)

< .2.2nC 2/n=2/2=n

D 22=n.2nC 2/ D Bn:

Further, An=Bn � 2�2=n ! 1 as n!1, since

An D ..2nC 2/
n=2
C 2nn=2/2=n

(by the inequality 22=nn > nC 1 for n � 2)

> ..2nC 2/n=2 C .nC 1/n=2/2=n

D .2n=2 C 1/2=n.nC 1/ > 2.nC 1/ D 2�2=nBn:
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