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Eigenvalue bounds for perturbed periodic Dirac operators

Ghada Shuker Jameel and Karl Michael Schmidt

Abstract. We characterise regions in the complex plane that contain all non-embedded eigen-
values of a perturbed periodic Dirac operator on the real line with real-valued periodic potential
and a generally non-symmetric matrix-valued perturbation V . We show that the eigenvalues are
located close to the end-points of the spectral bands for small V 2 L1.R/2�2, but only close
to the spectral bands as a whole for small V 2 Lp.R/2�2, p > 1. As auxiliary results, we
prove the relative compactness of matrix multiplication operators in L2p.R/2�2 with respect
to the periodic operator under minimal hypotheses, and find the asymptotic solution of the Dirac
equation on a finite interval for spectral parameters with large imaginary part.

1. Introduction

In the present paper, we consider the one-dimensional perturbed periodic Dirac oper-
ator

H D �i �2
d

dx
Cm�3 C q.x/C V.x/ .x 2 R/;

where �2 and �3 are Pauli matrices (see equation (5.2) below), m � 0 is the particle
mass, qWR! R is a periodic potential, and V WR! C2�2 is a matrix-valued perturb-
ation. Although the unperturbed periodic operator

H0 D �i �2
d

dx
Cm�3 C q.x/ .x 2 R/

is a self-adjoint operator inL2.R/2, the operatorH is not self-adjoint in general as we
do not assume that the matrix multiplication operator V is symmetric. We assume that
V is bounded and that V 2 Lp.R/2�2 for some p � 1. Then, H has the same essen-
tial spectrum as H0, consisting of closed intervals on the real line (spectral bands),
generally separated by spectral gaps, but may in addition have discrete eigenvalues in
the complex plane (see Theorem 2 below).
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Our aim is to find a priori enclosures for these eigenvalues, i.e., regions charac-
terised in terms of the properties of the unperturbed periodic Dirac equation and the
p-norm of V which contain all (non-embedded) eigenvalues of H . In the absence
of a periodic background potential, q D 0, [5] proved that, for V 2 L1.R/2�2 with
kV k1 < 1, the non-embedded eigenvalues of H lie within circles around (but not
centred at) the points ˙m, the end-points of the two intervals of essential spectrum
�e.H/ D .�1;�m� [ Œm;1/. The radii of the circles tend to 0 as the 1-norm of V
tends to 0, showing that when a coupling parameter � is employed, the eigenvalues of
H0 C �V emanate from the points˙m only as � increases from 0.

In the present study, we extend this observation to the case where a periodic
background potential q is present and allow V to be p-integrable with p � 1. Our
main eigenvalue exclusion result (Theorem 3) states that a complex number � out-
side the essential spectrum of H cannot be an eigenvalue of H if the p-norm of
V (defined in equation (3.1) below) satisfies the inequality kV kp < Fp.�/, where
Fp is some non-negative function determined completely in terms of solution prop-
erties of the unperturbed periodic equation. From our results, the following picture
emerges. For p D 1, F1 is bounded above by 1 and in fact tends to 1 as j Im�j ! 1

(see Theorems 8, 9), so its level sets for levels < 1 lie in neighbourhoods of the real
line. Moreover, F1 tends to zero exactly at the end-points of spectral bands (Theor-
ems 4–6). This means that for small kV k1 < 1, the eigenvalues are confined to small
neighbourhoods of the end-points of spectral bands and, when a coupling parameter
is applied, will emerge from these end-points only. This behaviour appears to be a
natural analogue to that observed in [5, 6].

However, for p > 1, Fp.�/ grows beyond all bounds as j Im�j ! 1. Therefore,
the level sets of Fp will be in neighbourhoods of the real line for all positive levels, and
we get eigenvalue enclosure regions for any size of kV kp . However, Fp tends to 0 at
all points of the essential spectrum ofH , which means that for small kV kp the eigen-
values are confined to small neighbourhoods of the whole spectral bands. Although
we do not show the actual appearance of eigenvalues in such position here, this opens
up the possibility of eigenvalues approaching (or, with a coupling parameter, emer-
ging from) any point of the essential spectrum ofH , similar to the behaviour observed
in [1] for Schrödinger operators.

We mention that in the recent study [2], a detailed spectral analysis of the different,
but related Dirac operator where, instead of a real periodic potential, q is a purely
imaginary jump potential was performed.

The present paper is structured as follows. In Section 2 we summarise the relevant
results from Floquet theory of the periodic Dirac equation, describing in particular
the definition of the complex quasimomentum used in this paper. We also give a for-
mula for the resolvent operator of H0 and show that it is a bounded linear operator
not only in L2.R/2, but also between a dual pair of non-Hilbert Lebesgue spaces
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(Theorem 1). In Section 3 we first prove that H has the same essential spectrum
(for all five usual definitions for a non-self-adjoint operator) as H0 and only discrete
eigenvalues besides (Theorem 2). A key part of the proof is the observation that the
operator of multiplication with a matrix-valued function in L2p.R/ is H0-relatively
compact (Lemma 2), for which we provide a proof as it is not easily found in the
literature in this generality, with locally integrable q, and hence may be of independ-
ent interest. We then proceed to the main eigenvalue exclusion theorem (Theorem 3)
already described above. In Section 4, we show that the function determining the
exclusion criterion for p D 1 tends to zero exactly at the end-points of the spectral
bands. Finally, in Section 5, we show that this function tends to 1 as Im�!1. This
result is based on the general asymptotics of the fundamental system of the Dirac
equation on a finite interval for this limit (Theorem 7), which is here obtained using a
novel transformation of the Dirac equation into the pair of coupled differential equa-
tion systems (5.5) and may be of interest in its own right.

As a matter of notation, we write jwj for the Euclidean norm
p
jw1j2 C jw2j2 of

vectors w 2 C2.

2. The periodic equation

Let ˆ.�; �/ be the canonical fundamental system of the periodic Dirac equation with
spectral parameter � 2 C, i.e., the solution of the (matrix) initial value problem

�i�2ˆ
0.x;�/C .m�3C q.x//ˆ.x;�/D �ˆ.x;�/ .x 2R/; ˆ.0;�/D I; (2.1)

where I is the 2 � 2 unit matrix and q is a locally integrable, real-valued, periodic
function. The qualitative behaviour of the solutions can be studied by means of Flo-
quet theory considering the monodromy matrix M.�/´ ˆ.a; �/ (� 2 C), where
a > 0 is the period of q, see [3]. As the (Wronskian) determinant of the monodromy
matrix is equal to 1, its eigenvalues are inverses of each other. Their positions in the
complex plane can be characterised in terms of the discriminant D.�/´ TrM.�/.
The characteristic equation for M.�/,

�2 �D.�/�C 1 D 0;

shows that M.�/ has two distinct eigenvalues if and only if D.�/ … ¹�2; 2º. In this
case, either the eigenvalues lie on the unit circle and are complex conjugates of each
other (this happens when D.�/ 2 .�2; 2/), or one eigenvalue, �.�/, lies outside, the
other eigenvalue, 1=�.�/, lies inside the unit circle (this happens when D.�/ 2 C n

Œ�2; 2�). If D.�/ 2 ¹�2; 2º, then either the geometric multiplicity of the eigenvalue
˙1 is 1 or M.�/ D ˙I (see [3, Section 1.4]).
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If � is an eigenvalue of M.�/ and v 2 C2 n ¹0º is a corresponding eigenvector,
then u.x/´ ˆ.x; �/ v (x 2 R) is a Floquet solution of the Dirac equation

�i�2u
0.x/C .m�3 C q.x// u.x/ D �u.x/ .x 2 R/I (2.2)

clearly u.0/ D v. Then, the function

'.x/´ ��x=a u.x/ .x 2 R/

is a-periodic. This shows that all solutions of the periodic Dirac equation are bounded
if D.�/ 2 .�2; 2/ and that there is one Floquet solution uC.�; �/ exponentially small
at �1 and one Floquet solution u�.�; �/ exponentially small at 1 if D.�/ 2 C n

Œ�2; 2�. If D.�/ 2 ¹�2; 2º, then either one or all solutions are bounded. Hence, we
can deduce that �.H0/ D ¹� 2 C jD.�/ 2 Œ�2; 2�º � R for the self-adjoint operator
H0 D �i�2d=dx Cm�3 C q (see also [3, Theorem 4.7.1]).

The (entries of the) monodromy matrix M and hence also the discriminant D are
entire functions, cf. [7, Theorem 1.7.2]. Since m > 0 and q is real valued, it follows
that ˆ.x; N�/ D ˆ.x; �/ (x 2 R) and so M. N�/ D M.�/ and D. N�/ D D.�/ for all
� 2 C. If D.�/ … Œ�2; 2�, let vC.�/ and v�.�/ be eigenvectors corresponding to the
eigenvalues �.�/ and 1=�.�/ of M.�/, respectively. Then, �. N�/ D �.�/ and we can
choose the eigenvectors such that v˙. N�/ D v˙.�/. Therefore, we focus on � with
Im� � 0 in the following.

The discriminant can be written in the form

D.�/ D 2 cos k.�/a

D 2 cosh.a Im k.�// cos.aRe k.�// � 2i sinh.a Im k.�// sin.aRe k.�// (2.3)

.� 2 C; Im� � 0/, where the (continuous) function k with Im k.�/ � 0 is called the
complex quasimomentum (see also e.g., [10]). As can be seen from equation (2.3), for
� 2 R, the quasimomentum k.�/ is real; it is closely related to the rotation number
(cf. [3, p. 43]) in the intervals where D.�/ 2 Œ�2; 2� (stability intervals), whereas it
has constant real part 2 �Z and positive imaginary part in the intervals where D.�/ …

Œ�2;2� (instability intervals). More generally, for �2C such that Im�� 0 and D.�/…

Œ�2; 2�, the eigenvalue of M.�/ that lies outside the unit circle is �.�/ D e�ik.�/a,
the other eigenvalue being 1=�.�/ D eik.�/a. Clearly, k.�/ 2 R implies that D.�/ 2

Œ�2; 2� and so � 2 R. We also note the following.

Lemma 1. Let � 2 C, Im� � 0. Then,

Im k.�/ D
1

2a
Arcosh

�
jD.�/j2

4
C

r�
1 �
jD.�/j2

4

�2
C .Im D.�//2

�
: (2.4)

In particular,
lim
�!�0

Im k.�/ D 0 (2.5)

if D.�0/ 2 Œ�2; 2�.
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Proof. If Imk.�/ D 0, then by equation (2.3), D.�/ D 2 cosak.�/ 2 Œ�2; 2� and the
right-hand side in equation (2.4) vanishes. If Im k.�/ > 0, then by equation (2.3), we
find

1 D
.Re D.�//2

4 cosh2.a Im k.�//
C

.Im D.�//2

4 sinh2.a Im k.�//

D
.Re D.�//2.cosh.2a Im k.�// � 1/C .Im D.�//2.cosh.2a Im k.�//C 1/

2.cosh2.2a Im k.�// � 1/

and hence by solving the quadratic equation,

cosh.2a Im k.�// D
jD.�/j2

4
˙

r
1C
jD.�/j4

16
�
.Re D.�//2 � .Im D.�//2

2

D
jD.�/j2

4
˙

r�
1 �
jD.�/j2

4

�2
C .Im D.�//2:

Since
jD.�/j2

4
�

r�
1 �
jD.�/j2

4

�2
C .Im D.�//2 � 1

and cosh.2a Im k.�// > 1 in the case under consideration, the square root must have
the positive sign.

For Im� < 0, the Floquet multiplier (eigenvalue) satisfies

�.�/ D �. N�/ D e�ik.
N�/a D e�i.�k.

N�//a:

This motivates the definition of the quasimomentum in the complex lower half-plane
by setting k.�/´ �k. N�/ .� 2 C; Im� < 0/. Then, we have �.�/ D e�ik.�/a for all
� 2 C such that D.�/ … Œ�2; 2�. Note that this extended quasimomentum function
is not continuous at the real axis; nevertheless, its imaginary part is continuous as
Im k.�/ D �.� Im k. N�// D Im k. N�/.

We now express the resolvent operator .H0 � �/�1 in terms of a fundamental
system of Floquet solutions. Let � 2 C such that D.�/ … Œ�2; 2�. Then, the Floquet
solutions

uC.x; �/ D ˆ.x; �/ vC.�/ D �.�/
x=a 'C.x; �/;

u�.x; �/ D ˆ.x; �/ v�.�/ D �.�/
�x=a '�.x; �/;

(2.6)

with a-periodic functions '˙.�; �/ are linearly independent, and hence form a funda-
mental system of the Dirac equation. As u˙.0;�/D '˙.0;�/D v˙.�/, its Wronskian
is W.�/ D det.vC.�/; v�.�//.
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Theorem 1. Let � 2 %.H0/. Then,

..H0 � �/
�1f /.x/ D

Z
R

G.x; t; �/ f .t/ dt .x 2 RI f 2 L2.R/2/

with (matrix-valued) Green’s function

G.x; t; �/ D �
eik.�/ jt�xj

det.vC.�/; v�.�//

´
'C.x; �/ '�.t; �/

| if t > x;

'�.x; �/ 'C.t; �/
| if t < x

.x; t 2 R/:

For all x; t 2 R, x ¤ t , the Frobenius norm of the matrix G.x; t; �/ is

kG.x; t; �/kF D
e� Imk.�/ jt�xj

j det.vC.�/; v�.�//j

´
j'C.x; �/j j'�.t; �/j if t > x;

j'�.x; �/j j'C.t; �/j if t < x:

Moreover, for any r 2 .1;2� and conjugate exponent r 0D 1=.1� 1=r/� 2, the integral
operator Rr.�/WLr.R/2 ! Lr

0

.R/2,

.Rr.�/f /.x/ D

Z
R

G.x; t; �/ f .t/ dt .x 2 RI f 2 Lr.R/2/

is a bounded linear operator with operator norm

kRr.�/k � C.�/
� 4

r 0 Im k.�/

�2=r 0
;

where

C.�/´
k'C.�; �/k1 k'�.�; �/k1

j det.vC.�/; v�.�//j
: (2.7)

Remarks. (1) The Green’s function G is in fact independent of the choice of the
eigenvectors v˙.�/.

(2) In the absence of a periodic background potential q, an operator norm bound
for Rr.�/ was obtained in [4, Theorem 3.1].

Proof. Let f 2 L2.R/2; then, solving the inhomogeneous Dirac equation

�i�2u
0.x/C .m�3 C q.x/ � �/ u.x/ D f .x/ .x 2 R/

by the variation of constants method on the basis of the fundamental system .uC.�;�/;

u�.�; �// gives

u.x/ D

Z
R

G.x; t; �/ f .t/ dt .x 2 R/:
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For x ¤ t , the Frobenius norm of the matrix G.x; t; �/ is

kG.x; t; �/kF D
p

Tr.G.x; t; �/� G.x; t; �//

D
jeik.�/ jt�xjj

j det.vC.�/; v�.�//j

q
Tr.'�.t; �/ '˙.x; �/� '˙.x; �/ '�.t; �/|/

D
e� Imk.�/ jt�xj

j det.vC.�/; v�.�//j

q
Tr.'˙.x; �/� '˙.x; �/ '�.t; �/|'�.t; �//

D
e� Imk.�/ jt�xj

j det.vC.�/; v�.�//j

p
j'˙.x; �/j2 j'�.t; �/j2

with the sign in the index depending on whether t > x or t < x. Setting

k'˙.�; �/k1´ sup
x2R
j'˙.�; �/j;

we can estimate the operator norm

kG.x; t; �/k � kG.x; t; �/kF � C.�/ e
� Imk.�/jt�xj (2.8)

.x; t 2 R; t ¤ x/ with C.�/ defined in equation (2.7). Now, let f 2 Lr.R/; then

kRr.�/f kr 0 D

�Z
R

ˇ̌̌̌ Z
R

G.x; t; �/ f .t/ dt

ˇ̌̌̌r 0
dx

�1=r 0

�

�Z
R

�Z
R

kG.x; t; �/k jf .t/j dt

�r 0
dx

�1=r 0

� C.�/

�Z
R

�Z
R

e� Imk.�/ jt�xj
jf .t/j dt

�r 0
dx

�1=r 0

� C.�/

�Z
R

e� Imk.�/ jsj r 0=2 ds

�2=r 0�Z
R

jf .x/jr dx

�1=r
D C.�/

� 4

r 0 Im k.�/

�2=r 0
kf kr

by Young’s inequality, noting that 1=r C 2=r 0D 1=r 0C 1. This shows that the integral
operatorRr.�/ (and in particular the resolvent operator .H0 � �/�1 D R2.�/) is well
defined and bounded, with the stated operator norm estimate.

3. Eigenvalue exclusion

We now consider the Dirac operator with an additional non-periodic perturbation,
H ´ H0 C V , where V is the operator of multiplication with the matrix-valued
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function V WR ! C2�2. We assume that V is bounded and, for some p � 1, V 2
Lp.R/2�2, which means that the norm (cf. [6])

kV kp ´

�Z
R

kV.x/kp dx

�1=p
(3.1)

is finite. Here kV.x/k is the operator norm of the matrix V.x/, x 2R. This is different
from the operator norm kV k of the multiplication operator V in L2.R/2.

For each x 2 R, we use the polar decomposition of V.x/,

V.x/ D B.x/A.x/; B.x/ D U.x/ jV.x/j1=2; A.x/ D jV.x/j1=2; (3.2)

where jV.x/j D .V .x/� V.x//1=2 and U.x/ is a partial isometry of C2, cf. [12, The-
orem VI.10]; then,

kA.x/k D
p
kV.x/k; kB.x/k �

p
kV.x/k .x 2 R/: (3.3)

Thus, we have matrix-valued functions A;B 2 L2p.R/2�2 that give rise to bounded
multiplication operators A;B on L2.R/2.

As we do not assume that V is symmetric, the operator H is not self-adjoint in
general; however, as a sum of a closed (self-adjoint) operator and a bounded operator,
it is closed (cf. [15, Theorem 5.5]). Moreover, we have the following statement about
its essential spectrum, using any of the five usual definitions (cf. [8, Section I.4]), e.g.,
the third:

�e.H/´ ¹� 2 C j H � � is not a Fredholm operatorº:

Theorem 2. �e.H/ D �e.H0/ D ¹� 2 R jD.�/ 2 Œ�2; 2�º. The spectrum ofH out-
side �e.H/ only consists of isolated eigenvalues of finite multiplicity.

In the proof of this theorem, we use the relative compactness of the multiplication
operator A with respect to H0. We give a full proof of this statement (which holds
for any A 2 L2p.R/2�2), as it does not seem to be easily available in the literature;
note that we only assume that the periodic potential q is locally integrable, so the
results of e.g., [14, Theorem 4.1] or [4, Theorem 4.1] are not directly applicable. We
remark that, in the case p D 1, the relative compactness can be shown more easily
by proving that A .H0 � �/�1, an integral operator with kernel A.x/G.x; t; �/, is a
Hilbert–Schmidt operator, using the Frobenius norm estimate (2.8).

Lemma 2. Let � 2 %.H0/. Then the operator A .H0 � �/�1 is compact.

Proof. (a) We first show that the statement is true for A 2 C10 .R/
2�2. Let a < b be

such that suppA� Œa; b�. Let .un/n2N be a bounded sequence inL2.R/2, kunk2 �K
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(n 2 N), and set yn´ A.H0 � �/
�1 un (n 2 N). Then, for all x 2 Œa; b� and n 2 N,

we have by Theorem 1

jyn.x/j � kA.x/k

ˇ̌̌̌ Z
R

G.x; t; �/ un.t/ dt

ˇ̌̌̌
� kA.x/k

�Z
R

kG.x; t; �/k2 dt

�1=2
kunk2

� sup
z2R
kA.z/k

�Z
R

e�2 Imk.�/ jt j dt

�1=2
C.�/K <1

and yn.x/D 0 for all x 2R n Œa;b�, so the sequence of functions .yn/n2N is uniformly
bounded. Also, for a � x < z � b we find, using the estimate (2.8),

jyn.x/ � yn.z/j

D

ˇ̌̌̌
A.x/

Z
R

G.x; t; �/ un.t/ dt � A.z/

Z
R

G.z; t; �/ un.t/ dt

ˇ̌̌̌

�
1

W

� xZ
�1

j.A.x/ eik.�/ .x�t/'�.x/ � A.z/ e
ik.�/ .z�t/'�.z//'C.t/

|un.t/jdt

C

zZ
x

j.A.x/eik.�/.t�x/'C.x/'�.t/
|

� A.z/eik.�/.z�t/'�.z/'C.t/
|/un.t/jdt

C

1Z
z

j.A.x/eik.�/ .t�x/ 'C.x/ � A.z/ e
ik.�/ .t�z/'C.z//'�.t/

| un.t/jdt

�
;

where we abbreviated W ´ det.vC.�/; v�.�//. Here the first integral is less than or
equal to

jeik.�/xA.x/ '�.x/ � e
ik.�/zA.z/ '�.z/j

� bZ
�1

e2 Imk.�/t
j'C.t/j

2 dt

�1=2
K;

and asA and '� are continuous and hence uniformly continuous on Œa;b�, this integral
tends to 0 as jx � zj ! 0 uniformly on Œa; b� and in n 2 N. Analogous reasoning
applies to the third integral. The second integral can be estimated by� zZ

x

kA.x/eik.�/ jt�xj'C.x/'�.t/
|
� A.z/eik.�/ jt�zj'�.z/'C.t/

|
k
2dt

�1=2
�

� zZ
x

jun.t/j
2dt

�1=2
� 2 sup

t2Œa;b�

kA.t/k sup
t2Œa;b�

j'C.t/j sup
t2Œa;b�

j'�.t/jK
p
z � x;
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which tends to 0 as jx � zj ! 0 uniformly on Œa; b� and in n 2 N. Consequently, the
sequence of functions .yn/n2N is also equicontinuous. By the Arzelà–Ascoli theorem,
it has a subsequence that is uniformly convergent and hence, in view of the compact
support, also converges in L2.R/2.

(b) Now, let A 2 L2p.R/2�2. Let u; v 2 L2.R/2, kuk2 D kvk2 D 1. Then,

j.A.H0 � �/
�1u; v/j

D

ˇ̌̌̌ Z
R

A.x/

Z
R

G.x; t; �/ u.t/ dt v.x/ dx

ˇ̌̌̌
� C.�/

Z
R

ju.t/j

�Z
R

e� Imk.�/ jt�xj
kA.x/k jv.x/j dx

�
dt

D C.�/

Z
R

F.juj/ F

�
e� Imk.�/ j�j

� .kA.�/k jvj/

�
D C.�/

Z
R

F.juj/
p
2� F.e� Imk.�/ j�j/ F.kA.�/k jvj/

D 2 Im k.�/C.�/

Z
R

F.kA.�/k jvj/.�/
F.juj/.�/

�2 C .Im k.�//2
d�

� 2 Im k.�/C.�/

�Z
R

jF.kA.�/k jvj/jr
0

�1=r 0�Z
R

ˇ̌̌ F.juj/.�/

�2 C .Im k.�//2

ˇ̌̌r
d�

�1=r
;

where we used the Plancherel identity for the Fourier transform F and then Hölder’s
inequality with exponent r ´ 2p=.pC 1/ 2 Œ1; 2/ and conjugate exponent r 0. (In the
case p D 1, where r D 1, the above and the following estimates hold with�Z

R

jF.kA.�/k jvj/jr
0

�1=r 0
replaced with supx2R jF.kA.�/k jvj/.x/j.) By the Hausdorff–Young inequality,�Z

R

jF.kA.�/k jvj/jr
0

�1=r 0

�
p
2�

1� 2
r

�Z
R

kA.�/kr jvjr
�1=r

D
1

p
2�

1=p

�Z
R

.kA.�/k2p/1=q.jvj2/1=q
0

�1=r
�

1
p
2�

1=p

�Z
R

kA.�/k2p
�1=.rq/�Z

R

jvj2
�1=.rq0/

D
1

p
2�

1=p
kAk2p;
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using Hölder’s inequality with exponents q´ pC 1D 2p=r and q0 D .pC 1/=p D
2=r . The same Hölder inequality gives�Z

R

ˇ̌̌ F.juj/.�/

�2 C .Im k.�//2

ˇ̌̌r
d�

�1=r
�

�Z
R

.�2 C .Im k.�//2/�2pd�

�1=.2p/
kF.juj/k2:

As kF.juj/k2 D kuk2 D 1, taking the supremum over u; v gives the bound for the
operator norm

kA .H0 � �/
�1
k � 2 Im k.�/C.�/

�
1

2�

Z
R

.�2 C .Im k.�//2/�2p d�

�1=.2p/
kAk2p:

As C10 .R/ is dense in L2p.R/, there is a sequence .An/n2N in C10 .R/
2�2 that

converges to A in k�k2p; by the above estimate, An .H0 � �/�1 converges to
A .H0 � �/

�1 in operator norm and the statement of the lemma follows from (a)
and the fact that the space of compact operators is closed in the operator norm.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The resolvent set of H , %.H/, contains points in the upper and
the lower complex half-planes, as �2 %.H/ if j Im�j> kV k. By the resolvent identity,
we find for � 2 %.H/ \ %.H0/

.H0 � �/
�1
� .H � �/�1 D .H � �/�1 B A .H0 � �/

�1:

As .H � �/�1 and B are bounded operators, this resolvent difference is compact by
Lemma 2. We can now apply [8, Theorem IX.2.4] to conclude the equality of the
essential spectra (all five types) of H and of H0.

The complement of the essential spectrum of H , C n �e.H/, is open and either
connected (if H0 has at least one spectral gap) or has the upper and lower complex
half-planes as connected components (if �.H0/DR – this happens ifmD 0, see [13,
Proposition 1]). In either case, each component of the complement of �e.H/ contains
points of the resolvent set %.H/, and we can therefore apply [9, Theorem XVII.2.1] to
conclude that the spectrum of H outside �e.H/ only consists of isolated eigenvalues
of finite multiplicity.

In the statement of the eigenvalue exclusion theorem, we use the function

�WD.�/! .0; 1�;

D.�/ D ¹A 2 C2�2 j A has two distinct eigenvaluesº,

�.A/ D
j det.vC; v�/j
jvCjjv�j

; (3.4)
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where v˙ 2 C2 n ¹0º are eigenvectors of A for the two different eigenvalues. As the
eigenvectors are uniquely determined up to a complex factor, �.A/ does not depend
on the choice of eigenvectors and is therefore well defined. The domain D.�/ is
an open subset of C2�2 and � is continuous. However, � cannot be continuously
extended to all of C2�2; for example,

lim
"!0

�

�
1 0

0 1C "

�
D 1 ¤ 0 D lim

"!0
�

�
1 "

"2 1

�
;

so � has no continuous extension at the unit matrix. For the monodromy matrixM of
equation (2.1), we have the following statement.

Lemma 3. For all � 2 C, M.�/ 2 D.�/ if and only if D.�/ … ¹�2; 2º.

We can now state the main eigenvalue exclusion theorem.

Theorem 3. Let p � 1 and let V 2 Lp.R/2�2 \ L1.R/2�2. Then, � 2 C n �e.H/

is not an eigenvalue of H if

kV k1 < �.M.�// 
C.�/ 
�.�/ if p D 1;

kV kp < �.M.�// 
C.�/ 
�.�/.Im k.�//.p�1/=p
� p

2.p � 1/

�.p�1/=p
if p > 1;

where


˙.�/ D
j'˙.0; �/j

supx2Œ0;a� j'˙.x; �/j
(3.5)

and '˙ are the periodic functions in equation (2.6).

Remars. The additional factor that appears on the right-hand side of the inequality
in Theorem 3 for p > 1 tends to 1 as p ! 1, so the exclusion criterion is formally
continuous in p.

Proof. By the Birman–Schwinger principle (see e.g., [2, Theorem B.2]), � is an eigen-
value of H0 C V if and only if �1 is an eigenvalue of A .H0 � �/�1 B , where A, B
are as in equation (3.2).

Case 1. p D 1. For u; v 2 L2.R/2, we obtain from Theorem 1 and the estimate (2.8),
noting that e� Imk.�/ jt�xj � 1,

j.A.H0 � �/
�1Bu; v/j D

ˇ̌̌̌ 1Z
�1

�
A.x/

1Z
�1

G.x; y; �/B.y/u.y/ dy

�|

v.x/ dx

ˇ̌̌̌

�

1Z
�1

kA.x/k kG.x; y; �/k kB.y/k ju.y/j jv.x/j dy dx
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� C.�/

� 1Z
�1

kA.x/k jv.x/j dx

�� 1Z
�1

kB.y/k ju.y/j dy

�
� C.�/ kV k1 kvk2 kuk2;

where we used Hölder’s inequality and the estimate (3.3) in the last step. Setting
v ´ A.H0 � �/

�1Bu and taking the supremum over u, we hence find the estimate
for the operator norm of the Birman–Schwinger kernel

kA.H0 � �/
�1Bk � C.�/ kV k1:

Case 2. p > 1. Let

r ´
2p

p C 1
2 .1; 2/

with conjugate exponent r 0 D 2p=.p � 1/ > 2. We now associate the matrix-valued
functions A and B with multiplication operators

Ar 0;2WL
r 0.R/2 ! L2.R/2; B2;r WL

2.R/2 ! Lr.R/2;

and write the Birman–Schwinger kernel as

A.H0 � �/
�1B D Ar 0;2Rr.�/B2;r ;

where the operator Rr.�/WLr.R/2 ! Lr
0

.R/2 is defined as in Theorem 1. For u 2
Lr
0

.R/2, we find

kAr 0;2uk2 D

�Z
R

jA.x/ u.x/j2 dx

�1=2
�

�Z
R

kA.x/k2.ju.x/jr
0

/2=r
0

dx

�1=2
�

�Z
R

kV.x/kr
0=.r 0�2/dx

�.r 0�2/=.2r 0/
kukr 0 ;

using Hölder’s inequality with exponents r 0=2 and r 0=.r 0 � 2/. As r 0=.r 0 � 2/ D p,
we obtain the operator norm estimate kAr 0;2k � kV k

1=2
p . Similarly, we find for u 2

L2.R/2

kB2;rukr D

�Z
R

jB.x/ u.x/jr dx

�1=r
�

�Z
R

kB.x/kr.ju.x/j2/r=2dx

�1=r
�

�Z
R

kV.x/kr=.2�r/dx

�.2�r/=2r
kuk2;
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using Hölder’s inequality with exponents 2=r and 2=.2 � r/, and, as r=.2 � r/ D p,
the operator norm estimate kB2;rk � kV k

1=2
p . In conjunction with Theorem 1, we

obtain

kA.H0 � �/
�1Bk D kAr 0;2Rr.�/B2;rk � kAr 0;2k kRr.�/k kB2;rk

� C.�/
� 2

Im k.�/

p � 1

p

�.p�1/=p
kV kp;

since 2=r 0 D .p � 1/=p.
Now, if � is an eigenvalue of H , then �1 is an eigenvalue of A.H0 � �/�1B

and therefore kA.H0 � �/�1Bk � 1; noting that 1=C.�/ D �.M.�// 
C.�/ 
�.�/

since '˙.0; �/ D v˙.�/, we obtain the eigenvalue exclusion criteria in the theorem
by contraposition.

4. Behaviour near the essential spectrum

In this section we study the behaviour of the right-hand side of the inequalities in
Theorem 3, in particular as � approaches the essential spectrum �e.H/. We begin by
finding a positive lower bound for the factors 
˙.�/ defined in equation (3.5).

Theorem 4. The following statements hold true.

(a) Let � 2 C such that D.�/ … Œ�2; 2�. Then,

e�a.Imk.�/C
p
m2C.Im�/2/

� 
˙.�/ � 1:

(b) Let �0 2 R be such that D.�0/ 2 Œ�2; 2�. Then,

e�am � lim inf
�!�0


˙.�/ � 1:

Proof. (a) The upper bound is immediate from the definition of 
˙. For the lower
bound, we note that j'˙j2 satisfies the differential equation

d

dx
j'˙.x; �/j

2
D '˙.x; �/

|B˙.�/'˙.x; �/ .x 2 R/; (4.1)

with

B˙.�/ D 2

�
� Im k.�/ m � i Im�

mC i Im� � Im k.�/

�
:

Indeed, the Floquet solutions u˙.�; �/ are solutions of the differential equation (2.2),
which can be rewritten in the form

u0.x; �/ D

�
0 m � q.x/C �

mC q.x/ � � 0

�
u.x; �/ .x 2 R/I
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by differentiation of '˙.x; �/ D u˙.x; �/ e˙ik.�/x (x 2 R), we find that '0
˙
.x; �/ D

B˙.x; �/ '˙.x; �/, where

B˙.x; �/ D

�
˙i k.�/ m � q.x/C �

mC q.x/ � � ˙i k.�/

�
.x 2 R/:

Hence,

d

dx
j'˙.x; �/j

2
D '˙.x; �/

|'0
˙
.x; �/C '0˙.x; �/

|'˙.x; �/

D '˙.x; �/
|.B˙.x; �/C B˙.x; �/

|/'˙.x; �/

and equation (4.1) follows noting that B˙.�/ D B˙.x; �/ C B˙.x; �/
| does not

depend on x. From (4.1),

d

dx
j'˙.x; �/j

2
�

ˇ̌̌ d
dx
j'˙.x; �/j

2
ˇ̌̌
D j'˙.x; �/

|B˙.�/'˙.x; �/j

� kB˙.�/k j'˙.x; �/j
2:

To find the operator norm of the symmetric matrix B˙.�/, we calculate its eigenval-
ues �2 Im k.�/C 2

p
m2 C .Im�/2 and �2 Im k.�/ � 2

p
m2 C .Im�/2, and hence

the spectral radius

kB˙.�/k D 2 Im k.�/C 2
p
m2 C .Im�/2:

Hence, the above differential inequality gives

j'˙.x; �/j
2
� j'˙.0; �/j

2 e.2 Imk.�/C2
p
m2C.Im�/2/ x .x 2 Œ0; a�/;

and so the lower bound in the theorem.
(b) By part (a), we have


˙.�/ � e
�a.Imk.�/C

p
m2C.Im�/2/

� 0

for all � 2 C such that D.�/ … ¹�2; 2º, so using equation (2.5), we find

0 � lim inf
�!�0

.
˙.�/ � e
�a.Imk.�/C

p
m2C.Im�/2//

� lim inf
�!�0


˙.�/ � lim
�!�0

e�a.Imk.�/C
p
m2C.Im�/2/

D lim inf
�!�0


˙.�/ � e
�am:

We now consider the function �.M.�//, which, as a composition of a continous
and an entire function, is continuous. By Lemma 3 and the definition of � , we see
that �.M.�// > 0 for all � 2 C for which D.�/ … ¹�2; 2º. However, at the points
where D.�/ 2 ¹�2; 2º, �.M.�// is not defined. These points are the real values of
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� where either M.�/ D ˙I – then D0.�/ D 0 and � is an interior point of a spectral
band where two instability intervals meet – or M.�/ ¤ ˙I has eigenvalue ˙1 with
algebraic multiplicity 2, but geometric multiplicity 1 – then D0.�/ ¤ 0 and � is an
end-point of a spectral band (cf., [3, Theorem 1.6.1]). In the following, we investigate
the limiting behaviour of �.M.�// at these exceptional points. We can characterise
the derivative ofM at such points as follows. Let � 2 R. Denoting the columns of the
canonical fundamental system ˆ of equation (2.1) by u and v, we have

M 0.�/ DM.�/

�
I1.�/ I2.�/

�I3.�/ �I1.�/

�
(4.2)

where

I1.�/´

aZ
0

.u1.x; �/v1.x; �/C u2.x; �/v2.x; �// dx;

I2.�/´

aZ
0

.v1.x; �/
2
C v2.x; �/

2/ dx;

I3.�/´

aZ
0

.u1.x; �/
2
C u2.x; �/

2/ dx

(see [3, eq. (1.6.4) and (1.6.6)]). Note that I1.�/, I2.�/, and I3.�/ are complex in
general; however, for real spectral parameter they are real and have the following
property.

Lemma 4. For any � 2 R, I1.�/2 < I2.�/ I3.�/. In particular, I2.�/; I3.�/ ¤ 0.

Proof. Since � 2 R, we have that u and v are R2-valued continuous functions. The
Cauchy–Schwarz inequality in L2.0; a/2 then gives

I1.�/
2
D

� aZ
0

u.x; �/|v.x; �/ dx

�2

�

aZ
0

ju.x; �/j2 dx

aZ
0

jv.x; �/j2 dx D I2.�/ I3.�/

with equality if and only if u and v are linearly dependent functions; however, the
latter is impossible as u.0; �/ D

�
1
0

�
and v.0; �/ D

�
0
1

�
.

We can now find the limit of �.M.�// at a point �0 2R where D.�0/D˙2, dis-
tinguishing the cases ofM.�0/D˙I and ofM.�0/¤˙I. Note that in the following
Theorems 5 and 6, the limits �! �0 allow complex �.
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Theorem 5. Let �0 2 R be such that M.�0/ D sI, where s 2 ¹�1; 1º. Then,

lim
�!�0

�.M.�// D 2

p
I2.�0/ I3.�0/ � I1.�0/2

I2.�0/C I3.�0/
> 0:

Proof. Since M is entire, we have by equation (4.2) for � 2 C, abbreviating Ij ´
Ij .�0/, j 2 ¹1; 2; 3º,

M.�/ DM.�0/CM
0.�0/ .� � �0/CR.� � �0/

D sI C sI

�
I1 I2

�I3 �I1

�
.� � �0/CR.� � �0/

D sI C s .� � �0/N.� � �0/;

where

N.ƒ/´

�
I1 I2

�I3 �I1

�
C
R.ƒ/

ƒ
.ƒ 2 C/:

Here R.ƒ/=ƒ is analytic with limƒ!0 R.ƒ/=ƒ D 0. Clearly, w 2 C2 is an eigen-
vector of N.� � �0/ for eigenvalue � 2 C if and only if it is an eigenvector of M.�/
for eigenvalue s .1C .�� �0/�/. Therefore, �.M.�//D �.N.�� �0// and we only
need to find limƒ!0 �.N.ƒ//.

Using Lemma 4, we see that the matrix N.0/ D
�
I1 I2

�I3 �I1

�
has distinct purely

imaginary eigenvalues˙i
q
I2I3 � I

2
1 with corresponding eigenvectors

wC D

�
I2

�I1 C i

q
I2I3 � I

2
1

�
; w� D

�
�I1 C i

q
I2I3 � I

2
1

I3

�
:

Hence, by equation (3.4),

�.N.0//2 D
j2.I2I3 � I

2
1 C iI1

q
I2I3 � I

2
1 /j

2

I2 .I2 C I3/ I3 .I2 C I3/
D 4

I2I3 � I
2
1

.I2 C I3/2
:

By analytic perturbation theory (see [11, Theorem II.1.8]), the eigenspaces of N.ƒ/
converge to those spanned by wC and w� as ƒ! 0, and we conclude that

lim
�!�0

�.M.�// D lim
ƒ!0

�.N.ƒ// D �.N.0// D 2

q
I2I3 � I

2
1

I2 C I3
;

which is positive by Lemma 4.

Theorem 6. Let �0 2 R be such that D.�0/ D ˙2, but M.�0/ ¤ ˙I. Then,

lim
�!�0

�.M.�// D 0:
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Proof. We can write the monodromy matrix as

M.�/ D

�
a.�/ b.�/

c.�/ D.�/ � a.�/

�
.� 2 C/

with entire functions a; b; c (and D). As the (Wronskian) detM.�/ D 1 for all �, we
find

cb D aD � a2 � 1: (4.3)

Therefore, if b.�0/ D c.�0/ D 0, then a.�0/ D D.�0/=2 and hence M.�0/ D ˙I,
contradicting the hypotheses. So b.�0/ ¤ 0 or c.�0/ ¤ 0.

We first consider the case b.�0/ ¤ 0. Then b ¤ 0 in a neighbourhood of �0. For
� in this neighbourhood, we can write, using equation (4.3),

M.�/ D

�
a.�/ b.�/

a.�/D.�/�a.�/2�1
b.�/

D.�/ � a.�/

�
;

with eigenvalues .D.�/˙
p

D.�/2 � 4/=2 and eigenvectors

wC.�/ D

�
b.�/

D.�/C
p

D.�/2�4

2
� a.�/

�
; w�.�/ D

�
b.�/

D.�/�
p

D.�/2�4

2
� a.�/

�
:

Then jw˙.�/j � jb.�/j and by equation (3.4),

�.M.�// �
j � b.�/

p
D.�/2 � 4j

jb.�/j2
D
j
p

D.�/2 � 4j

jb.�/j
! 0 .�! �0/:

If b.�0/ D 0, then c ¤ 0 in a neighbourhood of �0, and for � in this neighbourhood
we can write

M.�/ D

�
a.�/ a.�/D.�/�a.�/2�1

c.�/

c.�/ D.�/ � a.�/

�
I

this matrix has the same eigenvalues as above and eigenvectors

w˙.�/ D

�
D.�/˙

p
D.�/2�4

2
�D.�/C a.�/

c.�/

�
;

so jw˙.�/j � jc.�/j and

�.M.�// �
jc.�/

p
D.�/2 � 4j

jc.�/j2
D
j
p

D.�/2 � 4j

jc.�/j
! 0 .�! �0/:
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5. Asymptotics for large Im �

The results of the preceding section show that the functions 
˙ do not tend to zero
at any point in the complex plane and that � ıM tends to zero only (and exactly) at
the end-points of the spectral bands. However, they do not yet preclude the possibility
that these functions become small for � far away from the real axis; in fact, the lower
bound in Theorem 4 (a) tends to zero as j Im �j ! 1 and hence is not very good in
this respect. In the present section, we show that in fact �.M.�// and 
˙.�/ tend to 1
as j Im�j !1, which implies that the level sets of �.M.�//
C.�/
�.�/ are located
in strip neighbourhoods of the real axis. The basis for this is provided by the following
asymptotic of the canonical fundamental system of a Dirac system with real-valued
potential on a bounded interval; this result may be of interest in its own right.

We focus on the case Im� > 0, as the asymptotics for Im�! �1 are the same
due to the symmetry of the Dirac equation (2.1) with real-valued q.

Theorem 7. Let q 2 L1Œ0; a� be real-valued andm� 0. LetQ.x/D
R x
0
q (x 2 Œ0; a�)

and let� 2R, ˛ > 0. Then, for each x 2 Œ0;a�, the solution of the initial value problem
(2.1) with � D �C i˛ has the asymptotic for ˛ !1

e�˛xˆ.x; �C i˛/ D
1

2
.ei.Q.x/��x/ C e�2˛xe�i.Q.x/��x//I

C
1

2
.�ei.Q.x/��x/ C e�2˛xe�i.Q.x/��x//�2 COunif

� 1
˛

�
:

(5.1)

Here Ounif means that the bound is uniform in x 2 Œ0; a�.

Corollary 1. Under the hypotheses of Theorem 7,

e�˛x ˆ.x; �C i˛/ D
1

2
ei.Q.x/��x/ .I � �2/CO

� 1
˛

�
.˛ !1/

for each x 2 .0; a�.

Proof of Theorem 7. Write ˆ D
P3
jD0 �j �j with complex-valued functions �0, �1,

�2, �3 and the Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
; �0 D

�
1 0

0 1

�
D I: (5.2)

Then, the initial value problem (2.1) is equivalent to the system�
�0

�2

�0
D .�˛ � iq C i�/�1

�
�0

�2

�
Cm

�
1 0

0 �i

��
�1

�3

�
;�

�1

�3

�0
D .�˛ � iq C i�/.��2/

�
�1

�3

�
Cm

�
1 0

0 i

��
�0

�2

�
; (5.3)
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with initial values �0.0/ D 1, �1.0/ D �2.0/ D �3.0/ D 0. We now make the ansatz�
�0

�2

�
D
er

2

�
1

1

�
u1 C

e�r

2

�
1

�1

�
u2;

�
�1

�3

�
D
er

2

�
1

�i

�
u3 C

e�r

2

�
1

i

�
u4; (5.4)

with functions u1; u2; u3; u4 and given r.x/ D �˛x � i.Q.x/ � �x/ (x 2 Œ0; a�).
This is motivated by the fact that, with constants u1; u2; u3; u4, the above are the
general solution of the decoupled equation system whenmD 0. The initial conditions
translate to u1.0/ D u2.0/ D 1, u3.0/ D u4.0/ D 0. Using this ansatz in the coupled
differential equation system (5.3) and then multiplying the first equation (from the
left) with the row vectors .1; 1/ and .1;�1/, the second equation with the vectors
.1; i/ and .1;�i/, respectively yields the two separate differential equation systems´

u01 D me
�2r u4;

u04 D me
2r u1;

´
u03 D me

�2r u2;

u02 D me
2r u3;

(5.5)

which are in fact the same system, but with different initial values. Focusing on the
system on the left-hand side first, we observe that

ju1j
0.x/ � ju01.x/j D me

2˛x
ju4j.x/; ju4j

0.x/ � ju04.x/j D me
�2˛x

ju1j.x/:

The solutions exist on Œ0; a� and, as continuous functions, are bounded. By an integ-
ration by parts and using the initial values,

ju4j.x/ D ju4.0/j C

xZ
0

ju4j
0
�

xZ
0

me�2˛t ju1j.t/ dt

D �
m

2˛
.e�2˛x ju1j.x/ � 1/C

m

2˛

xZ
0

e�2˛t ju1j
0.t/ dt

�
m

2˛
�
m

2˛
e�2˛x ju1j.x/C

m2

2˛

xZ
0

e�2˛te2˛t ju4j.t/ dt .x 2 Œ0; a�/;

so

sup
x2Œ0;a�

ju4.x/j �
m

2˛
C
m2a

2˛
sup
x2Œ0;a�

ju4.x/j

and hence
sup
x2Œ0;a�

ju4.x/j �
m

2˛

1

1 � m2a
2˛

�
m

˛

for ˛ > m2a. Consequently,

ju1.x/ � 1j �

xZ
0

ju01j D

xZ
0

me2˛t ju4.t/j dt �
m2

2˛2
.e2˛x � 1/ .x 2 Œ0; a�/:
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Now, applying an analogous procedure to the right-hand side system in equation (5.5),
we find

ju2j.x/ D ju2j.0/C

xZ
0

ju2j
0
� 1Cm

xZ
0

e�2˛t ju3j.t/ dt

D 1 �
m

2˛
.e�˛x ju3j.x/ � 0/C

m

2˛

xZ
0

e�2˛t ju3j
0.t/ dt

� 1 �
m

2˛
e�2˛x ju3.x/j C

m2

2˛

xZ
0

e�2˛te2˛t ju2j.t/ dt;

so

sup
x2Œ0;a�

ju2.x/j � 1C
m2a

2˛
sup
x2Œ0;a�

ju2.x/j

and hence
sup
x2Œ0;a�

ju2.x/j �
1

1 � m2a
2˛

< 2

for ˛ > m2a. Also,

ju3j.x/ D ju3j.0/C

xZ
0

ju3j
0
� m

xZ
0

e2˛t ju2j.t/ dt

D
m

2˛
.e2˛x ju2j.x/ � 1/ �

m

2˛

xZ
0

e2˛t ju2j
0.t/ dt

�
m

2˛
.e2˛x ju2j.x/ � 1/C

m2

2˛

xZ
0

e2˛te�2˛t ju3j.t/ dt

and therefore

sup
t2Œ0;x�

ju3.t/j �
m

2˛

e2˛x

1 � m2a
2˛

�
m

2˛
C
m2a

2˛
sup
t2Œ0;x�

ju3.t/j;

which gives

sup
t2Œ0;x�

ju3.t/j �
1

1 � m2a
2˛

� me2˛x

2˛ �m2a
�
m

2˛

�
�
2m

˛

�
e2˛x �

1

2

�
�
2m

˛
e2˛x

for all x 2 Œ0; a� and ˛ > m2a. Consequently,

ju2.x/ � 1j � m

xZ
0

e�2˛t ju3.t/j dt �
2m2a

˛
.x 2 Œ0; a�/:
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By equation (5.4), we have thus obtained the asymptotics�
�0

�2

�
.x/ D

e�˛x

2
e�i.Q.x/��x/

�
1

1

��
1CO

�e2˛x
˛2

��
C
e˛x

2
ei.Q.x/��x/

�
1

�1

��
1COunif

� 1
˛

��
;�

�1

�3

�
.x/ D

e�˛x

2
e�i.Q.x/��x/

�
1

�i

�
O
�e2˛x
˛

�
C
e˛x

2
ei.Q.x/��x/

�
1

i

�
Ounif

� 1
˛

�
;

and equation (5.1) follows.

On the basis of the preceding theorem, we now find the asymptotics of the quasi-
momentum and of � ıM (in Theorem 8) and of '˙ and 
˙ (in Theorem 9).

Theorem 8. Let � 2 R, ˛ > 0. Then we have the following asymptotics as ˛ !1
for the monodromy matrix of the periodic Dirac equation (2.1)

e�˛aM.�C i˛/ D
1

2
ei.Q.a/��a/.I � �2/CO

� 1
˛

�
;

the discriminant

e�˛a D.�C i˛/ D ei.Q.x/��a/ CO
� 1
˛

�
;

the quasimomentum

k.�C i˛/ D �C i˛ �
Q.a/

a
CO

� 1
˛

�
and the eigenvectors of M.�C i˛/

vC.�C i˛/ D

�
1

�i

�
CO

� 1
˛

�
; v�.�C i˛/ D

�
1

i

�
CO

� 1
˛

�
:

Consequently,

�.M.�C i˛// D 1CO
� 1
˛

�
:

Proof. The asymptotics of the monodromy matrix and hence the discriminant follow
directly from Corollary 1. As e�˛aM.� C i˛/ has determinant e�2˛a, solving its
characteristic equation shows that the two eigenvalues of this matrix have asymptotics
ei.Q.a/��a/ CO.1=˛/ and e�2˛a .e�i.Q.a/��a/ CO.1=˛//, respectively. Hence, the
larger eigenvalue of M.�C i˛/ is

e˛a
�
ei.Q.a/��a/ CO

� 1
˛

��
D e�i.�Ci˛�Q.a/=aCO.1=˛//a;
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and we can read off the asymptotics for the quasimomentum. The asymptotic form of
the eigenvectors follows from that of the matrix e�˛aM.�C i˛/ and its eigenvalues.

Theorem 9. Let � 2 R, ˛ > 0. For the periodic Dirac equation (2.1), the periodic
functions '˙ of equation (2.6) have asymptotics

j'˙.x; �C i˛/j D j'˙.0; �C i˛/j
�
1COunif

� 1
˛

��
.˛ !1/

uniformly in x 2 Œ0; a�. Consequently, the functions 
˙ of equation (3.5) satisfy


˙.�C i˛/ D 1CO
� 1
˛

�
.˛ !1/:

Proof. By Theorem 8 and equation (5.1), observing that

1

2
.I� �2/vC.�C i˛/D vC.�C i˛/CO

� 1
˛

�
;

1

2
.IC �2/vC.�C i˛/DO

� 1
˛

�
;

we obtain

'C.x; �C i˛/ D e
ik.�Ci˛/xˆ.x; �C i˛/vC.�C i˛/

D ei.��Q.a/=aCO.1=˛//xe�˛xˆ.x; �C i˛/vC.�C i˛/

D ei.Q.x/�Q.a/=axCOunif.1=˛//
�
vC.�C i˛/CO

� 1
˛

��
C e�2˛xe�i.Q.x/CQ.a/=ax�2�xCOunif.1=˛//O

� 1
˛

�
COunif

� 1
˛

�
;

and hence,

j'C.x; �C i˛/j D
�
1COunif

� 1
˛

���
vC.�C i˛/CO

� 1
˛

��
COunif

� 1
˛

�
D jvC.�C i˛/j COunif

� 1
˛

�
D j'C.0; �C i˛/j

�
1COunif

� 1
˛

��
:

Analogous reasoning for '�.x; �C i˛/ does not work since the exponentially large
factor e�ik.�Ci˛/x (D �.�/x=a in equation (2.6)) leads to uncontrolled amplification
of the O.1=˛/ error term. However, the Floquet solution u�.x; �/ is equal, up to a
constant factor, to �3 QuC.a � x; �/ (x 2 R), where QuC is the Floquet solution corres-
ponding to the eigenvalue of modulus greater than 1 of the periodic Dirac equation
with potential Qq.x/´ q.a � x/ (x 2 R). Therefore, the corresponding periodic func-
tions satisfy (up to a constant factor) j'�.x; �/j D j Q'C.a � x; �/j, so we obtain the
asymptotics of j'�j by applying the above reasoning to j Q'Cj.
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