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Spectral analysis of Dirac operators for dislocated potentials
with a purely imaginary jump

Lyonell Boulton, David Krejčiřík, and Tho Nguyen Duc

Abstract. In this paper we present a complete spectral analysis of Dirac operators with non-
Hermitian matrix potentials of the form i sgn.x/C V.x/where V 2L1. For V D 0, we compute
explicitly the matrix Green function. This allows us to determine the spectrum, which is purely
essential, and its different types. It also allows us to find sharp enclosures for the pseudo-
spectrum and its complement, in all parts of the complex plane. Notably, this includes the
instability region, corresponding to the interior of the band that forms the numerical range.
Then, with the help of a Birman–Schwinger principle, we establish in precise manner how the
spectrum and pseudospectrum change when V 6D 0, assuming the hypotheses kV kL1 < 1 or
V 2 L1 \ Lp where p > 1. We show that the essential spectra remain unchanged and that the
"-pseudospectrum stays close to the instability region for small ". We determine sharp asymp-
totics for the discrete spectrum, whenever V satisfies further conditions of decay at infinity.
Finally, in one of our main findings, we give a complete description of the weakly-coupled
model.

Dedicated to the memory of Professor E. Brian Davies FRS,
a mentor and a friend whose generosity and mathematical talent

will be greatly missed

1. Introduction

1.1. Context and motivations

The significance of the Dirac equation lies on the fact that it describes, not only relativ-
istic particles in quantum mechanics, but also advanced materials such as graphene.
Mathematically, the study of this equation is notoriously difficult, partly because of
the spinorial structure of the underlying Hilbert space and partly because of the lack
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of semi-boundedness and positivity-preserving properties. In this respect, the spectral
analysis of the underlying matrix differential operator is considerably more challen-
ging than that of its non-relativistic counterpart, the scalar Schrödinger operator.

Recently, we have seen unprecedented interest in the study of non-selfadjoint elec-
tromagnetic perturbations of the Dirac equation [3, 5–10, 13, 15, 17, 18, 24]. This is
justified, on the one hand, by the availability of new proper connections with quantum
mechanics [21, 26], and, on the other hand, by the new conceptual paradigms posed
by the notions of pseudospectra of linear operators.

This paper is motivated by the current lack of understanding of the structure of the
pseudospectra of non-selfadjoint Dirac operators. Indeed, the only available work in
this direction seems to be the recent non-semiclassical construction of pseudomodes
given in [18].

In order to provide an insight into the pseudospectral properties of the Dirac equa-
tion in general, and at the same time set a benchmark that differs from the available
scalar models given by the classical non-selfadjoint Schrödinger operator, the present
paper is devoted to introducing and examining in close detail the non-selfadjoint Dirac
operator

Lm;V D

�
m �@x

@x �m

�
C

�
isgn.x/ 0

0 isgn.x/

�
C V.x/; (1.1)

on a suitable domain of L2.R;C2/ where V WR ! C2�2 is a long-range possibly
non-Hermitian matrix potential. The unperturbed operator Lm D Lm;0 is a relativistic
non-selfadjoint version of the quantum mechanical infinite square well.

The choice is motivated by the scalar Schrödinger case on L2.R;C/ considered
in [14],

�@2x C isgn.x/ (1.2)

with potential perturbations, and it serves as a link with the analysis conducted in [7].
The scalar model (1.2) was instrumental for the non-semiclassical construction of
pseudomodes established in [20], which eventually solved a notorious open prob-
lem raised during a workshop at the American Institute of Mathematics in 2015, cf.
[23, Open Problem 10.1]. The relativistic variant of this construction has now been
reported in [18].

The simplicity of the linear operator (1.2) is deceiving, as it hides a non-trivial
structure on its pseudospectrum. Our findings reveal two main distinctions between
(1.1) and this scalar model. One is about this structure and one is about the available
tools to analyse it. The latter is to be expected, given the higher degree of complexity
of a matrix versus a scalar operator. But the former is rather surprising. As we shall
see in the next section, the linear operator (1.1) has a resolvent norm that grows quad-
ratically, rather than linearly, at infinity inside the band forming the spectral instability
region.
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1.2. Structure of the paper

The organisation of the paper is as follows. Section 2 is devoted to a proper mathem-
atical description of our main contributions. The body of the paper is Sections 3–5,
where we establish the proofs of these results. After this, Appendix A includes com-
plete details of the Birman–Schwinger-type principle formulated in [12] which is
crucial to our analysis.

The core Sections 3–5 consist of two parts.

The unperturbed operator (comprising Sections 3 and 4). We begin our study
of (1.1) in Section 3 by finding the explicit expression of the matrix Green function
of the unperturbed operator Lm. This allows to determine the spectrum of Lm. As
it turns out, the latter is purely essential and it comprises four symmetric segments
on the boundary of the band † D ¹j Im zj < 1º for m > 0, while by contrast it is
equal to x† for m D 0. In Section 4 we find enclosures for the pseudospectrum and its
complement, in all parts of the complex plane. In one of our main contributions, we
compute the explicit asymptotic constants, up to order 0, of the resolvent norm of Lm
inside the instability region †. The latter coincides with the interior of the numerical
range.

Perturbations (comprising Section 5). The second part of the paper is devoted to the
case V 6D 0. By applying a non-selfadjoint version of the classical Birman–Schwinger
principle, we establish in precise manner how spectrum and pseudospectrum change,
under two general hypotheses, kV kL1 < 1 or V 2 L1.R;C2�2/ \ Lp.R;C2�2/ for
some p > 1. We show that the essential spectra remain unchanged in both cases
and that the "-pseudospectrum stays close to the instability region for small " > 0

whenever kV kL1 < 1. Then, we formulate our two other main contributions of this
part. On the one hand, we determine sharp asymptotics for the discrete spectrum,
whenever V satisfies further conditions of decay at infinity. On the other hand, we
give a complete description of the weakly-coupled model, corresponding to potential
�V in the regime � ! 0.

1.3. Notation used throughout the work

The following specific conventions will be used throughout this paper.

• RC D Œ0;C1/ and R� D .�1; 0�.

• ŒŒm; n�� D ¹k 2 N W m � k � nº for m; n 2 R.

• For a closed operator LWDom.L/! H , the spectrum is denoted by

Spec.L/ D Specp.L/ [ Specr.L/ [ Specc.L/;



L. Boulton, D. Krejčiřík, and T. Nguyen Duc 1170

where the point, residual and continuous spectrum denote, as usual,

Specp.L/ D¹z 2 C W L � z is not injectiveº;

Specr.L/ D¹z 2 C W L � z is injective and Ran.L � z/ ¨ Hº;

Specc.L/ D¹z 2 C W L � z is injective and Ran.L � z/ D H

and Ran.L � z/ ¨ Hº:

The resolvent set is denoted by �.L/.

• We use the classical definitions of the five types of essential spectrum, [11, Sec-
tion IX] or [19, Section 5.4]. We write Specej.L/ for j 2 ŒŒ1; 5��, where L � z

- is not semi-Fredholm for e1,

- possess a singular Weyl sequence for e2,

- is not Fredholm for e3,

- is not Fredholm of index 0 for e4,

- is such that either z 2 Spece1.L/ or the resolvent set does not intersect the
connected component of the complement of Spece1.L/ where z lies, for e5.

• The discrete spectrum is denoted as

Specdis.L/ D C n Spece5.L/;

and it is the set of isolated eigenvalues such that the Riesz projector has a finite-
dimensional range.

• For " > 0, the "-pseudospectrum is denoted by

Spec".L/ D Spec.L/ [ ¹z 2 �.L/ W k.L � z/�1k > "�1º

D

[
kV k<"

Spec.LC V /: (1.3)

By convention, we set Spec0.L/ D Spec.L/.

• j � jC2 is the Euclidean norm for vectors.

• j � jC2�2 is the operator norm induced by j � jC2 for matrices.

• j � jF is the Frobenius norm for matrices.

• For a measurable matrix-valued function V WR! C2�2 and for p 2 Œ1;1�, we
write V 2 Lp.R;C2�2/ to indicate that jV jC2�2 2 Lp.R;C/. We denote the Lp

norm of V by
kV kLp D kjV jC2�2kLp :
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• For a positive function �0.x/, we define the measure d�.x/ D �0.x/dx. We say
that V 2 L1.R;C2�2I d�/ if

kV kL1.d�/ D

Z
R

jV.x/jC2�2�
0.x/ dx <1:

2. Mathematical framework and summary of results

Below, we set

Sm D

´
¹z 2 C W jRe zj � m; j Im zj D 1º if m > 0;

¹z 2 C W j Im zj � 1º if m D 0;
(2.1)

and we write L2.R;C2/ D L2.R;C/˚ L2.R;C/ with the inner product

hf; gi D

Z
R

f1.x/g1.x/C f2.x/g2.x/ dx for components fj ; gj 2 L2.R;C/:

As usual,

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
denote the Pauli matrices. For mass m � 0, let DmWH

1.R;C2/! L2.R;C2/ be the
one-dimensional free particle Dirac operator, given by

.Dmf /.x/ D .�i@x/�2f .x/Cm�3f .x/: (2.2)

It is well known that Dm is a selfadjoint linear operator and that its spectrum is

Spec.Dm/ D .�1;�m� [ Œm;C1/:

Moreover, Dm is unitarily equivalent to the selfadjoint operator zDm D .�i@x/�1 C

m�3WH
1.R;C2/! L2.R;C2/ via transformation by

�
i 0
0 �1

�
. This other realisation

of the free particle Dirac operator is the one considered in [7, 8, 18]. In the present
paper, we prefer the formulation (2.2), noting that the results we report below, map in
a straightforward manner onto zDm.

2.1. The Dirac operator with a dislocation

In the present paper, we examine the linear operator LmWH 1.R;C2/! L2.R;C2/

given by
.Lmf /.x/ D Dmf .x/C isgn.x/f .x/ (2.3)
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�i

Figure 1. The numerical range of Lm.

and its perturbations by a potential. Since multiplication by isgn.x/I is a bounded
operator, Lm is also closed. From the explicit expression of the adjoint,

.L�mf /.x/ D Dmf .x/ � isgn.x/f .x/;

it follows that Lm is not a normal operator. As we shall see below, the spectral and
pseudospectral properties of Lm and its perturbations, are rather unusual and very
interesting.

The numerical range of Lm is the infinite closed strip

Num.Lm/ D RC i Œ�1; 1�:

See Figure 1 and the beginning of Section 3. Unlike the Schrödinger operator with
dislocated potential analysed in [14], Lm is neither sectorial nor P T -symmetric.
However, Lm is T -selfadjoint and this implies that the spectrum respects some of
the symmetries that the Schrödinger model possesses.

Here and everywhere below, a distinction of the case m D 0 is evident, unavoid-
able, and it is typical of families of non-selfadjoint operators dependent on a para-
meter, cf. the examples in [1] and references therein. Moreover, setting a unitary
operator Sf D g such that g.x/ D af .a2x/ for fixed non-zero a 2 R [ iR, it is
readily seen that S preserves the domains and

.S�La2mSf /.x/ D a
2
�
Dmf .x/C

i

a2
sgn

� x
a2

�
f .x/

�
:

This shows that both the casem < 0 and the case of a dislocated potential of the form
csgn.x/I , where c > 0 is a constant, are covered by our results below.
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i

�i
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Figure 2. The red lines represent the spectrum of the operator Lm when m > 0.

As we shall see in Section 3, the spectrum of Lm can be determined analytically
using arguments based on resolvent construction and Weyl sequences. For all m > 0,
the spectrum is purely continuous

Spec.Lm/ D Specc.Lm/ D Sm:

Furthermore, all essential spectra coincide,

Specej.Lm/ D Spec.Lm/; for all j 2 ŒŒ1; 5��:

Note that T -selfadjointness implies equality of the essential spectra for j 2 ŒŒ1; 4��
only, so the proof of equality of the full set requires extra arguments given below. An
illustration of the spectrum is included in Figure 2.

In contrast, for m D 0, the spectrum is characterised by

Specp.L0/ D ¹z 2 C W j Im zj < 1º and Specc.L0/ D ¹z 2 C W j Im zj D 1º:

Unlike the case m > 0, the essential spectra are not identical:

Specej.L0/ D ¹z 2 C W j Im zj D 1º;

for all j 2 ŒŒ1; 4�� and Spece5.L0/ D Spec.L0/. See the illustration in Figure 3.
For all m � 0, the comparison with the spectrum of Dm is obvious and striking.

Despite the seemingly simple structure of the dislocation isgn.x/I , the perturbation
splits the spectrum into two halves. In the case m > 0, this phenomenon mimics the
findings of [14, Theorem 2.1] for the Schrödinger case. For m D 0, rather than a
clear-cut split, the spectrum smears throughout the full band that forms the numer-
ical range. In Lemma 3.4 we show that, at any z in the point spectrum, .L0 � z/ is
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i

�i

Figure 3. The red lines show the continuous spectrum of L0. These lines coincide with the
essential spectra e1; : : : ; e4. The inner part in light colour shows the point spectrum. The union
of both these regions form the essential spectrum e5 and also the full Spec.L0/.

Fredholm with index zero. Moreover, the geometric multiplicity of z is one while its
algebraic multiplicity is infinite. This is neither obvious, nor a consequence of general
principles.

Let us now describe the pseudospectrum of Lm. We adopt the following termin-
ology, which is convenient in order to articulate our findings. We say that a closed
operator L has a trivial pseudospectrum if there exists a constant C � 1 such that

Spec".L/ � ¹z 2 C W dist.z;SpecL/ � C"º

for all " > 0. Any normal operator has a trivial pseudospectrum with C D 1, since
in this case the "-pseudospectrum coincides with the "-neighbourhood of the spec-
trum. Any closed operator which is similar to a normal operator, via a bounded and
boundedly invertible similarity transformation S , has also trivial pseudospectrum with
C D kSkkS�1k, the condition number of S .

According to the well-known inequalities

1

dist.z; SpecLm/
� k.Lm � z/

�1
k �

1

dist.z;NumLm/

for all z 62 Num.Lm/, it is readily seen that for j Im zj > 1,

• for jRe zj � m,

k.Lm � z/
�1
k D

1

j Im zj � 1
I (2.4)
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• for jRe zj < m,

1p
.jRe zj �m/2 C .j Im zj � 1/2

� k.Lm � z/
�1
k �

1

j Im zj � 1
:

In the next theorem we see that, in stark contrast, the resolvent norm increases at a
quadratic rate as z !1 inside the numerical range. This statement is our first main
contribution.

Theorem 2.1. Let m > 0 and let Lm be the operator given by (2.3). Assume that
z 2 C is such that j Im zj < 1. Then,

k.Lm � z/
�1
k D

jRe zj2

m.1 � j Im zj2/
.1CO.jRe zj�2//

as jRe zj ! 1. The O term is uniform in j Im zj and locally uniform in m (i.e., the
constants involved can be chosen independent of z 2 C for all j Im zj < 1 and m on
any fixed compact subset of .0;1/).

According to this theorem, when we consider the level set°
z 2 �.Lm/ W k.Lm � z/

�1
k D

1

"

±
for some " > 0, we obtain curves whose points z 2 C satisfy

j Im zj2 D 1 �
"jRe zj2

m

�
1CO

� 1

jRe zj2

��
in the asymptotic regime jRe zj ! C1. Motivated by this, for ˛ 2 .0; 1/ and " > 0,
we set regions

ƒ˛˙."/ D
°
z 2 C W j Im zj � 1C " and jRe zj2 �

m.1 � j Im zj2/

.1˙ ˛/"

±
:

These are illustrated in Figure 4 for two different values of ".
In the next corollary, we establish sharp inclusions and exclusion zones for the

pseudospectra of Lm in terms of these regions. Note that L0 has trivial pseudospectra
although it is a non-normal operator.

Corollary 2.2. Let m � 0 and let Lm be the operator given by (2.3).

(1) If m D 0, then the pseudospectrum of L0 is trivial and for all " > 0,

Spec".L0/ D ¹z 2 C W j Im zj � 1C "º:
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Figure 4. Regions ƒ0:1
C
."/ and ƒ0:1� ."/ in the box as shown, for m D 1, " D 0:02 (left) and

" D 0:01 (right). The part in blue corresponds to ƒ0:1
C
."/ n ƒ0:1� ."/ and ƒ0:1� ."/ is shows in

brick.

(2) If m > 0, then the pseudospectrum of Lm is non-trivial. Namely, for every
fixed ˛ 2 .0; 1/, there exists M > 0 such that

ƒ˛�."/ \ ¹jRe zj > M º � .Spec"Lm/ \ ¹jRe zj > M º; (2.5)

.Spec"Lm/ \ ¹jRe zj > M º � ƒ˛C."/ \ ¹jRe zj > M º (2.6)

for all " > 0.

Proof. For m D 0, the statement follows directly from the spectrum of L0 and (2.4).
Here is the proof form > 0. According to Theorem 2.1, there exists a constant C > 0

such that

�
1 �

C

jRe zj2

�
jRe zj2

m.1 � j Im zj2/
< k.Lm � z/

�1
k <

�
1C

C

jRe zj2

�
jRe zj2

m.1 � j Im zj2/

for large jRe.z/j and j Im zj < 1. Thus, for fixed ˛ 2 .0; 1/ and jRe zj �
p
C=˛, we

have the following. For " > 0, (2.5) is ensured whenever jRe zj is such that

.1 � ˛/
jRe zj2

m.1 � j Im zj2/
�
1

"
:

Similarly, if
1

"
� k.Lm � z/

�1
k;

then
1

"
< .1C ˛/

jRe zj2

m.1 � j Im zj2/
:

Therefore, (2.6) is valid. For j Im zj > 1, we recall (2.4).
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2.2. Long-range potential perturbations

In Section 5 we examine perturbations of Lm by an integrable matrix-valued func-
tion V . We establish results about the localisation of eigenvalues and pseudospectrum,
under general assumptions on the decay of V at infinity.

Our starting point is the construction of a specific closed densely defined extension
of the differential operator

Lm C V WH
1.R;C2/ \ Dom.V /! L2.R;C2/;

via a version of the classical selfadjoint framework of Kato [16], obtained in [12].
Concretely, for almost1 all x 2 R, let

V.x/ D B.x/A.x/ where B.x/ D U.x/jV.x/j1=2 and A.x/ D jV.x/j1=2;

in the polar decomposition V.x/ D U.x/jV.x/j, where U.x/ are partial isometries
and jV.x/j D .V �.x/V .x//1=2. Consider the family of closed operators

Q.z/ D AR0.z/B; where R0.z/ D .Lm � z/�1;

for z 2 �.Lm/. According to Theorem A.1 quoted in Appendix A, if

(H1) there exists z0 2 �.Lm/ such that �1 2 �.Q.z0//,

then there exists a closed extension Lm;V � LmC V , whose resolvent coincides with
the family of bounded operators

R0.z/ �R0.z/B.I CQ.z//
�1AR0.z/:

Our analysis below refers to the closed operator Lm;V .
We begin Section 5 by showing that the abstract condition (H1) holds, for a meas-

urable function V satisfying either of the following hypotheses:

(H2) kV kL1 < 1;

(H3) V 2 L1.R;C2�2/ \ Lp.R;C2�2/ for some p 2 .1;1�.

Once we settle that, we formulate the next spectral stability result.

Proposition 2.3. Let m � 0 and let Lm be as in (2.3). Let V 2 L1.R;C2�2/ and
assume that either (H2) or (H3) holds true. Then, there exists a closed densely defined
extension Lm;V � Lm C V with a non-empty resolvent set and its spectrum is as
follows:

1Here and elsewhere below, we assume without further mentioning, that all the identities
involving point-wise evaluation are valid almost everywhere with respect to the Borel � -algebra
on R.
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(1) if m > 0, all the essential spectra of Lm;V are stable and coincide; namely,

Specej.Lm;V / D Specej.Lm/ D Sm for all j 2 ŒŒ1; 5��I

(2) ifmD 0, all the first four notions of essential spectra are stable and coincide;
namely,

Specej.L0;V / D Specej.L0/ D ¹z 2 C W j Im zj D 1º for all j 2 ŒŒ1; 4��:

Moreover,

(3) if V satisfies the assumption (H2), we have

Specp.L0;V / � S0I

(4) if V satisfies the assumption (H3) for p <1, we have

Specp.L0;V / �
°
z 2 C W j Im zj � 1C

2.p � 1/

p
kV k

p=.p�1/
Lp

±
I

if V satisfies the assumption (H3) for p D1, then

Specp.L0;V / � ¹z 2 C W j Im zj � 1C kV kL1º:

In Remark 5.1, we expand further on the justification for the condition (H2) and
compare with the case of the dislocated Schrödinger operator. This assumption has
already been documented in [7] for Dm in place of Lm. Noticeably, it gives regions
of inclusion for the perturbed eigenvalues. Our next result shows that a control on
kV kL1 also gives inclusions for the spectrum and pseudospectrum of Lm;V .

Theorem 2.4. For m � 0, let

D D
°
z 2 C W j Im zj <

3

2
; jRe zj <

5

2
m
±
:

There exists a constant 0 < C.m/ � 1 such that, if kV kL1 < C.m/, then

Spec".Lm;V / � xD [
°
z 2 C W j Im zj � 1C "

�
1C

kV kL1

4C.m/.C.m/ � kV kL1/

�±
;

for all " � 0. Moreover, for C.0/ D 1 this statement is valid.

According to [7, Corollary 4.6], Dm C V has point spectrum lying on a strip
covering the real axis for m D 0. According to [7, Theorem 2.1], for m > 0, it lies
inside two disks centred near the endpoints of the essential spectrum. The radius of
these disks decreases as kV kL1 ! 0. Our next result shows that, rather unexpectedly,
the point spectrum of Lm;V behaves differently from that of Dm C V , under fast
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rates of decay of the perturbation at infinity. Namely, it escapes to infinity through the
channel created by the numerical range, rather than concentrating at the end-points
of the essential spectrum, as kV kL1 ! 0. The condition we impose is analogous to
the one considered in [14, Theorem 2.3] and in turn allows refined versions of the
conclusions (3)–(4) of Proposition 2.3 for m > 0.

Here and everywhere below, we write

�01.x/ D
p
1C x2; d�1.x/ D �01.x/dx;

�02.x/ D �
0
1.x/

2
D 1C x2; d�2.x/ D �02.x/dx:

Theorem 2.5. Let m > 0 be fixed. Then, there exists a constant C.m/ > 0, ensuring
the following. For all V 2 L1.R;C2�2I d�1/ such that

kV kL1.d�1/ < C.m/;

we have

Specp.Lm;V / �
°
z 2 C W j Im zj � 1; jRe.z/j >

C.m/

kV k
1=2

L1

±
:

Succinctly, this theorem says that for potentials V decaying sufficiently rapidly
at1, the discrete spectrum escapes to1 inside the instability band, ¹j Im zj < 1º, at
a rate proportional to kV k�1=2

L1
in the regime kV kL1 ! 0. In the conclusion, the norm

is taken with respect to the Lebesgue measure.
For Schrödinger operators, a similar result was established in [14, Theorem 2.3].

In the latter, the density considered was �02 instead of �01, and upper bounds for the
norm of Q.z/ were obtained via the Hilbert–Schmidt norm. Here we employ the
Schur test instead, which allows a better control of the upper bounds for the norm
of the integral operator Q.z/. Therefore, we manage to weaken the condition on the
decay of V .

Theorem 2.5 opens the question of whether there exists V 2 L1.R;C2�2/ with
non-empty discrete spectrum for m > 0. We give an answer to this question in Sec-
tion 5.3. Our concrete finding in this respect is the following. Consider the step
potential

V.x/ D Va;b.x/ D .�isgn.x/ � b/�Œ�a;a�.x/I;

where a > 0 and b 2 R. Set Dom.Lm;Va;b / D H 1.R;C2/. According to Proposi-
tion 2.3, the essential spectra of Lm;Va;b are

Specej.Lm;Va;b / D ¹z 2 C W j Im zj D 1; jRe zj � mº;

for all j 2 ŒŒ1; 4��, including j D 5 if m > 0.
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Proposition 2.6. For m � 0, let Lm;Va;b be as in the previous paragraph.

(1) If m D 0, then the point spectrum of L0;Va;b is the band

Specp.L0;Va;b / D ¹z 2 C W j Im zj < 1º:

(2) If m > 0, then the operator Lm;Va;b has infinitely many isolated real eigen-
values accumulating at˙1.

In the context of Theorem 2.5, it is also natural to examine the behaviour of the
family of operators Lm;�V for fixed m > 0, fixed potential V , and a small moving
complex parameter � 2 C, in the regime j�j ! 0. This is the so-called weakly coupled
model. For this model, we establish the following in Section 5.4.

Let V 2L1.R;C2�2I d�1/. From Proposition 2.3 and Theorem 2.5, it follows that

Specej.Lm;�V / D ¹z 2 C W j Im zj D 1; jRe zj � mº; for all j 2 ŒŒ1; 5��

and, for a suitable constant C.m/ > 0,

Specdis.Lm;�V / �
°
z 2 C W j Im zj < 1; jRe zj >

C.m/

j�j1=2kV k
1=2

L1

±
; (2.7)

for all j�j small enough. If V satisfies additional conditions of regularity and decay at
infinity, then Theorem 2.5 refines as follows.

Theorem 2.7. Let m > 0. For any V 2 L1.R;C2�2I d�2/ \ W 2;1.R;C2�2/, there
exists a constant C.m/ > 0 independent of �, such that

Specdis.Lm;�V / �
°
z 2 C W j Im zj < 1; jRe zj >

C.m/

j�j

±
;

for all j�j small enough.

3. Resolvent and spectrum of Lm

In this section, we settle the framework of the differential expression (2.3) and the
associated linear operator. We begin by determining Num.Lm/. We then compute the
Green matrix associated with the resolvent .Lm � z/�1 and find Spec.Lm/.

Since D�m D Dm and multiplication by isgn.x/I is bounded, it follows that the
domain of L�m is alsoH 1.R;C2/. Let T be the antilinear operator of complex conjug-
ation, T g D Ng and P be the parity operator, .Pg/.x/D g.�x/. For f 2H 1.R;C2/,
direct substitution of the operators involved, gives

.T LmT f /.x/ D .�i@x/�2f .x/Cm�3f .x/C isgn.x/f .x/

D .�i@x/�2f .x/Cm�3f .x/ � isgn.x/f .x/ D .L�mf /.x/
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however,
P T Lmf ¤ LmP T f:

Therefore, Lm is T -selfadjoint but it is not P T -symmetric.
Now, we show that

Num.Lm/ D ¹z 2 C W j Im zj � 1º: (3.1)

Indeed, let f D
�
f1
f2

�
2 Dom.Lm/ be such that kf k D 1. Integration by parts gives

hLmf; f i D m.kf1k
2
� kf2k

2/C 2Rehf 01 ; f2i C i.kf k
2
L2.RC/

� kf k2
L2.R�/

/:

Since kf k D 1, it follows immediately that j ImhLmf; f ij � 1, which implies that

Num.Lm/ � ¹z 2 C W j Im zj � 1º:

Conversely, for the reverse inclusion, we construct appropriate test functions as fol-
lows. Choose smooth g1 and g2 with supports in RC such that kg1k2 C kg2k2 D 1
and Rehg01; g2i > 0. For � > 0, let

fj .x/ D �
1=2gj .�x/:

Then, kf k D 1 and

hLmf; f i D m.kg1k
2
� kg2k

2/C 2�Rehg01; g2i C i:

Hence, by increasing �, it follows that RC C i � Num.Lm/. Similar arguments,
choosing g1 and g2 with support in R� or changing the sign of Rehg01; g2i, give R˙

i � Num.Lm/. The convexity of the numerical range completes the proof of (3.1).
Below, we often write † D Int.NumLm/ and call this set the instability band.

3.1. Integral form of the resolvent

We compute explicitly the integral kernel associated to the resolvent of Lm. We also
establish preliminary estimates on its norm. We begin by fixing a notation that will
prove crucial for simplifying our expressions and subsequent analysis.

For z 2 C n ¹˙m˙ iº, we write

��z D
p
.mC i C z/.m � i � z/; �Cz D

p
.m � i C z/.mC i � z/;

w�z D
m � i � z

��z
D

p
m � i � z
p
mC i C z

; wCz D
mC i � z

�Cz
D

p
mC i � z
p
m � i C z

:
(3.2)

Here and throughout the paper, we pick the principal branch z 7!
p
z D z1=2 defined

on C, holomorphic on C n .�1; 0� and having a positive imaginary part on .�1; 0/.
This choice ensures that w˙z have the stated expressions in (3.2).
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Since

.m˙ i C z/.m� i � z/ 2 .�1; 0� () jRe zj � m and Im z D �1;

then

Re�˙z > 0 () z 62 ¹� ˙ i W � 2 R; j� j � mº: (3.3)

Moreover, �˙z D �
�

z andw˙z Dw
�

z for all z satisfying (3.3). Below we will use these
facts repeatedly, often without further explicit mention.

Recall Sm given by (2.1). In Section 3.2, we will establish that Spec.Lm/ D Sm.
For z 2 C n Sm, define the matrices

N1;z D
1

2

wCz � w
�
z

wCz C w�z

�
1=w�z 1

1 w�z

�
; N6;z D

1

2

�
�1=wCz 1

�1 wCz

�
;

N2;z D
1

2

�
�1=w�z �1

1 w�z

�
; N7;z D N4;z;

N3;z D
1

wCz C w�z

�
�1 �w�z
wCz wCz w

�
z

�
; N8;z D

1

wCz C w�z

�
�1 wCz
�w�z wCz w

�
z

�
;

N4;z D
1

2

wCz � w
�
z

wCz C w�z

�
�1=wCz 1

1 �wCz

�
; N9;z D

1

2

�
�1=w�z 1

�1 w�z

�
;

N5;z D
1

2

�
�1=wCz �1

1 wCz

�
; N10;z D N1;z :

For x; y 2 R, x ¤ y, let the matrix kernel Rz.x; y/ be given in regions of the plane
R2 by

Rz.x; y/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

N1;z e
��z .xCy/ CN2;z e

���z .x�y/ for y < x < 0;

N3;z e
��
C
z xC�

�
z y for y < 0 < x;

N4;z e
��
C
z .xCy/ CN5;z e

��
C
z .x�y/ for 0 < y < x;

N6;z e
�
C
z .x�y/ CN7;z e

��
C
z .xCy/ for 0 < x < y;

N8;z e
��z x��

C
z y for x < 0 < y;

N9;z e
��z .x�y/ CN10;z e

��z .xCy/ for x < y < 0:

(3.4)

Note that Rz is continuous across the lines x D 0 and y D 0, but discontinuous across
the line x D y. Here it is not important what values we give to this matrix function on
these lines, so we leave them unassigned.

We mention that, in contrast to the case of the resolvent kernel of the Schrödinger
operator �d2=dx2 C isgn.x/, considered in [14, Proposition 3.1], Rz is not symmet-
ric with respect to the line x D y. We will see in Lemma 3.2 that the induced operator
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norm of Rz is nonetheless symmetric. That is, jRz.x; y/jC2�2 D jRz.y; x/jC2�2 for
all .x; y/ 2 R2.

As we shall see from the next statements, Rz is the (matrix) Green function asso-
ciated to the operator Lm � z. This explicit formula has a far-reaching role in the
analysis that we conduct below. Remarkably, we will see that it enables the system-
atic study of perturbation of Lm via a Birman–Schwinger principle, as described in
Section 5.

Proposition 3.1. For m � 0, let Lm be the operator given by (2.3). Then, C n Sm �

�.Lm/. Moreover,

Œ.Lm � z/
�1f �.x/ D

Z
R

Rz.x; y/f .y/ dy;

for all z 2 C n Sm and f 2 L2.R;C2/,

Before proceeding to the proof, we highlight that the resolvent kernel of the free
Dirac operator [7, Proof of Theorem 2.1], is a convolution kernel and it contains only
exponential terms involving the difference x � y. By contrast, for m > 0, Rz also
includes mixed exponential terms and it cannot be expressed as a pure tensor product
of two matrix functions. We will see below that this more complex structure of the
Green function is responsible for the asymptotic growth of the resolvent norm inside
the numerical range.

The remainder of this section is devoted to the proof of Proposition 3.1. Although
this proof follows a routine argumentation, we include crucial details that will aid in
the computation of sharp estimates for the resolvent norm. We split it into four steps.

Step 1. Fix z 2 C n Sm and f 2 L2.R;C2/. Consider the eigenvalue equation

.Lm � z/u D f;

which in matrix form reads�
mC isgn.x/ � z �@x

@x �mC isgn.x/ � z

��
u1.x/

u2.x/

�
D

�
f1.x/

f2.x/

�
: (3.5)

Our final goal in the proof is to determine the explicit integral expression for the
solution. Multiplying by the matrix J D

�
0 �1
1 0

�
on the left of the two sides of (3.5),

gives the equivalent non-homogeneous linear system of first order,

@xu.x/ D Az.x/u.x/C g.x/; (3.6)

where

Az.x/ D

�
0 m � isgn.x/C z

mC isgn.x/ � z 0

�
and g.x/ D �Jf .x/:
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We now seek for the solution of this system. Consider equation (3.6) for x > 0 and
x < 0, where the corresponding solutions are indicated as u� and uC. Let

A�z D

�
0 mC i C z

m � i � z 0

�
and ACz D

�
0 m � i C z

mC i � z 0

�
be the expressions for Az.x/ for x > 0 and x < 0, respectively. Let ˆ˙z .x/ be fun-
damental matrices for @xu˙ D A˙z u

˙. The columns of ˆ˙z .x/ ought to be linear
independent for all x 2 R, thus, we can pick the choice

ˆ˙z .x/ D exp.A˙z x/ D
�

cosh.�˙z x/ sinh.�˙z x/=w
˙
z

w˙z sinh.�˙z x/ cosh.�˙z x/

�
: (3.7)

Note that

.ˆ˙z .x//
�1
D ˆ˙z .�x/ and ˆ˙z .x/ˆ

˙
z .y/ D ˆ

˙
z .x C y/: (3.8)

We now determine the solutions u˙ of the inhomogeneous system

@xu˙.x/ D A
˙
z u˙.x/C g.x/ on R˙ (3.9)

in the form u˙.x/Dˆ
˙
z .x/v˙.x/, where v˙ WR˙!C2 are to be determined. Taking

the derivative of u˙ and using (3.7), we obtain

@xu˙.x/ D A
˙
z ˆ
˙
z .x/v˙.x/Cˆ

˙
z .x/ @xv˙.x/

D A˙z u˙.x/Cˆ
˙
z .x/ @xv˙.x/ on R˙:

Therefore, u˙ are solutions of (3.9) if and only if ˆ˙z .x/ @xv˙.x/ D g.x/ on R˙.
Hence, we choose

v˙.x/ D

xZ
0

.ˆ˙z .y//
�1g.y/dy C

�
˛˙

ˇ˙

�
;

where ˛˙;ˇ˙ 2C are constants to be determined. Then, the general solutions of (3.9)
are given by

u˙.x/ D ˆ
˙
z .x/

xZ
0

.ˆ˙z .y//
�1g.y/dy Cˆ˙z .x/

�
˛˙

ˇ˙

�
:

As the condition
lim
x!0�

u�.x/ D lim
x!0C

uC.x/

is needed for a solution to be in the domain of the operator, then necessarily�
˛�

ˇ�

�
D

�
˛C

ˇC

�
DW

�
˛

ˇ

�
:

This gives the appropriate regularity to the solution for all x 2 R.
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Step 2. Our next objective is to determine ˛ and ˇ such that u˙ decay to zero at
infinity. According to (3.8), we have

u˙.x/ D

xZ
0

ˆ˙z .x � y/g.y/ dy Cˆ˙z .x/
�
˛

ˇ

�

D

xZ
0

�
cosh.�˙z .x � y// sinh.�˙z .x � y//=w

˙
z

w˙z sinh.�˙z .x � y// cosh.�˙z .x � y//

�
g.y/ dy

C

�
cosh.�˙z x/ sinh.�˙z x/=w

˙
z

w˙z sinh.�˙z x/ cosh.�˙z x/

��
˛

ˇ

�
:

When the right-hand side is written in exponential form, it reduces to

u˙.x/ D

xZ
0

e�
˙
z .x�y/S˙z g.y/dy C e

�˙z xS˙z

�
˛

ˇ

�

C

xZ
0

e��
˙
z .x�y/T˙z g.y/dy C e

��˙z xT˙z

�
˛

ˇ

�
; (3.10)

where

S˙z D
1

2

�
1 1=w˙z
w˙z 1

�
and T˙z D

1

2

�
1 �1=w˙z
�w˙z 1

�
:

We seek for conditions ensuring limx!˙1 u˙.x/ D 0. Since the function g belongs
to L2 but not necessarily to L1, we cannot directly use the dominated convergence
theorem. Instead, we appeal to the density of C1c .R;C

2/ in L2.R;C2/ as follows.
For � > 0 small, let g� 2 C1c .R;C

2/ be such that kg � g�k < �. Then,ˇ̌̌̌ xZ
0

e��
C
z .x�y/TCz g.y/ dy

ˇ̌̌̌
C2
�

xZ
0

e�Re�Cz .x�y/ � TCz jC2�2 jg.y/ � g�.y/jC2 dy

C

xZ
0

e�Re�Cz .x�y/t jTCz jC2�2 jg�.y/jC2 dy

� jTCz jC2�2

s
1 � e�2Re�Cz x

2Re�Cz
kg � g�k

C jTCz jC2�2

xZ
0

e�Re�Cz .x�y/jg�.y/jC2 dy:
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Recall (3.3). Since Re�Cz > 0, the integrand e�Re�Cz .x�y/jg�.y/jC2 is bounded by
the L1 function jg�jC2 , then, according to the dominated convergence theorem, we
have

lim
x!C1

ˇ̌̌̌ xZ
0

e��
C
z .x�y/TCz g.y/ dy

ˇ̌̌̌
C2
� jTCz jC2�2

�p
Re�Cz

:

Because � is arbitrary, the limit on the left-hand side is zero. In turn, we gather that

lim
x!C1

uC.x/ D 0 () lim
x!C1

e�
C
z x

� xZ
0

e��
C
z ySCz g.y/dy C S

C
z

�
˛

ˇ

��
D 0

() SCz

�
˛

ˇ

�
D �

C1Z
0

e��
C
z ySCz g.y/ dy

() ˛ C
1

wCz
ˇ D �

C1Z
0

�
g1.y/C

1

wCz
g2.y/

�
e��

C
z y dy:

(3.11)
For the latter, note that detSCz D 0.

Similarly, by considering the limit to �1, we conclude that

lim
x!�1

u�.x/ D 0 () ˛ �
1

w�z
ˇ D

0Z
�1

�
g1.y/ �

1

w�z
g2.y/

�
e�
�
z y dy: (3.12)

Now, (3.11)–(3.12) can be re-written as a single linear system of equations,�
1 1=wCz
1 �1=w�z

��
˛

ˇ

�
D

C1Z
0

e��
C
z y

�
�1 �1=wCz
0 0

�
g.y/ dy

C

0Z
�1

e�
�
z y

�
0 0

1 �1=w�z

�
g.y/ dy:

Since

det
�
1 1=wCz
1 �1=w�z

�
6D 0

for all z 2 C n Sm, then�
˛

ˇ

�
D

C1Z
0

e��
C
z yMCz g.y/ dy C

0Z
�1

e�
�
z yM�z g.y/ dy;
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where

MCz D
�1

wCz C w�z

�
wCz 1

wCz w
�
z w�z

�
; M�z D

1

wCz C w�z

�
w�z �1

�wCz w
�
z wCz

�
:

Step 3. We now verify the expression for the matrix integral kernel Rz . Replacing
the constant vector

� ˛
ˇ

�
into the formula for u˙, gives

u˙.x/ D

xZ
0

e�
˙
z .x�y/S˙z g.y/dy C

C1Z
0

e�
˙
z x��

C
z yS˙z M

C
z g.y/ dy

C

0Z
�1

e�
˙
z xC�

�
z yS˙z M

�
z g.y/ dy C

xZ
0

e��
˙
z .x�y/T˙z g.y/dy

C

C1Z
0

e��
˙
z x��

C
z yT˙z M

C
z g.y/ dy C

0Z
�1

e��
˙
z xC�

�
z yT˙z M

�
z g.y/ dy:

Since SCz M
C
z D �S

C
z , SCz M

�
z D 0 and g D �Jf , then

uC.x/ D

C1Z
x

N6;ze
�
C
z .x�y/f .y/ dy C

xZ
0

N5;ze
��
C
z .x�y/f .y/dy

C

C1Z
0

N4;ze
��
C
z .xCy/f .y/ dy C

0Z
�1

N3;ze
��
C
z xC�

�
z yf .y/ dy:

Similarly, since T �z M
�
z D T

�
z and T �z M

C
z D 0, then

u�.x/ D

xZ
�1

N2;ze
���z .x�y/f .y/ dy C

0Z
x

N9;ze
��z .x�y/f .y/dy

C

0Z
�1

N1;ze
��z .xCy/f .y/ dy C

C1Z
0

N8;ze
��z x��

C
z yf .y/ dy:

Step 4. So far, we have obtained a solution to (3.5) on R, which is continuous and
decaying at infinity. This solution has the form

u.x/ D

´
uC.x/ if x � 0;

u�.x/ if x � 0;
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and has the integral representation

u.x/ D

Z
R

Rz.x; y/f .y/ dy (3.13)

as in the statement of Proposition 3.1. To complete the proof, it remains to check that
u 2 L2.R;C2/ and thus Lmu D zuC f 2 L2.R;C2/, so that u 2 H 1.R;C2/. This
will be the consequence of the next two lemmas, which will be useful in their own
right later on.

Firstly, we explicitly compute the matrix norm of the kernel.

Lemma 3.2. Let Rz be as defined in (3.4). Assume that z 2 C n Sm is fixed. Let,

• for t � 0,

'z.t/ D

p
1C jw�z j

2

2

� 1

jw�z j
2
jkze

2��z t � 1j2 C jkze
2��z t C 1j2

�1=2
; (3.14a)

• for t � 0,

'z.t/ D

q
1C jwCz j2

2

� 1

jwCz j2
jkze

�2�
C
z t C 1j2 C jkze

�2�
C
z t � 1j2

�1=2
;

(3.14b)

where

kz D
wCz � w

�
z

wCz C w�z
: (3.15)

Then, 'z WR! RC is bounded and continuous, and

jRz.x; y/jC2�2 D

8̂̂̂̂
<̂
ˆ̂̂:
'z.max¹x; yº/ e�Re��z jx�yj for x < 0; y < 0;

'z.min¹x; yº/ e�Re�Cz jx�yj for x > 0; y > 0;

'z.0/ e
�Re�Cz jxj�Re��z jyj for x > 0; y < 0;

'z.0/ e
�Re��z jxj�Re�Cz jyj for x < 0; y > 0:

(3.16)

Proof. The function 'z is continuous, since

lim
t!0�

'z.t/ D

q
.1C jwCz j2/.1C jw�z j

2/

jwCz C w�z j
D lim

t!0C
'z.t/:

It is bounded, since

sup
t2R˙

'z.t/ � .jkzj C 1/

p
1C jw˙z j

2

2

s
1C

1

jw˙z j
2

D
1

2
.jkzj C 1/

�
jw˙z j C

1

jw˙z j

�
: (3.17)
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Now, recall that, for a singular matrix A 2 C2�2, the operator norm and the Frobenius
norm coincide

jAjC2�2 D

s X
1�i;j�2

jAij j2:

Indeed, det.A�A/ D 0, therefore the two non-negative eigenvalues of A�A are 0 and
Tr.A�A/. Applying this, alongside a straightforward computation, gives

• for˙x > 0 and˙y > 0,

jRz.x; y/jC2�2 D

p
1C jw˙z j

2

2

� 1

jw˙z j
2
jkze

��˙z jxCyj ˙ e��
˙
z jx�yjj

2

C jkze
��˙z jxCyj � e��

˙
z jx�yjj

2
�1=2
I

• for˙x > 0 and˙y < 0,

jRz.x; y/jC2�2 D

q
.1C jwCz j2/.1C jw�z j

2/

jwCz C w�z j
e�Re�˙z jxj�Re��z jyj:

Factoring out suitable exponential terms and substitution of the expression (3.14)
yields (3.16).

The next lemma directly implies that the function u given by (3.13) belongs to
L2.R;C2/, and hence z 2 �.Lm/. This conclusion completes the proof of Propos-
ition 3.1. Additionally, the lemma provides an initial estimate for the upper bound
of the resolvent norm of the operator Lm. This estimate is derived directly from the
explicit expression of jRz.x; y/jC2�2 in terms of the supremum of 'z.t/, using the
Schur test. We will refine this upper bound in the next section.

Lemma 3.3. Let z 2 C n Sm. Then, the integral operator on the right-hand side
of (3.13) is bounded on L2.R;C2/, and

k.Lm � z/
�1
k �

2

min¹Re��z ;Re�Cz º
sup
t2R

'z.t/:

Proof. We will prove this lemma by the Schur test. Our goal is to show thatZ
R

jRz.x; y/jC2�2 dy �
2

min¹Re��z ;Re�Cz º
sup
t2R

'z.t/; for a.e. x 2 R; (3.18a)

Z
R

jRz.x; y/jC2�2 dx �
2

min¹Re��z ;Re�Cz º
sup
t2R

'z.t/; for a.e. y 2 R: (3.18b)
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Since jRz.x; y/jC2�2 is symmetric with respect to swapping x and y, it suffices to
show the first identity in (3.18).

For x � 0, (3.16) yieldsZ
R

jRz.x; y/jC2�2 dy

D

xZ
�1

'z.x/e
Re��z .y�x/ dy C

0Z
x

'z.y/e
Re��z .x�y/ dy

C

C1Z
0

'z.0/e
Re��z x�Re�Cz y dy

� 'z.x/
1

Re��z
C .sup

t�0

'z.t//
1 � eRe��z x

Re��z
C 'z.0/

eRe��z x

Re�Cz

� .sup
x�0

'z.x//
h 2

Re��z
C

� 1

Re�Cz
�

1

Re��z

�
eRe��z x

i
� .sup

x�0

'z.x//
2

min¹Re��z ;Re�Cz º
:

A similar estimate is obtained for x � 0, where now the supremum is taken for x � 0.
From this, (3.18) follows.

3.2. The spectrum of Lm

According to Proposition 3.1,

Spec.Lm/ � Sm:

Since Lm is T -selfadjoint, the residual spectrum is empty [19, Section 5.2.5.4] and
the first four essential spectra coincide [11, Theorem IX.1.6 (ii)]. We show that the
spectrum coincides exactly with Sm and find Spece5.Lm/. We treat the case m D 0
separately.

Case m > 0. Let z˙ D � ˙ i for fixed � 2 R such that j� j � m, so z˙ 2 Sm. Our
goal is to construct singular Weyl sequences .‰˙n /n2N for z˙, to conclude that they
are in the appropriate part of the spectrum. With this purpose in mind, let

u.x/ D

� p
jmC � j

i sgn.�/
p
jm � � j

�
ei
p
�2�m2x; (3.19)

which is one of the solutions of

.Dm � �I /u D 0; (3.20)
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for the free Dirac operator (2.2). Let

‰˙n .x/ D cn'n.˙x/u.x/;

where
cn D

1q
2j� j

�
nC 2

3

�
and 'n is the continuous compact support cut-off function given by

'n.x/ D

8̂̂̂̂
<̂
ˆ̂̂:
x � n for x 2 Œn; nC 1�;

1 for x 2 ŒnC 1; 2nC 1�;

2nC 2 � x for x 2 Œ2nC 1; 2nC 2�;

0 otherwise:

Then, k‰˙n k D 1.
By considering the location of the supports and from (3.20), it follows that

.Lm � z
˙I /‰˙n .x/ D .Dm � �I /‰

˙
n .x/

D cn'n.˙x/.Dm � �I /u.x/C cnŒDm � �I; 'n.˙x/I �u.x/

D ˙cn'
0
n.˙x/Ju.x/:

Then,

k.Lm � z
˙I /‰˙n .x/k D kcn'

0
n.˙x/Ju.x/k D

s
2

nC 2
3

! 0

as n ! 1. Therefore, indeed, .‰˙n /n2N is a Weyl sequence for z˙. Thus, z˙ 2
Spec.Lm/. This completes the proof that Spec.Lm/ D Sm for all m > 0, which we
will use without further explicit mention.

Since the support of the Weyl sequence moves to infinity, Sm � Spece2.Lm/. Con-
sequently, Specej.Lm/ D Sm for j 2 ŒŒ1; 4��. To further deduce that

Spece5.Lm/ D Sm;

it suffices to note that C n Spece1.Lm/ D �.Lm/ is connected [19, Proposition 5.4.4].
Finally, observe that Specp.Lm/ D ¿. Indeed, the expression of the fundamental

matrices (3.7) is also valid for z 2 Sm. Applying (3.10) with g D 0 and noting that
Re�˙z D 0 for z 2 ¹� ˙ i W j� j �mº, we conclude that there are no non-trivial solutions
to the eigenvalue equation .Lm � z/u D 0 that belong to L2.R;C2/. Therefore, no
point in Sm can be an eigenvalue. This completes the description of the spectrum of
Lm for m > 0.
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Case m D 0. For L0 and z˙ D � ˙ i where � 6D 0, the previous argumentation
involving .‰˙n /n2N is still applicable, so we know that there exist singular Weyl
sequences for z˙ 6D ˙i . On the other hand, for � D 0, we can choose constant
u.x/ D

�
1
0

�
instead of (3.19), which is a solution to the eigenvalue equation (3.20),

and run a similar proof as above. Thus, we know up front that

@S0 D ¹z 2 C W j Im zj D 1º � Spece2.L0/ D Specej.L0/ (3.21)

for j D 1; 3; 4.
Our focus now is to show that all the points z in the interior of the strip S0 are

eigenvalues with L0 � z being a Fredholm operator of index zero.

Lemma 3.4. FormD 0, let L0 be defined as in (2.3). Let z 2C be such that j Imzj<1.
Then, the following holds true.

(a) Ker.L0 � z/ D span¹vzº, where

vz.x/ D

8̂̂̂<̂
ˆ̂:
�
1

�i

�
e.1�iz/x for x � 0;�

1

�i

�
e�.1Ciz/x for x � 0:

(b) Ker.L�0 � z/ D span¹ Qvzº, where

Qvz.x/ D

8̂̂̂<̂
ˆ̂:
�
1

i

�
e.1Ciz/x for x � 0;�

1

i

�
e�.1�iz/x for x � 0:

(c) Ran.L0 � z/ is closed.

(d) The algebraic multiplicity of z is infinite.

Proof. Consider once again the equation .L0 � z/u D f as in Section 3.1. When
m D 0 and j Im zj < 1, the quantities �˙z and w˙z in (3.2) reduce to

�Cz D 1C iz; ��z D 1 � iz; wCz D i; w�z D �i:

We start with the proof of (a). Let u 2H 1.R;C2/ be a solution to this eigenvalue
equation. We know that the restrictions of u to R˙, match (3.10) with g D 0, namely

u˙.x/ D e
�˙z xS˙z

�
˛

ˇ

�
C e��

˙
z xT˙z

�
˛

ˇ

�
;
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with .˛; ˇ/ 2 C2 and

S˙z D
1

2

�
1 �i

˙i 1

�
; T˙z D

1

2

�
1 ˙i

�i 1

�
:

Since Re�˙z > 0, the decay of u at˙1 should match the conditions (3.11) and (3.12)
for ˛ and ˇ. Therefore, ˛ D iˇ. Hence,

uC.x/ D ˛e
��
C
z x

�
1

�i

�
and u�.x/ D ˛e

��z x

�
1

�i

�
:

Thus, indeed (a) is valid. The proof of (b) is identical, so we omit it.
To confirm (c), we show that Ran.L0 � z/�Ran.L0 � z/. Take f 2Ran.L0 � z/

and seek for u 2 H 1.R;C2/ such that .L0 � z/u D f . Now, u˙ are given in the
form (3.10) with g D �Jf . Since

Ran.L0 � z/ D .Ker.L�0 � Nz//
?;

according to (b), it follows that

0Z
�1

.f1.y/ � if2.y//e
.1�iz/y dy C

1Z
0

.f1.y/ � if2.y//e
�.1Ciz/y dy D 0:

By proceeding as in the proof of Proposition 3.1, this is equivalent to the fact that both
right-hand sides of the decaying conditions (3.11) and (3.12) are equal. That is,

�

1Z
0

.g1.y/ � ig2.y//e
��
C
z y dy D ˛ � iˇ D

0Z
�1

.g1.y/ � ig2.y//e
��z y dy:

Set ˇ D 0. Then,�
˛

ˇ

�
D

�
�1 i

0 0

� 1Z
0

g.y/e��
C
z y dy D

�
1 �i

0 0

� 0Z
�1

g.y/e�
�
z y dy:

Replacing these constants in (3.10) and writing the expression back in terms of f1
and f2, using g D �Jf , gives

uC.x/ D C
C
1

C1Z
x

e�
C
z .x�y/f .y/ dy C CC2

xZ
0

e��
C
z .x�y/f .y/ dy

C CC3

1Z
0

e��
C
z .xCy/f .y/ dy;
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and

u�.x/ D C
�
1

xZ
�1

e��
�
z .x�y/f .y/ dy C C�2

0Z
x

e�
�
z .x�y/f .y/ dy

C C�3

0Z
�1

e�
�
z .xCy/f .y/ dy;

for suitable constant matricesC˙j . Now, by invoking the Schur test in identical manner
as in the proof of Proposition 3.1 – we omit the details – we find that u 2 L2.R;C2/

and thus u 2H 1.R;C2/. Hence, indeed, f 2 Ran.Lm � z/. This completes the proof
of (c).

For the final statement, we invoke [22, Theorem 2.16 in Chapter 2], which estab-
lishes that only one of the following cases can occur. Either

† D ¹w 2 C W j Imwj < 1 and the algebraic multiplicity of w is finiteº

or

† D ¹w 2 C W j Imwj < 1 and the algebraic multiplicity of w is infiniteº:

From the above, the geometric multiplicity of all z 2 † is one. Therefore, no point in
† has algebraic multiplicity zero. Thus, according to [22, Theorem 2.15 in Chapter 2],
the set on the right-hand side of the first possibility is countable. But this is not the
case for †, hence, the second possibility is the one that holds. This confirms (d) and
completes the proof of the lemma.

According to Lemma 3.4, we now know that

intS0 D ¹z 2 C W j Im zj < 1º � Specp.L0/ n Spece3.L0/: (3.22)

Combining this with (3.21), we conclude that indeed

Spec.L0/ D S0 and Specej.L0/ D Spece2.L0/ D ¹z 2 C W j Im zj D 1º

for j D 1; 3; 4. Since no eigenvalue on the left-hand side of (3.22) is isolated, and S0
is the closure of its interior, then Spece5.L0/D S0. Finally, since no point on the lines
¹� ˙ i W � 2 Rº is an eigenvalue, these lines exactly form the continuous spectrum of
L0. In summary,

Specp.L0/ D ¹z 2 C W j Im zj < 1º:

We have therefore completed the analysis of the spectrum of Lm for all m � 0.
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4. The resolvent norm of Lm inside the numerical range

Let m > 0. In the second part of this section we give the proof of the sharp estimate
for the resolvent norm of Lm claimed in Theorem 2.1. Before that, and in order to
visualise the asymptotic behaviour of the different parameters involved in this proof,
we establish a sub-optimal version of the statement. Later on, this preliminary estim-
ate will provide a link with the analysis of the pseudospectrum of the perturbations
of Lm.

From now on, we write � D Re z and ı D Im z, often without explicit mention.

4.1. Preliminary estimate

A direct application of the Schur test gives the next preliminary version of The-
orem 2.1.

Theorem 4.1. Form > 0, let Lm be given by (2.3). Let z D � C iı for jıj < 1. Then,
we get

k.Lm � z/
�1
k

�
1

2
p
2m
p
1 � ı2

h
�2 C

m

2
� C

8.1C ı2/C 4m.1C ı/ �m2

8
CO.��1/

i
(4.1a)

and

k.Lm � z/
�1
k �

4

m.1 � ı2/

h
�2 C

1C ı2

4
CmCO.��2/

i
; (4.1b)

as j� j ! C1. Both limits inside the brackets converge uniformly2 for all jıj < 1 and
m on compact set.

According to this statement, the resolvent norm of Lm has leading asymptotic
behaviour j Re zj2, as z ! 1 inside the band forming the numerical range. If we
assume that Theorem 2.1 has already been proved, then we see that the leading order
coefficient of the upper bound in (4.1) is optimal, up to a factor 4. However, the
leading coefficient of the lower bound is sub-optimal. The latter is a consequence
of choosing below a sub-optimal pseudomode. We have included this calculation, in

2Here and elsewhere below, we adopt the common say that two function are related by
f .z/ D g.z/ C O.��p/ as j� j ! 1 and that the limit converges uniformly for parameters
satisfying a condition, if and only if there exist a constant K > 0 independent of � and these
parameters, such that jf .z/� g.z/j �Kj� j�p for all j� j � 1 and all such parameters satisfying
the condition.
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order to illustrate the construction of the optimal pseudomode for the full proof of the
main Theorem 2.1 in Section 4.2, without too many technical details.

Before proceeding to the asymptotic analysis of the coefficients involved, we high-
light the connection with recent results of the same nature.

According to [14, Theorem 2.2], inside the numerical range the Schrödinger oper-
ator with a dislocated potential, �d2=dx2C isgn.x/, has a resolvent norm with linear
leading order of growth at infinity in jRe zj. This discrepancy is explained by the fact
that Lm is an operator of order 1, therefore the perturbation affects the resolvent by a
higher order of magnitude.

When the potential is smooth and asymptotic to a dislocation, the effect of the per-
turbation on the Dirac operator appears to become substantially stronger. For instance,
in the case of the operator zL DDm C i2 arctan.x/I=� , by using the recent results of
[18, Theorem 3.11], it might be possible to show that there exists a WKB-pseudomode
‰�;n, such that

k.zL � �I /‰�;nk

k‰�;nk
D O.��n/

as j� j !1 for all n 2N. This may be closely linked to the fact that interior singular-
ities of a differential expression would create an exponential growth of the resolvent
norm away from the spectrum. The phenomenon could be similar to the one reported
recently in [2] for the case of a singular Sturm–Liouville operator and is worthy of
further exploration.

We now give the proof of Theorem 4.1. We split the proof into three steps.

Step 1. The first step is an asymptotic analysis of the parameters involved in the
resolvent estimate. This result is useful on its own, and will be invoked repeatedly in
later sections.

Lemma 4.2. Form > 0, let �˙z and w˙z be as in (3.2), and let kz be as in (3.15). For
indices p 2 ŒŒ�4; 2�� and parameters

P 2
°
�˙z ;

Re�˙z
1� ı

; w˙z ; jw
˙
z j; kz

±
;

let the coefficientsCp.P/2C be prescribed in Table 1. There exists a constantKm>0,
independent of � and ı, such thatˇ̌̌

P �
2X

pD�4

Cp.P/�p
ˇ̌̌
�
Km

�5

for all j� j � 1 and jıj < 1. This constant can be replaced by a uniform constant for
all m on a compact set.



Dislocated Dirac operators 1197

P
2

1
0

�
1

�
2

�
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�
4

�
˙ z

0
˙
i

1
�
ı
�
i
m
2

2
.
1
�
ı
/
m
2

2
�
i
m
2

8
Œm
2
�
4
.1
�
ı
/2
�

�
m
2

8
.1
�
ı
/Œ
3
m
2
�
4
.1
�
ı
/2
�

w
˙ z

0
0

˙
i

�
im

m 2
Œ2
.1
�
ı
/
˙
im
�

m 2
Œi
m
�
.1
C
i/
.1
�
ı
/�

m 8
¹
4
.1
�
ı
/Œ
3
m
2
C
3
i.
1
�
ı
/m

�
Œ.
1
C
i/
.1
�
ı
/
�
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�

�
2
.1
�
ı
/2
�
˙
3
im
3
º
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˙ z
j

0
0

1
�
m

m
2

2
m 2
Œ2
.1
�
ı
/2
�
m
2
�

m
2
� 3 8m2

�
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�
ı
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�
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�
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ı
m

i� ı2 �
1

m
�
m
�

0
im
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ı
m

im
.1
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ı
2
�
m
2
/

R
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�
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�
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Proof. We only provide a proof sketch, because the details are lengthy routine calcu-
lations.

The strategy for each of the parameters P, is to find a suitable Taylor expansion
from which the coefficients Cp 2C are obtained from those of the different powers of
1=� . The remainder at power 5 in this expansion gives the uniform bound in terms of
ı andm. The specific Taylor series and coefficients are determined from the following
reductions:

�˙z D i�

r
1 �

m2 C .1� ı/2

�2
� i

2.1� ı/

�

and

w˙z D

p
1 � m˙i.1�ı/

�

1C m�i.1�ı/
�

:

For P D jw˙z j, we use

jw˙z j D

q
w˙z w

�

Nz D
p
1C g.�/

where g.�/DO
�
1
�

�
as j� j!1. For PD kz , we use (3.15) and the expansions ofw˙.

Concretely, for P D �Cz , we write �Cz D i�f
�
1
�

�
where f is analytic near 0.

Expanding in power series at that point gives

i
f .x/

x
D

4X
kD�1

C�k.�
C
z /x

p
C
x5

6Š

1Z
0

.1 � s/5f .6/.xs/ ds;

where the coefficients Cp.�Cz / coincide with those in Table 1. Moreover, f .6/ has a
denominator involving a term of the form .a.ı; m/x2 C b.ı; m/x C 1/11=2, where a
and b are bounded uniformly in both variables. Therefore, taking jxj small enough,
ensures that jf .6/.x/j is bounded uniformly in x, jıj < 1 and m > 0 in compact sets.

For the expansion of Re�˙z =1� ı, recall that Re
p

 D j Im 
 j=

p
2.j
 j � Re 
/

for 
 2 C nR, and so

Re�˙z
1� ı

D

p
2

1 � m2C.1�ı/2

�2
C

q�
1 � m2C.1�ı/2

�2

�2
C

4.1�ı/2

�2

:

Step 2. Consider the upper bound first. According to Lemma 3.3, we have that

k.Lm � z/
�1
k �

.jkzj C 1/max
®
jw˙z j C

1

jw˙z j
; jwCz j C

1

jw
C
z j

¯
min¹Re��z ;Re�Cz º

� .jkzj C 1/
�
jwCz j C

1

jwCz j
C jw�z j C

1

jw�z j

�� 1

Re��z
C

1

Re�Cz

�
;
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for all z 2 �.Lm/. By Lemma 4.2, the asymptotic behaviour of each of the multiplying
terms above is

jkzj C 1 D
1

m
�2 C

�1C ı2
m

�mC 1
�
CO.��4/;

jwCz j C
1

jwCz j
C jw�z j C

1

jw�z j
D 2Cm2��2 CO.��4/; (4.2)

1

Re��z
C

1

Re�Cz
D

1

1 � ı2
Œ2 �m2��2 CO.��4/�; (4.3)

as j� j ! 1. Note that the first two coefficients of the terms involving the maximum
above are identical. Multiplying and collecting terms gives the upper bound in (4.1)
as required. Observe that the fact that the limit inside the bracket is uniform in the
parameters, carries over from the conclusion of Lemma 4.2.

Step 3. Now, consider the lower estimate of the resolvent in (4.1). Set a pseudomode

 0.x/ D

�
1

wC
Nz

�
e�
C

Nz
x�.�1;0/.x/;

which belongs to L2.R;C2/ and has a norm k 0k D
p
1C jw�z j

2=
p
2Re��z . From

the formula of the kernel in (3.4) and considering the location of the support of  0,
we have

k.Lm � z/
�1 0k

2
�

C1Z
0

ˇ̌̌̌ 0Z
�1

N3;z

�
1

wC
Nz

�
e��

C
z xC2Re��z y dy

ˇ̌̌̌2
C2

dx

D

ˇ̌̌̌
N3;z

�
1

wC
Nz

�ˇ̌̌̌2
C2

1

8.Re��z /2 Re�Cz

D

�
.1C jw�z j

2/

q
1C jwCz j2

jwCz C w�z j

�2
1

8.Re��z /2 Re�Cz
:

Then,

k.Lm � z/
�1
k �
k.Lm � z/

�1 0k

k 0k

D
1

2

h .1C jw�z j2/.1C jwCz j2/
Re.��z /Re.�Cz /

i1=2
jwCz C w

�
z j
�1:

According to Lemma 4.2, the first bracket is O.1/ and the second term is O.�2/. Mul-
tiplying and collecting coefficients, gives the lower estimate of the resolvent in (4.1).
We omit further details, but this confirms the validity of Theorem 4.1.
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4.2. Proof of Theorem 2.1

We now establish improved estimates, which enable the identification of the sharp
constants in the asymptotics for the resolvent norm of Lm in the instability band.
These will render Theorem 2.1 as a corollary. The strategy for the computation of the
different constants has two parts. We first split the resolvent as the sum of two integral
operators,

.Lm � zI /
�1
D T1.z/C T2.z/;

where the norm of the operator T1.z/ carries the leading order behaviour and kT2.z/k
is O.1/ at infinity. We then proceed as in the proof of Theorem 4.1, and compute
the asymptotic coefficients of kT1.z/k and kT2.z/k. In the case of the lower bound,
we find a pseudomode for T1.z/ that is sharp for the leading order, by optimising
the contribution of the two components of the wave function in an adaptive manner
as z moves towards infinity. For a further discussion on the computation of other
coefficients, see Remark 4.6 at the end of this section.

The explicit formulas of the two integral operators is the following. For j D 1; 2,

Tj .z/f .x/ D

Z
R

Rj;z.x; y/f .y/ dy; (4.4)

where

R1;z.x; y/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

N1;z e
��z .xCy/ for ¹y < x < 0º;

N3;z e
��
C
z xC�

�
z y for ¹y < 0 < xº;

N4;z e
��
C
z .xCy/ for ¹0 < y < xº;

N7;z e
��
C
z .xCy/ for ¹0 < x < yº;

N8;z e
��z x��

C
z y for ¹x < 0 < yº;

N10;z e
��z .xCy/ for ¹x < y < 0º;

(4.5)

and

R2;z.x; y/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

N2;z e
���z .x�y/ for ¹y < x < 0º;

0 for ¹y < 0 < xºI

N5;z e
��
C
z .x�y/ for ¹0 < y < xº;

N6;z e
�
C
z .x�y/ for ¹0 < x < yº;

0 for ¹x < 0 < yº;

N9;z e
��z .x�y/ for ¹x < y < 0º:

(4.6)

Recall the definition of the matrices Nk;z at the beginning of Section 3.
A crucial reason for the split of the resolvent in this fashion is to observe that the

term 1=wCz C w
�
z is the only one responsible for the quadratic growth of the norm

and that this term appears only in Nk;z for k 2 ¹1; 3; 4; 7; 8; 10º. Moreover, now the
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kernel R1;z is separable, therefore a sharp upper bound on its norm is obtained by
means of Hölder’s inequality.

For j 2 ŒŒ1; 10��, we denote nj D nj .z/ D jNj;zjC2�2 . The fact that detNj;z D 0
and substitutions give

n1 D n10 D
1

2

ˇ̌̌wCz � w�z
wCz C w�z

ˇ̌̌�
jw�z j C

1

jw�z j

�
; (4.7a)

n2 D n9 D
1

2

�
jw�z j C

1

jw�z j

�
; (4.7b)

n3 D n8 D

q
.1C jwCz j2/.1C jw�z j

2/

jwCz C w�z j
; (4.7c)

n4 D n7 D
1

2

ˇ̌̌wCz � w�z
wCz C w�z

ˇ̌̌�
jwCz j C

1

jwCz j

�
; (4.7d)

n5 D n6 D
1

2

�
jwCz j C

1

jwCz j

�
: (4.7e)

Note that the asymptotics of all the terms in the formulas for nj are available from the
calculations performed in the previous subsection. Also, note that the operator norms
of Rj;z are symmetric with respect to the axis y D x, as was the case for Rz .

The next proposition gives explicit bounds for the norm of the leading operator
T1.z/. The match of all terms in these bounds except zBz andBz is the main ingredient
that enables the sharp constants below. For z 6D 0, we write

csgn.z/ D
z

jzj
:

Proposition 4.3. Let m > 0. Let the operator T1.z/ be as in (4.4)–(4.5). For all z 2
�.Lm/, let

Az D
n21

4.Re��z /2
;

Cz D
n24

4.Re�Cz /2
;

Dz D
n23

4.Re��z /.Re�Cz /
;

Bz D
n3

2

q
.Re�Cz /.Re��z /

� n1

Re��z
C

n4

Re�Cz

�
;

zBz D
n3

2

q
.Re�Cz /.Re��z /

�
n1 Re

�
csgn

�wCz �w�z
w�z

��
Re��z

�

n4 Re
�
csgn

�wCz �w�z
w
C
z

��
Re�Cz

�
:
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Then, T1.z/ is bounded for all z 2 �.Lm/. Moreover,

kT1.z/k �
1
p
2

rq
.Az � Cz/2 C B2z C Az C Cz C 2Dz (4.8a)

and

kT1.z/k �
1
p
2

rq
.Az � Cz/2 C zB2z C Az C Cz C 2Dz : (4.8b)

Proof. We first prove the upper bound, then the lower bound.

Upper bound. Let ‰ 2 L2.R;C2/ be such that k‰k2 D 1. Then,

kT1.z/‰k
2
�

Z
R

�Z
R

jR1;z.x; y/jC2�2 j‰.y/jC2 dy
�2

dx:

The right-hand side of this expression is given explicitly as follows:Z
R

�Z
R

jR1;z.x; y/jC2�2 j‰.y/jC2 dy
�2

dx

D
1

2.Re��z /

�
n1

0Z
�1

e.Re��z /y j‰.y/jC2 dy C n8

C1Z
0

e�.Re�Cz /y j‰.y/jC2 dy
�2

C
1

2.Re�Cz /

�
n3

0Z
�1

e.Re��z /y j‰.y/jC2 dy C n4

C1Z
0

e�.Re�Cz /y j‰.y/jC2 dy
�2
:

By applying Holder’s inequality to the inner integrals, we get

kT1.z/‰k
2
�

1

2Re��z

� n1p
2Re��z

k‰kL2.R�/ C
n8

p
2Re�Cz

k‰kL2.RC/

�2
C

1

2Re�Cz

� n3p
2Re��z

k‰kL2.R�/ C
n4

p
2Re�Cz

k‰kL2.RC/

�2
�

n21
4.Re��z /2

k‰k2
L2.R�/

C
n24

4.Re�Cz /2
k‰k2

L2.RC/
C

n23

4.Re��z /.Re�Cz /

C
n3

2
p
.Re�Cz /.Re��z /

� n1

Re��z
C

n4

Re�Cz

�
k‰kL2.R�/k‰kL2.RC/:

Here we have used that n1 D n10, n3 D n8 and that k‰k D 1.
Now, for constants A;B;C 2 R,

max
x2Cy2D1

Ax2 C Bxy C Cy2 D
AC C C

p
.A � C/2 C B2

2
: (4.9)
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Then, taking x D k‰kL2.R�/ and y D k‰kL2.RC/, we obtain for all ‰ 2 L2.R;C2/

such that k‰k2 D 1,

kT1.z/‰k
2
�
1

2
.Az C Cz C

q
.Az � Cz/2 C B2z C 2Dz/;

where Az; Bz; Cz; Dz are as above. Moreover, since all these 4 terms are finite for
all z 2 �.Lm/, then indeed T1.z/ is a bounded operator.

Lower bound. In order to obtain the lower bound estimate on the norm of T1.z/,
consider a pseudomode of the form

‰0.y/ D

8̂̂̂̂
<̂
ˆ̂̂:
ˇ

�
�1

w�
Nz

�
e��

C
z y if y � 0;

˛

�
1

wC
Nz

�
e�
�
z y if y � 0;

where ˛; ˇ 2 R will be chosen later to normalise k‰0k and maximise kT1.z/‰0k.
We first compute the square of kT1.z/‰0k. Indeed,

kT1.z/‰0k
2
D

0Z
�1

ˇ̌̌̌ C1Z
�1

R1;z.x; y/‰0.y/ dy
ˇ̌̌̌2
C2

dx

C

C1Z
0

ˇ̌̌̌ C1Z
�1

R1;z.x; y/‰0.y/ dy
ˇ̌̌̌2
C2

dx

D K1 CK2:

By the definition of ‰0, we have, for x < 0,

C1Z
�1

R1;z.x; y/‰0.y/ dy

D e�
�
z x

�˛ wCz �w�z
w
C
z Cw

�
z

.1C jw�z j
2/ 1
w�z

4Re��z
C

ˇ.1Cjw
C
z j
2/

w
C
z Cw

�
z

2Re�Cz

��
1

w�z

�
;

and for x > 0,

C1Z
�1

R1;z.x; y/‰0.y/ dy

D e��
C
z x

� ˛.1Cjw�z j2/
w
C
z Cw

�
z

2Re��z
C

ˇ
w
C
z �w

�
z

w
C
z Cw

�
z

.1C jwCz j
2/ �1
w
C
z

4Re�Cz

��
�1

wCz

�
:
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Now,

K1 D
1

2Re��z

�
j˛j2n21.1C jw

�
z j
2/

4.Re��z /2
C
jˇj2n28.1C jw

C
z j
2/

4.Re�Cz /2

C

n1n8˛ˇ

q
.1C jw�z j

2/.1C jwCz j2/

2.Re�Cz /.Re��z /
Re
�

csgn
�wCz � w�z

w�z

���
;

and

K2 D
1

2Re�Cz

�
j˛j2n23.1C jw

�
z j
2/

4.Re��z /2
C
jˇj2n24.1C jw

C
z j
2/

4.Re�Cz /2

�

n3n4˛ˇ

q
.1C jw�z j

2/.1C jwCz j2/

2.Re�Cz /.Re��z /
Re
�

csgn
�wCz � w�z

wCz

���
:

Moreover,

k‰0k
2
D j˛j2

1C jw�z j
2

2Re��z
C jˇj2

1C jwCz j
2

2Re�Cz
:

To normalise ‰0 properly, we re-write

˛ D

p
2Re��zp
1C jw�z j

2
x

and

ˇ D

q
2Re�Czp
1C jwCz j

2
y;

for x;y 2 R such that x2C y2 D 1. We seek for pairs .x; y/, such that the expression

kT1.z/‰0k
2
D

n21
4.Re��z /2

x2 C
n24

4.Re�Cz /2
y2 C

n23

4.Re��z /.Re�Cz /

C
n3

2
p
.Re�Cz /.Re��z /

�
n1 Re

�
csgn

�wCz �w�z
w�z

��
Re��z

�

n4 Re
�
csgn

�wCz �w�z
w
C
z

��
Re�Cz

�
xy

attains its maximum. Therefore, according to (4.9) once again, we have

kT1.z/k
2
� kT1.z/‰0k

2
D
1

2
.Az C Cz C

q
.Az � Cz/2 C zB2z C 2Dz/:

Thus, the lower bound of T1.z/ is indeed confirmed.
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Our next goal is to determine an upper bound for the norm of T2.z/.

Proposition 4.4. Let m > 0. Let the operator T2.z/ be as in (4.4)–(4.6). Then, T2.z/
is bounded for all z 2 �.Lm/. Moreover,

kT2.z/k � max
° n2

Re��z
;
n5

Re�Cz

±
:

Proof. We use the Schur test to prove this proposition. For x < 0, we haveZ
R

jR2;z.x; y/jC2�2 dy D

xZ
�1

n2e
�Re��z .x�y/ dy C

0Z
x

n9e
Re��z .x�y/ dy

D
n2

Re��z
.2 � eRe��z x/

�
n2

Re��z
:

Note that n2 D n9. Similarly, for x � 0, we haveZ
R

jR2;z.x; y/jC2�2 dy D

xZ
0

n5e
�Re�Cz .x�y/ dy C

C1Z
x

n6e
Re�Cz .x�y/ dy

D
n5

Re��z
.2 � e�Re�Cz x/

�
n5

Re�Cz
:

Note that n5 D n6. Now, recall that jR2;z.x; y/jC2�2 D jR2;z.y; x/jC2�2 . Hence, by
virtue of the Schur test, the claimed conclusion follows.

With the bounds for the norms of the components Tj .z/ at hand from the previous
two propositions, we are now in the position to tackle Theorem 2.1. This will be
a direct consequence of the following theorem, which gives slightly more refined
asymptotic estimates. This theorem is one of the main contributions of this paper and
it directly implies Theorem 2.1.

Theorem 4.5. For m > 0, let Lm be the dislocated Dirac operator (2.3). Let z D
� C iı for jıj < 1. Then, as j� j ! 1,

k.Lm � z/
�1
k �

1

m.1 � ı2/
Œ�2 C PC0 C PC�2�

�2
CO.��4/�

and

k.Lm � z/
�1
k �

1

m.1 � ı2/
Œ�2 C P�0 C P��2�

�2
CO.��4/�;
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where

P˙0 D
1

4
.3C 2ı2 � 2m2/˙ 2m;

PC�2 D
1

4
.3m2 C ı2.9m2 � 8//;

P��2 D
1

8
.5m2 C ı2.19m2 � 16//:

The limits inside the brackets converge uniformly for all jıj < 1 and m on compact
sets.

The remainder of this section is devoted to sketching the proof of this theorem.
That involves computing the coefficients in the asymptotic expansions of the various
terms in the expressions (4.8). We only give the intermediate results in the computa-
tion of these coefficients.

Coefficients for .Az � Cz/2. We take the square of the following:

Az � Cz D
�ı

m2.1 � ı2/2

h 4X
kD�4

Pk�k CO.��6/
i

where3

P4 D 1;

P2 D 2.ı2 �m2 C 1/;

P0 D ı4 C 2ı2.m2 � 1/Cm4 C 1;

P�2 D �2.ı4 C 6ı2 C 1/m2;

P�4 D m2.2ı6 � 5ı4.m2 � 6/ � ı2.22m2 � 30/ � 6m2 C 2/:

Coefficients for B2
z . We use

B2z D Dz

� n3

Re��z
C

n4

Re�Cz

�2
together with the following. On the one hand,

Dz D
1

m2.1 � ı2/

h 4X
kD�4

Pk�k CO.��6/
i

3Here and henceforth, Pk D 0 for k odd.
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where

P4 D
1

4
;

P2 D
1

2
.ı2 �m2 C 1/;

P0 D
1

4
.ı4 C ı2.m2 � 2/Cm4 C 1/;

P�2 D �4ı2m2;

P�4 D �
1

4
.m2.ı4.m2 � 32/C ı2.31m2 � 32/Cm2//:

On the other hand,� n3

Re��z
C

n4

Re�Cz

�2
D

1

m2.1 � ı2/2

h 4X
kD�4

Pk�k CO.��6/
i

where

P4 D 4;

P2 D 8.ı2 �m2 C 1/;

P0 D 4.ı4 C ı2.3m2 � 2/Cm4 �m2 C 1/;

P�2 D �16ı2.ı2 C 3/m2;

P�4 D �4m2.�4ı6 C 8ı4.m2 � 5/C 5ı2.5m2 � 4//:

Coefficients for

rq
.Az � Cz/2 CB2

z CAz C Cz C 2Dz. We use the following:

Az C Cz C 2Dz D
1

m2.1 � ı2/2

h 4X
kD�2

Pk�k CO.��4/
i

where

P4 D 1;

P2 D 2.ı2 �m2 C 1/;

P0 D
1

2
.2ı4 C ı2.5m2 � 4/C 2m4 �m2 C 2/;

P�2 D �16ı2m2;

and q
.Az � Cz/2 C B2z D

1

m2.1 � ı2/2

h 4X
kD�2

Pk�k CO.��4/
i



L. Boulton, D. Krejčiřík, and T. Nguyen Duc 1208

where

P4 D 1;

P2 D 2.ı2 �m2 C 1/;

P0 D
1

2
.2ı4 C ı2.5m2 � 4/C 2m4 �m2 C 2/;

P�2 D �256ı2m2:

Note that the first three coefficients of these two terms match exactly. This gives,

kT1.z/k �
1

m.1 � ı2/
Œ�2 C P0 C P�2��2 CO.��4/�; (4.10)

where

P0 D
1

4
.3C 2ı2 � 2m2/;

P�2 D
1

4
.3m2 C ı2.9m2 � 8//:

Coefficients for

rq
.Az � Cz/2 C zB2

z CAz C Cz C 2Dz. We use the fact that

Re.csgn.z// D
Re z
jzj

to obtain the asymptotics

Re
�

csgn
wCz � w

�
z

w�z

�
D �1˙

m2

2�4
CO.��6/:

Hence, we getq
.Az � Cz/2 C zB2z D

1

m2.1 � ı2/2

h 4X
kD�2

Pk�k CO.��4/
i

where

P4 D 1;

P2 D 2.ı2 �m2 C 1/;

P0 D ı4 C ı2.3m2 � 2/Cm4 �m2 C 1;

P�2 D �32ı2.ı2 C 7/:

Note that only the two final coefficients are different from the ones of B2z . Hence,

kT1.z/k �
1

m.1 � ı2/
Œ�2 C P0 CzP�2��2 CO.��4/� (4.11)
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where

P0 D
1

4
.3C 2ı2 � 2m2/;

zP�2 D
1

8
.5m2 C ı2.19m2 � 16//:

Completion of the proof. According to (4.2)–(4.3), we have

kT2.z/k � .n2 C n5/
� 1

Re��z
C

1

Re�Cz

�
D

1

1 � ı2
.2CO.��4//;

as j� j ! 1. Thus, we complete the proof of Theorem 4.5, by combining the asymp-
totic formulas (4.10)–(4.11) with this and invoking the triangle inequality.

Remark 4.6. We suspect that with some more effort, it is possible to show that there
exists P0 such that

k.Lm � z/
�1
k D

1

1 � j Im zj2

� 1
m
jRe zj2 C

1

2m
Œj Im zj2 C P0�CO.jRe zj�2/

�
;

where P0 is a constant independent of z such that

jP0j �
3

2
C 4mCm2:

Note that the only point left to show here is that the coefficient P0 actually exists. The
bound on its magnitude follows directly from our Theorem 4.5. Two comments on
this are in place.

• To prove this claim, one possibility is to find sharp lower bounds for kT2.z/k,
then feed into the final step above. This might not be easy and a more refined con-
struction of pseudomodes seems to be needed.

• To confirm existence of P0 without control on kT2.z/k, perhaps it is possible to
begin by proving that the function

s1.�; ı/ D
1

k.Lm � � � iı/�1k
;

being the first singular value of the operator Lm � � � iı, is real analytic in the vari-
ables � 2R and ı 2 .�1;1/. This might follow from the fact that Lm � z is an integral
operator with coefficients analytic in z, but it is not automatic and an analysis of its
multiplicity is required.
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5. Perturbations of Lm by a long-range potential

We now consider perturbations of the form Lm C V where V 2 L1.R;C2�2/. To aid
the reader through this section, we recall the hypotheses

(H2) kV kL1 < 1;

(H3) V 2 L1.R;C2�2/ \ Lp.R;C2�2/ for some p 2 .1;1�.

Either will be assumed throughout.
Our main goal in the first part of the section is to identify a closed extension,

Lm;V � Lm C V , which is well defined under either assumptions and preserves the
essential spectra. Then, in the second part, we examine the spectrum and pseudospec-
trum of Lm;V inside the instability band, † D ¹j Im zj < 1º.

Section 5.2 is devoted to the proof of the main Theorem 2.5 about the localisa-
tion of the point spectrum for m > 0. Section 5.3 addresses confirmation that there
can be potentials with infinitely many eigenvalues in the instability band. Section 5.4
discusses the effect of weak coupling, when imposing further concrete hypotheses on
the decay and regularity of V , and comprises the proof of Theorem 2.7. Finally, the
proof of Theorem 2.4 about the pseudospectrum is given in Section 5.5.

5.1. Proof of Proposition 2.3

In order to show the existence of the closed extension Lm;V , and determine its spec-
trum and pseudospectrum, our main tool is the Birman–Schwinger-type principle
formulated in [12]. We quote that result in Theorem A.1 and apply it as follows.

Set the Hilbert spaces H DK D L2.R;C2/. Set the unperturbed operator H0 D
Lm. The auxiliary factors A and B take the following form. Write

V.x/ D U.x/jV.x/j

in polar form, where U.x/ is the partial isometry and jV.x/j D .V �.x/V .x//1=2. We
set

A.x/ D jV.x/j1=2 and B.x/ D U.x/jV.x/j1=2: (5.1)

Then, we have

jA.x/jC2�C2 D jV.x/j
1=2

C2�C2
D jB.x/jC2�C2 : (5.2)

The first equality follows from the property that the norm of the square root of a mat-
rix equals the square root of the norm of the matrix itself. To establish the second
equality in (5.2), observe that Ker.jV.x/j/ � Ker.jV.x/j1=2/. Consequently, we have
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Im.jV.x/j1=2/ � ŒKer.U.x//�?, because Ker.jV.x/j/ D Ker.U.x//, cf. [4, Proposi-
tion 2.85]. Hence, as U.x/ is a partial isometry, it follows that

jB.x/jC2�C2 D sup
jvjC2D1

jU.x/jV.x/j1=2vjC2

D sup
jvjC2D1

jjV.x/j1=2vjC2

D jA.x/jC2�C2 D jV.x/j
1=2

C2�C2
:

The operators A and B denote the multiplication operators

Af .x/ D A.x/f .x/ and Bf .x/ D B.x/f .x/

with their maximal domains. By construction, both A and B are closed and densely
defined. For each z 2 �.Lm/, let

R0.z/ D .Lm � z/
�1 and Q.z/ D AR0.z/B:

This settles the framework of Theorem A.1.

Now, we give the proof of Proposition 2.3. We split it into three steps. In the
first step, we verify that the hypotheses (B1) and (B2) of Theorem A.1 hold, for all
V 2 L1.R;C2�2/. In the second step, we verify that (B3) is implied by either of the
two different assumptions, (H2) or (H3). In the final step we derive the claims made
about the spectrum.

Step 1. Conditions (B1) and (B2). Let V 2 L1.R;C2�2/. Our goal is to show that,
for suitable z 2 �.Lm/,

(B1) the operatorR0.z/B is closable, and bothAR0.z/ andR0.z/B are bounded;

(B2) the operator AR0.z/B has a bounded closure Q.z/ D AR0.z/B .

Firstly, note that the Schur test conditions,Z
R

jRz.x; y/j
n
C2�2 dy � Kn.z/; for a.e. x 2 R;

Z
R

jRz.x; y/j
n
C2�2 dx � Kn.z/; for a.e. y 2 R;

(5.3)

hold for all fixed n 2 N. The proof of this is the same as for the case of the power
n D 1, addressed in the verification of (3.18), as the integration only involves expo-
nential functions. Here,

Kn.z/ D
2

nmin¹Re��z ;Re�Cz º
.sup
t2R

'z.t//
n;

'z is as in (3.14), and Kn.z/ is finite for each z 2 �.Lm/.
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Since we haveH 1.R;C2/� L1.R;C2/ and jV j1=2 2 L2.R;C2/, we obtain that
H 1.R;C2/ � Dom.A/. As

R0.z/WL
2.R;C2/! H 1.R;C2/;

it follows that Dom.AR0.z// D L2.R;C2/. Therefore, AR0.z/ is closed and hence
bounded by the closed graph theorem. This confirms the second requirement in (B1).
Moreover, AR0.z/ is a Hilbert–Schmidt operator. Indeed, from (5.2) and (5.3) with
n D 2, it follows thatZ

R2

jA.x/Rz.x; y/j
2
C2�2 dx dy �

Z
R2

jV.x/jC2�2 jRz.x; y/j
2
C2�2 dx dy

� K2.z/kV kL1 : (5.4)

Similarly, we also haveZ
R

jRz.x; y/B.y/j
2
C2�2 dx dy � K2.z/kV kL1 ; (5.5)

and thus the integral operator f .�/ 7!
R

R Rz.�; y/B.y/f .y/ dy is Hilbert–Schmidt.
But the latter is an extension of the operator R0.z/B , thus R0.z/B is closable. Fur-
thermore, since the domain Dom.R0.z/B/D Dom.B/ is dense in L2.RIC2/ and the
integral operator above is continuous, R0.z/B coincides with it. This completes the
confirmation of (B1).

Now, we address (B2). Once again, we appeal to the Schur test, in order to show
that AR0.z/B has a bounded closure, but now we consider the weight

p.x/ D

´
jV.x/j

1=2

C2�2
if jV.x/jC2�2 > 0;

1 if jV.x/jC2�2 D 0:

According to (5.2), for almost every x 2 R,Z
R

jA.x/Rz.x; y/B.y/jC2�2p.y/ dy � p.x/
Z
R

jRz.x; y/jC2�2p.y/
2 dy

D p.x/

Z
R

jRz.x; y/jC2�2 jV.y/jC2�2 dy

and for almost every y 2 R,Z
R

jA.x/Rz.x; y/B.y/jC2�2p.x/ dx � p.y/
Z
R

jRz.x; y/jC2�2 jV.x/jC2�2 dx:
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Since V 2 L1.R;C2�2/ and jRz.�; �/jC2�2 2 L
1.R2/ (recall Lemma 3.2), then by

the Schur test, the integral operator f .�/ 7!
R

RA.�/Rz.�; y/B.y/f .y/dy is bounded.
Thus, sinceH 1.R;C2/� Dom.A/, Dom.AR0.z/B/D Dom.B/, and since Dom.B/
is dense, continuity implies that Q.z/ is equal to this integral operator. Moreover,

kQ.z/k � sup
y2R

Z
R

jV.x/jC2�2 jRz.x; y/jC2�2dx: (5.6)

This ensures the validity of (B2).

Step 2. Hypothesis (B3) and existence of Lm;V . We now need to verify that

(B3) ¹z 2 �.H0/ W �1 2 �.Q.z//º 6D ¿.

We split the proof into the two sub-cases depending on the hypothesis on V .
First, assume that (H2) is the one condition that holds. According to (5.6), (3.16),

and (3.17), for all z 2 �.Lm/,

kQ.z/k � kV kL1 sup
.x;y/2R2

jRz.x; y/j

�
kV kL1

2
.jkzj C 1/max

°
jw˙z j C

1

jw˙z j

±
: (5.7)

From (3.2) and (3.15), it follows that w˙
iı
! �i and kiı ! 0 as ı !1. Thus, the

terms inside the maximum become close to 2 as ı ! 1. Since kV kL1 < 1, then
indeed (B3) follows taking z on the imaginary axis with sufficiently large modulus.

Now, if instead condition (H3) holds for p 2 .1;1�, by Holder’s inequality and
(5.3), we get

kQ.z/k � kV.x/kLp .Kq.z//
1=q;

1

p
C
1

q
D 1: (5.8)

Therefore, an argument similar to the previous sub-case, yields Kq.z/! 0 for z on
the imaginary axis with sufficiently large modulus. Hence, (B3) is also valid under
assumption (H3).

As a conclusion to this step, we now have that, by virtue of the first part of The-
orem A.1, a closed extension Lm;V � Lm C V indeed exists and

.Lm;V � z/
�1
D R0.z/ �R0.z/B.I CQ.z//

�1AR0.z/

for all z such that �1 2 �.Q.z//. Note that, under the hypotheses, the latter is non-
empty.
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Step 3. Conclusions (1)–(4) of the proposition. The crucial point in the proof is to
observe that AR0.z/ and R0.z/B are Hilbert–Schmidt operators, therefore the differ-
ence

.Lm � z/
�1
� .Lm;V � z/

�1
D R0.z/B.I CQ.z//

�1AR0.z/

is compact. The stability of the first four essential spectra follows directly from [11,
Theorem IX.2.4]. Moreover, whenm> 0, C n Spece1.Lm;V / has one connected com-
ponent, then Spece5.Lm;V / in that case is also identical to the other essential spectra,
cf. [19, Proposition 5.5.4]. This confirms the conclusions (1) and (2).

The rest of the proof assumes that m D 0. In that case, notice that kz D 0 and
jw˙z j D 1. For (3), observe that by direct substitution into (5.7), we have that, if V
satisfies (H2), then kQ.z/k � kV kL1 < 1 for all

z 2 �.Lm/ D C n ¹z 2 C W j Im zj � 1º:

Hence, �1 2 �.Q.z// for all z 2 C such that j Im zj > 1. That is, any eigenvalue of
Lm;V should all be located in the strip ¹z 2 C W j Im z � 1º as claimed.

Finally, for (4), if V satisfies (H3) instead, the estimate (5.8), the fact that

min¹Re�Cz ;Re��z º D j Im zj � 1 for j Im zj > 1;

and that 'z.t/ D 1 for all t 2 R ensure that

kQ.z/k � kV kLp
� 2

q.j Im zj � 1/

�1=q
; q D

p

p � 1
;

for all z 2 �.L0/ D ¹z 2 C W j Im zj > 1º. Hence, for all z 2 C such that j Im zj >

1C 2kV k
q
Lp=q, the right-hand side is strictly smaller than 1. This gives (4) for p <1.

For the case pD1, note that Spec.L0;V /� SpeckV k1.L0/ (from the second equality
in (1.3)). This completes the proof of Proposition 2.3.

For later purposes, note that the operator Q.z/ is also Hilbert–Schmidt. Indeed,
the identities (5.2), (3.16), and (3.17) yieldZ

R2

jA.x/Rz.x; y/B.y/j
2
C2�2 dx dy

� kV k2
L1

sup
.x;y/2R2

jRz.x; y/j
2
C2�2

�
kV k2

L1

4
max

°
.jkzj C 1/

2
�
jw�z j C

1

jw�z j

�2
; .jkzj C 1/

2
�
jwCz j C

1

jwCz j

�2±
;

(5.9)

where the right-hand side is finite for each z 2 �.Lm/.
We close this subsection with a remark that provides the context of our findings

about perturbations of Lm by long-range potentials.
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Remark 5.1. In the case of long-range perturbations of the dislocated Schrödinger
operator �d2=dx2 C isgn.x/, considered in [14, Section 5.1], the condition V 2
L1.R/ alone gives the existence of a closed extension directly, via the associated
quadratic forms. The distinction with the present case and the need for the condi-
tion (H2) can be explained through the behaviour of the resolvent kernel, as follows.

The estimates around [14, estimate (5.6)] ensure that theL1 norm of the kernel of
the unperturbed resolvent for the Schrödinger model decays to zero as z !1 along
the imaginary axis. By contrast, the kernel Rz.x; y/ in the present case does not have
a decaying L1 norm. Effectively, the right-hand sides in (3.16) and (3.17) do not
decay to zero. Note that this is analogous to the contrast between the free Schrödinger
kernel and the free particle Dirac kernel. For details, see [7, (13)–(14)].

5.2. Proof of Theorem 2.5

Proposition 2.3, which has been already proven, provides a general statement about
exclusion regions (semi-planes) for the eigenvalues of L0;V . We now proceed to give
the proof of the first main result of this section, Theorem 2.5. This theorem, in a
similar vein, describes regions of exclusion for the eigenvalues of Lm;V in the case
m > 0. Thus, for the remainder of this subsection, we assume that m 6D 0.

Our main arguments involve deriving upper bound for the norm of the Birman–
Schwinger operator, Q.z/, introduced in (5.6). To achieve this, we give sharp estim-
ates on the matrix norm of the kernel in various regions of the complex z-plane.
Specifically, we partition the resolvent set into three main disjoint regions as follows:

�.Lm/ D D [W [ U;

where

W D
°
z 2 C W jRe.z/j �

5

2
m; j Im zj < 1

±
;

D D D.mC i/ [D.�mC i/ [D.�m � i/ [D.m � i/;

for

D.m˙ i/ D
°
z 2 C n �.Lm/ W jRe.z � .m˙ i//j �

3

2
m;

j Im.z � .m˙ i//j �
3

2

±
;

D.�m˙ i/ D
°
z 2 C n �.Lm/ W jRe.z � .�m˙ i//j �

3

2
m;

j Im.z � .�m˙ i//j �
3

2

±
;
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x

y

mC i�mC i

�m � i m � i

U
D.mC i/D.�mC i/

D.�m � i/ D.m � i/

WW

Figure 5. Partition of the resolvent set of Lm in subdomains for the proof of Theorem 2.5.

and
U D �.Lm/ n .D [W /:

See Figure 5.
We split the proof of Theorem 2.5 according to this partition, deriving suitable

estimates for the norm of Q.z/ where z is in each of the sub-regions. In this proof,
the parameters cj � cj .m/ > 0 only depend on m.

Estimates on D. The region D � C is the union of four neighbourhoods of singu-
larities of the matrix kernel Rz . We will see that these singularities are removable.
That is, the matrix norm jRz.x; y/jC2�2 is bounded uniformly for all .x; y/ 2 R2,
whenever z 2 D.˙m˙ i/. We treat each different component separately.

Consider first that z 2 D.mC i/. From the formulas of �Cz , w˙z in (3.2), and kz
in (3.15), it follows that

lim
z!mCi

wCz D 0; lim
z!mCi

w�z D

p
�1 � im
p
m2 C 1

;

lim
z!mCi

�Cz

wCz
D 2m; lim

z!mCi
kz D �1:

(5.10)
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Then, we gather the following. According to (3.16), for all .x; y/ 2 R2 such that
xy � 0,

jRz.x; y/jC2�2 � 'z.0/ D

q
.1C jwCz j2/.1C jw�z j

2/

jwCz C w�z j
� c1: (5.11)

According to (3.17), for all .x; y/ 2 R2 such that x � 0; y � 0,

jRz.x; y/jC2�2 � sup
t�0

'z.t/ �
1

2
.jkzj C 1/

�
jw�z j C

1

jw�z j

�
� c2: (5.12)

According to (3.16), for all .x; y/ 2 R2 such that x � 0; y � 0,

jRz.x; y/jC2�2 � 'z.min¹x; yº/:

Now, for all t � 0, we know that

'z.t/ D

q
1C jwCz j2

2

� 1

jwCz j2
jkze

�2�
C
z t C 1j2 C jkze

�2�
C
z t � 1j2

�1=2
:

Because of (5.10), the term that we should take care of is jkze�2�
C
z t C 1j=jwCz j, as

it might potentially exhibit a singularity. We show that this is not the case. Indeed,
from (3.15) and (5.10), for z 2 D.mC i/ and x � 0; y � 0, we have

1

jwCz j
jkze

�2�
C
z t C 1j D

1

jwCz j
jkz.e

�2�
C
z t � 1/C 1C kzj

D
1

jwCz j
jkz.e

�2�
C
z t � 1/C

2wCz

wCz C w�z
j

�
j�Cz j

jwCz j
jkzjjt j C

2

jwCz C w�z j

� c3.jt j C 1/:

Here we have used the inequality je�z � 1j � jzj for Re z � 0. Thus, for all z 2
D.mC i/ and x � 0, y � 0, we have

jRz.x; y/jC2�2 � 'z.min¹x; yº/ � c4.1C jmin¹x; yºj/ � c5�01.x/: (5.13)

Finally, by virtue of (5.6), combining the above estimates we obtain

kQ.z/k � c6

Z
R

jV.x/jC2�2�
0
1.x/ dx (5.14)

for all z 2 D.mC i/.
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Now, let z 2 D.m � i/. We have

lim
z!m�i

w�z D 0; lim
z!m�i

wCz D

p
�1C im
p
m2 C 1

;

lim
z!m�i

��z
w�z
D 2m; lim

z!m�i
kz D 1:

By means of an identical proof to the one given in the previous region, we can show
that if xy � 0 then (5.11) holds true and if x � 0;y � 0 then (5.12) holds true. We omit
the details of that. Moreover, in the case x � 0 and y � 0, the term jkze2�

�
z t � 1j=jw�z j

is bounded by c7.jt j C 1/. Thus, we gather that

jRz.x; y/jC2�2 � 'z.max¹x; yº/

� c8.1C jmax¹x; yºj/

� c9.1Cmin¹jxj; jyjº/ � c10�01.x/:

Hence, by virtue of (5.6), we also obtain the estimate (5.14) for all z 2 D.m � i/,
perhaps with a larger constant c6.

Now, let z 2 D.�mC i/. Then,

lim
z!�mCi

wCz D1; lim
z!�mCi

w�z D
p
�1 � im;

lim
z!�mCi

�Cz w
C
z D 2m; lim

z!�mCi
kz D 1:

We obtain the same estimates as (5.11) for all .x;y/ 2R2 satisfying xy � 0 and (5.12)
for all .x; y/ 2 R2 satisfying x � 0, y � 0, by writingq

.1C jwCz j2/.1C jw�z j
2/

jwCz C w�z j
D

q�
1

jw
C
z j
2
C 1

�
.1C jw�z j

2/ˇ̌
1C w�z

w
C
z

ˇ̌ :

On the other hand, whenever x � 0, y � 0, we invoke the same estimate

jRz.x; y/jC2�2 � 'z.min¹x; yº/

as valid for z 2 D.mC i/, in which we rewrite

'z.t/ D
1

2

�1C jwCz j2
jwCz j2

jkze
�2�

C
z t C 1j2 C .1C jwCz j

2/jkze
�2�

C
z t � 1j2

�1=2
:

It is readily seen that, for all t � 0 and z 2 D.�mC i/,

1C jwCz j
2

jwCz j2
jkze

�2�
C
z t C 1j2 C jkze

�2�
C
z t � 1j2 � c11:



Dislocated Dirac operators 1219

For the remaining term jwCz j
2jkze

�2�
C
z t � 1j2, note that

jwCz jjkze
�2�

C
z t � 1j D jwCz jjkz.e

�2�
C
z t � 1/C kz � 1j

D jwCz j
ˇ̌̌
kz.e

�2�
C
z t � 1/ �

2w�z

wCz C w�z

ˇ̌̌
� j�Cz w

C
z jjkzjjt j C

2jw�z jˇ̌
1C w�z

w
C
z

ˇ̌
� c12.jt j C 1/:

Thus, the estimate (5.13) is valid for all .x; y/ 2 R2 such that x � 0, y � 0, also
whenever z 2 D.�m C i/. Hence, combining the estimates, once again we gather
that (5.14) also holds true for all z 2 D.�mC i/.

Finally, the case z 2D.�m� i/ is similar to the case z 2D.�mC i/, so we omit
further details. Hence, we then gather that the upper bound

kQ.z/k � c13.m/kV kL1.d�1/ (5.15)

is valid for all z 2 D.

Estimate on U D C nD [W . Split xU D UC [ U� for

U˙ D ¹z 2 xU W ˙ Im z > 0º:

Then, according to (3.2) and (3.15),

lim
z!1
z2UC

w˙z D �i; lim
z!1
z2U�

w˙z D i; lim
z!1
z2 xU

kz D 0:

Hence, by continuity of each of the quantities jw˙z j, jw
˙
z j
�1, and jkzj, in z, we have

that
.jkzj C 1/max

°
jw˙z j C

1

jw˙z j

±
� c14.m/ (5.16)

for all z 2 U . According to (5.6), (3.16), and (3.17), we then gather that

kQ.z/k � c14.m/kV kL1 � c14.m/kV kL1.d�1/ (5.17)

for all z 2 U .

Estimate on W . By invoking Lemma 4.2, we obtain the following bounds for all
z 2 W : p

.1C jwCz j
2/.1C jw�z j

2/

jwCz C w�z j
� c15.Re z/2; jw˙z j � c16;

jw˙z j
�1
� c17; jkzj � c18.Re z/2:
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Then, by virtue of (5.6), (3.16), and (3.17), it follows that

kQ.z/k � c19.m/.Re z/2kV kL1 (5.18)

for all z 2 W .

Completion of the proof of Theorem 2.5. According to the estimates (5.15) on D,
(5.17) on U and (5.18) onW , we conclude that there exists a constant C.m/ > 0 such
that

kQ.z/k �
1

C.m/
kV kL1.d�1/ for all z 2 �.Lm/ nW; (5.19)

and

kQ.z/k �
1

C.m/2
.Re z/2kV kL1 for all z 2 W: (5.20)

Hence, if we assume kV kL1.d�1/ < C.m/, it follows that kQ.z/k < 1 for all z 2
�.Lm/ n W . Hence, �1 is not in the spectrum of Q.z/ whenever z 2 �.Lm/ n W .
Theorem A.2, thus implies that all points in �.Lm/ nW are not eigenvalues of Lm;V .
Moreover, the points z 2 W satisfying jRe zj < C.m/

p
1=kV kL1 cannot be eigen-

values of Lm;V . Therefore, we deduce that the eigenvalues of Lm;V (if there is any),
should lie in the subset of W , corresponding to real part larger than or equal to
C.m/

p
1=kV kL1 . This completes the proof of Theorem 2.5.

5.3. Step potentials

We construct a potential V 2 L1 such that Lm;V has infinitely many eigenvalues
inside the instability band. We compute explicitly the eigenfunctions by means of
an argument similar to the one employed in the proof of Proposition 3.1. We end the
subsection by giving the proof of Proposition 2.6.

Set
Va;b.x/ D .�isgn.x/ � b/�Œ�a;a�.x/I;

for a > 0 and b 2 R. If u 6D 0 is such that .Lm;Va;b � z/u D 0, then

u.x/ D

8̂̂<̂
:̂
u�.x/ for x 2 .�1;�a/;

u0.x/ for x 2 Œ�a; a�;

uC.x/ for x 2 .a;C1/;

where u� for � 2 ¹�; 0;Cº, are given in a similar manner to (3.10), by

u�.x/ D .e
�
�
zxS�z C e

��
�
zxT �z /

�
˛�

ˇ�

�
: (5.21)
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Here, �˙z and w˙z are the same parameters from (3.2) that we considered above,

�0z D
p
.mC b C z/.m � b � z/ and w0z D

p
m � b � z
p
mC b C z

:

Also

S�z D
1

2

�
1 1=w

�
z

w
�
z 1

�
and T �z D

1

2

�
1 �1=w

�
z

�w
�
z 1

�
:

Note that there is a singularity of u0.x/ for z D ˙m � b, but taking the limits z !
˙m � b in (5.21) for � D 0, we get

u0.x/ D

8̂̂̂<̂
ˆ̂:
�
1 2mx

0 1

��
˛0

ˇ0

�
if z D m � b;�

1 0

2mx 1

��
˛0

ˇ0

�
if z D �m � b:

We seek for z 2 C, ˛� and ˇ� (non-vanishing simultaneously), such that we have
u 2 H 1.R;C2/, and so u becomes a proper eigenfunction.

Since u has to decay at˙1 and must be continuous at˙a, then0BBBBBBBB@

�w�z 1 0

0 0 0

e��
�
z a e��

�
z a=w�z �.e�

0
za C e��

0
za/

w�z e
���z a e��

�
z a w0z .e

�0za � e��
0
za/

0 0 .e�
0
za C e��

0
za/

0 0 w0z .e
�0za � e��

0
za/

0 0 0

0 wCz 1

.e�
0
za � e��

0
za/=w0z 0 0

�.e�
0
za C e��

0
za/ 0 0

.e�
0
za � e��

0
za/=w0z �e��

C
z a e��

C
z a=wCz

.e�
0
za C e��

0
za/ wCz e

��
C
z a �e��

C
z a

1CCCCCCCCA

0BBBBBBB@

˛�

ˇ�

˛0

ˇ0

˛C

ˇC

1CCCCCCCA D 0:

The determinant of the matrix vanishes if and only if

e4a�
0
z .w0z C w

C
z /.w

0
z C w

�
z / D .w

0
z � w

C
z /.w

0
z � w

�
z / (5.22)

for eigenvalues z 6D ˙m � b such that

z 62 ¹z 2 C W jRe zj � m; j Im zj D 1º:
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And it vanishes for z D ˙m � b if and only if

wC
m�b
C w�m�b C 4amw

C

m�b
w�m�b D 0 when z D m � b

and

wC
�m�b

C w�
�m�b C 4am D 0 when z D �m � b:

Note that, no points in ¹z 2 C W jRe zj � m; j Im zj D 1º can be an eigenvalue.

Proof of Proposition 2.6. Let m D 0. Directly from the definition, it follows that w0z
takes one of two values, ˙i , depending on the location of z 2 C n ¹˙m � bº.
Moreover, substitution shows that j Im zj < 1, if and only if wCz D i and w�z D �i .
Also, we directly see that z D m � b or z D �m � b are eigenvalues if j Im bj < 1.
This gives the first conclusion of Proposition 2.6.

Letm> 0. We show the existence of infinitely many large real eigenvalues. Since,
.w0z C w

C
z /.w

0
z C w

�
z / 6D 0 whenever z 2 R, then (5.22) reduces to

ei4a
p
.zCb/2�m2

D
.w0z � w

C
z /.w

0
z � w

�
z /

.w0z C w
C
z /.w0z C w

�
z /
:

Now, cot.w/ D i.ei2w � 1/=.ei2w C 1/ for w 2 R and note that wCz C w
�
z ¤ 0 for

all z 2 C. Thus, we can rewrite this equation as

cot.2a
p
.z C b/2 �m2/ D �i

.w0z /
2 C wCz w

�
z

w0z .w
C
z C w�z /

:

The right-hand side of this expression is real for real z with sufficiently large modulus.
Indeed,

�i
.w0z /

2 C wCz w
�
z

w0z .w
C
z C w�z /

D

´
S.z/ if z > m � b;

�S.z/ if z < �m � b;

where

S.z/ D

s
z CmC b

z �mC b

.z �mC b/
p
.z Cm/2 C 1 � .z CmC b/

p
.z �m/2 C 1

2.z CmC b/Re.
p
z CmC i

p
mC i � z/

:

Since,
lim

z!C1
S.z/ D lim

z!�1
S.z/ D b;

by periodicity, we have infinitely many positive and negative solutions. This is the
second statement in Proposition 2.6, and completes its proof.
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5.4. The weakly coupled model

At the end of this subsection we give the proof of Theorem 2.7, about localisation of
the discrete spectrum for a potential of the form �V in the asymptotic regime j�j ! 0,
where V 2 L1.R;C2�2I d�1/ satisfies additional hypotheses.

Recall (2.7),

Specdis.Lm;�V / �
°
z 2 C W j Im zj < 1; jRe zj >

C.m/

j�j1=2kV k
1=2

L1

±
:

Hence, for small enough j�j, the eigenvalues of Lm;�V lie in the instability band

† D ¹z 2 C W j Im zj < 1º;

and they escape to infinity in the regime j�j ! 0 at a rate proportional to j�j�1=2 or
faster. We now formulate a more precise statement about this, for V satisfying a faster
decay rate at infinity. The next result is a precursor of Theorem 2.7 and it is one of the
main contributions of this paper. We recall that the expression of the densities �0

k
are

given in Section 2 in the paragraph above Theorem 2.7.

Theorem 5.2. Let m > 0 and let V 2 L1.R;C2�2I d�2/. Let

‡z D
1

2.4jzj2 Cm2/

�
�.2z Cm/2 i.4z2 �m2/

i.4z2 �m2/ .2z �m/2

�
2 C (5.23)

for all z 2 C. Then,

Specdis.Lm;�V / �
°
z 2 C W j Im zj < 1;

4m

4jzj2 Cm2
D Wz.�/

±
; (5.24)

where

Wz.�/ D �

Z
R

e�2.jxjCi.z�m
2=.2Re z//x/

hV.x/; ‡ziF dx CO.�2/

in the regime j�j ! 0.

The verification of the validity of this statement occupies most of this subsection.
The explicit dependence on z of Wz.�/ and the constant in the limit, will be estab-
lished below. The proof of (5.24) will invoke Theorem A.2 once again. Note that the
Birman–Schwinger operator associated to �V is �Q.z/. We test whether z 2 † does
not belong to Specp.Lm;�V /, by testing whether �1 62 Specp.�Q.z//. However, for
this we will not appeal directly to estimates for the norm k�Q.z/k as we did in Sec-
tion 5.2. Instead, we will find a criterion, involvingWz.�/, to test whether the operator
�Q.z/C 1 is bijective. SinceQ.z/ is compact (see the paragraph above Remark 5.1),
this is a test on whether �1 … Specp.�Q.z//.
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The position of the discrete spectrum is associated with sub-regions of † where
the norm of the resolvent is singular. In Section 4.2, we isolated the singular part of
the unperturbed kernel through the term R1;z . Since the latter still carries the leading
order information about the singularities of the perturbed kernel (under small enough
perturbations), we now consider a decomposition of the kernel of the integral operator
associated to Q.z/ that takes the singular contribution of R1;z into account. For this,
we proceed as follows.

Let
Q.z/ D L.z/CM.z/;

where

L.z/f .x/ D

Z
R

A.x/Lz.x; y/B.y/f .y/ dy; Lz.x; y/ D e
��z.x/��z.y/Uz;

(5.25a)

�z.w/ D i
�
z �

m2

2Re z

�
w C jwj; (5.25b)

Uz D
1

8m

�
�.2z Cm/2 i.4z2 �m2/

i.4z2 �m2/ .2z �m/2

�
: (5.25c)

Then, as we shall see below,L.z/ is a rank-one operator for all z 2† and it carries the
leading order contribution of the norm ofQ.z/ in the asymptotic regime jRezj !1.
Notably, the kernel Lz encodes the contribution of the singular part of R1;z in this
regime, while kM.z/k is uniformly bounded with respect to z. Before proving all
this, we motivate this decomposition and determine the asymptotic coefficients of the
different terms involved in the argument. Recall the notation z D � C iı for �; ı 2 R

with jıj < 1.
On the one hand, we note that the expression of the powers �z.w/, is motivated

by the fact that

��z.w/ D

´
��zw if w � 0;

��Cz w if w � 0;

��z D .1C ı/ � i
�
� �

m2

2�

�
;

�Cz D .1 � ı/C i
�
� �

m2

2�

�
;

where �˙z are the leading order coefficients in the expansion of the terms �˙z :

�˙z D �
˙
z C

m2.1� ı/

2�2
CO

� 1

j� j3

�
(5.26)

as j� j ! C1. See Lemma 4.2 and Table 1.
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On the other hand, the expression of the matrixUz , has a more involved motivation
which is given after the following lemma.

Lemma 5.3. Let the matrices appearing in the expression of the kernel R1;z in (4.5)
be Nj;z , as defined at the beginning of Section 3.1. Let

U 0�Ciı D

�
�

1
2m
�2 �

�
1
2
C

iı
m

�
� i

2m
�2 � ı

m
�

i
2m
�2 � ı

m
� 1

2m
�2 �

�
1
2
�
iı
m

�
�

�
:

Then, Nj;z D U 0z C yNj;z where

j yNj;�Ciı jF D O.1/

as j� j ! 1 for all j 2 ¹1; 3; 4; 7; 8; 10º.

Proof. By writing

1

wCz C w�z
D
�i

4m
Œ.mC i C z/�Cz � .m � i C z/�

�
z �;

we get that

1

wCz C w�z
D

1

2m
�2 C

�1
2
C
iı

m

�
� C

�1 � ı2
2m

�
m

4
C
iı

2

�
CO

�1
�

�
as j� j ! 0. The claimed asymptotic formula is achieved by substituting the expan-
sions of w˙z , 1=w˙z , and this expression, into the formulas of the different Nj;z . See
Lemma 4.2.

Now, we return to the motivation for the expression of Uz . We pick the latter, so
that it approximates all the matricesNj;z up to order � . Indeed, writing Uz in terms of
� and ı gives

U�Ciı D U
0
�Ciı C U

1
ı ; (5.27)

for U 0z as in Lemma 5.3 and

U 1ı D

�
ı2

2m
�
m
8
�
iı
2
�i
�
ı2

2m
C

m
8

�
�i
�
ı2

2m
C

m
8

�
�
ı2

2m
C

m
8
�
iı
2

�
:

Note that for all z 2 †, detUz D 0 and Uz is of rank one. Then, the matrix norm of
Uz can be computed explicitly,

jUzjC2�2 D jUzjF D
jzj2

m
C
m

4
:

We are now ready to formulate the crucial step in the proof of Theorem 5.2.
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Lemma 5.4. Let V 2 L1.R;C2�2; d�2/. For A.x/ and B.y/ as in (5.1), let L.z/ be
the integral operator (5.25) and let M.z/ D Q.z/ � L.z/. Let ‡z D Uz=jUzjF be as
in (5.23). Then,

L.z/f D
�
jzj2

m
C
m

4

�
hf; zi�z;

where

 z.w/ D

8̂̂̂<̂
ˆ̂:
e��z.w/B.w/T

�
.‡z/11

.‡z/12

�
if z ¤

�m

2
;

e��z.w/B.w/T
�
.‡z/21

.‡z/22

�
if z D

�m

2
;

�z.w/ D

8̂̂̂<̂
ˆ̂:
e��z.w/A.w/

�
1

.‡z/21=.‡z/11

�
if z ¤

�m

2
;

e��z.w/A.w/

�
.‡z/12=.‡z/22

1

�
if z D

�m

2
:

Moreover, there exists a constant C.m/ > 0 such that kMzk � C.m/ for all z 2 †.

Proof. Assume first that z ¤ �m=2. Since Uz is singular and non-zero, then

Uz D

�
1

.Uz/21=.Uz/11

� �
.Uz/11 .Uz/12

�
:

Thus, we can rewrite the action of the operator Lz in the form

Lzf .x/ D jUzjF

Z
R

e��z.x/��z.y/A.x/

�
1

.‡z/21

.‡z/11

� �
.‡z/11 .‡z/12

�
B.y/f .y/ dy

D jUzjF

�Z
R

e��z.y/
�
.‡z/11 .‡z/12

�
B.y/f .y/ dy

�
�z.x/

D jUzjF

�Z
R

hf .y/;  z.y/iC2 dy
�
�z.x/:

This is the claimed expression for the operator Lz .
Both vector-valued functions  z and �z belong to L2.R;C2/ because Re �˙z D

1� ı > 0 and thus, for all z 2 † n ¹�m=2º,

k zk � kV k
1=2

L1

q
.‡z/

2
11 C .‡z/

2
12; k�zk � kV k

1=2

L1

s
1C

.‡z/
2
21

.‡z/
2
11

: (5.28)

Therefore, we can conclude that, for all z 2 † n ¹�m=2º, Lz is an operator of rank-
one and

kLzk D jUzjFk zkk�zk � jUzjFkV kL1 : (5.29)
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Now, to achieve the same conclusion for z D �m=2, we can just write the matrix Uz
in different form, as

Uz D

�
.Uz/12=.Uz/22

1

� �
.Uz/21 .Uz/22

�
;

and follow the same argument as above.
Next, let us complete the proof of the lemma by showing the validity of the claim

made about Mz . Let

Mz.x; y/ D Rz.x; y/ �Lz.x; y/:

Then,
Mz.x; y/ D .R1;z.x; y/ �Lz.x; y//CR2;z.x; y/: (5.30)

By virtue of (4.6), (4.7), and Lemma 4.2, it follows that there exists a constant c1 > 0
such that

jR2;zjC2�2 � c1; (5.31)

for all j� j � 1.
Let us now show that the difference of R1;z �Lz is also uniformly bounded. Let

�z.x/ D

´
��z x if x � 0;

��Cz x if x � 0:

Then
R1;z.x; y/ D Nj;ze

�z.x/C�z.y/

for j chosen depending on the signs of x and y as in (4.5). For all .x; y/ 2 R2, write

ƒz.x; y/ D �z.x/C �z.x/C �z.y/C �z.y/:

Then,

R1;z.x;y/�Lz.x;y/DUz.e
ƒz.x;y/ � 1/e��z.x/��z.y/C .Nj;z �Uz/e

�z.x/C�z.y/:

Since Reƒz.x; y/ < 0 for all .x; y/ 2 R2 and by virtue of (5.26), considering j� j
sufficiently large so that Re.�Cz C �

C
z / > 0 and Re.��z C �

�
z / > 0, gives

jeƒz.x;y/ � 1j � jƒz.x; y/j �
c2

�2
.jxj C jyj/:

Therefore, since Re�z.x/< 0 and Re�z.x/> 0 for all x 2R, according to Lemma 5.3
and to (5.27), we have

jR1;z.x; y/ �Lz.x; y/jC2�2 � jUzjC2�2 je
ƒz.x;y/ � 1j C jNj;z � UzjC2�2

� c3.jxj C jyj C 1/; (5.32)

for all j� j � �0.
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From (5.31) and (5.32), it follows that, by taking the Hilbert–Schmidt norm in the
decomposition (5.30),

kM.z/k2 � c4

Z
R2

jV.x/jC2�2.1C jxj C jyj/
2
jV.y/jC2�2dx dy

� c5

�Z
R

jV.x/jC2�2�
0
2.x/ dx

��Z
R

jV.y/jC2�2�
0
2.y/ dy

�
;

where the right-hand side is finite and independent of z, for all j� j � �0. On the other
hand, according to (5.29) for L.z/, and (5.19)–(5.20) forQ.z/, the triangle inequality
yields,

kM.z/k � kQ.z/k C kL.z/k � c6

Z
R

jV.x/jC2�2�
0
1.x/ dx <1

for all j� j � �0, where the right-hand side is also independent of z. This completes the
proof of the lemma.

With this lemma at hand, we complete the proof of Theorem 5.2 as follows.

Proof of Theorem 5.2. Since kM.z/k is uniformly bounded for all z 2†, the operator
I C �M.z/ is invertible whenever

0 < � <
1

C.m/
:

Assume this from now on. Then, since

I C �Q.z/ D I C �.L.z/CM.z// D .I C �M.z//.I C �.I C �M.z//�1L.z//;

we have

z 2 Specp.Lm;�V / () � 1 2 Spec.�.I C �M.z//�1L.z//: (5.33)

By Lemma 5.4, L.z/ is a rank-one operator. Therefore, �.I C �M.z//�1L.z/ is
also a rank-one operator, such that

�.I C �M.z//�1L.z/f D �jUzjFhf; zi.I C �M.z//
�1�z :

Hence, �.I C �M.z//�1L.z/, being a compact operator on the infinite-dimensional
Hilbert space L2.R;C2/, has spectrum

Spec.�.I C �M.z//�1L.z// D ¹0; �jUzjFh.I C �M.z//�1�z;  ziº:
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Thus, from (5.33) and by writing .I C �M.z//�1 D I � �M.z/.I C �M.z//�1, we
have that

z 2 Specp.Lm;�V / () � 1 D �jUzjFh.I C �M.z//
�1�z;  zi

()
1

jUzjF
D ��h�z;  zi C �

2
hM.z/.I C �M.z//�1�z;  zi

()
4m

4jzj2 Cm2
D Wz.�/ (5.34)

whereWz.�/ is the right-hand side of the second line in this expression. This is (5.24).
We complete the proof by confirming the claimed asymptotic formula for Wz.�/.

Notice that
h�z;  zi D �

Z
R

e�2�z.x/hV.x/; ‡ziF dx; (5.35)

because V.x/ D B.x/A.x/ and .‡z/12 D .‡z/21. Now,

jhM.z/.I C �M.z//�1�z;  zij �
kM.z/k

1 � �kM.z/k
k�zkk zk �

kMzkkV kL1

1 � �kMzk
� c7:

This is a consequence of (5.28) and the fact that kM.z/k is uniformly bounded on †,
and it completes the proof of the theorem.

Proof of Theorem 2.7. As setting in (5.34), we write

Wz.�/ D �az C �
2bz.�/

where az D �h�z;  zi is independent of � and jbz.�/j � c1 for all z 2 † and suffi-
ciently small j�j.

We aim to show that there exists a constant c2 > 0 such that

ja�Ciı j �
c2

jU�Ciı jF
(5.36)

for all j� j � 1. To establish this, we first use integration by parts twice to obtain the
following results:Z

R

e�2�z.x/v.x/ dx D
� 1

4.�Cz /2
�

1

4.��z /
2

�
v0.0/ �

� 1

2��z
C

1

2�Cz

�
v.0/

C
1

4.��z /
2

0Z
�1

e2�
�
z xv00.x/ dx

C
1

4.�Cz /2

C1Z
0

e�2�
C
z xv00.x/ dx;
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for any v 2 W 2;1.R/. Now, from the expressions for �˙z , it follows that for suitable
constants ck > 0,ˇ̌̌ 1

2��z
C

1

2�Cz

ˇ̌̌
D

1

j��z �
C
z j
�
c3

�2
�

c4

jUzjF
and

1

j�˙z j
2
�

c5

jUzjF

for all j� j � 1. Since the Frobenius norm of ‡z is one, setting v.x/ D hV.x/; ‡ziF
gives

jv.j /.x/j � jV .j /.x/jF;

for j 2 ¹0; 1; 2º and all x 2 R. Hence, according to (5.35), we have that (5.36) is
indeed valid under the hypothesis V 2 W 2;1.R;C2�2/.

According to Theorem 5.2, z belongs to Specdis.Lm;�V / if and only if

1

jUzjF
D Wz.�/:

To satisfy this condition, z must be in † such thatˇ̌̌ 1

jUzjF
� �az

ˇ̌̌
D �2jbz.�/j:

Then, z should meet the requirement

1

jUzjF
.1 � �c2/ � �

2c1:

Therefore, there must exist a constant c6 > 0 such that

1

jUzjF
� c6�

2

for all sufficiently small j�j. Consequently, for z to be an eigenvalue of Lm;�V when
j�j is small, we require

jRe zj2 � c7jUzjF > c8��2:

This condition ensures the validity of Theorem 2.7.

5.5. Proof of Theorem 2.4

Assume that V satisfies the condition (H2). According to Proposition 2.3, we know
thatQ.z/D AR0.z/B is well defined for all z 2 �.Lm/. Moreover, by virtue of (5.9),

kQ.z/k � kV kL1
.jkzj C 1/max

®
jw˙z j C

1

jw˙z j

¯
2
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for all such z. Recall the set U defined in Section 5.2 and recall that (5.16) is valid for
all z 2 U . Then, for kV kL1 < 2=c14.m/µ C.m/, we get kQ.z/k < 1, and so

k.1CQ.z//�1k �
C.m/

C.m/ � kV kL1
;

for all z 2 U . Now, from (5.4) and (5.5), we have

max¹kR0.z/Bk; kAR0.z/kº � kV k
1=2

L1

.jkzj C 1/max
®
jw˙z j C

1

jw˙z j

¯
2.min Re�˙z /1=2

;

for all z 2 �.Lm/.
Consider the minimum in the denominator of the right-hand side. Since

Re
p

 D

1
p
2

p
j
 j C Re 
;

we have that

Re�˙z D
1
p
2

qp
.�2 �m2 � .1� ı/2/2 C 4.1� ı/2�2 Cm2 C .1� ı/2 � �2:

Hence, since �2 � �2 �m2, then

.�2 �m2 � .1� ı/2/2 C 4.1� ı/2�2

� .�2 �m2 � .1� ı/2/2 C 4.1� ı/2.�2 �m2/

D .�2 �m2 C .1� ı/2/2:

Thus, Re�˙z � j1� ıj for all z 2 C and so min Re�˙z � jıj � 1 for all jıj > 1.
Gathering the estimates above, we then have that, if kV kL1 � C.m/,

k.Lm;V � z/
�1
� .Lm � z/

�1
k � kR0.z/Bk k.I CQ.z//

�1
k kAR0.z/k

�
kV kL1

.j Im zj � 1/C.m/.C.m/ � kV kL1/
;

for all z 2 U . Moreover, since U lies outside the numerical range of Lm, then

k.Lm � z/
�1
k �

1

j Im zj � 1
;

for all z 2 U . Therefore, according to the triangle inequality, whenever kV kL1 <
C.m/, we have that

k.Lm;V � z/
�1
k �

�
1C

kV kL1

C.m/.C.m/ � kV kL1/

� 1

j Im zj � 1
;

for all z 2 U . This gives the claim made in Theorem 2.4.
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A. Abstract Birman–Schwinger principle

To characterise the domain of the operator Lm;V in terms of the resolvent of Lm,
we follow the classical approach of [16], which was extended to the non-selfadjoint
regime in [12]. We include precise details of this construction in this appendix, as
the abstract framework might be applicable to other families of operators related to
perturbations of Dm.

Let H and K be two Hilbert spaces. Let Dom.H0/ � H ; Dom.A/ � H and
Dom.B/ �K be three dense subspaces. Let

H0WDom.H0/! H ; AWDom.A/!K; BWDom.B/! H ;

be three closed operators such that H0 has a non-empty resolvent set. Let

R0.z/ D .H0 � zIH /
�1; z 2 �.H0/:

We consider the following hypotheses.

(B1) For some (and hence all) z 2 �.H0/,

• the operator R0.z/B is closable and the closure R0.z/BWK ! H is
bounded,

• and the operator AR0.z/WH !K is bounded.

(B2) For some (and hence all) z 2 �.H0/, the operator AR0.z/B has a bounded
closure

Q.z/ D AR0.z/BWK !K:

(B3) The set
R D ¹z 2 �.H0/ W �1 2 �.Q.z//º

is non-empty.

For all z 2 R, we let

R.z/ D R0.z/ �R0.z/B.IK CQ.z//
�1AR0.z/WH ! H : (A.1)

Theorem A.1. Assume that the closed operators H0; A, and B are related in the
above manner and that (B1)–(B3) hold true. Then, there exists a closed densely
defined extension4

H � H0 C BAWDom.H0/ \ Dom.BA/! H ;

whose resolvent is given by

.H � zIH /
�1
D R.z/ for all z 2 R:

4Here Dom.BA/ D ¹f 2 Dom.A/WAf 2 Dom.B/º.
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The conclusion of Theorem A.1 can be found in [12, Theorem 2.3], assuming the
slightly more stringent conditions [12, Hypothesis 2.1 (i)],

Dom.H0/ � Dom.A/ and Dom.H�0 / � Dom.B�/:

In this appendix we show that the assumption (B1) also ensures the claimed conclu-
sion.

Proof. We split the proof into four steps.

Step 1. Let z 2 �.H0/, then the product AR0.z/B is always closable. Indeed, we
claim that AR0.z/B is densely defined and its adjoint is also densely defined, see
[25, Theorem 1.8 (i)]. The former is an immediate consequence of (B1), so that

Dom.AR0.z/B/ D Dom.B/: (A.2)

For the latter, according to [25, Proposition 1.7], we know that

.AR0.z/B/
�
� .R0.z/B/

�A�:

Then, by virtue of [25, Theorem 1.8 (ii)], .R0.z/B/� D .R0.z/B/�, so by (B1) we
have

Dom..R0.z/B/�A�/ D Dom.A�/:

Since A is closed, Dom.A�/ and thus Dom..AR0.z/B/�/ are dense in K .

Step 2. Let z 2 R. Our second task is to construct a closed densely defined operator,
H.z/, such that

R.z/ D .H.z/ � zIH /
�1: (A.3)

For this purpose, firstly observe that

R0.z/B .K/ � Dom.A/ and Q.z/ D AR0.z/B: (A.4)

Indeed, for f 2 Dom.B/ and g 2 Dom.A�/, we have

hR0.z/Bf;A
�giH D hAR0.z/Bf; giK D hQ.z/f; giK :

Here the second equality is valid as a consequence of (A.2). Thus, the continuity of
R0.z/B and Q.z/, combined with the density of Dom.B/ in K , imply

hR0.z/Bf;A
�giH D hQ.z/f; giK

for all f 2K and g 2 Dom.A�/. This gives (A.4).
Now, multiplying R.z/ by A on the left, according to (A.1) and (A.4), we get that

AR.z/ D AR0.z/ �Q.z/.IK CQ.z//
�1AR0.z/ D .IK CQ.z//

�1AR0.z/:
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This yields the following. If R.z/f D 0, where f 2 H , then AR0.z/f D 0. Hence,
by (A.1), R0.z/f D 0 and so f D 0. That is, R.z/ is necessarily injective.

The adjoint of R.z/ is given by

R.z/� D R0.z/
�
� .AR0.z//

�.IK CQ.z/
�/�1.R0.z/B/

�: (A.5)

By virtue of [25, Theorem 1.8 (ii) and Proposition 1.7 (ii)], we gather that Q.z/� D
B�.AR0.z//

�. In conjunction with (A.5), this yields

B�R.z/� D .R0.z/B/
�
�Q.z/�.IK CQ.z/

�/�1.R0.z/B/
�

D .IK CQ.z/
�/�1.R0.z/B/

�:
(A.6)

Reasoning out as proving the injection of R.z/ as above by using (A.5) and (A.6), we
obtain

Ker.R.z/�/ D ¹0º:

Hence, R.z/.K/ is dense in H .
For each z 2 R, we can then set H.z/ D R.z/�1 C zIH . By construction, H.z/

is a closed densely defined operator satisfying (A.3). Note that H.z/ is ensured to be
closed as a consequence of [25, Theorem 1.8 (vi)].

Step 3. We now show that the operatorH.z/ from the previous step, does not depend
on z 2 R.

Let z1; z2 2 R. Then, H.zj / are such that

R.zj / D .H.zj / � zj IH /
�1:

We claim that H.z1/ D H.z2/. To prove this claim, note that R.z/ satisfies the
resolvent identity

R.z1/ �R.z2/ D .z1 � z2/R.z2/R.z1/: (A.7)

Indeed, by (A.1), (A.8), and (A.9), it follows that

.z1 � z2/R.z2/R.z1/

D R0.z1/ �R0.z2/ � ŒR0.z1/B �R0.z2/B�.IK CQ.z1//
�1AR0.z1/

�R0.z2/B.IK CQ.z2//
�1AŒR0.z1/ �R0.z2/�

CR0.z2/B.IK CQ.z2//
�1ŒQ.z1/ �Q.z2/�.IK CQ.z1//

�1AR0.z1/

D R.z1/ �R.z2/CR0.z2/BŒ.IK CQ.z1//
�1
� .IK CQ.z2//

�1�AR0.z1/

CR0.z2/B.IK CQ.z2//
�1ŒQ.z1/ �Q.z2/�.IK CQ.z1//

�1AR0.z1/

D R.z1/ �R.z2/:
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By multiplying both sides of (A.7) by H.z2/ � z2IH on the left, we get

.H.z2/ � z2IH /R.z1/ � IH D .z1 � z2/R.z1/:

This is equivalent to
.H.z2/ � z1IH /R.z1/ D IH :

Multiplying this identity by H.z1/� z1IH on the right, ensures that H.z1/ D H.z2/
as claimed above. We can therefore write H D H.z/.

Step 4. We complete the proof by showing that H is an extension of the operator
H0 C BA.

Let z 2 R and let f 2 Dom.H0 C BA/ D Dom.H0/ \ Dom.BA/. We set g D
.H0 � zIH /f . It follows from (A.1) and (A.6) that

R.z/ D R0.z/ �R.z/BAR0.z/;

and thus that R.z/g D f �R.z/BAf . This completes the proof of the theorem.

The next comments about the validity of the hypotheses (B1) and (B2), when
moving z, as now in place. The next observations was used in the Step 3 in the proof
of Theorem A.1 and will be useful in the proof of Theorem A.2. Here, z1; z2 2 �.H0/.

If AR0.z1/ 2 L.H ;K/, then AR0.z2/ 2 L.H ;K/. Indeed, we have

AR0.z2/ D AŒR0.z1/C .z2 � z1/R0.z1/R0.z2/�

� AR0.z1/„ ƒ‚ …
2L.H ;K/

C.z2 � z1/ AR0.z1/„ ƒ‚ …
2L.H ;K/

R0.z2/„ƒ‚…
2L.H/

:

In particular, since the domain of the right-hand side is total H , we obtain

AR0.z2/ D AR0.z1/C .z2 � z1/AR0.z1/R0.z2/:

Thus, AR0.z2/ 2 L.H ;K/.
If R0.z1/B is closable and R0.z1/B 2 L.K;H /, then R0.z2/B is also closable

andR0.z2/B 2L.K;H /. Indeed, since Dom.R0.z2/B/DDom.B/which is densely
defined, we have

.R0.z2/B/
�
D ŒR0.z1/B C .z2 � z1/R0.z2/R0.z1/B�

�

� ŒR0.z1/B�
�
C .z2 � z1/ŒR0.z2/R0.z1/B�

�

D .R0.z1/B/
�„ ƒ‚ …

2L.H ;K/

C.z2 � z1/ .R0.z1/B/
�„ ƒ‚ …

2L.H ;K/

R0.z2/
�„ ƒ‚ …

2L.H/

;
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where we used [25, Proposition 1.6 (vi)] for the inclusion and [25, Proposition 1.7 (ii)
and Theorem 1.8 (ii)] for the last equality. Since the domain of the right-hand side is
the whole H , we deduce that

.R0.z2/B/
�
D .R0.z1/B/

�
C .z2 � z1/.R0.z1/B/

�R0.z2/
�
2 L.H ;K/:

Therefore, from [25, Theorem 1.8 (i)–(ii)], R0.z2/B is closable and R0.z2/B D
.R0.z2/B/

�� belongs toL.K;H /, as claimed. Moreover, the following identity holds
true:

R0.z1/B �R0.z2/B D .z1 � z2/R0.z2/R0.z1/B: (A.8)

If AR0.z1/B 2 L.K/, then AR0.z2/B 2 L.K/. This can be proved in the same
manner as above:

.AR0.z2/B/
�
D ŒAR0.z1/B C .z2 � z1/AR0.z2/R0.z1/B�

�

� ŒAR0.z1/B�
�
C .z2 � z1/ŒAR0.z2/R0.z1/B�

�

D .AR0.z1/B/
�„ ƒ‚ …

2L.K/

C.z2 � z1/ .R0.z1/B/
�„ ƒ‚ …

2L.H ;K/

.AR0.z2//
�„ ƒ‚ …

2L.K;H/

:

Once again, since the domain of the right-hand side is total K ,

.AR0.z2/B/
�
D .AR0.z1/B/

�
C .z2 � z1/.R0.z1/B/

�.AR0.z2//
�
2 L.K/;

and the conclusion follows. Moreover, we get the formula

Q.z1/ �Q.z2/ D .z1 � z2/AR0.z2/R0.z1/B: (A.9)

Theorem A.2. Assume that the closed operators H0, A, and B are related in the
above manner, and that (B1)–(B3) hold true. Additionally, assume that R has at least
two elements. Then, for all z 2 �.H0/,

z 2 Specp.H/ () � 1 2 Specp.Q.z//:

Proof. Let f 2 Dom.H/ n ¹0º be such thatHf D zf . Let z0 2 R n ¹zº. The equation
Hf D zf is equivalent to f D .z � z0/R.z0/f . By virtue of (A.1), the latter happens
if and only if

.H0 � zIH /R0.z0/f D �.z � z0/R0.z0/B.IK CQ.z0//
�1AR0.z0/f:

By setting
v D .IK CQ.z0//

�1AR0.z0/f ¤ 0

and applying .IK CQ.z0//
�1AR0.z/ on both sides, we obtain

v D �.z � z0/.IK CQ.z0//
�1AR0.z/R0.z0/Bv:
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Then, according to (A.9),

v D .IK CQ.z0//
�1.Q.z0/ �Q.z//v () Q.z/v D �v:

In other words, �1 is the eigenvalue of Q.z/ with the eigenfunction v, as the right-
hand side of the conclusion states.

We now show the converse. Assume thatQ.z/vD�v for some v 2K n ¹0º. Take
z0 2 R n ¹zº and write

v D v � .IK CQ.z0//
�1.IK CQ.z//v

D .IK CQ.z0//
�1.Q.z0/ �Q.z//v

D .z0 � z/.IK CQ.z0//
�1AR0.z0/R0.z/Bv:

Here, in the last step, we applied (A.9). By setting f D �R0.z/Bv ¤ 0, we get

v D .z � z0/.IK CQ.z0//
�1AR0.z0/f:

Then, applying R0.z0/B on both sides, and using (A.8) and (A.1), we gather that

�f C .z � z0/R0.z0/f D .z � z0/.R0.z0/ �R.z0//f:

This is equivalent to .z � z0/.H � z0IH /
�1f D f and thus, f 2Dom.H/ andHf D

zf .
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[20] D. Krejčiřík and P. Siegl, Pseudomodes for Schrödinger operators with complex potentials.
J. Funct. Anal. 276 (2019), no. 9, 2856–2900 Zbl 1417.34207 MR 3926135
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