
J. Spectr. Theory 15 (2025), 1305–1336
DOI 10.4171/JST/577

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Reflectionless Dirac operators and canonical systems

Christian Remling and Jie Zeng

Abstract. We study canonical systems that are reflectionless on an open set. In this situation,
the two half line m functions are holomorphic continuations of each other and may thus be
combined into a single holomorphic function. This idea was explored in [Trans. Amer. Math.
Soc. 368 (2016), no. 2, 1251–1270], and we continue these investigations here. We focus on
Dirac operators and especially their interplay with canonical systems, and we provide a more
general and abstract framework.

1. Introduction

We investigate reflectionless Dirac operators and canonical systems in this paper.
A canonical system is a differential equation of the form

Ju0.x/ D �zH.x/u.x/; J D

�
0 �1

1 0

�
; (1.1)

with a locally integrable coefficient function H.x/ 2 R2�2, H.x/ � 0, trH.x/ D 1.
This last condition is a normalization. Something of this sort is needed if one wants to
have a bijection between canonical systems and spectral data, but the fine details are
largely arbitrary. The trace normalization is a common choice, but in the context of our
discussion of Dirac operators below, it will actually be more convenient to normalize
the determinant: if detH.x/ > 0 for all x 2 R, then there is a unique version of H ,
with the same m functions, as defined in (1.4) below, that satisfies detH.x/ D 1. The
general issue is discussed in more detail in [22, Section 1.3].

Canonical systems define self-adjoint relations and operators on the Hilbert spaces

L2H .I / D

²
f W I ! C2

W

Z
I

f �.x/H.x/f .x/ dx <1

³
:

They are of fundamental importance in spectral theory because they may be used to
realize arbitrary spectral data [22, Theorem 5.1]. We will use the notation C.I / for
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the collection of canonical systems H.x/, x 2 I . In line with what we just discussed,
if two (differently normalized) coefficient functionsH share the samem functions, to
be introduced below, in (1.4), we view them as representing the same element of C .

Dirac equations are, of course, more classical. We will work with the following
general form:

Jy0.x/CW.x/y.x/ D �zy.x/: (1.2)

Here, we assume that W.x/ 2 R2�2, W.x/ D W t .x/, W 2 L1loc.I /. We call such
(matrix) functions Dirac potentials; as usual, we identify potentials that agree almost
everywhere. It will again be convenient to have the short-hand notation W.I / avail-
able for the collection of Dirac potentials. The Dirac equation (1.2) will generate
self-adjoint operators on L2.I IC2/.

Since, as we just mentioned, any spectral data can be realized by a unique canon-
ical system, it must in particular be possible to do this for those of the Dirac equa-
tions (1.2). We will discuss the procedure in detail in Section 2. So, in this sense,
Dirac equations can be thought of as special canonical systems.

A canonical system or Dirac equation on x 2 I D R is called reflectionless on a
Borel set A � R if

mC.t/ D �m�.t/ (1.3)

for (Lebesgue) almost every t 2 A. Here,m˙ are the Titchmarsh–Weylm functions of
the half line problems on x 2 Œ0;1/ and x 2 .�1; 0�, respectively. These functions
are key tools in the spectral analysis of (1.1), (1.2); please see [22, Chapter 3] for a
detailed treatment. They may be defined as

m˙.z/ D ˙f˙.0; z/; (1.4)

with z 2 CC D ¹z 2 C W Im z > 0º and fC D u denoting the (unique, up to a fac-
tor) solution fC 2 L2H .0;1/ of (1.1), and f� similarly denotes the solution that
is square integrable on the left half line. We also use the convenient convention of
identifying a vector f D .f1; f2/t 2 C2, f 6D 0, with the point f1=f2 2 C1 on the
Riemann sphere. In particular, m˙.z/ 2 C1, and in fact the m functions are gener-
alized Herglotz functions, that is, they map the upper half plane CC holomorphically
back to CC D CC [R [ ¹1º.

If specifically H.x/ � P˛ on a half line, let us say on x � 0, with P˛ denoting
the projection onto e˛ D .cos ˛; sin ˛/t , then mC.z/ � � tan ˛. If H is not of this
special type, then the m functions are genuine Herglotz functions, that is, they map
CC back to itself holomorphically. Herglotz functions have boundary values m.t/ D
limy!0Cm.t C iy/ at almost all t 2 R, and we are referring to these in (1.3).

If H.x/ � P˛ on x 2 R, then m˙.z/ � � tan ˛, and H is reflectionless on R

according to our definition (1.3). It will be convenient to have the short-hand notation

Z D ¹H � P˛ W 0 � ˛ < �º (1.5)
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available to refer to the collection of these trivial canonical systems. Observe also that
if H is reflectionless on any positive measure set and H … Z, then both half line m
functions are genuine Herglotz functions.

Almost literally, the same definitions may be used for Dirac equations. We again
define the half linem functions by (1.4), with f˙ D y now denoting square integrable
solutions of (1.2). These m functions are genuine Herglotz functions; the degenerate
functions m � a 2 R1 do not occur for Dirac operators.

Reflectionless operators are important because they can be thought of as the basic
building blocks of arbitrary operators with some absolutely continuous spectrum;
compare [21] and [22, Chapter 7]. Let us introduce

R.A/ D ¹H 2 C.R/ W H is reflectionless on Aº:

In this paper, we are interested in operators that are reflectionless on an open set
A D U � R. In this case, the half line m functions are holomorphic continuations of
each other through U . More precisely, we have the following result.

Lemma 1.1. Let U � R be a non-empty open set, and assume thatH 2R.U /. Then
the function

M.z/ D

´
mC.z/; z 2 CC;

�m�.z/; z 2 C�;

has a holomorphic continuation to � � CC [ U [C�.

Here, C� D ¹z W Im z < 0º of course denotes the lower half plane.
Lemma 1.1 certainly looks plausible and is well known. However, there is slightly

more to it than meets the eye since (1.3) is only imposed almost everywhere, and
we do need to make sure that the exceptional null set is empty when U is open. The
(uncomplicated) detailed proof of Lemma 1.1 may be found in [11, Lemma 2.1].

Lemma 1.1 has a converse of sorts, which is in fact obvious. Let us spell this
out in more detail. Let H 2 C Œ0;1/ and suppose that mC.�IH/WCC ! CC has a
holomorphic continuationM W�! CC. ThenH 2 CŒ0;1/ is the right half line of a
unique H 2 R.U /.

A weaker version of this condition could ask for the existence of such a holomor-
phic continuation ofmC, still mapping to CC, to some larger domain, not necessarily
all of �. We will later focus on U D R n Œ�1; 1�, and then � has a puncture at 1,
which we can plug, and it is exactly the neighborhood of this point that is of greatest
interest, so we specialize to this situation right away.

Hypothesis 1.1. The half line m function mC has a holomorphic continuation to a
neighborhood of z D1 that still maps to CC. More explicitly, there are a diskDr D
¹jzj < rº and a holomorphic function M WDr ! CC such that mC.z/ D M.�1=z/
for all z 2 CC, jzj > 1=r .
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Lemma 1.2. Suppose that H 2 R.U / for some open set U � R with bounded com-
plement. Then mC.zIH/ satisfies Hypothesis 1.1.

Proof. Lemma 1.1 provides a holomorphic continuation M of mC to a domain �
that contains a punctured neighborhood of1. Since M maps to CC, the singularity
is removable.

We originally got interested in Hypothesis 1.1 because this condition helped
streamline some parts of our presentation. However, these canonical systems also
seem of independent interest. We will prove the following here, in Sections 5 and 6.

Theorem 1.3. Let H 2 C Œ0;1/, and assume Hypothesis 1.1. Then either H � P˛ ,
or detH.x/ D 1 for all x � 0, for a suitably normalized version of H .

In the second case, H.x/ has the following additional properties: H.x/ is real
analytic. More precisely, H has a holomorphic continuation H.z/ to a strip

¹z 2 C W jz � xj < h for some x > 0º:

Moreover, there is a constant C > 0 such that

kH�1=2.x/H 0.x/H�1=2.x/k � C

for all x � 0.

Now, let us return to the situation from Lemma 1.1. In the simplest case, when
U D I is a single interval, � is simply connected and conformally equivalent to CC,
if we also exclude the (rather trivial) case I D R here, which would give � D C.
Fixing such a map 'WCC ! �, we may then introduce the new Herglotz function
F.�/DM.'.�//. Moreover, convenient explicit maps ' are available in these simple
cases.

This will set up a one-to-one correspondence between R.U / and Herglotz func-
tions F (= Theorem 3.1 below), and it will allow us to draw interesting conclusions
about individual systems H 2 R.U /.

Since both [11] and the present work start from exactly the same place, namely
Lemma 1.1, let us also briefly discuss how we go beyond [11] here. First of all, we
give a detailed discussion of the Dirac operators from R.U /. This case was not dis-
cussed in [11], which instead dealt with Jacobi and Schrödinger operators exclusively.
This is curious as arguably the method works best for Dirac operators. In any event,
we fill this gap here. We also use canonical systems as our general framework, thus
expanding the scope of the method, and actually simplifying it in the process. This
broad and general viewpoint will already pay off in the next (preparatory) section,
when we discuss basic material on Dirac operators. Much of what we do there is of
course also discussed in standard references on the subject such as [13], but we do
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hope that our more conceptual approach, which emphasizes the connection to canon-
ical systems and abstract notions, may have something to offer. Compare also [2].

In Section 3, we then give the anticipated description of R.U / and clarify where
the Dirac operators are in this space; see Theorems 3.1, 3.2, and perhaps also The-
orem 6.1. The answer to this second question (= Theorem 3.2) can be restated in
abstract style: the Dirac operators in R.U / form a compact convex set in a natural
way; see Theorem 3.3. A tantalizing aspect of this reformulation is that it would allow
us to recover the characterization of Theorem 3.2 of the Dirac equations within the
larger space R.U / without any recourse to the highly technical machinery of inverse
spectral theory if we had an independent proof of it (but of course we do not). We will
explain this in more detail at the end of Section 3.

We can easily identify the extreme points of this compact convex set, and they
have a convenient spectral theoretic description also. See Theorem 3.3 again.

Section 4 then analyzes Dirac operators from R.U / in some detail, following
ideas from [11, 15]. As in the Schrödinger case that was analyzed in these works, it
turns out that W.x/ is real analytic and obeys sharp bounds. See Theorem 4.1, and
compare also the discussion of Theorem 1.3 above.

In Section 5, we prove a version of Theorem 1.3 for Dirac operators. In the final
Section 6, we return to the broader perspective of canonical systems. In particular, we
give versions of the results of Section 4 that apply in this generality, and we can then
at last also prove Theorem 1.3 as stated.

2. Dirac operators and canonical systems

In this section, we discuss basic material on Dirac equations. Somewhat unusually
perhaps, we give center stage to the associated canonical systems.

Unlike the Dirac equation, such a system (1.1) does not have coefficient functions
that do not get multiplied by the spectral parameter z, so if we want to rewrite a Dirac
equation (1.2) as a canonical system, the obvious attempt is variation of constants
about z D 0. This is also the standard procedure in analogous settings; compare [22,
Sections 1.3, 5.3, and 7.1].

So define the transfer matrix T .x/ for (1.2) at z D 0 as the matrix solution of
JT 0 CW T D 0 with the initial value T .0/ D 1 (the 2 � 2 identity matrix). Observe
that since we can write the equation as T 0 D JW T and tr JW D 0, we have
detT .x/ D 1 for all x.

Next, if y is any solution of (1.2), define u.x/ by writing y D T u. A quick calcu-
lation shows that u solves the canonical system (1.1) with coefficient function

H.x/ D T t .x/T .x/: (2.1)
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Note that, as announced above, we now work with canonical systems that are not
trace normed; rather, H satisfies detH.x/ D 1. We could change to the normaliza-
tion trH D 1 by a change of variable [22, Section 1.3], but it is more convenient
to keep the determinant normalized instead. We then still have uniqueness of coef-
ficients for given spectral data in the sense that if mC.zIH1/ D mC.zIH2/ and
detH1.x/ D detH2.x/ D 1, then H1.x/ D H2.x/ for almost every x � 0. (The
determinant normalization has the potential drawback that if detH.x/D 0 on a set of
positive measure, then there is no equivalent H1 with detH1 D 1, while any H can
be trace normed.)

The steps that led to (2.1) can be taken in reverse, so it is also true that if u
solves the canonical system (1.1) with coefficient function given by (2.1) and we
define y D T u, then y solves the Dirac equation (1.2), with W D �JT 0T �1. So we
have succeeded in rewriting an arbitrary Dirac equation as a canonical system. Let us
summarize and add some precision and more detail to this picture.

Theorem 2.1. LetW 2W Œ0;1/. Then there is a canonical systemH.x/, x � 0, such
that

mC.zIW / D mC.zIH/; z 2 CC: (2.2)

This canonical system is unique if normalized appropriately, which can most naturally
be done by requiring that detH.x/ D 1. It is then given by (2.1), and it satisfies

H 2 ACŒ0;1/; H.0/ D 1; detH.x/ D 1: (2.3)

Conversely, if an H 2 C Œ0;1/ satisfying (2.3) is given, then there is a Dirac
potential W 2 W Œ0;1/ such that (2.2) holds.

We have focused on half line problems here since this is the most basic case. We
will eventually be interested in whole line problems, when we discuss reflectionless
operators, but the standard way to set up a spectral representation of these is to cut
them into two half lines and use the half line m functions m˙ as the key ingredients.
See [22, Section 3.7]. Of course, the analog of Theorem 2.1 for left half lines also
holds.

In the last part of the theorem,W is not uniquely determined by itsm function or,
equivalently, by H . This is well known, and we will discuss the matter in more detail
in Theorem 2.3 below.

As announced, Theorem 2.1 lets us think of Dirac operators as special canonical
systems, and we will occasionally be a bit cavalier about the distinction and talk about
Dirac potentials W 2 W as if they were literally canonical systems when we really
mean the H 2 C that is associated with W .

Proof. Everything in the first part is an immediate consequence of the simple trans-
formation y D T u that we discussed above. To prove (2.2), notice that by (2.1), we
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have y�y D u�Hu, so u 2L2H .0;1/ if and only if y 2L2..0;1/IC2/. So if z 2CC

and y 2 L2 solves (1.2), then

mC.zIW / D y.0/ D T .0/u.0/ D u.0/ D mC.zIH/;

as claimed. (It is probably also helpful in this context to be aware of the fact for-
mulated as Corollary 2.2 below.) The uniqueness of a suitably normalized canonical
system with prescribed m function is one of the basic (but difficult) results on these,
and it was already mentioned above; compare [22, Theorem 5.1]. The properties of
H D T tT stated in (2.3) are obvious because T 2 AC , detT D 1, T .0/ D 1.

Now, suppose that an H satisfying (2.3) is given. Let us write

H.x/ D

�
R1.x/

2 R1.x/R2.x/ cos �.x/
R1.x/R2.x/ cos � R2.x/

2

�
;

withRj ; � 2AC ,Rj .0/D 1, �.0/D �=2,Rj .x/ > 0. This is possible at every fixed x
because any matrix H.x/ > 0 can be written in this form. That the additional proper-
ties of the functions Rj ; � may be insisted on follows from the initial value H.0/ D 1
and the fact that H 2 AC . From the further condition detH D 1, we then see that
R21R

2
2 sin2 � D 1 and in fact

R1.x/R2.x/ sin �.x/ D 1 (2.4)

since this (and not �1) is the value at x D 0 and the function on the left-hand side is
continuous.

Now, let

T .x/ D

�
R1.x/ R2.x/ cos �.x/
0 R2.x/ sin �.x/

�
:

It is clear that T .0/ D 1, T 2 AC , detT D 1, and, by a quick calculation,H D T tT .
We now define, as we must, W.x/ D �JT 0.x/T .x/�1. This is clearly locally

integrable on 0� x <1, but the symmetry ofW.x/ is perhaps not obvious. However,
from a calculation we findW21 �W12 D .R1R2 sin�/0, and this equals 0, as required,
by (2.4). So W 2 W , and by construction we have JT 0 CW T D 0, H D T tT . So
the already established first part now shows that (2.2) holds, as desired.

Corollary 2.2. For any W 2W Œ0;1/, z 2 CC, the Dirac equation (1.2) has exactly
one linearly independent solution y 2 L2.0;1/.

This is usually stated as saying that a Dirac equation is in the limit point case
at 1. Given the connection to canonical systems, the proof is delightfully simple
now, especially when compared with the traditional treatment [13, Chapter 8].
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Proof. We already observed at the beginning of the proof of Theorem 2.1 that the
square integrable solutions of a Dirac equation are obtained exactly from the L2H
solutions of the associated canonical system, so the statement is equivalent to the
corresponding claim for the canonical system. A canonical system is in the limit point
case if and only if trH … L1 [1], [22, Theorem 3.5]. Since detH D 1 andH � 0, we
have trH � 2.

We also make a definition that summarizes the message of Theorem 2.1, for whole
line operators.

Definition 2.1. We define the collection of Dirac canonical systems as

D D ¹H 2 C.R/ W H 2 AC.R/;H.0/ D 1; detH.x/ D 1º:

Again, we have abandoned the original normalization trH D 1, but that was only
convenient, not necessary. An equivalent version of the definition declares anH 2 C ,
trH D 1, to be in D if and only if H 2 AC , H.0/ D 1=2, detH.x/ > 0.

We now discuss transformations of W 2 W that preserve the m function. These
are obtained by letting the following group of functions act on W Œ0;1/:

A0 D ¹˛ 2 ACŒ0;1/ W ˛.0/ D 0º:

The subscript zero reminds us of the requirement ˛.0/ D 0. We will drop this condi-
tion later, when we briefly discuss the action of a more general (non-abelian) group at
the end of this section.

We use the notation

Rˇ D

�
cosˇ � sinˇ
sinˇ cosˇ

�
to refer to a general rotation matrix R 2 SO.2/. For W 2 W and ˛ 2 A0, define

.˛ �W /.x/ D R˛.x/W.x/R
t
˛.x/ C ˛

0.x/: (2.5)

It is clear that ˛ �W 2 W again. The notation emphasizes the fact that this is a group
action of A0 on W , if we use pointwise addition as the group operation on A0. We
will use this dot notation for group actions consistently in the sequel also.

Theorem 2.3. Let W1, W2 2 W Œ0;1/. We have

mC.zIW1/ D mC.zIW2/ .z 2 CC/

if and only if W2 D ˛ � W1 for some ˛ 2 A0. In this case, ˛ 2 A0 is unique, and
T2.x/ D R˛.x/T1.x/.
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Proof. We begin with the uniqueness claim about ˛. Since we have a group action, it
suffices to check that ˛ �W D W only if ˛ D 0. This follows at once by taking the
trace of both sides of R˛WRt˛ C ˛

0 D W to conclude that ˛0 D 0.
Now, assume that W2 D ˛ �W1. By Theorem 2.1, we can establish the claim by

showing that the associated canonical systems satisfy H1 D H2. This will be clear as
soon as we have the asserted identity T2 D R˛T1, and this is obvious since an easy
calculation shows that if JT 01 CW1T1 D 0, then J.R˛T1/0 C .˛ �W1/R˛T1 D 0. So
since also .R˛T1/.0/ D 1, this matrix function solves the same initial value problem
as T2 and thus agrees with this transfer matrix.

Conversely, suppose now that the m functions of W1, W2 agree. By Theorem 2.1
and the uniqueness of suitably normalized canonical systems with given m function,
this means that H1 D H2. In other words, the transfer matrices of the Dirac systems
satisfy

T t2 .x/T2.x/ D T
t
1 .x/T1.x/: (2.6)

Now, consider the polar decompositions T DU jT j for T D T1.x/;T2.x/. Since T has
real entries, so does jT j D .T �T /1=2 D .T tT /1=2. Moreover, det jT j D j detT j D 1,
so U is also real and detU D 1. In other words, U 2 SO.2/, that is, U D Rˇ for
some ˇ. Finally, (2.6) shows that jT1.x/j D jT2.x/j.

These observations imply that T2.x/DR˛.x/T1.x/, for some function ˛.x/. Since
T2; T

�1
1 2 AC , we may also assume that ˛ 2 AC here. Furthermore, since T2.0/ D

T1.0/.D 1/, we can take ˛.0/ D 0. So ˛ 2 A0. Now, the calculation that we already
did above (though not explicitly) will confirm that T2 solves JT 02 C .˛ �W1/T2 D 0,
so W2 D �JT 02T

�1
2 D ˛ �W1, as claimed.

A sensible way to take advantage of Theorem 2.3 would be to restrict one’s atten-
tion to potentialsW satisfying trW.x/ D 0. These potentials realize exactly all them
functions one can get from Dirac systems from D . The following different normal-
ization will be convenient for us later.

Proposition 2.4. For anyW 2W.R/, there is an ˛ 2A0.R/ such that .˛ �W /11� 0.

Proof. We in fact did this already: the potential W constructed in the last part of the
proof of Theorem 2.1 has the desired property.

But we can also easily do it from scratch: by calculating the matrix element in
question, we see that we are trying to find an ˛ such that

˛0 CW11 cos2 ˛ CW22 sin2 ˛ � 2W12 sin˛ cos˛ D 0; ˛.0/ D 0:

This initial value problem for the ODE ˛0 D f .x; ˛/ has a global solution since f
satisfies the uniform (in ˛) bound jf .x; ˛/j . kW.x/k.
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The off-diagonal elements ofW cannot always be eliminated in this fashion since
we would now obtain ˛ from an algebraic equation, and this function is not guaranteed
to be absolutely continuous, not even if W is smooth.

We now make a few quick remarks on general boundary conditions of (1.2). On a
half line, this equation generates a one-parameter family of self-adjoint operators on
L2..0;1/IC2/, corresponding to the different boundary conditions

y1.0/ sin � C y2.0/ cos � D 0 (2.7)

that can be imposed on elements of the domain. Our definition of the half linem func-
tion as mC.z/ D fC.0; z/ means that specifically the boundary condition y2.0/ D 0
was (tacitly) chosen. One can now wonder what additional spectral data might have
been realized by other boundary conditions, and the answer is none at all. The situa-
tion is exactly the same as for canonical systems: one boundary condition is enough
because a change of boundary condition can be simulated by transforming W (or H )
instead and keeping the boundary condition the same. Please see [22, Section 3.6] for
a detailed treatment of this issue for canonical systems.

Let us now briefly look at the details for Dirac operators. First of all, a piece of
notation: we write �

a b

c d

�
� z D

az C b

cz C d
(2.8)

for the action of an invertible matrix on C1 as a linear fractional transformation.
Recall also that the automorphisms of CC are obtained from the matricesA2SL.2;R/.

If we now change boundary conditions to (2.7), then the new m function m� is
related to the old one by [13, Section 8.2]

m� .z/ D
m.z/ cos � � sin �
m.z/ sin � C cos �

D R� �m.z/:

Acting in this way by a linear fractional transformation on the m function will trans-
form the coefficient function of a canonical system as follows [22, Theorem 3.20]:

H� .x/ D R
�1t
� H.x/R�1� D R�H.x/R

t
�

In particular, in the situation above, when we apply this transformation to an H 2D ,
we see that H� 2 D also, so indeed all Dirac m functions are already obtained
from one boundary condition only. We can be more explicit: if we similarly intro-
duce T� .x/ D R�T .x/Rt� , with T denoting the transfer matrix ofW , then this solves
JT 0

�
CR�WR

t
�
T� D 0, and obviously T� .0/ D 1. Since T t

�
T� D H� , this shows that

one way of realizing the m function m� for boundary condition (2.7) is to change the
potential to

W� .x/ D R�W.x/R
t
� (2.9)
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instead and leave the boundary condition y2.0/D 0 unchanged. Of course, at the level
of the Dirac potentials, there are other options: by Theorem 2.3, exactly the potentials
˛ �W� work.

We can now develop a more conceptual view of what exactly transformations like
the one from Proposition 2.4 are achieving. We combine three ingredients: the actions
of A0 and PSO.2/ D SO.2/=¹˙1º on W , with the latter given by (2.9), and, thirdly,
the action of R by shifts .t �W /.x/ D W.t C x/.

We can very conveniently incorporate (2.9) into the first group action by simply
dropping the requirement that ˛.0/ D 0. To avoid spurious stabilizers of the group
action (2.5), we now interpret group elements as functions taking values in the unit
circle S D ¹jzj D 1º. Put differently, we identify ˛; ˇ if ˇ.x/ � ˛.x/ � n� . (This
was unnecessary initially since the condition ˛.0/ D 0, which we have now dropped,
singled out a unique representative.) So we define

A D ¹f .x/ D e2i˛.x/WR! S W ˛ 2 AC.R/º;

and of course the group operation is now pointwise multiplication of functions
f; g 2 A. Having made this definition, we will find it more convenient, though, to
continue to work with the angle functions ˛, and we will be quite cavalier about the
distinction between ˛ and f D e2i˛ .

The larger group A still acts on W by (2.5). Of course, this action no longer
preserves m functions; rather, since we can write ˛ D ˇ C ˛.0/, with ˇ 2 A0, we
have

˙m˙.zI˛ �W / D R˛.0/ � .˙m˙.zIW //: (2.10)

This is the same as changing boundary conditions by � D ˛.0/. The new whole line
operator ˛ �W is still unitarily equivalent to W , and the property of being reflection-
less on a set is preserved. See [22, Theorems 7.2, 7.9(a)]; in fact, these results are
considerably more general, and our more specific claims are immediately plausible
without any theory since for the whole line problem, the boundary condition at x D 0
has no intrinsic significance. Rather, it is an artifact that tells us how exactly we are
going to construct a spectral representation of the whole line operator via m˙, which
do depend on the boundary condition. We also mention in passing that the singular
spectra of the half line problems can change dramatically. These phenomena are well
known and they have been studied extensively; see, for example, [24].

We also see from (2.10) that even if ˛ 2 A0, then the transformation from W to
˛ �W will have an effect on the m functions of the shifted problems. More precisely,
we have

˙m˙.zI .˛ �W /.t C x// D R˛.t/ � .˙m˙.zIW.t C x///:

So while the transformation by an ˛ 2 A0 does not do anything to the original m
functions, it does allow us to vary the m function along the orbit of shifts.
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As announced, we can capture all this in an extended abstract framework. We
add shifts to our group actions and thus build a corresponding larger group as the
semidirect product A Ì R, with R acting on A by shifts also: .t � ˛/.x/ D ˛.t C x/.
Obviously, these maps are automorphisms of A, so the semidirect product is well
defined. Its elements are .˛; t/, and the group operation is given by

.˛; s/.ˇ; t/ D .˛ C s � ˇ; s C t /:

Theorem 2.5. The following combination of the actions (2.5), (2.9), and shifts defines
an action of the (non-abelian) group A Ì R on W :

..˛; t/ �W /.x/ D R˛.x/W.t C x/R
t
˛.x/ C ˛

0.x/

The m functions obey

˙m˙.zI .t � .˛ �W // D R˛.t/ � .˙m˙.zI t �W //: (2.11)

The proof consists of a direct verification of these claims, which we leave to the
reader. Our notation in (2.11) is a bit sloppy, but more intuitive and easier on the
eye than the more precise notation .0; t/, .˛; 0/ for the group elements that we have
written simply as t and ˛, respectively.

The theme of (2.11) could be much expanded: the rotationsR˛.t/ can be combined
with the transfer matrix T .t; zIW / of (1.2) (not the one we used above, but the more
general version with z 2 C restored) to provide a cocycle for the action of A Ì R

that updates the m functions along orbits. See [23] for much more on this topic in a
slightly different setting.

3. The space R.U /

In this section, we study R.U /, for U D .�1; c/[ .d;1/, with d � c > 0. We will
be especially interested in the Dirac operators in this set.

We will explicitly discuss only the case c D �1; d D 1. The general case can
easily be reduced to this situation by using the transformed potentials (in the Dirac
case) Wa.x/ D W.x/C a, a 2 R, and Wg.x/ D gW.gx/, g > 0, which implement
shifts z 7! z C a and rescalings z 7! gz, respectively, of the spectral parameter z.

We now follow our outline from the introduction. Let H 2 R.U /, with

U D .�1;�1/ [ .1;1/:

We then consider the holomorphic functionM W�!CC from Lemma 1.1. By Lemma 1.2,
or rather its proof, we can give M the domain � D C1 n Œ�1; 1�. Note that, unlike
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the original domain � n ¹1º, this domain � is simply connected, so is conformally
equivalent to CC. A convenient explicit conformal map is given by

'WCC ! �; '.�/ D
2�

�2 C 1
: (3.1)

This maps the semicircle ¹z 2 CC W jzj D 1º to U [ ¹1º, the semidisk ¹z 2 CC W

jzj < 1º goes to CC, and its exterior is mapped to C�.
Finally, we introduce the key object, namely the new Herglotz function

F W CC ! CC; F .�/ DM.'.�//I

we call this the F function of H 2 R.U /. We will denote the collection of all Her-
glotz functions by F . So the elements G 2 F are exactly the holomorphic functions
GWCC ! CC.

Theorem 3.1. This map R.U /! F , H 7! F.�IH/, that sends an H 2 R.U / to
its F function, is a homeomorphism.

For our purposes here, the important fact is that we have a bijection and thus a
parametrization of theH 2R.U /. However, the additional claim about the continuity
of the map and its inverse is easy to establish, and it may be of interest in other
investigations, so we have stated it too. See also [17].

We must explain what topologies we are using. In fact, both spaces come equipped
with natural metrics. On R.U / � C.R/ we use the metric on general canonical sys-
tems that is discussed in detail in [22, Section 5.2]. More importantly for us here,
the correspondence H $ .m�; mC/ between a canonical system and its pair of m
functions becomes a homeomorphism between C.R/ and F 2, provided we give F

the topology we are about to discuss next. More accurately, we will use the following
metric on F :

d.G;H/ D max
jz�2i j�1

ı.G.z/;H.z//:

Here, ı denotes the spherical metric, and CC � C1 is thought of as a subset of the
Riemann sphere C1 Š S2. Though this may not be immediately apparent from the
appearance of d , convergence in this metric is the same as locally uniform conver-
gence of the Herglotz functions. The space .F ; d / is compact. For more details on
these facts, please consult again [22, Section 5.2].

Finally, since reflectionless canonical systems are determined by just one half line
[22, Theorem 7.9 (b)] and the reconstruction of the other half line defines a continuous
map, we can also measure the distance betweenH1;H2 2R.U / by just d.m.1/C ;m

.2/
C /,

ignoring the left half lines, and we still obtain the same topology.
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Proof. Since we can extract the m functions m˙ from the F function, the map H 7!
F is clearly injective. It is also surjective because we can obtain an arbitrary G 2 F

as the F function of an H by simply reversing the steps that led from H to F . More
explicitly, given a G 2 F , define

mC.z/ D G.'
�1.z//; m�.z/ D �G.'�1.z//I z 2 CC: (3.2)

Clearly, m˙ 2 F , so there is a (unique) H 2 C.R/ that has m˙ as its m functions.
It is also clear, by construction, that F.�IH/D G.�/, or at least it would be if we

already knew that H 2 R.U /. It remains to verify this last claim. The limits

m˙.x/ � lim
y!0C

m˙.x C iy/

exist for all x 2 U and since x D x 2 �, they agree with what we obtain by simply
plugging z D x into (3.2). In particular,mC.x/D�m�.x/ for all x 2 U , as required.

As briefly discussed above, for any Herglotz functions Gn; G, we have Gn ! G

locally uniformly on CC if and only if Gn.z/! G.z/ uniformly on z 2K for a fixed
compact setK � CC with an accumulation point. In particular, it is now obvious that
Fn ! F if and only if m.n/

˙
! m˙, and this establishes the additional claims about

the continuity of the map H 7! F and its inverse.

Theorem 3.2. Let H 2 R.U /. Then H 2 D if and only if F.i IH/ D i .

We are here dealing with an inverse spectral problem: we want to decide whether
or not given spectral data (here, an F function) come from a Dirac operator. These
questions are classical, at least in the version for other spectral data such as spectral
measures or m functions. The foundational paper is [7]; see also [13, Chapter 12] for
a presentation of this work.

The whole area quickly becomes very technical. What is worse, to the best of our
knowledge, the characterization of the spectral measures (or m functions) of Dirac
operators with general potentialsW 2W has still not been established fully rigorously
yet, even though it is clear what the expected answer is. [7, 13] assume continuity of
the potential; [26] can handle the case � 2 L2loc, with � being an auxiliary function
that also plays a major role in the Gelfand–Levitan theory [7,10,13], but this is again
not quite the general situation, when � 2 L1loc.

Fortunately for us here, we can bypass these thorny issues almost completely since
we are interested in H 2 R.U /, which is a strong additional assumption, and thus a
much simplified version of inverse spectral theory is sufficient for our purposes. Still,
we will be content with only sketching the proof of Theorem 3.2, and we refer the
reader to the sources mentioned above and especially [22, Section 6.4] and [26] for
further details.
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Proof. One direction can be settled comfortably by recalling that Dirac m functions
satisfy m.z/! i when z ! 1 along suitable paths [5, 10]. Since '.i/ D 1, this
means that the F function of an H 2 D \R.U / must satisfy F.i/ D i .

Conversely, suppose now that this condition holds. This implies that m˙.x/ D
i C O.1=jxj/ for x 2 U . Let us focus on mC, for convenience, but of course an
analogous argument will apply to m�. We have the Herglotz representation

mC.z/ D aC

1Z
�1

� 1

t � z
�

t

t2 C 1

�
d�.t/: (3.3)

The representing measure �, which is a spectral measure for the half line operator,
is purely absolutely continuous on U since m is holomorphic there, and its density
satisfies .1=�/ Imm.x/D 1=� CO.1=x/. Since a compactly supported measure has
an entire Fourier transform, we conclude that

� � .d�.x/ � dx=�/y 2 L2loc;

and this is the sufficient condition from [26] that was already briefly mentioned above.
(We could extract more information about � from what we are given about the asymp-
totics of mC, and thus we do not really need the full force of this result.)

We conclude that � is the spectral measure of some Dirac equation on the half line
x � 0. Since � determinesmC up to the additive real constant a from (3.3), it follows
that for suitable b 2R, the Herglotz functionmC.z/C b will be them function of that
same Dirac equation. But we already have mC.1/ D i , and adding a b 6D 0 would
lead to a function that no longer satisfies this necessary condition, so mC itself is a
Dirac m function.

We can state much of what Theorem 3.2 says in more abstract style. This will also
add some perspective to concrete results we will prove later.

We introduce
R0.U / D ¹H 2 R.U / W �.H/ � U º:

It will also be convenient to have a more succinct notation available for the Dirac
operators in these spaces.

Definition 3.1. We write D.U / D D \R.U /, D0.U / D D \R0.U /.

Of course, D0.U /;R0.U / are much smaller spaces than D.U /;R.U /. Especially
for Jacobi and Schrödinger equations, such operators have been studied extensively [8,
9, 16, 25]; they are usually called finite gap operators, referring to the structure of the
spectrum in the more general situation when xU is replaced by a closed set with finitely
many gaps.
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D0.U / is a circle topologically, and R0.U / itself is homeomorphic to S3; in the
latter case, if the trivial canonical systems with constant real m functions are thrown
out, then we obtain a (non-compact) solid torus R0.U / nZŠD � S1. Please see [6]
for much more on this topic.

Theorem 3.3. ¹F.�IH/ W H 2 D.U /º � F is a compact convex set. Its extreme
points are

¹F.�IH/ W H 2 D0.U /º:

In the trW D 0 normalization, these correspond exactly to the constant Dirac poten-
tials

Wˇ .x/ D

�
sinˇ cosˇ
cosˇ � sinˇ

�
; 0 � ˇ < 2�: (3.4)

We need both defining properties of the H 2 D.U / D D \R.U / here: D is
convex, but not compact, while R.U / is compact, but not convex in an obvious way
(the vector space operations we would like to use do not extend to F �1).

Proof. Since F itself is compact, the set ¹F 2 F W F.i/ D iº is obviously compact
and convex. To find its extreme points, recall the Herglotz representation formula, in
the version

F.�/ D aC

Z
R1

1C t�

t � �
d�.t/;

with a 2 R, and � is a finite Borel measure on the compact space R1 D R [ ¹1º.
Observe that

1C t�

t � �
D

1
p
t2 C 1

�
t 1

�1 t

�
� �;

and these matrices range precisely over PSO.2/ D SO.2/=¹˙1º when t varies over
R1. Thus, we obtain a third and particularly elegant version of the Herglotz repre-
sentation formula:

F.�/ D aC

Z
Œ0;�/

Rˇ � �d�.ˇ/:

Since F.i/ D a C i�.R1/ D a C i�.Œ0; �//, the Herglotz functions with F.i/ D i
are exactly those of the form

F.�/ D

Z
Œ0;�/

Rˇ � �d�.ˇ/; �.Œ0; �// D 1: (3.5)

It is now obvious that the extreme points correspond exactly to the measures � D ı� ,
so are given by the F functions F.�/ D R� � �.
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For constant Dirac potentials, the Dirac equation can be solved explicitly and
everything can be worked out. So it is now straightforward to confirm that the poten-
tials listed in (3.4) indeed give exactly the F functions F D R� � �.

In fact, it suffices to do this calculation for (say)

W.x/ �

�
0 �1

�1 0

�
:

We find that F.�/ D �, corresponding to � D ı0 in (3.5). The remaining functions
R� � � can then be obtained by acting on this F by the rotations R� . Compare our
discussion in Section 2. In particular, this material shows that F.�/ D R� � � is the F
function of the (constant) Dirac potential

W.x/ D R�

�
0 �1

�1 0

�
Rt� D

�
sin 2� � cos 2�
� cos 2� � sin 2�

�
:

We must still show that ¹Wˇ º D D0.U /, and we sketch two possible ways of
doing this.

The first argument is quick, but relies on a standard method of parametrizing the
operators from D0.U /, which we did not discuss here. See, for example, [6, Sections 2
and 3] for this material. A comparison of the m functions obtained in this way with
the F functions F.�/ D R� � � obtained above will then confirm that we are indeed
looking at exactly the elements of D0.U /. This last step will require some stamina if
done by a direct brute force calculation. However, we can also match only F.�/ D �,
say, with an individual element of D0.U /, and then we verify that ¹R�º D SO.2/ acts
transitively on D0.U / to obtain the desired conclusion more elegantly.

Alternatively, one can show by hand that if H 2 D.U /, then spectrum in .�1; 1/
is avoided precisely if � D ı� or, equivalently, F D R� � �. Here, the first step would
be to recall that the measures of m˙ must be discrete on this set, or else there would
be essential spectrum there. Then possible discrete eigenvalues can be located using
the values of m˙ on this interval, in completely elementary (if tedious) fashion, by
using the criterion mC D m�.

It is perhaps interesting to note that Theorem 3.2 can be quickly recovered from
the first part of Theorem 3.3. Indeed, as we just discussed, it is easy to confirm directly
that F D R� � � is the F function of anH 2D.U /. So if we also know that this latter
space is compact and convex, then (3.5) shows at once that it contains all F 2 F with
F.i/ D i . Note that this argument completely avoided any explicit reference to the
machinery of inverse spectral theory.

Strictly speaking, it has established only one half of Theorem 3.2, but the other
half was much easier. Moreover, that part, too, could be deduced from Theorem 3.3
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in abstract style if we combine the identification of the extreme points of D.U / with
Choquet theory [19] and (3.5).

4. Estimates on reflectionless Dirac potentials

We now analyze in detail the Dirac potentials W 2 D.U /. The method we are going
to use goes back to Marchenko [15], and it was also presented in detail in [11]. See
also [18].

Theorem 4.1. Let H 2 D.U /, U D R n Œ�1; 1�. We use the trW D 0 normalization
for the associated Dirac potentials, so we write

W.x/ D

�
a.x/ b.x/

b.x/ �a.x/

�
;

with a; b 2 L1loc.R/ uniquely determined by H or the F function of H .
Then both a; b are real analytic, and these functions and all their derivatives

are bounded on R. They have holomorphic continuations a.z/; b.z/ to a strip
¹j Im zj < hº. Moreover,

kW.x/k D
p
a2.x/C b2.x/ � 1;

and equality kW.x0/k D 1 at a single x0 2 R holds if and only if

W.x/ �

�
sinˇ cosˇ
cosˇ � sinˇ

�
for some ˇ 2 Œ0; 2�/.

Finally, we have the formula

b.0/C ia.0/ D �F 0.i IH/: (4.1)

We just encountered these special constant Dirac potentials before, in (3.4). As
we discussed in the context of Theorem 3.3, the collection of these is exactly D0.U /,
and the corresponding F functions are the extreme points of ¹F.�IH/ WH 2D.U /º.
Now, the various pieces fit together neatly: b.0/C ia.0/ is a linear functional of F ,
by (4.1), so will assume its maximum at the extreme points of the compact convex
set ¹F º.

Proof. The part about W being real analytic has been split off as Theorem 5.1 of the
next section, and we will prove it there, in the more general version for Dirac poten-
tials satisfying Hypothesis 1.1. (The reader has already seen the still more general
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version for arbitrary canonical systems, as Theorem 1.3; this we prove in Section 6.)
It will also be convenient to discuss the boundedness of the derivatives of W in this
setting.

Also, the result looks best in the trW D 0 normalization, so we gave it in this
form, but the asymptotic analysis in Lemma 5.3 below will become slightly easier
for the normalization from Proposition 2.4. So this is what we are going to use here,
and we must then translate back to the trW D 0 normalization to obtain the result as
stated.

So, given H 2 D.U /, we will work with the (unique) associated Dirac potential
of the form

W.x/ D

�
0 q.x/

q.x/ �2p.x/

�
; (4.2)

with p; q 2 L1loc.R/.
A key role will be played by the asymptotics of mC.zIW / as jzj ! 1. By the

definition of the F function, we have

mC.'.i C h// D F.i C h/ D i C

1X
nD1

fnh
n: (4.3)

Recall that ' was given by (3.1), and '.i/D1. The power series expansion from (4.3)
is valid for jhj < 1. Its first coefficient f0 D i has been identified with the help of
Theorem 3.2. For the first equality of (4.3), we also need to stay inside the semidisk
ji C hj � 1; otherwise, F would deliver the other half line m function m�.

We can obtain more precise information on the coefficients fn from the Herglotz
representation of F . Since F.i/ D i , it reads

F.�/ D

Z
R1

1C t�

t � �
d�.t/; �.R1/ D 1: (4.4)

Lemma 4.2. We have jfnj � 1 for all n� 1. Moreover, jf1j D 1 if and only if � D ıt0
for some t0 2 R1. For n � 2, we have jfnj D 1 if and only if � D ı0.

Proof of Lemma 4.2. We may differentiate (4.4) under the integral sign. This gives,
for n � 1,

fn D
F .n/.i/

nŠ
D

Z
R1

1C t2

.t � i/nC1
d�.t/:

All claims are immediate consequences of this formula.

We now consider thesem functionsm.t I z/ � mC.zI t �W / for the shifted poten-
tials .t � W /.x/ D W.t C x/ also. (To be completely clear on this point, what we
shift is the renormalized potential with W11 � 0. This is not the same as first shifting
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the trW D 0 version from the statement of Theorem 4.1 and then changing the nor-
malization; in particular, this second version would have produced a different orbit
¹m.t I z/ W t 2 Rº. See again Theorem 2.5 for context and recall that the acting group
is non-abelian.)

We must also remember that D.U / is invariant under shifts, so t � W 2 D.U /

again [22, Theorem 7.9 (a)].
Clearly, m.t I z/ D f .t; z/ D f1.t; z/=f2.t; z/, with f D y still denoting the

unique, up to a factor, solution of (1.2) that is square integrable on right half lines.
In particular, m is an absolutely continuous function of t for fixed z 2 CC. It solves
the Riccati equation

dm.t I z/

dt
D �zm2.t I z/ � 2q.t/m.t I z/C 2p.t/ � z:

We want to analyze this equation near z D1, so we take z D '.i C h/. A calculation
using geometric series shows that

'.i C h/ D
1

h
�

1X
nD0

� i
2

�nC1
hn; jhj < 1: (4.5)

Let us split off the dominant term and write m.t I z/ D i C g.t I z/. We then have

g.t I'.i C h// D

1X
nD1

fn.t/h
n; (4.6)

with fn.t/ of course still defined as the expansion coefficient from (4.3), but now for
the function m.t I'.i C h//. The new function g solves

dg

dt
D �zg2 � 2.q C iz/g C 2.p � iq/: (4.7)

We now plug (4.6) into this and differentiate the expansion term by term. We obtainX
n�1

f 0n.t/h
n
D � z

X
m;n�1

fm.t/fn.t/h
mCn

� 2.q.t/C iz/
X
n�1

fn.t/h
n
C 2.p.t/ � iq.t//; (4.8)

and here z is short-hand for z D '.i C h/. Of course, this formal calculation has done
little towards proving (4.8) rigorously. For starters, we do not even know at this point
if the coefficients fn are differentiable. However, (4.8) is correct, and fn 2 C1.R/.
This may be established exactly as in [11] by temporarily working with the integrated
version of (4.7). Lemma 4.2 gives the uniform bounds jfn.t/j � 1, so convergence of
the various series is never an issue for (say) jhj < 1. Then we compare coefficients
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in this rewriting of (4.8), and we obtain integrated versions of the identities that we
will derive below in our lazier presentation of the argument, and then an inductive
argument will confirm that fn 2 C1. We will leave this technical matter at that and
refer the reader to the proof of [11, Theorem 4.1] for further details.

So we may now compare the coefficients of hN to obtain information about
the evolution of the fn.t/ without further misgivings. We of course use the expan-
sion (4.5) of z D '.i C h/ on the right-hand side. Start out perhaps as a quick consis-
tency check by observing that there are no terms proportional to h�1 on the right-hand
side even though this is how the expansion of z starts. Next, comparing coefficients
of h0, we find 0 D �2if1 C 2.p � iq/, so

f1.t/ D �q.t/ � ip.t/: (4.9)

This is essentially (4.1). To prove this latter formula, we must not forget that in
the statement of Theorem 4.1, we worked with the trW D 0 normalization rather
than (4.2). To go back to a traceless W , we must act by ˛.x/ D

R x
0
p.t/ dt 2 A0 on

our current W to obtain

.˛ �W /.x/ D R˛.x/W.x/R
t
˛.x/ C p.x/: (4.10)

In particular,

.˛ �W /.0/ D

�
p.0/ q.0/

q.0/ �p.0/

�
;

so a.0/ D p.0/, b.0/ D q.0/, and (4.1) does follow.
It remains to discuss the bound kW.x/k � 1. Since the set D.U / as well as the

trW D 0 normalization are invariant under shifts ofW , it suffices to consider a single
point, which for convenience we take as x D 0. We already proved (4.1), and given
this identity, the inequality is immediate from Lemma 4.2. This result also identifies
the F functions with kW.0/k D 1 as F D R� � �, and, as we already discussed in the
previous section, these correspond exactly to the potentials Wˇ from (3.4).

After this highly promising start with (4.8), it is tempting to try to squeeze more
out this equation. Comparing the coefficients of h1 produces

f 01 D �f
2
1 � 2qf1 � 2if2 � f1: (4.11)

For n � 2, we obtain

f 0n D �

nX
jD1

fjfnC1�j C

n�2X
kD0

.i=2/kC1
n�1�kX
jD1

fjfn�k�j

� 2qfn � 2ifnC1 �

n�1X
kD0

.i=2/kfn�k : (4.12)
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In fact, this formula also works for nD 1 if we interpret the empty sum
Pn�2
kD0 : : :D 0,

as usual.
The sharp estimate on kW.x/k of Theorem 4.1 came from Lemma 4.2 for n D 1.

We can use these bounds in the same way for n > 1 to estimate other combinations
of the entries of W , which will now involve derivatives. Of course, as a quick glance
at (4.12) confirms, the concrete expressions get out of hand quickly. So we will limit
ourselves to just one small illustration.

Theorem 4.3. Let W 2 D.U /, trW D 0; write W D
�
a b
b �a

�
. Then

.b2.x/ � a2.x/C b.x/C b0.x//2 C .2a.x/b.x/C a.x/C a0.x//2 � 4

for all x 2R. Moreover, equality for a single x0 2R implies that a.x/� 0, b.x/� 1.

To prove this, we proceed exactly as outlined, and since the argument is very
similar to what we just did, we will only sketch it. We can focus on x D 0. We com-
bine (4.9) and (4.11) to produce a formula for f2 in terms of p;q;p0; q0 at x D 0. Then
we use the bound jf2j � 1 from Lemma 4.2 and we transform back to a; b. This will
give the stated bound. Lemma 4.2 also says that jf2j D 1 is only possible if � D ı0,
which is the measure of the F function F.�/ D �1=�, and, as we saw earlier, the
corresponding trW D 0 normalized Dirac potential is a � 0, b � 1.

5. Proof of Theorem 1.3, Dirac version

In this section, we establish a version of Theorem 1.3 for Dirac operators. Let us give
a precise formulation of what we will prove.

Theorem 5.1. LetW 2W Œ0;1/, trW D 0. Assume thatmC.zIW / satisfies Hypothe-
sis 1.1. ThenW.x/ is real analytic. More precisely, the entries ofW.x/ have holomor-
phic continuationsW.z/ to a rounded strip S D ¹z 2C W jz � xj< h for some x > 0º.

Moreover, we have kW .n/.x/k � Bn, x � 0, for all n � 0.

The proof will also show that we have bounds Bn that depend only on r > 0 from
Hypothesis 1.1, not on W itself.

We prepare for the proof with general bounds on the Taylor coefficients of certain
holomorphic functions, which will be applied tom.z/ later. Recall our notationDr D
¹z W jzj < rº.

Lemma 5.2. For any holomorphic function f WDr ! CC, f .0/ D i , we have

jf .N/.0/j �
�3
r

�N
NŠ:
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Of course, these bounds are not sharp asymptotically for a given f whenN !1;
even without using the fact that f maps to CC, just from the lower bound r on the
radius of convergence, we already obtain jf .N/.0/j �C.qIf /qNN ! for any q > 1=r .
However, and this is the point here, the bounds of Lemma 5.2 are uniform in f .

Proof. It suffices to prove this for r D 1 since we can apply this version to g.z/ D
f .rz/ to obtain the general case. We use the conformal map

 WD1 ! CC;  .z/ D i
1C z

1 � z

to represent f D F ı , and here F D f ı �1 now maps F WCC! CC, F.i/D i .
We thus know from Lemma 4.2 and its proof that the Taylor coefficients of F.w/ �
i D

P
n�1 an.w � i/

n satisfy janj � 1. We have

 .z/ � i D
2iz

1 � z
;

so
f .z/ � i D

X
n�1

an

� 2iz
1 � z

�n
; jzj <

1

3
: (5.1)

We can find the Taylor coefficients of .1 � z/�n explicitly, for example by starting
with the geometric series and taking derivatives. We have� 1

1 � z

�n
D

X
k�0

�
k C n � 1

n � 1

�
zk; jzj < 1:

Plugging this back into (5.1) and collecting the terms contributing to zN , we find that
f .z/ � i D

P
N�1 bN z

N , with

bN D

NX
nD1

.2i/nan

�
N � 1

n � 1

�
:

In particular,

jbN j �

NX
nD1

2n
�
N � 1

n � 1

�
D 2

N�1X
nD0

�
N � 1

n

�
2n

D 2 � 3N�1;

by the binomial theorem in the last step. Since bN D f .N/.0/=N !, this implies the
desired bound.
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Proof of Theorem 5.1. As above, the argument proceeds by an analysis of the Riccati
equation that is satisfied by mC.t I z/ � mC.zI t �W /, with .t �W /.x/ D W.t C x/.
Here we will again work with theW11 � 0 normalization from Proposition 2.4. How-
ever, instead of z D '.i C h/, we can now use the much simpler map z D �1=w. We
again consider

g.t Iw/ D mC.t I �1=w/ � i:

Then, as in the proof of Theorem 4.1 (compare (4.7)), we have

dg

dt
D
1

w
g2 � 2qg C

2i

w
g C 2.p � iq/: (5.2)

At this point, for general t > 0, we can only be really certain about this for w 2 CC

so that g is defined in terms of the original m function, with no analytic continua-
tion necessary. However, and this is a key point, the shifted m functions do satisfy
Hypothesis 1.1 as well, for the same r > 0.

To see this, recall that mC.t I z/ D T .t I z/ � mC.0I z/, with T denoting the (full,
with z restored) transfer matrix. In other words, T is the matrix solution of (1.2) with
the initial value T .0Iz/D 1. By assumption,mC.0Iz/ has a holomorphic continuation

M W ¹z 2 C1 W jzj > 1=rº ! CC:

Thus, T .t I z/ �M.z/, at this point viewed as a function taking values in C1, is a
holomorphic continuation of mC.t I z/ to the punctured neighborhood ¹z 2 C W jzj >

1=rº of 1. For fixed z 2 C� [ R, the transfer matrix T .t I z/, acting as a linear
fractional transformation w 7! T .t I z/ � w, maps CC back to CC. This follows by
combining [22, Theorem 1.2], or rather the version of this result for z 2 C� [ R

and Dirac equations (which has the same proof), with [22, Lemma 3.9]. So T .t I z/ �
M.z/ 2 CC for z 2 C� [R, jzj > 1=r . This is also trivially true for z 2 CC because
then this function is simply the original m function mC.t I z/.

So we now have a holomorphic continuation of mC.t I z/ to jzj > 1=r that maps
to CC. In this situation, the isolated singularity at z D 1 is removable. We have
verified that mC.t I z/ satisfies Hypothesis 1.1 for all t � 0, with a single uniform
r > 0.

In particular, for general t � 0, we may expand

g.t Iw/ D
X
n�1

gn.t/w
n; jwj < r: (5.3)

Moreover, Lemma 5.2 applies to w 7! g.t Iw/C i for any fixed t and shows that

jgn.t/j �
�3
r

�n
: (5.4)
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As in the proof of Theorem 4.1, we now plug (5.3) into (5.2), and our plan is to
compare coefficients to extract more information. We obtainX

n�1

g0n.t/w
n
D

X
m;n�1

gm.t/gn.t/w
mCn�1

� 2q.t/
X
n�1

gn.t/w
n

C 2i
X
n�1

gn.t/w
n�1
C 2.p.t/ � iq.t//: (5.5)

Of course, this purely formal calculation is open to all the same criticisms as before.
To establish (5.5) rigorously, we really have to temporarily work with the integrated
version of (5.2). This will show that (5.5) is valid and gn 2 C1.Œ0;1//. We again
refer the reader to [11] for the details of these arguments.

By (5.4), all series converge on w 2 Dr=3 at least, for all t � 0. So we may now
again compare coefficients. Starting with w0, we find that 0 D 2ig1 C 2.p � iq/ or

g1.t/ D q.t/C ip.t/: (5.6)

Then, for general n � 1, we have the following simpler version of (4.12):

g0n D

nX
jD1

gjgnC1�j � 2qgn C 2ignC1: (5.7)

This will lead to the following bounds.

Lemma 5.3. There are C;M > 0 such thatˇ̌̌dNg1.t/
dtN

ˇ̌̌
� CMNNŠ

for all N � 0, t � 0.

Let us postpone the slightly convoluted proof of Lemma 5.3. We first explain
how we can use these bounds to finish the proof of Theorem 5.1. Using Taylor’s
theorem with the Lagrange formula for the remainder, we deduce from Lemma 5.3
that g1.t/ is represented by its power series about any t0 > 0 for t 2 .t0 � 1=M;
t0 C 1=M/, t � 0. This power series then also provides a holomorphic continuation
of g1 to the disk ¹z 2 C W jz � t0j < 1=M º. When the disks overlap, these functions
are holomorphic continuations of each other, and since the set S from Theorem 5.1 is
simply connected, we obtain a holomorphic continuation of g1.t/ D q.t/C ip.t/ to
all of S .

Since p.t/; q.t/ are real valued, we have

q.t/ D
g1.t/C g

#
1.t/

2
; p.t/ D

g1.t/ � g
#
1.t/

2i
; for t � 0,
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and the functions on the right-hand sides are also holomorphic on S . Here, we employ
the usual notation f #.z/D f . Nz/. We have shown that p; q themselves have holomor-
phic extensions to S . This is still not exactly what Theorem 5.1 claims because of the
discrepancy in normalizations. We must return to (4.10) to extract the entries a; b of
the original trW D 0 version as the matrix elements of ˛ �W . A calculation shows
that for example

a.x/ D p.x/ cos 2˛.x/ � q.x/ sin 2˛.x/;

with ˛ still given by ˛.x/ D
R x
0
p.t/ dt . It follows that a also has a holomorphic

continuation to S , as desired. Here, we can obtain the continuation of ˛ by using the
same formula for ˛.z/ and interpreting the integral as a complex line integral.

Finally, Lemma 5.3 also provides the asserted bounds on jq.n/.t/C ip.n/.t/j D
jg
.n/
1 .t/j, and then on a.n/, b.n/ as well.

To prove that these bounds can be chosen to depend on r > 0 from Hypothesis 1.1
only, as claimed in the comment following the statement of Theorem 5.1, the reader
would have to check that the upcoming proof of Lemma 5.3 produces constants C;M
that only depend on r > 0. We will not address this issue explicitly, but it is easy to
extract this extra information from the proof we are about to give.

Proof of Lemma 5.3. We differentiate (5.7) N times, using the general product rule
.uv/.N/ D

PN
dD0

�
N
d

�
u.d/v.N�d/. It will be convenient to state the result of this cal-

culation in terms of hn.N I t / D g
.N/
n .t/=N !. We obtain

.N C 1/hn.N C 1I t / D

NX
dD0

nX
jD1

hj .d I t /hnC1�j .N � d I t /

� 2

NX
dD0

q.d/.t/

d Š
hn.N � d I t /C 2ihnC1.N I t /: (5.8)

We only want bounds, so we may modify these equations. We break the procedure
into two easy small steps.

First, define constantsAn.N /> 0 for n� 1,N � 0 recursively byAn.0/D .3=r/n

and then, for N � 0,

.N C 1/An.N C 1/ D

NX
dD0

nX
jD1

Aj .d/AnC1�j .N � d/

C 2

NX
dD0

A1.d/An.N � d/C 2AnC1.N /:

Then jhn.N I t /j � An.N / for all n � 1, N � 0, t � 0.
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We can prove this claim by a straightforward induction on N . The case N D 0

is covered (5.4). In the inductive step, we estimate the right-hand side of (5.8) in the
obvious way. To bound the first term in the second line, we use (5.6), which shows that
jq.d/.t/=d Šj � jh1.d I t /j. So if we assume the induction hypothesis, this observation
lets us estimate jq.d/.t/=d Šj � A1.d/.

We can further improve this recursion by definingBn.0/D .3=r/n and then recur-
sively

.N C 1/Bn.N C 1/ D 3

NX
dD0

nX
jD1

Bj .d/BnC1�j .N � d/C 2nBnC1.N /: (5.9)

Then Bn.N / � An.N / for all n;N , as another induction on N will confirm.
Now, consider the following Cauchy problem for a function Y.w; t/ of two vari-

ables near .w; t/ D .0; 0/:

@Y

@t
D 3Y 2 C 2

@Y

@w
; Y.w; 0/ D

3

r � 3w
: (5.10)

This has a real analytic solution in a neighborhood of .w; t/ D .0; 0/, as we can
confirm by solving (5.10) explicitly, or by (unnecessarily, but more conveniently)
referring to the Cauchy–Kovalevskaya theorem [4, Theorem 4.6.2]. So there are coef-
ficients Cn.N / and a � > 0 such that

Y.w; t/ D
X
n�1

N�0

Cn.N /w
n�1tN ; jwj; jt j < �: (5.11)

Since Y.w;0/D 3=.r � 3w/, we have Cn.0/D .3=r/n. Moreover, by plugging (5.11)
back into (5.10) and comparing the coefficients of wn�1tN , we see that the Cn.N /
also satisfy the recursion (5.9). Hence, Cn.N / D Bn.N / for all n � 1, N � 0.

We can now specialize to n D 1. The B1.N / have been recognized as the coeffi-
cients of a power series with positive radius of convergence, hence B1.N / � CMN

for suitableC;M >0. This gives the bounds on g.N/1 .t/ that were stated in Lemma 5.3.

6. General canonical systems

It is natural to ask how exactly the Dirac operators D.U / sit inside the more general
canonical systems R.U /, and one simple but satisfactory answer is provided by the
natural group action of PSL.2;R/ D SL.2;R/=¹˙1º on C.R/. We have used this
action extensively already for the more specialized maps R� , and we can define it
in the same way in general. Recall that any A 2 PSL.2;R/ acts on C1 as a linear
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fractional transformation, as spelled out in (2.8), and then also on canonical systems
H 2 C.R/ by acting pointwise in this way on the m functions:

˙m˙.zIA �H/ D A � .˙m˙.zIH//: (6.1)

Then A �H is unitarily equivalent to H , and the property of being reflectionless on a
set is preserved [22, Theorems 7.2 and 7.9 (a)]. In particular, the spaces R0.U /, R.U /

are invariant under the action. Recall also that these spaces (for any Borel set U � R)
always contain the trivial canonical systemsH �P˛ . Theirm functionsm˙.zIP˛/�
� tan˛ are constant, with value in R1. Recall the abbreviation Z from (1.5) that we
use for the collection of these systems. Clearly, Z is also invariant under the action of
PSL.2;R/.

As we saw much earlier, the subgroup PSO.2/ preserves D0.U /, D.U /. So this
part of PSL.2;R/ is useless for our current purposes, and we focus on the dila-
tion/translation subgroup

G D

²�
c a=c

0 1=c

�
W a 2 R; c > 0

³
instead. Then mC.zI g �H/ D c2mC.zIH/C a. If we also recall that mC is holo-
morphic at z D 1 if H 2 R.U / and H 2 D.U / if and only if mC.1/ D i , by
Theorem 3.2, then the following result is now obvious.

Theorem 6.1. Let H 2 R.U /. Then either H 2 Z, or the orbit ¹g � H W g 2 Gº
contains a unique H1 D g �H 2 D.U /; in this latter case, g 2 G is also unique.

If, in addition, H 2 R0.U / nZ, then g �H 2 D0.U / also.

Please see also [6] for much more on this general theme of the PSL.2;R/ action
on spaces of reflectionless canonical systems.

Corollary 6.2. LetH 2R.U /. Then eitherH 2Z, or detH.x/ > 0 for all x 2R. In
this second case, we may normalize H by demanding that detH.x/ D 1. The entries
of this version of H.x/ are real analytic functions of x 2 R.

Proof. Recall that the group action (6.1) has the following effect on the coefficient
functions [22, Theorem 3.20]: .A �H/.x/ D A�1tH.x/A�1.

Now, assume that we are not dealing with one of the degenerate systemsH � P˛ .
By Theorem 6.1,H.x/DB tHd .x/B for someB 2 SL.2;R/ and someHd 2D.U /.
Since detHd D 1 was in fact our standard normalization for such Hd , it is clear that
H can be given this same property, and the representative B tHdB itself is already
normalized in this way.

Next, recall that Hd .x/ D T t .x/T .x/, with T denoting the solution of JT 0 C
W T D 0, T .0/ D 1. We know that W is real analytic (in some normalizations at
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least, including the trW D 0 version), and holomorphic differential equations have
holomorphic solutions [3, Theorem 1.8.1], hence T , Hd , and H are real analytic as
well.

Having clarified this, we can now also state the bounds of Theorem 4.1 in terms
of H directly, for general H 2 R.U /.

Theorem 6.3. Let H 2 R.U / n Z, and normalize H as usual by requiring that
detH.x/ D 1. Then

kH�1=2.x/H 0.x/H�1=2.x/k � 2 (6.2)

for all x 2 R. Moreover, equality for a single x0 2 R implies that H 2 R0.U /.

Proof. Since R0.U /;R.U /;Z are invariant under shifts, it suffices to discuss the case
x D x0 D 0. As above, we have H.x/ D AtHd .x/A for some A 2 SL.2;R/, with
Hd D T

tT 2 D.U /. We compute H 0
d
.0/ D T 0t .0/C T 0.0/. To evaluate this, write

W D
�
a b
b �a

�
. Since T 0.0/ D JW.0/, we obtain

H 0d .0/ D 2

�
�b.0/ a.0/

a.0/ b.0/

�
: (6.3)

Consider now the matrix from (6.2); call it K.x/. Since detH.x/ � 1, we have
trH 0H�1 D 0, so trK.x/ D 0 as well. It follows that the eigenvalues of K are
˙.�detK/1=2. SinceK is symmetric, this implies that kKk D jdetKj1=2. Moreover,
detK D detH 0 D detH 0

d
, and at x D 0 this equals �4.a2.0/C b2.0//, by (6.3). By

Theorem 4.1, a2C b2 � 1, with equality precisely whenHd 2D0.U /, and this holds
if and only if H 2 R0.U /.

Note that it would not do to try to run this argument in the original setting of
Theorem 4.1 because a shift t �H of an H 2 D.U / will typically no longer satisfy
.t �H/.0/ D H.t/ D 1, and thus we have left D.U /. We really need the larger space
R.U /. The issues discussed in Theorem 2.5 are again lurking behind the scenes.

We are now also finally ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. In fact, exactly the same ideas let us go from Theorem 5.1 to
its more general version Theorem 1.3. It is still true that if H 2 C Œ0;1/ satisfies
Hypothesis 1.1, then H 2 D if and only if mC.1/ D i . The argument is literally the
same as in the proof of Theorem 3.2.

Hence, as above, if an H 2 C Œ0;1/ satisfying Hypothesis 1.1 is given and
H 6� P˛ , then g �H 2 D for a unique g 2 G. We simply need to act by that g 2 G
that corrects the value at infinity, that is, we need g �mC.1IH/ D i .

Furthermore, since g maps CC back to itself when acting as a linear fractional
transformation, g �H still satisfies Hypothesis 1.1.
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The bottom line is that an H satisfying Hypothesis 1.1, H 6� P˛ , is again of the
form H.x/ D AtHd .x/A, Hd D T tT , with T solving JT 0 CW T D 0, and here W
is a Dirac potential of the type analyzed in Theorem 5.1. We conclude thatHd andH
are indeed real analytic, with holomorphic continuations to S .

The bound on H�1=2H 0H�1=2 from Theorem 1.3 is established in the same way
as the analogous claim of Theorem 6.3. Of course, since we do not have a sharp bound
here, there are no additional claims that can be made when the bound is attained.

We conclude with a few remarks on other setsU �R. Sets of the typeU D .�2;2/
and U D .0;1/ were already considered in [11], but only for Jacobi and Schrödinger
operators, respectively, not for general canonical systems. Of course, we may expect
an analog of Theorem 6.1 that lets one move from a general canonical system H 2

R.U / to one of these more specialized operators by acting by a suitable group element
A 2 PSL.2;R/, and, assuming this, [11] could then be upgraded effortlessly to the
more general setting. This is essentially correct (and see again [6] also), but only if
a smaller (than R.U /) class of canonical systems is considered. A natural choice, in
the second case U D .0;1/, say, would be to work only with canonical systems that
are bounded below. It is in fact clear that something of this sort is needed because
whether or not a canonical system can be rewritten as a Schrödinger equation is again
decided by the large z asymptotics of the m functions [12–14, 20], and a spectral
measure that is unbounded below can now certainly change the behavior ofm.z/ near
z D1 dramatically. This is also the approach already taken in [11]. Nothing like this
was needed here, for Dirac operators, because now any measure on U c D Œ�1; 1� will
only have a small effect on the large z asymptotics of m.z/.

Finally, one can consider completely general open sets U � R. Then � D CC [

U [C� will usually not be simply connected. We can work with the universal cover
'WCC ! � as a substitute for the conformal map that is no longer available. Now,
we obtain as F functions F.�IH/DM.'.�//,H 2R.U /, exactly the automorphic
Herglotz functions, that is, the functions invariant under the (Fuchsian) group G �
PSL.2;R/ of covering transformations. Though explicit calculations such as the ones
from Sections 4 and 5 may become challenging, even in relatively simple cases, it
appears that method still has potential. This will be the subject of continuing research.

Acknowledgments. We thank Max Alekseyev for help with the proof of Lemma 5.3
in the form of a Math Overflow answer.
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