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Gap labels and asymptotic gap opening for full shifts

David Damanik, fris Emilsdéttir, and Jake Fillman

Abstract. We discuss gap labeling for operators generated by the full shift over a compact
subset of the real line. The set of Johnson—Schwartzman gap labels is the algebra generated by
weights of clopen subsets of the support of the single-site distribution. Due to the presence of
a dense set of periodic orbits, it is impossible to find a sampling function for which all gaps
allowed by the gap labeling theorem open simultaneously. Nevertheless, for a suitable choice
of the single-site distribution, we show that for generic sampling functions, each spectral gap
opens in the large-coupling limit. Furthermore, we show that for other choices of weights there
are gaps that cannot open for purely diagonal operators.

1. Introduction

1.1. Prologue

Spurred by recent insights that have enabled the resolution of long-standing open
problems related to the spectra of random operators with non-trivial background [2]
and operators generated by hyperbolic dynamical systems [13], gap labeling has expe-
rienced renewed interest. This paper is about operator families that are covariant with
respect to an ergodic topological dynamical system (€2, 7, ) in which Q is a com-
pact metric space, T is a homeomorphism from €2 to itself, and u is a T -ergodic Borel
probability measure on €2. The topological structure of their spectra can be quite rich:
such spectra can be intervals, finite unions of intervals, thin or fat Cantor sets, and so
on. There is naturally an interest in connecting the topology and dynamics of the base
system with the spectra of operators. The gap labeling theorem provides one such
connection. More specifically, since each operator in question is bounded and self-
adjoint, its spectrum is a closed and bounded subset of R, so the complement of the
spectrum is a union of at most countably many open intervals. A bounded component
of the complement of the spectrum is called a spectral gap (or just a gap). Then, in
one formulation, the value assumed by the integrated density of states of the operator
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family at a given energy in a gap lies in the range of the Schwartzman homomorphism
corresponding to the suspension of the underlying dynamical system [18].

It is thus completely natural to compute the set of possible labels permitted by
the gap labeling theorem, and, having done so, it is of interest to ask whether the set
is minimal. In other words, does each possible label appear as the label of at least
one genuinely open spectral gap for some operator family generated by the under-
lying dynamics? The answer to this question is known to be affirmative anytime the
topological dynamical system is strictly ergodic (i.e., minimal and uniquely ergodic)
and enjoys a non-periodic finite-dimensional factor [1]. However, for non-uniquely
ergodic dynamical systems, it is unclear whether one should expect such a result to
remain true. Indeed, a non-uniquely ergodic system may have a dense collection of
periodic orbits, which makes it impossible for a single operator family to have all
possible gaps open whenever the set of possible labels is dense in the interval (0, 1).
On the other hand, for some mixing systems with connected phase space, such as the
doubling map [13], hyperbolic toral automorphisms [14], and certain affine automor-
phisms of suitable connected topological groups [11], it is known that the label set is
not dense and indeed is as small as possible, namely, it is given by Z. Consequently,
in those settings, one can open all possible gaps allowed by the gap labeling theorem
for the trivial reason that absolutely no gaps whatsoever are allowed.

The full shift over a compact space enjoys a cornucopia of invariant measures,
making it a natural starting point for investigating the framework in the non-uniquely
ergodic setting. In view of this discussion, the current manuscript aims to establish the
following results in the Johnson—Schwartzman framework for full shifts over compact
alphabets.

* Compute the set of possible (Johnson—Schwartzman) labels corresponding to shift-
ergodic measures whose topological support is the full shift. In view of Johnson’s
theorem [ 18], this is precisely given by intersecting the Schwartzman group of the
underlying dynamical system, which we denote by &(2, T, i), with the interval
(0, 1). For a precise definition, see Section 2.2.

* Demonstrate that, for some choices of a full shift and a fully supported shift-
ergodic measure, all possible labels appear as labels of genuinely open spectral

gaps.

* Moreover, in those same cases, for generic sampling functions, each spectral gap
opens in the large-coupling limit.

* However, for other choices of the (fully supported) ergodic measure, there are
possible gap labels that nevertheless cannot appear as the label of an open gap for
any diagonal operator family over the given base dynamics.
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1.2. Results

To set notation and state results, suppose (Lo is a Borel probability measure with com-
pact topological support supp o =: 4 < R. Put

Q= AL = {(wn)nez : wy € Aforeveryn € 7},
let T: 2 — Q2 denote the shift
[Tw]n = Wp+1,

and let u = ,uOZ denote the product measure. We will refer to (2, T, i) as the full shift
generated by (+, (o) (or the full shift over A when [ is clear from context).

Given a pair of continuous functions q: 2 — R and p: 2 — Ry, the associated
dynamically defined Jacobi matrices J, = Jq p.» act on £2(Z) by

[o¥](n) = p(T" @)Y (n = 1) + (T ")y (n) + p(T"0)yr(n + 1).  (1.1)

Since p is ergodic, there is a set Xg p = g (2, T, ) such that 0 (Jq,p.0) = Zg.p
for p-a.e. w € 2. We denote the integrated density of states of the family {J4 . }wen
by kq,p. The case p = 1 leads to an ergodic family of Schrodinger operators, which
we denote by Hg  := J4,1,0. We direct the reader to Section 2 for a more thorough
discussion.

If one chooses the sampling functions to be q(w) = wp and p = 1, the corre-
sponding ergodic family is the Anderson model with single-site distribution (¢, and
its spectrum is (almost surely) given by the expression [20]

S=A+[22]={x+y:xeAand —2 <y <2}

From this, one knows that the spectrum consists of compact intervals of length at
least four, separated by finitely many open gaps, and one can (given ) compute
these quantities. This explicit expression for the spectrum is particular to this choice
of sampling function. However, (€2, 7, i) is a topological dynamical system to which
the gap labeling theorem applies, so it is natural to compute its Schwartzman group
&(€2, T, n) and hence the set of allowable labels to see what other spectral gaps may
arise for different choices of g and p.

Definition 1.1. The following definitions establish the framework needed to formu-
late the gap labeling theorem for the full shift.

(a) If W C R, then Z[W] denotes the algebra generated by W, that is, the small-
est algebra containing . For a single 8 € R, we abuse notation slightly and
denote Z[B] = Z[{B}] which then consists of all numbers of the form p(8)
where p is a polynomial with integer coefficients.
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(b) IfY isatopological space, one says that C C Y is clopen if C is both closed
and open. We denote by clop(Y') the collection of clopen subsets of Y.

(¢) Ifvisameasure onaset S and & is a collection of measurable subsets of S,
then
v(P) ={v(P): P e P}.

Likewise, if ¥ is a collection of integrable functions, we write
v(f")z{/fdv:fe?}.

With these preliminaries, we can formulate the conclusion of the gap labeling
theorem for the case under consideration: the Schwartzman group is precisely the
algebra generated by weights of clopen subsets of the support with respect to the
single-site distribution.

Theorem 1.2. Let A C R denote a compact set, jig a Borel probability measure with
supp jto = A, and consider the product space (2, T, ;) where Q@ = A%, u = u%,
and T denotes the shift [Twl, = wpy1. Then the Schwartzman group of (2, T, 1) is
given by

G(2, T, n) = Z[po(clop(+))].

Remark 1.3. Let us emphasize that #4 is viewed as a compact topological space in
the relative topology that it inherits as a subset of R, and thus clop(s4) should be
understood as the set of subsets of «# that are both relatively closed and relatively
open.

We also mention that, in the cases when both can be computed, this agrees with
the labels that are computed via K-theory; see [8, Theorem 4.6].

Corollary 1.4. In the setting of Theorem 1.2, &(Q2, T, u) = Z if A is connected.

Remark 1.5. By the gap labeling theorem, the integrated density of states associated
with a given ergodic family assumes values in the set @ N (0, 1) in spectral gaps [14,
16,18]. In particular, if © = Z, then @ N (0, 1) = @ and there can be no spectral gaps,
so the almost-sure spectrum of any ergodic family with base dynamics (€2, 7, i) is an
interval whenever Corollary 1.4 is applicable.

Once the set of possible labels has been identified, one would like to know whether
it is minimal. Put differently, having identified a set that is guaranteed to be a superset
of all possible labels, it is then of interest to determine whether every element of
the putative label set occurs as the label of a genuine open gap. To that end, given a
possible label

Le®y=6y(R,T,u:=6(R2,T,1NO,1),
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we say that X, , has an open gap with label £ if there is a bounded component / of
R\ Xg4.,p such that kg ,(E) = £ for E € I, where kg, denotes the integrated density
of states (see Section 2). We then denote

OGracobi (Z) = OGJacobi(Q T, e, 6)
= {(q,p) € C(2,R) x C(2,Rxp) : Tq4,p has an open gap
with label £}.

For the Schrodinger and diagonal operator families, we also may consider

OGSchr(E) = OGSchr(Q’ Tv M, 6) = {q € C(Q’ R) . (q’ 1) € OGJ&CObi(e)}’
OGuiag(€) = OGuyiag($2, T, 1, £) = {q € C(2,R) : (q,0) € OGyaconi(€)}-

Let us note that various quantities such as X, , and OG,({) depend on the base
dynamical system (€2, 7, i), but we leave it out of the notation when it is clear from
context.

Now, one can ask whether the label set & is minimal in two senses.

o Weak sense. Is OGyyeopi (£) non-empty for each £ € ©¢? If so, how large is it (in,
say, the topological sense)? What about OGsch(£) and OGgiag (£)?

»  Strong sense. Is AGOjacobi = AGOjaconi(2, T, 1) 1= ﬂie@o OGyacobi (2, T, 1, £)
no-nempty? If so, how large is it (in, say, the topological sense)? What about the
analogous sets

AGOsen = AGOsen(Q, T, 1) := () OGsene(Q, T, 1, £),
LeGq

AGOdiag = AGOdiag(Q T, ,LL) = ﬂ OGdiag(Q , T, ", 6)9
(G@Q

We explicitly single out the strong version of the question since this is often what
is pursued in the context of strictly ergodic base dynamics.

* ConsiderQ =T :=R/Z, T : w — w + « (with « irrational), which has a unique
invariant Borel probability measure p given by Lebesgue measure on T. For this
ergodic system, the set of possible labels is ©¢g = (Z + «Z) N (0, 1). The Dry Ten
Martini problem is then equivalent to asking whether g, € AGOg,, (T, - 4 o, Leb)
for every A # 0, where

qr(w) =24 cos(2rw).

This has been studied by many people over the years [3,4,9,10,21,23,26].

* Another recent success shows a similar result for arbitrary Sturmian subshifts.
Given o € T irrational and p € T the corresponding lower and upper mechanical
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words are given by
Sa,p(n) = X[l—a)(na + p), S(Iy,p(n) = X(l—a](”a +p),

and the Sturmian subshift with slope « is given by Q4 = {sa,p: p € T} U {5, , :
p € T}. Equipping 2, with the shift transformation, 7, it is well known that
(Rg, T) is strictly ergodic [24]; denote by u the unique invariant Borel proba-
bility measure. In the present terminology, Band, Beckus, and Loewy show that
a, given by gy (w) = Awg lies in AGOse, (24, T, i) for every A > 0 [7], which
extends previous work of Raymond [25] (see also [6]).

* Once we consider a general strictly ergodic system, it is reasonable to ask about
typical sampling functions rather than explicit sampling functions. In that context,
Avila, Bochi, and Damanik showed that for any strictly ergodic dynamical sys-
tem having a non-periodic finite-dimensional factor, AGOg,p, contains a dense G
subset of C(£2,R) [1], with a similar result due to Damanik and Li for AGOjyacobi,
see [17].

In the setting of a full shift over a non-connected alphabet, it is quite natural to ask
these questions. However, one can quickly observe using the presence of a dense set
of periodic points that there is no sampling function g such that the associated family
of ergodic Schrodinger operators has all gaps open simultaneously. We thus have the
following observation in the current setting.

Theorem 1.6. For the full shift over a non-connected alphabet, AGOg.p,, = 0.

However, for certain choices of the measure on the underlying system, one can
open all gaps for diagonal operators. For generic Schrédinger operators, each gap
opens in the large-coupling limit.

Theorem 1.7. Let A = {0,1,2,...,m — 1}, let yo be given by uo({j}) = 1/m for
each j € A, and let (2, T, |L) be the full shift generated by (A, [Lo).
(a) For generic a € C(y, R), each gap opens in the large coupling limit. That
is, there is a dense Gg set § C C(2,R) such that for each ¢ € § and every
L € Gy, there exists Ao(q, L) such that Aq € OGgen:(£) for all A > Ao(q, £).

(b) OGSchr(K) 7'5 ﬂfor alll € @0.
© AGOdiag # 0 and AGOjyconi # 9.

Once one understands that in some cases all possible labels can appear whereas
in other cases some labels are forbidden, it is natural to ask what are the sets of labels
that appear as labels of genuine open gaps. We emphasize that in the setting of strictly
ergodic base dynamics with a non-periodic finite-dimensional factor, the answer to
this question is trivially &g by [1]: generic sampling functions have all possible gaps
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open. Thus, the non-uniquely ergodic setting offers a chance to observe genuinely
new behavior.
Concretely, let us consider

JL = JL(Q, T, /L) = {E (S @0 : OGjacobi(Q, T, /L,f) 75 @},
SL = SL(Q.T, ) = { € &g : OGsenr($2. T, 1, £) # 0},
DL = DL(L, T, n) = {E € Gy OGdiag(Q, T,M,Z) 75 0}

Theorem 1.8. Forany (2, T, 1),
DL € SL C JL C @,.

We can show that in some cases, at least one of these inclusions is strict.

Theorem 1.9. Let A = {0, 1}, and let g be given by 11o({0}) = B and po({1}) =
1 — B with B transcendental. For the full shift generated by (A, i), there exists
L € ©&q such that OGyiag(€) = 0, that is, DL G &,.

Remark 1.10. Theorem 1.9 and its proof suggest some interesting questions.

(a) The approach we employ shows that for the examples we produce, there is
some label allowed by the gap labeling theorem for which there cannot be any diago-
nal ergodic family realizing that label as the value of the integrated density of states
on a genuinely open spectral gap. In view of Theorem 1.8, if a gap with label £ can
be opened with a diagonal operator, then it can also be opened for Schrédinger and
Jacobi operators. However, the converse does not necessarily hold, so the conclusion
of Theorem 1.9 does not preclude the existence of an ergodic family of Schrodinger
operators having a spectral gap with the label produced by the theorem. Is it true that
SL € &y in the setting of Theorem 1.9? More broadly, can one produce an example
of a dynamical system such that there is a possible gap label for which there is no
Schrodinger family exhibiting an open spectral gap with that label?

(b) The approach to gap labeling via the Schwartzman group (as well as the
approach via K-theory) realizes the set of possible gap labels by intersecting a group
with the interval (0, 1), so any integer linear combination of possible labels that hap-
pens to belong to (0, 1) is again a possible label. However, it is not obvious to the
authors that set of values that could in principle be assumed by the integrated den-
sity of states of an ergodic family of Schrodinger operators in spectral gaps needs
to possess such an arithmetic structure. Indeed, this is exactly the mechanism that is
employed in the proof of the theorem to produce a label that cannot be realized by
any family of diagonal operators.

(c) We also remark that questions about DL in particular are most interesting in the
setting of dynamics on a totally disconnected space. For instance, if €2 is connected
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and p is a fully-supported T-ergodic Borel probability measure on €2, it is not hard to
see that DL(Q2, T, u) = @.

The outline of the paper is as follows. In Section 2, we recall background informa-
tion about ergodic operators and the gap labeling theorem. Section 3 computes the set
of labels associated with the full shift, in particular proving Theorem 1.2. In Section 4,
we discuss results in which gaps can be opened, and we prove Theorem 1.7. Section 5
discusses obstructions to gap opening and contains the proofs of Theorems 1.6, 1.8,
and 1.9.

2. Background

2.1. Ergodic operators

Let us briefly recall the main objects. We direct the reader to [12, 15] for proofs and
further discussion about ergodic operators and [22] for background on spectral theory.
We define a topological dynamical system to consist of a pair (2, 7') in which
is a compact metric space and T: Q2 — €2 is a homeomorphism; in particular, we
consider invertible dynamics. A Borel probability measure on €2 is called T -invariant
if w(T~'B) = u(B) for all Borel sets B and T-ergodic if it is T-invariant and any
T -invariant measurable function is p-a.e. constant. We adopt the convention

supp u = 2,
which is standard in the current setting and is also non-restrictive, since the restriction

of u to supp p is then a fully supported ergodic measure on the topological dynamical

system (supp i, T |supp 10)-

Given a topological dynamical system (€2, 7) with an ergodic measure u, an
ergodic family of Jacobi matrices is defined by a choice of ¢ € C(2,R) and p €
C(£2,R5y) and given by (1.1), that is,

[Jo¥](n) = p(T" o)y (n = 1) + a(T"0)y () + p(T"0)yr(n + 1), ¢ € L2(Z).

We also write V,, for the potential V,,(n) = q(T"w).
With setup as above, there is a set ¥ = X , such that

U(Jq,p,a)) =3, M-a.e. w € Q.

We call X the almost-sure spectrum of the family {J,}yeq. The density of states
measure, K = Kq_p, is defined by

/hd/c =/(50,h(Jw)80)d;L(w), he C(R).

Q
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The integrated density of states, k = kg (Which depends on the base dynamics
(2, T, u) as well as the sampling functions g and p), is the accumulation function
of k:

KE) = [ xcomprdr

2.2. Johnson-Schwartzman gap labeling

Let us describe the Johnson—Schwartzman approach to gap labeling; see [12] or [14]
for proofs and further discussion. Given an ergodic topological dynamical system
(2, T, ), its suspension is denoted by (X, 7, v). The space X is given by

X =QxR/~, where(T"w,t) ~(w,t +n)foroeQ,teR, nelZ,

or sometimes (equivalently) X is represented as €2 x [0, 1]/ ~, where the relation is
given by (w, 1) ~ (Tw, 0). The R-action (on the first realization of X)) is defined by
°([w,t]) = [w, s + t] and the suspended measure v is given by

1
/ﬁw=!!ﬂwﬂwmmm.

X

Given a continuous function ¢p: X — T = R/Z and x € X, one can lift the function
$x:t — (' x) to a continuous map ¢: R — R satisfying ¢, mod Z = ¢. The limit

rot(¢; x) = lim ¢x—(t)
t—oo
exists for v-a.e. x € X, is v-a.e. constant, and only depends on the homotopy class
of ¢. Denoting by C#(X, T) the set of homotopy classes of maps X — T, the induced
map 2,: C*(X, T) — R given by sending the homotopy class of ¢ to the v-almost-
sure value of rot(¢; x) is called the Schwartzman homomorphism (named after [27])
and its range is a countable subgroup of R, known as the Schwartzman group, denoted

G(Q, T, n) = Ay (CHX, T)).

Johnson’s gap labeling theorem [16,18] asserts that the integrated density of states,
k, assumes values only in the Schwartzman group for energies in the spectral gaps of
the ergodic family, that is,

ke po(E) € &(R2,T,n), forall E€R\ Xg ;.

Here we observe that the quantity k4, (E) depends on g and p, but the set G(2, T, 1)
does not.
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3. Gap labeling for full shifts

Given that the Schwartzman group is characterized as the range of the Schwartzman
homomorphism on homotopy classes of maps, the first step is to find a suitable set of
representatives of C#(X, T). Given g € C(2, Z), one defines g € C(X, T) by

g(w,t]) =t -gw)ymodZ, (w,t) e Q x][0,1].

It turns out that this captures all continuous functions X — T modulo homotopy,
which in turn allows one to fully describe the Schwartzman group as the set of inte-
grals of continuous integer-valued functions against the ergodic probability measure.

Theorem 3.1. Assume A C R is compact, o is a probability measure with supp (Lo =
A Q=A% n= MOZ, and T denotes the shift on Q. Let (X, T, V) denote the suspen-
sion of (2, T, ).

(a) Every h € C(X,T) is homotopic to g for some g € C(2, 7).
(b) Foreach g € C(2,7),
A (g) = / gdu.
Q

(c) Consequently,

Proof. (a) Let h € C(X, T) be given. Since A C R, the map ¢: Q2 — T sending w
to h([w, 0]) is nullhomotopic. In particular, by [12, Proposition 3.9.9], there exists
¢ € C(2,R) such that

7(¢(w)) = h([w,0]) forall w € 2,

where 7: R — T denotes the canonical quotient map.
For each w € 2, the map ¢t — h([w, t]) gives a continuous function [0, 1] — T,
so it lifts to a unique continuous function ¢ + @;(w) € R such that

(@1 (@) = h([w.1]). and go(@) = @().

By uniform continuity of /4, one can check that (w, t) — @;(w) is (uniformly) contin-
uous on 2 x [0, 1]. Furthermore, since

n(¢1(@)) = h([w, 1]) = i([Tw,0]) = 7(@o(Tw)),

we see that g(w) := ¢1(w) — @o(Tw) is a continuous integer-valued function. Since
h is homotopic to g, we are done with (a).
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(b) Given g € C(2,Z) and x € X, consider ¢ () = g(z" x) and the corresponding
lift ¢. From the definition of g and Birkhoff’s ergodic theorem, one has

i Pw,0] (1) - ;
im —————= = lim — E g(T’'w)= | gdu
]_

for p-a.e. . Since ¢y 51(f) = Pjw,01(s + 1), the previous statement yields the desired
conclusion.

(¢) This follows from (a) and (b). ]

Definition 3.2. We call E C Q a clopen rectangle if there are n € Z, k € N, and
clopen sets B; C o forn < j < n + k such that

E={weQ:w € Bjforalln < j <n+kj.

Defining B; = A for j <n and j > n + k, we can also write this as
e=]]5.
JEZ
Let CR(€2) denote the set of all clopen rectangles in 2.

Proposition 3.3. Every non-empty C € clop(S2) can be written as a disjoint union of
finitely many clopen rectangles.

Proposition 3.3 will follow from a finite-dimensional version and some basic facts
about the product topology. We expect this is well known, but we were unable to find a
reference in this formulation, so we give a proof to keep the paper more self-contained.

Lemma 3.4. Suppose that A1 and A, are compact metric spaces, and denote B =
A1 X Ay, Then, every non-empty C € clop(8B) can be written as a disjoint union of
finitely many clopen rectangles.

Proof. Let C € clop(8) be given, and let rj: 8 — +A; denote the coordinate projec-
tions. Note that both 7r; and 7, map closed sets to closed sets, open sets to open sets,
and hence clopen sets to clopen sets.

Let us introduce some notation. Given a = (a1, az) € 8B, define the associated
sections of C by

Ci = m(C Ny ({az))) = {s € A1 : (s,az) € C},
Cza =m(C N ﬂl_l({al})) ={t € Ay : (a;,t) € C}.

Claim 3.4.1. For eacha € 8, C{ and C§ are clopen.
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Proof of Claim 3.4.1. Without loss of generality, consider j = 1. Since C is closed,
5 is continuous, and 1 maps closed sets to closed sets, C{ is closed.

To see that C{ is open, assume s € C{. Then (s, a) belongs to C, so, since C
is open, there is a basic neighborhood U x V of (s, a5) contained in C. This, in turn,
implies U C C{, whence C{ is open. ]

Now, let x = (x1, x2) € C be given. We will show that x can be enclosed in a
clopen rectangle contained in C. As a first step, we show that x can be separated from
any element of the complement of C by a clopen rectangle.

Claim 3.4.2. Forany y = (y1, y2) € 8\ C, there is a clopen rectangle R = R(y)
containing x that does not contain y.

Proof of Claim 3.4.2. Such a clopen rectangle is supplied by

Ci x Ay if (y1,x2) ¢ C,
R(y) = § A1 x CF if (x1,y2) ¢ C,
Cly X Czy otherwise.

Claim 3.4.3. There exists a clopen rectangle R containing x such that R C C.

Proof of Claim 3.4.3. Suppose not. Then R \ C is non-empty for every clopen rectan-
gle R containing x. Since the intersection of finitely many clopen rectangles is again
a clopen rectangle, it follows that

R(x) ={R\ C : R is aclopen rectangle containing x}

is a collection of compact subsets of B having the finite intersection property, which

implies
[(VR\C #0.
ReR(x)
which in turn contradicts Claim 3.4.2. [

The argument thus far shows that for every x € C, there is a clopen rectangle
R = R(x) with x € R C C. This shows that C may be written as a union of clopen
rectangles. By compactness, C may be written as a finite union of clopen rectangles.
Finally, one can use induction and the identity

(R] X Rz) U (Sl X Sz)
=[(R1NS1) x (Ry U S)] U [(R1\ S1) X RoJ LU [(S1\ Ry) X S2]

to show that any finite union of clopen rectangles may be represented as a finite dis-
joint union of clopen rectangles. ]
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Proof of Proposition 3.3. Suppose C € clop(£2) is non-empty. For each w € C, there
is a basic open set U(w) = [[,, Un(w) containing @ and contained in C, where each
Uy, (w) is open and Uy, (w) = # for all but finitely many n. By compactness, we can
choose o, ..., w™ € C so that

C = JU@W).

Jj=1

Choose N large enough that Uy, (w/)) = s for all |n| > N andall 1 < j < m,
let my: Q2 — AN>N} denote the projection onto coordinates in [—N, N], and note
that

Cy :=7npn (C)
is clopen in sA{=N--N},
Claim 3.4.4. We have
C = 73" (Cw).
Proof of Claim 3.4.4. Since Cy = ny(C), we immediately get
' (Cy) = my' (v (C)) 2 C.

For the other inclusion, assume w € T[;]l(c ~). By definition, there is some o’ € C
such that w, = w,, for all [n| < N. Choose 1 < j < m so that w’ € U(a)(j)). Since
wp = @), for [n| < N and U, (@) = 4 for |n| > N, it follows that w € U(w)) C C,
as desired. ]

Now, given w € C, applying Lemma 3.4 (and induction), we get a clopen rectangle
R_yx---x Ry CCyx

containing 7y (w). Extending R; = # forall |j| > N gives a clopen rectangle in
containing w and contained in C. As in the proof of Proposition 3.3, this expresses
C as a union of clopen rectangles, which can be first reduced to a finite union via
compactness and then decomposed into a disjoint union by algebraic considerations.

]

Proposition 3.5. Z[u[CR(2)]] = Z[uo[clop(4)]].

Proof. If & € CR(£2), we can write
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where each B; C # is clopen and all but finitely many are +. From this, one sees
W(E) € Z[uo[clop(s)]]. Thus,

Z[[CR()]] € Z[polclop(A)]].

On the other hand, for any B € clop(+), the set E = {w € Q : wg € B} belongs to
CR(2) and satisfies u(E) = wo(B). Therefore, pg[clop(+A)] € u[CR(£2)] and the
corresponding inclusion holds also for the algebras they generate, which completes
the proof. ]

Proof of Theorem 1.2. Since the characteristic function of any & € CR(2) is a con-
tinuous integer-valued function, we have u(CR(R2)) € u(C(2, Z)) and hence

Z[u(CR(2))] € u(C(2,Z)).

On the other hand, any f € C(£2, Z) can be written as

f=Y_ mxc,

méeRan(f)

where C,, = f~![{m}]; note that C,, is clopen for every m and is empty for all but
finitely many m. For each m with C,,, # @, we can write it as a disjoint union of clopen
rectangles by Proposition 3.3. This shows that [ f du belongs to Z[(CR(£2))], and
thus

Z[(CR(2))] = n(C(2.Z)). (3.1

Combining (3.1) with Theorem 3.1 and Proposition 3.5, one has
G(R.T, ) = u(C(Q,Z)) = Z[(CR(2))] = Z[po[clop(A)]].
as promised. |
Remark 3.6. When # is finite, a cylinder set is a set of the form
Bur ={we AL ol =u)

where u is a finite word, and I = [a, b] N Z denotes an interval in Z. Then, every
cylinder set is a clopen rectangle; indeed, writing ¥ = ug ---up, R, = {u,} fora <
n < b and R,, = A otherwise, one has

Ewi= []Rn
nez

Moreover, every clopen rectangle is a union of disjoint cylinder sets. Concretely, if R
is a clopen rectangle, we may write

R=T]Ra

nez
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where every R, is clopen and choose N for which R, = «4A for [n| > N. Denoting
P = nlnlsN R, we get
R = I_l Ew,[-N,N]-

weP

In particular,
{measures of clopen sets} = {measures of finite disjoint unions of cylinder sets}.
Theorem 3.7. Suppose (2, T, ) is a full shift over a compact alphabet A C R. Then
DL = u(clop(2)) N (0, 1).

Equivalently, for £ € ©g, OGgiag(£) # @ if and only if there is a clopen set E C Q
with u(8) = L.

We will need the following stability result.

Lemma 3.8. Suppose (2, T, u) is an ergodic topological dynamical system with
supp u = Q and (q,p) € C(2,R) x C(,Rxg) is such that the family {Jq p.o}
has an open spectral gap I with label L. If

1
|1, 3.2)

lad—alloo +2[p =P lloc < 3

then {Jq' p .} also has an open spectral gap with label (.

The proof of the lemma uses a well-known perturbative fact about the spectrum.
For compact A, B C R, one defines the Hausdorf{f distance between them by

du(A, B) = max{sup d(a, B),sup d(b, A)}
acA beB
=inf{e >0: A C U (B)and B C U,(A)},

where Ug(S) = {x € R : |x — y| < e for some y € S}. For any bounded self-adjoint
operators S, T', one has

du(0(S),0(T)) =S —T]|. (3.3)
See [19, Theorem V.4.10] or [15, Lemma 5.2.4] for a proof.

Proof of Lemma 3.8. Let E, denote the midpoint of 7, and choose w in the full-
measure set for which

. 1
kq,p(E*) = Nh_rfloo NTrX(—oo,E*](Jq,p,wX[O,N—l])y 3.4

. 1
kq’,p’(E*) = ngnoo NTI' X(—oo,E*](Jq’,p’,wX[O,N—l])- (3.5
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Assumption (3.2) together with (3.3) implies that there is an open interval I’ contain-
ing E, in a spectral gap of {J4/ 1/ »} and moreover that

Tr x (~00,E.1(Ja,p,0 X10,N—11) = T Y (~00,E,1(Jq,p/,0 X[0,N—1])
for every N € N. Together with (3.4) and (3.5), we see that
ke v.w(E) =kqpw(E)=4{ forallE el
as promised. |

Proof of Theorem 3.7. Assume E C Q is clopen and has measure 0 < £ < 1 (i.e.,
E #0,Q). Take g = 1 — yg = xqo\z, and consider the diagonal family {V «}.
Considering a finite cutoff V ,, v, we see that V; ,, y has eigenvalues 0 and 1, whose
normalized multiplicities converge (almost surely) to £ and 1 — £, respectively.

Conversely, assume £ € DL, and choose g € C(£2, R) such that {V; 4 }weq has an
open spectral gap (£, EZ') with label £. Then, E = {w € Q : q(w) < E } is clopen
and one has k(E) = u(E) for E € (E[,EZ) [

4. Opening gaps

Fixm € N, let A, ={0,1,2,...,m — 1}, and let 1o be a fully supported probability
measure on ,,. Let us denote the full shift generated by (A, o) by (2, T, ).
Given an w € €2,,, we denote its 7 -orbit by

Orb(w) ={T"w:n€Z} C Qm

and say that @ is T-generic if Orb(w) is dense in €2,,. For a given ¢ € C(2, R),
let 34 denote the p-almost sure spectrum of the family of ergodic Schrédinger oper-
ators {H, ). Using strong operator convergence, we have ¥, = 0(Hg ) for any
T-generic w € Q.

On account of (3.3), the map sending q € C(Q2m,, R) to X4 € R is Lipschitz
continuous with respect to the uniform metric on the domain and the Hausdorff metric
on the codomain, that is,

du(Zq,. 2q5) < a1 —q2llee.  G1.92 € C(Q2m. R).

Denote the discrete Laplacian on £2(Z) by A, that is,

[AY](n) = Y (n = 1) + ¢ (n +1).
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Since Hg,p = A + V40, |A|| =2, and 6(V4,0) = Ran(q) for T'-generic w, one has
du(Zq,Ran(q)) < 2, which gives

5 € UaRan(a)) = (J[0(@) —2.4(w) +2] @.1)
weR
and
¥4 Na(w) —2,q(w) + 2] # 0 forevery w. 4.2)

Theorem 4.1. For Baire-generic ¢ € C(Q2,,R), and every N € N, there exists Lo =
Ao(q, N) such that ¥4 has at least N connected components for every A > Ao.

Indeed, the generic subset contains any a for which Ran(q) has infinitely many
connected components.

Proof. For each N, let Oy € C(2;,, R) consist of those g for which Ran(q) has
at least N connected components. Equivalently, @ € Q u if and only if one can find

pairwise disjoint closed intervals Iy, ..., Iy such that
N
Ran(q) C U I;, Ij NRan(q) # @ for every j. 4.3)

j=1

Note that (4.3) remains true if q is replaced by Aq and /; by AI;.
Combining (4.3) with (4.1) and (4.2), one obtains

N
Zie € UMa(@) =2, 20(0) +2] € | U:(11))

j=1

and
Y g N Uz(AI}) # @ for each j.

Choosing A large enough, the U,(A/;) are pairwise disjoint, so X4 has at least N
connected components.

Since each Qn is open and dense, their intersection is a dense Gg set with the
desired property. ]

Remark 4.2. In fact, the only feature of €2, that is used in the previous proof is
its total disconnectedness, so the conclusion of Theorem 4.1 holds with (2,,, T, )
replaced by any topologically transitive dynamical system with totally disconnected
phase space and fully-supported ergodic measure.

Using the construction from the previous proof, we can establish Theorem 1.7. In
the course of the proof, we will need the following notions: a function q: 2,, — R is
locally constant with window I C 7 if I is finite and

ol =o'l = q(w) =q().
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Without loss of generality, one can always choose I to be an interval. Observe that
any locally constant q is continuous on £2,, and the set of locally constant functions
is dense in C(2,,, R), for instance, by the Stone—Weierstrass theorem.

Proof of Theorem 1.7. To begin, apply Theorem 1.2 to see that the Schwartzman
group associated with (2, T, i) is precisely Z[1/m] = {j/m" : r € Z4, j € Z};
so in this scenario,

Co={j/m :reZs 1 <j<m" —1}.

(a) Foreachr € Z4, let S(r) € C(2,,, R) denote the set of g for which all gaps
of the form j/m" open for sufficiently large A, that is, @ € S(r) if and only if there
exists Ag = Ag(q, r) such that Aq € OGgc(j/m") for all A > Ag(q, r) and every
1 < j <m" — 1. By the Baire category theorem, it suffices to show that S(r) contains
a dense open subset of C(£2,,,R) foreachr € Z .

Let S’(r) denote the set of locally constant g € C(£2,,, R) with window of length
r taking m” distinct values. In other words, for some n € Z one has

¢(@) =a(@) &= wptj =wyy; forall0<j <r-1.

For each q € §'(r), let §(q) = min{|q(®) — a ()] : a(®) # a(w’)}/4. We claim that

urn =) U B@.sa)

R=r qeS’(R)

is open, dense, and contained in S(r). Indeed, U(r) is a union of open sets, hence
open. To see that U(r) is dense, notice that any g € C(£2,,) can be perturbed to a
locally constant function with window I having length at least r, and then perturbed
again to a locally constant function with window I taking m*! distinct values.

To see that U(r) € S(r), let ¢ € U(r) be given and choose R > r and G € S’(R)
such that ||g — G|loo < 6 := 6(§). Without loss of generality, assume g has window
I = [0, R — 1] N Z, write the distinct values of G as v; < -+ < v,, &, and note that

8:Zmin{vi+1—vi:1§i <mR—1}.

For p-a.e. w € Q,, the operator V3 ,, has spectrum {v; : 1 < j < m®} and hence has
m® — 1 open spectral gaps. It follows from the definitions that

KE)= Lo Ee(uup)1=j=mf-1.

where k denotes the integrated density of states associated with the operator family
{V&,w } WERy -
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Now, consider the Jacobi operator Aq o, » = eA + V4, as well as its restriction to
{0,..., N — 1}, which we denote by A4, ¢ n. Choosing 0 < & < §/4, we may deduce
the following conclusions from eigenvalue perturbation theory of Hermitian matrices:
the eigenvalues of A4 ¢ n all lie in the disjoint union

mR mR 3 3
K=||lv—2e—8.v; +2e+ 6 C | |[vj_55,vj +55],
j=1 j=1

and furthermore, the number of eigenvalues of Aq o ¢~ in [v; —38/2,v; + 38/2] is
the same as the multiplicity of the eigenvalue v; of the matrix V5 4 n.

Synthesizing the observations in the previous paragraph, we see that (v; + 3§/2,
vj4+1 — 38/2) is (contained in) an open spectral gap of A4, and that the IDS of
the family {Aq v ¢}wen,, takes value j/m® in that spectral gap. Thus, we have that
Hg =6 "Aq0e = A+ e 'V, has an open spectral gap containing the rescaled
interval 7! - (v; 4+ 38/2,v;41 — 38/2) with the same label j/m®. In particular, Aq €
OGse(j/m") forall1 < j <m” —1andall A > 457!,

(b) This follows directly from (a).
(c) Define g € C(£2,,, R) by

nd 2wy,
g(w) = ’; m

The range of the map g is the Cantor set consisting of real numbers in [0, 1] having
at least one (2m — 1)-ary expansion with no odd digits, and thus for pu-a.e. ® € Q,,,
0(Vg,0) = Cp (recall that V4, denotes the diagonal operator given by multiplication
with q(T"w)). Equivalently, C,, can be obtained by an iterated function procedure

via
Cm = ﬂ Fu,

n>0
where Fy = [0, 1] and
m—1 .
2j +x
Fugr = jL_JO fitF), fi0) =5 —.

By induction, F,, has m" connected components, so we can define a function

gn:R\ F, — [0, 1]

#{connected components of F}, that lie to the left of x}

gn(x) = e
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Foreachn <n’and x ¢ F,, g,(x) = gu(x), so we can define goo: R \ Cy,, — [0, 1]
by goo(x) = lim g, (x). Since goo is uniformly continuous, we can uniquely extend
t0 goo: R — [0, 1].

The integrated density of states associated with the family {V; o }we@,, 1S &oo» SO
every gap label of the form j/m” with 1 < j <m” — 1 and r € Z4 corresponds to
an open gap. This shows that ¢ € AGOygise and (q, 0) € AGOyaeopi, S0 both sets are
non-empty. ]

By Lemma 3.8, one can see that OGgcp,({) is always open in C(£2,,, R). Often,
one tries to furthermore show that OGsp,:(£) is dense for each £. However, this cannot
be the case in the current setting: if OGg.y,(£) were dense for every £ € &, then

AGOscr = ) OGisenr(€)
Ee@o

would be a dense G subset of C(£2,,,R) by the Baire category theorem, contradicting
Theorem 1.6.

In fact, one can show a stronger statement with a little more work: denseness fails
uniformly across all labels, that is, C(2,,, R) \ OGscn:(£) has non-empty interior for
every l € ©.

Proposition 4.3. Let (2,,, T, 1) be as above. For any £ € &y, OGgep,(£) is not dense
in C(Qm, R). Indeed, the complement of OGsc(€) contains an {-dependent open
ball centered at the zero function.

Proof. Let £ € &g be given, and choose E € (—2,2) = into (A) such that k(E) =
£, where k = k¢ denotes the IDS associated to the free Laplacian. Consider q €
C (2, R) satisfying ||g]lec < & = dist(E,R \ [-2,2])/2. Observe that a = q(0%) €
(—e, &), so we have

Ee(-24+a,2+a) C 3,

where the second inclusion is a consequence of [15, Theorem 5.2.10]. Moreover, by
[5, Lemma 3.1]

ke(E = llalloc) < ko(E) < kgq(E + [[alloo),
so there exists some
E'€[E —|glloo, E + llallc] S (E =&, E + &) C(-2+a,2+a)

at which k4 (E") = ko(E) = £, and this suffices to demonstrate that the gap with label
£ is closed. ]
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5. Gaps that cannot open

At this point, we have addressed the set of labels as well as questions related to the
ability to open suitable spectral gaps. In particular, we now know that for specific
measures, every gap can in principle be opened by a suitable choice of operator fam-
ily, or more concisely: OGg.(£) # @ for every £ € ©y. The purpose of this section
is to investigate obstructions to gap opening. One obstruction is purely dynamical: as
stated before, having a dense set of periodic orbits (together with the standing assump-
tion supp 4 = 2) means that the spectrum must have dense interior and hence one
cannot open all gaps with a single sampling function whenever the label set is dense
in [0, 1]. The other obstruction is arithmetic: if the weights on a Bernoulli full shift are
transcendental, then certain gaps are arithmetically excluded for diagonal operators.

We begin by proving Theorem 1.8, which relates the sets of possible gap labels
for diagonal, Schrodinger, and Jacobi operator families.

Proof of Theorem 1.8. Let £ € DL be given. Given q € OGgiae(£), the operator V, =
V4,0 has an open gap y = (E_, E4) withlabel £. For 0 < ¢ < |y|/4, the operator eA +
Vi, has an open gap y' 2 (E— + ¢, E4 — &) with the same label, £ (by Lemma 3.8).
Consequently, A + &1V, = e~!(¢A + V,,) also has a gap with the same label, so
e 1q € OGsey(£). In particular, £ € SL.

Since every Schrodinger operator is also a Jacobi matrix, the second inclusion
follows. The third inclusion is simply a restatement of the gap labeling theorem
from [16], so we are done. ]

Next, we show that AGOsy, is always empty in the setting of a full shift over a
non-connected alphabet, that is, there is no single sampling function that can simulta-
neously open all spectral gaps.

Proof of Theorem 1.6. This follows immediately from the following well-known rela-
tion, which can be shown with the help of strong operator approximation:

e = | Jo(Hqo)

w periodic

See [15, Theorem 5.2.10] for a proof. Thus, X4 has dense interior and hence is not a
Cantor set. Since the label set associated with (€2, T, i) is a dense subgroup of R, it
follows that X has infinitely many labels corresponding to closed gaps. ]

In fact, the inability to open gaps appears to be somewhat more severe than that:
there are choices of ergodic measures on the full shift for which certain labels seem to
not correspond to open gaps at all. The question is in general delicate: we here show a
partial result that certain gaps cannot open for ergodic families of diagonal operators.
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In view of Theorem 1.8, this is not dispositive of the inability to open gaps with a
specific label in the Schrodinger case.

Let us be more specific. As established in Theorem 1.7 for certain choices of
T -ergodic measures on the full shift, it is possible to find, given any possible gap
label £, a sampling function f such that the corresponding operator exhibits an open
gap with that label. However, the full shift is not uniquely ergodic, and the selection
of a T-ergodic measure is crucial. Consider the setting where we have a two-letter
alphabet A = {0, 1} and the measure j1¢({0}) = B and po({1}) = 1 — B where B is
transcendental. We will presently show that there are possible labels £ € & for which
OGgiag (£) = @, that is, there is no q for which a gap with label £ opens for the operator
family {V; o}

Proof of Theorem 1.9. Without loss of generality, assume 0 < 8 < 1/2 (if not, simply
interchange the roles of 0 and 1). Due to Theorem 1.2,

s0, in view of Theorem 3.7, it suffices to exhibit £ € Z[B] N (0, 1) \ w[clop(£2)].

Let Y be a clopen subset of 2. Applying Proposition 3.3, we can write ¥ as a
disjoint union of clopen rectangles, each of which can in turn be written as a disjoint
union of finitely many cylinder sets (see Remark 3.6). Thus, we can choose M € N
sufficiently large and express Y as the disjoint union of a finite collection ¥ of sets
of the form

—-M M-1 00
S= []4x [t} x]]
i=—o0  i=—M+1 i=M
where each «; is either O or 1.
Note that for each S € ¥, we have
M-1
u(S) = [Jrole) = p"(1-py>M" 1",
i=—M+1

where n denotes the number of i for which «; = 0. Therefore,

2M—1

p(¥)= > caf"(1—p>M17",

n=0

where ¢, is the number of S € ¥ that have precisely n zeros as coordinates and thus

cn€ZN [0, (ZMn_ 1)] (5.1
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Now, let £ = B2 + B, which belongs to Z[B] N (0, 1) = G, by the assumption
0 < B < 1/2 and Definition 1.1. We will show that there does not exist a clopen set
Y such that u(Y) = B + B2.

We define the following polynomials

2M—1
p1(x) = Z cax™(1 = x)2M-1n, p2(x) = x + x2.

n=0

Assuming p(Y) = £, it follows that

p1(B) = p2(B).

However, since § is transcendental, the equality of these polynomials would imply
that p;(1) = p,(1), which implies cop7—1 = 2. Since (5.1) forces copr—1 € {0, 1},
this is a contradiction. Therefore, the polynomials p; and p, are not equivalent, and
equality cannot hold for transcendental 8. Consequently, OGgie (€) = 0. ]

Remark 5.1. Any ¢ that cannot be expressed in the form Y/, ¢; B (1 — B)" 7,
where ¢; is an integer between 0 and (:’) satisfies OGygiqe(£) = @. However, the
straightforward method used to show that £ = 82 + 8 cannot be represented in this
form does not necessarily apply to other choices of £.
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