
Doc. Math. (Online first)
DOI 10.4171/DM/993

© 2025 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Correspondence theorems for infinite Hopf–Galois
extensions

Hoan-Phung Bui, Joost Vercruysse, and Gabor Wiese

Abstract. This paper extends Hopf–Galois theory to infinite field extensions and provides a natural
definition of subextensions. For separable (possibly infinite) Hopf–Galois extensions, it provides a
Galois correspondence. This correspondence also is a refinement of what was known in the case of
finite separable Hopf–Galois extensions.

1. Introduction

Hopf–Galois theory arose from the quest to generalise the classical Galois theory of field
extensions to commutative rings [1, 2] and even non-commutative ring extensions [6],
but also leads to a new approach to study classical (separable) field extensions [5], see
[3] for a recent overview on the topic. From the very beginning, there has been a lot
of interest in extending the classical Galois correspondence between intermediate field
extensions and subgroups of the Galois group to the setting of Hopf–Galois extensions. It
is well-known (see e.g. [11]) that, in full generality, such a correspondence does not hold:
in general, the correspondence map from Hopf subalgebras to intermediate extensions
is injective but not surjective. Whereas often in the literature, one has been looking for
conditions identifying classes of Hopf–Galois extensions for which the correspondence
between intermediate fields and Hopf subalgebras becomes bijective, we take a different
approach here, and characterize for an arbitrary separable Hopf–Galois extension, those
intermediate extensions for which the correspondence holds.

More precisely, the aim of the present paper is twofold. We extend Hopf–Galois theory
to infinite field extensions and provide a natural definition of H -subextensions. We then
prove a Galois correspondence theorem for H-subextensions of a separable Hopf–Galois
extension. This leads to new results already in the case of finite separable field extensions.
Whilst our proof establishes the finite case first, in this introduction we present the general
infinite statements immediately.

For our formulation of infinite Hopf–Galois theory we need the notion of proartinian
Hopf algebras and proartinian coalgebras.These have been considered earlier (for example
by Fontaine [4]) and are basically limits of projective systems of finite dimensional Hopf
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algebras or coalgebras, respectively. As such they carry a natural topology and the discrete
ones are exactly those of finite dimension. It is further natural to introduce proartinianH -
modules and proartinian H -module algebras. The reader is referred to Section 3.1 for a
presentation of this theory.

If L=K is a Galois extension (that is, separable and normal) with (profinite) Galois
group G, classical (infinite) Galois theory gives an isomorphism LJGKŠ L y̋K KJGKŠ
EndK.L/. Hopf–Galois theory generalises this as follows: The full endomorphism ring
of a field extension L=K is already ‘encoded’ in a (proartinian) Hopf algebra H that is
defined over the base field K.

Definition 1.1. Let L=K be a field extension, H a proartinian Hopf K-algebra and sup-
pose that L is a discrete left H -module algebra. This action leads to the definition of a
canonical map (see (3.3))

can W L y̋K H ! EndK.L/:

We say that the extensionL=K isH -Galois if the canonical map can is a homeomorphism
of topological L-vector spaces.

We include a short digression on our interpretation of the definition, as it paves the
way for our definition of H -subextensions, leading to our correspondence theorem. For
a field extension L=K and a proartinian L-vector space V , we say that a proartinian K-
vector space W is a K-rational structure of V if L y̋K W is a proartinian L-vector space
isomorphic to V . In the case of finite dimensional vector spaces, W � V is a K-rational
structure of V if any K-basis of W is an L-basis of V .

From this perspective, in an H -Galois extension L=K, the proartinian Hopf algebra
provides aK-rational structure of EndK.L/, just asKJGK provides aK-rational structure
of LJGK Š EndK.L/ in the case of a classical Galois extension. This idea can be natur-
ally carried over to any intermediate field K � L0 � L. For that purpose, we define the
annihilator of L0 in H by

J.L0/ D ¹h 2 H j 8x 2 L0 W h � x D 0º: (1.1)

It is a closed left ideal two-sided proartinian coideal of H (see Lemma 3.19 (a)). Via the
canonical map, we can view H=J.L0/ inside HomK.L0; L/. The principal idea is that
H=J.L0/ will play the same role for subextensions as H does for the entire Hopf–Galois
extension, namely that of a K-rational structure.

Definition 1.2. LetL=K beH -Galois andL0 be an intermediate field. We say thatL0=K
is an H -subextension if H=J.L0/ is a K-rational structure of HomK.L0; L/ in the sense
that the canonical map

can0 W L y̋ H=J.L0/! HomK.L0; L/

is a homeomorphism.
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In the classical situation, that means, when H is the (completed) group algebra of the
Galois group of L=K, any intermediate extension is an H -subextension. However, as we
will see below, for general H , this is no longer the case and there can exist intermediate
extensions that are notH -subextensions. Furthermore, we will show (see Lemma 3.19 (d))
that it is enough to assume that can0 is injective, as it is already a quotient map of topolo-
gical vector spaces. The classical notion of normal field extensions leads in our setting to
the following natural definition.

Definition 1.3. Let L=K be H -Galois. We say that an intermediate field L0 is H -stable
if H � L0 � L0. If, furthermore, L0 is an H -subextension, then we call it H -normal.

In the classical case,H -normal extensions are just normal extensions, hence it is clear
that not all H -subextensions are necessarily H -normal. In classical Galois theory, subex-
tensions are obtained and characterised as fixed fields. This point of view carries on to
Hopf–Galois theory via the following definition.

Definition 1.4. LetL be a leftH -moduleK-algebra. Given any subset F �H , we define
the fixed space by F or the space of F -invariants as

LF WD
®
x 2 L j h � x D ".h/x 8h 2 F

¯
:

We remark that LF is indeed a K-subspace of L. If F is a set of grouplike elements
and g 2 F , then ".g/ D 1, and LF is a fixed field in the classical sense. On the other
hand, if F is a proartinian coideal in H , then ".F / D 0, and LF consists of elements
x 2 L satisfying h � x D 0 for all h 2 F .

Since, as in classical Galois theory, our correspondence theorem for subfields passes
via morphisms, we also have to assume the separability for the field extension, which
ensures the existence of ‘enough’ field morphisms. The crucial point for us is that for a
separable field extension L=K with normal closure (or algebraic closure) zL the coalgebra
HomK.L; zL/ has a (topological) zL-basis of grouplike elements, namely exactly given
by the field morphisms L! zL. In the case of an H -Galois extension, via the canonical
map, this then implies that zL y̋K H is a (completed) group algebra. The same arguments
actually also give the converse: any H -extension such that zL y̋K H is a (completed)
group algebra is separable. In our understanding, in the finite case, this use of separability
is exactly the starting point of Greither–Pareigis theory ([5], see also Theorem 2.19 below),
many ideas of which we crucially apply and extend to the infinite case.

We now have all ingredients to state our main theorem.

Theorem 1.5. Let L=K be a separable H -Galois extension for a proartinian Hopf al-
gebra H . Then the following maps are inclusion reversing bijections:®
L=L0=K j L0 H -subextension

¯ ˆ // ®
I�H j I closed left ideal two-sided coideal

¯
‰
oo

L0 7�! J.L0/ (1.2)

LI 7�!I:
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Moreover, the above correspondence restricts to a bijection between the following
subsets: ®

L=L0=K j L0 H -normal
¯ ˆ // ®

I � H j I closed Hopf ideal
¯
:

‰
oo

Furthermore, if ‘closed’ is replaced by‘open’, both correspondences work with the restric-
tion that L0=K be finite.

In the case of classical Galois extensions, one can freely pass between considering
normal subgroups H C G of the Galois group and the corresponding quotients G=H .
This point of view also exists for cocommutative Hopf algebras (see Theorem 2.2 and
Corollary 2.3). In particular, in the case of a finite extension L=K, the sets on the right
in the above correspondences can be replaced by the set of Hopf subalgebras of H , and
the set of normal Hopf subalgebras, respectively. Indeed, by Lemma 2.9 the Hopf–Galois
condition forces H to be cocommutative.

By the above theorem,H -subextensions are exactly those intermediate fields that arise
as fixed field of Hopf subalgebras ofH . In literature several examples ofH -Galois exten-
sions have been described admitting intermediate field extensions that do not arise as such
a fixed field. Already in [5, Theorem 5.3], it was shown that for any classical Galois exten-
sion L=K, one can construct a Hopf algebra H such that the intermediate fixed fields are
exactly the normal subextensions, and hence any non-normal subextension is not an H -
subextension in this case.

Whereas most of the lemmas needed to prove our Hopf–Galois correspondence are
elementary, as already alluded to above, Greither–Pareigis theory, extended to infinite
separable Hopf–Galois extensions, plays a key role in proving the correspondence of
Theorem 1.5. It additionally also provides an alternative formulation of it in purely group-
theoretical terms. Greither–Pareigis theory relates infinite separable Hopf–Galois exten-
sions L=K with strictly transitive actions of profinite groups on the set of K-embeddings
into a normal closure zL of K, see Proposition 3.21. Particularly, the separability leads to
an isomorphism zL y̋ H Š zLJN K with a profinite group N , equipped with a G-action,
where G is the Galois group of zL=K.

In the finite case, this strictly transitive action of G on N can be reformulated in
terms of a skew brace structure on G (see [3]). The following result should therefore be
compared with [13, Corollary 4.1], which makes use of the language of skew braces.

Corollary 1.6. There is an explicit bijective correspondence:®
L=L0=K j L0 H -subextension

¯ ˆ0 // ®
V � N j V closed G-equivariant subgroup

¯
‰0
oo

restricting to another bijective correspondence®
L=L0=K j L0 H -normal

¯ ˆ0 // ®
V �N j V closed G-equivariant normal subgroup

¯
:

‰0
oo
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The G-equivariance of the subgroup can also be rephrased as being normalized by �.G/
(the group of left translations via G) in Perm.G=G0/.

Moreover, in the finite case, we obtain in Section 2.7 several other analogues of state-
ments from classical Galois theory in the setting of Hopf–Galois extensions. For example,
we show that the intersection and compositum of Hopf–Galois subextensions is again a
Hopf–Galois subextension (see Proposition 2.28).

Finally, we show that the Hopf–Galois condition in the infinite setting, fits in the
framework of Hopf–Galois extensions in terms of coactions (of usual Hopf algebras)
rather than actions, by taking a suitable restricted dual of our proartinian Hopf algebra,
Proposition 3.26.

Notational conventions. Throughout, K will denote a field. Unadorned tensor products
are tensor products over K. The action of the Hopf algebra is denoted by “�” everywhere,
multiplication insideH and L by concatenation (no symbol). In order to be compatible in
the case of a group algebra, group actions are also written with “�”. If the group is a group
of automorphisms, then the product of two elements is also denoted by “ı”. The group
algebra of a group G over the field K will be denoted by KŒG�.

2. Finite Hopf–Galois theory

2.1. Preliminaries on Hopf algebras and some first observations

Recall that a K-coalgebra C is a vector space endowed with a comultiplication map � W
C !C ˝C and a counit map " WC !K satisfying the usual coassociativity and counital-
ity conditions. We will use the Sweedler notation for comultiplication:�.c/D c.1/˝ c.2/,
for all c 2 C , so that the coassociativity and counitality conditions can be expressed as

c.1/.2/ ˝ c.1/.2/ ˝ c.2/ D c.1/ ˝ c.2/.1/ ˝ c.2/.2/ D c.1/ ˝ c.2/ ˝ c.3/I

c.1/".c.2// D c D ".c.1//c.2/:

A coalgebra is called cocommutative if c.1/˝ c.2/ D c.2/˝ c.1/ for all c 2 C . A grouplike
element in a coalgebra C is an element x 2C such that�.x/D x˝ x and ".x/D 1. AK-
bialgebraH is aK-algebra that has a coalgebra structure such that� and " areK-algebra
homomorphisms. A Hopf K-algebra is a K-bialgebra for which there exists a (unique)
antipode map S WH !H satisfying S.h.1//h.2/ D ".h/1D h.1/S.h.2//. A group algebra
KŒG� for a finite group G is a Hopf algebra by defining the coalgebra structure such that
all elements of the group G are grouplike.

A two-sided coideal in a K-coalgebra H is a K-subspace I � H such that �.I/ �
H ˝ I C I ˝H and ".I / D 0. A Hopf ideal in a HopfK-algebraH is a two-sided ideal
and two-sided coideal that is stable under the antipode. It is well-known that, for example,
when H is cocommutative, any two-sided ideal and two-sided coideal is stable under the
antipode, i.e. is a Hopf ideal (see [9]). A Hopf subalgebra H0 of H is called normal if
h.1/xS.h.2// and S.h.1//xh.2/ belong to H0 for all x 2 H0 and all h 2 H .
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Definition 2.1. Let I �H be a left ideal two-sided coideal and denote by � WH !H=I

the canonical surjection. We define the set of left H=I -coinvariants of H :

coH=IH WD
®
h 2 H j �.h.1//˝ h.2/ D �.1H /˝ h

¯
:

For a Hopf subalgebra A � H , we define the augmentation ideal

AC WD A \ ker " D
®
a 2 A j ".a/ D 0

¯
:

Theorem 2.2 ([8], [12, Theorem 4.15]). Let H be a cocommutative Hopf algebra. Then

¹I � H j I left ideal two-sided coidealº
'
//
¹A � H j A Hopf subalgebraº

 
oo

with '.I / D coH=IH and  .A/ D HAC are inverse bijections.

Corollary 2.3 ([7, Theorem 3.4.6]). The bijective correspondence from the previous the-
orem can be restricted to a bijection between the normal Hopf subalgebras and Hopf
ideals of a cocommutative Hopf algebra H .

If I is a Hopf ideal, the set of left H=I -coinvariants of H is exactly the kernel of the
canonical surjection H ! H=I in the category of Hopf algebras.

The following follows easily by a standard computation.

Lemma 2.4. Let H be a Hopf-algebra.

(a) Let I1; I2 be left ideals two-sided coideals in H . Then I1 C I2 is also a left ideal
two-sided coideal in H .

(b) Let I1; I2 be Hopf ideals in H . Then I1 C I2 is also a Hopf ideal in H .

(c) LetH1;H2 be Hopf-subalgebras ofH . ThenH1 \H2 is also a Hopf-subalgebra
of H .

(d) Let H1; H2 be normal Hopf-subalgebras of H . Then H1 \H2 is also a normal
Hopf-subalgebra of H .

Recall that for a bialgebra H , the category HMod of (left) H -modules is monoidal,
where the tensor product of two left H -modules M and N is endowed with a left H -
module structure via the action

h � .m˝ n/ D h.1/ �m˝ h.2/ � n

for all h 2 H , m 2 M and n 2 N . An algebra object L in the category HMod is then
called a (left) H -module algebra, which means that it is an algebra L that is at the same
time a left H -module such that the following compatibility conditions hold

h � .xy/ D .h.1/ � x/.h.2/ � y/I h � 1L D ".h/1L;

for all h 2 H and x; y 2 L. We remark that if h is a grouplike element in H , then the
action of h on L gives an algebra automorphism.
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Similarly, a coalgebra object in the category HMod is called a (left) H -module coal-
gebra. This is a coalgebra C that is at the same time a left H -module such that the
following compatibility conditions hold

�.h � c/ D h.1/ � c.1/ ˝ h.2/ � c.2/I "C .h � c/ D "H .h/"C .c/;

for all h 2 H and c 2 C . Again, if h is a grouplike element in H , then h acts on C by a
coalgebra automorphism.

For a left H -module algebra L, we can consider the smash product algebra L # H ,
which is the vector space H ˝ L endowed with the multiplication

.x ˝ h/.y ˝ k/ D x.h.1/ � y/˝ h.2/k:

Then a (left) L#H -module M is at the same time a left L-module and a left H -module
satisfying the following compatibility condition

h � .xm/ D .h.1/ � x/.h.2/ �m/

for all h2H , x2L andm2M . In our current setting, the famous faithfully flat descent for
Hopf–Galois extensions (see e.g. [12, Theorem I], [7, Theorem 8.3.3]) can be expressed
in the following way.

Proposition 2.5. If L=K is a finite Hopf–Galois extension, then the functors

L˝� W VectK
//
L#HMod W .�/Hoo

define an equivalence of categories, where MH D ¹m 2M j h �m D ".h/m; 8h 2 H º.
In case H D KŒG� is a group algebra, the above equivalence is even an equivalence

of symmetric monoidal categories, and MH coincides with MG , the set of G-invariants.

Lemma 2.6. Let A be a finite dimensional vector space over a field K, and let®
.ei ; fi / j i D 1; : : : ; n

¯
� A � A�

be a finite dual basis.

(a) There is a natural bijective correspondence between the algebra structures on
A and the coalgebra structures on A�. Explicitly, the correspondence between
a multiplication for A and a comultiplication for A� is given by the following
formulas for all a; b 2 A and f 2 A�

�.f / D
X
i;j

f .eiej /fi ˝ fj ; ab D
X
i

fi.1/.a/fi.2/.b/ei : (2.1)

Otherwise stated
f .ab/ D f.1/.a/f.2/.b/

for all a; b 2 A and f 2 A�.
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(b) Considering an algebra structure on A and a corresponding coalgebra structure
on A� as in (a), the set of grouplike elements in A� is exactly the set of algebra
morphisms from A to K. Moreover, the coalgebra A� has a basis of grouplike
elements if and only if the algebra A has a basis of orthogonal idempotents (i.e.
A is isomorphic to a product of copies of the base field).

(c) Let L=K be any field extension and fix a K-algebra structure on A.
Then HomK.A; L/ is an L-coalgebra, whose grouplike elements are exactly the
set of K-algebra morphisms HomK�Alg.A;L/.

Proof. (a) This well-known result follows by a direct computation.
(b) Using the left hand side of (2.1), one sees that f is multiplicative if and only if

�.f / D f ˝ f . Applying the right hand side of (2.1) on basis elements ei , one sees that
the dual basis elements fi are grouplike if and only if the basis elements are orthogonal
idempotents.

(c) If A is a finite dimensional K-algebra, then by base extension we find that L˝
A is a finite dimensional L-algebra, so applying the previous parts we find that the L-
linear dual HomL.L˝K A; L/ Š HomK.A; L/ is an L-coalgebra whose grouplikes are
exactly the L-algebra morphisms in HomL.L ˝K A; L/, which correspond to the K-
algebra morphisms in HomK.A;L/ using the last isomorphism.

Proposition 2.7.
(a) If C is a coalgebra with a basis B of grouplike elements, then any quotient coal-

gebra and any subcoalgebra of C also has a basis of grouplike elements (formed
by subsets of B).

(b) Any Hopf subalgebra of a group algebra KŒG� is again a group algebra KŒN �
over a subgroup N of G. Moreover KŒN � is a normal Hopf subalgebra of KŒG�
if and only if N is a normal subgroup of G.

(c) If I D KŒG�KŒN �C is the left ideal two-sided coideal of KŒG� associated to
the Hopf subalgebra KŒN �, then the quotient KŒG�-module coalgebra KŒG�=I
is isomorphic to KŒG=N � (the coalgebra with left cosets of N as a basis). In
particular any quotient Hopf algebra of a group algebra is again a group algebra
over a quotient group (this happens when KŒN � is a normal Hopf subalgebra).

(d) The kernel of the projection KŒG�! KŒG=N � is the linear span of elements of
the form gn � gn0 where g 2 G and n; n0 2 N .

Proof. (a) If C has a basis B of grouplike elements and f W C ! D is a surjective coal-
gebra morphism, then f .B/ is a generating set of grouplike elements. Since grouplike
elements are always linearly independent, this gives a basis of grouplike elements for D.

If i W D ! C is an injective coalgebra morphism, then i� W C � ! D� is a surjective
algebra morphism. From Lemma 2.6 (b) we know that C � is a product of copies of the
base field. Consequently, D� is also a product of (a smaller number of) copies of the
base field, and therefore D has a basis of grouplike elements. The inclusion map i sends
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grouplike elements of D to grouplike elements of C , so the basis of grouplikes of D can
be considered as a subset of the basis of grouplikes of C .

(b) This follows from part (a), using the well-known and easily checked fact that the
set of grouplike elements in a Hopf algebra forms a group.

(c)–(d) First we remark that I is generated as a K-linear space by elements of the
form gn � gn0 where g 2 G and n; n0 2 N . By part (a), we know that KŒG�=I has a
basis of grouplike elements, which can be obtained by taking the images of the elements
of G under the projection � W KŒG� ! KŒG�=I . Suppose that g; g0 2 G are such that
�.g/ D �.g0/ in KŒG�=I . By the above characterisations of elements in I and the linear
independence of the grouplike elements in KŒG�, this is equivalent with the existence of
elements h 2 G and n; n0 2 N such that g D hn and g0 D hn0. Otherwise said, g�1g0 D
n�1n 2 N or g0 2 gN . Hence we conclude that G=N is indeed a basis for KŒG�=I . The
other results follow directly from this.

2.2. Basics of Hopf–Galois extensions

We start this section by explicitly specialising Definition 1.1 to the finite dimensional case.

Definition 2.8. Let L=K be a finite field extension and let H be a finite dimensional K-
bialgebra. We say that L=K is a Hopf–Galois extension for H (or simply H -Galois) if L
is a left H -module algebra and the K-linear map

can W L˝H �! EndK.L/; can.x ˝ h/.y/ D x.h � y/; (2.2)

where x; y 2 L and h 2 H , is bijective. The map can is called the Galois map or the
canonical map.

We first prove that any H as in Definition 2.8 is a cocommutative Hopf K-algebra.
Moreover, by faithfully flat descent, it follows that the space of H -invariants of L is just
K, which means that L is even a Galois object instead of just a Galois extension.

Lemma 2.9. Let H be a K-bialgebra. If L=K is a finite extension that is H -Galois, then
H is a cocommutative Hopf K-algebra. Moreover, the H -invariants of L are just K, that
is K D LH D ¹x 2 L j h � x D ".h/x;8h 2 H º.

Proof. Using the fact that L=K is H -Galois in the first and third isomorphism, the fact
that L=K is finite in the second isomorphism and the Hom-tensor relations in the last
isomorphism we obtain a natural isomorphism

L˝H ˝H Š HomK.L;L/˝H Š HomK.L;L˝H/

Š HomK
�
L;HomK.L;L/

�
Š HomK.L˝ L;L/:

The composed isomorphism ˛ W L˝H ˝H ! HomK.L˝L;L/ is given explicitly by
˛.x ˝ h˝ h0/.y ˝ z/ D x.h � y/.h0 � z/.



H.-P. Bui, J. Vercruysse, and G. Wiese 10

By the commutativity of L, it is clear that for all x; y; z 2 L and all h 2 H ,

x.h.1/ � y/.h.2/ � z/ D xh � .yz/ D xh � .zy/ D x.h.1/ � z/.h.2/ � y/

D x.h.2/ � y/.h.1/ � z/:

This means that ˛.x ˝ h.1/ ˝ h.2// D ˛.x ˝ h.2/ ˝ h.1// and since ˛ is an isomorphism
we also have that x ˝ h.1/ ˝ h.2/ D x ˝ h.2/ ˝ h.1/. Since K is a field, it follows that
h.1/ ˝ h.2/ D h.2/ ˝ h.1/ 2 H ˝H , hence H is cocommutative.

The fact thatH is a Hopf algebra was proven in [10] (there withH -comodule algebras
rather than H -module algebras). A brief argument goes as follows. Consider the map

ˇ W L˝H ˝H ! HomK.L˝ L;L/;

ˇ.x ˝ h˝ h0/.y ˝ z/ D x
�
h �
�
y.h0 � z/

��
D x.h.1/ � y/.h.2/h

0
� z/:

By a similar reasoning as for the map ˛ above, one can see that ˇ, being a composition of
natural isomorphisms, is itself an isomorphism. Moreover, one easily observes that ˇ D
˛ ı .idL˝ can0/where can0 WH ˝H !H ˝H is given by can0.h˝ h0/D h.1/˝ h.2/h0.
Since both ˛ and ˇ are isomorphisms, can0 is an isomorphism as well. Then one can verify
that S W H ! H given by S.h/ D ."˝ idH / ı can0�1.h˝ 1/ is an antipode for H .

For the last statement, we remark that L Š L˝K is a left L#H -module by means of
the usual actions of L andH on L. Hence, by Proposition 2.5 we immediately obtain that
LH and K coincide as subsets of L.

Let L be a field and an H -module algebra over K (not necessarily H -Galois). Con-
sider any field extension L � zL and the action of zL ˝ H on HomK.L; zL/ defined as
follows: For y ˝ h 2 zL˝H and f 2 HomK.L; zL/, define f:.y ˝ h/ as the map sending
x 2 L to yf .h � x/. This turns HomK.L; zL/ into a right zL˝H -module. Combining this
action with the zL-coalgebra structure on HomK.L; zL/ as described in Lemma 2.6 (c), one
arrives at the following result.

Lemma 2.10. With structure as defined above, HomK.L; zL/ is a right zL ˝H -module
zL-coalgebra and the canonical map fcan W zL˝H ! HomK.L; zL/ is a morphism of right
zL˝H -module zL-coalgebras.

Proof. We remark that the zL˝H -action on HomK.L; zL/ is exactly such that

fcan.y ˝ h/ D 1L:.y ˝ h/:

From this observation it is clear that fcan is already zL˝H -linear. We check that for all
y ˝ h 2 zL˝H and x; x0 2 L:� fcan.y ˝ h.1//˝ fcan.1˝ h.2//

�
.x ˝ x0/ D

� fcan.y ˝ h.1//.x/ fcan.1˝ h.2//
�
.x0/

D y.h.1/ � x/.h.2/ � x
0/ D y

�
h � .xx0/

�
D fcan.y ˝ h/.xx0/:
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Hence �.fcan.y ˝ h// D fcan.y ˝ h.1// ˝ fcan.1 ˝ h.2//, so fcan is indeed a coalgebra
morphism.

Notice that the zL-module coalgebra structure on HomK.L; zL) is exactly dual to the
zL˝H -module algebra structure on zL˝L. Via the action, we obtain the zL-linear homo-
morphism

zL˝H ! EndzL
�

HomK.L; zL/
�
; yh 7!

�
f 7!

�
x 7! yf .h � x/

��
:

If we compose it with the evaluation at 1L W L! zL, we exactly recover the canonical mapfcan W zL˝H ! HomK.L; zL/.
Let us briefly recall the dual point of view to Hopf–Galois theory, which is in fact more

often used in literature. If H is a finite dimensional Hopf K-algebra, then the dual space
H� D HomK.H;K/ is again a finite dimensional Hopf algebra, whose multiplication and
comultiplication are obtained by dualizing those of H , as in (2.1). Similarly, L is a left
H -module algebra by an action H ˝ L! L; h˝ x 7! h � x if and only if L is a right
H�-comodule algebra by the coaction

� W L! L˝H�; �.x/ D xŒ0� ˝ xŒ1� D
X
i

.ei � x/˝ fi ; (2.3)

where ¹.ei ; fi /º is a finite dual basis for H . The (right) L-dual of the Galois map leads to
a second canonical map

can� W L˝ L! L˝H�; can.x ˝ y/ D xyŒ0� ˝ yŒ1� D
X
i

x.ei � y/˝ fi : (2.4)

The map can from (2.2) is an isomorphism (i.e.L=K isH -Galois) if and only if can� is an
isomorphism. Moreover the map can� can be checked to be an algebra morphism (thanks
to the commutativity of L), which is the dual statement of Lemma 2.10. We remark that
since H is cocommutative, H� is a commutative Hopf algebra.

2.3. The correspondence map ˆ

In this subsection, we study the annihilator ideal J.L0/ (see (1.1)) for an intermediate
extension L0.

Lemma 2.11. Let L=K be H -Galois and L0 be an intermediate field. Then the map

can0 W L˝H=J.L0/! HomK.L0; L/; can0.x ˝ Nh/.y/ D x.h � y/;

induced by the Galois map, is surjective. If L0 is H -stable (see Definition 1.3), then can0
induces a well-defined map

can00 W L0 ˝H=J.L0/! EndK.L0/;

which is also surjective.
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Proof. The first statement directly follows from commutativity of the following diagram,
where the vertical arrows are the obvious surjections,

L˝H
can

�
//

����

EndK.L/

����

L˝H=J.L0/
can0 // HomK.L0; L/:

If L0 is H -stable, then the map L0 ˝H=J.L0/! EndK.L0/ is clearly well-defined. To
see that it is surjective, consider first the following surjective map:

L˝L0 L0 ˝H=J.L0/ Š L˝H=J.L0/� HomK.L0; L/ Š L˝L0 EndK.L0/:

As L0! L is faithfully flat, the surjectivity of L0˝H=J.L0/! EndK.L0/ follows.

We now formulate some equivalent characterisations of H -subextensions.

Lemma 2.12. Let L=K be H -Galois and L0 be an intermediate field. Denote ˛0 W H !
HomK.L0;L/, ˛0.h/.x/D h:x for any x 2 L0 and h 2H . Then the following statements
are equivalent:

(i) For any subset F � H , K-linear independence inside HomK.L0; L/ implies
L-linear independence.

(ii) There are elements h1; : : : ; hm 2H whose images under ˛0 areL-linearly inde-
pendent and generate ˛0.H/ over K.

(iii) The natural map can0 W L˝H=J.L0/! HomK.L0; L/ is injective.

(iv) L0 is an H -subextension of L=K.

Proof. (i))(ii). Let B be a K-basis of H , then there exists a subset B0 � B such that
˛0.B0/ is a K-basis of ˛0.H/. By assumption, ˛0.B0/ is also L-linearly independent in
HomK.L0; L/.

(ii))(iii). By definition, J.L0/ D ker.˛0/, hence, ˛0.H/ Š H=J.L0/. Therefore,
any element u in L ˝ H=J.L0/ can be written in the form u D

Pm
iD1 xi ˝ ˛0.hi /

for some xi 2 L. Since the elements ˛0.hi / are L-linearly independent, if can0.u/ DPm
iD1 xi˛0.hi / D 0, then all xi D 0 and therefore u D 0. Hence can0 is injective.
(iii))(iv). If can0 is injective, it is also bijective by Lemma 2.11.
(iv))(i). Let F � H such that ˛0.F / is K-linearly independent. Since ˛0 has an

epi-mono factorisation

˛ W H
� // // H=J.H0/

� � ˛
0
0 // HomK.L0; L/;

we find that �.F / is also K-linearly independent. Now suppose that
P
xi˛0.fi / D 0 for

some xi 2 L and fi 2 F . Since
P
xi˛0.fi / D can0.xi ˝ �.fi // and can0 is injective,

we find that xi ˝ �.fi / D 0 and hence all xi D 0 as the elements �.fi / are K-linearly
independent. It follows that ˛0.F / is L-linearly independent as needed.
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Proposition 2.13. Let L=K be H -Galois and L0 be an intermediate extension.

(a) J.L0/ is a left ideal and ".J.L0// D 0.

(b) If L0 is an H -subextension, then J.L0/ is a two-sided coideal.

(c) If L0 is H -stable, then J.L0/ is a right ideal.

(d) If L0 is H -normal, then L0=K is H=J.L0/-Galois and J.L0/ is a Hopf ideal.

Consequently, by definingˆ.L0/D J.L0/, we obtain an inclusion-reversing mapˆ from
H -subextensions of L=K to left ideals, two-sided coideals of H , as will be needed in
Theorem 2.24.

Proof. (a) Since for any h 2 H , h0 2 J.L0/ and x 2 L0 we have that

.hh0/ � x D h � .h0 � x/ D 0

and J.L0/ is indeed a left ideal. Moreover, ".J.L0// D 0 since 1 2 L0 and hence for any
h 2 J.L0/, h � 1 D ".h/1 D 0, so ".h/ D 0.

(b) We need to prove that �.J.L0// � H ˝ J.L0/C J.L0/˝H . Denote � W H !
H=J.L0/ W h 7! Nh the natural projection. ThenH ˝ J.L0/C J.L0/˝H D ker.� ˝ �/.
Hence for any h 2 J.L0/ we have that �.h/ 2 H ˝ J.L0/ C J.L0/ ˝ H if and only
if � ˝ � ı �.h/ D 0. To prove this, let ¹ Nh1; : : : ; Nhnº be a basis of H=J.L0/, and take
elements Nh01; : : : ; Nh

0
n 2H=J.L0/ such that .� ˝ �/�.h/ D Nh.1/ ˝ Nh.2/ D

Pn
iD1
Nh0i ˝

Nhi .
For any x; y 2 L0 we find

can0

� nX
iD1

Nh0i � x ˝
Nhi

�
.y/ D

nX
iD1

. Nh0i � x/.
Nhi � y/ D h � .xy/ D 0:

Since can0 is injective by the definition of H -subextensions, we obtain that
nX
iD1

Nh0i � x ˝
Nhi D 0:

Because the elements Nhi are a basis, it follows that Nh0i � x D 0 8x 2 L0, hence Nh0i D 0 for
all indices i and we can conclude that � ˝ � ı�.h/ D 0.

(c) Let h 2 J.L0/ and h0 2 H , then hh0 2 J.L0/ because 8x 2 L0 W .hh0/ � x D
h.h0 � x/ D 0 (since h0 � x 2 L0).

(d) The Galois map can00 WL0˝H=J.L0/! EndK.L0/ is surjective by Lemma 2.11.
Since can00 is the restriction of the map can0, which is injective by the definition of H -
subextensions, it is injective as well, hence L0=K is H=J.L0/-Galois. Consequently,
J.L0/ is a Hopf ideal because H=J.L0/ is a Hopf algebra by Lemma 2.9. Obviously,
the map ˆ is inclusion reversing.

Corollary 2.14. Let L=K be H -Galois and denote by ˛ W H ! EndK.L/ the map asso-
ciated with the action of H on L. Then for any intermediate extension L0, the following
subsets of H coincide:®

h 2 H j h.1/ � x ˝ h.2/ D x ˝ h; 8x 2 L0
¯
D
®
h 2 H j ˛.h/ 2 EndL0.L/

¯
:



H.-P. Bui, J. Vercruysse, and G. Wiese 14

Denoting the above subset of H by ˆ0.L0/, we obtain inclusion reversing maps

ˆ0 W
®
L=L0=K j L0 H -subextension

¯
!
®
H 0 � H j H 0 Hopf subalgebra

¯
and

ˆ0 W
®
L=L0=K j L0 H -normal

¯
!
®
H 0 � H j H 0 normal Hopf subalgebra

¯
:

Proof. Consider h 2 H such that h.1/ � x0 ˝ h.2/ D x0 ˝ h 2 L˝H , for all x0 2 L0.
When we apply the bijective map can to this equality, we find that the previous equality
holds if and only if

.h.1/ � x0/.h.2/ � x/ D x0.h � x/

for all x0 2 L0 and all x 2 L. As .h.1/ � x0/.h.2/ � x/D h � .x0x/, we conclude that h 2H
satisfies the above equality if and only if ˛.h/ is L0-linear.

The fact thatˆ0 is a well-defined and inclusion reversing map is obtained by remarking
that ˆ0 D � ı ˆ, where � is the correspondence from Theorem 2.2 and Corollary 2.3.
Indeed, since ˛0 WH=J.L0/!HomK.L0;L/ is injective, we have that h 2 coH=J.L0/H D

� ıˆ.L0/ if and only if h 2 ˆ0.L0/.

2.4. The space of invariants

In this subsection, we define and study the space of invariants for a field L that is an
H -module algebra. This allows us to define the map ‰ from Theorem 2.24.

Lemma 2.15. LetL be anH -module algebra and I �H . Denote as beforeLI the space
of I -invariants (see Definition 1.4).

(a) If I is a left ideal two-sided coideal, thenLI is an intermediate extension ofL=K.

(b) If I is moreover a right ideal (hence a bi-ideal), then LI is H -stable.

Proof. (a) Let h 2 I and x 2 K. Then h � x D ".h/x D 0, so LI contains K. For any
x;y 2 LI , we find that h � .xy/D .h.1/ � x/.h.2/ � y/D 0, since�.h/ 2 I ˝H CH ˝ I .
Hence LI is a ring and it is a field because L=K is an algebraic extension.

(b) If I is also a right ideal, then 8h0 2 H , 8x 2 LI W h � .h0 � x/ D .hh0/ � x D 0

because hh0 2 I . So h0 � x 2 LI .

Lemma 2.16. Let L=K be anH -module algebra and let I �H be a left ideal two-sided
coideal. Let zL=L be any field extension. Then

can0 W L˝H=J.LI /! HomK.LI ; L/

is injective if one of the following equivalent statements holds:

(i) The natural map L˝H=I ! HomK.LI ; L/ is injective.

(ii) The natural map zL˝H=I ! HomK.LI ; zL/ is injective.

If moreover L=K is H -Galois then the validity of any of these conditions implies that LI

is an H -subextension and I D J.LI /.
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Proof. The equivalence between (i) and (ii) follows from the fact that zL is faithfully flat
overL. Since I � J.LI /, we have the projection p WH=I !H=J.LI /. Hence the canon-
ical map from the statement (i) factors as the composition

L˝H=I
id˝p
�����! L˝H=J.LI /

can0
���! HomK.LI ; L/

and it follows that can0 is injective as well. Hence, LI is an H -subextension if L=K is
H -Galois.

Next we observe that the notion invariants is stable under base change. Recall that if
L is an H -module algebra, and L � zL is any field extension, then zL˝ L is an zL˝H -
module algebra.

Lemma 2.17. Let L be anH -moduleK-algebra and F � H aK-linear subspace. Then
for any base extension zL=L, we have that

.zL˝ L/
zL˝F

D zL˝ LF :

Proof. This follows from the fact that the space of invariants is a limit in VectK and the
extension-of-scalars functor preserves limits. An explicit argument is as follows. Take
Qx ˝ x 2 zL˝ LF . Then for any Qy ˝ h 2 L˝ F , we find that

. Qy ˝ h/ � . Qx ˝ x/ D Qy Qx ˝ h � x D Qy Qx ˝ ".h/x D ". Qy ˝ h/ Qx ˝ x:

So zL˝ LF � .zL˝ L/zL˝F . On the other hand, take any
P
i Qxi ˝ xi 2 .

zL˝ L/
zL˝F ,

where we suppose without loss of generality that the elements Qxi are linearly independent.
Then for any h 2 F , we find using the definition of the action under extension of scalars
that

.1˝ h/ �
�X

i

Qxi ˝ xi

�
D

X
i

Qxi ˝ h � xi

and on the other hand, since
P
i Qxi ˝ xi is F -invariant, we find

.1˝ h/ �
�X

i

Qxi ˝ xi

�
D

X
i

Qxi ˝ ".h/xi :

Since the elements Qxi are linearly independent we can conclude that xi 2 LF for all
indices i , and hence X

i

Qxi ˝ h � xi 2 zL˝ L
F :

Let us show that the space of invariants with respect to a Hopf subalgebra coincides
with the space of invariants for the associated ideal. Hence the invariants with respect
to an ideal, which we will consider mostly here, correspond in the case of usual Galois
extensions to the classical invariants.
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Lemma 2.18. Let L=K be a finite H -Galois extension and let I be a left ideal two-sided
coideal of H . Consider the associated Hopf subalgebra H0 � H as in Theorem 2.2. By
dualizing we find that .H=I /� is a right coideal subalgebra of H� and � W H� ! H�0 is
a Hopf algebra surjection. Then the following subsets of L coincide:

LI D ��1
�
L˝ .H=I /�

�
D LcoH�0 D LH0 ;

where � W L!L˝H�, �.x/DxŒ0�˝xŒ1� is the coaction as in (2.3) and LcoH�0 D¹x2L j

xŒ0� ˝ �.xŒ1�/ D x ˝ 1H�0 º is the space of coinvariants.

Proof. We divide the proof into four parts.

LI � ��1.L˝ .H=I /�/. Take any x 2 LI and take a finite dual basis ¹.ei ; fi /º of H ,
whose firstm elements are in I and the next n�m elements generate a linear complement
of I in H . Then fmC1; : : : ; fn provide exactly a basis of .H=I /� and we find

�.x/ D

nX
iD1

.ei � x/˝ fi D

nX
iDmC1

.ei � x/˝ fi 2 L˝ .H=I /
�:

��1.L˝ .H=I /�/�LcoH�0 . Recall that I DHHC0 . Then since for any x 2H0, we have
that x � ".x/1 2 HC0 � I , we find that the composition H0 � H � H=I is given by
the map x 7! ".x/1. Dualizing this, we find that �.a/D "H�.a/1H�0 for any a 2 .H=I /�.
Now let x 2 L such that �.x/ 2 L˝ .H=I /�, then xŒ0� ˝ �.xŒ1�/D xŒ0� ˝ ".xŒ1�/1H�0 D
x ˝ 1H�0 .

LcoH�0 � LH0 . Let x 2 LcoH�0 , then xŒ0� ˝ �.xŒ1�/ D x ˝ 1H�0 . So 8b 2 H0, bx D
xh1H�0 ; bi D ".b/x and therefore x 2 LH0 .

LH0 � LI . It is easy to see that LH0 � LH
C
0 D LHH

C
0 . To finish the proof, just recall

that HHC0 D I .

2.5. Greither–Pareigis theory

Let L=K be a finite separable extension. We view this extension in two ways: via classical
Galois theory and via Hopf–Galois theory. For the former, we denote by zL the normal
closure of L overK and consider the Galois groupsG D Gal.zL=K/ andG0 D Gal.zL=L/.
The natural bijection G=G0! HomK�Alg.L; zL/ given by sending g 2 G to its restriction
to L extends to an isomorphism of zL-coalgebras

zLŒG=G0�! HomK.L; zL/:

This isomorphism is G-equivariant for the left G-actions given by

g �
� X
hG02G=G0

ahG0hG
0
�
D

X
hG02G=G0

g.ahG0/ghG
0 and g � f D g ı f

for g 2 G,
P
hG02G=G0 ahG0hG

0 2 zLŒG=G0� and f 2 HomK.L; zL/.
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We now assume further that L=K is H -Galois. Let us recall that then H is a Hopf
K-algebra and L is a left H -module K-algebra. We then also have a natural right action
of zL˝H on HomK.L; zL/ by setting�

f � .y ˝ h/
�
.x/ D yf .h � x/

for x 2 L and y ˝ h 2 zL˝H and the canonical map, extended to zL, is now precisely
obtained by applying this right zL˝H -action on the identity map 1L W L! zL:

fcan W zL˝H ! HomK.L; zL/; y ˝ h 7! 1L � .y ˝ h/

and .1L � .y ˝ h//.x/ D y.h � x/ for x 2 L. The assumption that L=K is H -Galois now
means that fcan is an isomorphism and, in other words, that HomK.L; zL/ is exactly the
right zL˝H -orbit of 1L. The canonical map is hence an isomorphism of right zL˝H -
module zL-coalgebras, as seen in Lemma 2.10.

We further letG act from the left on zL˝H on the left factor: g � .y˝h/Dg.y/˝h for
g 2G and y˝ h 2 zL˝H . Also,G acts on the left on HomK.L; zL/ by usual composition.
Then we have the following compatibility relation between the left G-action and the right
zL˝H -action on HomK.L; zL/:

g ı
�
f � .y ˝ h/

�
D .g ı f / �

�
g � .y ˝ h/

�
(2.5)

for all f 2 HomK.L; zL/, all g 2 G and all y ˝ h 2 zL˝H , as can be easily checked by
evaluating both sides at x 2 L, as follows:�

g ı
�
f � .y ˝ h/

��
.x/ D g

�
yf .h � x/

�
D g.y/g

�
f .h � x/

�
and �

.g ı f / �
�
g.y ˝ h/

��
.x/ D

�
.g ı f / �

�
g.y/˝ h

��
.x/ D g.y/.g ı f /.h � x/

D g.y/g
�
f .h � x/

�
:

We remark explicitly that fcan is not G-equivariant.
The following theorem is our account of crucial results from [5].

Theorem 2.19. Let L=K be a finite field extension that is H -Galois and use notations as
above. The following assertions hold.

(a) There is an isomorphism of Hopf zL-algebras

zL˝H Š zLŒN �;

whereN is a group of order ŒL WK�, if and only ifL=K is separable. In all further
points we assume this is the case.

(b) The left action of G on zL˝H via g � .x ˝ h/ D g.x/˝ h induces a left action
of G on N via group automorphisms.
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(c) The elements of N act on the right on HomK.L; zL/ by zL-coalgebra automorph-
isms, in particular, N acts on the right on the set HomK�Alg.L; zL/ Š G=G

0.

(d) Restricting the canonical map fcan W zL ˝ H ! HomK.L; zL/ to N � zLŒN � Š
zL˝H , leads to a right N -equivariant bijection

ˇ W N ! HomK�Alg.L; zL/ Š G=G
0;

which is given by n 7! .1G0/ � n. In other words, N acts strictly transitively from
the right on G=G0 and ˇ is the orbit map of 1G0.

(e) The leftG-action and the rightN -action on HomK�Alg.L; zL/ŠG=G
0 are related

by the formula
g �
�
.hG0/ � n

�
D .ghG0/ � .g � n/;

where n 2 N and g; h 2 G.

(f) Viewing N as a subgroup of Perm.G=G0/ via the right N -action on G=G0 and G
as a subgroup of Perm.G=G0/ via the left G-action on G=G0, the formula of (e)
expresses exactly the fact that N is normalized by G in Perm.G=G0/.

Proof. (a) The separability of L=K means that the cardinality of HomK�Alg.L; zL/ equals
ŒL W K�, which is the zL-dimension of HomK.L; zL/. This, in turn, is by Lemma 2.6 (b)
equivalent to the fact that the zL-coalgebra HomK.L; zL/ has a basis of grouplike elements.
Since the canonical map fcan is a morphism of coalgebras and zL˝H is moreover a Hopf
algebra, this basis of grouplike elements form a group N , and hence, as a Hopf algebra,
zL˝H is isomorphic to a group algebra zLŒN � for some group of order ŒL W K�.

(b) In fact the group G acts on zL ˝ H by Hopf algebra automorphisms.1 For any
element y ˝ h 2 zL˝H (sum understood), and any g 2 G, we find that

�
�
g � .y ˝ h/

�
D �

�
g.y/˝ h

�
D g.y/˝ h1 ˝zL 1˝ h.2/

D g.y/˝ h1 ˝zL g.1/˝ h.2/ D g � .y ˝ h1/˝zL g � .1˝ h.2//:

So if y ˝ h 2 zL˝H is grouplike, then also g � .y ˝ h/ will be grouplike. Since N is
exactly the group of grouplike elements in zL˝H , we find indeed thatG acts onN . Since
moreover the action of G on zL˝H respects the multiplication, G acts moreover on N
by group automorphisms.

(c) Since HomK.L; zL/ is a right zL ˝ H -module zL-coalgebra, the elements of N ,
which are exactly the grouplike elements of zL˝H , act from the right on HomK.L; zL/ by
coalgebra automorphisms. As a coalgebra morphism sends grouplikes to grouplikes, it fol-
lows that N permutes the grouplike elements of HomK.L; zL/. Finally, by Lemma 2.6 (c),
the grouplike elements of HomK.L; zL/ are exactly the algebra morphism (or field morph-
isms) from L to zL.

1To be more precise,G acts by ‘relative Hopf algebra morphisms’, meaning that the elements ofG also
act as automorphisms of the base field and do not restrict to the identity on the base field. This however,
does not affect our conclusions.
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(d) Since the canonical map is an zL-coalgebra morphism by Lemma 2.10, it leads
to a bijection between the set of grouplike elements of zL˝H , which is N , and the set
of grouplike elements of HomL.L; zL/, which is HomK�Alg.L; zL/ Š G=G

0. Furthermore,
again by Lemma 2.10, fcan is right zL˝H -linear, henceN -equivariant. Finally, the explicit
form of this bijection in terms of the action of N on G=G0 follows directly from the
relation between the canonical map and the action of zL˝H on HomK.L; zL/.

(e) This follows directly from (2.5) with n corresponding to an element of zL˝H and
hG0 2 G=G0 corresponding to f 2 HomK.L; zL/.

(g) Denote ˛ W N ! Perm.G=G0/ and � W G ! Perm.G=G0/, then by (e), we find for
all g; h 2 G and n 2 N

�.g/˛.n/�.g�1/.hG0/ D g �
�
.g�1hG0/ � n

�
D .hG0/ � .g � n/ D ˛.g � n/.hG0/;

and therefore N is normalized by G in Perm.G=G0/.

In [5], this theorem is used to show thatH -Galois structures on the extensionL=K are
in bijective correspondence with subgroupsN of Perm.G=G0/ that act strictly transitively
on G=G0 and that are normalized by �.G/, which is the permutation of G=G0 given by
left multiplication. We will make use of this result in order to classify intermediate Hopf–
Galois extensions.

2.6. Intermediate extensions

The aim of this section is to establish, for a finite separable H -Galois extension L=K,
the following proposition characterising the fixed field of left ideals two-sided coideals as
H -subextensions, which will allow us to prove the main Theorem 2.24 in the finite case.

Proposition 2.20. Let L=K be a finite separableH -Galois extension, whereH is a Hopf
K-algebra. Then for all left ideals two-sided coideals I � H , the following statements
hold:

(a) The fixed field LI is an H -subextension.

(b) If I is a Hopf ideal, then the extension LI=K is H=I -Galois.

Lemma 2.21. There is a bijective correspondence between the sets of:

• left ideals two-sided coideals I � H , and

• G-equivariant subgroups V � N .

Under this correspondence, the isomorphism � W zL˝H ! zLŒN � from Theorem 2.19 (a)
induces an isomorphism of left zL˝H -module zL-coalgebras

� W .zL˝H/=.zL˝ I / Š zL˝ .H=I /! zLŒN=V �:

Moreover, V is a normal subgroup of N if and only if I �H is a Hopf ideal. In that case,
� is an isomorphism in the category of zL-Hopf algebras.



H.-P. Bui, J. Vercruysse, and G. Wiese 20

Proof. Applying extension of scalars on a left ideal two-sided coideal I � H , we obtain
a left ideal two-sided coideal zL˝ I in zL˝H Š zLŒN �, so the existence of a subgroup
V � N follows from Proposition 2.7 (c). Recall from Theorem 2.19 (b) that the G-action
onN is induced by the action ofG on zL˝H on the first tensorant. Since the quotient zL˝
H � zL˝H=I is clearly G-equivariant under this action, V becomes a G-equivariant
subgroup of N .

Conversely, if V � N is a G-equivariant subgroup, then zLŒV � is a Hopf subalgebra
of zLŒN � in the symmetric monoidal category of zL#KŒG�-modules. Applying Proposi-
tion 2.5, we find that the space of G-invariants H 0 D zLŒV �G is a Hopf subalgebra of H
in VectK . The desired left ideal two-sided coideal is then given by I D HH 0C (see The-
orem 2.2). The correspondence is indeed bijective, as it is based on the equivalence of
categories from Proposition 2.5.

The last statement follows directly from the well-known fact that those left ideals two-
sided coideals in a group algebra that are Hopf ideals, correspond to those subgroups that
are normal.

We now include a purely group theoretical lemma, which we state here in its profinite
version needed later.

Lemma 2.22. Let G be a profinite group and G0 � G a closed subgroup. Further, let
N be a (possibly non-commutative) profinite left G-module which acts continuously on
G=G0 on the right such that for all n 2 N , all g; h 2 G we have

g �
�
.hG0/ � n

�
D .ghG0/ � .g � n/

and, in particular, for h D 1,

g �
�
.1G0/ � n

�
D .gG0/ � .g � n/: (2.6)

We assume that the orbit map

ˇ W N ! G=G0; n 7! .1G0/:n

is a homeomorphism. It is trivially right N -equivariant. Finally, let V � N be a G-equi-
variant open (resp. closed) subgroup V � N and define

U D
®
u 2 G j uG0 2 ˇ.V /

¯
:

Then the following statements hold.

(a) U is an open (resp. closed) subgroup of G, which contains G0. Moreover, if V �
N is open, then G=U is finite.

(b) For all g 2 G and all v 2 V we have

prU
�
.gG0/ � v

�
D prU .gG

0/ D gU;

where prU W G=G
0� G=U denotes the natural projection.

(c) The compositionN
ˇ
�!G=G0

prU�G=U induces a homeomorphismN=V !G=U .
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Proof. (a) If � WG!G=G0 denotes the natural projection, thenU D��1.ˇ.V //, showing
both the containment G0 � U and the open-ness (closed-ness) of U . Let now u1; u2 2 U

and v1; v2 2 V such that u1G D .1G0/ � v1 and u2G D .1G0/ � v2. Then by (2.6) we have

.1G0/ �
�
v1.u1 � v2/

�
D
�
.1G0/ � v1

�
.u1 � v2/ D .u1G

0/ � .u1 � v2/

D u1
�
.1G0/ � v2

�
D u1u2G

0;

showing u1u2 2 U as v1.u1 � v2/ 2 V . Applying (2.6) with g D u�1 and nD v for uG0 D
.1G0/ � v we obtain

1G0 D u�1
�
.1G0/ � v

�
D .u�1G0/ � .u�1 � v/;

which shows u�1 2 U by acting on both sides with .u�1 � v/�1. It is well known that open
subgroups are of finite index.

(b) We take u 2 U such that .1G0/ � .g�1 � v/ D uG0 and apply again (2.6) to get

.gG0/ � v D .gG0/ �
�
g � .g�1 � v/

�
D g

�
.1G0/ � .g�1 � v/

�
D guG0:

(c) The composite map prU ıˇ is surjective, continuous and open. First let n 2 N and
v 2 V . Then there are g 2 G and u 2 U with .1G0/ � n D gG0 and .1G0/ � v D uG0. We
then have

prU ıˇ.nv/ D prU
�
.1G0/ � .nv/

�
D prU

��
.1G0/ � n

�
� v
�
D prU

�
.gG0/ � v

�
D prU .gG

0/ D prU
�
.1G0/ � n

�
D prU ıˇ.n/;

showing that the map indeed descends to a surjective map N=V � G=U .
Assume now prU ıˇ.n/ D prU ıˇ.m/ for m; n 2 N . We then have g 2 G and u 2 U

such that .1G0/ �mD gG0 and .1G0/ � nD guG0. Let v 2 V be such that .1G0/ � v D uG0.
But we have

guG0 D g.uG0/ D g
�
.1G0/ � v

�
D .gG0/ � .g � v/

D
�
.1G0/ �m

�
� .g � v/ D .1G0/ �

�
m � .g � v/

�
:

Because of the injectivity of ˇ, it thus follows n D m � .g � v/, showing nV D mV , as
required.

Lemma 2.23. Let I � H be a left ideal two-sided coideal. Consider the associated
G-equivariant subgroup V � N (where as before zL ˝ H Š zLŒN �) as in Lemma 2.21
and U � G D Gal.zL=K/ the associated subgroup containing G0 D Gal.L=K/ as in
Lemma 2.22.

We have LI D LU and the natural map

zL˝H=I ! HomK.LI ; zL/

is an isomorphism.
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Proof. Theorem 2.19 ensures that the hypotheses of Lemma 2.22 are fulfilled. From Lem-
mas 2.22 and 2.21, it follows that we have the K-linear isomorphism2

zL˝H=I Š zLŒN=V � Š zLŒG=U � Š HomK.LU ; zL/:

Let now i 2 I and f 2 HomK.L; zL/ be injective (for instance, a field homomorphism).
Under the canonical map, f corresponds to an element  in zL˝H . It is clear that  �
.1˝ i/ is zero in zL˝H=I . This, however, means that the restriction to LU of f � .1˝ i/
is the zero map. In particular, we see for all x 2 LU�

f � .1˝ i/
�
.x/ D f .i � x/ D 0:

The injectivity of f now implies i � x D 0 for all x 2 LU . We conclude LU � LI . The
proof is now concluded by observing that the composite

zL˝H=I � HomK.LI ; zL/
res
� HomK.LU ; zL/

is exactly the isomorphism above, whence the last epimorphism is bijective and therefore
LI D LU .

Proof of Proposition 2.20. From the isomorphism of Lemma 2.23, Lemma 2.16 directly
gives the statement (a). The statement (b) is by definition.

We can now prove our main theorem for finite separable Hopf–Galois extensions.

Theorem 2.24. Let L=K be a separable finite H -Galois extension. Then the following
maps are inclusion reversing bijections:

®
L=L0=K j L0 H -subextension

¯ ˆ // ®
I � H j I left ideal, two-sided coideal

¯
‰
oo

L0 7�! J.L0/

LI 7�!I:

Moreover, the above correspondence restricts to a bijection between the following subsets

®
L=L0=K j L0 H -normal

¯ ˆ // ®
I � H j I Hopf ideal

¯
:

‰
oo

Proof. We already know that the map ˆ is well-defined by Proposition 2.13. On the other
hand, for any left ideal two-sided coideal I of H , we define ‰.I / D LI , and we know
now by Proposition 2.20 (a) thatLI is anH -subextension. If, in addition, I is a right ideal,
then LI is also H -stable (by Lemma 2.15 (b)) and, thus, H -normal. This shows that ‰ is
well-defined as well.

2More precisely, it is an isomorphism of zL-coalgebras and right zL˝H -linear maps.
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Furthermore, Proposition 2.20 (a) and Lemma 2.16 tell that ˆ ı‰.I / D J.LI / D I ,
which provides the first half of the correspondence.

For the other half of the correspondence, let L0 be an H -subextension. We clearly
have the inclusion L0 � LJ.L0/. Moreover, by the definition of H -subextensions, the
natural map L˝H=J.L0/! HomK.L0; L/ is an isomorphism, and on the other hand
by Lemma 2.23, zL˝H=J.L0/! HomK.LJ.L0/; zL/ is also an isomorphism. We hence
conclude that L0 D LJ.L0/.

Finally, let us rephrase our correspondence in purely group theoretical terms via Grei-
ther–Pareigis theory.

Corollary 2.25. Combining Theorem 2.24 with Lemma 2.21, we obtain also a bijective
correspondence as follows:®

L=L0=K j L0 H -subextension
¯ ˆ0 // ®

V � N j V is a G-equivariant subgroup
¯

‰0
oo

restricting to another bijective correspondence®
L=L0=K j L0 H -normal

¯ ˆ0 // ®
V � N j V is a G-equivariant normal subgroup

¯
:

‰0
oo

As in Theorem 2.19 (f) theG-equivariance of the subgroup can also be rephrased as being
normalized by �.G/ in Perm.G=G0/.

2.7. Hopf–Galois theory for subextensions

In classical Galois theory, any intermediate field L0 of a Galois extension L=K leads
to a Galois extension L=L0. Our next result shows that the same property holds for an
H -subextension of an H -Galois extension.

Proposition 2.26. Let L=K be a finite H -Galois extension and L0 an H -subextension.
Consider the Hopf subalgebra H0 D ‰0.L0/ as constructed in Corollary 2.14. Denote as
before ˛ WH ! EndK.L/ the map associated to the action ofH on L. Then the following
statements hold.

(a) L˝H0 D ¹
P
i xi ˝ hi 2 L˝H j can.

P
i xi ˝ hi / 2 EndL0.L/º.

(b) L=L0 is L0 ˝H0-Galois, i.e. the map canL=L0 W L˝H0! EndL0.L/ is biject-
ive.

(c) If L0=K is moreover H -normal, then L0=K is also H=J.L0/-Galois.

Proof. (a) If x˝ h 2 L˝H0, then we find by Corollary 2.14 that can.x˝ h/D x˛.h/ 2
EndL0.L/. Conversely, take

P
i xi ˝ hi 2 L˝H such that the elements xi are linearly

independent overK and can.
P
i xi ˝ hi / is leftL0-linear. This means that for all x0 2L0

and all x 2 L, the following equality holdsX
i

xix0.hi � x/ D
X
i

xihi � .x0x/ D
X
i

xi .hi.1/ � x0/.hi.2/ � x/:
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Using the bijectivity of can W L˝H ! EndK.L/, this equality can be translated intoX
i

xix0 ˝ hi D
X
i

xi .hi.1/ � x0/˝ hi.2/

which holds for all x0 2 L0. Since L0 is an H -subextension, the map

can0 W L˝H=J.L0/! HomK.L0; L/

is injective. Hence the previous equality is furthermore equivalent toX
i

xi ˝ �.1/˝ hi D
X
i

xi ˝ �.hi.1//˝ hi.2/ 2 L˝H=J.L0/˝H;

where we denote � W H ! H=J.L0/ for the canonical surjection. Since we assumed that
the elements xi are linearly independent, we find that �.1/˝ hi D�.hi.1//˝ hi.2/. Hence
we find by Theorem 2.2 that hi 2 H0.

(b) Consider the following commutative diagram

L˝H
can

�
// EndK.L/

L˝H0
?�

OO

Š // L˝L0 .L0 ˝H0/
canL=L0 // EndL0.L/:

?�

OO

Since can is bijective, canL=L0 is also injective. It is surjective by part (a). Hence L=L0 is
L0 ˝H -Galois.

(c) This was already proved as Proposition 2.13 (d).

Next we treat the passage to intersections and composita. We see that it is very con-
venient to have the possibility to work with either ideals or subalgebras.

Lemma 2.27. Let L=K be a finite field extension and let K � Li � L for i D 1; 2 be
intermediate fields.

(a) EndL1L2.L/ D EndL1.L/ \ EndL2.L/.

(b) If EndL1.L/ D EndL2.L/, then L1 D L2.

Proof. (a) Clearly, an endomorphism of L is both L1- and L2-linear if and only if it is
L1L2-linear.

(b) By part (a) we find that EndL1.L/ D EndL2.L/ D EndL1L2.L/. Furthermore, we
have dimK.EndL0.L//D ŒL W K�ŒL W L0� for any intermediate fieldK � L0 � L. Hence it
follows that L1, L2 and L1L2 have the same degree overK. Since obviously Li � L1L2
for i D 1; 2, it follows that L1 D L2 D L1L2.

Proposition 2.28. Let L=K be a separable finite H -Galois extension. Let L1 D LI1 D
LH1 and L2 D LI2 D LH2 be H -subextensions corresponding to left ideals two-sided
coideals I1, I2 and Hopf-subalgebras H1, H2, respectively.
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(a) L1L2 is an H -subextension and L1L2 D LH1\H2 . If L1 and L2 are H -normal,
then so is L1L2.

(b) L1 \ L2 is an H -subextension and L1 \ L2 D LI1CI2 . If L1 and L2 are H -
normal, then so is L1 \ L2.

Proof. First we remark that by Lemma 2.4 I1 C I2 and H1 \H2 are of the right type.
(a) By Proposition 2.26 (b), we have isomorphisms

canL=Li W L˝Hi ! EndLi .L/

for i D 1; 2. Taking intersections on both sides and using Lemma 2.27 (a) we obtain a
canonical isomorphism

L˝ .H1 \H2/! EndL1L2.L/:

As H1 \ H2 is a Hopf-subalgebra, it corresponds to a unique H -subextension L3 D
LH1\H2 with canonical isomorphism

L˝ .H1 \H2/ Š EndL3.L/:

Lemma 2.27 (b) implies L3 D L1L2, concluding the statement about composita. Since
we deal withH -subextensions, theH -normality reduces toH -stability, which is clear for
L1L2.

(b) Consider the following commutative diagram.

L˝H

can�

��

wwww '' ''

EndK.L/

vvvv (( ((

L˝H=I1
can1
�
//

'' ''

HomK.L1; L/

(( ((

HomK.L2; L/

vvvv

L˝H=I2
can2
�
oo

wwww

HomK.L1 \ L2; L/

L˝H=.I1 C I2/:

can1;2

OO

The inner part of this diagram is a pushout square (in VectK), since it arises by applying
the contravariant functor HomK.�; L/ to the diagram which expresses the intersection
L1 \L2 as the pullback of the inclusions Li ! L. The outer part of the diagram is also a
pushout square. Since can, can1 and can2 are isomorphisms, it follows that can1;2 is also
an isomorphism. Moreover, as L1 \L2 � LI1CI2 , we have that can1;2 factors through the
canonical map L˝H=.I1 C I2/! HomK.LI1CI2 ; L/, which is an isomorphism since
LI1CI2 is anH -subextension by Proposition 2.20 (a). It follows that HomK.LI1CI2 ;L/Š
HomK.L1 \ L2; L/ and therefore L1 \ L2 D LI1CI2 is an H -subextension.
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3. Infinite Hopf–Galois theory
3.1. Proartinian Hopf algebras

In this section, we present the underlying algebraic language in which we formulate our
infinite Hopf–Galois correspondence. LetK be any field, equipped with the discrete topo-
logy. Let VectK be the category of finite dimensional K-vector spaces. We now extend
it by introducing proartinian K-vector spaces. First we recall that a topological K-vector
space V is aK-vector space equipped with a topology with respect to which both addition
and scalar multiplication are continuous.

Definition 3.1. A proartinian K-vector space is a topological K-vector space such that
there exists a familyƒV of open subspaces U � V which form a basis of open neighbour-
hoods of 0 such that the following two statements hold:

(1) the quotient V=U is a finite dimensional discreteK-vector space for eachU 2ƒV ,

(2) the natural K-linear map

�V W V ! lim
 �
U2ƒV

V=U;

induced by all projection maps �VU D �U W V ! V=U , is bijective.

A morphism between proartinian K-vector spaces is a continuous K-linear map. The
category of proartinian K-vector spaces is denoted by ProVectK .

The category ProVectK enjoys the following further properties (which can also be
deduced, for instance, from [4, I, §3], [14]).

Lemma 3.2. Let V be a proartinian K-vector space.

(a) For every open subspaceW � V , the quotient V=W is a finite dimensional vector
space with the discrete topology, the projection �W W V ! V=W is continuous,
and W is closed.

(b) If one endows the projective limit lim
 �U2ƒV

V=U with the coarsest topology for
which all projection maps are continuous, the linear isomorphism �V of condi-
tion (2) becomes a homeomorphism. We will henceforth often identify V with this
projective limit along this isomorphism.

(c) The set
T
U2ƒV

U D ¹0º is closed and the morphisms �U are jointly monic.

Proof. (a) As W is open, we have U � W for some U 2 ƒV and the finite dimen-
sionality of V=W follows from that of V=U via the natural surjection V=U � V=W .
The discreteness in the quotient topology is clear. The other two statements follow from
��1W .¹0º/ D W , once viewing ¹0º as an open set and once as a closed one.

(b) By (a), �V identifiesƒV with a basis of open neighbourhoods of 0 of lim
 �U2ƒV

V=U.

(c) The equality
T
U2ƒV

U D ¹0º follows from the injectivity of �V and also means
that the �U are jointly monic. Further, as any open subspace U � V is also closed by (a),T
U2ƒV

U is indeed closed.
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Proposition 3.3. Let V be a proartinian K-vector space and W � V be a subspace.

(a) The canonical inclusion ofW in V factors as in the following diagram of injective
K-linear maps

W� _

�W

��

� � // V

Š �V

��

lim
 �
U2ƒV

W=.U \W /
� � // lim

 �
U2ƒV

V=U:

(b) The topological closure of W , denoted by yW , is given as

yW D
\
U2ƒV

.U CW / Š lim
 �
U2ƒV

.U CW /=U Š lim
 �
U2ƒV

W=.U \W /:

Consequently, �W is a bijection if and only if W is closed.

(c) W � V is a closed subspace if and only if the quotient V=W is a proartinian
K-vector space and the natural projection �W W V ! V=W is continuous. In this
case the projection map is also an open K-linear map.

Proof. (a) Since W=.U \W / is a subspace of V=U for every U 2 ƒV , the natural map

lim
 �
U2ƒV

W=.U \W /! lim
 �
U2ƒV

V=U

is injective, whereas the injectivity of �W follows from Lemma 3.2 (c).
(b) First observe that

T
U2ƒV

.U CW / is closed as it is the intersection of open (and
hence closed) subspaces U CW . Let W 0 be a closed subspace containing W . We have
to show thatW 0 contains

T
U2ƒV

.UCW /. Ad absurdum, let v 2
T
U2ƒV

.UCW / nW 0.
SinceW 0 is closed, there is U 2 ƒV such that .vCU/\W 0 D ;. However, our assump-
tion implies that v 2 .U CW / nW 0, so vD uCw for some u 2U andw 2W . Therefore
W 0 � W 3 w D v � u 2 v C U , which provides the required contradiction. This shows
yW D

T
U2ƒV

.U CW /.
For U;U 0 2 ƒV with U � U 0, we have the commutative diagram

U CW // //
� _

��

.U CW /=U

����

U 0 CW // // .U 0 CW /=U 0:

The projective limit along U 2 ƒV hence gives
T
U2ƒV

.U C W /� lim
 �U2ƒV

.U C

W /=U , the kernel of which is immediately checked to be
T
U2ƒV

U D ¹0º, which shows
the first stated isomorphism.
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The last isomorphism is a consequence of the classical one

.U CW /=U Š W=.U \W /:

The final statement follows then from the fact that composition of the inclusion W � yW
with the stated isomorphisms is exactly the injective morphism �W from part (a).

(c) If W is closed, by part (b), we find that

V=W D V=
� \
U2ƒV

.U CW /
�
Š lim
 �
U2ƒV

V=.U CW / Š lim
 �
U2ƒV

.V=W /=
�
.U CW /=W

�
;

which shows that V=W is indeed proartinian with basis of open neighbourhoods of 0
given by �W .U / D .U CW /=W for U 2 ƒV , and that �W is an open map.

Conversely, if V=W is proartinian, ¹0º is closed, so V=W n ¹0º is open in V=W .
Since �W is continuous, V nW D ��1W .V=W n ¹0º/ is open in V and hence W is closed
in V .

Proartinian K-vector spaces enjoy the following further properties.

Proposition 3.4.
(a) Any proartinian K-vector space is Hausdorff.

(b) The discrete proartinian K-vector spaces are exactly the finite dimensional K-
vector spaces.

(c) A closed subspace W � V is open if and only if it is of finite codimension.

Proof. Let V be a proartinian K-vector space.
(a) Any two vectors v; w 2 V , v ¤ w have the disjoint open neighbourhoods v C U

and w C U , respectively, for any open subspace U 2 ƒV not containing v � w.
(b) Suppose V is finite dimensional. Then the intersection

T
U2ƒV

U D ¹0º of
Lemma 3.2 (c) can be refined to a finite intersection of open sets, showing that ¹0º is
open, whence V is discrete. Conversely, if V is discrete, then ¹0º is an open subspace and
V Š V=¹0º is finite dimensional by Lemma 3.2 (a).

(c) If W � V is open, then V=W is finite dimensional by Lemma 3.2 (a). Conversely,
if V=W is finite dimensional, then it is a discrete proartinian K-vector space and con-
sequently W D ��1W .¹0º/ is open.

For aK-linear map f W V !W between proartinian vector spaces, the continuity can
be expressed as the following property. For any U 2ƒW , there exists a U 0 2ƒV such that
U 0 � ker�U ı f , which means that there exists a K-linear map fU;U 0 W V=U 0 ! W=U

such that the following diagram commutes

V
f

//

�U 0
����

W

�U
����

V=U 0
fU;U 0

// W=U:
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We note fU;U 0 ı �U 0;U 00 D fU;U 00 for any U 00 2 ƒV such that U 00 � U 0 and the natural
projection �U 0;U 00 W V=U 00� V=U 0. Since the morphisms �U are jointly monic, the fam-
ily of morphisms fU;U 0 completely determines the map f . Nevertheless, some caution is
needed when one wants to express properties of the morphism f in terms of the morph-
isms fU;U 0 defined on finite quotients. Indeed, the continuity of f requires the existence of
such morphisms fU;U 0 , however the choice of these morphisms is not unique (nor canon-
ical). Depending on the choices made, the morphisms on finite quotients do not always
properly reflect the properties of the morphism f , as the following example shows.

Example 3.5. Denote by
K1 D

Y
n�1

K D lim
 �
n�1

Kn

taken with respect to the maps �n;m W Km ! Kn for m � n, projecting onto the first n
components. Further let �n WD �n;1 W K1 ! Kn be the natural projection map.

Consider the identity map on K1. To express the continuity of the identity map the
most intuitive choice of morphisms on finite quotients would be to take idKn and the
following commutative diagrams:

K1
id //

�n
����

K1

�n
����

Kn
idKn // Kn:

However, this is not the only possible choice. Indeed, one could also consider for any pro-
jection �n on the codomain, a projection �nC1 on the domain together with the projection
�n;nC1 as morphism on finite quotients. This also expresses the continuity of the identity
map by the commutativity of the following diagram:

K1
id //

�nC1
����

K1

�n
����

KnC1
�n;nC1

// Kn:

Nevertheless, for this choice, the morphisms �nC1;n are surjective but not injective, show-
ing that depending of the choice, morphisms on finite quotients of an isomorphism are not
necessarily isomorphisms themselves.

It will be important for us that ProVectK is equipped with the completed tensor product
y̋ overK, making it into a symmetric monoidal category. More precisely, given two proar-
tinian K-vector spaces V and W , one defines

V y̋ W D lim
 �

.UV ;UW /2ƒV �ƒW

V=UV ˝W=UW :

For any pair .UV ; UW / 2 ƒV � ƒW , we denote the corresponding projection map V y̋
W ! V=UV ˝ W=UW by �UV y̋ �UW . Moreover, there is a canonical K-linear mono-
morphism V ˝W ! V y̋ W .
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We now put Hopf algebras and coalgebras into the context of proartinian vector spaces.

Definition 3.6. Let H 2 ProVectK . We say that H is a proartinian Hopf algebra over K
if there is a basis ƒH of 0 consisting of open subspaces U of H such that for every
U 2 ƒH , the quotient H=U is a finite dimensional K-vector space equipped with the
structure of a Hopf algebra over K and for all U; V 2 ƒH with U � V the natural maps
�V;U W H=U ! H=V are morphisms of Hopf algebras over K with respect to the fixed
Hopf algebra structures.

Similarly, we say that H is a proartinian coalgebra over K if there is a basis ƒH of 0
consisting of open subspaces U ofH such that for every U 2 ƒH , the quotientH=U is a
finite dimensional K-vector space equipped with the structure of a coalgebra over K and
for all U;V 2 ƒH with U � V the natural maps �V;U WH=U !H=V are morphisms of
coalgebras over K with respect to the fixed coalgebra structures.

A morphism f W H ! H 0 between proartinian Hopf algebras (resp. coalgebras) is a
K-linear map such that for each U 0 2 ƒH 0 , there exists U 2 ƒH with f .U / � U 0 such
that the induced map fU 0;U WH=U !H 0=U 0, which satisfies �U 0 ı f D fU 0;U ı �U , is a
morphism of Hopf algebras (resp. of coalgebras). The assumption implies that a morphism
is always continuous.

Example 3.7. Finite dimensional Hopf algebras (coalgebras) are precisely the discrete
proartinian Hopf algebras (coalgebras). We remark that the projection morphisms �U W
H ! H=U , with U 2 ƒH are morphisms of proartinian Hopf algebras (coalgebras),
with respect to this discrete topology on the quotients.

Example 3.8. Let G be a profinite group and�G be a system of open neighbourhoods of
the identity element of G consisting of normal subgroups. Then the completed group ring

KJGK D lim
 �
N2�G

KŒG=N �

is a proartinian Hopf algebra over K.

Proartinian coalgebras and proartinian Hopf algebras H inherit additional structure
from the structures making each of the H=U a coalgebra or a Hopf algebra, respectively.
For instance, in the case of a proartinian Hopf algebra, we obtain aK-linear multiplication
on H , which is obtained from the universal property of H as a projective limit from the
multiplications mU on each H=U , by means of the following commutative diagram for
any U 2 ƒH :

H ˝H
m //

�U˝�U
����

H

�U
����

H=U ˝H=U
mU // H=U:

This multiplication map turns H into a (usual) K-algebra and moreover, the commut-
ativity of the above diagrams implies that the multiplication map is continuous. Further,
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since the multiplication map m is continuous, it can be extended to a morphism with the
completed tensor product as domain:

Om W H y̋ H ! H:

The situation of the coalgebra structure is slightly more complicated. This time, one uses
the universal property of the completed tensor product H y̋ H as a projective limit
to define a comultiplication on H that makes the following diagram commute for all
U; V;W 2 ƒH such that U � V and U � W :

H
� //

�U

����

H y̋ H

�V y̋�W
����

H=U
�U // H=U ˝H=U

�V;U˝�W;U
// H=V ˝H=W:

(3.1)

We remark, however, that in this case and unless H is discrete, H is not a coalgebra (or
Hopf algebra) in the classical sense because of the necessity to work with the completed
tensor product. Rather, H is a topological coalgebra in the sense of [14]. If all H=U are
cocommutative, H will be cocommutative as well, by definition.

Similarly, a unit morphism u WK!H , a counit " WH! k and an antipode S WH!H

can be constructed by taking a projective limit of the structure maps of all H=U for
U 2 ƒH :

K
u // H

�U
����

K
uU // H=U

H
" //

�U
����

K

H=U
"U // K

H
S //

�U
����

H

�U
����

H=U
SU // H=U:

(3.2)

These structure maps then satisfy the expected coalgebra or Hopf-algebra axioms (see, for
instance, [4, p. 36]), which implies that H is a coalgebra or Hopf algebra in the monoidal
category of proartinian vector spaces (with completed tensor product).

The projective limit H D lim
 �U2ƒH

H=U in VectK differs from (in fact, is strictly
bigger than) the projective limit computed in the category of all (cocommutative) Hopf
algebras. More precisely, the projective limit in the category of cocommutative Hopf
algebras is exactly the biggest subspace of H for which the comultiplication � W H !
H y̋ H factors through the usual tensor product H ˝H .

Since we suppose all the Hopf algebras HU WD H=U for U 2 ƒH to be finite dimen-
sional, their linear dual is again a Hopf algebra and this gives rise to an inductive system
of Hopf algebras .H�U ; �

�
V;U /. The inductive limit of this system in the category of Hopf

algebras coincides with the one in the category of K-vector spaces, and hence provides a
(usual) Hopf algebra H � D lim

�!U2ƒH
H�U . Using an argument based on adjunctions, one

can easily verify that the Sweedler dual ofH � is exactly the projective limit of the system
.HU ; �V;U / computed in the category of Hopf algebras, and the full linear dual of H � is
isomorphic to H (as K-vector space).
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Lemma 3.9. Let H and H 0 be proartinian K-coalgebras and f W H ! H 0 a K-linear
map.

(a) Then the following two conditions are equivalent:

(i) f is a morphism of proartinian coalgebras;

(ii) f is continuous and �H 0 ı f D .f y̋ f / ı�H and "H 0 ı f D "H .

(b) If f is a morphism of proartinian coalgebras and it is moreover a homeomorph-
ism, then f �1 is again a morphism of proartinian coalgebras.

Proof. (a) Since morphisms of proartinian coalgebras are continuous, we can assume
without loss of generality that f is continuous. Now take any opens V 0; W 0 2 ƒH 0 , and
any open U 0 � V 0 \W 0. The continuity of f implies that there exists an open U 2 ƒH
such that f .U / � U 0, leading to induced maps

fU 0;U W H=U ! H 0=U 0:

Now consider the following diagram:

H
f

//

�H

��

�U

''

H 0

�H 0

��

�U 0

((

H=U
fU 0;U

//

�H=U

��

H 0=U 0

�H 0=U 0

��

H y̋ H
f y̋f

//

�U y̋�U

&&

H 0 y̋ H 0

�V 0 y̋�W 0

%%

�U 0 y̋�U 0

''

H=U ˝H=U
fU 0;U˝fU 0;U

// H 0=U 0 ˝H 0=U 0

�V 0;U 0˝�W 0;U 0

��

H 0=V 0 ˝H 0=W 0:

The continuity of f and, as a consequence, of f y̋ f implies that the top and the bottom
of the box are commutative diagrams. The left and the (extended) right side walls commute
by the construction of �H and �H 0 , using that H and H 0 are proartinian coalgebras, see
(3.1). The consequence we are interested in is the following. Since each of the maps �U
is surjective, and the morphisms �V 0 y̋ �W 0 (varying over all V 0; W 0 2 ƒH 0 ) are jointly
monic, the back of the box commutes, i.e. �H 0 ı f D .f y̋ f / ı�H , if and only if the
front half of the box commutes for all U 0 (and correspondingly chosen U ), that is, if and
only if the maps fU 0;U respect the comultiplications.
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Further consider this diagram.

H
f

//

�U

��

"H

00

H 0

�U 0

��

"H 0

nn

H=U
fU 0;U

//

"H=U

��

H 0=U 0

"H 0=U 0

��

K

The rectangle is commutative by the continuity of f . The left half is commutative by the
construction of "H , coming from the proartinian coalgebra structure, and similarly also
the right half is commutative by the construction of "H 0 . Using the surjectivity of each
�U , we see that "H D "H 0 ı f if and only if the lower part of the diagram (the diagram
without the first line) commutes, that is, if and only if the maps fU 0;U respect the counits.

The proof is finished because the commutativity of the front half of the box and of the
above diagram without the first line is exactly the definition of a morphism of proartinian
algebras.

(b) If f is a morphism of proartinian coalgebras and a homeomorphism, then f �1

clearly satisfies �H ı f �1 D .f �1 y̋ f �1/ ı�H 0 , and hence f �1 is again a morphism
of proartinian coalgebras by part (a).

As in the finite case, a crucial role will be played by grouplike elements.

Definition 3.10. An element x in a proartinian coalgebra H is called grouplike if and
only if �U .x/ is grouplike in the (finite dimensional) coalgebra H=U for any U 2 ƒH .

Example 3.11. Consider a profinite set X D lim
 �i2I

Xi taken as the limit of a projective
system formed by maps of finite sets �ij W Xj ! Xi for any i; j 2 I with i � j . Then
define

H D KJXK D lim
 �
i2I

KŒXi �;

which is a proartinian coalgebra by considering a coalgebra structure on each finite dimen-
sional KŒXi �, where Xi is a basis of grouplike elements. Consider now any grouplike
element x 2 H . This means that for any i 2 I , �i .x/ 2 KŒXi � is grouplike, that is,
�i .x/ 2 Xi . Therefore, by definition of X as profinite set, we find that x 2 X . We can
conclude that the grouplike elements of KJXK are exactly the elements of X . We remark
that these elements are a linearly independent set, but not a basis for KJXK unless X is
finite.

Corollary 3.12. The grouplike elements of a proartinian coalgebra H form a profinite
set G.H/.
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Any morphism of proartinian coalgebras restricts to a continuous map between the
respective profinite sets of grouplike elements.

In fact, taking grouplikes leads to a functor from the category of proartinian coalgeb-
ras to the category of profinite sets, which is a right adjoint to the fully faithful functor
that sends a profinite set X D lim

 �i2I
Xi to the proartinian coalgebra

KJXK D lim
 �
i2I

KŒXi �:

Proof. LetH be a proartinian coalgebra and take anyU2ƒH. ThenH=U is a finite dimen-
sional coalgebra. Since grouplike elements are linearly independent, the set G.H=U /
of grouplike elements in H=U is finite. Moreover, since coalgebra morphisms preserve
grouplike elements, we find that the projection morphisms �V;U W H=U ! H=V induce
maps 
V;U WG.H=U /!G.H=V / by restriction. Therefore we obtain a projective system
of finite sets, whose projective limit is exactly the set of grouplike elements in H .

The second statement follows directly from the first one.
For the final statement recall from Example 3.11 that G.KJXK/ D X , which is the

unit of the desired adjunction. By the second statement, we then find that any coalgebra
morphism fromKJXK to a proartinian coalgebraH is completely determined by a morph-
ism from X to G.H/, showing that we indeed have an adjunction as stated, and since the
unit is an isomorphism, the left adjoint is fully faithful.

Next we turn our attention to the theory of modules and (Hopf) ideals in proartinian
Hopf algebras as well as coideals in proartinian coalgebras. First note that the usual notion
of left/right/two-sided ideal makes sense for proartinian Hopf algebras. However, since the
comultiplication in a proartinian coalgebra is defined by a completed tensor product, we
have to adapt the notion of coideal accordingly, which we do as follows.

Definition 3.13. Let H be a proartinian coalgebra over K and ƒH a basis of neigh-
bourhoods for H as in Definition 3.6. We say that a K-subspace I � H is a two-sided
proartinian coideal if �U .I /D.I CU/=U �H=U is a two-sided coideal for all U 2ƒH .

Similarly, if H is a proartinian Hopf algebra over K with ƒH as in Definition 3.6,
then a K-subspace I � H is a proartinian Hopf ideal if .I C U/=U � H=U is a Hopf
ideal for all U 2 ƒH .

The next lemma shows that ideals in the usual sense coincide with closed “proartinian”
ideals.

Lemma 3.14. Let H be a proartinian Hopf algebra.

(a) If I is a left ideal in H (in the classical sense), then for each U 2 ƒH , we have
that .I C U/=U is a left H=U -ideal. Hence, the action of H on I is continuous
with respect to the subtopology on I .

(b) If I � H is such that for each U 2 ƒH , .I C U/=U is a left H=U -ideal, then
the closure yI is a left ideal in H .
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(c) If I � H is closed, then I is a (closed) left ideal in H if and only if .I C U/=U
is a left ideal in H=U for all U 2 ƒH .

Proof. (a) Since by definition, the multiplication of H induces a multiplication on all
finite quotients by open Hopf ideals, the statement follows by the commutativity of the
following diagram since �U .I / D .I C U/=U for all U 2 ƒH .

H � I
m //� _

��

I � _

��

H �H
m //

�U��U
����

H

�U
����

H=U �H=U
mU // H=U:

(b) The statement tells us that the multiplication maps of each finite quotient H=U
restrict to a left action of H=U on .I C U/=U :

H=U � .I C U/=U
mU // .I C U/=U:

Taking the projective limit along all U 2 ƒH , we henceforth obtain the desired action of
H D lim

 �U2ƒH
H=U on yI D lim

 �U2ƒH
.I C U/=U .

(c) is a direct combination of the previous two points since I D yI in this case.

In contrast to the above lemma, a proartinian coideal is not a coideal in the classical
sense. The reason is similar to the observation made above that the comultiplication of
a proartinian coalgebra lands in the completed tensor product, and hence a proartinian
coalgebra is not a coalgebra in the usual sense. By the same arguments, one can observe
that a proartinian coideal I in H has the property that �.I/ � I y̋ H CH y̋ I .

Definition 3.15. Let H be a proartinian Hopf K-algebra. A topological K-vector space
L is called a left H -module if there is a continuous K-bilinear map

H � L! L; .h; x/ 7! h:x

such that

(1) 1:x D x for all x 2 L and

(2) .h1h2/:x D h1:.h2:x/ for all x 2 L and all h1; h2 2 H .

Further, a proartinian H -module coalgebra over K is a proartinian left H -module which
carries a compatible structure of proartinian coalgebra. Finally, a proartinian H -module
algebra over K is a proartinian left H -module which carries a compatible structure of
proartinian algebra.

The following lemma, which will be useful later, now follows directly by combin-
ing the preceding definitions with the properties of the proartinian topology as stated in
Proposition 3.3.
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Lemma 3.16. LetH be a proartinian coalgebra overK, and I �H aK-linear subspace.

(a) I is a closed (and open) proartinian coideal if and only if H=I is a proartinian
(and finite dimensional) coalgebra and the natural projectionH�H=I is con-
tinuous.

Suppose now that moreover H is a proartinian Hopf algebra over K.

(b) I is a closed (and open) left ideal proartinian coideal in H if and only if H=I is
a proartinian (and finite dimensional) left H -module coalgebra and the natural
projection H � H=I is continuous.

(c) I is a closed (and open) proartinian Hopf ideal in H if and only if H=I is
a proartinian (and finite dimensional) Hopf algebra and the natural projection
H � H=I is continuous.

In particular, one can choose the set ƒH from Definition 3.6 to be the set of all open
proartinian coideals in a proartinian coalgebra and the set of all open proartinian Hopf
ideals in a proartinian Hopf algebra.

To finish this section, we investigate more closely the case of discrete leftH -modules.

Lemma 3.17. Let H be a proartinian Hopf K-algebra and consider a K-bilinear map

� W H � L! L:

Then the above map is continuous with respect to the discrete topology onL (in particular,
this is the case if L is a discrete H -module) if and only if

L D
[

I�H open proartinian Hopf ideal

LI ;

where LI D ¹x 2 L j 8i 2 I W i � x D 0º.

Proof. Since L carries the discrete topology, the continuity of the action is equivalent to®
.h; y/ 2 H � L j h � y D x

¯
being an open set in H � L for all x 2 L. This set is the disjoint union of all the sets

¹h 2 H j h � y D xº � ¹yº

for y 2 L. Consequently, continuity is equivalent to ¹h 2H j h � y D xº being open inH
for all x; y 2 L. To characterise this, let Nh 2 H be any element such that Nh � y D x. Then

¹h 2 H j h � y D x D Nh � yº D NhC ¹i 2 H j i � y D 0º:

Since addition on H is by homeomorphisms, continuity is equivalent to the left ideal

Iy D ¹i 2 H j i � y D 0º
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being open inH . By the proartinian topology onH , this is further equivalent to the asser-
tion that, for every y 2 L, Iy contains an open proartinian Hopf ideal I � H (and hence
y 2 LIy � LI ). This is then further equivalent to the assertion that every y 2 L lies in LI

for some open proartinian Hopf ideal I � H , as claimed.

3.2. Hopf–Galois extensions

Let L=K be a separable field extension and H a proartinian Hopf K-algebra such that L
is a discrete left H -module algebra. Then we can see EndK.L/ naturally as a projective
limit of K-vector spaces in the following way. Using Lemma 3.17 in the first equality, we
find that

EndK.L/ D HomK
�[
I

LI ; L
�
D lim
 �
I

HomK.LI ; L/;

where I varies over all open proartinian Hopf ideals in H . If each HomK.LI ; L/ is finite
dimensional asL-vector space, equivalently, ifLI is finite dimensional asK-vector space,
then EndK.L/ will be proartinian, but in general this is not guaranteed at this point.

We can define, by means of the universal property of L y̋K H as projective limit, the
proartinian version of the canonical Hopf–Galois map as the morphism can which makes
the following diagram commutative for any open proartinian Hopf ideal I � H

L y̋K H
can

//

�I
����

EndK.L/

resI
����

L˝H=I
canI // HomK.LI ; L/;

(3.3)

where, as in the finite case, we define canI .x ˝ Nh/.y/ D x. Nh � y/ for all x 2 L, y 2 LI

and Nh 2 H=I . By construction, this morphism is then continuous.

Lemma 3.18. LetL=K be anH -Galois extension as in Definition 1.1. Consider any open
proartinian Hopf ideal I � H . Then

(a) canI is surjective.

(b) LI is finite dimensional as aK-vector space, and hence EndK.L/ is a proartinian
L-vector space.

(c) HomK.LI ; L/ is an L-coalgebra whose coalgebra structure is defined by the
formula

f .xy/ D f.1/.x/f.2/.y/

for all f 2HomK.LI ;L/ and x;y 2LI . Consequently, EndK.L/ is a proartinian
L-coalgebra.

(d) canI is a morphism of L-coalgebras and therefore can is an isomorphism of
proartinian L-coalgebras.

(e) For any field extension zL=L, HomK.L; zL/ is a right proartinian zL y̋K H -module
zL-coalgebra and the canonical map fcan W zL y̋K H ! HomK.L; zL/ is a morph-
ism of right zL y̋K H -module zL-coalgebras.
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Proof. (a) follows directly from the commutative diagram (3.3) that defines can.
(b) Since canI is surjective and H=I is finite dimensional as K-vector space, we

find that HomK.LI ; L/ is finite dimensional as L-vector space. As remarked before the
lemma, this was the only missing condition for EndK.L/ to be a proartinian L-vector
space. Furthermore as HomK.LI ; L/ is finite dimensional as L-vector space, LI is also
finite dimensional as K-vector space.

(c) Since LI is finite dimensional by part (b), the first statement follows from Lem-
mas 2.6 (a) and 2.6 (c). The second statement then follows by definition since EndK.L/ is
a projective limit of finite dimensional L-coalgebras.

(d) SinceH=I and LI are finite dimensional, canI being a coalgebra morphism is ex-
actly Lemma 2.10. Therefore, the homeomorphism can is a(n iso)morphism of proartinian
coalgebras by Lemma 3.9 (b).

(e) For any open proartinian Hopf ideal I in H , we know from (b) that LI is finite
dimensional over K and hence HomK.LI ; zL/ is finite dimensional over zL. Therefore, we
can apply Lemma 2.10 and see that HomK.LI ; zL/ is a zL y̋K H=I -module zL-coalgebra
and fcanI W zL y̋K H=I ! HomK.LI ; zL/ is a morphism of right zL y̋K H=I -module zL-
coalgebras. We can then conclude by taking the projective limit over the set ƒH of all
open proartinian Hopf ideals of H .

We remark that even though can is an isomorphism of proartinian coalgebras, it does
not follow immediately that canI is a bijection for any open proartinian Hopf ideal I
(see Example 3.5). The difficulty is to establish the injectivity of canI , so that we can
link a proartinian Hopf–Galois extension with finite dimensional ones. To that aim, we
will extend Greither–Pareigis theory to the infinite case in the next subsection. We first
establish some properties of J.L0/, defined in (1.1).

Lemma 3.19. For any intermediate field K � L0 � L, we find that

(a) J.L0/ is a closed left ideal two-sided proartinian coideal of H .

(b) If L0 is H -stable, then J.L0/ is also a right ideal.

(c) The canonical map can0 WL y̋ H=J.L0/!HomK.L0;L/ is a quotient map (i.e.,
surjective, and the topology on the image is the quotient topology).

(d) L0 is an H -subextension if and only if can0 is injective.

Proof. (a) J.L0/ is a closed set since it equals the intersection
T
x2L0

m�1x ¹.0/º where
mx W H ! L is the continuous map h 7! h � x for x 2 L. Since L D

S
I2ƒH

LI (see
Lemma 3.17), we also have J.L0/ D

T
I2ƒH

J.LI0/, and for every I 2 ƒH , we have
I � J.LI0/ and the image of J.LI0/ inH=I coincides with the left ideal two-sided coideal
of H=I consisting of the elements annihilating LI0 , we obtain isomorphisms

H=J.L0/ Š lim
 �
I2ƒH

H=J.LI0/ Š lim
 �
I2ƒH

.H=I /=
�
J.LI0/=I

�
:

Therefore, we can conclude by Lemma 3.16 (b) that J.L0/ is a closed left ideal two-sided
proartinian coideal of H .
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(b) This follows in the same way as in the finite case. For any h 2 H , i 2 J.L0/
and x 2 L0, we find that .ih/ � x D i � .h � x/ D 0, since h � x 2 L0, and therefore also
ih 2 J.L0/.

(c) Consider the following diagram

L y̋ H
can

�
//

����

EndK.L/

����

L y̋ H=J.L0/
can0 // HomK.L0; L/:

The vertical arrows are quotient maps. Since can is a homeomorphism, the composition is
also a quotient map, and therefore can0 is a quotient map as well.

(d) is now obvious since any injective quotient map is a homeomorphism.

We remark that for every intermediate fieldK �L0�Lwe trivially haveL0�LJ.L0/

and, consequently, J.L0/ � J.LJ.L0//. In fact, we have equality

J.L0/ D J.L
J.L0//

as the other inclusion is clear. This of course is, in other words, a direct consequence
of the fact that we have a Galois connection between intermediate field extensions and
(proartinian) left ideals two-sided coideals.

Proposition 3.20. LetL=K be a Hopf–Galois extension for a proartinian Hopf algebraH.

(a) For any H -subextension, we have L0 D LJ.L0/.

(b) For any closed ideal two-sided proartinian coideal C in H such that the canon-
ical map

L y̋K H=C
canC
����! HomK.LC ; L/

is an isomorphism, we have that LC is anH -subextension of L and C D J.LC /.

Proof. (a) As L0 � LJ.L0/, we can consider the composition

can0 W L y̋ H=J.L0/
canJ.L0/ // // HomK.LJ.L0/; L/

res // // HomK.L0; L/:

The assumption that L0 is an H -subextension implies that this composition is an iso-
morphism, whence both maps are isomorphisms. Consequently, L0 D LJ.L0/.

(b) Consider the following diagram

L y̋ H=C
canC //

�
'' ''

HomK.LC ; L/:

L y̋ H=J.LC /

can
LC

66
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Since canC is bijective by assumption and � is surjective, canLC is bijective, so in partic-
ular injective, hence LC =K is an H -subextension of L by Lemma 3.19 (d). Now � is the
composite isomorphism can�1

LC
ı canC , from which we conclude C D J.LC /.

To get the full correspondence one then also needs that any closed ideal two-sided
proartinian coideal in H arises this way. We will need results for it that will follow from
infinite Greither–Pareigis theory, allowing us to show that LC is an H -subextension if C
is any closed ideal two-sided proartinian coideal in H .

3.3. Infinite Greither–Pareigis theory

The aim of this section is to connect finite and infinite Hopf–Galois theory. Let L=K be a
(possibly infinite) separable extension, and zL be a normal closure over K. Then we know
by classical (infinite) Galois theory that G D Gal.zL=K/ is a profinite group containing
G0 D Gal.zL=L/ as a closed subgroup, and we have isomorphisms

HomK�Alg.L; zL/ Š HomK�Alg

� [
NCG open

LN ; zL
�
Š HomK�Alg

� [
NCG open

zLG
0N ; zL

�
Š lim

 �
NCG open

G=.G0N/ D G=G0

as profinite left G-sets and

HomK.L; zL/ Š lim
 �

NCG open

zL
�
G=.G0N/

�
Š zLJG=G0K

as proartinian zL-vector spaces and left zLJGK-modules, where zLJGK is the completed
group algebra.

Proposition 3.21. Let L=K be a separable H -Galois extension as in Definition 1.1 and
use the notation just introduced. Then

(a) For any open proartinian Hopf ideal I � H , HomK�Alg.L
I ; zL/ is a basis of

grouplike elements for HomK.LI ; zL/ as zL-coalgebra.

(b) For any open proartinian Hopf ideal I � H , zL˝H=I is isomorphic as a Hopf
zL-algebra to a group algebra zLŒNI �, for some finite group NI .

(c) The groups NI form a projective system of finite groups when I runs through the
open proartinian Hopf ideals of H and hence the projective limit N D lim

 �I
NI

is a profinite group.

(d) zL y̋K H is isomorphic as proartinian Hopf zL-algebra to the completed group
algebra zLJN K. Moreover the natural left action of G on the first tensorant of
zL y̋K H induces a continuous left G-action on N .

(e) From the canonical map, we obtain a homeomorphism of profinite sets

ˇ W N Š G=G0:
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(f) Since HomK.L; zL/Š zLJG=G0K is a right proartinian zL y̋K H Š zLJN K-module
zL-coalgebra by Lemma 3.18 (c), we obtain a continuous right action of N on
G=G0, which satisfies the compatibility relation

g:
�
.hG0/:n

�
D .ghG0/:.g:n/;

where n 2N and g;h 2G. Moreover, the map ˇ is rightN -equivariant and sends
n 2 N to .1G0/:n.

(g) For any open proartinian Hopf ideal I � H , there exists an open normal sub-
group V � N such that N=V Š NI and zL ˝ H=I Š zLŒN=V � as Hopf zL-
algebras.

Proof. (a) By Lemma 3.18 (b) we know that LI is of finite dimension, and consequently
HomK.LI ; zL/ has a basis of grouplike elements by separability and Lemma 2.6 (c), which
are given exactly by the K-algebra morphisms from LI to zL.

(b) Using a base-extension from L to zL, we obtain a canonical map

fcan W zL y̋K H ! HomK.L; zL/;

which is a morphism of proartinian zL-coalgebras and a homeomorphism. Its inverse fcan�1

is also a morphism of proartinian zL-coalgebras by Lemma 3.9 (b). In particular, fcan�1 is
continuous and preserves the comultiplication. The continuity of fcan implies that there
exists an open proartinian Hopf ideal I 0 in H and a (surjective, coalgebra) morphism
.fcan�1/I such that the following diagram commutes

zL y̋K H

�I

��

HomK.L; zL/
ecan�1

oo

��

zL˝H=I HomK.LI
0

; zL/:
.ecan�1/I

oo

Since .fcan�1/I is a surjective coalgebra morphism, and HomK.LI
0

; zL/ has a basis of
grouplike elements by part (a), it follows by Proposition 2.7 (a) that zL˝H=I also has a
basis of grouplike elements. Hence, zL˝H=I , being a finite dimensional Hopf algebra
with a basis of grouplike elements, is a group algebra zLŒNI � for some finite group NI .

(c) We know that there is a projective system of Hopf algebras zL˝H=I . Since each of
these Hopf algebras is a finite group algebra by part (b), and morphisms of Hopf algebras
preserve grouplike elements, we obtain henceforth a projective system of finite groups.

(d) The first part follows from the fact that L y̋K H and zLJN K arise as the projective
limit of isomorphic projective systems of finite dimensional HopfK-algebras. The second
part is clear, since G acts on zL y̋K H by proartinian coalgebra morphisms, hence the
G-action on zL y̋K H turns grouplikes into grouplikes by Corollary 3.12 and leads to a
continuous action of G on N .
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(e) Combining the above, we obtain a sequence of isomorphisms

zLJN K Š zL y̋ H
ecan
Š HomK.L; zL/ Š zLJG=G0K:

The first isomorphism is an isomorphism of proartinian Hopf algebras. The last isomorph-
ism is an isomorphism of proartinian coalgebras. Finally, the canonical map fcan is a
morphism of proartinian coalgebras as well, by Lemma 3.18 (e). The combined isomorph-
ism is therefore a morphism of proartinian coalgebras. Since N and G=G0 are exactly
the grouplike elements of the first and last proartinian coalgebra (see Example 3.11), we
obtain the desired homeomorphism of profinite sets.

(f) As in the finite case, since HomK.L; zL/ is a right proartinian zL y̋K H -module zL-
coalgebra, the elements of N , being grouplike elements of zL y̋K H , act on HomK.L; zL/
by proartinian coalgebra morphisms, and therefore send grouplikes to grouplikes (see
Corollary 3.12). A K-linear map f 2 HomK.L; zL/ is grouplike if and only if the restric-
tion of f to LI is grouplike in HomK.LI ; zL/ for any open Hopf ideal I 2 ƒH , which
means that this restriction is an algebra map (see Lemma 2.6 (c)). Since L D

S
I2ƒH

LI ,
this means that f itself is an algebra map. Since HomK�Alg.L; zL/ Š G=G0 by classical
Galois theory, we obtain the required continuous action of N on G=G0. The formulae are
proven exactly as in the finite case (see Theorem 2.19).

(g) For any open proartinian Hopf ideal I 2ƒH , we know by part (b) that zL˝H=I Š
zLŒNI � is a finite dimensional group algebra, and by part (d) that zL y̋K H Š zLJN K. Via
these isomorphisms, the natural projection zL y̋K H� zL˝H=I translates to the natural
projection zLJN K� zLŒNI �. The latter map is induced from a surjection of groups N �
NI (cf. Example 3.11 and Corollary 3.12). Taking V to be its kernel, we find NI Š N=V
and, again by Corollary 3.12, zL˝ I Š zLJV K as needed.

Proposition 3.22. LetL=K be a separable Hopf–Galois extension for a proartinian Hopf
algebraH . Then for any open left ideal two-sided proartinian coideal I �H , the canon-
ical map

canI W L˝H=I � HomK.LI ; L/:

is an isomorphism.

Proof. We first assume that I is an open proartinian Hopf ideal. Proposition 3.21 ensures
that the hypotheses of Lemma 2.22 are fulfilled. From that lemma and Proposition 3.21 (g),
it follows that we have the K-linear isomorphism

zL˝H=I Š zLŒN=V � Š zLŒG=U � Š HomK.LU ; zL/;

whereU is a suitable subgroup ofG constructed in Lemma 2.22. This isomorphism allows
us to apply verbatim the arguments of the proof of Lemma 2.23 in the finite case in
order to conclude LI D LU and canI is bijective. For the general case, when I is an
open left ideal two-sided proartinian coideal of H , there is a proartinian Hopf ideal J
contained in I since the open proartinian Hopf ideals form a basis of open neighbour-
hoods of 0. As LJ isH=J -Galois by the preceding case, canI is an isomorphism because
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H=I Š .H=J /=.I=J / and LI D .LJ /.I=J / and we can apply the Galois correspond-
ence of Lemma 2.23 for the finite Hopf algebra H=J and its left ideal two-sided coideal
I=J .

Corollary 3.23. Let L=K be a separable Hopf–Galois extension for a proartinian Hopf
algebra H . Then for any open proartinian Hopf ideal I � H , the finite extension LI=K
is H=I -Galois and an H -subextension of L.

Proof. By Proposition 3.22, we know that LI=K isH=I -Galois, allowing us to conclude
by Proposition 3.20 (b).

3.4. The infinite Hopf–Galois correspondence

Corollary 3.24. Let L=K be a separable Hopf–Galois extension for a proartinian Hopf
algebra H and let C be a closed left ideal two-sided proartinian coideal in H . Then the
following statements hold.

(a) LC is anH -subextension, J.LC /D C andLC D
S
J L

J , where J runs through
the open left ideals two-sided proartinian coideals in H containing C .

(b) Moreover, C is a right ideal if and only if LC is H -stable, i.e. if and only if LC

is H -normal.

Proof. (a) By Proposition 3.3 (a) we know

C D
\
I2ƒH

.C C I /:

As a sum of an open and a closed left ideal two-sided proartinian coideal, C C I is an
open left ideal two-sided proartinian coideal in H containing C .

Due to the inclusion
S
I2ƒH

LCCI � LC , we have the following diagram

L y̋K H
Š

can
//

id y̋K�C
����

EndK.L/

res
����

L y̋K H=C
canC // HomK.LC ; L/

res // // HomK
�S

I2ƒH
LCCI ; L

�
:

(3.4)

By the commutativity of the left square, canC is surjective (note that this is exactly the
same argument as in Proposition 3.18 (a)). By Proposition 3.22, for each I 2ƒH , we have
the canonical isomorphism L˝H=.C C I / Š HomK.LCCI ; L/. Taking the projective
limit of these leads to the isomorphism

lim
 �
I2ƒH

L˝H=.C C I / Š lim
 �
I2ƒH

HomK.LCCI ; L/ Š HomK
� [
I2ƒH

LCCI ; L
�
:

After identification of lim
 �I2ƒH

L˝H=.C C I / with L y̋ H=C , this is exactly the hori-
zontal composition of diagram (3.4), which is thus an isomorphism. This implies the
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desired equality LC D
S
J L

J as in the statement of the corollary, as well as the fact
that canC is bijective. We conclude by applying Proposition 3.20 (b).

(a) This can be proved by direct computation as in the finite case. First assume thatC is
a right ideal. Then for any c 2C , h 2H and x 2LC , we find that c � .h � x/D .ch/ � xD 0,
because ch 2 C , and hence h � x 2 LC . Conversely, suppose that LC isH -stable, then for
any h 2 H and any x 2 LC , we have hx 2 LC ; consequently, for any c 2 C , it follows
c � .h � x/ D .ch/ � x D 0. This gives ch 2 J.LC / D C .

We are now ready to prove the infinite Hopf–Galois correspondence. To this end, let
us make the following remark. If H is a proartinian Hopf algebra and L=K a separable
H -Galois extension, then by Proposition 3.22, LI isH=I -Galois for any open Hopf ideal
I 2 ƒH . This implies by Lemma 2.9 that H=I is cocommutative, hence we can also
view H as a “cocomutative proartinian Hopf algebra”. Now consider any two-sided ideal
two-sided proartinian coideal J in H . Again by the above, we know that .J C I /=I is
a two-sided ideal two-sided coideal in H=I . Since H=I is cocommutative, this implies
that .J C I /=I is also stable under the antipode, i.e. a Hopf ideal. This then means by
definition that J is a proartinian Hopf ideal in H . In other words, as in the finite case, the
two-sided ideal two-sided proartinian coideals and Hopf ideals coincide in our setting.

Proof of Theorem 1.5. As in the finite case, we defineˆ.L0/DJ.L0/ and‰.I /DLI . By
Corollary 3.24 (a), we find thatLI is anH -subextension for any closed left ideal two-sided
coideal, so that the map‰ in (1.5) is well defined. On the other hand, Lemma 3.19 (a) tells
us that J.L0/ is a left ideal two-sided coideal, meaning that ˆ in (1.5) is well defined.
Furthermore, Corollary 3.24 (a) implies that ‰ ı ˆ.I / D I and by Proposition 3.20 (a)
we have that ˆ ı‰.L0/ D L0.

Furthermore, Corollary 3.24 (b) shows that the restriction of ‰ to Hopf ideals has its
image in H -normal subextensions, and Lemma 3.19 (b) tells that the restriction of ˆ to
H -normal subextensions has its image in Hopf ideals. This completes the proof.

We now generalise Lemma 2.21 to the infinite case.

Proposition 3.25. There is a bijective correspondence between the sets of:

• closed proartinian left ideals two-sided coideals C � H , and

• G-equivariant closed subgroups V � N

which is characterised by the property that the isomorphism from Proposition 3.21 (d)
zL y̋ H Š zLJN K descends to an isomorphism zL y̋ H=C Š zLJN=V K. Moreover, C � H
is a closed proartinian Hopf ideal if and only if V is a closed normal subgroup of N .
In that case, the above isomorphism is an isomorphism of proartinian zL-Hopf algebras.
Furthermore, these statements continue to hold with ‘closed’ replaced by ‘open’.

Proof. Let first C � H be a closed proartinian left ideal two-sided coideal. For any I 2
ƒH , consider the left ideal two-sided coideal CI D �I .C / � H=I . By the finite case,
Lemma 2.21, there is a G-equivariant subgroup VI � NI , where, as before, NI is such
that zL˝H=I Š zLŒNI �. As theNI and their quotientsNI=VI form projective systems, so
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do the VI , and letting V D lim
 �I2ƒH

VI we obtain a closed G-equivariant subgroup of N
such that

zL y̋ H=C Š zLJN=V K:

Let now V �N be a closed G-equivariant subgroup. As N D lim
 �I2ƒH

NI , we can put

VI D V \NI ;

identifying N=V with the projective limit of the NI=VI . For each I 2 ƒI , VI is then
a G-equivariant subgroup of NI and by Lemma 2.21, we obtain a left ideal two-sided
coideal xCI � H=I such that zL˝H= xCI Š zLŒNI=VI �. Writing CI D ��1I . xCI /, which is
an open and closed proartinian left ideal two-sided coideal of H , we can make the closed
proartinian left ideal two-sided coideal C D

T
I2ƒH

CI ofH . Via the projective limit, we
again find zL y̋ H=C Š zLJN=V K.

As these two constructions pass along the finite case, where they are mutual inverses,
they give the claimed bijective correspondence. The last statement follows as open-ness
(under the assumption of closed-ness) is characterised by finite dimensionality.

The proof of Corollary 1.6 follows directly from Theorem 1.5 and this proposition.

3.5. Example

Here we give an example of an infinite Hopf–Galois extension, which is not classically
Galois.

For any n 2N, we consider the fieldLn WDQ. 3
np
2/, which is a non-normal, separable

Galois extension of Q. Applying [5, Corollary 2.6], we find that Ln=Q is Hopf–Galois
for some Hopf algebra, and in fact it is even “almost classically Galois” (see [5, Defini-
tion 4.2]). Clearly, Ln � LnC1 for all n 2 N and we define L D Q. 3

1p
2/ D

S
n2N Ln.

Since moreover by [5, Theorem 5.2], an almost classical Galois extension has a Hopf–
Galois structure such that the main theorem of Galois theory holds in its strong form, i.e.,
we have a bijective correspondence between the set of Hopf subalgebras and the set of
all intermediate fields, we find that for a fixed n 2 N, there exists a Hopf algebra Hn
such that Ln is Hn-Galois and any Lm with m � n is Hm-Galois for some Hopf algebra
Hm D Hn=In;m, where In;m is a Hopf ideal in Hn. Invoking the axiom of choice, we
obtain for each n 2 N a Hopf algebra Hn turning Ln=Q into an Hn-Galois extension,
such that for each n; m 2 N with m � n, there is a surjective Hopf algebra morphism
�m;n W Hn ! Hm. In this way, we obtain a projective system of finite dimensional Hopf
algebras, and we can define H D lim

 �n
Hn the associated proartinian Hopf algebra, and

L=Q is H -Galois in our sense.

3.6. Formulation in terms of coactions

We already remarked that if H is a profinite Hopf algebra, then H � D lim
�!U2ƒH

.H=U /�

is a usual Hopf algebra. The aim of this section is to show that an infinite Hopf–Galois
extension in our sense is exactly a Hopf–Galois extension of H � with respect to a co-
action (instead of a continuous action).
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Proposition 3.26. Let H be a proartinian Hopf algebra, and H � D lim
�!U2ƒH

.H=U /�.
For any K-vector space (respectively K-algebra) L, there is a bijective correspondence
between

(a) continuous K-linear maps H ˝L! L turning L into a discrete H -module (al-
gebra);

(b) K-linear maps � W L ! L ˝ H �; �.x/ D xŒ0� ˝ xŒ1� turning L into an H �-
comodule (algebra).

Moreover, under this correspondence,L isH -Galois (in the sense of Definition 1.1) if and
only if L is H �-Galois in the sense of Kreimer–Takeuchi, that is, the canonical map

can� W L˝ L! L˝H �; can�.x ˝ y/ D xyŒ0� ˝ yŒ1�:

is a K-linear isomorphism.

Proof. From (a) to (b). Suppose first that L has a continuous H -action. The we know by
Lemma 3.17, that LD

S
I2ƒH

LI . In other words, for I � J 2 ƒH , we have a canonical
inclusionLJ �LI andL is the inductive limit of this direct systemL Š lim

�!I2ƒH
LI . By

construction, the action of H on L induces an action H=I ˝ LI ! LI for any I 2 ƒH .
Since H=I is finite dimensional, we can take its dual coaction as in (2.3), �I W LI !
LI ˝ .H=I /�. Taking the inductive limit of these coactions we obtain (using the fact that
the tensor product preserves inductive limits) a global coaction � W L! L˝H �.

From (b) to (a). Conversely, suppose that � W L! L ˝H � exists. Take any x 2 L
and write �.x/ D

Pn
iD1 xi ˝ h

�
i . Since we have a finite number of elements h�i in the

inductive limitH �, there exists some I 2 ƒH such that h�i 2 .H=I /
� for all i D 1; : : : ; n.

We then define for any h 2 H , h � x WD
P
i h

�
i .�I .h//xi . One easily checks that this

definition is independent of the choice of I , and the coassociativity and counitality of H
imply that this indeed defines an action of H on L. By construction, we have that x 2 LI

if �.x/ 2 L˝ .H=I /�. Since (as already observed above) for any x 2 L there exists some
I such that �.x/ 2 L˝ .H=I /�, so x 2 LI , we find that L D

S
I2ƒH

LI and therefore
the action is continuous with respect to the discrete topology on L by Lemma 3.17.

One checks that � is an algebra map if and only if L is an H -module algebra.
Now suppose that L is H -Galois. Then by Corollary 3.23, the map

canI W L˝H=I ! HomK.LI ; L/

is bijective, which implies that LI is finite dimensional since H=I is so. Taking the L-
linear dual of the canonical map, we obtain the canonical map

can�I W L˝ L
I
! L˝ .H=I /�:

By passing to the direct limit over ƒH , we then find that

can� W L˝ L! L˝H �

is bijective.
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Conversely, suppose that can� is bijective and fix any I 2 ƒH . Observe that for any
x; y 2 L, by the left L-linearity, can�.x ˝ y/ 2 L˝ .H=I /� implies that

can�.1˝ y/ 2 L˝ .H=I /�;

so �.y/ 2 L˝ .H=I /�. The latter implies that y 2 LI as we already showed earlier in
this proof. Therefore, the restriction of .can�/�1 to L˝ .H=I /� lands in L˝ LI , which
means that it gives an inverse for canI , which is then also bijective. Since all canI are
bijective, can is bijective as well, by passing to the projective limit over I 2 ƒH .
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