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Hilbert’s 13th problem in prime characteristic

Oakley Edens and Zinovy B. Reichstein

Abstract. The resolvent degree rdC.n/ is the smallest integer d such that a root of the general
polynomial

f .x/ D xn C a1x
n�1
C � � � C an

can be expressed as a composition of algebraic functions in at most d variables with complex coeffi-
cients. It is known that rdC.n/ D 1 when n 6 5. Hilbert was particularly interested in the next three
cases: he asked if rdC.6/D 2 (Hilbert’s Sextic conjecture), rdC.7/D 3 (Hilbert’s 13th problem) and
rdC.8/ D 4 (Hilbert’s Octic conjecture). These problems remain open. It is known that rdC.6/ 6 2,
rdC.7/ 6 3 and rdC.8/ 6 4. It is not known whether or not rdC.n/ can be > 1 for any n > 6.

In this paper, we show that all three of Hilbert’s conjectures can fail if we replace C with a base
field of positive characteristic.

1. Introduction

The algebraic form of Hilbert’s 13th problem asks for the resolvent degree rdC.n/ of the
general polynomial

f .x/ D xn C a1x
n�1
C � � � C an�1x C an;

where a1; : : : ;an are independent variables. Here rdC.n/ is the minimal integer d such that
every root of f .x/ can be obtained in a finite number of steps, starting with C.a1; : : : ; an/
and adjoining an algebraic function in 6 d variables at each step. For a precise definition,
see [1, 6, 13, 14] or Section 2 below. It is known that rdC.n/ D 1 for every n 6 5. It is
not known whether or not rdC.n/ is bounded from above, as n tends to infinity or even
if rdC.n/ can be greater than 1 for any n. Various upper bounds on rdC.n/ have been
proved over the past 200 years. For an overview, see [4]. These classical bounds have
recently been sharpened by Wolfson [17], Sutherland [15], and Heberle–Sutherland [9].
All of them are of the form rdC.n/ 6 n � ˛.n/, where ˛.n/ is an unbounded but very
slow-growing function of n. There is a wide gap between the best-known lower bound,
rdC.n/> 1, and the best-known upper bound, rdC.n/6 n� ˛.n/. It is fair to say that after
two centuries of research, we still know very little about rdC.n/ for n > 6. Specifically,
Hilbert conjectured the following values for small n.
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Conjecture 1.1. (a) rdC.6/ D 2, (b) rdC.7/ D 3, (c) rdC.8/ D 4.

(a) and (c) appeared in [10, p. 247]; they are known as Hilbert’s sextic and octic conjec-
tures, respectively. (b) is taken from the statement of Hilbert’s 13th problem [11, p. 424].
The upper bounds,

rdC.6/ 6 2; rdC.7/ 6 3 and rdC.8/ 6 4 (1.1)

go back to the work of Hamilton in the 1830s [8]; for modern treatments, see [4, p. 87]
or [6, Corollary 7.3]. The reverse inequalities remain out of reach.

Recently Farb and Wolfson [6] defined the resolvent degree rdk.G/, whereG is a finite
group and k is a field of characteristic 0. Setting G to be the symmetric group Sn and k
to be the field C of complex numbers, we recover rdC.n/. This definition was extended
by the second author [14] to the case where k is an arbitrary field and G is an arbitrary
algebraic group over k. For a fixed algebraic group G defined over the integers, rdk.Gk/
depends only on the characteristic of k and not on k itself; see [14, Theorem 1.2]. We will
write rdp.G/ in place of rdk.G/, when k is a field of characteristic p > 0. Moreover, if G
is an (abstract) finite group, then rd0.G/ > rdp.G/ for any p > 0; see [14, Theorem 1.3].

In view of the last inequality, it is natural to ask if more can be said about Conjec-
ture 1.1 in the case, where the base field C is replaced by a field k of positive characteristic.
Conjecturally, one expects rdp.G/ to be the same as rd0.G/ when p does not divide the
order of G. We will thus examine rdp.Sn/ in the case when nD 6; 7; 8 and 2 6 char.k/D
p 6 n. Our main result is as follows.

Theorem 1.2. Let Sn denote the symmetric group on n letters. Then

(a) rd3.S6/ 6 1,

(b) rd3.S7/ 6 2,

(c) rd5.S7/ D rd5.S6/ 6 2,

(d) rd7.S7/ 6 2,

(e) rd2.S8/ 6 3.

In particular, every part of Conjecture 1.1 fails if C is replaced by a base field of
(suitable) positive characteristic.

Theorem 1.2 may be viewed as complementing the results of [7,9,15,17]. These papers
generalize the inequalities rd0.S6/ 6 2, rd0.S7/ 6 3 and rd0.S8/ 6 4 of (1.1) by giving
upper bounds on rd0.G/, when G is the symmetric group Sn (n arbitrary) [9, 15, 17] or
whenG is a sporadic finite simple group [7]. Here we stay withG D S6, S7, S8 and prove
sharper bounds on rdp.G/ for suitable small primes p.

We also consider the Weyl group W.E6/ of the root system of type E6. It is shown
in [6, Section 8] that this group arises naturally in connection with Conjecture 1.1 (a), and
that rd0.W.E6// 6 3; see also [14, Proposition 15.1]. We show that in (small) positive
characteristic, this inequality can be sharpened.

Theorem 1.3. rdp.W.E6// 6 2 if p D 2, 3 or 5.
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Characteristic
G 0 2 3 5 7
S6 2 2 1 2 2
S7 3 3 2 2 2
S8 4 3 4 4 4

W.E6/ 3 2 2 2 3

Table 1. rdp.G/ 6 d for d as above.

In summary, rdp.G/ 6 d , where the value of d is given in Table 1.
The remainder of this paper is structured as follows. In Section 2 we recall the defini-

tion of resolvent degree of a finite group and collect some of its properties for future use.
We believe that part (a) of Theorem 1.2 was known classically; for lack of a reference, we
include a short proof at the end of Section 2. In Section 3 we prove upper bounds on the
resolvent degree of finite symplectic and unitary groups. These upper bounds play a key
role in the proofs of parts (b) and (c) of Theorem 1.2 and of Theorem 1.3 in Section 4.
Parts (d) and (e) of Theorem 1.2 are proved in Section 6 by a different (more geomet-
ric) argument inspired by our previous work on the essential dimension of symmetric
groups [5].

2. Preliminaries

2.1. The level of a finite field extension

Let K be a field containing a base field k, and L=K be a finite extension. We say that
L=K descends to an intermediate field k � K0 � K if L D L0 ˝K0 K for some finite
extension L0=K0. The essential dimension edk.L=K/ is then the smallest transcendence
degree trdegk.K0/ such that L=K descends to K0.

The level levk.L=K/ of a finite extension L=K is the smallest integer d such that
there exists a tower of field extensions

Km

L
:::

K1

K0 K

with ŒKi W Ki�1� <1 and edk.Ki=Ki�1/ 6 d for every i D 1; : : : ; m.
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The resolvent degree rdk.G/ of a finite groupG over a field k is defined as the maximal
value of levk.L=K/, where the maximum is taken over all fields K containing k and all
G-Galois field extensions L=K.1

Lemma 2.1. Let G be an abstract finite group and k be a field of characteristic p > 0.
Then

(a) rdk.G/ D rdk0.G/ for any field k0 of characteristic p.

(b) If H is a subgroup of G, then rdk.H/ 6 rdk.G/. Moreover, if G ¤ 1, then
rdk.G/ > 1.

(c) If G is abelian, then rdk.G/ 6 1.

(d) If 1! A! G ! B ! 1 is an exact sequence of finite groups, then rdk.G/ 6
max¹rdk.A/; rdk.B/º. If additionally A is a central subgroup of G, B ¤ 1 and
char k − jAj, then rdk.G/ D rdk.B/.

Proof. Part (a) is [14, Theorem 1.2].
(b) For the inequality rdk.H/ 6 rdk.G/, see [6, Lemma 3.13] or [14, Remark 10.5].

To prove the inequality rdk.G/> 1 we may replace k by its algebraic closure; see part (a).
In the case, where k is algebraically closed, levk.L=K/> 1 for every non-trivial extension
L=K; see [14, Lemma 4.5]. Thus rdk.G/ > 1 for every non-trivial group G.

For (c), see [6, Corollary 3.4] or [14, Example 10.6].2

For the first inequality in (d), see [6, Theorem 3.3] or [14, Proposition 10.8 (a)]. In the
case, where A is central, [14, Proposition 10.8 (d)] tells us that

rdk.G/ 6 max
®

rdk.B/; 1
¯

and rdk.B/ 6 max
®

rdk.G/; 1
¯
: (2.1)

By our assumption B ¤ 1 and hence, G ¤ 1. By part (b), rdk.B/ > 1, rdk.G/ > 1. Now
the inequalities (2.1) translate to rdk.G/ D rdk.B/.

For notational simplicity, we will write rdp.G/ in place of rdk.G/, where p D char.k/
is either 0 or a prime. This notation makes sense in view of Lemma 2.1 (a). As we men-
tioned in Section 1,

rd0.G/ > rdp.G/ for any p > 0I (2.2)

see [14, Theorem 1.3].

Corollary 2.2. rdp.An/ D rdp.Sn/ for every p > 0 and every n > 3.

Proof. By part (b) of Lemma 2.1, 1 6 rdp.An/ 6 rdp.Sn/. It remains to prove the oppo-
site inequality, rdp.Sn/ 6 rdp.An/. Indeed, applying Lemma 2.1 (d) to the natural exact
sequence 1!An! Sn!Z=2Z! 1, and remembering that rdp.Z=2Z/6 1 by part (c),

1Note that this maximum is well defined because a G-Galois field extension L=K with k � K exists
for any finite group G. Indeed, consider the regular representation G ,! GL.V /, where V D kŒG� is the
group algebra. Now set L D k.V / = the field of rational functions on V , and K D LG .

2Note that [6] assumes that char.k/ D 0. In [14], k is allowed to be of arbitrary characteristic.
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we obtain

rdp.Sn/ 6 max
®

rdp.An/; rdp.Z=2Z/
¯
D max

®
rdp.An/; 1

¯
D rdp.An/;

as desired.

2.2. Generically free actions

Consider an algebraic variety X equipped with the action of a finite group G defined over
a field k. We will sometimes refer to such X as a G-variety. We say that the G-action
on X is generically free if G acts freely on a G-invariant dense open subvariety U � X
defined over k. In other words, we require that the stabilizer of every Nk-point u 2 U be
trivial. Here Nk denotes the algebraic closure of k.

Recall that the G-action on X is called faithful if every non-trivial element of G acts
non-trivially on X . We record the following easy lemma for future reference.

Lemma 2.3. Let G be a finite group and X be a G-variety.

(a) A generically free G-action on X is faithful.

(b) If X is irreducible, then the converse holds: A faithful G-action on X is generi-
cally free.

Proof. Part (a) is obvious from the definition, because X has a Nk-point with trivial sta-
bilizer. For part (b), assume the contrary: a G-action on X is not generically free. This
means that X is covered by the fixed point loci Xg , where g ranges over the non-identity
elements of G. Since X is irreducible, we conclude that X D Xg0 for some 1 ¤ g0 2 G.
The element g0 then acts trivially on X , and thus the G-action on X is not faithful.

Note that part (b) may fail if X is allowed to be reducible. For example, the natural
action of Sn on a disjoint union of n points, is faithful but not generically free.

Lemma 2.4. Let V be a finite-dimensional k-vector space of dimension > 1,G be a finite
subgroup of PGL.V / and X be an irreducible G-invariant hypersurface of degree d > 2

in P .V /. Then the G-action on X is generically free.

Proof. We may assume without loss of generality that the base field k is algebraically
closed. Assume the contrary: the G-action on X is not generically free. Then X is cov-
ered by the union of the fixed point loci P .V /g , as g ranges over G n ¹1º. Since X is
irreducible, X � P .V /g for one particular 1 ¤ g 2 G.

Now observe that the fixed locus P .V /g is a finite union of subvarieties of the form
P .V�/, where Qg is a preimage of g in GL.V /, � is an eigenvalue of Qg, and V� is the
�-eigenspace of Qg. Note that since g ¤ 1 in PGL.V /, V� ¨ V . Since X is irreducible,
X � P .V�/ ¨ P .V / for one particular �. Since X is a hypersurface, this is only possible
if X D P .V�/ is a hypersurface of degree 1. This contradicts our assumption that the
degree d of X is > 2.
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Lemma 2.5. SupposeG is a finite subgroup of PGLnC1.k/ and there exists aG-invariant
closed subvariety X of Pn of degree a and dimension b > 1 (not necessarily smooth or
irreducible). Assume further that the G-action on X is generically free. Then

rdk.G/ 6 max
®
b; rdk.Sa/

¯
;

where Sa denotes the symmetric group on a letters.

Proof. See [14, Proposition 14.1 (a)] or [17, Proposition 4.11].

Proof of Theorem 1.2 (a). We need to show that rd3.S6/D 1. In view of Corollary 2.2 and
Lemma 2.1 (b) it suffices to show that rd3.A6/6 1. Recall that A6' PSL2.9/; see [3, p. 4].
Thus there exists a faithful action of A6 on the projective line P1 defined over the field
k D F9. We now apply Lemma 2.5 with G D A6, nD 1 and X D P1. Here we view X as
a closed subvariety of P1 of degree a D 1 and dimension b D 1. Since X is irreducible,
the (faithful) A6-action on X is automatically generically free; see Lemma 2.3 (b). By
Lemma 2.5 we conclude that

rd3.A6/ D rdk.A6/ 6 max
®
1; rdk.S1/

¯
D 1:

as desired.

3. Resolvent degree of finite symplectic and unitary groups

Let n be a positive integer, q D pr be a prime power, and Fq be the finite field with q
elements. Recall that Un.q/ is defined as the subgroup of elements of GLn.Fq2/ which
preserve the hermitian form h on Fn

q2
defined by the formula

h
�
.x1; : : : ; xn/; .y1; : : : ; yn/

�
7! x1y1 C � � � C xnyn:

Here Fq2=Fq is a field extension of degree 2, and x 7! Nx D xq is the unique non-trivial
automorphism of Fq2 over Fq . The group SUn.q/ is the subgroup of elements of Un.q/ of
determinant 1.

The group Spn.q/ is defined in a similar manner as the subgroup of elements of
GLn.Fq/ which preserve the standard symplectic form ! on .Fq/n. Here n is assumed
to be even, n D 2m, and

!
�
.x1; : : : ; x2m/; .y1; : : : ; y2m/

�
D .x1y2 � x2y1/C � � � C .x2m�1y2m � x2my2m�1/:

Note that every non-degenerate hermitian form on Fn
q2

is equivalent to h and every sym-
plectic form on Fnq is equivalent to !.

Proposition 3.1. Let q D pr be a prime power. Then

(a) rdp.Spn.q// 6 max¹n � 2; rdp.SqC1/º for any even integer n > 4, and

(b) rdp.Un.q// 6 max¹n � 2; rdp.SqC1/º for every integer n > 3.
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Proof. We will use the following notational conventions: x1; : : : ; xn will denote indepen-
dent variables over Fq , x WD .x1; : : : ; xn/ and xq WD .xq1 ; : : : ; x

q
n/.

(a) Consider the homogeneous polynomial

f .x/ D !.x; xq/

D .x1x
q
2 � x2x

q
1 /C � � � C .x2m�1x

q
2m � x2mx

q
2m�1/ 2 FqŒx1; : : : ; xn�

of degree q C 1. A simple application of the Jacobian criterion shows that f .x/ cuts out a
smooth hypersurface in Pn�1. Denote this smooth hypersurface byX . Since n > 3,X has
to be irreducible; otherwise, irreducible components of X would intersect non-trivially,
and their intersection point would be singular on X .

We are now ready to complete the proof of part (a). Applying Lemma 2.1 (d) to the
central exact sequence

1! Z ! Spn.q/! PSpn.q/! 1; (3.1)

where Z D ¹˙1º is the subgroup of scalar matrices in Spn.q/, we obtain rdp.Spn.q// D
rdp.PSpn.q//. On the other hand, PSpn.q/ � PGLn.Fq/ acts on the irreducible hyper-
surface X of degree q C 1 > 2 in Pn�1. By Lemma 2.4, the PSpn.q/-action on X is
generically free. Applying Lemma 2.5, we obtain

rdp
�

Spn.q/
�
D rdFq .PSpn.q// 6 max

®
n � 2; rdFq .SqC1/

¯
; (3.2)

as desired.
(b) We apply a similar argument to the polynomial

f .x/ D h.x; x/ D xqC11 C � � � C xqC1n 2 FqŒx1; : : : ; xn�

of degree q C 1. Let X � Pn�1 be the hypersurface cut out by f .x/. Once again, X is
smooth by the Jacobian criterion, and since n > 3, this allows us to conclude that X is
irreducible.

Claim. f .x/ (and hence, X ) is invariant under the natural action of Un.q/.

Choose g 2 Un.q/. Our goal is to prove that

�.x/ WD f .g � x/ � f .x/ 2 Fq2 Œx1; : : : ; xn�

is the zero polynomial. Indeed, for every a D .a1; : : : ; an/ 2 Fn
q2

, we have

f .g � a/ D h.g � a; g � a/ D h.a; a/ D f .a/:

We conclude that �.x/ is a homogeneous polynomial of degree q C 1 which vanishes
at every Fq2 -point of Pn�1. By [12, Théorème 2.1], the minimal degree of any non-zero
polynomial with this property is q2 C 1. This tells us that �.x/ is the zero polynomial,
thus completing the proof of the claim.
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To finish the proof of part (b), we argue as in part (a). Consider the central exact
sequence

1! Z ! Un.q/! PUn.q/! 1;

where Z D ¹˙1º is the subgroup of scalar matrices in Un.q/. By Lemma 2.1 (d),

rdp
�

Un.q/
�
D rdp

�
PUn.q/

�
(3.3)

On the other hand, PUn.q/� PGLn.Fq2/ acts on the irreducible hypersurfaceX of degree
qC 1> 2 cut out by f .x/ in Pn�1. By Lemma 2.4, the PUn.q/-action onX is generically
free. Thus

rdp
�

PUn.q/
�
D rdFq2

�
PUn.q/

�
6 max

®
n � 2; rdFq2

.SqC1/
¯

D max
®
n � 2; rdp.SqC1/

¯
; (3.4)

where the first and the last equalities follow from Lemma 2.1 (a), and the inequality in
the middle from Lemma 2.5. Combining (3.3) and (3.4), we arrive at the inequality of
part (b).

4. Proof of Theorems 1.2 (b)–(c) and 1.3

For the proofs of Theorems 1.2 (b-c) and 1.3 we use the classification results for maximal
subgroups of finite classical groups found in [2]. Occasionally, we mention groups con-
structed as central products; we recall this latter definition here. Given finite groupsG;H ,
central subgroups Z1 � Z.G/, Z2 � Z.H/ and an isomorphism ' W Z1 ! Z2, we may
construct the central product G ı' H as the quotient .G �H/=N , whereN is the normal
subgroup ®

.g; h/ 2 G �H W g 2 Z1; h 2 Z2; and '.g/h D 1
¯
:

Note that the natural maps G ! G ı' H and H ! G ı' H are injective. When the
subgroups Z1; Z2 and the isomorphism ' are clear from the context, we write the central
product as G ıH .

Proof of Theorems 1.2 (b). By Lemma 2.1 (a), it suffices to show that rdF3.S7/ 6 2. In
view of Corollary 2.2, we need to show that rdF3.A7/ 6 2. By [2, Table 8.11] we have an
inclusion Z=4Z ı .2 � A7/ � SU4.3/, which induces an inclusion 2 � A7 � U4.3/. Conse-
quently, Proposition 3.1 (b) implies that

rdF3.A7/

D rdF3.2 � A7/ 6 rdF3

�
U4.3/

�
6 max

®
4 � 2; rdF3.S4/

¯
6 max

®
2; rdC.S4/

¯
D 2:

Here the first equality follows from Lemma 2.1 (d), applied to the central extension 0!
Z=2Z! 2 �A7!A7! 1. The first inequality follows from Lemma 2.1 (b) withH D 2 �
A7 andG DU4.3/, the second inequality from Proposition 3.1 (b), and the third inequality
from (2.2). The equality on the right follows from the fact that rdC.S4/ D 1; see [14,
Example 10.8] or [6, Corollary 3.4].
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Proof of Theorems 1.2 (c). We need to show that rd5.S6/ D rd5.S7/ 6 2. The inequality
rd5.S6/6 2 follows from (2.2) and (1.1). Moreover, by Lemma 2.1 (b), rd5.S6/6 rd5.S7/,
while rd5.S7/ D rd5.A7/ by Corollary 2.2. Therefore it suffices to show that rdk.A7/ 6
rdk.S6/, where k D F5. By Table 8.6 of [2] there is an inclusion 3 �A7 � SU3.5/� U3.5/.
Thus Proposition 3.1 (b) shows that

rdF5.A7/ D rdF5.3 � A7/ 6 rdF3

�
U3.5/

�
6 max

®
3 � 2; rdF5.S6/

¯
D rdF5.S6/;

as desired. Here the first equality follows from Lemma 2.1 (d), applied to the central exten-
sion 0! Z=3Z! 3 � A7 ! A7 ! 1. The first inequality follows from Lemma 2.1 (b)
withH D 3 �A7 andG D U3.5/ and the second from Proposition 3.1 (b). The equality on
the right follows the second part of Lemma 2.1 (b), which tells us that

rd5.S6/ > 1:

Proof of Theorem 1.3. We want to show that rdp.W.E6// 6 2 for p D 2; 3; 5. Note first
that

rdp
�
W.E6/

�
D rdp

�
SU4.2/

�
(4.1)

for any p> 0. This follows from the exact sequence 1! SU4.2/!W.E6/!Z=2Z! 0;
see [3, p. 26]. Indeed, rdp.SU4.2// 6 rdp.W.E6// by Lemma 2.1 (b). On the other hand,

rdp
�
W.E6/

�
6 max

®
rdp

�
SU4.2/

�
; rdp.Z=2Z/

¯
D max

®
rdp

�
SU4.2/

�
; 1
¯
D rdp

�
SU4.2/

�
by Lemma 2.1 (b), (c) and (d). Thus it suffices to show that rdp.SU4.2//6 2 for pD 2;3;5.

Case p D 2. By Lemma 2.1 (b) and Proposition 3.1 (b),

rd2
�

SU4.2/
�

6 rd2
�

U4.2/
�

6 max
®
4 � 2; rd2.S3/

¯
D 2:

Combining this with (4.1), we obtain the desired inequality, rd2.W.E6// 6 2.

Case p D 3. Here we use the exceptional isomorphism SU4.2/Š PSp4.3/; see [3, p. 26].
Combining (4.1) and Proposition 3.1 (a) we obtain

rd3
�
W.E6/

�
D rd3

�
SU4.2/

�
D rd3

�
PSp4.3/

�
D rdF3

�
Sp4.3/

�
6 max

®
4 � 2; rdF3.S4/

¯
6 2:

Here, the equality
rd3

�
PSp4.3/

�
D rd3

�
Sp4.3/

�
follows from Lemma 2.1 (d), because Sp4.3/ is a central extension of PSp4.3/.

Case p D 5. Table 8.11 of [2] gives an inclusion 2 � SU4.2/ � SU4.5/ � U4.5/. By
Lemma 2.1 (d), we have rd5.2 � SU4.2// D rd5.SU4.2//. Combining this with (4.1) and
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Proposition 3.1 (b), we obtain

rd5
�
W.E6/

�
D rd5

�
2 � SU4.2/

�
6 rdF5

�
U4.5/

�
6 max

®
4 � 2; rdF5.S6/

¯
6 max

®
2; rdC.S6/

¯
6 2;

where the inequality on the right follows from (1.1).

5. The varieties Y123

Let n be a positive integer. We define the closed subvariety X123 of An by

X123 WD
®
.x1; : : : ; xn/ 2 An j s1.x1; : : : ; xn/ D s2.x1; : : : ; xn/ D s3.x1; : : : ; xn/ D 0

¯
:

Here sj .x1; : : : ; xn/ denotes the j th elementary symmetric polynomial in x1; : : : ; xn. We
denote by Y123 � Pn�1 the projective variety cut out by the same equations. Note that
X123 and Y123 depend on n, which is assumed to be fixed throughout. The symmetric
group Sn acts on both X123 and Y123 by permuting the variables.

Lemma 5.1. Let k be a field of characteristic p > 0 and n > 7 be a positive integer. Then

(a) the symmetric group Sn acts transitively on the irreducible components of X123
(respectively Y123), each of which has dimension n � 3 (respectively, n � 4).

(b) The projective variety Y123 is of degree 6 in Pn�1. It has either one or two irre-
ducible components. If there are two components, then odd permutations in Sn
interchange them, and even permutations leave each component invariant.

(c) The Sn-action on Y123 is generically free.

(d) If p > 0 and n D pr is a power of p, then the projective variety Y123 is a cone
over the Sn-fixed point .1 W 1 W � � � W 1/ in Pn�1.

Proof. (a) The ring of invariants kŒX123�Sn is the free polynomial k-algebra generated
by the elements a4; a5; : : : ; an, where aj D sj .x1; : : : ; xn/ 2 kŒx1; : : : ; xn�. Hence, the
geometric quotient X123=Sn is isomorphic to the affine space An�3. The natural inclusion
kŒX123�

Sn ,! kŒX123� gives rise to a (finite) geometric quotient map � WX123 ! An�3
k

.
The assertions about X123 in part (a) now follow from the fact that An�3 is an irreducible
variety of dimension n � 3. The assertions about Y123 follow from the fact that X123 is
the affine cone over Y123.

(b) Y123 is an .n � 4/-dimensional closed subvariety of Pn�1 cut out by the polyno-
mials si .x1; : : : ; xn/ of degree i for i D 1; 2; 3. Hence, the degree of Y123 is 6. Denote the
number of irreducible components of Y123 by m. The group Sn acts transitively on these
components. Hence,m 6 deg.Y123/D 6. The Sn-action on them irreducible components
of Y123 gives rise to a transitive permutation representation Sn ! Sm. Since n > 7, this
permutation representation has a non-trivial kernel. An easy exercise in finite group the-
ory shows that either (i) m D 1, i.e., Y123 is irreducible or (ii) m D 2, i.e., Y123 has two
irreducible components, and each component is preserved by the alternating group An.
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(c) Assume the contrary. From the description of the irreducible components of Y123
it follows that the action of An on each irreducible component is not generically free. By
Lemma 2.3 (b), this implies that the action of An on each irreducible component of Y123 is
not faithful. In other words, for every irreducible component of Y123, there is a non-trivial
normal subgroup N of An which acts trivially on that component. Since An is a simple
group, N D An is the only possibility for N . In other words, An acts trivially on Y123.

This means that for every element .y1 W � � � W yn/ � Y123 and every � 2 An, we have

.y�.1/; : : : ; y�.n// D �.�/.y1; : : : ; yn/;

in An, where �.�/ is a non-zero scalar in Nk. It is easy to see that the map � ! �.�/

is a multiplicative character An ! Nk�. Since An is a simple group, it has no non-trivial
multiplicative characters. We conclude that .y�.1/; : : : ; y�.n// D .y1; : : : ; yn/ in An for
every � 2An. Since the natural action of An on ¹1; : : : ;nº is transitive, this is only possible
if y1 D � � � D yn. In other words, Y123 is either empty or consists of the single point
.1 W � � � W 1/ in Pn�1. This contradicts the assertion of part (a) that dim.Y123/D n� 4 > 3.

(d) Suppose y D .y1; : : : ; yn/ 2 X123. We need to show that the point y˛;ˇ D .˛y1 C
ˇ; : : : ; ˛yn C ˇ/ also lies in X123 for every ˛; ˇ 2 Nk. In other words, if s1.y/ D s2.y/ D
s3.y/ D 0, then s1.y˛;ˇ / D s2.y˛;ˇ / D s3.y˛;ˇ / D 0.

Indeed, s1.y˛;ˇ / D s1.y/˛ C nˇ D 0, since we are assuming that s1.y/ D 0 and n is
a power of p D char.k/. Similarly,

s2.y˛;ˇ / D s2.y/˛
2
C .n � 1/s1.y/˛ˇ C

�
n

2

�
ˇ2 D 0

in k (recall that we are assuming that n > 7 is a power of p). Finally,

s3.y˛;ˇ / D s3.y/˛
3
C ˛2ˇ.n � 2/s2.y/C ˛ˇ

2

�
n � 1

2

�
s1.y/C

�
n

3

�
D 0;

again because s1.y/ D s2.y/ D s3.y/ and
�
n
3

�
D 0 in k under our assumptions on n and

char.k/.

Remark 5.2. The condition on n and char.k/ in part (d) can be weakened: our proof goes
through whenever �

n

1

�
D

�
n

2

�
D

�
n

3

�
D 0

in k. In the next section, we will only need the special case, where nD pr > 7, considered
above.

Remark 5.3. The variety Y123 is, in fact, irreducible. This can be deduced from [16,
Corollary 2]. We chose to go with the weaker assertion of Lemma 5.1 (b) because its
proof is short and self-contained, and because it suffices for the purpose of establishing
Theorem 1.2 (d) and (e) in the next section.
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6. Proof of Theorem 1.2 (d)–(e)

We continue with the notational conventions introduced in the previous section. Recall
that Y123 in the closed subvariety of Pn�1 given by

s1.x1; : : : ; xn/ D s2.x1; : : : ; xn/ D s3.x1; : : : ; xn/ D 0;

where s1, s2 and s3 are the first three elementary symmetric polynomials. Lemma 5.1 (d)
asserts that when char.k/ D p > 0 and n > 7 is a power of p, Y123 is a cone over the
point .1 W � � � W 1/ in Pn�1. Let us denote the “base” of this cone byZ123 � P .V /' Pn�2,
where V D kn=�. Here� denotes the small diagonal Spank¹.1; 1; : : : ; 1/º in kn. In other
words, points of Z123 are in bijective correspondence with lines in Pn�1 passing through
.1 W 1 W � � � W 1/ and contained in Y123.

Proposition 6.1. Suppose p > 0 and n D pr > 7.

(a) Z123 is a variety of dimension n � 5 and degree 6 in Pn�2.

(b) The Sn-action on Y123 descends to a generically free action on Z123.

(c) rdp.Sn/ 6 n � 5.

The inequalities of Theorem 1.2 (d) and (e) are immediate consequences of Propo-
sition 6.1 (c). Indeed, setting n D p D 7, we obtain rd7.S7/ 6 2 and setting n D 8 and
p D 2, we obtain rd2.S8/ 6 3. It thus remains to prove Proposition 6.1.

Proof of Proposition 6.1. (a) By Lemma 5.1 (a), dim.Y123/ D n� 4. Since Y123 is a cone
over Z123, we conclude that dim.Z123/ D dim.Y123/ � 1 D n � 5.

To find the degree ofZ123, note thatZ123 is isomorphic to the intersection of the cone
Y123 in Pn�1 with a hyperplane H ' Pn�2 not passing through the vertex .1 W � � � W 1/.
More precisely, the closed embedding Z123 ,! Pn�2 is isomorphic to the closed embed-
ding .Y123 \H/ ,! H . It is clear from this description that the degree of Z123 in Pn�2

is the same as the degree of Y123 in Pn�1. By Lemma 5.1 (b) the degree of Y123 in Pn�1

is 6, and part (a) follows.
As an aside, we remark that the isomorphism between Z123 and Y123 \H is not Sn-

equivariant, since H may not be invariant under Sn. We can still use this isomorphism
because the Sn-action plays no role in part (a).

(b) The fact that the Sn-action on Y123 descends to Z123 is clear from our construc-
tion. To show that this action is generically free, we argue by contradiction. Assume the
contrary.

Claim. An acts trivially on Z123.

To prove the claim, recall that by Lemma 5.1 (b) either (i) Y123 is irreducible or (ii)
Y123 has exactly two irreducible components. In case (i), Z123 is also irreducible (since
Y123 is a cone over Z123). By Lemma 2.3 (b) the Sn-action on Z123 is not faithful. The
kernel of this action is a non-trivial normal subgroup of Sn, i.e., either the alternating
group An or all of Sn. Either way, An acts trivially on Z123. In case (ii), each irreducible
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(1 : 1 : . . . : 1)

Y123

L

y

An

H)

y2 = x3 + 7

Z123

z = [L]

Figure 1. The picture on the left shows the variety Y123 in P n�1 and the line L � Y123, which has
a faithful action of An. The picture on the right shows the variety Z123 in P n�2 with the An-fixed
point z D ŒL� 2 Z123.

component Y 0123 and Y 00123 of Y123 is a cone with the vertex .1 W � � � W 1/. Thus Z123 has
two irreducible components Z0123 and Z00123, where Y 0123 (respectively, Y 00123) is a cone
over Z0123 (respectively, of Z00123). Recall from Lemma 5.1 (b) that odd permutations in
Sn interchange Y 0123 and Y 00123; hence, they also interchange Z0123 and Z00123. Thus the
stabilizer of any point of Z123 away from the intersection of the two components lies in
the alternating group An. We conclude that the action of An on either of the components
Z0123 and Z00123 is not generically free. Now the same argument as in case (i) shows that
An acts trivially on both Z0123 and Z00123. This proves the Claim.

Continuing with the proof of part (b), recall that by Lemma 5.1 (c), Sn acts generically
freely on Y123. Choose a Nk-point y 2 Y123 whose stabilizer in Sn is trivial. Note that
y ¤ .1 W � � � W 1/, because the stabilizer of .1 W � � � W 1/ is all of Sn. Let z be the point of
Z123 corresponding to the line L joining y to the vertex .1 W � � � W 1/; see Figure 1. By our
assumption An fixes z and hence acts on the line L ' P1. Since L passes through the
point y with trivial stabilizer in An, we conclude that this action is faithful. On the other
hand, An fixes the point .1 W � � � W 1/ on L. This means that An embeds into the subgroup
B � Aut.L/' PGL2. Nk/, where B consists of automorphisms of L' P1 fixing the point
.1 W � � � W 1/. This group is isomorphic to the subgroup of upper-triangular matrices of the
form

�
˛ ˇ
0 1

�
in PGL2. Nk/. Note thatB decomposes as a semidirect product Ga. Nk/Ì Gm. Nk/,

where Ga is the additive group of strictly upper-triangular matrices, with ˛ D 1, and Gm

is the multiplicative group of diagonal matrices, with ˇ D 0. This semidirect product
decomposition shows that B is solvable. On the other hand, An is not solvable; hence, it
cannot embed into B . This contradiction completes the proof of part (b).

(c) Parts (a) and (b) allow us to apply Lemma 2.5 with G D Sn, X D Z123, a D 6 and
b D n � 5. We conclude that

rdp.Sn/ 6 max
®
n � 5; rdp.S6/

¯
6 max

®
n � 5; rd0.S6/

¯
6 max¹n � 5; 2º D n � 5:

Here the first inequality follows from Lemma 2.5, the second from (2.2), and the third
from (1.1). The last equality follows from our assumption that n > 7.
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