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The spectral genus of an isolated hypersurface singularity
and its relation to the Milnor number and analytic torsion

Dennis Eriksson and Gerard Freixas i Montplet

Abstract. In this paper, we introduce the notion of spectral genus Qpg of a germ of an isolated
hypersurface singularity .CnC1; 0/! .C; 0/, defined as a sum of small exponents of monodromy
eigenvalues. The number of these is equal to the geometric genus pg , and hence Qpg can be consid-
ered as a secondary invariant to it. We then explore a secondary version of the Durfee conjecture on
pg , and we predict an inequality between Qpg and the Milnor number �, to the effect that

Qpg �
� � 1

.nC 2/Š
:

We provide evidence by confirming our conjecture in several cases, including homogeneous singu-
larities and singularities with large Newton polyhedra, and quasi-homogeneous or irreducible curve
singularities. We also show that a weaker inequality follows from Durfee’s conjecture, and hence
holds for quasi-homogeneous singularities and curve singularities.

Our conjecture is shown to relate closely to the asymptotic behavior of the holomorphic analytic
torsion of the sheaf of holomorphic functions on a degeneration of projective varieties, potentially
indicating deeper geometric and analytic connections.

1. Introduction

In 1978, Durfee conjectured an inequality between the geometric genus pg and the Milnor
number of complete intersection isolated surface singularities in [13]. While the initial
expectation does not hold in such generality, the conjecture was later extended in [32]
by K. Saito to a conjecture about general germs of n-dimensional isolated hypersurface
singularities (in this paper, by a singularity, we mean a non-regular point), with n � 2,
defined by germs of holomorphic functions f W .CnC1; 0/! .C; 0/, as an inequality

pg <
�

.nC 1/Š
: (1.1)

This generalized inequality appeared naturally in his investigation of the distribution of the
spectrum of the semi-simple part of the monodromy, in the same article. Particular cases
and variants of the Durfee-type conjecture (1.1) have since been established by Némethi
[27, 29] (suspension-type surfaces), Yau–Zhang [45] (quasi-homogeneous singularities)
and Kerner–Némethi [21] (generic singularities with large Newton diagram).
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1.1. A secondary Durfee-type conjecture

By work of M. Saito and Steenbrink [33, 38], the geometric genus of an isolated hyper-
surface singularity f D 0 is related to the cohomology of the Milnor fiber and its mixed
Hodge structure by pg D dim GrnF H

n.Milf /. We define the spectral genus of the singu-
larity (cf. Section 2.1 below) as

Qpg D
X

�j ;

where the sum is over the rational numbers �j 2 Œ0; 1/ such that exp.2�i�j / is an eigen-
value of the semi-simple part of the monodromy acting on GrnF H

n.Milf /. It is a sort of
secondary invariant of the geometric genus and is, in particular, zero for rational or, equiv-
alently, canonical singularities. One may wonder if there is a corresponding secondary
version of the Durfee-type conjecture. In light of this, we propose the following.

Conjecture. For an n-dimensional isolated hypersurface singularity, with n� 1, we have
an inequality:

(1) (Weak form)
Qpg <

�

.nC 2/Š
:

(2) (Strong form)

Qpg �
� � 1

.nC 2/Š
:

The inequality in the strong form is clearly satisfied for rational singularities, since
then the spectral genus vanishes and � � 1. It is attained in the particular case of ordinary
double points, since the Milnor number is, moreover, one. It seems natural to wonder if this
is the only situation where the inequality is achieved. Moreover, if K. Saito’s conjectures
in [32] about the distribution of monodromy eigenvalues hold, then the above inequalities
are essentially optimal. Namely, it implies (cf. Proposition 7.4) that

Qpg

�
!

1

.nC 2/Š

as the singularities get worse.

1.2. Cases of the strong form of the conjecture

Our first main contribution is the following partial confirmation.

Theorem A. The strong form of the conjecture is true in the following cases:

(1) Homogeneous singularities in arbitrary dimension.

(2) Quasi-homogeneous curve singularities.

(3) Irreducible curve singularities.

(4) Generic and convenient singularities with large Newton polyhedra in arbitrary
dimension.
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For the proofs, see the corresponding sections in the article, relying in one way or
another on the fact that the spectrum for non-degenerate singularities can be described
in terms of Newton polyhedra. The case of irreducible curve singularities also covers
degenerate cases.

We note that other singularities have been tested with the software SINGULAR [11],
allowing instantaneous computation of all involved invariants. In fact, the conjecture was
initially based on a thorough numerical investigation, utilizing this software, of the expres-
sions �=6 � Qpg for curve singularities and �=24 � Qpg for surface singularities.

1.3. Cases of the weak form of the conjecture

By means of a suspension trick, that J. I. Burgos Gil generously shared with us, we prove
in Proposition 7.2 that the weak form of the conjecture is a consequence of the Durfee-type
conjecture (1.1). This leads to the following second main result of this article.

Theorem B. The weak form of the conjecture holds in the following cases:

(1) Plane curves singularities, ie. when n D 1 in general.

(2) Quasi-homogeneous singularities in arbitrary dimension.

The proof, presented in Section 7.2, is deduced from the work of Némethi on the Dur-
fee conjecture for suspensions of curves, and the work of Yau–Zhang for quasi-homoge-
neous singularities, both recalled in Section 1 above.

As for the strong form of the conjecture, it would be interesting to relate it to a Durfee-
type bound as well, but we were unable to derive it from existing refinements, such as those
in [21, 44, 45].

1.4. Relation to analytic torsion

The formulation of the conjecture in higher dimensions was motivated by the asymptotic
behavior of the holomorphic analytic torsion, which is defined in terms of regularized
determinants of Dolbeault–Laplace operators. It is denoted by � , and is a strictly positive
real number. More precisely, the rate of vanishing or blowing-up of �.OXt

/ for a degen-
erating family of projective varieties X ! � with isolated singularities, is essentially
captured by the expression .�1/n.�=.nC 2/Š� Qpg/ (cf. Corollary 3.3). This is related to
the work of Yoshikawa on the singularities of the Quillen metric [46, 47], generalizing to
higher dimensions the case of nodal degenerations of compact Riemann surfaces treated
by Bismut–Bost [5]. See also [15] for an interpretation of Yoshikawa’s results in terms of
intersection theory.

The weak form of the conjecture is connected to the question whether the function

X 7! �.OX /
.�1/n (1.2)

extends continuously over the space of hypersurfaces in PnC1. Such a property would
imply the weak form of the conjecture (cf. Section 3.3). This is based on the fact that the
function in (1.2), if continuous, vanishes on the locus of ordinary double points, because
the weak form of the conjecture is known then, and any isolated singularity is a limit of
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ordinary double points. The strong form of the conjecture even allows us to predict the
order of vanishing along the discriminant locus. This formulation of the problem possibly
invites analytic techniques of global nature to study the conjecture, which is of local type.

1.5. Applications to determinants of Laplacians
Exploiting the relationship between our conjecture and the asymptotic behavior of the
analytic torsion stated in Corollary 3.3, Theorems A and B have the following concrete
application to determinants of Laplacians, which appears to be new.

Theorem C. Let X ! � a degeneration of compact Riemann surfaces, with isolated
singularities in the central fiber X0 and with X smooth Kähler. Then, the determinant of
the Laplace–Beltrami operator on Xt satisfies

det�Xt
! 0; as t ! 0:

Furthermore, if the singularities of X0 are locally irreducible or quasi-homogeneous, then
for every " > 0 we have

det�Xt
D O

�
jt jm=3�"

�
;

where m is the number of singular points in X0.

The strong form of the conjecture suggests that the second part of Theorem C should
hold for general projective degenerations with isolated singularities.

For degenerations of compact hyperbolic Riemann surfaces, an analogue of Theo-
rem C above is known too. This is contained in the work of Wolpert on degenerations of
Selberg zeta functions [43], and can also be derived from [19]. In this setting, it is enough
to consider stable degenerations, in which case the singular fiber is endowed with a com-
plete metric. This is somewhat opposite to the situation treated in Theorem C, for which
it seems not possible to perform a semi-stable reduction, and moreover the singular fiber
carries an incomplete metric.

1.6. Future work
In future work we aim to apply and extend part of this discussion to the asymptotic behav-
ior of the BCOV invariant of Calabi–Yau varieties, introduced in dimension 3 in [18] and
in general dimension in [16]. Some instances of such asymptotics were used to estab-
lish new cases of genus one mirror symmetry in [17]. Further qualitative discussions of
the same type could provide even further cases and new insights into mirror symmetry
phenomena.

2. Invariants of isolated singularities
In this section, to set up notation and for the convenience of the reader, we recall some
classical invariants of isolated hypersurface singularities. We will be considering the germ
of a holomorphic function f W .CnC1; 0/! .C; 0/ defining an isolated hypersurface sin-
gularity at the origin, and we will suppose that n � 1. Somewhat abusively, sometimes we
will simply write f D 0.
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2.1. Milnor numbers, geometric genus, and spectral genus

It is convenient to study these isolated hypersurface singularities through the cohomology
of the Milnor fiber Hn.Milf /. Note that the (reduced) cohomology of the Milnor fiber
vanishes in other degrees. Its dimension over C is the Milnor number of the singularity:

� D �f D dim C¹x0; : : : ; xnº=.@f=@x0; : : : ; @f=@xn/:

The cohomology group Hn.Milf / is equipped with a canonical mixed Hodge structure
by [37]. We denote the corresponding Hodge and weight filtrations by F and W , respec-
tively. Moreover, the semi-simple part of the monodromy, denoted by Ts , acts on this
mixed Hodge structure, in the sense that it preserves the weight and Hodge filtrations
[37, Theorem 4.1].

Consider the genus of the singularity V D ¹f D 0º:

pg D dim GrnF H
n.Milf / D

´
dimRn�1��OX if n > 1;

dim��OX=OV if n D 1;
(2.1)

where � W X ! V is a desingularization. The equality of the various quantities is proven
in [33, Theorem 1] and [38, Proposition 2.13]. In particular, pg D 0 if V has rational
singularities. In our setting, since V is Gorenstein, this is equivalent to saying that V has
canonical singularities [14].

Recall also from the introduction that we likewise define the spectral genus of the
singularity, as the expression

Qpg D
X

�j ; (2.2)

where the sum is over all 0 < �j < 1 such that exp.2�i�j / is an eigenvalue of Ts acting
on GrnF H

n.Milf /. More compactly, (2.2) can be recast as

Qpg D
1

2�i
tr
�

log.Ts/ j GrnF H
n.Milf /

�
; (2.3)

where log is the branch of the logarithm whose imaginary part lies in Œ0; 2�/.
The Milnor number � and the geometric genus pg depend only on the fiber V D

f �1.0/, but not on the chosen deformation [39, Theorem 2.9]. The spectral genus depends
on the whole germ f . Nevertheless, the spectral genus is constant in of deformations of
isolated hypersurface singularities with constant �. This follows from the relation to the
spectrum of singularities exposed below (cf. [39, Theorem 2.8]).

2.2. Spectral genus and spectrum of singularities

For the discussion of the spectrum of singularities, we follow Steenbrink’s presentation in
[39, Section 2] and [40, Section 1], and we adopt his conventions. See also [30, Sec-
tion 12.1.3]. The spectral numbers are associated with the triple .Hn.Milf /; F �; Ts/.
These are rational numbers ˛, given with multiplicities, uniquely determined by the fol-
lowing conditions:
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(1) exp.�2�i˛/ is an eigenvalue of Ts acting on GrpF H
n.Milf /, for some p D

0; : : : ; n.

(2) For ˛ and p as in the first point, p D Œn � ˛�. Equivalently, we take n � p � 1 <
˛ � n � p.

(3) The multiplicity of ˛ is the multiplicity of exp.�2�i˛/.

We define the spectrum of the singularity as the collection of spectral numbers¹ j̨ºjD1;:::;�,
with multiplicities. This collection is invariant under ˛ 7! n� 1� ˛. The spectral numbers
hence belong to the interval .�1; n/. With this understood, we see that the spectral genus
Qpg can be expressed as

Qpg D �
X
j̨<0

j̨ :

By the symmetry of the spectral numbers with respect to ˛ 7! n � 1 � ˛, we can equiva-
lently write

Qpg D
X
j

�0j ; (2.4)

where the sum is now over rationals 0 < �0j < 1 such that exp.�2�i�0j / is an eigenvalue
of Ts acting on Gr0F H

n.Milf /. This is to be compared with (2.2).
Some authors shift the spectral numbers by one, so that they are given in the form

˛0j D j̨ C 1 and belong to .0; nC 1/. With this convention, we have

Qpg D
X
˛0j<1

.1 � ˛0j /: (2.5)

This convention appears in the works of M. Saito [34, 35], applied below. Depending on
the context, one convention may be more adapted than the other, and we will use both.

For later use, we recall the definition of the spectral polynomial associated with f ,
which for the spectral numbers taken in .0; nC 1/ is given by

Spf .T / D
X
j

T ˛
0
j 2 ZŒTQ�: (2.6)

We also recall the Thom–Sebastiani property for the spectral numbers [41, Theorem 7.3].
If hW .CmC1; 0/! .C; 0/ defines another isolated hypersurface singularity, with spectral
numbersˇ0j taken in .0;mC1/, then the spectral numbers off .x0; : : : ; xn/Ch.y0; : : : ; ym/
are given by the sums

˛0i C ˇ
0
j ; for i D 1; : : : ; �f and j D 1; : : : ; �h;

which hence belong to .0;mC nC 2/.

2.3. Local-global results and degenerations of varieties

We next review some basic facts on the local and global theories of isolated singulari-
ties, in connection with degenerations of Hodge structures. Consider a connected complex
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manifold X of dimension nC 1� 2, and a flat, projective morphism g WX!�, which is
a holomorphic submersion outside the origin. We will suppose that the central fiber has at
most isolated singularities. If xi 2X0 is such a singular point, the germ .X; xi /! .�; 0/

is isomorphic to some fi W .CnC1; 0/! .C; 0/ and admits a Milnor fiber Milfi . In this
setting, we denote by � and Qpg the sum of the Milnor numbers and spectral genera of the
singularities xi , respectively. Therefore, there is a decomposition

�

.nC 2/Š
� Qpg D

X
i

�
�i

.nC 2/Š
� Qpg;i

�
:

In the above setting, the cohomologies of the Milnor fibers of the singularities xi sit
in an exact sequence

0! Hn.X0/! Hn.Xt /!
M
i

Hn.Milfi /! HnC1.X0/! HnC1.Xt /! 0; (2.7)

for fixed t ¤ 0, and for q ¤ n; nC 1 there is an isomorphism

H q.X0/ ' H
q.Xt /: (2.8)

When the H k.X0/ are given the canonical mixed Hodge structures of Deligne, and the
H k.Xt / are given the limit mixed Hodge structures of Schmid, then (2.7) is moreover
an exact sequence of mixed Hodge structures. It is equivariant with respect to the semi-
simple part of the monodromy, Ts . For details, we refer to Steenbrink [37, Section 3.3] and
Navarro Aznar [26, Section 14]. Below, we will denote the limit mixed Hodge structure
in degree k simply by .H k

lim; F
�; W�/.

If on the other hand we start with the germ of an isolated singularity f W .CnC1; 0/!

.C; 0/, it admits a good compactification g W X ! �. By this, we mean:

(1) We are given a complex manifold X, and a flat, projective morphism g WX! �,
which is a submersion outside the origin. We refer to X ! � as a degeneration
of projective varieties, or simply a projective degeneration.

(2) The special fiber X0 has only one isolated singularity x.

(3) There is an open subset U of x such that .gjU ; x/! .�; 0/ is isomorphic to f .

By an argument of Brieskorn [8, Section 1.1], such a compactification exists, and one
can further suppose that it is given by a family of hypersurfaces in PnC1. Moreover, this
shows that properties such as the positivity of �

.nC2/Š
� Qpg can be studied equivalently for

proper families or in the local setting. This will be used to reformulate our conjecture in
Proposition 3.4 below.

3. Analytic torsion of OX

In this section, we discuss the asymptotic behavior of the holomorphic analytic torsion of
the sheaf of holomorphic functions, for a degeneration of projective varieties, and relate it
to our conjecture on the spectral genus.
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3.1. Quillen metrics and their singularities

Let X be a compact analytic space and suppose that we are given a holomorphic vector
bundle E on X . The determinant of the cohomology is the line

�.E/ D
O
q

detH q.X;E/.�1/
q

: (3.1)

More generally, for a flat proper morphism of complex analytic spaces X ! S over a
complex analytic manifold S , and a vector bundle E on X, there is a line bundle �.E/
on S , whose fibers over s 2 S are given by �.EjXs

/, see [5, Section 4.1]. It is also referred
to as the determinant of the cohomology. If X ! S is the analytification of an algebraic
family, this construction is the analytification of the Knudsen–Mumford determinant [22].
It has a natural grading, which for the purposes of this article, together with various sign
issues, we can ignore.

Let now X be a compact Kähler manifold. The analytic torsion of a Hermitian vector
bundleE onX is defined as a weighted alternating product of determinants of Laplacians,
namely

�.X;E/ D exp
�X

.�1/qC1q�00;q.0/
�
D

Y
q

�
det�0;q

x@

�.�1/qq
:

Here, for Re.s/� 0, �0;q.s/ is given by

�0;q.s/ D
X 1

�sj
;

whose sum runs over positive eigenvalues �j of the Dolbeault–Laplacian �0;q
x@

acting on
A0;q.E/. It depends on both the Kähler metric on X and the Hermitian metric on E.

The determinant of the cohomology in (3.1) is equipped with two metrics, the L2-
metric and the Quillen metric. The L2-metric hL2 on �.E/ is defined by representing the
Dolbeault cohomology groupsH q.X;E/ by harmonic forms, and using the natural metric
from Hodge theory on A0;q.E/-forms. The Quillen metric on �.E/ is defined by

hQ D hL2 � �.X;E/; (3.2)

where �.X;E/ is the analytic torsion described above.
For a family of Kähler manifolds X ! S and a Hermitian vector bundle E on X, the

Quillen metric varies smoothly. If the dimensions s 7! hq.Xs; EjXs
/ are constant on S

for all q, the L2-metric is also smooth.
Let X!� be a degeneration of projective varieties of dimension n� 1, with isolated

singularities in the central fiber X0. Suppose that X is equipped with a Kähler metric, and
that we are given a Hermitian vector bundle E on X; of rank e. By the main results of
[46, 47], we have the following.

Proposition 3.1. Let � be a holomorphic trivialization of the determinant of the coho-
mology �.E/. Then, for small t ,

log k�k2Q D
.�1/n

.nC 2/Š
� � e � log jt j2 CO.1/:
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3.2. Singularities of L2-metrics

Suppose that X ! � is a degeneration of projective varieties, and that X is equipped
with a Kähler metric, whose associated Kähler form is rational when restricted to smooth
fibers. Endow the sheaf of holomorphic functions OX with the trivial Hermitian metric,
induced by the absolute value.

Proposition 3.2. Let � be a trivialization of �.OX/. Then, for small t ,

log k�k2
L2
D .�1/n Qpg log jt j2 C .�1/nC1ˇ log log jt j�1 CO.1/;

where ˇ�0 is an integer determined by the limit mixed Hodge structureHn
lim, and given by

ˇ D

nX
rD1

r dimF n GrWnCr H
n
lim: (3.3)

In particular, if X0 has canonical singularities, then log k�k2
L2
D O.1/.

Proof. First of all, the determinant of the cohomology of the sheaf of holomorphic func-
tions is invariant under blowups in the special fiber, because the total space is smooth and
hence has only rational singularities. We can hence suppose the central fiber of X ! �

has normal crossings. In this case, by [16, Theorem C] we find that

log k�k2
L2
D

� nX
qD0

.�1/q˛0;q
�

log jt j2 C
� nX
qD0

.�1/qˇ0;q
�

log log jt j�1 CO.1/;

where
˛0;q D �

1

2�i
tr
�
` logTs j Gr0F H

q
lim

�
;

and Ts denotes the semi-simple part of the monodromy and ` log denotes the extension of
the logarithm with imaginary part in .�2�; 0�, and

ˇp;q D

kX
rD�k

r dim GrpF GrWkCr H
k
lim; with k D p C q:

One can infer directly from (2.4) and the exact sequence (2.7), that ˛0;n D Qpg , since
the monodromy acts trivially on H q.X0/ for any q. Moreover, ˛0;q D 0 if q < n. This
latter fact follows from (2.7) and (2.8), paired again with the fact that H q.X0/ has trivial
monodromy for any q. Similarly, since by (2.8) the mixed Hodge structure H q

lim is pure
for q < n, we see that ˇ0;q D 0 for q < n. Finally, by [16, Lemma 4.3], ˇ0;n D�ˇn;0, and
we have ˇn;0 D ˇ, because GrnF D F

n and F n GrWnCr H
n
lim D 0 if r < 0. This concludes

the proof.
For the second part of the proposition, we need to show that if X0 has canonical

singularities, then Qpg D ˇ D 0. We already know that pg , and hence Qpg , vanishes, cf.
Section 2.1. The vanishing of ˇ is equivalent to a result of C.-L. Wang [42, Theorem 2.1
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and Corollary 2.4], to the effect that the nilpotent operator N , associated with the mon-
odromy on Hn

lim, annihilates F nHn
lim. Indeed, if N annihilates F nHn

lim, then the image of
F n GrWnCr H

n
lim under N r vanishes for r � 1, and we know that N r defines an isomor-

phism
GrWnCr H

n
lim ! GrWn�r H

n
lim:

Conversely, if ˇ D 0, then necessarily F nHn
lim D F

nWnH
n
lim. But N sends F nWnHn

lim to
F n�1Wn�2H

n
lim and the latter vanishes, because F n�1GrWr H

n
lim D 0 for every r � n� 2,

for type reasons.
We notice that the results in [42] require that X0 be Gorenstein and irreducible. The

assumption that X0 is Gorenstein in op. cit. is automatic in our case, since X is smooth.
As for the assumption that X0 is irreducible, it is not necessary in our setting. Indeed,
since the morphism X ! � has reduced fibers and X is smooth, the Stein factorization
is of the form X!�0!�, where�0 is a disjoint union of discs and�0!� is a trivial
covering. Working over the components of �0 instead of �, we reduce to the case that the
fibers are connected. Since X0 has canonical singularities by assumption, it is in particular
normal, so that connectedness entails irreducibility.

3.3. A reformulation of the conjectures in terms of asymptotics of analytic torsion

Let X ! � be a degeneration as in Section 3.2. We conclude by Propositions 3.1 and 3.2
the following.

Corollary 3.3. The analytic torsion of the sheaf of holomorphic functions, endowed with
the trivial metric, has the following asymptotic behavior for t close to 0:

log �.Xt ;OXt
/ D .�1/n

�
�

.nC 2/Š
� Qpg

�
log jt j2 C .�1/nˇ log log jt j�1 CO.1/;

where ˇ is defined in (3.3). In particular:

(1) If the weak form of the conjecture holds, then �.Xt ;OXt
/.�1/

n
converges Hölder

continuously to zero as t goes to 0.1

(2) If the strong form of the conjecture holds, then for every " > 0, as t ! 0, we have

�.Xt ;OXt
/.�1/

n

D O
�
jt j2m=.nC2/Š�"

�
:

Here, m is the number of singular points in X0.

(3) If X0 has canonical singularities, then

�.Xt ;OXt
/.�1/

n

D O
�
jt j2�=.nC2/Š

�
as t ! 0:

Notice that, while the analytic torsion depends on the choice of metrics, the asymptotic
behavior is metric independent. Also, for families of curves, the volume of the fibers with
respect to a Kähler form on X is constant, and the L2-norm on holomorphic differentials

1We thank the referee for pointing out the Hölder continuity property.
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is independent of the choice of metric. Hence, the asymptotic behavior is then valid for any
choice of Kähler metric on the total space X. We remark that, for curves, �.Xt ;OXt

/�1D

det�0;1
x@

coincides with det�0;0
x@

, which in turn coincides with the determinant of the
Laplace–Beltrami operator up to a topological constant.

Since any germ of isolated singularity admits a good compactification as in Sec-
tion 2.3, we readily deduce, from Corollary 3.3, a reformulation of our conjectures in
terms of analytic torsion.

Proposition 3.4. For an isolated singularity f D 0 of dimension n � 1, the following are
equivalent:

(1) The weak form, respectively strong form, of the conjecture holds for f .

(2) For any good compactification X ! � of f , and any Kähler form on X which is
rational on smooth fibers, we have

�.Xt ;OXt
/.�1/

n

! 0; as t ! 0;

respectively,

�.Xt ;OXt
/.�1/

n

D O
�
jt j2=.nC2/Š�"

�
; for every " > 0; as t ! 0:

In the proposition above, one can replace any good compactification (resp. any Kähler
form) by some good compactification (resp. some Kähler form). We also bring the reader’s
attention to the fact that the positivity of ˇ, established in Proposition 3.2, is fundamental
to prove that (2) implies (1).

A situation where Corollary 3.3 and Proposition 3.4 apply is that of a degeneration
of projective varieties endowed with an embedding X � PM �� over �, and such that
X is equipped with a smooth Kähler metric ! on X whose cohomology class Œ!t � for
t 2 � n ¹0º is given by the canonical polarization coming from PM . A variant arises
from the tautological family H of hypersurfaces of degree d in PnC1 over the space of
parameters PN , where N D

�
nC1
d

�
� 1. Then H is a smooth space and inherits a Kähler

metric from PnC1 and PN . Hence, the restriction along any curve �! PN in which the
total space is still smooth is an example of such a degeneration.

4. Quasi-homogeneous singularities

In this section, we address several cases of the strong form of the conjecture in the setting
of quasi-homogeneous singularities. We also recall some useful notions about Newton
polyhedra, also utilized in later sections.

4.1. Newton polyhedra

Let f .x0; : : : ; xn/ D
P
k2NnC1 akx

k be a power series with complex coefficients, with
a0 D 0 and where we define xk D xk00 � � � x

kn
n . The Newton diagram of the singularity is

constituted of the following polyhedra. The upper Newton polyhedron associated with f ,
denoted by �C, is the convex hull of the set

S
ak¤0

.k C RnC1C /. The associated Newton



D. Eriksson and G. Freixas i Montplet 12

boundary, denoted by � , is the boundary of �C. We denote by �c the compact Newton
boundary, meaning the union of the compact faces of � . The lower Newton polyhedron,
denoted by ��, is the union of the lines joining the origin with the points on �c . Since we
only deal with lower Newton polyhedra, we will usually refer to these as simply Newton
polyhedra.

Below we display a Newton diagram. In the picture, the lower Newton polyhedron is
determined by the vertices .0; 0/, A, B , C , D, and it is delimited by the segments painted
in red. The compact Newton boundary has three faces, namely AB , BC , CD. The whole
Newton boundary has two more unbounded faces, painted in blue. The upper Newton
polyhedron is the region above the Newton boundary.

�
.0; 0/

�

�

�

�

A

B

C

D
��

�C

4.2. Spectrum of quasi-homogeneous singularities

Let n � 1 be an integer, and consider a quasi-homogeneous polynomial f .x0; : : : ; xn/,
with rational weights w0; : : : ; wn > 0. This means that for any � 2 C, we have the rela-
tionship f .�w0x0; : : : ; �wnxn/ D � � f .x0; : : : ; xn/. We suppose

f .x0; : : : ; xn/ D 0

has an isolated singularity at the origin. Then, the weights satisfy wi < 1.
For quasi-homogeneous singularities, the Milnor number and the spectral genus only

depend on the weights, and are given by the following formulas:

� D
Y
i

�
1

wi
� 1

�
(4.1)

and
Qpg D

X
.1 � k0w0 � � � � � knwn/; (4.2)

where the sum runs over integers ki > 0 such that
P
kiwi < 1. These are the interior

lattice points of the Newton polyhedron of the polynomial f .x0; : : : ; xn/. Eventually, for
convenience, we may include the lattice points with

P
kiwi D 1, since these contribute
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zero to the sum. For the Milnor number, the formula (4.1) is given in [24, Theorem 1].
The expression (4.2) for Qpg can be derived from (2.5) and the computation of the spectral
polynomial of f (cf. (2.6) for the definition), due to Steenbrink [37, Example 5.11]:

Spf .T / D
Y
j

T wj � T

1 � T wj
:

To this end, it is enough to expand the polynomial into a power series of T with rational
exponents, and collect the terms whose exponents are strictly smaller than one. For this
purpose, one can ignore the negative T in the numerator, and expand T wj =.1 � T wj / D
T wj C T 2wj C � � � . One finds that the exponents ˛0 strictly less than one are of the form
˛0 D

P
kiwi , where the ki run over all the possible integers ki > 0 such that ˛0 < 1.

4.3. Homogeneous singularities in arbitrary dimension

It would be interesting to establish the strong form of the conjecture for quasi-homoge-
neous singularities, such as the Brieskorn–Pham singularities of the form

f .x/ D x
a0
0 C x

a1
1 C � � � C x

an
n D 0;

corresponding to the choices of weights wi D 1=ai . Here we treat the case when f be
a homogeneous polynomial in arbitrary dimension, so that all wi D 1

d
. In this case (4.1)

gives
� D .d � 1/nC1: (4.3)

The spectral genus can be computed explicitly, based on the following elementary identity.

Lemma 4.1. Let d > 1 be an integer, and n � 1. ThenX
.d � k0 � � � � � kn/ D

d.d � 1/ � � �
�
d � .nC 1/

�
.nC 2/Š

; (4.4)

where the sum runs over integers ki > 0, such that
P
ki < d . Consequently,

Qpg D
.d � 1/ � � �

�
d � .nC 1/

�
.nC 2/Š

:

Proof. An inductive argument shows that the sum is a polynomial of degree n C 2 in
d . Moreover, the sum is empty for d D 0; : : : ; nC 1; so the polynomial is of the form
C � d.d � 1/ � � � .d � .nC 1// for some constant C . Since the sum is equal to 1 for d D
nC 2 one sees that C D 1

.nC2/Š
.

The following proposition follows immediately from (4.3) and Lemma 4.1.

Proposition 4.2. Let f D 0 define an isolated degree d homogeneous singularity at the
origin. Then the strong form of the conjecture is true. Moreover, for a fixed n,

Qpg.d/

�.d/
%

1

.nC 2/Š
; as d !C1;

where �.d/ and Qpg.d/ denote the corresponding Milnor number and spectral genus.
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4.4. Quasi-homogeneous singularities in dimension one

The purpose of the rest of this section is to prove the following theorem.

Theorem 4.3. When n D 1, the strong form of the conjecture is satisfied in the case of
quasi-homogeneous singularities.

In preparation for the proof, we first notice that the invariants � and Qpg only depend
on the analytical type of the germ of the singularity. By [31, Satz 1.3], we can assume that

wi �
1

2
:

Then, by [48], the weights depend only on the topological type of the singularity, which
is one of the following:

xa C yb D 0; (4.5)

x.xa C yb/ D 0; (4.6)

xy.xa C yb/ D 0: (4.7)

In the following sections, we will prove the theorem by analyzing these cases.
We begin our treatment of the singularities (4.5)–(4.7) by the following computation,

which is due to Mordell [25] in the case when a and b are relatively prime.

Proposition 4.4. Let a; b � 2 be two integers. Define k D gcd.a; b/ and write

a D k � a0; b D k � b0:

Then we have X�
1 �

x

a
�
y

b

�
D
.a � 1/.b � 1/

6
�
a0 C b0

12
.k � 1/

�
.a0 � 1/.b0 � 1/.a0 C b0 C 1/

12a0b0
; (4.8)

where the sum runs over the interior lattice points of the triangle with vertices .0; 0/,
.a; 0/, .0; b/.

Proof. The case when a;b are relatively prime follows immediately from the computation
of Mordell [25, equation (4)]. The sum in (4.8) is

.a � 1/.b � 1/

6
�
.a � 1/.b � 1/.aC b C 1/

12ab
: (4.9)

In general, we describe the main steps of the reasoning and leave the details to the reader.
Let k D gcd.a; b/, and decompose a D a0k and b D b0k. We cut the triangle into smaller
pieces, as in the following picture (for which k D 4):
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�

�

.0; b/ D .0; b0k/

.a; 0/ D .a0k; 0/.0; 0/

�

�

�

�

�
a; b0.k � 1/

�
�
2a0; b0.k � 2/

�

In the picture, there are k small triangles obtained by appropriately translating the
triangle of vertices .0; 0/, .a0; 0/, .0; b0/. The rest is divided into rectangles. After taking
into account the appropriate translations, the evaluation of the sum in (4.8) restricted to
the interior points of the smaller triangles reduces to Mordell’s computation (4.9). The
evaluation of the sum (4.8) on the interior lattice points of the rectangles is elementary
and reduces to some double sums of consecutive integers. Then we add the contribution
from the dashed lines, which are dealt with in the same way. This concludes the proof.

Proposition 4.5. The strong form of the conjecture is true for the singularities of the form
(4.5).

Proof. Recall by (4.2) that Qpg is given by the sum in (4.8). We first assume that a and b
are relatively prime. Without loss of generality, we may suppose that a � 2 and b � 3.
Then, by the formula of Proposition 4.4:

�

6
� Qpg D

.a � 1/.b � 1/.aC b C 1/

12ab
�
1

6
:

In the general case, the same formula with k � 2, combined with the value of the Milnor
number, gives

�

6
� Qpg D

a0 C b0

12
.k � 1/C

.a0 � 1/.b0 � 1/.a0 C b0 C 1/

12a0b0
:

We then have
�

6
� Qpg �

a0 C b0

12
.k � 1/ �

1

6
:

This concludes the proof.
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We can now address the conjecture for the remaining quasi-homogeneous singularities
in dimension one, which reduce to Proposition 4.4. For these cases, we do not state the
explicit expressions for the spectral genera, since they quickly become unmanageable.

Corollary 4.6. The strong form of the conjecture is true for the singularities of the form
(4.6) and (4.7).

Proof. As in the proof of Proposition 4.4, we indicate the main steps of the argument. We
begin with the case x.xa C yb/ D 0. In this case, Qpg is given by the sumX�

1 �
x

aC 1
�

ay

.aC 1/b

�
; (4.10)

over the lattice points .x; y/ with x > 0, y > 0, in the interior of the triangle with vertices
.0; 0/, .a C 1; 0/, .1; b/. Actually, such points necessarily lie either in the interior of the
triangle T with vertices .1; 0/, .aC 1; 0/ and .1; b/, or on the open edge joining .1; 0/ and
.1; b/, as in the following picture:

�

�

.aC 1; 0/

.1; b/

� �
.1; 0/.0; 0/

T

The triangle T , colored in pink, can be translated by one unit to the left so that, after the
corresponding change of variables, the evaluation of (4.10) on the interior lattice points
of T reduces to the case treated in Proposition 4.4. The contribution of the lattice points
on the open edge between .1; 0/ and .1; b/, represented by the dashed line, reduces to a
sum of consecutive integers. These computations are then combined with the value of the
Milnor number, now given by � D .a C 1/.b � 1/C 1. One concludes by inspection of
the obtained expressions that �=6 � Qpg � 1=6.

Next for the singularity xy.xa C yb/ D 0. In this case, the spectral genus is given by
the sum X�

1 �
bx

.aC 1/.b C 1/ � 1
�

ay

.aC 1/.b C 1/ � 1

�
; (4.11)
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over the lattice points .x; y/ either in the interior of the triangle T with vertices .1; 1/,
.a C 1; 1/ and .1; b C 1/, or on the edge joining .1; 1/ and .a C 1; 1/, or on the edge
joining .1; 1/ and .1; bC 1/. Notice that .1; 1/ is one such point. This is represented in the
following picture, where T is again colored in pink:

�

� .aC 1; 1/

.1; b C 1/

�

T

.0; 0/

.1; 1/
�

T

The triangle can be translated so that .1; 1/ is sent to the origin. The evaluation of (4.11)
on the interior points of T is then covered by Proposition 4.4. The sums on lattice points
on the edges reduce to sums of consecutive integers. The result of the computation is then
combined with the value of the Milnor number � D .aC 1/.b C 1/, and an examination
of the expression yields again the bound �=6 � Qpg � 1=6.

5. Irreducible curve singularities

In this section, we consider the conjecture for an irreducible germ of a plane curve sin-
gularity, defined by f W .C2; 0/ ! .C; 0/. In this case, the spectrum can be described
explicitly in terms of Puiseux pairs. This is discussed in an unpublished paper of M. Saito
[35], whose presentation and notation we follow. The same result can be derived from the
work of Schrauwen–Steenbrink–Stevens [36], as discussed by Némethi in [28].

5.1. A reformulation via Puiseux pairs

After possibly changing variables, the equation f .x; y/ D 0 is equivalent to a Puiseux
series representation for y in terms of x:

y D
X

1�i�Œk1=n1�

c0;ix
i
C

X
0�i�Œk2=n2�

c1;ix
.k1Ci/=n1 C

X
0�i�Œk3=n3�

c2;ix
k1=n1C.k2Ci/=n1n2

C � � � C

X
i�0

cg;ix
k1=n1Ck2=n1n2C���C.kgCi/=n1���ng :
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The pairs .ki ; ni / are called Puiseux pairs, and they fulfill the following properties:

(1) ki and ni are coprime integers.

(2) ni > 1.

(3) k1 > n1 and ki > ki�1ni , for i � 2. In particular, ki > 1 for all i .

In addition, we introduce positive integers wi , defined recursively by

w1 D k1; wi D ni�1niwi�1 C ki for i � 2:

Hence, for i � 2 we can write

wi D

� i�1X
jD1

kjnj .njC1 � � �ni�1/
2

�
ni C ki : (5.1)

For the sake of clarity, we stress that the term of index j D i � 1 in the sum is understood
to be ki�1ni�1. We also observe that, because the integers ki and ni are coprime, the same
holds for wi and ni .

We next express the Milnor number and the spectral genus in terms of the previous
quantities.

Lemma 5.1. Let f W .C2; 0/! .C; 0/ define an irreducible germ of a plane curve sin-
gularity. Let the notation be as above, and define n0i D niC1 � � � ng , with the convention
n0g D 1. Then:

(1) The Milnor number is given by

� D

gX
iD1

.ni � 1/.wi � 1/n
0
i :

(2) The spectral genus is given by

Qpg D

gX
iD1

X�
1 �

1

n0i

�
k C

x

ni
C

y

wi

��
;

where the second sum runs over the integers k � 0, x > 0 and y > 0, satisfying
k < n0i and x=ni C y=wi < 1.

Proof. See Némethi [28, Section 3], and in particular Theorem 3.1 therein, and M. Saito
[35, Theorem 1.5 and Section 5]. For the spectral genus, we refer to Section 2.2 above for
the expression in terms of M. Saito’s convention.

From the above expressions, we derive the following corollary, which allows us to
relate the conjecture with Puiseux pairs.

Corollary 5.2. With the assumptions and notation as above, we have

�

6
� Qpg D

1

12

gX
iD1

Si ;
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where Si D SCi � S
�
i and

SCi D
.ni � 1/.wi � 1/.ni C wi C 1/

niwi
; S�i D .ni � 1/.wi � 1/.n

0
i � 1/:

Proof. This is an elementary computation using the expressions provided in Lemma 5.1
and applying Proposition 4.4 in the case when a and b are coprime.

5.2. The strong form of the conjecture

We are now in a position to state and prove the main theorem of this section.

Theorem 5.3. The strong form of the conjecture holds for germs of irreducible plane
curve singularities. More precisely,

�

6
� Qpg �

1

12
SC1 �

1

6
;

and the first inequality is strict if there are two or more Puiseux pairs.

Proof. Observe that S�g D 0, since n0g D 1. Hence, the case g D 1 is trivial and we may
assume that g � 2. We have to prove

gX
iD2

SCi �

g�1X
iD1

S�i > 0:

First of all, for i � 2, we provide a lower bound for SCi which is simpler to deal with.
For this, using that ki > 1 in (5.1), and that .ni C wi C 1/=wi > 1, we see that

SCi > TCi WD .ni � 1/

i�1X
jD1

kjnj .njC1 � � �ni�1/
2; (5.2)

where the summand of index j D i � 1 is understood to be ki�1ni�1.
Next, for all i , S�i , has the following simple upper bound:

S�i � T
�
i WD .ni � 1/.n

0
i � 1/wi

D .ni � 1/.niC1 � � �ng � 1/

�
ki C

i�1X
jD1

kjnj .njC1 � � �ni�1/
2ni

�
: (5.3)

Using the above bounds for SCi and S�i , we can write

gX
iD2

SCi �

g�1X
iD1

S�i >

gX
iD2

TCi �

g�1X
iD1

T �i D a1k1 C � � � C ag�1kg�1; (5.4)

and it is enough to prove that the coefficients ai are positive. We will first discuss the
coefficient a1.
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We denote byPi the coefficient of k1 in TCi . Similarly, we denote byNi the coefficient
of k1 in T �i . Inspecting the expanded expressions (5.2) and (5.3) for TCi and T �i , we find
the following: for the coefficients Pi , we have

P2 D n1.n2 � 1/

and
Pi D n1.n2 � � �ni�1/

2.ni � 1/

for i � 3. For the coefficients Ni , we have

N1 D .n1 � 1/.n2 � � �ng � 1/

and
N2 D n1n2.n2 � 1/.n3 � � �ng � 1/;

while for i � 3 we decompose Ni D Ni;a CNi;b , where

Ni;a D n1.n2 � � �ni /
2niC1 � � �ng � n1.n2 � � �ni�1/

2ni � � �ng

and
Ni;b D n1.n2 � � �ni�1/

2ni � n1.n2 � � �ni /
2:

The sum of the coefficients Ni;a is a telescopic sum, with value

g�1X
iD3

Ni;a D n1.n2 � � �ng�1/
2ng � n1n

2
2n3 � � �ng :

Adding the contributions of P2, N1 and N2, we obtain

P2 �N1 �N2 �

g�1X
iD3

Ni;a D n2 � � �ng C n1n
2
2 � n1.n2 � � �ng�1/

2ng � 1: (5.5)

Next, we consider the coefficients Pi together with the coefficients Ni;b , for 3 � i �
g � 1. More precisely,

Pi �Ni;b D n1.n2 � � �ni /
2
� n1.n2 � � �ni�1/

2;

which again gives rise to a telescopic sum:

g�1X
iD3

.Pi �Ni;b/ D n1.n2 � � �ng�1/
2
� n1n

2
2:

Adding the coefficient Pg D n1.n2 � � �ng�1/2.ng � 1/, we find

g�1X
iD3

.Pi �Ni;b/C Pg D n1.n2 � � �ng�1/
2ng � n1n

2
2: (5.6)
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To conclude, we add (5.5) and (5.6), which yields the coefficient a1 in (5.4):

a1 D n2 � � �ng � 1 > 0:

The other coefficients are treated similarly, and we find that for 1 � j � g � 1;

aj D njC1 � � �ng � 1:

This completes the proof.

6. Generic singularities with large Newton polyhedra

In this section, we consider isolated hypersurface singularities which are non-degenerate
and convenient in the sense of Kouchnirenko [23].2 These conditions are formulated in
terms of the Newton polyhedron. The non-degeneracy condition is shown to be generic for
the Zariski topology. Therefore, we may refer to such singularities as generic. Convenient
means that the Newton polyhedron intersects all the coordinate hyperplanes. We refer to
op. cit. for details.

6.1. Formulas of Kouchnirenko and Berline–Vergne

Consider now a convenient and generic isolated hypersurface singularity defined by a
germ f W .CnC1; 0/! .C; 0/. The formula of Kouchnirenko [23, Théorème I] states that

� D .nC 1/Š vol.��/ � nŠ voln.��/C � � � C .�1/n vol1.��/C .�1/nC1: (6.1)

Here, vol is the standard volume in RnC1, and volk.��/ refers to the volume of the lower
Newton polyhedron intersected with all the coordinate subspaces of dimension k, with
respect to the standard Lebesgue measure. In particular, voln.��/ is the volume of ��
intersected with the coordinate hyperplanes.

The spectral genus can also be described explicitly in terms of the Newton polyhedron.
Let �c be the compact Newton boundary. It is defined by a homogeneous, concave, piece-
wise linear function �, which takes the value 1 on the faces of �c . The lower Newton
polyhedron can then be presented as �� D ¹x 2 RnC1C j �.x/ � 1º. By [34], in particular
using the formulas on the first page, it follows that the spectral genus is given by

Qpg D
X

x2�ı�\ZnC1

�
1 � �.x/

�
; (6.2)

where the sum runs over the interior lattice points of ��. Here we have taken into account
the different normalization as recalled in (2.5). This sum is analogous to (4.2) but appears
here in an a priori different context.

2In op. cit., which is written in French, convenient is called commode.
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In order to estimate an asymptotic form of the sum (6.2), we will apply a rough version
of the Euler–Maclaurin formula for polyhedra. For the statement, we first adopt some
conventions for Lebesgue measures. Let P be a convex lattice polyhedron in Rd , and Q
a face of it. Let hQiR � Rd be the real vector space parallel to Q. Then we denote by
dx the Lebesgue measure on hQiR which gives volume one to the fundamental domain
of the lattice Zd \ hQiR.

Lemma 6.1. Let P � Rd be a compact convex lattice polyhedron, and let h be a smooth
function on P . Then, there exists an asymptotic expansionX
x2.kP /\Zd

h.x=k/ D kd
Z
P

h.x/dx C
kd�1

2

Z
@P

h.x/dx CO.kd�2/; as k !C1:

Proof. This is an application of the local Euler–Maclaurin formula of Berline–Vergne
[4, Section 5.4, Theorem 5]. The dominant term of the expansion is already given in loc.
cit. They discuss the subdominant term in Section 5.5. Notice also that in [4] one supposes
that h is a smooth function on Rd with compact support. Since the sum and the first terms
of the expansion depend only on the values of h in P , which is compact, we can smoothly
extend h outside of P , still with compact support, for which the formula applies.

In general, the integrals appearing in the previous lemma can be evaluated by applying
results of Brion [9, Section 3.2], see also [10, Corollary 6.1.10]. In our setting, it will be
enough to have the following:

Lemma 6.2. Let P be a d -dimensional simplex in Rd , with vertices 0; u1; : : : ; ud . Let
� 2 Rd be such that hui ; �i D 1 for all i . ThenZ

P

�
1 � hx; �i

�
dx D

1

d C 1
vol.P /:

Proof. The formula is equivalent to the statement thatZ
P

hx; �idx D
d

d C 1
vol.P /:

Since both sides change the same way with respect to a linear change of variables, we
can suppose that the ui are the standard basis of Rd and � D .1; : : : ; 1/. In this case, the
integral amounts to a sum of d terms of the form

R
P
xjdx. By a standard computation,

1

vol.P /

Z
P

xjdx D center of mass in the direction xj D
1

d C 1
;

which allows us to conclude.

6.2. An asymptotic form of the strong conjecture

We are ready to address the following.
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Theorem 6.3. Let f .x0; : : : ; xn/ D 0 be a convenient and generic isolated singularity.
Then, for k sufficiently large, the isolated singularity

f .xk0 ; : : : ; x
k
n / D 0

satisfies the strong form of the conjecture.

Proof. First of all, notice that the singularity f .xk0 ; : : : ; x
k
n / D 0 is still generic and con-

venient. Hence, the discussion Section 6.1 applies to it. If we denote the corresponding
Milnor number by �.k/, then by (6.1) we have the asymptotic expansion

�.k/

.nC 2/Š
D
knC1

nC 2
vol.��/ �

kn

.nC 1/.nC 2/
voln.��/CO.kn�1/: (6.3)

Similarly, we consider

Qpg.k/ D
X

x2.k�ı�/\ZnC1

�
1 � �.x=k/

�
; (6.4)

where � is the piece-wise linear function determining the lower Newton polyhedron ��.
To estimate (6.4), we apply Lemma 6.1. For this, we first decompose �� into simplices
with 0 as a vertex and the rest of the vertices in ZnC1 \ �c . These define a simplicial
complex, whose top-dimensional simplices we denote by �i , and whose codimension 1
simplices we denote by �j . On each simplex, the function � is linear. A first application
of the lemma gives

Qpg.k/ D
X
i

X
x2k�i\ZnC1

�
1 � �.x=k/

�
�

X
j

X
x2k�j\ZnC1

�
1 � �.x=k/

�
CO.kn�1/:

Applying Lemma 6.1 once again, together with Lemma 6.2, one straightforwardly deduces
that

Qpg.k/ D
knC1

nC 2
vol.��/ �

kn

2.nC 1/
voln.��/CO.kn�1/: (6.5)

Combining (6.3) and (6.5) we find that

�.k/

.nC 2/Š
� Qpg.k/ D k

n n

2.nC 1/.nC 2/
voln.��/CO.kn�1/:

For big enough k, the leading term, which is positive, dominates. This concludes the proof
of the theorem.

Corollary 6.4. With the assumptions of Theorem 6.3, we have

Qpg.k/

�.k/
%

1

.nC 2/Š
as k !C1;

where �.k/ and Qpg.k/ are the Milnor number and spectral genus of f .xk0 ; : : : ; x
k
n / D 0.
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7. Relation to other conjectures

In this section, we discuss the relationship between our conjecture and other conjectural
statements. We begin by showing that the weak conjecture can be derived from the Durfee-
type conjecture. Then, we consider the relationship with the conjectures of K. Saito and
C. Hertling, which focus on the distribution of the spectral numbers.

7.1. The Durfee-type conjecture

Recall from the introduction the Durfee-type conjecture (1.1). In order to relate it to the
weak conjecture, we begin by expressing the spectral genus in terms of the geometric
genus of a suspension.

Let f D 0 be an isolated hypersurface singularity of dimension n � 1, and recall that
we denote by Ts the semi-simple part of the monodromy acting on GrnF H

n.Milf /. Let
k � 1 be an integer such that T ks D 1. We define the .k C 1/-suspension of f as

h.x0; : : : ; xnC1/ D f .x0; : : : ; xn/C x
kC1
nC1 :

This function defines an isolated hypersurface singularity at 0, of dimension nC 1.

Lemma 7.1. With the notation as above, the spectral genus Qpg;f of f and the geometric
genus pg;h of h are related by

pg;h D k � Qpg;f :

Proof. Let ˛0i be the spectral numbers of f , taken in .0; nC 1/. Recall from the end of
Section 2.2 the Thom–Sebastiani property for the spectral numbers. The spectral numbers
of h are thus given by

ˇi;j D ˛
0
i C

j

k C 1
; for i D 1; : : : ; �f and j D 1; : : : ; k:

The geometric genus of h equals #¹ˇi;j � 1º, by the very definition of the spectral num-
bers, cf. Section 2.2, and because pg;h D dimHnC1.Milh/, cf. Section 2.1.

Define �i D 1 � ˛0i . The condition ˇi;j � 1 entails ˛0i < 1, and is actually equivalent
to

j � k�i C �i : (7.1)

Because T ks D 1, the quantities k�i are integers. Moreover, �i < 1. Therefore, given any
˛0i < 1, the equation (7.1) has exactly k�i solutions. Recalling the expression (2.5) for
Qpg;f , we find

pg;h D #¹ˇi;j � 1º D
X
˛0i<1

k.1 � ˛0i / D k � Qpg;f :

This concludes the proof.

Proposition 7.2. With the notation as above, the weak conjecture for f is equivalent to
the Durfee-type conjecture for h.
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Proof. The Milnor number of h is�hD k ��f . Hence, by the previous lemma, the Durfee-
type conjecture for h amounts to

k � Qpg;f <
k � �f

.nC 2/Š
;

which is equivalent to the weak conjecture for f .

7.2. Proof of Theorem B

We now apply Proposition 7.2 to address Theorem B in the introduction.
Notice first that the suspension of a quasi-homogeneous singularity is again a quasi-

homogeneous singularity. For these, the Durfee-type conjecture is a result of Yau–Zhang
[45, Theorem 1.2]. For such singularities, we conclude by Proposition 7.2.

For the case of isolated plane curve singularities, Némethi studies in [29] the Durfee
conjecture for suspensions of the form h.x;y; z/D f .x;y/C zN . He requires thatN � 2
is coprime with the multiplicities of the exceptional divisors of the minimal embedded
resolution of singularities of f D 0. We can apply his results with N D k C 1, where
k is any multiple of the least common multiple of the multiplicities of the exceptional
divisors. Then T ks D 1 by [1, Théorème 3], so that we are in the setting of Proposition 7.2.
In [29, Theorem 5.1], it is proven that

pg;h �
�h

6
:

We will check that, apart possibly from some exceptional cases, this is actually a strict
inequality. The exceptional cases will be dealt with separately.

Let � be the signature of the intersection form onH 2.Milh;Z/. Némethi observes that,
forN chosen as above, we have � C�h D 4pg;h. We thus need to show that � < ��h=3.
If f is not equivalent to a singularity of the formAn,A2n;2m,D2nC3 orE6, then, recalling
that �h D .N � 1/�f , the equation in the statement of [29, Theorem 5.1 (d)] gives

� � �
N 2 � 1

3N
�f D �

N C 1

3N
�h < �

�h

3
:

Indeed, under the assumption on f , the quantity �f in that statement is 0 by definition.
If f is equivalent to An, D2nC3 or E6, then the strong form of the conjecture holds

by Theorem 4.3, since these are all quasi-homogeneous singularities.
For a singularity of type A2n;2m, Némethi’s treatment shows that � < ��h=3 if nC

m � 5, but it fails to provide a strict inequality otherwise. Instead, we deliver a simpler
argument with a better outcome: the strong conjecture holds as well. Recall first that this
singularity has equation

f .x; y/ D .x2 C y2nC1/.y2 C x2mC1/:

The lower Newton polygon has vertices at the points .0; 0/, A D .0; 2nC 3/, B D .2; 2/
and C D .2mC 3; 0/. It is thus convenient, and the compact Newton boundary has two
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edges, namely the segments AB and BC . It is straightforward to see that the principal
parts of f corresponding to AB and BC have non-vanishing gradient over .C�/2, so
that f is non-degenerate in the sense of Kouchnirenko. Consequently, the discussion in
Section 6.1 applies, and the spectral genus is given by the formula (6.2). The evaluation
of the latter is elementary, and we omit the details. The result is

Qpg;f D
.nC 2/2

2.2nC 3/
C

.mC 2/2

2.2mC 3/
�
1

2
:

As for the Milnor number, Kouchnirenko’s formula (6.1) yields �f D 2nC 2mC 7. With
these expressions at hand, we find

�f

6
� Qpg;f �

8

15
>
1

6
:

This concludes the proof.

7.3. K. Saito’s conjecture

In [32], K. Saito proposed a conjectural density describing the distribution of the spectral
numbers of families of isolated hypersurface singularities, as the singularity gets worse.
In such situations, K. Saito’s conjecture entails in particular that the inequality in our
conjecture is asymptotically an equality, and hence our conjecture is sharp.

A family F of n-dimensional isolated hypersurface singularities, defined by germs of
holomorphic functions f W .CnC1; 0/! .C; 0/, will be called degenerating if it is endowed
with a filter and the function �WF ! R, induced by the Milnor number, tends to infinity.
That is,

lim
F
� D C1:

The filter is a technical device that allows us to talk about limits in a rigorous fashion. We
informally see F as a family of singularities whose Milnor numbers converge to infinity.

To state K. Saito’s conjecture, let f be a germ of a holomorphic function defining an
isolated hypersurface singularity at the origin. Recall the notion of the associated spec-
tral numbers, that we now take in the form 0 < ˛01 � � � � � ˛

0
� < nC 1. We define the

corresponding spectral probability measure as

ıf D
1

�

X
j

ı˛0j : (7.2)

For a fixed n, consider the measure N.s/ds on Œ0; nC 1� for whichZ
f .s/N.s/ds D

Z
0�

P
xi�nC1

f
�X

xi

�
dx0 � � � dxn;

where the xi 2 Œ0; 1�. Notice this is a push-forward measure. Indeed, denote by � the mea-
sure on Œ0; 1�nC1 induced by the Lebesgue measure on RnC1, and introduce the addition
function †.x0; : : : ; xn/ D

P
xi W Œ0; 1�

nC1 ! Œ0; nC 1�. Then N.s/ds D †�.�/.
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Conjecture (K. Saito). For suitable degenerating families of singularities F , we have the
convergence

lim
F
ıf .s/ D N.s/ds; (7.3)

of probability measures on R, in the strong sense.

It is part of the conjecture to find meaningful families of singularities for which the
statement holds. We recall that for a probability measure on R, strong convergence means
the convergence of the measure of any measurable set. This is equivalent to the conver-
gence of the integrals of any bounded measurable function. The convergence in the strong
sense is important in the applications below, where we need to integrate functions that are
not continuous, but at least measurable.

The Fourier transform of the Dirac distribution ıf can be expressed in terms of the
spectral polynomial of f (2.6). By considering cases when the latter is known, one can
prove K. Saito’s conjecture in the following situations:

(1) Quasi-homogeneous singularities, with weights w0; : : : ; wn converging to 0,
proven by Saito [32, Section 3.7, Example 1].

(2) Irreducible plane curve singularities, with Puiseux pairs .k1; n1/; : : : ; .kg ; ng/
and ng ! C1, proven by Saito [32, Section 3.9, Example 3]. More generally,
Alberich-Carramiñana, Àlvarez Montaner and Gómez-López informed us that
they have characterized the sequences of irreducible plane curve singularities
which satisfy K. Saito’s conjecture. We refer to [2, Theorem 4.0.1] for the pre-
cise statement.

(3) For convenient, generic singularities, with large Newton polyhedra as in Section 6
above, proven by Almirón–Schulze [3, Theorem 1.1].

By applying (7.3) to well-chosen functions, one can derive necessary conditions for a
family F to satisfy K. Saito’s conjecture. We state some of these special features.

Proposition 7.3. Let F be a degenerating family for which K. Saito’s conjecture holds.
Then:

(1) The Hodge numbers of the Milnor fibers satisfy

lim
F

dim GrpF H
n.Milf / D C1; for 0 � p � n:

(2) The minimal spectral value ˛01 satisfies

lim
F
˛01 D 0:

Proof. For the first point, we have

lim
F

dim GrpF H
n.Milf /

�
D lim

F

Z n�pC1

n�p

ıf D

Z
Ap

dx0 � � � dxn; (7.4)

where Ap is the region in Œ0; 1�nC1 defined by n � p �
P
xi � n � p C 1. Because the

integral over Ap is strictly positive and � converges toC1 along F , the same must hold
for dim GrpF H

n.Milf /.
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For the second point, fix " > 0. We have

lim
F

#¹˛0j < "º

�
D lim

F

Z "

0

ıf D

Z
"An

dx0 � � � dxn D
"nC1

.nC 1/Š
;

where we used thatAn is the standard simplex in RnC1C , whose volume is 1=.nC 1/Š. That
is, for every "0 > 0, we can find an element of the filter F"0 such that, for all f 2 F"0 ,ˇ̌̌̌#¹˛0j < "º

�
�

"nC1

.nC 1/Š

ˇ̌̌̌
< "0:

In particular, for "0 D "nC1=2.nC 1/Š, we infer that the set #¹˛0j < "º is non-empty for all
f 2 F"0 . Consequently, ˛01 < ". Because ˛01 > 0, this concludes the proof.

We refer the reader to [2, Section 5] for a complementary discussion on the minimal
spectral number and K. Saito’s conjecture. In particular, a proof of Proposition 7.3 (2) is
also provided therein.

For the geometric genus and the spectral genus, K. Saito’s conjecture leads to the
following expectations.

Proposition 7.4. Assume that K. Saito’s conjecture holds for some degenerating family of
singularities F . Then:

(1) The geometric genus satisfies

lim
F

pg

�
D

1

.nC 1/Š
:

(2) The spectral genus satisfies

lim
F

Qpg

�
D

1

.nC 2/Š
: (7.5)

(3) In particular, we have

lim
F

Qpg

pg
D

1

nC 2
:

Proof. The first item follows from (7.4) in the case nD p, together with the evaluation of
the volume of the standard simplex An.

For the second item, we first observe that

Qpg

�
D

Z 1

0

.1 � s/ıf .s/;

according to (2.5). Under K. Saito’s conjecture, this converges toZ 1

0

.1 � s/N.s/ds D

Z
An

.1 � x0 � � � � � xn/dx0 � � � dxn:

Since the volume of An is 1=.nC 1/Š, by Lemma 6.2 we conclude that the value of the
integral is 1=.nC 2/Š.

The third point of the proposition is a combination of the first and the second points.
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The second items of the proposition should be compared to the weak form of the
conjecture: under both K. Saito’s and our conjecture, the limit is approached from below.
Proposition 4.2 and Corollary 6.4 provide examples of this phenomenon. Also, notice that
these statements are compatible with the known cases of K. Saito’s conjecture reviewed
in Section 7.3 above.

7.4. Hertling’s conjecture

While K. Saito’s conjecture describes the distribution of the spectral numbers of an iso-
lated singularity, Hertling’s conjecture focuses on the variance. We discuss the relationship
to our conjecture. Combined with K. Saito’s conjecture, we conclude that Hertling’s con-
jecture does not seem to trivially imply our strong conjecture for curves.

Consider the spectral numbers of an isolated hypersurface singularity, given in the
form �1 < ˛1 � � � � � ˛� � n. Recall these are symmetric with respect to ˛ 7! n� 1� ˛.
That is, we have the relationship

j̨ C ˛��jC1 D n � 1:

Hence, the mean value of the spectral values is .n � 1/=2. In [20], Hertling proposed a
bound for the variance.

Conjecture (Hertling). The spectral numbers of an isolated hypersurface singularity, in
the interval .�1; n/, satisfy

1

�

X
j

�
j̨ �

n � 1

2

�2
�
˛� � ˛1

12
: (7.6)

Hertling’s conjecture is known for quasi-homogeneous singularities. In this case, the
predicted inequality is in fact an equality. This was proven by Hertling himself in [20]. An
elementary proof was later found by Dimca [12]. The case of curve singularities has been
addressed by several authors. In the unpublished article [35], M. Saito proved the case
of irreducible plane curve singularities. In [6], Brélivet settled the case of plane curves
with convenient, non-degenerate Newton polygon. Later, in the unpublished article [7], he
considered general plane curve singularities. The statement for plane curve singularities
has the following consequence for our conjecture.

Corollary 7.5. For plane curve singularities, if ˛� � 2
3
.1 � ��1/2, then the strong form

of the conjecture holds.

Proof. For plane curve singularities, the spectral numbers normalized in .�1;1/ are invari-
ant under the symmetry x 7! �x. In particular, ˛� D �˛1. Hence, combining (7.6) with
the Cauchy–Schwarz inequality, we derive

Qpg D
X

0< j̨<1

j̨ � �

r
˛�

24
:

The claim is a straightforward consequence of the latter inequality.
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Suppose now that we are in the setting of a family F of plane curve singularities for
which K. Saito’s conjecture holds. We can then apply Proposition 7.3 (2). Recalling that
˛01 D ˛1 C 1 and ˛1 D �˛�, we find

lim
F
˛� D 1:

Therefore, we see that the criterion provided by the corollary, which implies lim supF ˛�
� 2=3, will apply at most to some exceptional singularities of the family F , but not in
general.
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