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Crystalline representations and Wach modules in the
imperfect residue field case

Abhinandan

Abstract. For an absolutely unramified extension L=Qp with imperfect residue field, we define
and study Wach modules in the setting of .';�/-modules for L. Our main result establishes a direct
equivalence between the category of lattices inside crystalline representations of the absolute Galois
group of L and the category of integral Wach modules for L. Moreover, we provide a direct relation
between a rational Wach module equipped with the Nygaard filtration and the filtered '-module of
its associated crystalline representation.

1. Introduction

In classical p-adic Hodge theory, Fontaine introduced and developed the idea of study-
ing a p-adic representation of the absolute Galois group of Qp (and its extensions) via
semilinear algebraic objects attached to the representation. More concretely, for an exten-
sion F=Qp with perfect residue field and absolute Galois group GF , in [27], Fontaine
showed that the category of Zp-representations of GF is equivalent to the category of
étale .'; �F /-modules, where �F is an open subgroup of Z�p (see Section 1.1). On the
other hand, to understand p-adic representations coming from geometry, Fontaine defined
several classes of representations such as crystalline, semistable, etc. in [26]. Putting the
two point of views together, Fontaine asked the following natural question: is it possible to
describe crystalline representations of GF in terms of .'; �F /-modules? For an unrami-
fied extension F=Qp , Fontaine studied this question in [27], and introduced the notion of
finite crystalline-height representations (représentations de cr-hauteur finie) ofGF , which
was further developed by Wach [46, 47], Colmez [20] and Berger [8]. More precisely, [8]
showed that the category of GF -stable Zp-lattices of p-adic crystalline representations is
equivalent to the category of Wach modules, where a Wach module is a certain integral
lattice inside the étale .'; �F /-module associated to the representation (see Section 1.1).

The two point of views of Fontaine admit natural generalisations to a relative base,
i.e., formally étale algebras over a formal torus. In particular, relative étale .';�/-modules
were studied by Andreatta [5] and relative p-adic crystalline representations were studied
by Faltings [24] and Brinon [15]. In [3], we introduced and studied the notion of relative
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Wach modules for an absolutely unramified (at p) relative base. However, compared to
the classical case, the results of [3] are restrictive, i.e., we only show that relative Wach
modules give rise to lattices inside relative crystalline representations; the converse is the
following difficult open question: can one functorially associate a relative Wach module
to a Zp-lattice inside a relative crystalline representation?

In this article, we resolve the open question for the imperfect residue field case (see
Theorem 1.1), and we use the result thus obtained, in a subsequent work [1], to resolve the
open question in the relative case. More concretely, for a complete discrete valuation field
L=Qp with imperfect residue field, [5] developed the theory of étale .'; �L/-modules,
where �L is an open subgroup of Zp.1/d Ì Z�p with d being the transcendence degree
of L=Qp , and [14] developed the theory of p-adic crystalline representations of GL, the
absolute Galois group ofL. However, for absolutely unramifiedL=Qp , the theory of Wach
modules for L was missing from the picture. So, in this article, we define Wach modules
for L and prove our first main result.

Theorem 1.1 (Corollary 4.2). The category of GL-stable Zp-lattices inside p-adic crys-
talline representations of GL is equivalent to the category of Wach modules for L.

As mentioned above, the difficult part of Theorem 1.1 is to functorially associate a
Wach module to any GL-stable Zp-lattice T inside a p-adic crystalline representation
of GL. To resolve this, let us note that using the classical theory of [8] in the perfect
residue field case, one can associate to T a '-module N over the base ring of Wach
modules for L. However, equipping N with a natural action of �L is highly non-trivial,
where the difficulty arises because �L is quite large compared to �F from the classical
case. The heart of this article constitutes a direct construction of the natural action of �L
on N (see Section 1.2.3 for details). Let us remark that the analogous theory of Breuil–
Kisin modules in the imperfect residue field case was studied by Brinon and Trihan [16].
However, the theory of loc. cit. is different from the theory of Wach modules, in particular,
the construction of the action of �L does not feature in [16].

Besides being natural generalisations of classical results to the relative case, the use-
fulness of relative Wach modules stems from its applications in the computation of p-adic
vanishing cycles using syntomic complexes. Indeed, to generalise the computation of p-
adic vanishing cycles by Colmez and Nizioł [22] to the case of crystalline coefficients,
in [4], crucial inputs were the results on relative Wach modules from [3]. However, as
mentioned above, the results of [3], and therefore, of [4] only work for a restrictive class
of crystalline coefficients. In order to generalise the results of [22] to all crystalline coeffi-
cients, we need the more general result on relative Wach modules from [1, Theorem 1.5],
for which Theorem 1.1 is a crucial input. Furthermore, in op. cit. we provide an inter-
esting application of Theorem 1.1, in particular, we give a new criteria for checking the
crystallinity of relative p-adic representations (see [1, Theorem 1.7 and Corollary 1.8]).

An additional motivation for considering Wach modules is to construct a deforma-
tion of the functor Dcris from classical p-adic Hodge theory (see [27, Section B.2.3]).
This construction was carried out in the Fontaine–Laffaille range by Wach [47, Theor-
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eme 3], and more generally, by Berger [8, Théorème III.4.4]. In this article, our second
main result provides a generalisation of loc. cit. to the imperfect residue field case (see
Theorem 1.8). Let us remark that the general idea of deformations of crystalline and de
Rham cohomologies has led to exciting new developments in integral p-adic Hodge the-
ory via the introduction and development of prismatic cohomology [9–11, 42].

Finally, note that recent developments in the theory of prismatic F -crystals [12,23,30]
provide a new approach to the classification of lattices inside crystalline representations.
While the prismatic point of view is an exciting development, in the current paper, we
employ techniques from the theory of .'; �/-modules to obtain our results. This is due
to the fact that, in our approach, the construction of Wach modules for L and the proof
of Theorems 1.1 and 1.8, are explicit and direct, which could be advantageous for “arith-
metic” applications. In Section 1.2.4, we will provide more details on relations of our
results in this article to other works. In the rest of this section, we will describe the results
mentioned above in more detail. We begin by recalling the main classical result.

1.1. The classical case

Let p be a fixed prime number and let � denote a perfect field of characteristic p; set
OF WD W.�/ to be the ring of p-typical Witt vectors with coefficients in � and F WD
Frac.OF /. Let xF denote a fixed algebraic closure of F , let Cp WD

yxF denote the p-adic
completion, and GF WD Gal. xF=F / the absolute Galois group of F . Moreover, let F1 WDS
n F.�pn/ with �F WD Gal.F1=F /

�
�! Z�p and HF WD Gal. xF=F1/. Furthermore, let

F [1 denote the tilt of F1 (see Section 1.3) and fix " WD .1; �p; �p2 ; : : :/ in O[F1 , and
� WD Œ"� � 1 and Œp�q WD '.�/=� in Ainf.OF1/ WD W.O

[
F1
/, the ring of p-typical Witt

vectors with coefficients in O[F1 .
In [27], Fontaine established a categorical equivalence between Zp-representations of

GF and étale .';�F /-modules over a certain period ring AF WDOF J�KŒ1=��^�W.F [1/,
where ^ denotes the p-adic completion, and AF is stable under the natural .';�F /-action
on W.F [1/. For a fixed finite free Zp-representation T of GF , the associated finite free
étale .';�F /-module over AF is given as DF .T / WD .A˝Zp T /

HF , where A�W.C[
p/ is

the maximal unramified extension of AF inside W.C[
p/. In loc. cit., Fontaine conjectured

that if V WD T Œ1=p� is crystalline then there exists a lattice inside DF .V / WD DF .T /Œ1=p�
over which the action of �F admits a simpler form. Denote by ACF WD OF J�K � AF ,
which is stable under the .'; �F /-action, and note the following.

Definition 1.2. Let a; b 2 Z with b > a. A Wach module over ACF with weights in the
interval Œa; b� is a finite free ACF -module N equipped with a continuous and semilinear
action of �F such that,

(1) The action of �F on N=�N is trivial.

(2) There is a Frobenius-semilinear operator ' W NŒ1=��! NŒ1='.�/�, commuting
with the action of �F , and such that '.�bN/ � �bN and the cokernel of the
injective map .1˝ '/W'�.�bN/ WD ACF ˝';ACF �

bN ! �bN is killed by Œp�b�aq .
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Denote the category of Wach modules over ACF as .'; �F /-ModŒp�q
ACF

, with morphisms
between objects being ACF -linear, �F -equivariant and '-equivariant (after inverting �).
Let Repcris

Zp
.GF / denote the category of Zp-lattices inside p-adic crystalline represent-

ations of GF . To any T in Repcris
Zp
.GF /, using [20, 46], Berger functorially attached a

Wach module NF .T / over ACF in [8]. The main result in the arithmetic case is as follows
(see [8]).

Theorem 1.3. The Wach module functor induces a natural equivalence of˝-categories:

Repcris
Zp
.GF /

�
��! .'; �F /-ModŒp�q

ACF
T 7�! NF .T /;

with a natural quasi-inverse˝-functor given as N 7! .W.C[
p/˝ACF

N/'D1.

1.2. The imperfect residue field case

Let d 2 N and let X1; X2; : : : ; Xd be some indeterminates. We define OL� to be the p-
adic completion of the localisation of the algebra OF ŒX˙11 ; : : : ; X˙d

d
� at the prime ideal

.p/. It is a complete discrete valuation ring with uniformiser p, imperfect residue field
�.X1; : : : ;Xd / and fraction field L� WDOL� Œ1=p�. LetOL denote a finite étale extension
of OL� such that it is a complete discrete valuation ring with uniformiser p, imperfect
residue field a finite étale extension of �.X1; : : : ; Xd / and fraction field L WD OLŒ1=p�.
Let GL denote the absolute Galois group of L for a fixed algebraic closure xL=L; let
�L

�
�! Zp.1/d Ì Z�p denote the Galois group of L1 over L, where L1 is the fraction

field ofOL1 obtained by adjoining toOL all p-power roots of unity and all p-power roots
of Xi , for all 1 6 i 6 d (see Section 2). In this setting, we have the theory of crystalline
representations of GL [14] and étale .'; �/-modules [5]. However, the theory of Wach
modules for L, i.e., a description of the p-adic crystalline representations GL in terms of
.';�L/-modules, was missing from the picture. The main goal of this article is to complete
this picture, which we discuss next.

1.2.1. Wach modules. For 1 6 i 6 d , let us set X [i WD .Xi ; X
1=p
i ; : : :/ in O[L1 and take

ŒX [i � in Ainf.OL1/DW.O
[
L1
/ to be the Teichmüller representative of X [i . Let ACL denote

the unique finite étale extension (along the finite étale map OL� ! OL) of the .p; �/-
adic completion of the localisation OF J�KŒŒX [1�

˙1; : : : ; ŒX [
d
�˙1�.p;�/. The ring ACL is

equipped with a Frobenius endomorphism ' and a continuous action of �L (see Sec-
tions 1.3 and 2.1), and note the following.

Definition 1.4. Let a; b 2 Z with b > a. A Wach module over ACL with weights in the
interval Œa; b� is a finite free ACL -module N equipped with a continuous and semilinear
action of �L satisfying the following assumptions:

(1) The action of �L on N=�N is trivial.

(2) There is a Frobenius-semilinear operator ' W NŒ1=��! NŒ1='.�/�, commuting
with the action of �L, and such that '.�bN/ � �bN and the cokernel of the
injective map .1˝ '/W'�.�bN/ D ACL ˝';ACL �

bN ! �bN is killed by Œp�b�aq .
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Say that N is effective if one can take b D 0 and a 6 0. Denote the category of Wach
modules over ACL as .'; �/-ModŒp�q

ACL
, with morphisms between objects being ACL -linear,

�L-equivariant and '-equivariant (after inverting �).

Set AL WD ACL Œ1=��
^ as the p-adic completion, equipped with a Frobenius endo-

morphism ' and a continuous action of �L. Let T be a finite free Zp-module equipped
with a continuous action of GL, and note that one can functorially attach to T a finite
free étale .'; �L/-module DL.T / over AL of rank D rkZpT , equipped with a Frobenius-
semilinear operator ' and a semilinear and continuous action of �L. In fact, the preceding
functor induces an equivalence between finite free Zp-representations of GL and finite
free étale .'; �L/-modules over AL (see Section 2.2).

Remark 1.5. The category of Wach modules over ACL can be realised as a full subcategory
of étale .'; �/-modules over AL (see Proposition 3.3).

1.2.2. Main results. Let Repcris
Zp
.GL/ denote the category of Zp-lattices inside p-adic

crystalline representations of GL. The main result of this article, i.e., Theorem 1.1, can be
stated more precisely as follows.

Theorem 1.6 (Corollary 4.2). The Wach module functor induces a natural equivalence of
˝-categories:

Repcris
Zp
.GL/

�
��! .'; �/-ModŒp�q

ACL
T 7�! NL.T /;

with a natural quasi-inverse˝-functor given as

N 7�! TL.N / WD
�
W.C[

L/˝ACL
N
�'D1

;

where CL WD
yxL.

Our strategy for the proof of Theorem 1.6 will be described in Section 1.2.3.

Remark 1.7. Let us note that in Theorem 1.6, we do not expect the functor NL to be exact
(see [18, Example 7.1] for an example in the arithmetic case). However, after passing to
the associated isogeny categories, the Wach module functor induces an exact equivalence
of˝-categories

Repcris
Qp
.GL/

�
��! .'; �/-ModŒp�q

BCL
;

via V 7! NL.V /, with an exact quasi-inverse˝-functor given as (see Corollary 4.3),

M 7�! VL.M/ WD
�
W.C[

L/˝ACL
M
�'D1

:

As indicated earlier, the proof of Theorem 1.6 is based on techniques employed in the
theory of .'; �/-modules. One of the advantages of using this approach is that it enables
us to establish several comparison results between objects appearing in the p-adic Hodge
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theory over L (see Propositions 3.14, 4.21, Corollaries 4.22 and 3.16). In order to keep
the introduction light, we only mention one of the comparison results here and refer the
reader to the main body of this article for the rest.

Let N be a Wach module over ACL . We equip N with a Nygaard filtration defined
as FilkN WD ¹x 2 N such that '.x/ 2 Œp�kqN º. Then, we note that .N=�N/Œ1=p� is a
'-module over L, since Œp�q D p mod �ACL , and N=�N is equipped with a filtration
Filk.N=�N/ given as the image of FilkN under the surjection N � N=�N . We equip
.N=�N/Œ1=p� with the induced filtration, in particular, it is a filtered '-module over L.
Moreover, let V WD TL.N /Œ1=p� denote the associated crystalline representation of GL
from Theorem 1.6. Then, we can functorially associate to V a filtered .'; @/-module over
L denoted ODcris;L.V / (see Section 2.3), and show the following.

Theorem 1.8 (Corollary 3.16). Let N be a Wach module over ACL and V D TL.N /Œ1=p�
the associated crystalline representation from Theorem 1.6. Then, we have a natural iso-
morphism .N=�N/Œ1=p�

�
�! ODcris;L.V / as filtered '-modules over L.

The proof of Theorem 1.8 is obtained by utilising the computations done in the proof
of Theorem 3.12, more specifically, using Proposition 3.14.

Remark 1.9. The statement of Theorem 1.8 is motivated by the results [27, Section B.2.3]
and [8, Théorème III.4.4] in the perfect residue field case, but our proof is independent of
those results. However, note that it is also possible to deduce that the isomorphism in
Theorem 1.8 is compatible with filtrations, by using [8, Théorème III.4.4] as an input
(see [1]).

Remark 1.10. Based on the expectation put forth in [3, Remark 4.48], it is reasonable
to expect that the L-vector space .N=�N/Œ1=p� may be equipped with a connection by
defining a q-connection on N using the action of the geometric part of �L, i.e., � 0L (see
Section 2), and inducing a connection via N

q 7!1
���! N=�N . Moreover, the isomorphism

.N=�N/Œ1=p�
�
�! ODcris;L.V / in Theorem 1.8 should be further compatible with con-

nections. These expectations will be verified in [1].

1.2.3. Strategy for the proof of Theorem 1.6. To prove the theorem, starting with a
Zp-lattice T inside a p-adic crystalline representation of GL, we first use the result in
the perfect residue field case (see Theorem 1.3) and its compatibility with the results
of [35, 36] (see Section 4.2) to construct a finite free module Nrig;L.V / (associated to
V D T Œ1=p�), over the ring of functions of the open unit disk over L (denoted BCrig;L),
such that Nrig;L.V / satisfies a Frobenius finite Œp�q-height condition. However, proving
the existence of a non-trivial action of �L on Nrig;L.V / is a difficult question and it does
not follow from the classical theory because

�L
�
��! Zp.1/

d Ì Z�p ;

whereas we have �F
�
�! Z�p in the classical case. To resolve this issue, our innovation

is to use the Galois action on V and its crystallinity to explicitly show that Nrig;L.V /
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is equipped with an action of �L (see Proposition 4.19). Furthermore, we show that our
construction is compatible with the theory of (overconvergent) étale .';�L/-modules from
[5, 6], establishing the naturality of the action of �L on Nrig;L.V / (see Section 4.4). Next,
we set

NL.V / WD Nrig;L.V / \ D�L.V / � D�rig;L.V /

as a module over BCL D ACL Œ1=p�, where D�L.V / is the overconvergent étale .'; �L/-
module associated to V and D�rig;L.V / is the slope zero .'; �L/-module associated to
V over the Robba ring (see Section 2.2 and Definition 4.24). Finally, we set NL.T / WD
NL.V / \ DL.T / � DL.V / as an ACL -module and show that it satisfies the axioms of
Definition 1.4 (see the proof of Theorem 4.1 in Section 4.5). In the opposite direction,
starting with a Wach module N over ACL , we use ideas developed in [3] to show that
TL.N /Œ1=p� is crystalline (see Theorem 3.12).

1.2.4. Relation to other works. Our first main result, Theorem 1.6, is a direct gener-
alisation of Theorem 1.3 from [8, 20, 46]. As indicated in Section 1.2.3, starting with a
crystalline Zp-representation T of GL, the construction of a finite Œp�q-height module
NL.T / uses classical Wach modules and its compatibility with the results of [35, 36].
However, equipping NL.T / with a natural action of �L is highly non-trivial, in particular,
it does not follow from previous works and constitutes the heart of this article. For the
converse, starting with a Wach module N over ACL , we use ideas from [3] to show that
TL.N /Œ1=p� is crystalline. Moreover, as mentioned earlier, the results on Wach modules
in the current paper are different from the theory of Breuil–Kisin modules in the imperfect
residue field case studied in [16].

Now, let us note that using the unpublished results of Tsuji in [44] and the use of [16]
in [23], it can be seen that the current paper is a crucial input to the construction of relative
Wach modules in [1]. Moreover, recent developments in the theory of prismatic F -crystals
[12, 23, 30], would suggest that there is a categorical equivalence between the category of
Wach modules over ACL and the category of prismatic F -crystals on the absolute pris-
matic site of OL. At this point, let us remark that unlike the case of Breuil–Kisin modules
from [23], obtaining the aforementioned equivalence directly is a difficult question, in
particular, it is highly non-trivial to directly show that the natural functor from prismatic
F -crystals to Wach modules is essentially surjective. This point will be explored in another
work [2] and the current article is independent of the results in the prismatic theory.

As indicated previously, the motivation for interpreting aWach module as a q-de Rham
complex and as q-deformation of crystalline cohomology, i.e., ODcris, comes from [27,
Section B.2.3] and [8, Théorème III.4.4]. Our second main result, Theorem 1.8, is an
important step towards verifying such expectations. In addition, we note that our proof
of Theorem 1.8 is entirely independent to that of loc. cit., thus providing an alternative
proof (as well as a generalisation) of the important classical result in loc. cit. Furthermore,
in Proposition 4.19 and Corollary 4.22 (see Remark 4.23), we generalise some results of
[7, 8] to obtain comparison results between Wach modules, overconvergent étale .'; �L/-
modules and filtered .'; @/-modules associated to p-adic crystalline representations. In
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particular, for a p-adic crystalline representation V of GL, we prove a comparison iso-
morphism between the associated .'; �L/-module over the Robba ring and the scalar
extension of ODcris;L.V / to the Robba ring, where we use the connection on ODcris;L.V /

to equip the scalar extension with an action of �L (see Section 4.3 and Remark 4.23).
Finally, let us remark that using the theory of Breuil–Kisin modules in the imperfect

residue field case from [16], in [29], Gao studied lattices inside crystalline (more generally,
semistable) representations using Breuil–Kisin GL-modules. However, the objects of loc.
cit. are very different from Wach modules considered in this paper. More specifically,
Breuil–Kisin GL-modules are defined using the “Kummer tower” and admit an action of
the big Galois group GL. In contrast, Wach modules are defined using the “cyclotomic
tower”, as in the theory of étale .'; �/-modules, and admit an action of �L, which is
much smaller than GL. Moreover, [29] only proves a full faithfulness result, whereas
Theorem 1.6 proves a categorical equivalence which was a difficult open question.

1.3. Setup and notations

We will work under the convention that 0 2 N, the set of natural numbers. Let p be a
fixed prime number, � a perfect field of characteristic p, OF WD W.�/ the ring of p-
typical Witt vectors with coefficients in � and F WD OF Œ1=p�, the fraction field of W . In
particular, F is an unramified extension of Qp with ring of integers OF . Let xF be a fixed
algebraic closure of F so that its residue field, denoted as x�, is an algebraic closure of �.
Furthermore, we denote by GF WD Gal. xF=F /, the absolute Galois group of F .

We fix d 2N and letX1;X2; : : : ;Xd be some indeterminates. SetR� to be the p-adic
completion of OF ŒX˙11 ; : : : ; X˙1

d
�. Let 'WR� ! R� denote a morphism extending the

natural Frobenius on OF by setting '.Xi / D X
p
i , for all 1 6 i 6 d . The endomorphism

' of R� is flat by [15, Lemma 7.1.5] and faithfully flat since '.m/ � m for any max-
imal ideal m � R�. Moreover, it is finite of degree pd using Nakayama Lemma and the
fact that ' modulo p is evidently of degree pd . Let OL� WD .R

�

.p/
/^, where ^ denotes

the p-adic completion. It is a complete discrete valuation ring with uniformiser p, imper-
fect residue field �.X1; : : : ; Xd / and fraction field L� WD OL� Œ1=p�. The Frobenius on
R� extends to a unique faithfully flat and finite of degree pd Frobenius endomorphism
'WOL� ! OL� , lifting the absolute Frobenius on OL�=pOL� .

Let OL denote a finite étale extension of OL� such that it is a domain. Then OL
is a complete discrete valuation ring with uniformiser p, imperfect residue field a finite
étale extension of �.X1; : : : ; Xd / and fraction field L WD OLŒ1=p�. Fix an algebraic clos-
ure xL=L and let GL WD Gal.xL=L/ denote the absolute Galois group. The Frobenius on
OL� extends to a unique faithfully flat and finite of degree pd Frobenius endomorph-
ism 'WOL ! OL lifting the absolute Frobenius on OL=pOL (see [22, Proposition 2.1]).
For k 2 N, let �kOL denote the p-adic completion of the module of k-differentials of OL
relative to Z. Then, we have that

�1OL D

dM
iD1

OL d logXi and �kOL D ^
k
OL
�1OL :
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Next, let K be one of the fields F1, L1, xF or xL, where we have F1 WD F.�p1/

and L1 WD
Sd
iD1 L.�p1 ; X

1=p1

i /, and set OK to be the ring of integers of K. Then,
the tilt of OK is defined as O[K WD lim' OK=pOK , and the tilt of K is defined as K[ WD
Frac.O[K/ (see [25, Chapitre V, Section 1.4]). Finally, let A be a Zp-algebra equipped
with a Frobenius endomorphism ' lifting the absolute Frobenius on A=pA, then for any
A-module M we write '�.M/ WD A˝';AM .

1.4. Outline of the paper

This article consists of three main sections. In Section 2, we collect relevant results on
p-adic Hodge theory in the imperfect residue field case. In Section 2.1, we define several
period rings, in particular, we recall crystalline period rings, .'; �/-module theory rings,
overconvergent rings and Robba rings and prove several important technical results to be
used in our main proofs in Section 4. In Section 2.2, we quickly recall the relation between
p-adic representations and .'; �/-module theory over the period rings described in the
previous section. In Section 2.3, we focus on crystalline representations and prove some
results relating the Galois action on a crystalline representation to its associated filtered
.'; @/-module. The goal of Section 3 is to define Wach modules in the imperfect residue
field case and study the associated Zp-representations of GL. In Section 3.1, we give the
definition of Wach modules and relate it to étale .'; �/-modules (see Proposition 3.3).
Then, given a Wach module, we functorially associate to it a Zp-representation of GL and
in Section 3.2, we show that these are related to finite Œp�q-height representations stud-
ied in [3]. Finally, in Section 3.3, we show that the Zp-representation of GL, associated
to a Wach module, is a lattice inside a p-adic crystalline representation of GL (see The-
orem 3.12) and prove the filtered isomorphism claimed in Theorem 1.8. In Section 4, we
prove our main result, i.e., Theorem 1.6. In Section 4.1, we collect important properties
of classical Wach modules, i.e., the perfect residue field case. In Section 4.2, we use ideas
from [35, 36] to construct a finite Œp�q-height module on the open unit disk over L. On
the module thus obtained, we use results of Section 2.3 to construct an action of �L and
study its properties in Section 4.3. Then, in Section 4.4, we check that our construction is
compatible with the theory of étale .'; �L/-modules. Finally, in Section 4.5, we construct
the promised Wach module and prove Theorem 1.6.

2. Period rings and p-adic representations

We will use the setup and notations from Section 1.3. Recall that OL is a finite étale
algebra overOL� . SetL1 WD

Sd
iD1L.�p1 ;X

1=p1

i / and for 16i6d , fixX [i WD.Xi ;X
1=p
i ;

X
1=p2

i ; : : :/ in O[L1 . Then, we have the following Galois groups (see [32, Section 1.1] for
details):

GL WD Gal.xL=L/; HL WD Gal.xL=L1/;

�L WD GL=HL D Gal.L1=L/
�
��! Zp.1/

d Ì Z�p ;

� 0L WD Gal
�
L1=L.�p1/

�
�
��! Zp.1/

d ; Gal
�
L.�p1/=L

�
D �L=�

0
L
�
��! Z�p :
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LetO ML WD .
Sd
iD1OLŒX

1=p1

i �/^, where ^ denotes the p-adic completion. TheOL-algebra
O ML is a complete discrete valuation ring with perfect residue field, uniformiser p and
fraction field ML WD O MLŒ1=p�. The Witt vector Frobenius on O ML is given by the Frobenius

on OL described in Section 1.3 and setting '.X1=p
n

i / D X
1=pn�1

i , for all 1 6 i 6 d and
n > 1. Let ML1 WD ML.�p1/ and let xML � xL denote a fixed algebraic closure of ML. Then, we
have the following Galois groups:

G ML WD Gal.xML= ML/ ���! Gal
�
xL=

d[
iD1

L
�
X
1=p1

i

��
;

H ML WD Gal.xML= ML1/
�
��! Gal.xL=L1/;

� ML WD G ML=H ML D Gal. ML1= ML/
�
��! Gal

�
L1=

d[
iD1

L
�
X
1=p1

i

��
�
��! Gal

�
L.�p1/=L

�
�
��! Z�p :

From the description above note thatG ML may be identified with a subgroup ofGL,H ML
�
�!

HL and � ML may be identified with a quotient of �L.

2.1. Period rings

In this section, we will quickly recall and fix notations for all the period rings that will be
used in this article. For details on constructions of period rings, please refer to [5, 14, 40].

As we will recall many period rings in this subsection, let us first briefly mention the
usefulness of some of those rings in the constructions carried out for our main results (for
precise definitions, please refer to Sections 2.1.1–2.1.5).

Remark 2.1. The period rings defined in Section 2.1.1, for example, Ainf.OxL/, Acris.OxL/,
Bcris.OL1/, etc. will be used to define and study properties of crystalline representations
of GL (see Section 2.3), to show that Wach modules in the imperfect residue field case
are crystalline (see Section 3.3), and to study the action of �L on various scalar exten-
sions of a Wach module associated to a crystalline representation (see Section 4.3). Note
that Wach modules are certain .'; �L/-modules and the rings introduced in Section 2.1.2
provide the basic setup for defining these objects and studying their properties. In par-
ticular, we remark that an (integral) Wach module NL.T /, associated to a crystalline
Zp-representation T of GL, lives over the ring ACL , and the étale .'; �L/-module associ-
ated to T lives over AL (see Sections 2.2 and 3.1). Next, the overconvergent period rings
from Section 2.1.3 will be used to define overconvergent étale .'; �/-modules over A�L
(see Section 2.2), which will be a crucial input for the construction of the Wach mod-
ule associated to a crystalline representation of GL (see Section 4.5), and will be used to
check that our constructions are compatible with the theory of étale .'; �L/-modules (see
Section 4.4). Furthermore, the analytic rings of Section 2.1.4 will be the most important
technical input for our constructions. For example, as a first step in our construction of
NL.T /, we construct an intermediate '-module Nrig;L.V / (where V D T Œ1=p�), over the
ring BCrig;L using some ideas of Kisin (see Section 4.2). Additionally, to equip Nrig;L.V /
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with an action of �L, we use the rings BCrig;L, zBCrig;L, Bcris.OL1/, etc.; this is the main tech-
nical innovation of this article (see Proposition 4.19). Moreover, the rings such as B�rig;L
and zB�rig;L are used to study the compatibility of Nrig;L.V / with the theory of .'; �L/-
modules of Andreatta (see Section 4.4). Finally, the corresponding period rings over ML in
Section 2.1.5 are helpful in recollecting the results on classical Wach modules which are
crucial inputs to our constructions (see Sections 4.1 and 4.2).

2.1.1. Crystalline period rings. We set Ainf.OL1/ WDW.O
[
L1
/ and Ainf.OxL/ WDW.O

[
xL
/

equipped with the Frobenius on Witt vectors and continuous GL-action (for the weak
topology). We fix x� WD " � 1, where " WD .1; �p; �p2 ; : : :/ is in O[F1 with �pn being a
primitive pn-th root of unity, for each n > 1. Set � WD Œ"� � 1 and � WD �='�1.�/ in
Ainf.OF1/. For any g inGL, we have that g.1C�/D .1C�/�.g/, where � is the p-adic
cyclotomic character. Moreover, we have aGL-equivariant surjection � WAinf.OxL/!OCL ,
where CL WD

yxL and OCL is its ring of integers; note that Ker � D �Ainf.OxL/. The map �
further induces a �L-equivariant surjection � WAinf.OL1/! OyL1 .

Recall that, for 1 6 i 6 d , we fixed X [i D .Xi ; X
1=p
i ; X

1=p2

i ; : : :/ in O[L1 and we
take ¹
0; 
1; : : : ; 
d º to be topological generators of �L such that ¹
1; : : : ; 
d º are topo-
logical generators of � 0L and 
0 is a topological generator of �L=� 0L and 
j .X [i / D "X

[
i ,

if i D j , and X [i , otherwise. Let us also fix Teichmüller lifts ŒX [i � in Ainf.OL1/. We
set Acris.OL1/ WD Ainf.OL1/h�

k=kŠ; k 2 Ni. Let t WD log.1C �/ which converges in
Acris.OF1/ and set BCcris.OL1/ WD Acris.OL1/Œ1=p� and Bcris.OL1/ WD BCcris.OL1/Œ1=t �.
For any g in GL, we have that g.t/ D �.g/t . Furthermore, one can define period rings
OAcris.OL1/, OBCcris.OL1/ and OBcris.OL1/. These rings are equipped with a Frobenius
endomorphism ' and a continuous �L-action, and the former two rings OAcris.OL1/ and
OBCcris.OL1/ are further equipped with an appropriate extension of the map � . Rings with
a subscript “cris” are equipped with a decreasing filtration and rings with a prefix “O”
are further equipped with an integrable connection satisfying Griffiths transversality with
respect to the filtration (see [3, Section 2.2] for definitions over R with similar notations).
One can define variations of these rings over xL which are further equipped with a continu-
ous GL-action. Moreover, from [39, Lemma 4.32], note that

Acris.OL1/ D Acris.OxL/
HL and BCcris.OL1/ D BCcris.OxL/

HL :

We have two OL-algebra structures on OAcris.OL1/: a canonical structure coming
from the definition of OAcris.OL1/ and a non-canonical .'; � ML/-equivariant structure
OL ! OAcris.OL1/ given by the map

x 7�!
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
ŒX [i � �Xi

�Œki �
;

where @i WD @
@Xi

is a differential operator defined over OL, for 1 6 i 6 d . In particular,
under the preceding map, we have that Xi 7! ŒX [i �.
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2.1.2. Rings of .'; �/-modules. For detailed explanations of objects defined in this sub-
subsection, see [5]. Recall that OL� is a complete discrete valuation ring with a uniform-
iser p and an imperfect residue field, andOL is a finite étaleOL� -algebra. Let us set AC

L�

to be the .p;�/-adic completion of the localisationOF J�KŒŒX [1�
˙1; : : : ; ŒX [

d
�˙1�.p;�/. We

have a natural embedding AC
L�

,! Ainf.OL1/ and AC
L�

is stable under the Witt vector
Frobenius and �L-action on Ainf.OL1/; we equip AC

L�
with induced structures. Moreover,

we have an injective homomorphism of rings �WOL� ! AC
L�

, via the mapXi 7! ŒX [i �, and
it extends to an isomorphism of rings OL�J�K ��! AC

L�
. Equip OL�J�K with a faithfully

flat and finite of degree pdC1 Frobenius endomorphism using the Frobenius on OL� and
by setting '.�/ D .1C �/p � 1. Then, the injective homomorphism � and the isomorph-
ism OL�J�K ��! AC

L�
are Frobenius-equivariant.

Let ACL denote the .p; �/-adic completion of the unique extension of the embedding
AC
L�
! Ainf.OL1/ along the finite étale map OL� ! OL (see [22, Proposition 2.1]).

We have a natural embedding of OF -algebras ACL ,! Ainf.OL1/ and ACL is stable under
the induced Frobenius and �L-action. Note that the injective homomorphism of rings
�WOL� ! AC

L�
� ACL and the isomorphism OL�J�K ��! AC

L�
� ACL , respectively, extend

to a unique injective homomorphism of rings �WOL!ACL and an isomorphismOLJ�K ��!
ACL . Equip OLJ�K with a faithfully flat and finite of degree pdC1 Frobenius endomorph-
ism using the Frobenius on OL and by setting '.�/ D .1C �/p � 1. Then, the injective
homomorphism � and the isomorphism OLJ�K ��! ACL are Frobenius-equivariant. In par-
ticular, the Frobenius morphism 'WACL ! ACL is faithfully flat and finite of degree pdC1.
Let u˛ WD .1C �/˛0 ŒX [1�

˛1 � � � ŒX [
d
�˛d , where ˛ WD .˛0; ˛1; : : : ; ˛d / is a d -tuple with ˛i

in ¹0; 1; : : : ; p � 1º, for 0 6 i 6 d . Then, we have that '�.ACL / WD ACL ˝';ACL ACL
�
�!

˚˛'.ACL /u˛ .
Recall that CL D

yxL and set zA WD W.C[
L/ and zB WD zAŒ1=p� admitting the Frobenius

on Witt vectors and continuousGL-action (for the weak topology). Set AL WD ACL Œ1=��
^,

where ^ denotes the p-adic completion; equip ACL with the induced Frobenius endo-
morphism and continuous �L-action. Note that AL is a complete discrete valuation ring
with maximal ideal pAL, residue field .OL=p/..�// and fraction field BL WD ALŒ1=p�.
Similar to above, 'WAL! AL is faithfully flat and finite of degree pdC1 and we have that

'�.AL/ WD AL ˝';AL AL �
��! ˚˛'.AL/u˛ D

�
˚˛ '.ACL /u˛

�
˝'.ACL /

'.AL/
�
 �� ACL ˝';ACL AL:

Furthermore, we have a natural Frobenius and �L-equivariant embedding AL � zAHL . Let
A denote the p-adic completion of the maximal unramified extension of AL inside zA and
set B WD AŒ1=p� � zB, i.e., A is the ring of integers of B. The rings A and B are stable
under the induced Frobenius and GL-action, and we have AL D AHL and BL D BHL
stable under the induced Frobenius and residual �L-action.

2.1.3. Overconvergent rings. We begin by defining the ring of overconvergent coeffi-
cients stable under Frobenius and GL-action (see [6,19]). Denote the natural valuation on
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O[
xL

by �[ extending the valuation on O[
xF

. Let r 2 Q>0 and set,

zA�;r WD
°X
k2N

pk Œxk � 2 zA such that �[.xk/C
pr
p�1

k !C1 as k !C1
±
:

The continuous GL-action and Frobenius ' on zA induce commuting actions of GL and
' on zA�;r such that '.zA�;r / D zA�;pr . Define the ring of overconvergent coefficients as
zA� WD

S
r2Q>0

zA�;r � zA equipped with the induced Frobenius and continuousGL-action.
Moreover, inside zA we take A�;rL WD AL \ zA�;r and A�;r WD A \ zA�;r . Define A�L WD
AL \ zA� D

S
r2Q>0

A�;rL and A� WD A\ zA� D
S
r2Q>0

A�;r , equipped with the induced
Frobenius endomorphism and continuous GL-action from the respective actions on zA; we
have A�L D .A

�/HL . Upon inverting p in the definitions above one obtains Qp-algebras
inside zB, i.e., set zB�;r WD zA�;r Œ1=p�, zB� WD zA�Œ1=p�, B�;r WD A�;r Œ1=p�, B� WD A�Œ1=p�,
equipped with the induced Frobenius and GL-action. Moreover, set zB�;rL WD .zB�;r /HL ,
zB�L WD .zB

�/HL , B�;rL WD .B
�;r /HL D A�;rL Œ1=p� and B�L WD .B

�/HL D A�LŒ1=p�, equipped
with the induced Frobenius and residual �L-action.

2.1.4. Analytic rings. In this section, we will define the Robba ring over L following
[34, Section 2] and [41, Section 1]. However, we will use the notations of [7, Section 2]
in the perfect residue field case (see [41, Section 1.10] for compatibility between different
notations). Define

zB�rig WD
[
r>0

\
s>r

�
Ainf.OxL/

˝
p
Œx��r

; Œx��
s

p

˛�
1
p

��
:

The ring zB�rig can also be defined as
S
r2Q>0

zB�;rrig , where zB�;rrig denotes the Fréchet com-

pletion of zB�;r D zA�;r Œ1=p� for a certain family of valuations (see [34, Section 2] and
[41, Section 1.6]). The Frobenius and GL-action on zB�;r , respectively, induce Frobenius
and GL-action on zB�;rrig , which extend to respective actions on zB�rig. In particular, we have

a Frobenius and GL-equivariant inclusion zB� � zB�rig (see [41, Sections 1.6 and 1.10]). Set

zBCrig WD
\
n2N

'n
�
BCcris.OxL/

�
;

equipped with an induced Frobenius endomorphism and GL-action from the respective
actions on BCcris.OxL/. The descriptions of rings in [7, Lemme 2.5, Exemple 2.8, Sec-
tion 2.3] directly extend to our situation as the aforementioned results do not depend
on structure of the residue field of the base ring OL. Therefore, from loc. cit. it follows
that we have a natural inclusion zBCrig � zB

�
rig compatible with Frobenius and GL-action.

Moreover, we set zB�;rrig;L WD .
zB�;rrig /

HL , zB�rig;L WD .zB
�
rig/

HL and zBCrig;L WD .zB
C
rig/

HL � zB�rig;L,
equipped with the induced Frobenius endomorphism and residual �L-action.

Remark 2.2. Note that the definition of zB�rig and zBCrig as rings does not depend on L, in
particular, one may define these rings using Ainf.OxML

/ and equip them with a Frobenius
endomorphism compatible with the Frobenius endomorphism defined above.
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Lemma 2.3. We have .zB�rig/
'D1 D .zBCrig/

'D1 D Qp .

Proof. Using Remark 2.2, note that the Frobenius invariant elements can be computed
using the corresponding results in the perfect residue field case. In particular, we have that
.zB�rig/

'D1 D .zBCrig/
'D1 D Qp , where the first equality follows from [8, Proposition I.4.1]

and the second equality follows from [21, Proposition 9.15].

Recall that from Section 2.1.2 we have a Frobenius-equivariant injective homomorph-
ism of rings �WOL! ACL . Then, from [41, Section 1.6] the ring A�;rL admits the following
description:

A�;rL
�
��!

°X
k2Z

�.ak/�
k such that ak 2OL and for any 1

p1=r
6 � < 1; lim

k!�1
jakj�

k
D 0

±
:

Moreover, we have that B�;rL D A�;rL Œ1=p� and we set

B�;rrig;L WD

°X
k2Z

�.ak/�
k such that ak 2 L and for any 1

p1=r
6 � < 1; lim

k!˙1
jakj�

k
D 0

±
:

The ring B�;rrig;L can also be defined as the Fréchet completion of B�;rL for a family of valu-
ations induced by the inclusion B�;rL �zB

�;r (see [34, Section 2], [41, Section 1.6]). Define
the Robba ring over L as B�rig;L WD

S
r>0 B�;rrig;L. The Frobenius and GL-action on B�;rL

induce respective Frobenius and GL-action on B�;rrig;L, which extend to respective actions
on B�rig;L (also see [41, Section 4.3] where Ohkubo constructs the differential action of
Lie�L; one may also obtain the action of �L by exponentiating the action of Lie�L). From
the preceding discussion, we have a Frobenius and �L-equivariant injection B�L � B�rig;L
and the former ring B�L is also known as the bounded Robba ring. Furthermore, note
that B�;rL � zB

�;r
L D .zB�;r /HL � zB�;rrig;L, where the last term can also be described as the

Fréchet completion of the middle term for a family of valuations induced by the inclusion
zB�;rL � zB

�;r (see [34, Section 2] and [41, Section 1.6]).
To summarise, for r 2 Q>0, we have the following commutative diagram with inject-

ive arrows:
B�;r zB�;r

B�;rL zB�;rL zB�;rrig ;

B�;rrig;L
zB�;rrig;L

where in the second row, the two rings on the left are obtained by taking HL-invariants of
the corresponding rings in the first row and the rightmost ring in the second row is obtained
as the Fréchet completion of the rightmost ring in the first row. The bottom row is obtained
as the Fréchet completion of the two rings on the left in the second row. These inclusions
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are compatible with the respective Frobenii and �L-actions and these compatibilities are
preserved after passing to the respective Fréchet completions. In particular, we have a
Frobenius and �L-equivariant embedding B�rig;L � zB

�
rig;L.

Definition 2.4. Define BCrig;L WD B�rig;L \ zB
C

rig;L �
zB�rig;L, equipped with the induced nat-

ural Frobenius endomorphism and �L-action.

Lemma 2.5. The ring BCrig;L may be identified with the ring of convergent power series
over the open unit disk in one variable over L, i.e.,

BCrig;L
�
��!

°X
k2N

�.ak/�
k such that ak 2 L and for any 0 6 � < 1; lim

k!C1
jakj�

k
D 0

±
;

Proof. Let x be any element of BCrig;L � B�rig;L. Using the explicit description of B�;rrig;L

and B�;rL for r 2 Q>0, we can write x D xC C x�, with xC convergent on the open unit
disk over L and x� in B�;rL , for some r 2 Q>0, in particular, we have that xC is in zBCrig.
Moreover, using Remark 2.2 and [7, Lemma 2.18, Corollaire 2.28], we have an exact
sequence

0 �! Binf.OxL/ �!
zB�;r ˚ zBCrig �! zB

�;r
rig �! 0;

where Binf.OxL/ D Ainf.OxL/Œ1=p�. So, x is in BCrig;L � zB
C
rig if and only if x� D x � xC is

in Binf.OxL/ \ B�;rL D Binf.OL1/ \ B�;rL D BCL , where we have used that Ainf.OxL/
HL D

Ainf.OL1/ (see [5, Proposition 7.2]). Hence, x converges on the open unit disk over L.
The other inclusion is obvious, allowing us to conclude.

Remark 2.6. The topology on BCrig;L can be described as follows: let D.L; �/ denote the
closed disk of radius 0 < � < 1 over L and let O.D.L; �// denote the ring of analytic
functions, i.e., power series converging on the closed disk D.L; �/. Then, O.D.L; �// is
equipped with a topology induced by the supremum norm kf k� WD supx2D.L;�/ jf .x/j <
C1. We have that BCrig;L D lim�O.D.L; �// � LJ�K and we equip it with the topology
induced by the Fréchet limit of the topology on O.D.L; �// induced by the supremum
norm, i.e., the topology on BCrig;L can be described by uniform convergence on D.L; �/
for �! 1�.

Lemma 2.7. The natural map BCL ! BCrig;L is faithfully flat.

Proof. Note that BCL is a principal ideal domain and BCrig;L is a domain, so the map in the
claim is flat. To show that it is faithfully flat, it is enough to show that for any maximal ideal
m�BCL , we have that mBCrig;L¤BCrig;L. Note that if m�BCL is a maximal ideal, then mD

.f /, where f is an irreducible distinguished polynomial in the sense of [37, Chapter 5,
Section 2]. Since any f as above admits a zero over the open unit disk, therefore, it follows
that f is not a unit in BCrig;L. Hence, mBCrig;L ¤ BCrig;L.

Remark 2.8. From Section 1.3 recall that 'WL! L is finite of degree pd and we also
have that '.�/ D .1 C �/p � 1. Therefore, from the explicit description of BCrig;L in
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Lemma 2.5, it follows that the Frobenius endomorphism 'WBCrig;L ! BCrig;L is faithfully
flat and finite of degree pdC1.

2.1.5. Period rings for ML. Definitions above may be adopted almost verbatim to define
corresponding period rings for ML, in particular, one recovers definitions of period rings
in [7, 19, 27], i.e., we have period rings AC

ML
, A ML, A�

ML
, BC

rig; ML
and B�

rig; ML
equipped with

a Frobenius endomorphism ' and � ML-action. Note that we have a natural identification
O MLJ�K ��! AC

ML
, where the right hand side is equipped with a faithfully flat and finite

of degree p Frobenius endomorphism using the natural Frobenius on O ML and setting
'.�/ D .1 C �/p � 1 and a � ML-action given as g.�/ D .1 C �/�.g/ � 1, for any g
in � ML. Moreover, the preceding isomorphism naturally extends to a Frobenius and � ML-
equivariant isomorphism A ML

�
�! O MLJ�KŒ1=��^, where ^ denotes the p-adic completion.

Similar to above, we further equip OLJ�K with an OL-linear action of � ML, by setting
g.�/ D .1 C �/�.g/ � 1, for any g in � ML. Then the isomorphism OLJ�K ��! ACL from
Section 2.1.2, is Frobenius and � ML-equivariant. Now, recall that the Frobenius-equivariant
embedding OL ! O ML is faithfully flat and it naturally extends to a Frobenius and � ML-
equivariant faithfully flat embedding OLJ�K! O MLJ�K. So, using the preceding embed-
ding and the Frobenius and � ML-equivariant isomorphisms – the inverse of OLJ�K ��! ACL
and the isomorphism O MLJ�K ��! AC

ML
– we obtain a Frobenius and � ML-equivariant faith-

fully flat embedding ACL ! AC
ML

, sending ŒX [i � 7! Xi . This further extends to a Frobenius
and � ML-equivariant faithfully flat embedding AL ! A ML.

We will equip Ainf.OL1/ with a non-canonical OL-algebra structure by first defining
an injection OL� ! Ainf.OL1/, via the map Xi 7! ŒX [i �, and then extending it uniquely
along the finite étale mapOL� !OL, to an injectionOL! Ainf.OL1/ (see [22, Proposi-
tion 2.1]). Note that the preceding maps are Frobenius-equivariant but not �L-equivariant.
Moreover, this OL-algebra structure naturally extends to a Frobenius-equivariant O ML-
algebra structure on Ainf.OL1/ by sending X1=p

n

i 7! Œ.X
1=pn

i /[�, for all 1 6 i 6 d and
n 2 N. We may further extend this to a Frobenius and � ML-equivariant embedding AC

ML
D

O MLJ�K! Ainf.OL1/.
Using the embeddings described above and following the definitions of various period

rings discussed so far, we obtain a commutative diagram with injective arrows where the
top horizontal arrows are Frobenius and �L-equivariant and the rest are Frobenius and
� ML-equivariant:

zBCrig;L BCrig;L B�rig;L zB�rig;L

BC
rig; ML

B�
rig; ML

:

Remark 2.9. Similar to Lemma 2.5 we have that,

BC
rig; ML

�
��!

°X
k2N

ak�
k such that ak 2 ML and for any 0 6 � < 1; lim

k!C1
jakj�

k
D 0

±
:
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The ring BC
rig; ML

is equipped with a Fréchet topology similar to Remark 2.6. Moreover, since

'W ML
�
�! ML and '.�/ D .1C �/p � 1;

the Frobenius endomorphism on BC
rig; ML

is faithfully flat and finite of degree p.

Lemma 2.10. The rings BCrig;L and BC
rig; ML

are Bézout domains and BCrig;L ! BC
rig; ML

is flat.

Proof. The first claim follows from [7, Proposition 4.12]. Note that loc. cit. assumes the
residue field of the discrete valuation base field (L and ML in our case) to be perfect,
however, the proof of loc. cit. only depends on [31, 38] which are independent of this
assumption. For the second claim, note that we can write BC

rig; ML
D colimi2I Mi , where I

is the directed index set of finitely generated BCrig;L-submodules of BC
rig; ML

. Since BC
rig; ML

is a
domain, Mi is torsion-free for each i 2 I . Now, recall that finitely generated torsion-free
modules over a Bézout domain are finite projective (see [17, Chapter VII, Proposition 4.1]
noting that Bézout domains are a special case of Prüfer domains), and therefore finite
free by [33, Proposition 2.5]. Moreover, by a theorem of Lazard (see [43, Tag 058G]), we
know that a directed colimit of finite free modules over a ring is flat. Hence, it follows that
BCrig;L ! BC

rig; ML
is flat.

Lemma 2.11. The following element converges in BCrig;L � BC
rig; ML

:

t
�
D

log.1C�/
�

D

Y
n2N

�
'n.Œp�q/

p

�
:

Moreover, inside BC
rig; ML

, we have that .t=�/BC
rig; ML
\ BCrig;L D .t=�/B

C

rig;L.

Proof. The first claim follows from [8, Exemple I.3.3] and [38, Remarque 4.12]. For the
second claim let xD

P
k2N xk�

k in BCrig;L, with xk2L, and let yD
P
k2N yk�

k in BC
rig; ML

,
with yk 2 ML, such that ty=� D x. Write t=� D

P
k2N ak�

k , with ak 2 Qp . Then, we
have that �X

k2N

ak�
k
��X

k2N

yk�
k
�
D

X
k2N

xk�
k :

We will show that yk is in L, for all k 2 N, using induction. Indeed, note that a0y0 D x0
in L, so y0 D x0=a0 is in L. Let n 2N and assume that yk is in L, for every k 6 n. Then,
we have that

PnC1
kD0 akynC1�k D xnC1 in L and by the induction assumption we get that

ynC1 D .xnC1 �
Pn
kD0 akynC1�k/=a0 is in L. Hence, we conclude that y is in BCrig;L,

implying that .t=�/BC
rig; ML
\ BCrig;L D .t=�/B

C

rig;L.

Lemma 2.12. Inside zBCrig, we have that .t=�/zBCrig;L \ BC
rig; ML
D .t=�/BC

rig; ML
, therefore,

from Lemma 2.11 we get that .t=�/zBCrig;L \ BCrig;L D .t=�/B
C

rig;L.

Proof. Let us first note that for each n 2 N>1 we have the following diagram:

0 BC
rig; ML

BC
rig; ML

ML.�pn/ 0

0 zBCrig zBCrig CL 0;

'n�1.Œp�q/ � 7!�pn�1

� ML

'n�1.Œp�q/ �ı'�n

https://stacks.math.columbia.edu/tag/058G
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where the left and middle vertical arrows are natural inclusions, the right vertical arrow
is � MLW ML.�pn/

�
�! ML.�pn/ � CL, given as

Pe�1
kD0 ak�

k
pn 7!

Pe�1
kD0 '

�n
ML
.ak/�

k
pn , with e D

Œ ML.�pn/W ML� and ' MLW ML
�
�! ML and � W zBCrig�BCcris.OxL/!CL from Section 2.1.1. The top row

is obviously exact and the bottom row is exact by [7, Proposition 2.11, Proposition 2.12,
Remarque 2.14]. All vertical maps are injective and hence we obtain that

'n
�
Œp�q

�
zBCrig \ BC

rig; ML
D 'n

�
Œp�q

�
BC

rig; ML
; for all n 2 N;

in particular, 'n.Œp�q/zBCrig;L\BC
rig; ML
D'n.Œp�q/BCrig; ML. Now, let x be in .t=�/zBCrig;L\BC

rig; ML
and write x D ty=�, for some y in zBCrig;L. We will show that y is in BC

rig; ML
by showing

that it converges over each closed disk D. ML; �/, for 0 < � < 1. Fix some 0 < � < 1 and
from Lemma 2.11, we write t=� D

Q
n2N.'

n.Œp�q/=p/ D �
Qm
nD0.'

n.Œp�q/=p/, for a
unit � 2 O.D. ML; �//� and m 2 N depending on �. Then, we have that x D .Œp�q=p/y1,
where

y1 WD �

mY
nD1

�
'n
�
Œp�q

�
=p
�
y

is in zBCrig;L \ .p=Œp�q/B
C

rig; ML
D BC

rig; ML
. Repeating the preceding argument for 1 6 k 6 m,

we obtain elements

ykC1 WD �

mY
nDkC1

�
'n
�
Œp�q

�
=p
�
y in zBCrig;L \ '

n
�
p=Œp�q

�
BC

rig; ML
D BC

rig; ML
:

In particular, we see that yD��1ymC1 is in O.D. ML;�//. Since, BC
rig; ML
Dlim�O.D. ML;�//,

therefore, we conclude that y must be in BC
rig; ML

. This completes our proof.

2.1.6. '-modules over certain period rings. Let '-ModB�rig;L
denote the category of

finite free modules over B�rig;L equipped with an isomorphism 1 ˝ 'W '�M
�
�! M and

morphisms between objects are B�rig;L-linear maps compatible with 1˝ ' on both sides;
denote by '-Mod0

B�rig;L
the full subcategory of objects that are pure of slope zero in the

sense of [33, Section 6.3]. Similarly, one can define the category '-ModB�L
and denote by

'-Mod0
B�L

the full subcategory of objects that are pure of slope zero (as '-modules over a

discretely valued field).
Let Eff-'-ModŒp�q

ACL
denote the category of effective and finite Œp�q-height ACL -modules,

i.e., an object in this category is a finite free ACL -module N equipped with a Frobenius-
semilinear endomorphism

'WN �! N

such that the map 1 ˝ 'W '�.N /! N is injective and its cokernel is killed by a finite
power of Œp�q ; denote by Eff-'-ModŒp�q

ACL
˝Qp the associated isogeny category. Similarly,

define Eff-'-ModŒp�q
BCrig;L

to be the category of effective and finite Œp�q-height BCrig;L-modules

and Eff-'-ModŒp�q ;0
BCrig;L

to be the full subcategory of objects that are pure of slope zero, i.e.,

M such that B�rig;L ˝BCrig;L
M is pure of slope zero.
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Lemma 2.13. The objects described above are related as follows:

(1) The following functor induces a natural equivalence of categories:

'-Mod0
B�L

�
��! '-Mod0

B�rig;L

M 7�!M ˝B�L
B�rig;L:

(2) The following functor induces an exact equivalence of˝-categories:

Eff-'-ModŒp�q
ACL
˝Qp

�
��! Eff-'-ModŒp�q ;0

BCrig;L

N 7�! N ˝ACL
BCrig;L:

Proof. The claim in (1) follows from [34, Theorem 6.3.3]. The equivalence of˝-categor-
ies in (2) follows from (1), [35, Lemma 1.3.13] and [33, Proposition 6.5], and the exactness
follows since BCL !BCrig;L is faithfully flat by Lemma 2.7. Note that in [35], Kisin assumes
the residue field of the discrete valuation base field (L in our case) to be perfect. However,
the proof of [35, Lemma 1.3.13] depends only on [33, Proposition 6.5] and [34, The-
orem 6.3.3] which are independent of the structure of the residue field. In particular, the
proof of [35, Lemma 1.3.13] applies almost verbatim to our case. We recall the quasi-
inverse functor from loc. cit. that will be useful later (see Section 4.5).

Let MCrig be a finite height effective BCrig;L-module which is pure of slope zero. Then,

M
�
rig WD B�rig;L ˝BCrig;L

MCrig

is pure of slope zero and (1) implies that there exists a finite free B�L-module M � pure of
slope zero such that

B�rig;L ˝B�L
M � �
��!M

�
rig

�
 �� B�rig;L ˝BCrig;L

MCrig:

Choose a B�L-basis of M � and a BCrig;L-basis of MCrig. The composite of the isomorphisms

above is given by a matrix with values in B�rig;L. By [33, Proposition 6.5], after modifying
the chosen bases, we may assume the matrix to be identity, in particular, M � and MCrig
are spanned by a common basis. Let M denote the BCL -span of this basis. Since BCL D
BCrig;L \ B�L � B�rig;L, we obtain that

M DMCrig \M
�
�M

�
rig;

and BCrig;L ˝BCL
M
�
�!MCrig and B�L ˝BCL

M
�
�!M �. Moreover, M � is pure of slope zero,

so there exists an A�L-lattice M �
0 �M

�. Let M 00 WDM \M
�
0 �M

� and set

M0 WD .A�L ˝ACL
M 00/ \M

0
0Œ1=p� �M

�:

Using [35, Lemma 1.3.13] and the discussion above, M0 � M is a finite free '-stable
ACL -submodule such that the cokernel of the injective map 1˝ 'W'�.M0/!M0 is killed
by some finite power of Œp�q .
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Remark 2.14. Let M be a finite free BCrig;L-module and N � M a BCrig;L-submodule.
Then, N is finite free if and only if it is finitely generated if and only if it is a closed
submodule of M . Equivalences in the preceding statement essentially follow from [35,
Lemma 1.1.5]. Note that Kisin assumes the residue field of the discrete valuation base
field (L in our case) to be perfect. However, the proof of loc. cit. depends on the results
of [38, Sections 7–8], [33, Lemma 2.4] and [7, Proposition 4.12 and Lemme 4.13], where
the proof of the latter depends on [31,38]. Relevant results of [31,33,38] are independent
of the structure of the residue field of L. Hence, we get the claim by using the proof of
[35, Lemma 1.1.5] almost verbatim.

Next, we note some useful facts about '-modules over ACL .

Lemma 2.15. LetOK WDOF ,OL orO ML and letA WDOKJ�K equipped with a Frobenius
endomorphism extending the natural Frobenius onOK by setting '.�/D.1C�/p � 1. Let
N be a finitely generated A-module equipped with a Frobenius-semilinear endomorphism
such that

1˝ 'W'�.N /
�
1=Œp�q

�
�
��! N

�
1=Œp�q

�
:

Then, NŒ1=p� is finite free over AŒ1=p�.

Proof. The proof is essentially the same as [9, Proposition 4.3]. Let J denote the smallest
non-zero Fitting ideal of N over A. Set K WD OK Œ1=p� and xA D A=J . From loc. cit. the
claim can be reduced to checking that xAŒ1=p�D 0. Note that the Frobenius endomorphism
on A and finite height condition onN are different from loc. cit. Therefore, we need some
modifications in the arguments of loc. cit.; we point out the differences in terms of their
notations. Fix an algebraic closure xK of K and consider the finite set

Z WD Spec
�
xAŒ1=p�

�
. xK/

of xK-valued points of xAŒ1=p�. LetZ0 WD ¹x 2m such that .1C x/p � 1 2Zº, where m�

O xK is the maximal ideal. Then, from the equality .A=J /Œ1=Œp�q�D .A='.J //Œ1=Œp�q�, we
get thatZ \U DZ0\U , whereU WDm�¹�p � 1; : : : ; �

p�1
p � 1º. Now, all the arguments

from loc. cit. can be easily adapted to show that there exists some r 2N such that we have
an isomorphism KŒ��=.�r /

�
�! KŒ��=.'.�/r /. But, then we obtain that .'.�/=�/r is a

unit inKŒ��, whereas '.�/=� 2KŒ�� is an irreducible polynomial. Hence, we must have
that r D 0 and thus .A=J /Œ1=p� D 0, allowing us to conclude.

Remark 2.16. Let N be a finitely generated torsion-free ACL -module. Then,

D WD AL ˝ACL
N

is a finite free AL-module andN �D an ACL -submodule. Moreover, the ACL -moduleN 0 WD
NŒ1=p� \D is finite free. The claim essentially follows from [27, Proposition B.1.2.4].
Note that Fontaine assumes the residue field of the discrete valuation base field (L in
our case) to be perfect. However, the proof of [27, Proposition B.1.2.4] only depends on
[37, Chapter 5, Theorem 3.1] which is independent of the structure of the residue field
of L. Therefore, one can adapt Fontaine’s proof verbatim to show that N 0 is finite free.
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Let N be a finite free AC
ML

-module. Say that N is effective and of finite Œp�q-height if
N is equipped with a Frobenius-semilinear endomorphism ' such that the natural map
1˝ 'W'�.N /! N is injective and its cokernel is killed by some finite power of Œp�q .

LetD ML be a finite free étale '-module over A ML. Let S.D ML/ denote the set of all finitely
generated AC

ML
-submodulesM � D ML such thatM is stable under the induced ' fromD ML,

and the cokernel of the injective map 1˝ 'W '�.M/!M is killed by some finite power
of Œp�q . In [27, Section B.1.5.5], Fontaine functorially attached to D ML an AC

ML
-submodule

jC� .D ML/ WD
S
M2S.D ML/

M � D ML (Fontaine uses the notation j q� to denote the functor
jC� ; we change notations to avoid the obvious confusion).

Lemma 2.17. The AC
ML

-module jC� .D ML/ is free of rank 6 rkA MLD ML. Moreover, if N is an
effective AC

ML
-module of finite Œp�q-height, then the cokernel of the injective map N !

jC� .A ML ˝AC
ML

N/ is killed by some finite power of �.

Proof. The first claim is shown in [27, Section B.1.5.5]. For the second claim note that
N is finite free over AC

ML
and of finite Œp�q-height, therefore, by the equivalence shown in

[27, Proposition B.1.3.3] we get that N is p-étale in the sense of [27, Section B.1.3.1].
In particular, we get that D ML D A ML ˝AC

ML

N is an étale '-module and N 2 S.D ML/. Now,
from [27, Proposition B.1.5.6], it follows that the cokernel of the injective map N !
jC� .D ML/ is killed by some finite power of �.

2.2. p-adic representations and .'; �/-modules

Let T be a finite free Zp-representation of GL. From the theory of .'; �L/-modules (see
[5, 27]), one can functorially associate to T a finite free étale .'; �L/-module

DL.T / WD .A˝Zp T /
HL ;

over AL of rankD rkZpT , i.e., DL.T / is equipped with a continuous and semilinear action
of �L and a Forbenius-semilinear endomorphism ' commuting with �L and such that the
natural map 1˝ 'W'�.DL.T //! DL.T / is an isomorphism. Moreover, we have that

zDL.T / WD .zA˝Zp T /
HL �
��! zAHL ˝AL DL.T /:

Furthermore, by the theory of overconvergence of p-adic and Zp-representations (see
[6, 19]), one can functorially associate to T a finite free étale .'; �L/-module,

D�L.T / WD .A
�
˝Zp T /

HL ;

over A�L of rankD rkZpT and such that AL˝A�L
D�L.T /

�
�!DL.T /. Then, we have natural

isomorphisms

A˝AL DL.T / ���! A˝Zp T; A� ˝A�L
D�L.T /

�
��! A� ˝Zp T; (2.1)

compatible with .'; �L/-actions. More generally, the constructions described above are
functorial and induce exact equivalence of˝-categories:

RepZp .GL/
�
��! .'; �L/-Modét

AL
�
 �� .'; �L/-Modét

A�L
: (2.2)
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Similar statements are also true for p-adic representations of GL. For a p-adic represent-
ation V of GL, set

D�rig;L.V / WD B�rig;L ˝B�L
D�L.V /;

which is the unique finite free .'; �L/-module over B�rig;L of rank D dimQp V and pure
of slope zero functorially attached to V (see [7, 34, 41]). Moreover, the preceding functor
induces an equivalence of categories between p-adic representations of GL and finite free
.';�L/-modules over B�rig;L which are pure of slope zero (see [41, Lemma 4.5.7]), and for
any p-adic representation V of GL we have a natural .';GL/-equivariant isomorphism,

zB�rig ˝B�rig;L
D�rig;L.V /

�
��! zB�rig ˝Qp V: (2.3)

Remark 2.18. Analogous to the results mentioned above, the natural statements for p-
adic (resp. Zp-representations) of G ML also hold true (see [7, 19, 27] for details).

Finally, let V be a p-adic representation of GL and T � V a GL-stable Zp-lattice.
Since G ML is a subgroup of GL, therefore, by restriction V is a p-adic representation of
G ML and T � V aG ML-stable Zp-lattice. Furthermore, we have a � ML-equivariant embedding
AL � A ML (via the map ŒX [i � 7! Xi ) and thus we have isomorphisms of étale .'; � ML/-
modules:

D ML.T /
�
��! A ML ˝AL DL.T /; zD ML.T / WD .zA˝Zp T /

H ML
�
��! zAH ML ˝A ML D ML.T /:

Similar statements are also true for V .

2.3. Crystalline representations

Let us denote the category of p-adic crystalline representations of GL (see [14, Sec-
tion 3.3]) as Repcris

Qp
.GL/ and let MFwa

L .'; @/ denote the category of weakly admissible
filtered .'; @/-modules over L (see [14, Définition 4.21]). Then, the following functor
induces an exact equivalence of˝-categories:

Repcris
Qp
.GL/

�
��! MFwa

L .'; @/

V 7�! ODcris;L.V / WD
�
OBcris.OxL/˝Qp V

�GL ; (2.4)

with an exact quasi-inverse˝-functor given as (see [14, Corollaire 4.37]),

D 7�! OVcris;L.D/ WD
�
Fil0

�
OBcris.OxL/˝L D

��@D0;'D1
:

In particular, if V is a p-adic crystalline representation of GL, then ODcris;L.V / is a rank
D dimQp V , weakly admissible filtered .'; @/-module over L. Moreover, as a representa-
tion of G ML one can functorially attach to V a rankD dimQp V , weakly admissible filtered
'-module over ML, denoted as Dcris; ML.V /. Now, note that since V is crystalline for GL,
therefore, we have a .';GL/-equivariant isomorphism

OBcris.OxL/˝L ODcris;L.V /
�
��! OBcris.OxL/˝Qp V:
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By base changing the preceding isomorphism along the .'; G ML/-equivariant surjection
OBcris.OxL/� Bcris.OxL/ D Bcris.OxML

/, sending Xi 7! ŒX [i � for 1 6 i 6 d , we obtain the
following .';G ML/-equivariant isomorphism (also see the proof of [16, Proposition 4.14]):

Bcris.OxML
/˝L ODcris;L.V /

�
��! Bcris.OxML

/˝Qp V;

where on the left, theL-algebra structure on Bcris.OxML
/ is given via the .';G ML/-equivariant

composition L! OBcris.OxL/� Bcris.OxML
/ with the first map being the non-canonical

L-algebra structure on OBcris.OxL/ (see Section 2.1.1). By taking G ML-invariants in the
preceding isomorphism, we obtain an isomorphism of filtered '-modules over ML:

ML˝L ODcris;L.V /
�
��! Dcris; ML.V /: (2.5)

The representation V is said to be positive if all its Hodge–Tate weights are 6 0, and in
this case we have that ODcris;L.V / D .OBCcris.OxL/˝Qp V /

GL .

Lemma 2.19. There exist natural Bcris.OxL/-linear and Frobenius-equivariant isomorph-
isms,

Bcris.OxL/˝Qp V
�
��!

�
OBcris.OxL/˝LODcris;L.V /

�@D0 �
��!Bcris.OxL/˝LODcris;L.V /;

where the second isomorphism is induced by the surjective map OBcris.OxL/�Bcris.OxL/,
sending Xi 7! ŒX [i � for 1 6 i 6 d .

Proof. Let us consider the following projection map:

OBcris.OxL/˝L ODcris.V /� Bcris.OxL/˝L ODcris.V /; (2.6)

induced by the surjective map OBcris.OxL/� Bcris.OxL/ sending Xi 7! ŒX [i �, and the
kernel of (2.6) is given as JOBcris.OxL/˝L ODcris.V /, where

JOBcris.OxL/ WD p-adic closure of the ideal
�
ŒX [1��X1; : : : ; ŒX

[
d ��Xd

�
� OBcris.OxL/:

Moreover, recall that we have a connection @WODcris;L.V /!ODcris;L.V /˝OL �
1
OL=OF

,

given as @.x/D
Pd
iD1 @i .x/dXi , for differential operators @i on ODcris;L.V /. Then, using

the non-canonical L-algebra structure on OBcris.OxL/ (see Section 2.1.1), we can give an
L-linear map,

ODcris;L.V / �! OBcris.OxL/˝L ODcris;L.V /

x 7�!
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
ŒX [i � �Xi

�Œki �
;

(2.7)

where we write
Qd
iD1 @

ki
i .x/ D @

k1
1 ı � � � ı @

kd
d
.x/ for notational convenience. As the

connection @ on ODcris;L.V / is p-adically quasi-nilpotent, therefore,
Qd
iD1 @

ki
i .x/ goes

p-adically to 0 as
Pd
iD1 ki !C1, and thus, in (2.7), the formula on the right converges
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in the target, for its natural topology (see Remark 2.20). Moreover, note that the map in
(2.7) extends Bcris.OxL/-linearly to a map,

Bcris.OxL/˝L ODcris;L.V / �! OBcris.OxL/˝L ODcris;L.V /

a˝ x 7�! a˝
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
ŒX [i � �Xi

�Œki �
;

(2.8)

and it provides a section to the projection in (2.6). In particular, we obtain the following
Bcris.OxL/-linear and direct sum decomposition compatible with the respective Frobenii
and connections:

OBcris.OxL/˝L ODcris;L.V /

D
�
JOBcris.OxL/˝L ODcris;L.V /

�
˚
�
Bcris.OxL/˝L ODcris;L.V /

�
:

Note that the image of the map in (2.8) lies in .OBcris.OxL/˝LODcris;L.V //
@D0. Moreover,

since V is crystalline, therefore, we have the following OBcris.OxL/-linear isomorphism
compatible with the respective Frobenii and connections:

OBcris.OxL/˝L ODcris;L.V /
�
��! OBcris.OxL/˝L V:

Using the preceding isomorphism, we easily get that�
JOBcris.OxL/˝L ODcris;L.V /

�@D0
D 0:

So, from the direct sum decomposition above, it follows that we have�
OBcris.OxL/˝L ODcris;L.V /

�@D0 �
��! Bcris.OxL/˝L ODcris;L.V /:

Note that the maps in (2.6) and (2.8) are evidently compatible with the respective Frobenii,
therefore, the isomorphism in the claim is also compatible with the Frobenius. This allows
us to conclude.

Remark 2.20. Note that the '-moduleODcris;L.V / is a finite-dimensionalL-vector space.
Therefore, OBcris.OxL/˝L ODcris;L.V / is a finite free module over OBcris.OxL/ equipped
with the natural product topology induced from the p-adic topology on OBcris.OxL/. Sim-
ilarly, in Lemma 2.23, we will see that BCrig;L ˝L ODcris;L.V / is a finite free module over
BCrig;L and equipped with the natural product topology induced from the Fréchet topology
on BCrig;L (see Remark 2.6).

Remark 2.21. Using the Bcris.OxL/-linear map in (2.8) and by transport of structure, we
equip Bcris.OxL/˝L ODcris;L.V / with a continuous action of GL. In particular, for any g
inGL, its action on a˝ x in Bcris.OxL/˝L ODcris;L.V / is given by the following formula:

g.a˝ x/ D g.a/˝
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
g
�
ŒX [i �

�
� ŒX [i �

�Œki �
:
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Remark 2.22. Using the description of the GL-action on Bcris.OxL/˝L ODcris;L.V / in
Remark 2.21, note that BCcris.OxL/˝L ODcris;L.V / � Bcris.OxL/˝L ODcris;L.V / is stable
under the induced action of GL. Moreover, it is clear that the action of HL, induced from
the action of GL described in Remark 2.21, is trivial on

ODcris;L.V / � Bcris.OxL/˝L ODcris;L.V /;

and we have that BCcris.OxL/
HLDBCcris.OL1/by [39, Lemma 4.32]. Therefore, we obtain that,�

BCcris.OxL/˝L ODcris;L.V /
�HL
D BCcris.OL1/˝L ODcris;L.V /: (2.9)

We equip BCcris.OL1/˝L ODcris;L.V / with the residual �L-action.

Lemma 2.23. For any x in ODcris;L.V / and g in �L, the following summation converges
in BCrig;L ˝L ODcris;L.V /:

g.x/ D
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
g
�
ŒX [i �

�
� ŒX [i �

�Œki �
:

In particular, BCrig;L ˝L ODcris;L.V / � BCcris.OL1/ ˝L ODcris;L.V / is stable under the
induced action of �L.

Proof. Let ¹
0; 
1; : : : ; 
d º be topological generators of �L as in Section 2.1.1, in particu-
lar, 
j .ŒXi �[/ D .1C �/ŒX [i �, if i D j , and ŒX [i �, otherwise. As BCrig;L ˝L ODcris;L.V / �

BCcris.OL1/˝L ODcris;L.V / is closed for the p-adic topology and the action of �L on
the latter is continuous (see Remark 2.21), therefore, it is enough to show the claim
for the chosen topological generators of �L. For any 
j , we can simplify the sum in
the claim and rewrite it as

P
k2Nd �Œkj �ŒX [j �

Qd
iD1 @

ki
i .x/. Now, recall that the connec-

tion @ on ODcris;L.V / is p-adically quasi-nilpotent, i.e., there exists an OL-lattice M �
ODcris.V / stable under @, i.e., @WM ! M ˝ �1OL such that @ is nilpotent modulo p.
Let ¹e1; : : : ; ehº denote an OL-basis of M . Then, we may check that on the chosen
basis we have '.M/ � p�rM , for some fixed r 2 N. Moreover, recall that we have
L ˝';L ODcris;L.V /

�
�! ODcris;L.V /, so we may write x D

Ph
jD1 aj'.ej /, for some

aj 2 L. Since @i .'.ej //D p'.@i .ej //, for all 1 6 i 6 d and 1 6 j 6 h, therefore, we get
that, X

k2Nd

�Œkj �ŒX [j �

dY
iD1

@
ki
i

�
'.ei /

�
D p�dr

X
k2Nd

�Œkj �ŒX [i �

dY
iD1

pkipr'
�
@
ki
i .ei /

�
;

converges p-adically, and thus converges for the natural topology on BCrig;L˝LODcris;L.V /

(see Remark 2.20). Therefore, by using the Leibniz rule, we are reduced to showing that
the summation

P
k2Nd �Œkj �ŒX [j �

Qd
iD1 @

ki
i .a/ converges in BCrig;L, for any a in L. This

follows easily since we have @ki .X
n
i /=kŠD 0, for n<k, @ki .X

n
i /=kŠD

�
n
k

�
Xn�ki , for n> k,

and @ki .X
�n
i /=kŠ D .�1/k

�
nCk�1
k

�
X
�.nCk/
i , for n 2 N. Hence, the lemma is proved.
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Lemma 2.24. The action of �L on BCrig;L ˝L ODcris;L.V / is trivial modulo �.

Proof. Note that g.�/ D .1C �/�.g/ � 1, for any g in �L and � the p-adic cyclotomic
character. Using Lemma 2.23 and Remark 2.21, for a˝ x in BCrig;LŒ�=t�˝L ODcris;L.V /

and g 2 �L, we have that

g.a˝ x/ D g.a/˝
X

k2Nd

xY
iD1

@
ki
i .x/

dY
iD1

�
g
�
ŒX [i �

�
� ŒX [i �

�Œki �
:

Note that
.g � 1/.a˝ x/ D

�
.g � 1/a

�
˝ x C g.a/˝

�
.g � 1/x

�
; (2.10)

where g.x/ is given by the series in the statement of Lemma 2.23. So, we have that

.g � 1/x D
X

k2Nd
C

xY
iD1

@
ki
i .x/

dY
iD1

�
.g � 1/ŒX [i �

�Œki �
;

where Nd
C D Nd n ¹.0; 0; : : : ; 0/º. Using the explicit description of BCrig;L in Lemma 2.5,

note that .g � 1/BCrig;L ��BCrig;L, and from the proof of Lemma 2.23 note that .g � 1/ŒX [i �
is in�BCL . Therefore, an argument similar to the proof of Lemma 2.23 shows that .g� 1/x
converges in �BCrig;L ˝L ODcris;L.V /. So, from (2.10) it follows that .g � 1/.a˝ x/ is in
�BCrig;L ˝L ODcris;L.V /. This allows us to conclude.

3. Wach modules

In this section, we will define and study Wach modules in the imperfect residue field case
and finite Œp�q-height representations ofGL and relate them to crystalline representations.
Our definition is a direct and natural generalisation of Wach modules in the perfect residue
field case (see [8, Définition III.4.1]).

3.1. Wach modules over AC

L

In the period ring Ainf.OF1/, let us fix q WD Œ"�, � WD q � 1 D Œ"� � 1 and Œp�q WD z� WD
'.�/=�.

Definition 3.1. Let a; b 2 Z with b > a. A Wach module over ACL with weights in the
interval Œa; b� is a finite free ACL -module N equipped with a continuous and semilinear
action of �L and satisfying the following assumptions:

(1) The action of �L on N=�N is trivial.

(2) There is a Frobenius-semilinear operator ' W NŒ1=��! NŒ1='.�/�, commuting
with the action of �L, and such that '.�bN/ � �bN and the cokernel of the
injective map .1˝ '/W'�.�bN/! �bN is killed by Œp�b�aq .
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Define the Œp�q-height ofN to be the largest value of�a, for a 2Z as above. Say thatN is
effective if one can take b D 0 and a 6 0. A Wach module over BCL is a finitely generated
module M equipped with a Frobenius-semilinear operator ' W MŒ1=�� ! MŒ1='.�/�,
commuting with the action of �L, and such that there exists a '-stable (after inverting �)
and �L-stable ACL -submodule N � M , with N a Wach module over ACL (equipped with
the induced .'; �L/-action) and NŒ1=p� DM .

Denote the category of Wach modules over ACL as .'; �/-ModŒp�q
ACL

with morphisms

between objects being ACL -linear, �L-equivariant and '-equivariant (after inverting �).

Definition 3.2. Let N be a Wach module over ACL . Define a decreasing filtration on N
called the Nygaard filtration, for k 2 Z, as

FilkN WD
®
x 2 N such that '.x/ 2 Œp�kqN

¯
:

From the definition, it is clear that N is effective if and only if Fil0N D N . Similarly, we
can define a Nygaard filtration on M WD NŒ1=p� and it satisfies FilkM D .FilkN/Œ1=p�.

Extending scalars along ACL!AL induces a functor .';�/-ModŒp�q
ACL
!.';�/-Modét

AL ,

and we make the following claim.

Proposition 3.3. The following natural functor is fully faithful:

.'; �/-ModŒp�q
ACL
�! .'; �/-Modét

AL

N 7�! AL ˝ACL
N:

Proof. We need to show that for Wach modules N and N 0, we have a natural bijection,

Hom
.';�/-Mod

Œp�q

AC
L

.N;N 0/
�
��! Hom.';�/-Modét

AL
.AL ˝ACL

N;AL ˝ACL
N 0/: (3.1)

Note that ACL ! AL D ACL Œ1=��
^ is injective, in particular, the map in (3.1) is injective.

To check that (3.1) is surjective, let DL WD AL ˝ACL
N , D0L WD AL ˝ACL

N 0, and take an
AL-linear and .';�L/-equivariant map f WDL!D0L. Then, by base changing f along the
embedding AL!A ML (see Section 2.1.5), we obtain an A ML-linear and .';� ML/-equivariant
map f MLWD ML ! D0

ML
. Using the definition and notation preceding Lemma 2.17, we further

obtain an AC
ML

-linear and .'; � ML/-equivariant map f MLW j
C
� .D ML/! jC� .D

0
ML
/, where we

abuse notations by writing f ML instead of jC� .f ML/. From Lemma 2.17, note that for some
s 2N andN ML WD AC

ML
˝ACL

N , we have an inclusion �sN ML � j
C
� .D ML/ and the cokernel is

killed by some finite power of �. Hence, N MLŒ1=��
�
�! jC� .D ML/Œ1=��. Similarly, one can

also show thatN 0
ML
Œ1=��

�
�! jC� .D

0
ML
/Œ1=��. Now, from the map f MLW j

C
� .D ML/! jC� .D

0
ML
/,

we obtain an induced � ML-equivariant map

f MLWN MLŒ1=�� D j
C
� .D

0
ML
/Œ1=��! jC� .D

0
ML
/Œ1=�� D N 0

ML
Œ1=��;
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and from Lemma 3.4 below, we get that f ML.N ML/ � N
0
ML
. It is easy to see that N D N ML \

DL �D ML andN 0 DN 0
ML
\D0L �D

0
ML
. So, we conclude that f .N /� f ML.N ML/\ f .DL/�

N 0
ML
\D0L D N

0. This proves the surjectivity of (3.1).

Lemma 3.4. Let N and N 0 be Wach modules over AC
ML

and let f WNŒ1=��! N 0Œ1=�� be

an AC
ML

-linear and � ML-equivariant map. Then f .N / � N 0.

Proof. The proof is similar to the proof of [3, Lemma 5.32]. Assume that f .N /���kN 0,
for some k 2N, and consider the reduction of f modulo�, which is again � ML-equivariant.
By definition, we have that � ML acts trivially over N=�N , whereas ��kN 0=��kC1N 0 ��!
N 0=�N 0.�k/, i.e., the action of � ML on ��kN 0=��kC1N 0 is given by ��k , where � is the
p-adic cyclotomic character, in particular, .��kN 0=��kC1N 0/� ML D 0. Since we know
that f is � ML-equivariant, therefore, we must have that k D 0, i.e., f .N / � N 0.

Analogous to above, one can define categories .'; �/-ModŒp�q
BCL

and .'; �/-Modét
BL and

a functor from the former to latter by extending scalars along BCL ! BL. Then, passing to
associated isogeny categories in Proposition 3.3, we obtain the following.

Corollary 3.5. The natural functor .'; �/-ModŒp�q
BCL
! .'; �/-Modét

BL is fully faithful.

Composing the functor in Proposition 3.3 with the equivalence in (2.2), we obtain a
fully faithful functor,

TLW .'; �/-ModŒp�q
ACL
�! RepZp .GL/

N 7�! .A˝ACL
N/'D1

�
��!

�
W.C[

L/˝ACL
N
�'D1

:
(3.2)

Lemma 3.6. LetN be Wach module of Œp�q-height s and let T WD TL.N /. Then, we have
a GL-equivariant isomorphism,

ACŒ1=��˝ACL
N
�
�! ACŒ1=��˝Zp T: (3.3)

Moreover, if N is effective, then we have natural GL-equivariant inclusions

�s.AC ˝Zp T / � AC ˝ACL
N � AC ˝Zp T:

Proof. For r 2 N large enough, the Wach module �rN.�r/ is always effective and we
have that

TL
�
�rN.�r/

�
D TL.N /.�r/

(the twist .�r/ denotes a Tate twist on which �L acts via ��r , where � is the p-adic
cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So assume that N is effective. Now, as N is finite free over ACL , therefore,
by using Definition 3.1 (2) and the tensor product Frobenius, we obtain a Frobenius-
semilinear isomorphism

'WAinf.OxL/Œ1=��˝ACL
N

�
��! Ainf.OxL/Œ1=

z��˝ACL
N:
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Then, from [39, Proposition 6.15] we get the following GL-equivariant inclusions:

�s
�
Ainf.OxL/˝Zp T

�
� Ainf.OxL/˝ACL

N � Ainf.OxL/˝Zp T �
zA˝ACL

N:

Moreover, from (2.1), we have that A˝ACL
N
�
�! A˝Zp T . Therefore, by taking the

intersection of A˝Zp T with the chain of inclusions above, inside zA˝ACL
N
�
�! zA˝Zp T ,

we obtain the following GL-equivariant inclusions:

�s
�
Ainf.OxL/ \ A

�
˝Zp T �

�
Ainf.OxL/ \ A

�
˝ACL

N �
�
Ainf.OxL/ \ A

�
˝Zp T:

Since AC D Ainf.OxL/ \ A, therefore, we get that the natural map in (3.3) is bijective and
�s.AC ˝Zp T / � AC ˝ACL

N � AC ˝Zp T (for N effective), as desired.

3.2. Finite Œp�q-height representations

In this section, we will generalise the definition of finite Œp�q-height representations from
[3, Definition 4.9] in the imperfect residue field case. Let T be a finite free Zp-representa-
tion of GL, V WD T Œ1=p� and set DCL .T / WD .AC ˝Zp T /

HL to be the .'; �L/-module
over ACL associated to T and let DCL .V / WD DCL .T /Œ1=p� be the .'; �L/-module over BCL
associated to V .

Definition 3.7. A finite Œp�q-height Zp-representation of GL is a finite free Zp-module
T admitting a linear and continuous action of GL, and such that there exists a finite free
ACL -submodule NL.T / � DL.T / satisfying the following:

(1) NL.T / is a Wach module in the sense of Definition 3.1.

(2) We have a natural .'; �L/-equivariant isomorphism AL ˝ACL
NL.T / ��! DL.T /.

Set the Œp�q-height of T to be the Œp�q-height of NL.T /. Say T is positive if NL.T / is
effective.

A finite Œp�q-height p-adic representation of GL is a finite-dimensional Qp-vector
space admitting a linear and continuous action of GL, and such that there exists a GL-
stable Zp-lattice T � V with T of finite Œp�q-height. Let us define NL.V / WDNL.T /Œ1=p�
� DL.T /Œ1=p�D DL.V / to be a BCL -submodule of DL.V /, and satisfying properties ana-
logous to (1) and (2) above. Set the Œp�q-height of V to be the Œp�q-height of T . Say V is
positive if NL.V / is effective.

Remark 3.8. For T a finite Œp�q-height Zp-representation ofGL and r 2N, we have that
NL.T .r// D ��rNL.T /.r/, in particular, property of being finite Œp�q-height is invariant
under Tate twists.

Lemma 3.9. Let T be a finite Œp�q-height Zp-representation of GL.

(1) If T is positive, then �sDCL .T / � NL.T / � DCL .T /.
(2) The ACL -module NL.T / is unique, i.e., if there exists an ACL -submodule N �

DL.T / satisfying the conditions (1) and (2) in Definition 3.7, then we must have
that N D NL.T / � DL.T /.
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Proof. Note that AL˝ACL
NL.T / ��!DL.T / and this scalar extension defines a fully faithful

functor as in Proposition 3.3, in particular, we obtain that TL.NL.T // ��! T as represent-
ations of GL (here TL is the functor defined in (3.2)). This also implies that Lemma 3.6
holds for NL.T /, so by taking HL-invariants of the chain of inclusions in the final state-
ment of Lemma 3.6, we obtain that �sDCL .T / � NL.T / � DCL .T / which proves (1). The
claim in (2) follows from Proposition 3.3, or using an argument similar to [3, Proposi-
tion 4.13].

Remark 3.10. Let V be a finite Œp�q-height p-adic representation of GL and T � V
a finite Œp�q-height GL-stable Zp-lattice. Then, we have that NL.V / D NL.T /Œ1=p� and
from Lemma 3.9 we get that if V is positive then�sDCL .V /�NL.V /�DCL .V /. Moreover,
from Corollary 3.5 (or [3, Proposition 4.13]) it follows that NL.V / is unique, i.e., if there
exists a BCL -module M � DL.V / satisfying the conditions analogous to (1) and (2) in
Definition 3.7, then we must have that M D NL.V / � DL.V /. In particular, it follows
that NL.V / is independent of the choice of the lattice T � V . Alternatively, note that
since we have NL.V .r//D ��rNL.V /.r/, without loss of generality we may assume that
V is positive and T 0 � V another finite Œp�q-height GL-stable Zp-lattice. Then, we have
that �sDCL .V / � NL.T 0/Œ1=p� � DCL .V /, and using the argument in the proof of [3, Pro-
position 4.13] almost verbatim gives NL.V / D NL.T /Œ1=p� ��! NL.T 0/Œ1=p� compatible
with the respective .'; �L/-actions.

Remark 3.11. From the definition of finite Œp�q-height representations, Lemma 3.9 and
the fully faithful functor in (3.2), it follows that the data of a finite Œp�q-height represent-
ation is equivalent to the data of a Wach module.

3.3. Wach modules are crystalline

The goal of this subsection is to prove Theorem 3.12 and Corollary 3.16. To prove our
results, we need certain period rings similar to [3, Section 4.3.1], which we denote as
APD
L;$ and OAPD

L;$ below. We define these as follows: let $ D �pm � 1, where m > 1 for
p > 3 and m > 2 for p D 2, and set

ACL;$ WD ACL
�
'�m.�/

�
� Ainf.OL1/:

Restricting the map � on Ainf.OL1/ (see Section 2.1.1) to ACL;$ , we get a surjection
� W ACL;$ � OLŒ$�. Define APD

L;$ to be the p-adic completion of the divided power
envelope of the map � with respect to Ker � . Moreover, consider the surjective map

�LWOL ˝Z ACL;$ � OLŒ$�;

given as x˝ y 7! x�.y/. Define OAPD
L;$ to be the p-adic completion of the divided power

envelope of the map �L with respect to Ker �L. Similar to [3, Section 4.3.1], one can show
that APD

L;$ � Acris.OL1/ and OAPD
L;$ � OAcris.OL1/, stable under the Frobenius and

�L-action on latter. We equip APD
L;$ and OAPD

L;$ with induced structures, in particular, a
filtration (same as the filtration by divided powers of Ker � and Ker �L respectively, see
[3, Remark 4.23]) and a connection @A on OAPD

L;$ satisfying Griffiths transversality with
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respect to the filtration and such that .OAPD
L;$ /

@AD0 D APD
L;$ . Furthermore, note that we

have natural inclusions BCL � APD
L;$ Œ1=p� � OAPD

L;$ Œ1=p� � OBCcris.OxL/ � OBCdR.OxL/,
where the last term is the big de Rham period ring which is an integral domain (see [14,
Proposition 2.9 and Remarque 2.10]). So, it follows that APD

L;$ Œ1=p� and OAPD
L;$ Œ1=p� are

torsion-free modules over the principal ideal domain BCL , hence flat. A similar reasoning
shows that FilkOAPD

L;$ Œ1=p� is a flat BCL -module, for any k 2 N.

Theorem 3.12. Let N be a Wach module over ACL . Then, V WD TL.N /Œ1=p� is a p-adic
crystalline representation of GL.

Proof. For r 2 N large enough, the Wach module �rN.�r/ is always effective and we
have that TL.�rN.�r// D TL.N /.�r/ (the twist .�r/ denotes a Tate twist on which �L
acts via ��r , where � is the p-adic cyclotomic character). Therefore, it is enough to show
the claim for effective Wach modules. So assume that N is effective. Note that N is free
over ACL and TL.N / is a finite Œp�q-height Zp-representation of GL in the sense of Defin-
ition 3.7 (see Remark 3.11). So, the results of [3, Sections 4.3–4.5] can be adapted to the
case of OL almost verbatim as all objects appearing in loc. cit. admit a natural variation
for OL. In particular, as we explain below, the proofs of [3, Theorem 4.25 and Proposi-
tion 4.28] can be adapted to get that V DTL.N /Œ1=p� is a crystalline representation ofGL.

Set DL WD .OAPD
L;$ ˝ACL

NŒ1=p�/�L � ODcris;L.V /. Then, from Proposition 3.14 it
follows that DL is a finite L-vector space of dimension D rkACL

N equipped with a tensor
product Frobenius and a connection induced from the connection on OAPD

L;$ satisfying
Griffiths transversality with respect to the tensor-product filtration defined as FilkDL WD
.
P
iCjDk FiliOAPD

L;$ ˝ACL
FiljNŒ1=p�/�L , where NŒ1=p� is equipped with Nygaard fil-

tration of Definition 3.2 (see after Lemma 3.15 for well-definedness of the tensor-product
filtration). Moreover, from Proposition 3.14 below, note that we have a natural isomorph-
ism OAPD

L;$ ˝OL DL
�
�! OAPD

L;$ ˝ACL
NŒ1=p�. Now, consider the following diagram:

OBcris.OxL/˝L DL OBcris.OxL/˝ACL
NŒ1=p�

OBcris.OxL/˝L ODcris;L.V / OBcris.OxL/˝Qp V;

(3.6)
�

(3.7) (3.3) o (3.4)

where the left vertical arrow is the extension of the inclusion DL � ODcris;L.V /, from
(3.7), along the natural map L!OBcris.OxL/, the top horizontal arrow is the extension of
the isomorphism, in Proposition 3.14, along the natural map OAPD

L;$ Œ1=p�!OBcris.OxL/,
the right vertical arrow is the extension of the isomorphism (3.3), in Lemma 3.6, along the
natural map ACŒ1=��!OBcris.OxL/ and the bottom horizontal arrow is the natural inject-
ive map (see [14, Proposition 3.22]). Commutativity and compatibility of the diagram with
the respective .';GL/-actions and connections follow from (3.7) below. Bijectivity of the
top horizontal arrow and the right vertical arrow imply that the left vertical arrow and the
bottom horizontal arrow are bijective as well. Hence, we obtain that V is a crystalline
representation of GL.
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Remark 3.13. In diagram (3.4), by taking the GL-fixed part of the left vertical arrow, we
get that,

DL
�
��! ODcris;L.V /; (3.5)

compatible with the respective Frobenii and connections. Moreover, since the bottom
horizontal arrow of the diagram (3.4) is compatible with filtrations (see [14, Propos-
ition 3.35]), an argument similar to the proof of [3, Proposition 4.49] shows that the
isomorphism in (3.5) is compatible with filtrations, where we consider the Hodge filtration
on ODcris;L.V /.

The following result was used in the proof of Theorem 3.12.

Proposition 3.14. LetN be an effective Wach module over ACL . Then, the L-vector space
DL D .OAPD

L;$ ˝ACL
NŒ1=p�/�L is of finite dimensionD rkACL

N , and naturally equipped
with a Frobenius, a filtration and a connection satisfying Griffiths transversality with
respect to the filtration. Moreover, we have a natural comparison isomorphism

OAPD
L;$ ˝OL DL

�
��! OAPD

L;$ ˝ACL
NŒ1=p�; (3.6)

compatible with the respective Frobenii, filtrations, connections and �L-actions.

Proof. We will adapt the proof of [3, Proposition 4.28]. The main idea, as explained
below, is to work over a new period ring OSPD

n (defined below), prove an isomorph-
ism analogous to (3.6) (see Lemma 3.15), and then, extend the latter isomorphism over
to OAPD

L;$ using the Frobenius. So, following [3, Section 4.4.1], for n 2 N, let us define
a p-adically complete ring SPD

n WD ACL h
�
pn
; �2

2Šp2n
; : : : ; �k

kŠpkn
; : : :i. The p-adically com-

pleted divided power ring SPD
n is equipped with a continuous action of �L and we have a

Frobenius homomorphism 'WSPD
n ! SPD

n�1, in particular, 'n.SPD
n / � SPD

0 � APD
L;$ , where

the latter inclusion is obvious. The reader should note that in [3, Section 4.4.1] we con-
sider a further completion of SPD

n with respect to certain filtration by PD-ideals, denoted
ySPD
n in loc. cit. However, such a completion is not strictly necessary and all proofs of loc.

cit. can be carried out without it. In particular, many good properties of ySPD
n restrict to

good properties on SPD
n as well (for example, the .'; �L/-action described above).

Now, consider the OF -linear homomorphism of rings

�WOL �! SPD
n ;

sending Xj 7! ŒX [j �, for 1 6 j 6 d . Using � define an OF -linear morphism of rings
f WOL ˝OF S

PD
n ! SPD

n , via a ˝ b 7! �.a/b. Let OSPD
n denote the p-adic completion

of the divided power envelope of OL ˝OF S
PD
n with respect to Kerf . The divided power

ring OSPD
n is equipped with a continuous action of �L, an integrable connection and we

have a Frobenius
'WOSPD

n �! OSPD
n�1;

in particular,
'n.OSPD

n / � OAPD
L;$ :
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Moreover, we have thatOL D .OSPD
n /�L , and with Vj WD

Xj˝1

1˝ŒX[j �
, for 16 j 6 d , we have

p-adically closed divided power ideals

J Œi�OSPD
n WD

�
�Œk0�

pnk0

dY
jD1

.1� Vj /
Œkj �; kD .k0; k1; : : : ; kd / 2NdC1 such that

dX
jD0

kj > i
�
:

Next, let us equip OSPD
n ˝ACL

N with the tensor product Frobenius and an integrable

connection induced from the connection on OSPD
n . Then,Dn WD .OSPD

n ˝ACL
NŒ1=p�/�L

is an L-vector space equipped with an integrable connection and we have an induced
semilinear Frobenius morphism 'WDn ! Dn�1. In particular,

'n.Dn/ � DL D
�
OAPD

L;$ ˝ACL
NŒ1=p�

��L
�
�
OAcris.OxL/˝ACL

NŒ1=p�
�GL ;

where the last inclusion follows since OAPD
L;$ � OAcris.OL1/ D OAcris.OxL/

HL (see
[39, Corollary 4.34]). Let T D TL.N / be the associated finite free Zp-representation of
GL and V D T Œ1=p�. Then, we have that,

DL�
�
OBCcris.OxL/˝BCL

NŒ1=p�
�GL

�
�
OBcris.OxL/˝BCL

NŒ1=p�
�GL �
��!

�
OBcris.OxL/˝Qp V

�GL
DODcris;L.V /; (3.7)

where the isomorphism follows by taking GL-fixed elements of the extension along
ACŒ1=��!OBcris.OxL/ of the isomorphism in Lemma 3.6. Recall that 'n.Dn/�DL, or
equivalently, the L-linear map 1˝ 'nWL˝'n;L Dn ! DL is injective, therefore, we get
that L˝'n;L Dn is a finite-dimensional L-vector space. Moreover, ' is faithfully flat and
finite of degree pd over L, so it follows that Dn is a finite-dimensional L-vector space
equipped with an integrable connection. Furthermore, for n > 1 similar to the proof of
[3, Lemmas 4.32 and 4.36], one can show that

log 
i D
X
k2N

.�1/k
.
i � 1/

kC1

k C 1
;

converge as a series of operators on OSPD
n ˝ACL

N , where ¹
0; 
1; : : : ; 
d º are topological
generators of �L (see Section 2.1).

Lemma 3.15. Letm> 1 (letm> 2 if pD 2), then we have a �L-equivariant isomorphism
via the natural map a˝ b ˝ x 7! ab ˝ x:

OSPD
m ˝OL Dm

�
��! OSPD

m ˝ACL
NŒ1=p�: (3.8)

Proof. Compatibility of (3.8) with the �L-action is obvious from the definitions, so we
only need to check that it is bijective. We will first show that (3.8) is injective. Note that
we have an injective ring homomorphism

OSPD
m Œ1=p�

'm

���! OAPD
L;$ Œ1=p� �! OBcris.OxL/:



Abhinandan 34

SinceDm is a finite-dimensional L-vector space, therefore, we get that the following map
is injective:

OSPD
m ˝OL Dm D OSPD

m Œ1=p�˝L Dm �! OBcris.OxL/˝'m;L Dm: (3.9)

Now, recall that V D T Œ1=p� and consider the following composition:

OBcris.OxL/˝'m;L Dm
1˝'m

����! OBcris.OxL/˝L DL

����! OBcris.OxL/˝L ODcris;L.V /; (3.10)

where the first map is injective because 1˝ 'mWL˝'m;L Dm! DL is injective, and the
injectivity of the second map in (3.10) follows from (3.7), in particular, (3.10) is injective.
Furthermore, similar to (3.9), note that NŒ1=p� is a finite free BCL -module, so it follows
that the map

OSPD
m ˝ACL

NŒ1=p� D OSPD
m Œ1=p�˝BCL

NŒ1=p� �! OBcris.OxL/˝'m;BCL
NŒ1=p�;

is injective as well. Also, recall that we have a BCL -linear isomorphism,

1˝ 'WBCL ˝';BCL N
�
1=p; 1=Œp�q

�
�
��! N

�
1=p; 1=Œp�q

�
:

So, we get that OBcris.OxL/˝'m;BCL
NŒ1=p�

�
�! OBcris.OxL/˝BCL

NŒ1=p�, since Œp�q is
invertible in OBcris.OxL/. From the preceding two observations, we get that the following
composition is injective:

OSPD
m ˝ACL

NŒ1=p� ����! OBcris.OxL/˝'m;BCL
NŒ1=p�

1˝'m

����!
�

OBcris.OxL/˝BCL
NŒ1=p�: (3.11)

Now, consider the following diagram

OSPD
m ˝OL Dm OBcris.OxL/˝'m;L Dm OBcris.OxL/˝R ODcris;L.V /

OSPD
m ˝ACL

NŒ1=p� OBcris.OxL/˝BCL
NŒ1=p� OBcris.OxL/˝Qp V;

(3.9)

(3.8)

(3.10)

(3.11)

where the right vertical arrow is the natural injective map (see [14, Proposition 3.22]) and
the bottom right horizontal map is the extension of the isomorphism in Lemma 3.6 along
the natural map ACŒ1=��! OBcris.OxL/. The diagram commutes by definition and from
the discussion above it follows that the left vertical arrow, i.e., (3.8), is injective.

Next, let us check the surjectivity of the map (3.8). Define the following operators on
ON PD

m WD OSPD
m ˝ACL

NŒ1=p�,

@i WD

´
�.log 
0/=t; for i D 0;

.log 
i /=.tVi /; for 1 6 i 6 d;
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where (see [3, Section 4.4.2]),

Vi D
Xi ˝ 1

1˝ ŒX [i �
; for 1 6 i 6 d:

Using the fact that for any g in �L and x in OSPD
m ˝ACL

N , we have

.g � 1/.ax/ D .g � 1/a � x C g.a/.g � 1/x;

and from the equality log.
i / D limn!C1.

pn

i � 1/=p
n, it is easy to see that @i satisfies

the Leibniz rule, for all 0 6 i 6 d . In particular, the operator

@WON PD
m �! ON PD

m ˝OSPD
m
�1OSPD

m =OL

x 7�! @0.x/dt C

dX
iD1

@i .x/d ŒX
[
i �;

defines a connection on ON PD
m . The connection @ is integrable since the operators @i

commute with each other (see [3, Lemma 4.38]) and using the finite Œp�q-height property
of N it is easy to show that @ is p-adically quasi-nilpotent as well (see [3, Lemma 4.39]).

For any x inNŒ1=p�, similar to the proof of [3, Lemmas 4.41 and 4.43], it follows that
the following sum converges in Dm D .ON PD

m /�L D .ON PD
m /@D0:

y D
X

k2NdC1

@
k0
0 ı @

k1
1 ı � � � ı @

kd
d
.x/ t

Œk0�

pmk0
.1 � V1/

Œk1� � � � .1 � Vd /
Œkd �: (3.12)

By choosing a basis of N and using the formula in (3.12) on the basis elements, we
can define a linear transformation ˛ on the finite free OSPD

m Œ1=p�-module ON PD
m . Now,

similar to the proof of [3, Lemma 4.43] it can easily be deduced that for some large enough
N 2 N, we can write pN det˛ 2 1C J Œ1�OSPD

m , i.e., det˛ is a unit in OSPD
m Œ1=p� and ˛

defines an automorphism of ON PD
m . Finally, as the formula in (3.12) converges in Dm, it

follows that the map OSPD
m ˝OL Dm! OSPD

m ˝ACL
NŒ1=p� is surjective. Hence, (3.8) is

bijective.

We continue with the proof of Proposition 3.14. Note that DL is an L-vector space
equipped with the tensor product Frobenius and a filtration given as

FilkDL D
� X
iCjDk

FiliOAPD
L;$ ˝ACL

FiljNŒ1=p�
��L

;

where NŒ1=p� is equipped with the Nygaard filtration of Definition 3.2. The preced-
ing filtration is well defined, i.e., FilkDL is a sub vector space of DL, for each k 2 N.
Indeed, it is enough to check that FiliOAPD

L;$ Œ1=p� ˝ACL
FiljNŒ1=p� is contained in

OAPD
L;$ Œ1=p�˝BCL

NŒ1=p� as an OAPD
L;$ Œ1=p�-submodule, for each i; j 2 N. This easily

follows from the fact that the following OAPD
L;$ Œ1=p�-linear composition is injective:

FiliOAPD
L;$ Œ1=p�˝BCL

FiljNŒ1=p� �! OAPD
L;$ Œ1=p�˝BCL

FiljNŒ1=p�

�! OAPD
L;$ Œ1=p�˝BCL

NŒ1=p�;
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where the first arrow is obtained by tensoring the BCL -linear inclusion

FiliOAPD
L;$ Œ1=p� � OAPD

L;$ Œ1=p�

with the BCL -module FiljNŒ1=p� which is flat (because it is a finite torsion-free module
over the principal ideal domain BCL ), and the second arrow is obtained by tensoring the
BCL -linear inclusion FiljNŒ1=p�! NŒ1=p� with the flat BCL -algebra OAPD

L;$ Œ1=p� (see
the discussion at the start of Section 3.3). Next, note thatDL is equipped with an integrable
connection induced from the connection on OAPD

L;$ satisfying Griffiths transversality with
respect to the filtration since the same is true for the connection on OAPD

L;$ . Now, consider
the following diagram:

OAPD
L;$ ˝OL;'

m Dm OAPD
L;$ ˝OL DL

OAPD
L;$ ˝ACL ;'m

NŒ1=p� OAPD
L;$ ˝ACL

NŒ1=p�;

1˝'m

(3.8) o (3.6)

�

(3.13)

where the left vertical arrow is the extension of the isomorphism (3.8) in Lemma 3.15
along 'mWOSPD

m ! OAPD
L;$ and the bottom horizontal isomorphism follows from an

argument similar to [3, Lemma 4.46]. By the description of the arrows it follows that
the diagram in (3.13) is commutative and .'; �L/-equivariant. Taking �L-invariants for
the composition of the left vertical and the bottom horizontal isomorphisms gives an L-
linear isomorphism OL ˝OL;'m Dm

�
�! DL. So it follows that the top horizontal arrow

in the diagram (3.13) is bijective as well. The preceding observation together with the
bijectivity of the left vertical and the bottom horizontal arrows imply that the right vertical
arrow is bijective as well, in particular, the comparison in (3.6) is an isomorphism com-
patible with the respective Frobenii, connections and �L-actions. Compatibility of (3.6)
with filtrations follows from an argument similar to [3, Corollary 4.54] (using the filtration
compatible isomorphism (3.5) in Remark 3.13). This concludes our proof.

There exists another relation between the Wach module N and ODcris;L.V /. Let us
equip N with a Nygaard filtration as in Definition 3.2. Then, we note that .N=�N/Œ1=p�
is a '-module over L, since Œp�q D p mod �N and N=�N is equipped with a filtration
Filk.N=�N/ given as the image of FilkN under the surjection N � N=�N . We equip
.N=�N/Œ1=p� with the induced filtration, in particular, it is a filtered '-module over L.

Corollary 3.16. Let N be a Wach module over ACL and V D TL.N /Œ1=p� the associ-
ated crystalline representation from Theorem 3.12. Then, we have that .N=�N/Œ1=p� ��!
ODcris;L.V / as filtered '-modules over L.

Proof. For r 2 N large enough, the Wach module �rN.�r/ is always effective and we
have that TL.�rN.�r// D TL.N /.�r/ (the twist .�r/ denotes a Tate twist on which �L
acts via ��r , where � is the p-adic cyclotomic character). Therefore, it is enough to show
the claim for effective Wach modules. So assume thatN is effective and setM WDNŒ1=p�
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equipped with the induced Frobenius, �L-action and Nygaard filtration. Note that the L-
vector space M=�M is equipped with a Frobenius-semilinear operator ' induced from
M such that we have

1˝ 'W'�.M=�M/
�
��!M=�M;

because Œp�q D p mod �. The filtration Filk.M=�M/ on M=�M is the image of FilkM
under the surjective mapM�M=�M . From the discussion before Theorem 3.12, recall
that we have a period ring OAPD

L;$ � OAcris.OL1/ equipped with a natural Frobenius,
filtration, connection and �L-action. Moreover, from Theorem 3.12, we have that DL D
.OAPD

L;$ ˝ACL
NL.V //�L is equipped with a natural Frobenius, filtration and connection,

such that DL
�
�! ODcris.V / compatible with the respective Frobenii, filtrations and con-

nections (see (3.5) in Remark 3.13). Now, consider the following diagram with exact rows:

0 �M M M=�M 0

0 .Fil1OAPD
L;$ /˝ACL

M OAPD
L;$ ˝ACL

M L.�p/˝LM=�M 0

0 .Fil1OAPD
L;$ /˝OL DL OAPD

L;$ ˝OL DL L.�p/˝L DL 0:

o o (3.6) o

Note that

.Fil1OAPD
L;$ ˝ACL

M/ \M D .Fil1OAPD
L;$ \ ACL /˝ACL

M D �M;

so the vertical maps from the first to the second row are natural inclusions. Moreover,
from the third to the second row, note that the middle vertical arrow is the isomorphism
(3.6) in Proposition 3.14, from which it easily follows that the left vertical arrow is also
an isomorphism, and hence, the right vertical arrow is an isomorphism as well. Taking the
Gal.L.�p/=L/-invariants of the right vertical arrow givesM=�M �

 �DL
�
�!ODcris;L.V /,

where the last isomorphism is compatible with the respective Frobenii, filtrations and
connections (see (3.5) in Remark 3.13).

Note that the isomorphism DL
�
�!M=�M is compatible with the respective Frobenii

and we need to check the compatibility between the respective filtrations. In the diagram
above, the middle term of the second row is equipped with the tensor product filtration, so
the image of Filk.OAPD

L;$ ˝ACL
M/ under the surjective map from the second to the third

term is given as
L.�p/˝L Filk.M=�M/:

Similarly, the middle term of the third row is equipped with the tensor product filtration,
so the image of Filk.OAPD

L;$ ˝OL DL/ under the surjective map from the second to the
third term is given as

L.�p/˝L FilkDL:

Since the isomorphism (3.6) in Proposition 3.14 is compatible with filtrations, we get that
L.�p/ ˝L FilkDL

�
�! L.�p/ ˝L Filk.M=�M/. Taking Gal.L.�p/=L/-invariants in the

preceding isomorphism gives FilkDL
�
�! Filk.M=�M/. This allows us to conclude.
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4. Crystalline implies finite height
The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Zp-representation of GL such that V WD T Œ1=p� is a
p-adic crystalline representation of GL. Then, there exists a unique Wach module NL.T /
over ACL satisfying Definition 3.7. In other words, T is of finite Œp�q-height.

Before carrying out the proof of Theorem 4.1, we note the following corollaries: let
Repcris

Zp
.GL/ denote the category of Zp-lattices inside p-adic crystalline representations

of GL. Then, by combining Theorems 3.12 and 4.1 and [3, Proposition 4.14] (for compat-
ibility with tensor products below), we obtain the following.

Corollary 4.2. The Wach module functor induces an equivalence of˝-categories,

Repcris
Zp
.GL/

�
��! .'; �/-ModŒp�q

ACL
T 7�! NL.T /;

with a quasi-inverse˝-functor given as N 7! TL.N / WD .W.C[
L/˝ACL

N/'D1.

Passing to associated isogeny categories, we obtain the following.

Corollary 4.3. The Wach module functor induces an exact equivalence of˝-categories

Repcris
Qp
.GL/

�
��! .'; �/-ModŒp�q

BCL
;

via V 7! NL.V /, with an exact quasi-inverse ˝-functor given as M 7! VL.M/ WD

.W.C[
L/˝ACL

M/'D1.

In the rest of this section, we will carry out the proof of Theorem 4.1 and Corol-
lary 4.2 by constructing NL.T / and show Corollary 4.3 as a consequence. In Section 4.1,
we collect important properties of classical Wach modules, i.e., the perfect residue field
case. In Section 4.2, we use ideas from [35, 36] to show that classical Wach modules
are compatible with Kisin–Ren modules, and we further show that in our setting, a finite
Œp�q-height module on the open unit disk over ML descends to a finite Œp�q-height module
on the open unit disk over L, similar to [16]. On the module thus obtained, we use res-
ults of Section 2.3 to construct an action of �L and study its properties in Section 4.3.
Then, in Section 4.4, we check that our construction is compatible with the theory of étale
.'; �L/-modules. Finally, in Section 4.5, we construct the promised Wach module NL.T /
and prove Theorem 4.1 and Corollary 4.3.

For a p-adic representation of GL, note that the property of being crystalline and of
finite Œp�q-height is invariant under twisting the representation by �r , for r 2 N. So, from
now onwards we will assume that V is a p-adic positive crystalline representation of GL,
i.e., all its Hodge–Tate weights are 6 0 and we have T � V a GL-stable Zp-lattice.

4.1. Classical Wach modules

Recall that G ML is a subgroup of GL, so from [16, Proposition 4.14], it follows that V
is a p-adic positive crystalline representation of G ML and T � V a G ML-stable Zp-lattice.
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Note that ML is an unramified extension of Qp with perfect residue field, therefore, the
G ML-representation V is of finite Œp�q-height (see [8, 20]). Let the Œp�q-height of V be
s 2 N. One associates to V a finite free .'; � ML/-module over BC

ML
of rank D dimQp V ,

called the Wach module N ML.V /, and to T a finite free .'; � ML/-module over AC
ML

of rank
D dimQp V , called the Wach module N ML.T / (see [8,46,47] and [3, Section 4.1] for a recol-
lection). Let zDCL .T / WD .Ainf.OxL/˝Zp T /

HL be the .'; �L/-module over Ainf.OL1/ D

Ainf.OxL/
HL (see [5, Proposition 7.2]) associated to T and let zDCL .V / WD zD

C

L .T /Œ1=p�

over Binf.OL1/ D Binf.OxL/
HL associated to V .

Lemma 4.4 ([8, Lemme II.1.3, Théorème III.3.1]). With notations as above, we have the
following:

(1) N ML.T / D N ML.V / \ D ML.T / � D ML.V /.
(2) We have that �sAinf.OxL/ ˝Zp T � Ainf.OxL/ ˝AC

ML

N ML.T / � Ainf.OxL/ ˝Zp T ,

and taking HL-invariants gives �s zDCL .T / � Ainf.OL1/˝AC
ML

N ML.T / � zD
C

L .T /.

Similar claims are also true for V .

By properties of Wach modules, we have the following functorial isomorphisms of
étale .'; �L/-modules:

A ML ˝AC
ML

N ML.T /
�
��! D ML.T / and A�

ML
˝AC

ML

N ML.T /
�
��! D�

ML
.T /;

B ML ˝BC
ML

N ML.V /
�
��! D ML.V / and B�

ML
˝BC

ML

N ML.V /
�
��! D�

ML
.V /;

B�
rig; ML
˝BC

ML

N ML.V /
�
��! D�

rig; ML
.V /;

(4.1)

where the second isomorphism in the first row follows from [8, Théorème III.3.1].
Let us set Nrig; ML.V / WD BC

rig; ML
˝BC

ML

N ML.V / equipped with the induced tensor-product
Frobenius-semilinear operator ' and � ML-action. From [8, Proposition II.2.1], recall that
we have a natural inclusion Dcris; ML.V / � Nrig; ML.V /, which extends BC

rig; ML
-linearly to a

Frobenius and � ML-equivariant inclusion,

BC
rig; ML
˝ ML Dcris; ML.V / � Nrig; ML.V /;

such that its cokernel is killed by .t=�/s 2 BC
rig; ML

(see [8, Propositions II.3.1 and III.2.1]).
In particular, we obtain a .'; � ML/-equivariant isomorphism,

BC
rig; ML

Œ�=t�˝ ML Dcris; ML.V /
�
��! BC

rig; ML
Œ�=t�˝BC

ML

N ML.V /: (4.2)

Moreover, note that from loc. cit., we have a natural ML-linear isomorphism of filtered '-
modules Dcris; ML.V /

�
�! Nrig; ML.V /=�Nrig; ML.V / D N ML.V /=�N ML.V / such that the largest

Hodge–Tate weight of V equals s, i.e., the Œp�q-height of V . Since t=� is a unit in
BCcris.OL1/ and BC

rig; ML
�zBCrig;L�BCcris.OL1/, therefore, extension of scalars of (4.2) yields

the following BCcris.OL1/-linear and .'; � ML/-equivariant isomorphism:

BCcris.OL1/˝ ML Dcris; ML.V /
�
��! BCcris.OL1/˝BC

ML

N ML.V /: (4.3)
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Lemma 4.5. There exists a natural .';G ML/-equivariant commutative diagram as follows:

Bcris.OxL/˝ ML Dcris; ML.V / Bcris.OxL/˝BC
ML

N ML.V /

Bcris.OxL/˝Qp V Bcris.OxL/˝Qp V;

�

o o

where the top horizontal arrow is the extension of scalars of (4.3) along BCcris.OL1/!

Bcris.OxL/, and the left vertical arrow is the natural isomorphism as V is a crystalline
representation of G ML.

Proof. It remains to explain the right vertical arrow and the commutativity of the diagram.
From Lemma 4.4 (2), note that we have a .';G ML/-equivariant isomorphism

Ainf.OxL/Œ1=��˝AC
ML

N ML.T /
�
��! Ainf.OxL/Œ1=��˝Zp T;

and extending this isomorphism along Ainf.OxL/Œ1=�� ! Bcris.OxL/ gives the right ver-
tical isomorphism. Then, the commutativity of the diagram follows because the top hori-
zontal arrow is also the Bcris.OxL/-linear extension of the natural inclusion Dcris; ML.V / �

BC
rig; ML
˝BC

ML

N ML.V / � Bcris.OxL/˝BC
ML

N ML.V / (see [8, Section II.2]).

4.2. Kisin’s construction

Our goal is to construct a Wach module NL.T / over ACL . To this end, we will adapt some
ideas from [16, 36], generalising the results of Kisin in [35], to first construct a finite
Œp�q-height module over BCrig;L.

LetE.X/ WD .1CX/p�1
X

in ZpJXK denote the cyclotomic polynomial. We equip ZpJXK
with the cyclotomic Frobenius operator ' given by identity on Zp and setting '.X/ D
.1C X/p � 1, and for n 2 N we set En.X/ WD 'n.E.X//. In particular, �pnC1 � 1 is a
simple zero of En.X/, where �pnC1 is a primitive pnC1-th root of unity. For X D �, we
will write En.�/ D z�n, for n 2 N, and E.�/ D '.�/=� D z� D z�0 D Œp�q .

Remark 4.6. Define �LWBCrig;L! BCrig;L to be the homomorphism given by the Frobenius
'L on L and set �L.�/ D �, i.e.,X

k2N

�.ak/�
k
7�!

X
k2N

�
�
'L.ak/

�
�k ;

where we used Lemma 2.5 to represent an element of BCrig;L. Then, BCrig;L is flat and finite
free of rank pd over BCrig;L, via the map �L. Similarly, let � MLWB

C

rig; ML
! BC

rig; ML
denote the

homomorphism given by the Frobenius ' ML on ML and set � ML.�/ D �. Moreover, note that
we have ' MLW ML

�
�! ML, since the residue field of ML is perfect, and therefore, we see that � ML

is bijective on BC
rig; ML

, with its inverse given as ��1
ML
WBC

rig; ML
! BC

rig; ML
, sendingX

k2N

�.ak/�
k
7�!

X
k2N

�
�
'�1
ML
.ak/

�
�k :
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Furthermore, from Section 2.1.4, recall that we have an injective homomorphism BCrig;L!
BC

rig; ML
, which is evidently compatible with �L on the left and � ML on the right.

Remark 4.7. We have that t=� is in BCrig;L ,!BC
rig; ML

and we can write t=�D
Q
n2N.
z�n=p/

(see [8, Exemple I.3.3] and [38, Remarque 4.12]). The zeros of t=� are given as �pnC1 � 1,
for all n 2 N. Moreover, we have that ��n

ML
.t=�/ D t=�, therefore, the zeros of ��n

ML
.t=�/

are given by �pnC1 � 1 as well.

Now, let yB ML;n denote the completion of ML.�pnC1/˝ ML BC
ML

with respect to the maximal
ideal generated by � � .�pnC1 � 1/. Since �pnC1 � 1 is a simple root of z�n, therefore, we
see that .� � .�pnC1 � 1// D .z�n/ � yB ML;n. The local ring yB ML;n naturally admits an action
of � ML induced by the tensor product action of � ML on ML.�pnC1/˝ ML BC

ML
. We put a filtration

on yB ML;nŒ1=z�n� by setting

Filr yB ML;nŒ1=z�n� WD z�
r
n
yB ML;n; for r 2 Z:

We have inclusions BC
ML
� BC

rig; ML
� yB ML;nŒ1=z�n�.

LetDL WDODcris;L.V / andD ML WD Dcris; ML.V /, and recall that using the '-equivariant
injection L! ML, we have an isomorphism of filtered '-modules ML˝L DL

�
�! D ML from

(2.5). Note thatDL (resp.D ML) is an effective filtered '-module over L (resp. over ML), i.e.,
Fil0DL D DL (resp. Fil0D ML D D ML), and we have a '-equivariant inclusion DL � D ML.
Now, consider a map,

inWBCrig; ML ˝ ML D ML
��n
ML
˝'�nD ML

�������!
�

BC
rig; ML
˝ ML D ML �!

yB ML;n ˝ ML D ML; (4.4)

where ��1
ML
W BC

rig; ML
! BC

rig; ML
is well defined by Remark 4.6, and 'D ML is the (bijective)

Frobenius-semilinear operator onD ML. The map in is evidently well defined, and it extends
to a map,

inWBCrig; MLŒ�=t�˝ ML D ML �!
yB ML;nŒ�=t�˝ ML D ML:

Define a BC
rig; ML

-module as follows:

M ML.D ML/ WD
®
x 2 BC

rig; ML
Œ�=t�˝ ML D ML j 8n 2 N; in.x/ 2 Fil0

�
yB ML;nŒ1=z�n�˝ ML D ML

�¯
;

where we note that BC
rig; ML

Œ�=t�˝ ML D ML is equipped with the tensor product Frobenius and
yB ML;nŒ1=z�n�˝ ML D ML is equipped with the tensor product filtration. By [35, Lemma 1.2.2]
and [36, Lemma 2.2.1], the BC

rig; ML
-module M ML.D ML/ is finite free of rank D dim MLD ML,

stable under ' and � ML, and such that the cokernel of the injective map

1˝ 'W'�
�
M ML.D ML/

�
�!M ML.D ML/

is killed by z�s (where s D height of T D height of V ), and the action of � ML is trivial
modulo �. Moreover, from [36, Lemma 2.2.2], there exists a unique ML-linear section

˛WM ML.D ML/=�M ML.D ML/ �!M ML.D ML/Œ�=t�;
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such that the image ˛.M ML.D ML/=�M ML.D ML// is � ML-invariant. Furthermore, the section
˛ is '-equivariant and it induces an isomorphism,

1˝ ˛WBC
rig; ML

Œ�=t�˝ ML
�
M ML.D ML/=�M ML.D ML/

�
�
��!M ML.D ML/Œ�=t�: (4.5)

Finally, from [36, Proposition 2.2.6] note that we have a natural isomorphism D ML
�
�!

M ML.D ML/=�M ML.D ML/ compatible with the respective Frobenii and filtrations, and under
the isomorphism (4.5), the image of D ML coincides with ˛.M ML.D ML/=�M ML.D ML//.

Next, we note that the B�
rig; ML

-module B�
rig; ML
˝BC

rig; ML
M ML.D ML/ is pure of slope zero

using [35, Theorem 1.3.8] and [36, Proposition 2.3.3]. Then, from [36, Corollay 2.4.2]
one obtains an AC

ML
-moduleN ML finite free of rankD dim MLD ML, equipped with a Frobenius-

semilinear endomorphism ' and semilinear and continuous action of � ML, and such that
cokernel of the injective map 1˝ 'W '�.N ML/! N ML is killed by z�s , the action of � ML is
trivial modulo� and BC

rig; ML
˝AC

ML

N ML
�
�!M ML.D ML/ compatible with the respective .';� ML/-

actions.

Lemma 4.8. There is a natural BC
rig; ML

-linear and .'; � ML/-equivariant isomorphism

ˇ WM ML.D ML/
�
��! Nrig; ML.V /:

Moreover, it restricts to a BC
ML

-linear and .'; � ML/-equivariant isomorphism

ˇ W N MLŒ1=p�
�
��! N ML.V /:

Proof. Recall that by definition Nrig; ML.V /D BC
rig; ML
˝BCL

N ML.V /, and consider the follow-
ing diagram:

BC
rig; ML

Œ�=t�˝ ML D ML Nrig; ML.V /Œ�=t�

BC
rig; ML

Œ�=t�˝ ML
�
M ML.D ML/=�M ML.D ML/

�
M ML.D ML/Œ�=t�;

�

o

�

1˝˛

o ˇ (4.6)

where the top horizontal arrow is (4.2), the bottom horizontal arrow is (4.5) and the left
vertical arrow is the extension of scalars of the isomorphismD ML

�
�!M ML.D ML/=�M ML.D ML/

along the natural .'; � ML/-equivariant map ML! BC
rig; ML

. For the right vertical arrow ˇ,
we consider Nrig; ML.V / and M ML.D ML/ as submodules of BC

rig; ML
Œ�=t� ˝ ML Dcris; ML.V / and

construct the map as follows: note that from the discussion after (4.2), we have a natural
isomorphismD ML

�
�!Nrig; ML.V /=�Nrig; ML.V / of filtered '-modules over ML. Moreover, from

[36, Lemma 2.1.2], note that the action of � ML on Nrig; ML.V / is “O-analytic” in the sense
of [36, Section 2.1.3], where O D Zp in our case (this is true because in the language
of op. cit., we see that the Lubin–Tate group law over O ML that we consider here is given
by the Frobenius power series .1C X/p � 1 for the uniformiser p). Therefore, from the
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equivalence of categories in [36, Proposition 2.2.6] and its proof, it follows that we have
a natural isomorphism

ˇ WM ML.D ML/
�
��!M ML

�
Nrig; ML.V /=�Nrig; ML.V /

�
�
��! Nrig; ML.V /;

as BC
rig; ML

-submodules of BC
rig; ML

Œ�=t�˝ MLD ML, compatible with the .';� ML/-action, and such
that the reduction modulo � of ˇ induces natural isomorphisms,

ˇ mod �WM ML.D ML/=�M ML.D ML/
�
��! D ML

�
��! Nrig; ML.V /=�Nrig; ML.V /;

of filtered '-modules over ML, where the latter isomorphism coincides with the one men-
tioned above (coming from the discussion after (4.2)). Now, by composing the natural
ML-linear inclusion�

M ML.D ML/=�M ML.D ML/
�
� BC

rig; ML
Œ�=t�˝ ML

�
M ML.D ML/=�M ML.D ML/

�
;

with the inverse of the left vertical arrow, the top horizontal arrow and the inverse of the
right vertical arrow of the diagram (4.6), provides an ML-linear section

M ML.D ML/=�M ML.D ML/ �!M ML.D ML/Œ�=t�;

satisfying the same properties as ˛ (see the discussion before (4.5)). Therefore, from the
uniqueness of ˛, it follows that the diagram commutes, thus proving our first claim. For
the second claim, note that as a B�

rig; ML
-module,

B�
rig; ML
˝BC

rig; ML
M ML.D ML/

�
��! B�

rig; ML
˝BC

rig; ML
Nrig; ML.V /

is pure of slope zero, so from [36, Corollary 2.4.2] we conclude that the isomorphism ˇ

induces an isomorphism ˇ WN MLŒ1=p�
�
�!N ML.V / compatible with the .';� ML/-action. This

allows us to conclude.

Recall that from (2.5), we have an isomorphism of filtered '-modules ML˝LDL
�
�!D ML.

Definition 4.9. Define the following BCrig;L-module:

ML.DL/ WD
®
x 2 BCrig;LŒ�=t�˝L DL j 8n 2 N; in.x/ 2 Fil0

�
yB ML;nŒ1=z�n�˝ ML D ML

�¯
D
�
BCrig;LŒ�=t�˝L DL

�
\M ML.D ML/ � BC

rig; ML
Œ�=t�˝ ML D ML:

From Section 2.1.5, recall that we have a '-equivariant injective homomorphism of
L-algebras BCrig;L ! BC

rig; ML
, therefore, by definition ML.DL/ is stable under the induced

tensor product Frobenius semilinear-operator ' on BC
rig; ML

Œ�=t� ˝ ML D ML. Then, by using
Lemma 4.8 and the discussion preceding (4.2), we have '-equivariant inclusions,

BC
rig; ML
˝ ML D ML �M ML.D ML/ � .�=t/

sBC
rig; ML
˝ ML D ML:
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Moreover, from Lemma 2.10, recall that BCrig;L ! BC
rig; ML

is flat, and from Lemma 2.11 we
have that

BCrig;L \ .t=�/B
C

rig; ML
D .t=�/BC

rig; ML
;

or equivalently, BC
rig; ML
\ BCrig;LŒ�=t� D BCrig;L. So, it follows that we have '-equivariant

inclusions,
BCrig;L ˝L DL �ML.DL/ � .�=t/

sBCrig;L ˝L DL: (4.7)

Therefore, similar to (4.2), we obtain a '-equivariant isomorphism,

ML.DL/Œ�=t�
�
��! BCrig;LŒ�=t�˝L DL: (4.8)

Lemma 4.10. For each n 2N, the natural morphism BC
rig; ML
! yB ML;n is flat, and therefore,

the composition BCrig;L ! BC
rig; ML
! yB ML;n is flat.

Proof. Note that we have a natural isomorphism

ML.�pnC1/
�
��!

�
ML.�pnC1/˝ ML BC

rig; ML

�
=I;

where I � ML.�pnC1/˝ MLBC
rig; ML

denotes the maximal ideal generated by � � .�pnC1 � 1/,
and let . ML.�pnC1/˝ ML BC

rig; ML
/I denote its localisation at I . Then, the natural map�
ML.�pnC1/˝ ML BC

rig; ML

�
I
�! yB ML;n;

realises the target as the I -adic completion of the source which is a discrete valuation
ring, in particular, the preceding map is flat. It is easy to see that the first map in the claim
factors as the composition

BC
rig; ML
�! ML.�pnC1/˝ ML BC

rig; ML
�!

�
ML.�pnC1/˝ ML BC

rig; ML

�
I
�! yB ML;n;

where each map is flat, hence, the composition is flat. Furthermore, recall that the natural
map BCrig;L ! BC

rig; ML
is flat (see Lemma 2.10), therefore, the composition

BCrig;L �! BC
rig; ML
�! yB ML;n

is flat as well.

Lemma 4.11. Let us consider yB ML;n as a BCrig;L-algebra via the composition

iL;nWBCrig;L �! BC
rig; ML

��n
ML
��!
�

BC
rig; ML
�! yB ML;n:

Then, we have the following:

(1) The homomorphism

yB ML;n ˝iL;n;BCrig;L .B
C

rig;L ˝L DL/ �!
yB ML;n ˝ ML D ML

�
 �� yB ML;n ˝L DL;

induced by in in (4.4), is an isomorphism.
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(2) The isomorphism in (1) induces an isomorphism,

yB ML;n ˝iL;n;BCrig;L ML.DL/
�
��!

X
i2N

z��in
yB ML;n ˝L FiliDL:

(3) Extending the BCrig;L-linear and '-equivariant inclusion ML.DL/ �M ML.D ML/

along the map
BCrig;L �! BC

rig; ML
;

yields the following '-equivariant isomorphism of BC
rig; ML

-modules:

BC
rig; ML
˝BCrig;L

ML.DL/ �!M ML.D ML/:

Moreover, ML.DL/ is a finite free BCrig;L-module of rank D dimLDL.

Proof. The proof follows in a manner similar to [35, Lemma 1.2.1]. Let us first note that
the linearisation of in along the morphism

i ML;nWB
C

rig; ML

��n
ML
��!
�

BC
rig; ML
�! yB ML;n;

yields an isomorphism,

yB ML;n ˝i ML;n;BCrig; ML
.BC

rig; ML
˝ ML D ML/

�
��! yB ML;n ˝ ML D ML:

Moreover, from (2.5), we have that D ML
�
�! ML˝L DL, so we can write,

BC
rig; ML
˝BCrig;L

.BCrig;L ˝L DL/
�
��! BC

rig; ML
˝L DL

�
��! BC

rig; ML
˝ ML D ML:

Then, by extending the composition above along i ML;n W B
C

rig; ML
! yB ML;n, we obtain the iso-

morphism claimed in (1):

yB ML;n ˝iL;n;BCrig;L .B
C

rig;L ˝L DL/
�
��! yB ML;n ˝ ML D ML:

To show (2), let us write for k 2 N,

ML;k.DL/ WD
®
x 2 BCrig;LŒ�=t�˝L DL such that ik.x/ 2 Fil0

�
yB ML;k Œ1=z�k �˝ ML D ML

�¯
:

Then, we have that

ML.DL/ D
\
k2N

ML;k.DL/ � BCrig;LŒ�=t�˝L DL:

Moreover, using Lemmas 2.10 and 4.10, we see that the morphism iL;nWBCrig;L ! yB ML;n is
flat. So, we get that

yB ML;n ˝iL;n;BCrig;L ML.DL/ D
\
k2N

�
yB ML;n ˝iL;n;BCrig;L ML;k.DL/

�
� BCrig;LŒ�=t�˝L DL:
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To prove the claim, it suffices to show that the isomorphism in (1) induces the following
two bijections:

yB ML;n ˝iL;n;BCrig;L ML;n.DL/
�
��!

X
r2N

z��rn
yB ML;n ˝L FilrDL;

yB ML;n ˝iL;n;BCrig;L ML;k.DL/
�
��! yB ML;nŒ1=z�n�˝L DL; for k ¤ n:

For the first claim, note that by definition, we have a natural inclusion

yB ML;n ˝iL;n;BCrig;L ML;n.DL/ ,!
X
r2N

z��rn
yB ML;n ˝L FilrDL:

To show the converse, note that we have

z��1n D
1
p
'n.�=t/'nC1.t=�/ in Brig;LŒ�=t� and ��n

ML
.z��1n / D z��1n :

So, for any r 2 N and z��rn a˝ d in z��rn yB ML;n ˝L FilrDL, we have that z��rn ˝ '
n.d/ is in

ML;n.DL/, since in.z��rn ˝ '
n.d//D z��rn ˝ d is in Fil0.yB ML;nŒ1=z�n�˝ MLD ML/. Therefore,

z��rn a˝ d D a˝ in.z�
�r
n ˝ '

n.d// is in the image of yB ML;n ˝iL;n;BCrig;L ML;n.DL/. For the
second claim, again note that by definition, we have a natural inclusion

yB ML;n ˝iL;n;BCrig;L ML;k.DL/ ,! yB ML;nŒ1=z�n�˝L DL:

For the converse, take z��rn a˝ d in yB ML;nŒ1=z�n�˝L DL, for some r 2 N. Then, note that
z�n is a unit in yB ML;k , since �pnC1 � 1 is not a root of z�k as k ¤ n. So, we get that

ik
�
z��rn ˝ '

n.d/
�
D z��rn ˝ '

n�k.d/

is in yB ML;k ˝ MLD ML � Fil0.yB ML;k Œ1=z�k �˝ MLD ML/, since Fil0DLDDL. In particular, we have

that z��rn ˝ '
n.d/ is in ML;k.DL/. Therefore, z��rn a ˝ d D a ˝ in.z�

�r
n ˝ '

n.d// is in
the image of yB ML;n ˝iL;n;BCrig;L ML;k.DL/.

For (3), note that we have natural inclusions

BC
rig; ML
˝L DL � BC

rig; ML
˝BCrig;L

ML.DL/ �M ML.D ML/ � .�=t/
sBrig; ML ˝L DL;

where the first two inclusions follow since the map BCrig;L!BC
rig; ML

is flat (see Lemma 2.10)
and ML.DL/� .�=t/

sBCrig;L˝LDL from (4.7). So, we get that .t=�/s kills the cokernel
of the map

BC
rig; ML
˝BCrig;L

ML.DL/ �!M ML.D ML/:

Moreover, note that
M ML.D ML/ � .�=t/

sBC
rig; ML
˝ ML D ML

is a closed submodule by [35, Lemmas 1.1.5 and 1.2.2]. Now, since BCrig;L � BC
rig; ML

is
a closed subring, therefore, we get that ML.DL/ � .�=t/

sBCrig;L ˝L DL is closed and
hence finite free over BCrig;L by Remark 2.14, and of rankD dimLDL by the isomorphism
shown below.
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Let us write BCrig;L D lim� O.D.L; �// as the limit of rings of analytic functions on
closed disks D.L; �/ of radius 0 < � < 1 (see Remark 2.6); similarly let us write

BC
rig; ML
D lim

�
O
�
D. ML; �/

�
:

Since ML.DL/ and M ML.D ML/ are free modules over their respective base rings, there-
fore, we have that

ML.DL/
�
��! lim

�

�
O
�
D.L; �/

�
˝BCrig;L

ML.DL/
�
;

M ML.D ML/
�
��! lim

�

�
O
�
D. ML; �/

�
˝BC

rig; ML
M ML.D ML/

�
:

Then, to show our claim, it is enough to show that the natural map,

O
�
D. ML; �/

�
˝BCrig;L

ML.DL/ �! O
�
D. ML; �/

�
˝BC

rig; ML
M ML.D ML/; (4.9)

is a bijection. Note that O.D. ML; �// is a domain, so injectivity of (4.9) can be checked
after passing to the fraction field of O.D. ML; �//. To check that (4.9) is surjective, let
Q denote the cokernel of (4.9) and we will show that Q D 0. Note that Q is a finitely
generated S WD O.D. ML; �//-module killed by .t=�/s and S is a principal ideal domain
(see [13, Chapter 2, Corollary 10]). So, by the structure theorem of finitely generated
modules over S , we can write Q D ˚S=ai , where ai D .ai / for some non-zero primary
elements ai 2 S and such that ai divides .t=�/s , for each i . Note that

p
ai is a maximal

ideal of S andQpai D S=ai , so to obtain thatQD 0, it is enough to show thatQpai D 0.
From [13, Chapter 2, Corollary 13] note that each maximal ideal

p
ai corresponds to a

zero of .t=�/s , in particular, we are reduced to showing that Q vanishes at zeros of t=�.
This follows from (2). Hence, we get that (4.9) is an isomorphism and passing to the limit
over � we obtain that BC

rig; ML
˝BCrig;L

ML.DL/
�
�!M ML.D ML/, as desired.

Lemma 4.12. We have following properties for the BCrig;L-module ML.DL/:

(1) The cokernel of the injective map 1 ˝ 'W '�.ML.DL// !ML.DL/ is killed
by Œp�sq .

(2) ML.DL/ is pure of slope zero, i.e., the B�rig;L-module B�rig;L ˝BCrig;L
ML.DL/ is

pure of slope zero in the sense of [33, Section 6.3].

Proof. For (1), let us first note the following commutative diagram with exact rows:

0 ML.DL/ BCrig;LŒ�=t�˝L DL Q 0

0 M ML.D ML/ BC
rig; ML

Œ�=t�˝ ML D ML BC
rig; ML
˝BCrig;L

Q 0;

whereQ is the cokernel of the left horizontal arrow in the first row. All the maps above are
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'-equivariant and the vertical maps are injective (see (4.7), Definition 4.9 and Lemmas 4.8
and 4.11 (3)). From Remarks 2.8, 2.9 and Lemmas 2.10, 2.11, recall that the maps

'LWBCrig;L �! BCrig;L and ' MLWB
C

rig; ML
�! BC

rig; ML

are faithfully flat (we write ' with subscripts to avoid confusion), the natural map

BCrig;L �! BC
rig; ML

is flat and
BC

rig; ML
\ BCrig;LŒ�=t� D BCrig;L:

Then, using Lemma 4.11 (3) and that D ML
�
�! ML˝L DL from (2.5), we get that

'�
ML

�
M ML.D ML/

�
�
�! BC

rig; ML
˝BCrig;L

'�L
�
ML.DL/

�
;

'�L
�
BCrig;LŒ�=t�˝L DL

�
�
�! BCrig;LŒ�=t�˝BCrig;L

'�L.B
C

rig;L ˝L DL/

� BC
rig; ML

Œ�=t�˝BCrig;LŒ�=t�
'�L
�
BCrig;LŒ�=t�˝L DL

�
�
�! '�

ML

�
BC

rig; ML
Œ�=t�˝ ML D ML

�
:

So, from the preceding discussion and the exactness of both rows in the diagram above, it
follows that,

'�L
�
ML.DL/

�
D
�
BCrig;LŒ�=t�˝BCrig;L

'�L
�
ML.DL/

��
\
�
BC

rig; ML
˝BCrig;L

'�L
�
ML.DL/

��
�
�! '�L

�
BCrig;LŒ�=t�˝L DL

�
\ '�

ML

�
M ML.D ML/

�
,! '�

ML

�
BC

rig; ML
Œ�=t�˝ ML D ML

�
:

Now, let x in ML.DL/�M ML.D ML/, then there exists some y in '�
ML
.M ML.D ML// such that

.1˝ '/y D z�sx. Recall that 1˝ 'W'�L.DL/
�
�!DL and '.�=t/ D .z��/=.pt/, therefore,

the cokernel of the induced map 1˝ 'W'�L..�=t/
sBCrig;L ˝L DL/! .�=t/sBCrig;L ˝L DL

is killed by z�s , in particular, z�sx is in .1˝ '/'�L..�=t/
sBCrig;L ˝L DL/. Since 1˝ ' is

injective on '�
ML
..�=t/sBC

rig; ML
˝ ML D ML/, therefore, we get that y is in

'�L
�
.�=t/sBCrig;L ˝L DL

�
\ '�

ML

�
M ML.D ML/

�
D '�L

�
ML.DL/

�
:

In particular, the cokernel of the natural map 1˝ 'W'�L.ML.DL//!ML.DL/ is killed
by z�s .

For (2), note that from Lemma 4.11 (3), we have that

BC
rig; ML
˝BCrig;L

ML.DL/
�
�!M ML.D ML/:

Moreover, from [33, Theorem 6.10] we obtain a slope filtration on B�rig;L˝BCrig;L
ML.DL/

such that base changing this slope filtration along

B�rig;L �! B�
rig; ML
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gives a slope filtration on B�
rig; ML
˝BC

rig; ML
M ML.D ML/. However, from [35, Theorem 1.3.8]

and [36, Proposition 2.3.3], we know that B�
rig; ML
˝BC

rig; ML
M ML.D ML/ is pure of slope zero.

Therefore, we must have that ML.DL/ is pure of slope zero.

4.3. Stability under Galois action

In this section, we will define and study a finite free .';�L/-module Nrig;L.V / over BCrig;L,
of slope zero, and obtained from the BCrig;L-module in Definition 4.9. From Section 2.1.4,
recall that we have identifications

zBCrig;L D .zB
C
rig/

HL D

\
n2N

'n
�
BCcris.OL1/

�
;

where the last equality follows because BCcris.OL1/ D BCcris.OxL/
HL (see Section 2.1.1).

Moreover, using the isomorphism in Lemma 2.19 and Remark 2.22, we see that

Bcris.OL1/˝L ODcris;L.V /

is equipped with a continuous action of �L. Note that we have zBCrig;L ˝L ODcris;L.V / �

Bcris.OL1/˝L ODcris;L.V / and we claim the following.

Lemma 4.13. The zBCrig;L-module zBCrig;L˝LODcris;L.V / is stable under the induced action
of �L. For any a˝ x in zBCrig;L ˝L ODcris;L.V / and g 2 �L, this action can be explicitly
described by the following formula:

g.a˝ x/ D g.a/˝
X

k2Nd

dY
iD1

@
ki
i .x/

dY
iD1

�
g
�
ŒX [i �

�
� ŒX [i �

�Œki �
:

Proof. The non-canonical .';G ML/-equivariant L-algebra structure on OBCcris.OL1/ from
Section 2.1.1, extends to a .'; G ML/-equivariant ML-algebra structure, and thus it provides
.'; G ML/-equivariant L-algebra and ML-algebra structures on BCcris.OL1/, via the compos-
ition L! ML! OBCcris.OL1/� BCcris.OL1/, where the last map is the projection map
described before Lemma 2.19. Moreover, recall that we have

L˝'n;L ODcris;L.V /
�
��! ODcris;L.V /; for all n 2 N:

So, we can write,

BCcris.OL1/˝L ODcris;L.V /
�
��! BCcris.OL1/˝ ML Dcris; ML.V /

�
��! BCcris.OL1/˝'�n

ML
; ML

�
ML˝'n

ML
; ML Dcris; ML.V /

�
:

Applying 'n to the isomorphism above gives that

'n
�
BCcris.OL1/˝L ODcris;L.V /

�
�
��! 'n

�
BCcris.OL1/

�
˝L ODcris;L.V /:



Abhinandan 50

Note that the Frobenius-semilinear endomorphism ' of BCcris.OL1/˝L ODcris.V / com-
mutes with the action of �L described in Remark 2.22. Therefore, the following is stable
under the �L-action:\

n2N

'n
�
BCcris.OL1/˝L ODcris;L.V /

�
�
�!

� \
n2N

'n
�
BCcris.OL1/

��
˝L ODcris;L.V /

D zBCrig;L ˝L ODcris;L.V /:

The second claim follows from Lemma 2.23.

Extending the isomorphism in (4.2) along the natural map BC
rig; ML

Œ�=t�! zBCrig;LŒ�=t�
(see Section 2.1.5), yields a '-equivariant isomorphism

zBCrig;LŒ�=t�˝ ML Dcris; ML.V /
�
��! zBCrig;LŒ�=t�˝BC

ML

N ML.V /:

Now, recall that for any g 2 �L, we have that g.t/D�.g/t and g.�/D.1C �/�.g/ � 1,
where � is the p-adic cyclotomic character. Now, using that

ML˝L ODcris;L.V /
�
��! Dcris; ML.V /;

we get '-equivariant isomorphisms

zBCrig;LŒ�=t�˝LODcris;L.V /
�
��! zBCrig;LŒ�=t�˝ ML Dcris; ML.V /

�
��! zBCrig;LŒ�=t�˝BC

ML

N ML.V /;

and we equip the last term with a �L-action by transport of structure via this isomorphism.
In particular, the preceding discussion induces an action of �L over

zBCrig;LŒ�=t�˝BC
rig; ML

Nrig; ML.V / D
zBCrig;LŒ�=t�˝BC

ML

N ML.V /:

Our next goal is to show that zBCrig;L ˝BCrig;L
Nrig; ML.V / is stable under the action of �L

induced from the �L-action on

zBCrig;LŒ�=t�˝BCrig;L
Nrig; ML.V /:

We will do this by embedding everything into Bcris.OxL/˝Qp V .
Let us fix some elements in Acris.OL1/. For n 2 N, let n D .p � 1/f .n/C r.n/ with

r.n/; f .n/ 2 N and 0 6 r.n/ < p � 1. Set t ¹nº WD tn

f .n/Špf .n/
and define

ƒ WD
°X
n2N

ant
¹nº; with an 2 OF such that an ! 0 as n!C1

±
D OF

�
t; .tp�1=p/Œk�; k 2 N

�^ �
��! OF

�
�; .�p�1=p/Œk�; k 2 N

�^
;

where ^ denotes the p-adic completion and the isomorphism is induced by the map t 7!
log.1 C �/ with the inverse map given as � 7! exp.t/ � 1 (see [15, Lemme 6.2.13]).
Furthermore, for r 2 N and A WD Ainf.OL1/, Ainf.OxL/, Acris.OL1/ or Acris.OxL/, set

I .r/A WD
®
a 2 A such that 'n.a/ 2 FilrA for all n 2 N

¯
: (4.10)
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Lemma 4.14. We note the following facts:

(1) tp�1 2 pAcris.OL1/, t
¹nº 2 Acris.OL1/ and t=� is a unit in ƒ � Acris.OL1/.

(2) For any r 2 N, we have that

I .r/Ainf.OL1/ D �
rAinf.OL1/ and I .p�1/Ainf.OL1/ D �

p�1Ainf.OL1/:

(3) Let S D OF J�K, then we have the following natural and continuous (for the p-
adic topology) isomorphism of Ainf.OL1/-algebras:

Ainf.OL1/ y̋ S ƒ
�
��! Acris.OL1/X

k2N

ak ˝ .�
p�1=p/Œk� 7�!

X
k2N

ak.�
p�1=p/Œk�;

(4) The ideal I .r/Acris.OL1/ is topologically generated by t ¹sº, for s > r .

(5) The following natural map is injective:

Ainf.OL1/=I
.r/Ainf.OL1/ �! Acris.OL1/=I

.r/Acris.OL1/;

and its cokernel is killed by mŠpm, where m D b r
p�1
c.

Similar statements are true for Ainf.OxL/ and Acris.OxL/.

Proof. All claims except (3) follow from [28, Section 5.2] and [45, Section A3]. The proof
of the claim in (3) follows in a manner similar to the proof of [15, Proposition 6.2.14].

Remark 4.15. Note that the Qp-algebras Binf.OL1/ WD Ainf.OL1/Œ1=p�, BCcris.OL1/ WD

Acris.OL1/Œ1=p� and zBCrig;L naturally embed into the Qp-algebra Bcris.OL1/, and we
equip the former rings with a filtration induced from the natural filtration on Bcris.OL1/

(see Section 2.1.1). Then, one can define ideals similar to (4.10) for these rings and from
Lemma 4.14 (5), we have the following natural isomorphisms:

Binf.OL1/=I
.r/Binf.OL1/

�
��! BCcris.OL1/=I

.r/BCcris.OL1/;

Binf.OxL/=I
.r/Binf.OxL/

�
��! BCcris.OxL/=I

.r/BCcris.OxL/:

Proposition 4.16. The Binf.OL1/-module

N ML;1.V / WD Binf.OL1/˝BC
ML

N ML.V / �
�
Binf.OxL/˝Qp V

�HL
D zDCL .V /;

is stable under the residual action of �L on zDCL .V / and we equip N ML;1.V / with this
action. Then, we have a natural �L-equivariant embedding

N ML;1.V / � Bcris.OL1/˝L ODcris;L.V /;

where we use Remark 2.21 and (2.9) to equip the right hand term with an action of �L.
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Proof. From Lemma 4.4 (2), consider the following exact sequence:

0 �! �s zDCL .V / �! N ML;1.V / �! N ML;1.V /=�
s zDCL .V / �! 0; (4.11)

where we know that �s zDCL .V / � zD
C

L .V / is stable under the action of �L. Therefore, to
show that the middle term above is stable under the action of �L, it is enough to show that
for the inclusion,

N ML;1.V /=�
s zDCL .V / � zD

C

L .V /=�
s zDCL .V / �

�
Binf.OxL/=�

sBinf.OxL/˝Qp V
�HL

� Binf.OxL/=�
sBinf.OxL/˝Qp V;

the image of the first term in the last term is stable under the action of GL.
Note that from Lemma 4.5, we have a natural Bcris.OxL/-linear and .';G ML/-equivariant

isomorphism Bcris.OxL/˝BC
ML

N ML.V /
�
�! Bcris.OxL/˝Qp V . In view of Remark 4.15, let us

set,

M WD
�
I .s/BCcris.OxL/˝Qp V

�
\
�
BCcris.OL1/˝BC

ML

N ML.V /
�
� Bcris.OxL/˝Qp V:

Then we obtain the following diagram with exact rows:

0 �s zDCL .V / N ML;1.V / N ML;1.V /=�
s zDCL .V / 0

0 M BCcris.OL1/˝BC
ML

N ML.V /
�
BCcris.OL1/˝BC

ML

N ML.V /
�
=M 0;

where the left vertical arrow is injective by Lemma 4.4 (2) and the middle vertical arrow
is obviously injective. Moreover, we have the following.

Lemma 4.17. The natural embedding N ML;1.V / � BCcris.OL1/˝BC
ML

N ML.V / induces the

following Binf.OL1/-linear and � ML-equivariant isomorphism:

N ML;1.V /=�
s zDCL .V /

�
�!

�
BCcris.OL1/˝BC

ML

N ML.V /
�
=M:

Proof. First, we observe that by Lemma 4.4 (2) we have that,

M \ N ML;1.V / D
�
I .s/BCcris.OxL/˝Qp V

�
\ N ML;1.V /

�
�
I .s/BCcris.OxL/˝Qp V

�
\ zDCL .V / � �

s zDCL .V /:

Therefore, we get that the rightmost vertical map in the diagram above is injective. Next,
we need to show that

N ML;1.V /CM D BCcris.OL1/˝BC
ML

N ML.V /:

It is clear that the left expression is contained in the right. To show the converse, let x be
an element of BCcris.OL1/˝BC

ML

N ML.V /. Then, for m 2 N large enough, we have that pmx
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is in Acris.OL1/ ˝AC
ML

N ML.T /. By the isomorphism in Lemma 4.14 (3), for r D d s
p�1
e,

k 2 N and xk in N ML.T / such that xk ! 0 as k !C1, we can write

pmx D
X
k2N

xk.�
p�1=p/Œk� D

X
06k6r�1

xk.�
p�1=p/Œk� C

X
k>r

xk.�=p/
Œk�:

Clearly, the first summation in the rightmost expression is in N ML;1.V /. Moreover, from
Lemma 4.14 (1) there exists some v 2 ƒ�, such that �p�1=p D vtp�1=p. Therefore, we
obtain that the second summation is in�

I .s/Acris.OxL/˝Zp T
�
\
�
Acris.OL1/˝AC

ML

N ML.T /
�
�M:

Hence, x is in N ML;1.V /CM .

Next, let consider the following diagram:

BCcris.OL1/˝ ML Dcris; ML.V / BCcris.OL1/˝BC
ML

N ML.V /

Bcris.OxL/˝ ML Dcris; ML.V / Bcris.OxL/˝Qp V

Bcris.OxL/˝L ODcris;L.V / Bcris.OxL/˝Qp V

�
OBcris.OxL/˝L ODcris;L.V /

�@D0 �
OBcris.OxL/˝Qp V

�@D0
:

�

�

�

o

�

o o

(4.12)

In (4.12) the bottom horizontal arrow is a .'; GL/-equivariant isomorphism since V is a
crystalline representation of GL. The left vertical arrow from the fourth to the third row is
induced by the projection OBcris.OxL/� Bcris.OxL/, via Xi 7! ŒX [i �, it admits a section
as in (2.8), it is evidently '-equivariant and it is GL-equivariant since the codomain is
equipped with a GL-action by transport of structure from the domain (see Remark 2.21).
The right vertical arrow from the fourth to the third row is also induced by the projection
OBcris.OxL/� Bcris.OxL/, it admits a natural section

Bcris.OxL/˝Qp V �!
�
OBcris.OxL/˝ V

�@D0
;

and it is naturally .';GL/-equivariant. The horizontal arrow in the third row is the inverse
of the isomorphism in Lemma 2.19, which is given as the composition of the inverse of the
bottom left vertical arrow, the bottom horizontal arrow and the bottom right vertical arrow,
and it is .'; GL/-equivariant by the preceding discussion and Remark 2.21. In particular,
we get that the lower square is commutative and .';GL/-equivariant. Next, the left vertical
arrow from the third to the second row is an isomorphism since ML ˝L ODcris;L.V /

�
�!

Dcris; ML.V / by (2.5) and its .'; G ML/-equivariance can either be checked by the explicit
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formula in Remark 2.21 or by observing that the non-canonical map L! ML! Bcris.OxL/

is .';G ML/-equivariant (see the proof of Lemma 4.13). The horizontal arrow in the second
row is a .'; G ML/-equivariant isomorphism since V is a crystalline representation of G ML.
Commutativity of the middle square follows since the outer square between the second and
the fourth row as well as the lower square are commutative. Commutativity and .';G ML/-
equivariance of the top square follows from Lemma 4.5.

Furthermore, in the diagram (4.12), the image of composition of the top two left ver-
tical maps inside Bcris.OxL/˝LODcris;L.V / is stable under the action ofGLbyRemark 2.21.
So the image of composition of the top two right vertical maps inside Bcris.OxL/˝Qp V is
stable under the action of GL, and it follows that its image�

BCcris.OL1/˝BC
ML

N ML.V /
�
=M � BCcris.OxL/=I

.s/BCcris.OxL/˝Qp V

�
�! Binf.OxL/=�

sBinf.OxL/˝Qp V;

is stable under the action of GL. Therefore, from Lemma 4.17, we obtain that the image
of N ML;1.V /=�

s zDCL .V / � Binf.OxL/=�
s ˝Qp V is stable under the action of GL. Hence,

from (4.11) we conclude that N ML;1.V / is stable under the action of �L and the following
natural composition is �L-equivariant:

Binf.OL1/˝BC
ML

N ML.V /�BCcris.OL1/˝BC
ML

N ML.V /
�
��!BCcris.OL1/˝LODcris;L.V /: (4.13)

This concludes our proof.

Recall that Nrig; ML.V / D BC
rig; ML
˝BC

ML

N ML.V / and we note the following.

Corollary 4.18. The zBCrig;L-linear extension of the �L-equivariant embedding

N ML;1.V / � Bcris.OL1/˝L ODcris;L.V /

from Proposition 4.16, induces an identification of the following zBCrig;L-submodules of
Bcris.OL1/˝L ODcris;L.V /:

zBCrig;L ˝Binf.OL1 /
N ML;1.V / D zB

C

rig;L ˝BC
ML

N ML.V / D zB
C

rig;L ˝BC
rig; ML

Nrig; ML.V /;

which are stable under the induced �L-action.

Proof. The equalities in the claim follows from the definitions and their compatibility
with �L-actions follows from (4.13). Then, by using (4.2), we see that

zBCrig;LŒ�=t�˝BC
ML

N ML.V /
�
��! zBCrig;LŒ�=t�˝ ML Dcris; ML.V / � Bcris.OL1/˝ ML Dcris; ML.V /

D Bcris.OL1/˝L ODcris;L.V /:

In particular, we obtain that
zBCrig;L ˝BC

ML

N ML.V /

is a zBCrig;L-submodule of Bcris.OL1/˝LODcris;L.V /, and the stability of zBCrig;L˝BC
ML

N ML.V /
under the �L-action now follows from Proposition 4.16.
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Recall that from Definition 4.9, we have a BCrig;L-submodule ML.ODcris;L.V // �

M ML.Dcris; ML.V // stable under the action of .'; � ML/, and from Lemma 4.8, we have a
BC

rig; ML
-linear and .';� ML/-equivariant isomorphism ˇ WM ML.Dcris; ML.V //

�
�! Nrig; ML.V /. Let

us define a BCrig;L-submodule of Nrig; ML.V / as,

Nrig;L.V / WD ˇ
�
ML

�
ODcris;L.V /

��
� Nrig; ML.V /: (4.14)

Note that the map BCrig;L ! BC
rig; ML

constructed in Section 2.1.5 is .'; � ML/-equivariant,
therefore, from (4.14) we obtain a natural BCrig;L-linear and .';� ML/-equivariant isomorph-
ism ˇ WML.ODcris;L.V //

�
�! Nrig;L.V /. In particular, from Lemma 4.11 (3), we obtain

that Nrig;L.V / is a finite free BCrig;L-module of rank D dimQp V , and the natural BC
rig; ML

-
linear map BC

rig; ML
˝BCrig;L

Nrig;L.V /! Nrig; ML.V / is a .'; � ML/-equivariant isomorphism,
since ˇ is .'; � ML/-equivariant. Moreover, from Lemma 4.12, it follows that Nrig;L.V /

is of finite Œp�q-height and pure of slope zero. Now, consider the following diagram:

ML

�
ODcris;L.V /

�
Œ�=t� BCrig;LŒ�=t�˝LODcris;L.V / Nrig;L.V /Œ�=t�

M ML

�
Dcris; ML.V /

�
Œ�=t� BC

rig; ML
Œ�=t�˝ MLDcris; ML.V / Nrig; ML.V /Œ�=t�:

�

�

ˇ

�

�

�

ˇ

�

(4.15)

In the diagram (4.15), all vertical arrows are natural inclusions. In the bottom row, the left
to right horizontal arrow is the inverse of the composition of the lower horizontal arrow
and the left vertical arrow of diagram (4.6), the right to left horizontal arrow is the inverse
of (4.2), the curved arrow is the map ˇ in Lemma 4.8 and the resulting triangle commutes
by diagram (4.6). In the top row, the left to right horizontal arrow is the isomorphism in
(4.8), the curved arrow is from (4.14), the right to left horizontal arrow is the compos-
ition of the inverse of ˇ with the inverse of (4.8) and the resulting triangle commutes
by definition. Moreover, the two inner squares commute by definition and all maps are
.'; � ML/-equivariant.

Using the diagram (4.15) and Definition 4.9, we can write

Nrig;L.V / D
�
BCrig;LŒ�=t�˝L ODcris;L.V /

�
\ Nrig; ML.V / � BC

rig; ML
Œ�=t�˝ ML Dcris; ML.V /;

in particular, we will now consider Nrig;L.V / as a BCrig;L-submodule of BCrig;LŒ�=t� ˝L
ODcris;L.V /. Furthermore, from Lemma 2.23, recall that the BCrig;L-submodule

BCrig;L ˝L ODcris;L.V / � BCcris.OL1/˝L ODcris;L.V /

is stable under the action of �L on the latter, and we equip the former with the induced �L-
action. Since we have that g.t/D �.g/t and g.�/D .1C�/�.g/ � 1, for any g 2 �L and
� the p-adic cyclotomic character, therefore, the preceding �L-action naturally extends to
BCrig;LŒ�=t�˝L ODcris;L.V /.
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Proposition 4.19. The BCrig;L-submodule Nrig;L.V /�BCrig;LŒ�=t�˝LODcris;L.V / is stable
under the action of �L. Moreover, the preceding inclusion extends to a BCrig;LŒ�=t�-linear
and .'; �L/-compatible isomorphism,

BCrig;LŒ�=t�˝BCrig;L
Nrig;L.V /

�
��! BCrig;LŒ�=t�˝L ODcris;L.V /: (4.16)

Proof. From Corollary 4.18 and the discussion after (4.14), we have that

zBCrig;L ˝BC
rig; ML

Nrig; ML.V /
�
��! zBCrig;L ˝BCrig;L

Nrig;L.V /;

which is stable under the action of �L on Bcris.OL1/˝L ODcris;L.V /. Moreover, using
Lemma 2.23 and the discussion after (4.15), we have a �L-equivariant embedding

BCrig;LŒ�=t�˝L ODcris;L.V / � Bcris.OL1/˝L ODcris;L.V /:

Therefore, inside Bcris.OL1/˝L ODcris;L.V /, the following intersection is stable under
the action of �L:�
zBCrig;L ˝BCrig;L

Nrig;L.V /
�
\
�
BCrig;LŒ�=t�˝L ODcris;L.V /

�
D
�
zBCrig;L ˝BCrig;L

Nrig;L.V /
�
\
�
BCrig;LŒ�=t�˝BCrig;L

Nrig;L.V /
�

D
�
zBCrig;L \ BCrig;LŒ�=t�

�
˝BCrig;L

Nrig;L.V / D Nrig;L.V /:

The first equality follows from (4.15) and the second equality follows from Lemma 2.12
and the fact that Nrig;L.V / is finite free over BCrig;L. This proves the first claim. For the
second claim, note that by definition, the BCrig;LŒ�=t�-linear extension of the .'; �L/-
equivariant inclusion Nrig;L.V / � BCrig;LŒ�=t� ˝L ODcris;L.V /, coincides with the top
right horizontal arrow of the diagram (4.15). Hence, the isomorphism in (4.16) follows.

Corollary 4.20. The action of �L on Nrig;L.V / is trivial modulo �.

Proof. Note that we have g.�/ D .1 C �/�.g/ � 1 and g.t/ D �.g/t , for any g 2 �L
and � the p-adic cyclotomic character, in particular, .g � 1/.�=t/D �ug.�=t/, for some
ug 2 BCL . Therefore, using Lemma 2.24 it follows that the action of �L is trivial modulo �
on BCrig;LŒ�=t�˝L ODcris;L.V /

�
 � BCrig;LŒ�=t�˝BCrig;L

Nrig;L.V / (see (4.16)). Next, from

Proposition 4.19, note that we have a .'; �L/-equivariant inclusion

Nrig;L.V / � BCrig;LŒ�=t�˝BCrig;L
Nrig;L.V /

�
�! BCrig;LŒ�=t�˝L ODcris;L.V /:

Let x be in Nrig;L.V /, then for any g2�L, we have that .g�1/x is in Nrig;L.V /�Nrig; ML.V /

and .g � 1/x is also in �BCrig;LŒ�=t� ˝BCrig;L
Nrig;L.V /. Now, inside Nrig; ML.V /Œ�=t�, we

have that,

Nrig; ML.V / \
�
�BCrig;LŒ�=t�˝BCrig;L

Nrig;L.V /
�

D
�
BC

rig; ML
˝BCrig;L

Nrig;L.V /
�
\
�
�BCrig;LŒ�=t�˝BCrig;L

Nrig;L.V /
�

D
�
BC

rig; ML
\ �BCrig;LŒ�=t�

�
˝BCrig;L

Nrig;L.V / D �Nrig;L.V /;
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where the first equality follows from the isomorphism (see the discussion after (4.14)),

BC
rig; ML
˝BCrig;L

Nrig;L.V /
�
��! Nrig; ML.V /;

the second equality follows since Nrig;L.V / is free over BCrig;L and the last equality fol-
lows from Lemma 2.11. Hence, we conclude that .g � 1/x is in �Nrig;L.V /, for any x in
Nrig;L.V / and g 2 �L.

4.4. Compatibility with .'; �L/-modules

From Section 2.2, recall that D�rig;L.V / is a pure of slope zero finite free .'; �L/-module
over B�rig;L, functorially associated to V . The following result is a generalisation of [7,
Proposition 3.5 and Théorème 3.6] from the perfect residue field case to L.

Proposition 4.21. There are natural .';GL/-equivariant isomorphisms,

(1) zBCrigŒ1=t �˝L ODcris;L.V /
�
�! zBCrigŒ1=t �˝Qp V .

(2) zB�rigŒ1=t �˝L ODcris;L.V /
�
�! zB�rigŒ1=t �˝B�rig;L

D�rig;L.V /.

Proof. For (1), recall that from Lemma 4.13, there is a zBCrig-linear and .';GL/-equivariant
map,

zBCrig ˝L ODcris;L.V / �! Bcris.OxL/˝L ODcris;L.V /
�
��! Bcris.OxL/˝Qp V;

where the isomorphism is from Lemma 2.19. Extending the isomorphism in (4.2) along
zBCrig;LŒ�=t�! zB

C
rigŒ1=t � and using (2.5), we obtain a '-equivariant isomorphism,

zBCrigŒ1=t �˝L ODcris;L.V /
�
��! zBCrigŒ1=t �˝ ML Dcris; ML.V /

�
��! zBCrigŒ1=t �˝BC

ML

N ML.V /:

The preceding isomorphism fits into a commutative diagram compatibly with (4.12),

zBCrigŒ1=t �˝LODcris;L.V / Bcris.OxL/˝LODcris;L.V /

zBCrigŒ1=t �˝BC
ML

N ML.V / zBCrigŒ1=t �˝Qp V Bcris.OxL/˝Qp V;

o
�

�

(4.17)

where the left horizontal arrow in the bottom row is induced from the natural isomorphism
Ainf.OxL/Œ1=�� ˝AC

ML

N ML.T /
�
�! Ainf.OxL/Œ1=�� ˝Zp T (see Lemma 4.4 (2)), the slanted

isomorphism is the isomorphism in the third row of (4.12) and the rest are natural injective
maps. Since the slanted isomorphism is .'; GL/-equivariant, therefore, we obtain that
the isomorphism zBCrigŒ1=t � ˝L ODcris;L.V /

�
�! zBCrigŒ1=t � ˝Qp V is .'; GL/-equivariant,

showing (1). For (2), by extending the isomorphism in (1) along zBCrigŒ1=t �! zB
�
rigŒ1=t �

and using (2.3), we obtain .';GL/-equivariant isomorphisms,

zB�rigŒ1=t �˝L ODcris;L.V /
�
��! zB�rigŒ1=t �˝Qp V

�
��! zB�rigŒ1=t �˝B�rig;L

D�rig;L.V /:
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From the discussion after (4.14) and Proposition 4.19, note that B�rig;L˝BCrig;L
Nrig;L.V /

is a pure of slope zero finite free .'; �L/-module over B�rig;L of rank D dimQp V . There-
fore, by the equivalence of categories in [41, Lemma 4.5.7], there exists a unique finite
free étale .'; �L/-module D�

L over B�L of rankD dimQp V such that

B�rig;L ˝BCrig;L
Nrig;L.V /

�
��! B�rig;L ˝B�L

D
�
L;

compatible with the .'; �L/-action.

Corollary 4.22. There exists a natural .';GL/-equivariant isomorphism

zB�rig ˝BCrig;L
Nrig;L.V /

�
��! zB�rig ˝B�L

V;

inducing natural .'; �L/-equivariant isomorphisms D�
L
�
�! D�L.V / and

B�rig;L ˝BCrig;L
Nrig;L.V /

�
��! B�rig;L ˝B�L

D�L.V /:

Proof. Consider the following diagram:

zB�rig ˝BCrig;L
Nrig;L.V / zB�rig ˝BC

rig; ML
Nrig; ML.V /

zB�rig ˝Qp V

zB�rigŒ1=t �˝BCrig;L
Nrig;L.V / zB�rigŒ1=t �˝L ODcris;L.V / zB�rigŒ1=t �˝Qp V:

� �

� �

In the top row, the left horizontal arrow is the extension along BC
rig; ML
! zB�rig of the nat-

ural isomorphism BC
rig; ML
˝ Nrig;L.V /

�
�! Nrig; ML.V / (see the discussion after (4.14)), and

the right horizontal arrow is the extension along Ainf.OxL/Œ1=��!
zB�rig of the natural iso-

morphism Ainf.OxL/Œ1=��˝AC
ML

N ML.T /
�
�! Ainf.OxL/Œ1=��˝Zp T (see Lemma 4.4 (2)). In

the bottom row, the left horizontal arrow is induced by the .'; �L/-equivariant isomorph-
ism BCrig;LŒ�=t�˝BCrig;L

Nrig;L.V /
�
�! BCrig;LŒ�=t�˝L ODcris;L.V / (see (4.16) in Proposi-

tion 4.19) and the right horizontal arrow is induced from Proposition 4.21 (1). The left and
the right vertical arrows are natural maps and the middle vertical arrow is induced from
(4.2) and (2.5). Commutativity of the left square follows from (4.15) and commutativity
of the right square follows from (4.17). This shows the first claim.

For the second claim, set V 0 WD .zB� ˝B�L
D
�
L/
'D1, and note that it is a p-adic rep-

resentation of GL with dimQp V
0 D dimQp V (see [6, Théorème 4.35]). Moreover, we

have

V 0 � .zB�rig ˝B�L
D
�
L/
'D1 �
��!

�
zB�rig ˝BCrig;L

Nrig;L.V /
�'D1 �

��! .zB�rig ˝Qp V /
'D1
D V;

where the first isomorphism follows from the discussion before the statement of the claim
above, the second isomorphism follows from the first claim proven in the previous para-
graph, and the last equality follows from Lemma 2.3. Therefore, we obtain that V 0 ��! V as
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GL-representations and it implies thatD�
L D D�L.V

0/
�
�! D�L.V / as étale .';�L/-modules

over B�L. It is straightforward to verify that this isomorphism is compatible with the com-
mutative diagram above. This concludes our proof.

Remark 4.23. As indicated before Corollary 4.22, for a p-adic crystalline representation
of V , combining the .'; �L/-equivariant isomorphism

B�rig;L ˝BCrig;L
Nrig;L.V /

�
��! B�rig;L ˝B�L

D�L.V /;

together with the inverse of the isomorphism (4.16), gives a B�rig;L-linear .';�L/-equivari-
ant isomorphism,

B�rig;L ˝L ODcris;L.V /
�
��! B�rig;L ˝B�L

D�L.V /: (4.18)

The isomorphism (4.18) generalises [7, Proposition 3.7] from the perfect residue field case
to L.

4.5. Obtaining Wach module

The finite free BCrig;L-module Nrig;L.V / is of finite Œp�q-height s and pure of slope zero
(see Lemma (4.12)), therefore, from Lemma 2.13 (2) there exists a unique finite free BCL -
module of rank D dimQp V and finite Œp�q-height s, whose extension of scalars along
BCL ! BCrig;L gives Nrig;L.V /. In particular, from the proof of Lemma 2.13, we note the
following.

Definition 4.24. Define NL.V / WD Nrig;L.V / \ D�L.V / � D�rig;L.V /.

The BCL -module NL.V / is finite free of rank D dimQp V and it is equipped with an
induced Frobenius-semilinear endomorphism ' such that the cokernel of the injective map
.1˝ '/W '�.NL.V //! NL.V / is killed by Œp�sq , since Nrig;L.V / is of finite Œp�q-height

s and 1˝ 'W '�.D�L.V //
�
�! D�L.V /. Moreover, we have that NL.V / � DCL .V / because

inside D�rig;L.V / we have,

NL.V / D Nrig;L.V / \ D�L.V / � .zB
C
rig ˝Qp V /

HL \ .B� ˝Qp V /
HL

�
�
.zBCrig ˝Qp V / \ .B

�
˝Qp V /

�HL
�
�
.zBCrig \ B�/˝Qp V

�HL
D .BC ˝Qp V /

HL D DCL .V /:

Furthermore, since Nrig;L.V / and D�L.V / are stable under the compatible action of �L
(see Proposition 4.19 and Corollary 4.22), we conclude that NL.V / is stable under the
induced �L-action. In particular, from the preceding discussion and Lemma 2.13, we
obtain .'; �L/-equivariant isomorphisms,

BCrig;L ˝BCL
NL.V / ���! Nrig;L.V / and B�L ˝BCL

NL.V / ���! D�L.V /: (4.19)
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Lemma 4.25. The action of �L on NL.V / is trivial modulo �.

Proof. Let g 2 �L and x 2 NL.V /. Then, .g � 1/x is in NL.V / � D�L.V /. Moreover,
from Corollary 4.20, we have that .g � 1/x is in �Nrig;L.V /. Therefore, inside D�rig;L.V /,
by using (4.19) we get that,

.g � 1/x 2 D�L.V / \ �Nrig;L.V / D .B�L \ �BCrig;L/˝BCL
NL.V / D �NL.V /;

as claimed.

Definition 4.26. Define the Wach module over ACL D BCL \ AL � BL as,

NL.T / WD NL.V / \ DL.T / � DL.V /:

Proof of Theorem 4.1. We will show that NL.T / from Definition 4.26 satisfies all axioms
of Definition 3.7. From the definition, note that NL.T / is a finitely generated torsion-free
ACL -module and an elementary computation shows that NL.T /\�nNL.V /D �nNL.T /,
for all n 2 N, in particular, NL.T /=�NL.T / is p-torsion-free. Moreover, we have that
NL.T /Œ1=p� D NL.V /, and a simple diagram chase shows that .NL.T /=pNL.T //Œ�� D
.NL.T /=�NL.T //Œp� D 0 and�

AL ˝ACL
NL.T /

�
=p
�
AL ˝ACL

NL.T /
�
D
�
NL.T /=pNL.T /

�
Œ1=��:

So, for all n 2 N, we have that

NL.T /=pnNL.T /�
�
NL.T /=pnNL.T /

�
Œ1=��D

�
AL˝ACL

NL.T /
�
=pn

�
AL˝ACL

NL.T /
�
;

and therefore, NL.T /\pn.AL˝ACL
NL.T //D pnNL.T /, in particular, it follows that we

have NL.V / \ .AL ˝ACL
NL.T // D NL.T /. Now, by using Remark 2.16, it follows that

NL.T / is a finite free ACL -module of rankD rkBCL
NL.V /D dimQp V . Alternatively, to get

the preceding statement, one can also use [8, Lemme II.1.3] (the proof of loc. cit. does not
require the residue field of discrete valuation base field, L in our case, to be perfect).

From the definition, it also follows that NL.T /\ pnDL.T /D pnNL.T /, in particular,
we have that NL.T /=pnNL.T / � DL.T /=pnDL.T /, and therefore,�

NL.T /=pnNL.T /
�
Œ1=�� � DL.T /=pnDL.T /:

So, we get that�
AL ˝ACL

NL.T /
�
=pn

�
AL ˝ACL

NL.T /
�
� DL.T /=pnDL.T /;

or equivalently, .AL˝ACL
NL.T //\pnDL.T /D pn.AL˝ACL

NL.T //. Note that we have
.AL˝ACL

NL.T //Œ1=p�DBL˝BCL
NL.V / ��!DL.V /, where the last isomorphism follows

from (4.19). Therefore, we get that

AL ˝ACL
NL.T / D DL.T / \

�
AL ˝ACL

NL.T /
�
Œ1=p�

�
��! DL.T / \ DL.V / D DL.T /:
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Next, note that NL.T / is equipped with an induced Frobenius-semilinear endomorph-
ism '. We have that 'WACL!ACL is faithfully flat and finite of degree pdC1 and '�.AL/ ��!
ACL ˝';ACL AL and similarly '�.BCL /

�
�! ACL ˝';ACL BCL (see Section 2.1.2). Therefore, we

get that

'�
�
NL.V /

�
D BCL ˝';BCL NL.V / ���! ACL ˝';ACL NL.V /;

'�
�
DL.T /

�
D AL ˝';AL DL.T / ���! ACL ˝';ACL DL.T /:

Then, it easily follows that '�.NL.T //D '�.NL.V //\ '�.DL.T //� '�.DL.V //. Now,
since 1˝ ' is injective on '�.DL.V //, 1˝ 'W '�.DL.T // ��! DL.T / and the cokernel
of 1˝ 'W '�.NL.V //! NL.V / is killed by Œp�sq , therefore, we get that the cokernel of
the injective map 1˝ 'W'�.NL.T //! NL.T / is killed by Œp�sq . Finally, note that NL.T /
is equipped with an induced �L-action such that �L acts trivially on NL.T /=�NL.T /
(follows easily from Lemma 4.25), and we have that AL ˝ACL

NL.T / ��! DL.T /. Hence,
we conclude that T is of finite Œp�q-height.

Corollary 4.27. There exists a natural isomorphism of étale .'; � ML/-modules

A ML ˝AL DL.T / ���! D ML.T /

and a natural isomorphism of Wach modules AC
ML
˝ACL

NL.T / ��! N ML.T /.

Proof. Note that we have an injection of étale .';� ML/-modules A ML˝AL DL.T /�D ML.T /
and isomorphisms of G ML-representations:�

W.C[
L/˝AL DL.T /

�'D1 �
��! T

�
 ��

�
W.C[

L/˝A ML D ML.T /
�'D1

:

So, we get that A ML ˝AL DL.T / ��! D ML.T /. Furthermore, we have a .'; � ML/-equivariant
injection of Wach modules AC

ML
˝ACL

NL.T / � N ML.T /. So, by the uniqueness of a Wach
module attached to T (see Lemma 3.9), it follows that

AC
ML
˝ACL

NL.T / ���! N ML.T /:

Proof of Corollary 4.3. The equivalence of ˝-categories follows from Theorem 4.1 and
we are left to show the exactness of the functor NL since the exactness of the quasi-
inverse functor follows from Proposition 3.3 and the exact equivalence in (2.2). From
Section 2.1.5, recall that ACL ! AC

ML
is faithfully flat, therefore, BCL ! BC

ML
is faithfully

flat. Moreover, for a p-adic crystalline representation V of GL, from Corollary 4.27, note
that we have BC

ML
˝BCL

NL.V / ��! N ML.V /. So, given an exact sequence,

0 �! V1 �! V2 �! V3 �! 0; (4.20)

ofp-adic crystalline representations ofGL, it is enough to show that the following sequence
is exact:

0 �! N ML.V1/ �! N ML.V2/ �! N ML.V3/ �! 0: (4.21)
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Furthermore, note that (4.20) is exact if and only if it is exact after tensoring with Qp.r/,
for any r 2 Z. Similarly, (4.21) is exact if and only if it is exact after tensoring with
��rBC

ML
.r/. So we may assume that (4.20) is an exact sequence of positive crystalline

representations, i.e., the Wach modules in (4.21) are effective. Moreover, the map

BC
ML
�! BC

rig; ML

is faithfully flat (by an argument similar to Lemma 2.7), so it is enough to show that the
following sequence is exact:

0 �! Nrig; ML.V1/ �! Nrig; ML.V2/ �! Nrig; ML.V3/ �! 0:

Exactness of the preceding sequence follows from Lemma 4.8, [35, Theorem 1.2.15], [36,
Proposition 2.2.6] and the exactness of the functor Dcris; ML. This allows us to conclude.
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