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Crystalline representations and Wach modules in the
imperfect residue field case

Abhinandan

Abstract. For an absolutely unramified extension L/Qj, with imperfect residue field, we define
and study Wach modules in the setting of (¢, I')-modules for L. Our main result establishes a direct
equivalence between the category of lattices inside crystalline representations of the absolute Galois
group of L and the category of integral Wach modules for L. Moreover, we provide a direct relation
between a rational Wach module equipped with the Nygaard filtration and the filtered ¢-module of
its associated crystalline representation.

1. Introduction

In classical p-adic Hodge theory, Fontaine introduced and developed the idea of study-
ing a p-adic representation of the absolute Galois group of Q, (and its extensions) via
semilinear algebraic objects attached to the representation. More concretely, for an exten-
sion F/Q, with perfect residue field and absolute Galois group G, in [27], Fontaine
showed that the category of Z,-representations of Gr is equivalent to the category of
étale (¢, I'r)-modules, where I'r is an open subgroup of Z; (see Section 1.1). On the
other hand, to understand p-adic representations coming from geometry, Fontaine defined
several classes of representations such as crystalline, semistable, etc. in [26]. Putting the
two point of views together, Fontaine asked the following natural question: is it possible to
describe crystalline representations of G in terms of (¢, I'r)-modules? For an unrami-
fied extension F/Q,, Fontaine studied this question in [27], and introduced the notion of
finite crystalline-height representations (représentations de cr-hauteur finie) of G g, which
was further developed by Wach [46,47], Colmez [20] and Berger [8]. More precisely, [8]
showed that the category of G r-stable Z,-lattices of p-adic crystalline representations is
equivalent to the category of Wach modules, where a Wach module is a certain integral
lattice inside the étale (¢, I'r)-module associated to the representation (see Section 1.1).
The two point of views of Fontaine admit natural generalisations to a relative base,
i.e., formally étale algebras over a formal torus. In particular, relative étale (¢, I')-modules
were studied by Andreatta [5] and relative p-adic crystalline representations were studied
by Faltings [24] and Brinon [15]. In [3], we introduced and studied the notion of relative
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Wach modules for an absolutely unramified (at p) relative base. However, compared to
the classical case, the results of [3] are restrictive, i.e., we only show that relative Wach
modules give rise to lattices inside relative crystalline representations; the converse is the
following difficult open question: can one functorially associate a relative Wach module
to a Zp-lattice inside a relative crystalline representation?

In this article, we resolve the open question for the imperfect residue field case (see
Theorem 1.1), and we use the result thus obtained, in a subsequent work [1], to resolve the
open question in the relative case. More concretely, for a complete discrete valuation field
L/Q, with imperfect residue field, [5] developed the theory of étale (¢, I'z.)-modules,
where I’z is an open subgroup of Z p(l)d x 7, with d being the transcendence degree
of L/Qp, and [14] developed the theory of p-adic crystalline representations of Gy, the
absolute Galois group of L. However, for absolutely unramified L/Q,, the theory of Wach
modules for L was missing from the picture. So, in this article, we define Wach modules
for L and prove our first main result.

Theorem 1.1 (Corollary 4.2). The category of G -stable 7 ,-lattices inside p-adic crys-
talline representations of G, is equivalent to the category of Wach modules for L.

As mentioned above, the difficult part of Theorem 1.1 is to functorially associate a
Wach module to any Gy -stable Z,-lattice T inside a p-adic crystalline representation
of Gr. To resolve this, let us note that using the classical theory of [8] in the perfect
residue field case, one can associate to 7 a ¢-module N over the base ring of Wach
modules for L. However, equipping N with a natural action of I'y, is highly non-trivial,
where the difficulty arises because I'f, is quite large compared to I'r from the classical
case. The heart of this article constitutes a direct construction of the natural action of I';,
on N (see Section 1.2.3 for details). Let us remark that the analogous theory of Breuil—
Kisin modules in the imperfect residue field case was studied by Brinon and Trihan [16].
However, the theory of loc. cit. is different from the theory of Wach modules, in particular,
the construction of the action of I'; does not feature in [16].

Besides being natural generalisations of classical results to the relative case, the use-
fulness of relative Wach modules stems from its applications in the computation of p-adic
vanishing cycles using syntomic complexes. Indeed, to generalise the computation of p-
adic vanishing cycles by Colmez and Niziot [22] to the case of crystalline coefficients,
in [4], crucial inputs were the results on relative Wach modules from [3]. However, as
mentioned above, the results of [3], and therefore, of [4] only work for a restrictive class
of crystalline coefficients. In order to generalise the results of [22] to all crystalline coeffi-
cients, we need the more general result on relative Wach modules from [1, Theorem 1.5],
for which Theorem 1.1 is a crucial input. Furthermore, in op. cit. we provide an inter-
esting application of Theorem 1.1, in particular, we give a new criteria for checking the
crystallinity of relative p-adic representations (see [1, Theorem 1.7 and Corollary 1.8]).

An additional motivation for considering Wach modules is to construct a deforma-
tion of the functor D;s from classical p-adic Hodge theory (see [27, Section B.2.3]).
This construction was carried out in the Fontaine-Laffaille range by Wach [47, Theor-
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eme 3], and more generally, by Berger [8, Théoreme II1.4.4]. In this article, our second
main result provides a generalisation of loc. cit. to the imperfect residue field case (see
Theorem 1.8). Let us remark that the general idea of deformations of crystalline and de
Rham cohomologies has led to exciting new developments in integral p-adic Hodge the-
ory via the introduction and development of prismatic cohomology [9-11,42].

Finally, note that recent developments in the theory of prismatic F-crystals [12,23,30]
provide a new approach to the classification of lattices inside crystalline representations.
While the prismatic point of view is an exciting development, in the current paper, we
employ techniques from the theory of (¢, I')-modules to obtain our results. This is due
to the fact that, in our approach, the construction of Wach modules for L and the proof
of Theorems 1.1 and 1.8, are explicit and direct, which could be advantageous for “arith-
metic” applications. In Section 1.2.4, we will provide more details on relations of our
results in this article to other works. In the rest of this section, we will describe the results
mentioned above in more detail. We begin by recalling the main classical result.

1.1. The classical case

Let p be a fixed prime number and let x denote a perfect field of characteristic p; set
OF := W(k) to be the ring of p-typical Witt vectors with coefficients in x and F :=
Frac(OF). Let F denote a fixed algebraic closure of F, let C, := F denote the p-adic
completion, and G ¢ := Gal(F / F) the absolute Galois group of F. Moreover, let Fu, :=
U, F(upr) with T'r := Gal(Fs/F) = Z, and Hp := Gal(F / Fs). Furthermore, let
Fgo denote the tilt of F (see Section 1.3) and fix & := (1, {p, {2,...) in Oboo, and
u = [e] — L and [ply := o()/p in Ains(OF,,) = W(O'jvoo), the ring of p-typical Witt
vectors with coefficients in 0?,00.

In [27], Fontaine established a categorical equivalence between Z ,-representations of
Gr and étale (¢, I'r)-modules over a certain period ring A p := Op [1][1/ ] € W(FL),
where " denotes the p-adic completion, and A  is stable under the natural (¢, I')-action
on W(F('jc). For a fixed finite free Z,-representation T of G r, the associated finite free
étale (¢, I'r)-module over Af is given as Dp (T) := (A ®z, T)HF  where A C W((CI",) is
the maximal unramified extension of A inside W((C;). In loc. cit., Fontaine conjectured
thatif V := T[1/ p] is crystalline then there exists a lattice inside Dg (V) :=D g (T)[1/ p]
over which the action of I'r admits a simpler form. Denote by At := Or[u] C Ar,
which is stable under the (¢, I'r)-action, and note the following.

Definition 1.2. Let a,b € Z with b = a. A Wach module over A; with weights in the
interval [a, b] is a finite free A;E—module N equipped with a continuous and semilinear
action of I'g such that,

(1) The action of I'r on N/uN is trivial.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢()], commuting
with the action of T'z, and such that p(u?N) C u’N and the cokernel of the
injective map (1 ® ¢): @*(uPN) := A;t ®, AL uP N — uP N iskilled by [p]g’“.
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Denote the category of Wach modules over AJr as (¢, T'F)- Mod! JE , with morphisms
between objects being A+-11nea.r I'r-equivariant and ¢- equ1var1ant "(after inverting ().
Let Repcr“(G F) denote the category of Z,-lattices inside p-adic crystalline represent-
ations of G F.Toany T in Rep”"(GF) using [20, 46], Berger functorially attached a
Wach module Nz (T') over A in [8] The main result in the arithmetic case is as follows

(see [8)).
Theorem 1.3. The Wach module functor induces a natural equivalence of ®-categories:
RepZ, (Gr) = (9 T'r)Mod [}
T +— Np(T),
with a natural quasi-inverse ®-functor given as N +— (W((C;) ®A; N)?=1,

1.2. The imperfect residue field case

Letd € N and let X1, X5, ..., Xz be some indeterminates. We define O; o to be the p-
adic completion of the localisation of the algebra Of [X lil, X jd] at the prime ideal
(p). It is a complete discrete valuation ring with uniformiser p, imperfect residue field
k(X1,...,Xg) and fraction field LY := O, a[1/p]. Let O, denote a finite étale extension
of Oyo such that it is a complete discrete valuation ring with uniformiser p, imperfect
residue field a finite étale extension of k (X1, ..., Xz) and fraction field L := Or[1/p].
Let Gz denote the absolute Galois group of L for a fixed algebraic closure L/L; let
r, = Zp(l)d x Z, denote the Galois group of Lo, over L, where L is the fraction
field of O, obtained by adjoining to O, all p-power roots of unity and all p-power roots
of X;, forall 1 <i < d (see Section 2). In this setting, we have the theory of crystalline
representations of Gy, [14] and étale (¢, I')-modules [5]. However, the theory of Wach
modules for L, i.e., a description of the p-adic crystalline representations G, in terms of
(¢, 'r)-modules, was missing from the picture. The main goal of this article is to complete
this picture, which we discuss next.

1.2.1. Wach modules. For 1 <i < d, letus set Xb (X;, Xl.l/p, ...)in 0200 and take
[X l.b] in Ainr(OL) = W( Ozoo) to be the Teichmiiller representative of X l!’. Let AZ denote
the unique finite étale extension (along the finite étale map O;o0 — Op) of the (p, n)-
adic completion of the localisation Of [u][[X}]1E!, ...  [X}]*!](,,). The ring A} i
equipped with a Frobenius endomorphism ¢ and a continuous action of I';, (see Sec-
tions 1.3 and 2.1), and note the following.

Definition 1.4. Let a, b € Z with b = a. A Wach module over AZ with weights in the
interval [a, b] is a finite free Az—module N equipped with a continuous and semilinear
action of I'f satisfying the following assumptions:

(1) The action of T'z, on N/uN is trivial.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢()], commuting
with the action of I'z, and such that ¢(u?N) C u? N and the cokernel of the
injective map (1 ® ¢): p* (U2 N) = A} ®yat ub N — pP N iskilled by [p]5—2.
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Say that N is effective if one can take b = 0 and a < 0. Denote the category of Wach
modules over AZ as (¢, F)-Modl[f +]‘1, with morphisms between objects being AZ—linear,

I'z -equivariant and ¢-equivariant (after inverting u).

Set Ay = AZ‘[I /)™ as the p-adic completion, equipped with a Frobenius endo-
morphism ¢ and a continuous action of I';,. Let T be a finite free Z,-module equipped
with a continuous action of G, and note that one can functorially attach to 7 a finite
free étale (¢, I'r)-module Dy (T') over Ay, of rank = rkz, 7', equipped with a Frobenius-
semilinear operator ¢ and a semilinear and continuous action of I'z . In fact, the preceding
functor induces an equivalence between finite free Z,-representations of G, and finite
free étale (¢, I'z )-modules over Ay, (see Section 2.2).

Remark 1.5. The category of Wach modules over AZ’ can be realised as a full subcategory
of étale (¢, I')-modules over Ay (see Proposition 3.3).

1.2.2. Main results. Let Repczrif(GL) denote the category of Z,-lattices inside p-adic
crystalline representations of Gy. The main result of this article, i.e., Theorem 1.1, can be
stated more precisely as follows.

Theorem 1.6 (Corollary 4.2). The Wach module functor induces a natural equivalence of
®-categories:
Repg™(GL) —> (¢.T)-Mod'”)
L
T — N (T),

with a natural quasi-inverse @-functor given as

N+ TL(N) = (W(C)) ®,+ N)*~".

where Cp, := i
Our strategy for the proof of Theorem 1.6 will be described in Section 1.2.3.

Remark 1.7. Let us note that in Theorem 1.6, we do not expect the functor N, to be exact
(see [18, Example 7.1] for an example in the arithmetic case). However, after passing to
the associated isogeny categories, the Wach module functor induces an exact equivalence
of ®-categories

Repis®(GL) > (¢.T)-Mod?}e

+
BL

via V — N (V), with an exact quasi-inverse ®-functor given as (see Corollary 4.3),
M — V(M) := (W(C}) @, M)~

As indicated earlier, the proof of Theorem 1.6 is based on techniques employed in the
theory of (¢, I')-modules. One of the advantages of using this approach is that it enables
us to establish several comparison results between objects appearing in the p-adic Hodge
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theory over L (see Propositions 3.14, 4.21, Corollaries 4.22 and 3.16). In order to keep
the introduction light, we only mention one of the comparison results here and refer the
reader to the main body of this article for the rest.

Let N be a Wach module over A;. We equip N with a Nygaard filtration defined
as Fil* N := {x € N such that p(x) € [p]’;N}. Then, we note that (N/uN)[1/p] is a
@-module over L, since [p], = p mod uAT, and N/uN is equipped with a filtration
Fil*(N/uN) given as the image of Fil* N under the surjection N — N/uN. We equip
(N/uN)[1/ p] with the induced filtration, in particular, it is a filtered ¢-module over L.
Moreover, let V := T (N)[1/ p] denote the associated crystalline representation of Gp,
from Theorem 1.6. Then, we can functorially associate to V' a filtered (¢, d)-module over
L denoted ODys,1. (V) (see Section 2.3), and show the following.

Theorem 1.8 (Corollary 3.16). Let N be a Wach module over AZ’ andV =Tr(N)[1/p]
the associated crystalline representation from Theorem 1.6. Then, we have a natural iso-
morphism (N/uN)[1/p] => ODvqis.. (V) as filtered ¢-modules over L.

The proof of Theorem 1.8 is obtained by utilising the computations done in the proof
of Theorem 3.12, more specifically, using Proposition 3.14.

Remark 1.9. The statement of Theorem 1.8 is motivated by the results [27, Section B.2.3]
and [8, Théoreéme II1.4.4] in the perfect residue field case, but our proof is independent of
those results. However, note that it is also possible to deduce that the isomorphism in
Theorem 1.8 is compatible with filtrations, by using [8, Théoreme I11.4.4] as an input

(see [1]).

Remark 1.10. Based on the expectation put forth in [3, Remark 4.48], it is reasonable
to expect that the L-vector space (N/uN)[1/p] may be equipped with a connection by
defining a g-connection on N using the action of the geometric part of I'z, i.e., I'; (see
Section 2), and inducing a connection via N LN /N . Moreover, the isomorphism
(N/uN)[1/p] = ODqis.. (V) in Theorem 1.8 should be further compatible with con-
nections. These expectations will be verified in [1].

1.2.3. Strategy for the proof of Theorem 1.6. To prove the theorem, starting with a
Zp-lattice T inside a p-adic crystalline representation of G, we first use the result in
the perfect residue field case (see Theorem 1.3) and its compatibility with the results
of [35,36] (see Section 4.2) to construct a finite free module Ny, 7 (V) (associated to
V = T[1/p]), over the ring of functions of the open unit disk over L (denoted B:g’ )
such that Nig 7, (V) satisfies a Frobenius finite [p],-height condition. However, proving
the existence of a non-trivial action of I'z, on Ny, 7 (V) is a difficult question and it does
not follow from the classical theory because

Iy = Z,()? % Z7,

whereas we have 'r = Z;,‘ in the classical case. To resolve this issue, our innovation
is to use the Galois action on V and its crystallinity to explicitly show that Ny 7. (V)
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is equipped with an action of I'y (see Proposition 4.19). Furthermore, we show that our
construction is compatible with the theory of (overconvergent) étale (¢, I'z,)-modules from
[5,6], establishing the naturality of the action of I'z, on Nig, (V) (see Section 4.4). Next,
we set

NL(V) := N, (V) N DL (V) C D], (V)

as a module over BZ‘ = AZ‘[I/ p], where DE(V) is the overconvergent étale (¢, I'z)-
module associated to V' and Djig, 1 (V) is the slope zero (¢, I'L)-module associated to
V over the Robba ring (see Section 2.2 and Definition 4.24). Finally, we set Ny (T) :=
N (V)YNDL(T) C Dr(V) as an AZ-module and show that it satisfies the axioms of
Definition 1.4 (see the proof of Theorem 4.1 in Section 4.5). In the opposite direction,
starting with a Wach module N over AZ’, we use ideas developed in [3] to show that
Tr(N)[1/ p] is crystalline (see Theorem 3.12).

1.2.4. Relation to other works. Our first main result, Theorem 1.6, is a direct gener-
alisation of Theorem 1.3 from [8, 20, 46]. As indicated in Section 1.2.3, starting with a
crystalline Z,-representation 7' of G, the construction of a finite [p],-height module
N7 (T) uses classical Wach modules and its compatibility with the results of [35, 36].
However, equipping Nz (T') with a natural action of I'z, is highly non-trivial, in particular,
it does not follow from previous works and constitutes the heart of this article. For the
converse, starting with a Wach module N over Az, we use ideas from [3] to show that
T (N)[1/ p] is crystalline. Moreover, as mentioned earlier, the results on Wach modules
in the current paper are different from the theory of Breuil-Kisin modules in the imperfect
residue field case studied in [16].

Now, let us note that using the unpublished results of Tsuji in [44] and the use of [16]
in [23], it can be seen that the current paper is a crucial input to the construction of relative
Wach modules in [1]. Moreover, recent developments in the theory of prismatic F-crystals
[12,23,30], would suggest that there is a categorical equivalence between the category of
Wach modules over AZ and the category of prismatic F-crystals on the absolute pris-
matic site of O . At this point, let us remark that unlike the case of Breuil-Kisin modules
from [23], obtaining the aforementioned equivalence directly is a difficult question, in
particular, it is highly non-trivial to directly show that the natural functor from prismatic
F-crystals to Wach modules is essentially surjective. This point will be explored in another
work [2] and the current article is independent of the results in the prismatic theory.

As indicated previously, the motivation for interpreting a Wach module as a g-de Rham
complex and as g-deformation of crystalline cohomology, i.e., OD,s, comes from [27,
Section B.2.3] and [8, Théoreme II1.4.4]. Our second main result, Theorem 1.8, is an
important step towards verifying such expectations. In addition, we note that our proof
of Theorem 1.8 is entirely independent to that of loc. cit., thus providing an alternative
proof (as well as a generalisation) of the important classical result in loc. cit. Furthermore,
in Proposition 4.19 and Corollary 4.22 (see Remark 4.23), we generalise some results of
[7, 8] to obtain comparison results between Wach modules, overconvergent étale (¢, I'z)-
modules and filtered (¢, d)-modules associated to p-adic crystalline representations. In
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particular, for a p-adic crystalline representation V' of G, we prove a comparison iso-
morphism between the associated (¢, I'z.)-module over the Robba ring and the scalar
extension of ODys, 1. (V) to the Robba ring, where we use the connection on ODys,1,(V)
to equip the scalar extension with an action of I'z (see Section 4.3 and Remark 4.23).
Finally, let us remark that using the theory of Breuil-Kisin modules in the imperfect
residue field case from [16], in [29], Gao studied lattices inside crystalline (more generally,
semistable) representations using Breuil-Kisin Gz-modules. However, the objects of loc.
cit. are very different from Wach modules considered in this paper. More specifically,
Breuil-Kisin Gz -modules are defined using the “Kummer tower” and admit an action of
the big Galois group Gr. In contrast, Wach modules are defined using the “cyclotomic
tower”, as in the theory of étale (¢, I')-modules, and admit an action of 'z, which is
much smaller than Gy. Moreover, [29] only proves a full faithfulness result, whereas
Theorem 1.6 proves a categorical equivalence which was a difficult open question.

1.3. Setup and notations

We will work under the convention that 0 € N, the set of natural numbers. Let p be a
fixed prime number, « a perfect field of characteristic p, O := W(k) the ring of p-
typical Witt vectors with coefficients in ¥ and F := Op[1/ p], the fraction field of W. In
particular, F' is an unramified extension of @, with ring of integers Of. Let F be a fixed
algebraic closure of F so that its residue field, denoted as k, is an algebraic closure of k.
Furthermore, we denote by G := Gal(F/ F), the absolute Galois group of F.

We fix d € N and let X1, X, ..., X; be some indeterminates. Set RP to be the p-adic
completion of OFf [XllLl ce X[;tl]. Let : RY — RY denote a morphism extending the
natural Frobenius on OF by setting ¢(X;) = X ip ,forall 1 <i < d. The endomorphism
@ of RV is flat by [15, Lemma 7.1.5] and faithfully flat since ¢(m) C m for any max-
imal ideal m C RY. Moreover, it is finite of degree p? using Nakayama Lemma and the
fact that ¢ modulo p is evidently of degree p?. Let O;o = (R(Dp))/\, where ” denotes
the p-adic completion. It is a complete discrete valuation ring with uniformiser p, imper-
fect residue field K (X1, ..., Xz) and fraction field LY := O, a[l1/p]. The Frobenius on
R extends to a unique faithfully flat and finite of degree p? Frobenius endomorphism
¢: O;o — Oy, lifting the absolute Frobenius on O;n/pO;o.

Let Or denote a finite étale extension of O;o such that it is a domain. Then Of,
is a complete discrete valuation ring with uniformiser p, imperfect residue field a finite
étale extension of k (X1, ..., Xg) and fraction field L := Oy [1/ p]. Fix an algebraic clos-
ure L/L and let G := Gal(L/L) denote the absolute Galois group. The Frobenius on
O; o extends to a unique faithfully flat and finite of degree p? Frobenius endomorph-
ism ¢: O — O lifting the absolute Frobenius on Or / pOp, (see [22, Proposition 2.1]).
For k € N, let QkOL denote the p-adic completion of the module of k-differentials of O
relative to Z. Then, we have that

d
Qb, =EPordiogx; and Qf =nrf Qp,.

i=1
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Next, let K be one of the fields Foo, Loo, F or L, where we have Fo, := F(ppeo)
and Lo = U?=1 L(ppoo, Xil/poo), and set Ok to be the ring of integers of K. Then,
the tilt of O is defined as O% := lim, Ox/pOk, and the tilt of K is defined as K :=
Frac(O}}) (see [25, Chapitre V, Section 1.4]). Finally, let A be a Z,-algebra equipped
with a Frobenius endomorphism ¢ lifting the absolute Frobenius on A/ pA, then for any
A-module M we write 9*(M) := A Qg4 M.

1.4. Outline of the paper

This article consists of three main sections. In Section 2, we collect relevant results on
p-adic Hodge theory in the imperfect residue field case. In Section 2.1, we define several
period rings, in particular, we recall crystalline period rings, (¢, I')-module theory rings,
overconvergent rings and Robba rings and prove several important technical results to be
used in our main proofs in Section 4. In Section 2.2, we quickly recall the relation between
p-adic representations and (¢, I')-module theory over the period rings described in the
previous section. In Section 2.3, we focus on crystalline representations and prove some
results relating the Galois action on a crystalline representation to its associated filtered
(¢, d)-module. The goal of Section 3 is to define Wach modules in the imperfect residue
field case and study the associated Z,-representations of Gy,. In Section 3.1, we give the
definition of Wach modules and relate it to étale (¢, I')-modules (see Proposition 3.3).
Then, given a Wach module, we functorially associate to it a Z,-representation of G, and
in Section 3.2, we show that these are related to finite [p],-height representations stud-
ied in [3]. Finally, in Section 3.3, we show that the Z,-representation of G, associated
to a Wach module, is a lattice inside a p-adic crystalline representation of Gy, (see The-
orem 3.12) and prove the filtered isomorphism claimed in Theorem 1.8. In Section 4, we
prove our main result, i.e., Theorem 1.6. In Section 4.1, we collect important properties
of classical Wach modules, i.e., the perfect residue field case. In Section 4.2, we use ideas
from [35, 36] to construct a finite [p],-height module on the open unit disk over L. On
the module thus obtained, we use results of Section 2.3 to construct an action of 'y, and
study its properties in Section 4.3. Then, in Section 4.4, we check that our construction is
compatible with the theory of étale (¢, ['; )-modules. Finally, in Section 4.5, we construct
the promised Wach module and prove Theorem 1.6.

2. Period rings and p-adic representations

We will use the setup and notations from Section 1.3. Recall that O, is a finite étale
algebgaover Oro.Set Lo := U?ZIL(,U,poo,Xil/p ) and for 1 <i <d, fix X}’::(X,-, Xl-l/p,
Xil/p ,...)in Ozw. Then, we have the following Galois groups (see [32, Section 1.1] for
details):

Gr :=Gal(L/L), Hp :=Gal(L/Ly).
Tp = Gr/Hy = Gal(Loo/L) > Zp(1)* % L.
I := Gal (Loo/L(ppe)) = Zp(l)d, Gal (L(pupw)/L) =T /T] —> Z;.
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Let O; := (Ufl=1 (0)3 [Xil/pm])", where ”* denotes the p-adic completion. The Oy -algebra
Oj; is a complete discrete valuation ring with perfect residue field, uniformiser p and
fraction field L := O i [1/ p]. The Witt vector Frobenius on Oj is given by the Frobenius
on Oy, described in Section 1.3 and setting (p(Xil/pn) = Xil/pn_l, forall 1 <i <d and
n=1.Let Lo := I:(upoo) and let L D L denote a fixed algebraic closure of L. Then, we
have the following Galois groups:

_ d
= Gal(L/L) = Gal (/| L(X77)),

Gy
B i=1
H; := Gal(L/Loo) = Gal(L/Leo),
d
Ip = Gy/Hy = Gal(Leo/L) = Gal (Leo/ | J L(X77))

i=1
—> Gal (L(ppw)/L) = z,.
From the description above note that G; may be identified with a subgroup of Gr, Hy —
Hp and I'; may be identified with a quotient of I'.

2.1. Period rings

In this section, we will quickly recall and fix notations for all the period rings that will be
used in this article. For details on constructions of period rings, please refer to [5, 14, 40].

As we will recall many period rings in this subsection, let us first briefly mention the
usefulness of some of those rings in the constructions carried out for our main results (for
precise definitions, please refer to Sections 2.1.1-2.1.5).

Remark 2.1. The period rings defined in Section 2.1.1, for example, Ains(Of), Acris(OF),
B.is(OL,,), etc. will be used to define and study properties of crystalline representations
of G, (see Section 2.3), to show that Wach modules in the imperfect residue field case
are crystalline (see Section 3.3), and to study the action of I'z, on various scalar exten-
sions of a Wach module associated to a crystalline representation (see Section 4.3). Note
that Wach modules are certain (¢, I'z.)-modules and the rings introduced in Section 2.1.2
provide the basic setup for defining these objects and studying their properties. In par-
ticular, we remark that an (integral) Wach module N (7), associated to a crystalline
Zp-representation 7" of G, lives over the ring A, and the étale (¢, ' )-module associ-
ated to T lives over Ay, (see Sections 2.2 and 3.1). Next, the overconvergent period rings
from Section 2.1.3 will be used to define overconvergent étale (¢, I')-modules over Az
(see Section 2.2), which will be a crucial input for the construction of the Wach mod-
ule associated to a crystalline representation of G, (see Section 4.5), and will be used to
check that our constructions are compatible with the theory of étale (¢, 'z )-modules (see
Section 4.4). Furthermore, the analytic rings of Section 2.1.4 will be the most important
technical input for our constructions. For example, as a first step in our construction of
Ny (T), we construct an intermediate ¢-module Ny, 7 (V) (where V' = T[1/ p]), over the
ring B ;. using some ideas of Kisin (see Section 4.2). Additionally, to equip Ny (V)

rig,
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with an action of 'y, we use the rings Brl oL’ f}:g 1> Baris(OL, ), etc.; this is the main tech-
nical innovation of this article (see Proposition 4.19). Moreover, the rings such as Bn oL
and BI 1 are used to study the compatibility of Nig, (V) with the theory of (¢, FL)
modules of Andreatta (see Section 4.4). Finally, the corresponding period rings over L in
Section 2.1.5 are helpful in recollecting the results on classical Wach modules which are
crucial inputs to our constructions (see Sections 4.1 and 4.2).

2.1.1. Crystalline period rings. We set Ajy(Or):= W(Olbm) and Ay (O5) = W(O%)
equipped with the Frobenius on Witt vectors and continuous G -action (for the weak
topology). We fix i := & — 1, where ¢ := (1, {p, {52, ...) is in OE,OO with {,» being a
primitive p”-th root of unity, for each n > 1. Set y := [¢] — 1 and & := /@~ (1) in
Ainf(OF,,). For any g in Gy, we have that g(1 + ) = (1 + w)X® where y is the p-adic
cyclotomic character. Moreover, we have a G -equivariant surjection 8: Aj,;(Of) — Oc, ,
where Cz, := L and Oc, is its ring of integers; note that Ker 6 = §A;,¢(Ogz). The map 6
further induces a FL-equivariant surjection 0: Ai(OL, ) — OA .

Recall that, for 1 <i < d, we fixed X? = (X;, X/?, X”" ..)in O} and we
take {yo, Y1,..., Y4} to be topological generators of FL such that {yl, ..., Yd} are topo-
logical generators of I'; and yy is a topological generator of I'y /T'; and y; (X, l!’) =¢eX l.b,
if i = j, and Xl!’, otherwise. Let us also fix Teichmiiller lifts [Xl.b] in Ajpr(Or,.). We
set Aeris(OL.) := Ainf(OL ) (E¥/ k!, k € N). Let ¢ := log(1 + 1) which converges in

Aqis(OF,,) and set ch(OLoo) = Acis(OL)[1/p] and Bis(Or) 1= cr]q(OLoo)[l/t]
For any g in G, we have that g(t) = y(g)t. Furthermore, one can define period rings
OA.is(0L,,), OB CrlQ(OLOQ) and OB;5(OL, ). These rings are equipped with a Frobenius
endomorphism ¢ and a continuous I'z -action, and the former two rings OA;s(OL,,) and
OB;S(OLOQ) are further equipped with an appropriate extension of the map 6. Rings with
a subscript “cris” are equipped with a decreasing filtration and rings with a prefix “O0”
are further equipped with an integrable connection satisfying Griffiths transversality with
respect to the filtration (see [3, Section 2.2] for definitions over R with similar notations).
One can define variations of these rings over L which are further equipped with a continu-
ous G -action. Moreover, from [39, Lemma 4.32], note that

Acis(0O1,) = Ais(Op)HE and BT, (0r,) = BY, (07)"L.

We have two Op -algebra structures on OAs(OL,,): a canonical structure coming
from the definition of OA.;(OL,,) and a non-canonical (¢, I'; )-equivariant structure
Or — OA4is(OL,,) given by the map

XHZHBk’(x)n[X]— [k]
keNd i=1

where 9; := 31)(1_ is a differential operator defined over Oy, for 1 < i < d. In particular,
under the preceding map, we have that X; +— [X l!’].
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2.1.2. Rings of (¢, I')-modules. For detailed explanations of objects defined in this sub-
subsection, see [5]. Recall that O; o is a complete discrete valuation ring with a uniform-
iser p and an imperfect residue field, and Oy, is a finite étale O; o-algebra. Let us set A‘ZD
to be the (p, jt)-adic completion of the localisation O [u][[X}]*?, ..., [Xz]il](p,u% We
have a natural embedding A'L"E| — Aiyf(OL,,) and AZD is stable under the Witt vector

Frobenius and I'; -action on Ajn¢(Or . ); we equip AZD with induced structures. Moreover,
Lo
it extends to an isomorphism of rings O;o[u] = Azﬂj. Equip O;ofu] with a faithfully
d+1

we have an injective homomorphism of rings t: O;o0 — A, via the map X; — [Xl.b], and
flat and finite of degree p Frobenius endomorphism using the Frobenius on O; o and
by setting ¢ (1) = (1 + w)? — 1. Then, the injective homomorphism ¢ and the isomorph-
ism O;op] = A‘L"D are Frobenius-equivariant.

Let AZ denote the (p, p)-adic completion of the unique extension of the embedding
AZ‘D — Ain(OL,,) along the finite étale map O;o0 — Or (see [22, Proposition 2.1]).
We have a natural embedding of O -algebras A]J: — Ain(OL,,) and AZ’ is stable under
the induced Frobenius and I'z-action. Note that the injective homomorphism of rings
1:0;0 — AZD C A} and the isomorphism O;o[u] = A]J:D C A}, respectively, extend
to a unique injective homomorphism of rings 1: Or, — A} and an isomorphism O [u] =
A]J:. Equip O [p] with a faithfully flat and finite of degree @+ Frobenius endomorph-
ism using the Frobenius on Oy, and by setting ¢ (1) = (1 + ©)? — 1. Then, the injective
homomorphism ¢ and the isomorphism Oy [u] = AZ are Frobenius-equivariant. In par-
ticular, the Frobenius morphism ¢: A — A} is faithfully flat and finite of degree p?*!.

Letuy := (1 4+ /L)“O[X{’]“l [XZ]"‘d, where o := (ag,a1,...,0) is a d-tuple with o;
in{0,1,..., p— 1}, for 0 <i < d. Then, we have that *(A}) := A} ®pat Al S
@aw(AZ)uop

Recall that C; = L and set A := W((CE) and B := A[1/p] admitting the Frobenius
on Witt vectors and continuous G -action (for the weak topology). Set Ay := AZ [1/u]”,
where * denotes the p-adic completion; equip AZ with the induced Frobenius endo-
morphism and continuous I'z -action. Note that Ay is a complete discrete valuation ring
with maximal ideal pAj, residue field (Or/p)((n)) and fraction field By := A [1/p].
Similar to above, ¢: A — Ay is faithfully flat and finite of degree pd *1 and we have that

P (AL) == AL ®p.ar AL — Po(Ap)ug = (@a QD(Az)ua) ®‘P(AZ) p(AL)

~ A+
<« AL ®¢,A2‘ Ar.

Furthermore, we have a natural Frobenius and I'z -equivariant embedding Ay C AfL et
A denote the p-adic completion of the maximal unramified extension of Ay, inside A and
set B:= A[l/p] C B, ie., A is the ring of integers of B. The rings A and B are stable
under the induced Frobenius and G -action, and we have A; = AL and By = BHL
stable under the induced Frobenius and residual Iz -action.

2.1.3. Overconvergent rings. We begin by defining the ring of overconvergent coeffi-
cients stable under Frobenius and G -action (see [6, 19]). Denote the natural valuation on
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O% by v” extending the valuation on OI;:. Let r € Q-9 and set,

AP = { Z P¥[xk] € A such that v"(x) + %k — Jfooask — —i—oo}.
keN

The continuous Gy -action and Frobenius ¢ on A induce commuting actions of Gz and
(p on AJr " such that <p(AJr Ty = ATP" Define the ring of overconvergent coefficients as

=, €Qso Afr cA equipped with the induced Frobenius and continuous Gz -action.
Moreover, inside A we take AT ".= Az N AP and AT := A N AT, Define Az =
Ar NAYT = = Ureo., Azr and AJr =ANAt = Ureo., A" equipped with the induced
Frobenius endomorphism and continuous Gy -action from the respective actions on K; we
have Az = (AT)HL . Upon inverting p in the definitions above one obtains Qp-algebras
inside B, i.c., set Bt := AT"[1/p], Bf := AT[1/p], BT := AT"[1/p], BT := AT[1/p],
equipped with the induced Frobenius and Gy -action. Moreover, set BT (B’r "VHL
Bz = (BHHL, B}:r = BF )AL = A}:r[l/p] and Bz = BHAL = AZ[I/p], equipped
with the induced Frobenius and residual 'z -action.

2.1.4. Analytic rings. In this section, we will define the Robba ring over L following
[34, Section 2] and [41, Section 1]. However, we will use the notations of [7, Section 2]
in the perfect residue field case (see [41, Section 1.10] for compatibility between different

notations). Define
Bl = (A # BRI

r=0s=r

The ring ﬁ;rig can also be defined as |, <q_, ﬁ;rlg , where BJr denotes the Fréchet com-

pletion of B = Afr [1/p] for a certain family of Valuatlons (see [34, Section 2] and
[41, Section 1.6]). The Frobenius and G -action on BY, respectively, induce Frobenius
and Gr-action on B;ri’gr, which extend to respective actions on BJr In particular, we have

B, (see [41, Sectlons 1.6 and 1.10]). Set

rlg : m ¢ crm(OL)

neN

a Frobenius and G -equivariant inclusion Bt c B

equipped with an induced Frobenius endomorphism and Gy -action from the respective
actions on Bcrls(OZ)' The descriptions of rings in [7, Lemme 2.5, Exemple 2.8, Sec-
tion 2.3] directly extend to our situation as the aforementioned results do not depend
on structure of the residue field of the base ring Op . Therefore, from loc. cit. it follows
that we have a natural inclusion ]§+g C ]§T compatible with Frobenius and Gp- action.
Moreover, we set Bl:g L= (Bz;;)HL Brlg L= (Bné)HL and ﬁ:g, (B+)HL c B!
equipped with the induced Frobenius endomorphism and residual I'z -action.

rig,L°

Remark 2.2. Note that the definition of BJr and B: . as rings does not depend on L, in
particular, one may define these rings using Amf(O ) and equip them with a Frobenius

endomorphism compatible with the Frobenius endomorphism defined above.



Abhinandan 14

Lemma 2.3. We have (Bng)‘/’:1 = (ﬁ:g)‘/’zl = Q,.

Proof. Using Remark 2.2, note that the Frobenius invariant elements can be computed
using the corresponding results in the perfect residue field case. In particular, we have that
(Bng)“’=l = (ﬁ:g)¢’=1 = Qp, where the first equality follows from [8, Proposition 1.4.1]
and the second equality follows from [21, Proposition 9.15]. ]

Recall that from Section 2.1.2 we have a Frobenius-equivariant injective homomorph-
ism of rings t: Op — AZ’. Then, from [41, Section 1.6] the ring AZ” admits the following
description:

A}:’r - {Zc(ak)/rk such that a € O, and for any % <p<l, lim |ak|pk = 0}.
tez p k——o00

Moreover, we have that Bz’r = Az’r [1/p] and we set

Bl -

L {Z‘(ak)ﬂk such that a; € L and for any # <p<l, klir:Boo lag | p* = 0}.

keZ

The ring BJr o L Can also be defined as the Fréchet completion of BT’ for a family of valu-
ations 1nduced by the 1nclusron BT T cBhr (see [34, Section 2], [41, Section 1.6]). Define
the Robba ring over L as Brlg 1= Urso Blgr ;- The Frobenius and G -action on BT "
mduce respective Frobenius and G -action on BT Wl which extend to respective actions
on Brlg ;, (also see [41, Section 4.3] where Ohkubo constructs the differential action of
Lie I'z ; one may also obtain the action of I'y, by exponentiating the action of Lie FL) From
the preceding dlscuss10n we have a Frobenius and I'z -equivariant injection B C Bné I
and the former ring B} 7, s also known as the bounded Robba ring. Furthermore note
that Bzr C BT ’ (BJr "HL Br oL where the last term can also be described as the
Fréchet completron of the middle term for a family of valuations induced by the inclusion
EZ’r c Bfr (see [34, Section 2] and [41, Section 1.6]).

To summarise, for r € Q~, we have the following commutative diagram with inject-
ive arrows:

Bf" — Bfr

[ [N

t,r . nhr nt.r
B} > B > Bl
t.r nt.r
BI‘IE L BI‘IE L

where in the second row, the two rings on the left are obtained by taking Hj -invariants of
the corresponding rings in the first row and the rightmost ring in the second row is obtained
as the Fréchet completion of the rightmost ring in the first row. The bottom row is obtained
as the Fréchet completion of the two rings on the left in the second row. These inclusions
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are compatible with the respective Frobenii and I'y -actions and these compatibilities are
preserved after passing to the respective Fréchet completions. In particular, we have a

Frobenius and I'y -equivariant embedding B:ri oL C fijig L-

c B! equipped with the induced nat-

Definition 2.4. Define BY , := Bl = NBT oL

rig,L * rig,L rig,L
ural Frobenius endomorphism and I'z -action.

Lemma 2.5. The ring Bji'g 1, may be identified with the ring of convergent power series

over the open unit disk in one variable over L, i.e.,

B+

vl — { Z (ag)* such that ay € L and forany0 < p < 1, klirfoo lak|pF = 0},

keN

;ri ...+ Using the explicit description of legr L
and BZ” for r € Q=¢, we can write x = x* 4+ x~, with x* convergent on the open unit
disk over L and x~ in BZ”, for some r € Qxy, in particular, we have that x™ is in ﬁ:{g.
Moreover, using Remark 2.2 and [7, Lemma 2.18, Corollaire 2.28], we have an exact
sequence

Proof. Let x be any element of B:{g’ ., CB

0 — Bini(0O7) — B o ﬁji'g — ﬁji’gr — 0,

where Bini(O7) = Aine(O7)[1/p]. So, x is in B:g’L - ]E;fg if and only if x~ = x — x T is
in Bipe(O7) N BZ’T = Bin(Or, ) N Bz’r = BZ, where we have used that Ainf(OZ)HL =
Ain(OL,,) (see [5, Proposition 7.2]). Hence, x converges on the open unit disk over L.
The other inclusion is obvious, allowing us to conclude. [

Remark 2.6. The topology on B:{g, ;. can be described as follows: let D(L, p) denote the
closed disk of radius 0 < p < 1 over L and let O(D(L, p)) denote the ring of analytic
functions, i.e., power series converging on the closed disk D(L, p). Then, O(D(L, p)) is
equipped with a topology induced by the supremum norm || /||, := sup,ep(r p) |/ (X)] <
+00. We have that B:g, ; =lim, O(D(L, p)) C L[u] and we equip it with the topology
induced by the Fréchet limit of the topology on O(D(L, p)) induced by the supremum
norm, i.e., the topology on Br‘!'g, ;. can be described by uniform convergence on D(L, p)
forp— 1.

Lemma 2.7. The natural map B} — B:{g ; is faithfully flat.

Proof. Note that BZ is a principal ideal domain and B:.g’ 7, is a domain, so the map in the

claim is flat. To show that it is faithfully flat, it is enough to show that for any maximal ideal
m C BZ, we have that mBjg I #* B:g ;.- Note thatif m C B]J: is a maximal ideal, then mt =
(f), where f is an irreducible distinguished polynomial in the sense of [37, Chapter 5,
Section 2]. Since any f as above admits a zero over the open unit disk, therefore, it follows
that f is not a unit in Br':'g,L. Hence, mB:.g’L #* B:g’L. L]
Remark 2.8. From Section 1.3 recall that ¢: L — L is finite of degree p? and we also

have that ¢(u) = (1 4+ )P — 1. Therefore, from the explicit description of B

rig,L n
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Lemma 2.5, it follows that the Frobenius endomorphism ¢: B BT 1 1s faithfully

rig, L™
flat and finite of degree p?+

2.1.5. Period rings for L. Definitions above may be adopted almost verbatim to define
corresponding period rings for L,in particular, one recovers definitions of period rings
in [7,19,27], i.e., we have period rings A+ Ay AJr B+ ol and BT i equipped with
a Frobenius endomorphism ¢ and T'; act10n Note that we have a natural identification
O;n] = AL, where the right hand side is equipped with a faithfully flat and finite
of degree p Frobenius endomorphism using the natural Frobenius on O; and setting
() = (1 + u)? — 1 and a I'j-action given as g(u) = (1 + w)*® — 1, for any g
in I'; . Moreover, the preceding isomorphism naturally extends to a Frobenius and I'; -
equivariant isomorphism A; = Oj [u][1/u]", where * denotes the p-adic completion.
Similar to above, we further equip O[] with an O -linear action of I';, by setting
g(u) = (1 + w)*® — 1, for any g in ;. Then the isomorphism Op [u] = AZ‘ from
Section 2.1.2, is Frobenius and " i -equivariant. Now, recall that the Frobenius-equivariant
embedding O — Oj is faithfully flat and it naturally extends to a Frobenius and I'; -
equivariant faithfully flat embedding Or[u] — Oj [1]. So, using the preceding embed-
ding and the Frobenius and I'; -equivariant isomorphisms — the inverse of O, [u] = AZ
and the isomorphism Oy [u] = AZ — we obtain a Frobenius and I'; -equivariant faith-

fully flat embedding AZ’ — A“Lf, sending [X l!’] — X;. This further extends to a Frobenius
and I'j -equivariant faithfully flat embedding Ay, — Aj .

We will equip Aine(OL, ) with a non-canonical Oy -algebra structure by first defining
an injection O;o0 — Ainr(OL_, ), via the map X; — [X l.b], and then extending it uniquely
along the finite étale map O;o0 — Op, to an injection Oy, — Ainr(OL ) (see [22, Proposi-
tion 2.1]). Note that the preceding maps are Frobenius-equivariant but not 'z -equivariant.
Moreover, this Op-algebra structure naturally extends to a Frobenius- equivariant Oj -
algebra structure on Ai,(Op, ) by sending Xil/ " = [(X; 1/p" )], forall 1 <i < d and
n € N. We may further extend this to a Frobenius and I'; -equivariant embeddmg AJLF =
O; 1] = Aint(OL,,)-

Using the embeddings described above and following the definitions of various period
rings discussed so far, we obtain a commutative diagram with injective arrows where the
top horizontal arrows are Frobenius and I'z-equivariant and the rest are Frobenius and
I'; -equivariant:

B+ + i pt
Bng L Bng L Bng L Brlg L
r1g L rig,L :

Remark 2.9. Similar to Lemma 2.5 we have that,

Bt . = { Z akuk such that a; € L and for any0 < p <1, hm |ak|p = O}.
rig, L fad —+o0
€
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The ring B:g i is equipped with a Fréchet topology similar to Remark 2.6. Moreover, since
p:L 5L and () = (1+p)? -
the Frobenius endomorphism on B+ i is faithfully flat and finite of degree p.

Lemma 2.10. The rings B 1, and B+ o1 9Te Bézout domains and BY, , — B:g i is flat.

rig, rig,L
Proof. The first claim follows from [7, Proposition 4.12]. Note that loc. cit. assumes the
residue field of the discrete valuation base field (L and L in our case) to be perfect,
however, the proof of loc. cit. only depends on [31, 38] which are independent of this
assumption. For the second claim, note that we can write BT P = = colim;e; M;, where I
is the directed index set of finitely generated B oL submoduiges of B+ % Since BJFg i isa
domain, M; is torsion-free for eachi € I. Now recall that finitely generated torsion-free
modules over a Bézout domain are finite projective (see [17, Chapter VII, Proposition 4.1]
noting that Bézout domains are a special case of Priifer domains), and therefore finite
free by [33, Proposition 2.5]. Moreover, by a theorem of Lazard (see [43, Tag 058G]), we
know that a directed colimit of finite free modules over a ring is flat. Hence, it follows that
Br':gL—>B+Lisﬂat. [

Lemma 2.11. The following element converges in B *

rig,L C rig,I::
r _ log(I+up) _ o"([rly)
o n - 1_[ ( p )
neN
Moreover, inside B+ , we have that (t/u)B"' N B:g = (l//,L)Brlg I

Proof. The first clalm follows from [8, Exemple 1.3.3] and [38, Remarque 4.12]. For the
second claim let x = Y, .y Xk ¥ in Brl 1 Withxg € L, and let Y= ren YiuF in B:g Iz
with yi € L, such that ty/u = x. Write /= keN appk, with ag € Qp. Then, we

have that
( > akuk)( > yku") = > xuk.
keN keN keN

We will show that yg is in L, for all k € N, using induction. Indeed, note that agyo = Xo
in L, s0 yo = xg/agisin L. Let n € N and assume that yi is in L, for every k < n. Then,
we have that Zz+(1) Ak Yn+1—k = Xp+1 in L and by the induction assumption we get that
Yn+1 = (Xnt+1 — Y p—o Ak Yn+1—k)/do is in L. Hence, we conclude that y is in Brlg I

implying that (t/;L)BJr N B:g L= (I/M)Bng L [
Lemma 2.12. Inside Bng, we have that (t/,u)B:'g LN B+ = (l‘/,LL)B:g Iz therefore,
from Lemma 2.11 we get that (t//uL)Brlg LN B:g L= (t/;L)Brlg L

Proof. Let us first note that for each n € N>; we have the following diagram:

n—1 n—1 v
0 Bt . ¥ ([rly) B+ . wg, L 0

rlg,L rig,L
v "~1([ply) v fop~ l%
0 g W) gy AN o} s 0,

rig rig
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where the left and middle vertical arrows are natural inclusions the right vertical arrow
is ¢ : L(§Pn) = L(é‘pn) C Cp, given as ) j_ Oaképn > Zk 0 (pL"(ak)é‘pn, with e =
[L(Epn) L] and ¢; : L= Land6: B:'g C B:ZIS(OL) — Cp, from Section 2.1.1. The top row
is obviously exact and the bottom row is exact by [7, Proposition 2.11, Proposition 2.12,

Remarque 2.14]. All vertical maps are injective and hence we obtain that
([p]q) M B+ = cp"([p]q)B:lr i foralln € N,

in particular, qo”([p],])B:fgLOBJr . =¢"([plq )BJr . Now, let x be in (l/pL)BJr LﬂBn i
and write x = ty/u, for some y in B“Lg . We w111 show that y is in BJFg by showmg
that it converges over each closed disk D(L p), for 0 < p < 1. Fix some O <p<1and
from Lemma 2.11, we write /10 = [, en (9" ([Plg)/p) = v [T (@™ ([Plg)/ P), for a
unit v € O(D(L, p))* and m € N depending on p. Then, we have that x = ([plg/p)y1.

where ”
]_[ "((Pla)/P)y

is in ﬁ;"g LN (p/[p]q)Bji'g ;= Brig i Repeating the preceding argument for 1 < k < m,
we obtain elements ’ ’

m
ver=v [T ("(Pla)/p)y B}, 0" (p/Iplg)B] ; =BF ;.
n=k+1

In particular, we see that y =v !y, isin O(D(L, p)). Since, B+ . —hmp O(D(L 0))s

therefore, we conclude that y must be in B+ i . This completes our proof ]
rig

2.1.6. ¢-modules over certain period rings. Let ¢-Mod B! denote the category of
finite free modules over Brl L equipped with an 1som0rphlsm 1®¢:9*M = M and
morphisms between objects are B, _-linear maps compatible with 1 ® ¢ on both sides;
denote by - Mod0 the full subcategory of objects that are pure of slope zero in the

sense of [33, Sectlon 6 3]. Similarly, one can define the category ¢-Mod,+ and denote by
©- ModoT the full subcategory of objects that are pure of slope zero (as ¢-modules over a

dlscretely valued ﬁeld)

Let Eff-¢- Mod [7lg denote the category of effective and finite [p],-height AJr modules,
i.e., an object in thls category is a finite free A+—module N equipped with a Frobemus—
semilinear endomorphism

o:N — N

such that the map 1 ® ¢: ¢*(N) — N is injective and its cokernel is killed by a finite
power of [p],; denote by Eff-¢- Mod[p]“ ® Q,, the associated isogeny category. Similarly,

define Eff-¢- Mod [Ple to be the category of effective and finite [ p],-height Br ie, 7 -modules

nﬁ L
and Eff-g-Mod!}*"’

rlg L

M such that B L ®B+ M is pure of slope zero.

rig, rig,L

?" to be the full subcategory of objects that are pure of slope zero, i.e.,
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Lemma 2.13. The objects described above are related as follows:

(1) The following functor induces a natural equivalence of categories:

- ModOJr - ¢- Modo

ng L

Ml—>M®BT BrlgL

(2) The following functor induces an exact equivalence of @-categories:

Eff-p-Mod"”} ”]q ® Qp > Eff-p-Mod/?)+*?

rlg L

Nr—>N®A+ BngL

Proof. The claim in (1) follows from [34, Theorem 6.3.3]. The equivalence of ®-categor-
ies in (2) follows from (1), [35, Lemma 1.3.13] and [33, Proposition 6.5], and the exactness
follows since BJr — Brl oL is faithfully flat by Lemma 2.7. Note that in [35], Kisin assumes
the residue ﬁeld of the discrete valuation base field (L in our case) to be perfect. However,
the proof of [35, Lemma 1.3.13] depends only on [33, Proposition 6.5] and [34, The-
orem 6.3.3] which are independent of the structure of the residue field. In particular, the
proof of [35, Lemma 1.3.13] applies almost verbatim to our case. We recall the quasi-
inverse functor from loc. cit. that will be useful later (see Section 4.5).
Let M + be a finite height effective B 1-module which is pure of slope zero. Then,
MrTg = Br]g L ®BrI L Mr;;

is pure of slope zero and (1) implies that there exists a finite free Bz -module M T pure of
slope zero such that

Bjig’L®BTMT—>MT < Bf ; ®p+ M

rig, rig, L rig*

Choose a B} -basis of M T and a B L-ba31s of M. The composite of the isomorphisms
above is given by a matrix with values in B’ rig,L" By [33, Proposition 6.5], after modifying

the chosen bases, we may assume the matrix to be identity, in particular, M T and Mr:;

are spanned by a common basis. Let M denote the Bz—span of this basis. Since BJr

B! , nB} cB!

rig, we obtain that

rig,L>

M=Minm"cm],

and Br]g I ®BL+ M = Mr;; and BL ®B+ M = M*. Moreover, M1 is pure of slope zero,

so there exists an Az-lattlce M(;r C MT. Let M(’, =MnN MJ C M7 and set
= (A] ®,s Mg) N Mgl1/pl C M7,

Using [35, Lemma 1.3.13] and the discussion above, My C M is a finite free @p-stable
A]J:-submodule such that the cokernel of the injective map 1 ® ¢: ¢*(My) — M, is killed
by some finite power of [p],. |
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Remark 2.14. Let M be a finite free B:g, ;-module and N C M a B:{g, 7,-submodule.
Then, N is finite free if and only if it is finitely generated if and only if it is a closed
submodule of M. Equivalences in the preceding statement essentially follow from [35,
Lemma 1.1.5]. Note that Kisin assumes the residue field of the discrete valuation base
field (L in our case) to be perfect. However, the proof of loc. cit. depends on the results
of [38, Sections 7-8], [33, Lemma 2.4] and [7, Proposition 4.12 and Lemme 4.13], where
the proof of the latter depends on [31,38]. Relevant results of [31,33,38] are independent
of the structure of the residue field of L. Hence, we get the claim by using the proof of

[35, Lemma 1.1.5] almost verbatim.
Next, we note some useful facts about ¢-modules over AZ.

Lemma 2.15. Let O := OF, Of or O; and let A := O[] equipped with a Frobenius
endomorphism extending the natural Frobenius on O by setting ¢(u) = (14 un)? — 1. Let
N be a finitely generated A-module equipped with a Frobenius-semilinear endomorphism
such that

1 ® ¢:¢™(N)[1/[plg] = N[1/1Plq]-
Then, N[1/ p] is finite free over A[1/ p].

Proof. The proof is essentially the same as [9, Proposition 4.3]. Let J denote the smallest
non-zero Fitting ideal of N over A. Set K := Og[1/p] and A = A/J . From loc. cit. the
claim can be reduced to checking that A[1/p] = 0. Note that the Frobenius endomorphism
on A and finite height condition on N are different from loc. cit. Therefore, we need some
modifications in the arguments of loc. cit.; we point out the differences in terms of their
notations. Fix an algebraic closure K of K and consider the finite set

Z := Spec (A[1/p])(K)

of K-valued points of A[1/p].Let Z’ := {x € m such that (1 + x)? — 1 € Z}, where mi C
O is the maximal ideal. Then, from the equality (4/J)[1/[p]lq] = (A/e(J)[1/[p]q], we
getthat ZNU =Z'NU,whereU :=m—{{, —1,.. .,E},’fl — 1}. Now, all the arguments
from loc. cit. can be easily adapted to show that there exists some r € N such that we have
an isomorphism K[u]/(u”) = K[u]/(@(n)"). But, then we obtain that (¢(u)/@)" is a
unit in K[u], whereas ¢(i)/p € K[u] is an irreducible polynomial. Hence, we must have
that = 0 and thus (A/J)[1/p] = 0, allowing us to conclude. |

Remark 2.16. Let N be a finitely generated torsion-free AZ -module. Then,
D =A; ® At N
L

is a finite free A7 -module and N C D an Az-submodule. Moreover, the AZ‘ -module N’ :=
N{[1/p] N D is finite free. The claim essentially follows from [27, Proposition B.1.2.4].
Note that Fontaine assumes the residue field of the discrete valuation base field (L in
our case) to be perfect. However, the proof of [27, Proposition B.1.2.4] only depends on
[37, Chapter 5, Theorem 3.1] which is independent of the structure of the residue field
of L. Therefore, one can adapt Fontaine’s proof verbatim to show that N is finite free.
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Let N be a finite free Az-module. Say that N is effective and of finite [p],-height if
N is equipped with a Frobenius-semilinear endomorphism ¢ such that the natural map
1 ® ¢:¢*(N) — N is injective and its cokernel is killed by some finite power of [p],.

Let D be afinite free étale p-module over A; . Let S(D; ) denote the set of all finitely
generated A;:-submodules M C Dj such that M is stable under the induced ¢ from D,
and the cokernel of the injective map 1 ® ¢: ¢*(M) — M is killed by some finite power
of [ Plg- In [27, Section B.1.5.5], Fontaine functorially attached to D; an Az-submodule

(D i) = Unpe S(D;) M C Dj; (Fontaine uses the notation Jji to denote the functor
]* ; we change notatlons to aV01d the obvious confusion).

Lemma 2.17. The A+-module Js (DL) is free of rank < 1ka; Dy. Moreover, if N is an
eﬁ‘ectlve AT i -module of finite [plq-height, then the cokernel of the injective map N —
Js (A ®at+ N) is killed by some finite power of L.
L

Proof. The first claim is shown in [27, Section B.1.5.5]. For the second claim note that
N is finite free over Az' and of finite [p],-height, therefore, by the equivalence shown in
[27, Proposition B.1.3.3] we get that N is p-étale in the sense of [27, Section B.1.3.1].
In particular, we get that D; = A; ®,+ N is an étale p-module and N € S(Dj). Now,
from [27, Proposition B.1.5.6], it follows that the cokernel of the injective map N —

S(D ;) is killed by some finite power of . |

2.2. p-adic representations and (¢, I')-modules

Let T be a finite free Z,-representation of Gy . From the theory of (¢, I'z.)-modules (see
[5,27]), one can functorially associate to 7" a finite free étale (¢, I'z )-module

D.(T) = (AQ®gz, )AL,

over Ay of rank =rkz, T, i.e., DL (T) is equipped with a continuous and semilinear action
of 'z and a Forbenius-semilinear endomorphism ¢ commuting with I'y, and such that the
natural map 1 ® ¢: *(Dr(T)) — D (T) is an isomorphism. Moreover, we have that

D.(T) := (A ®z, T)Ht = AL ®,, DL(T).

Furthermore, by the theory of overconvergence of p-adic and Z,-representations (see
[6,19]), one can functorially associate to 7" a finite free étale (¢, Iz )-module,

D} (T) := (AT ®z, T)"x,
over Az of rank = rkz, T and such that AL ® Al Dz (T) = DL (T). Then, we have natural
L
isomorphisms

A®aDL(T) 5 A®z, T. AT® ATD (T) = AT ®g, T, @1

compatible with (¢, 'z )-actions. More generally, the constructions described above are
functorial and induce exact equivalence of ®-categories:

Repz, (GL) = (¢.T1)-Mody, <= (¢.I')-Modj. 22)
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Similar statements are also true for p-adic representations of Gr,. For a p-adic represent-
ation V of G, set

D'

rig,L(V) = Bjig,L ®Bz DIJ[(V),

which is the unique finite free (¢, I'z)-module over B:Eg’ ;, of rank = dimg, V' and pure
of slope zero functorially attached to V' (see [7,34,41]). Moreover, the preceding functor
induces an equivalence of categories between p-adic representations of Gz, and finite free
(¢, 'L)-modules over B:rig ;. Which are pure of slope zero (see [41, Lemma 4.5.7]), and for
any p-adic representation,V of G1, we have a natural (¢, G )-equivariant isomorphism,

Bf

i ~,. pnt
rig ®B:ig,L Drig,L(V) — B/ ®q, V. 2.3)

rig
Remark 2.18. Analogous to the results mentioned above, the natural statements for p-
adic (resp. Zp-representations) of G; also hold true (see [7,19,27] for details).

Finally, let V' be a p-adic representation of Gz and T C V a Gy -stable Z,-lattice.
Since G j, is a subgroup of G, therefore, by restriction V is a p-adic representation of
Gy and T CV aGj-stable Z-lattice. Furthermore, we have a I'j -equivariant embedding
Ap C Aj (via the map [X;’] > X;) and thus we have isomorphisms of étale (¢, I'y)-
modules:

D; (T) > Aj ®a, DL(T). D;(T):= (A®z, T)L = AL @4, D; (T).

Similar statements are also true for V.

2.3. Crystalline representations

Let us denote the category of p-adic crystalline representations of Gy (see [14, Sec-
tion 3.3]) as Rep%i; (GL) and let MF}?(¢, d) denote the category of weakly admissible
filtered (¢, d)-modules over L (see [14, Définition 4.21]). Then, the following functor
induces an exact equivalence of ®-categories:
Repg (GL) = MF}*(¢, ) o

G .
Vi— ODcris,L(V) = (OBcris(OZ) ®Qp V) L,

with an exact quasi-inverse ®-functor given as (see [ 14, Corollaire 4.37]),

D —> OV 1.(D) := (Fil°(OBeis(07) @1 D))"= "*=".

In particular, if V is a p-adic crystalline representation of G, then ODqy 1, (V) is a rank
= dimQP V, weakly admissible filtered (¢, d)-module over L. Moreover, as a representa-
tion of G; one can functorially attach to V arank = dimg, V', weakly admissible filtered
@-module over L, denoted as D i (V). Now, note that since V is crystalline for G,
therefore, we have a (¢, G, )-equivariant isomorphism

OBcris(OE) L ODcris,L(V) — OBcris(OZ) ®Qp V.
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By base changing the preceding isomorphism along the (¢, G )-equivariant surjection
OBis(01) = Beis(01) = Bcris(Oz), sending X; +— [Xl!’] for 1 <i < d, we obtain the
following (¢, G )-equivariant isomorphism (also see the proof of [16, Proposition 4.14]):

Bcris(Oi) L ODcris,L(V) — Bcris(Oi) ®Qp V.

where on the left, the L-algebra structure on Bcris(Oi) is given via the (¢, G )-equivariant
composition L — OB(0f) — Bcris(Oi) with the first map being the non-canonical
L-algebra structure on OB(Of) (see Section 2.1.1). By taking G; -invariants in the
preceding isomorphism, we obtain an isomorphism of filtered ¢-modules over L:

L ®L ODeis (V) => D, ; (V). 2.5)

The representation V' is said to be positive if all its Hodge—Tate weights are < 0, and in
this case we have that ODyyis,1. (V) = (OB;S(OE) ®qQ, V)or.

Lemma 2.19. There exist natural Bis(O7)-linear and Frobenius-equivariant isomorph-
isms,

~ =0 ~
Bcris(Oi) ®Qp V— (OBcris(Oi) L ODcris,L(V)) 0 — Bcris(OZ) QL ODcris,L(V)s

where the second isomorphism is induced by the surjective map OBcis(O7) = Beiis(O5),
sending X; v [X!] for 1 <i <d.

Proof. Let us consider the following projection map:
OBcris(OZ) QL ODcris(V) —> Bcris(OZ) L ODcris(V)’ (26)

induced by the surjective map OBis(O7) — Beis(Or) sending X; — [Xl.b], and the
kernel of (2.6) is given as J OBis(01) @ ODyis(V), where

J OB.is(O7) := p-adic closure of the ideal ([X'l)] - X1,..., [XZ] - Xd) C OBis(05).

Moreover, recall that we have a connection 9: ODyis,1,(V) = ODyyis, 1 (V) @0, 2 10L JOp
givenas d(x) = Zid=1 d; (x)d X;, for differential operators d; on ODgs, 1. (V). Then, using
the non-canonical L-algebra structure on OBis(O7) (see Section 2.1.1), we can give an

L-linear map,

ODcris,L(V) I OBcris(O[_,) L ODcris,L(V)

d d
X s alfi(x) X —X; [ki],
Yol xn-x)

keNd i=1 i=1

2.7)

where we write ]_[?;1 3;(" (x) = alf‘ 0--+0 Bl;d (x) for notational convenience. As the

connection d on ODy5, 1. (V) is p-adically quasi-nilpotent, therefore, ]_[f;l 8?" (x) goes

p-adically to 0 as Zle ki — +00, and thus, in (2.7), the formula on the right converges
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in the target, for its natural topology (see Remark 2.20). Moreover, note that the map in
(2.7) extends Beis(Of )-linearly to a map,

Bcris(OZ) L ODCﬂ% L(V) — OBcris(OZ) L ODcris L(V)

a®x+—>a® Y. ]‘[ak(x)]_[ (X - X

keNd i=1 i=1

[kl] (2.8)

and it provides a section to the projection in (2.6). In particular, we obtain the following
B.iis(Og)-linear and direct sum decomposition compatible with the respective Frobenii
and connections:

OBcris(OZ) L ODcris,L(V)
= (JOBcris(OZ) QL ODcris,L(V)) 2] (Bcris(OZ) L ODcris,L(V))‘

Note that the image of the map in (2.8) lies in (OBcis (O7) ® 1. ODvris, . (V))?=%. Moreover,
since V' is crystalline, therefore, we have the following OBis(O7 )-linear isomorphism
compatible with the respective Frobenii and connections:

OBaiis(0f) ®L ODgiis, . (V) —> OBeiis(0p) ®L V.
Using the preceding isomorphism, we easily get that
(J OBeis(07) ®1 ODey (V)" = 0.
So, from the direct sum decomposition above, it follows that we have
(OBeiy(07) @1 ODers 1.(V))" ™" = Buris(Op) &1 ODiis (V).

Note that the maps in (2.6) and (2.8) are evidently compatible with the respective Frobenii,
therefore, the isomorphism in the claim is also compatible with the Frobenius. This allows
us to conclude. [

Remark 2.20. Note that the p-module ODy;5.1.(V) is a finite-dimensional L-vector space.
Therefore, OBcis(O7) ®1 ODysis, 1. (V) is a finite free module over OB.is(O7 ) equipped
with the natural product topology induced from the p-adic topology on OBs(O7). Sim-
ilarly, in Lemma 2.23, we will see that Brl oL ®1 ODqis,1. (V) is a finite free module over
B:g ;. and equipped with the natural product topology induced from the Fréchet topology
on Brl oL (see Remark 2.6).

Remark 2.21. Using the Bs(Og )-linear map in (2.8) and by transport of structure, we
equip Beis(O7) ®1 ODvys, 1. (V') with a continuous action of G. In particular, for any g
in G, its action on a ® x in Beis(Of) ® 1 ODyrs, 1. (V) is given by the following formula:

ga®xn) =g@® Y 1‘[8"’ (x)]‘[ (1x2) — [x i)™

keNd i=1 i=1
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Remark 2.22. Using the description of the G -action on B5(07) ®1. ODgis,.(V) in
Remark 2.21, note that BCJ:N(OZ) ®L ODqis,1.(V) C Beris(Of) ®L ODyyis, 1 (V) is stable
under the induced action of G.. Moreover, it is clear that the action of Hj,, induced from

the action of Gy, described in Remark 2.21, is trivial on
ODcris,L(V) - Bcris(O]:) L ODcris,L(V)a

and we have that BT (OZ)HL =

cris

(OL ) by [39, Lemma 4.32]. Therefore, we obtain that,

cris

Hp
(Bg;ls(O]:) L ODcris,L(V)) = B:;IS(OLOQ) QL ODcris,L(V)' 2.9
We equip B:;is( Or..) ®L ODgs, 1 (V') with the residual 'z -action.

Lemma 2.23. For any x in ODyis,1.(V) and g in T'r, the following summation converges
in BrTg,L L ODcris,L(V)"

g0 =Y Hak’(x)l‘[ (1x?7) - ™!

keNd i=1 i=1

In particular, Bng L ®L ODyis, (V) C Bcns(OLoo) ®1 ODyis,. (V) is stable under the
induced action of I'r.

Proof. Let {yo, Y1,-...,Yd} be topological generators of I'y, as in Section 2.1.1, in particu-
lar, y; (X" = (1 + y,)[Xb] ifi = j,and [X b] otherwise. As BngL &1 ODqis,1.(V) C

crls(OLoo) ®1 ODqis,. (V) is closed for the p-adic topology and the action of I'z, on
the latter is continuous (see Remark 2.21), therefore, it is enough to show the claim
for the chosen topological generators of I'y. For any y;, we can simplify the sum in
the claim and rewrite it as Y, cna %1 X }’] ]_[li1 af" (x). Now, recall that the connec-
tion d on ODg, 1. (V) is p-adically quasi-nilpotent, i.e., there exists an Op -lattice M C
ODis(V) stable under 9, ie., M - M ® Q})L such that 9 is nilpotent modulo p.
Let {e1, ..., ep} denote an Op-basis of M. Then, we may check that on the chosen
basis we have (M) C p~"M, for some fixed r € N. Moreover, recall that we have
L ®y,1. ODysis,. (V) = ODqis,1.(V), so we may write x = Z?:l ajp(ej), for some
a; € L. Since 9;(p(e;)) = pp(0i(e;)),foralll <i <d and 1 < j < h, therefore, we get
that,

d d
> kXN Tk (e(en) = p~47 7w T p* p 0 (9F (o).

keN4 i=1 keN4 i=1

converges p-adically, and thus converges for the natural topology on Bji' 0,1 OL ODyis, (V)
(see Remark 2.20). Therefore, by using the Leibniz rule, we are reduced to showing that
the summation Y, cna 11X ;’] ]_[f'_l Bk’ (a) converges in Bné - for any a in L. This
follows easily since we have 85.‘ (X")/k!=0,forn <k, 85-‘ (XH/ k= (Z)Xi”_k, forn >k,

and 0K (X ™)/ k! = (=) ("H,;_I)Xi_("“%), for n € N. Hence, the lemma is proved. =
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Lemma 2.24. The action of T', on Bng L ®L ODyis, (V) is trivial modulo .

Proof. Note that g(u) = (1 + u)X® — 1, for any g in I'z and y the p-adic cyclotomic
character. Using Lemma 2.23 and Remark 2.21, fora ® x in Bn;, /1] ®L ODerig,L (V)
and g € 'z, we have that

ga®x ) =g@)® Y 1‘[8’“ (x)]‘[ (g(1xf) — [x)™

keNd i=1
Note that
(g—D@®x)=(g—1a) ®x+ ga) ® ((g — Dx), (2.10)

where g(x) is given by the series in the statement of Lemma 2.23. So, we have that

X d
g-Dx= Y J]o*®[] (- nrxn™.

keNd i=1 i=1

where Ni = N9\ {(0,0,...,0)}. Using the explicit description of B:{g’ ;, in Lemma 2.5,
note that (g — l)Brlg . C ,uBng 1.» and from the proof of Lemma 2.23 note that (g — 1)[ X, l!’]
isin ,uB+ Therefore, an argument similar to the proof of Lemma 2.23 shows that (g — 1)x
converges in /LBng 1 ®L ODqi 1 (V). So, from (2.10) it follows that (g — 1)(a ® x) is in
uB rig, L L ODyis,z. (V). This allows us to conclude. [

3. Wach modules

In this section, we will define and study Wach modules in the imperfect residue field case
and finite [p],-height representations of Gz and relate them to crystalline representations.
Our definition is a direct and natural generalisation of Wach modules in the perfect residue
field case (see [8, Définition I11.4.1]).

3.1. Wach modules over AZ‘

In the period ring Ainf(OF,,), letus fix g :==[¢], u :=q¢ — 1 = [¢] — 1 and [p], := §:=
(/1.
Definition 3.1. Let a, b € Z with b = a. A Wach module over AZ with weights in the

interval [a, b] is a finite free Az-module N equipped with a continuous and semilinear
action of I'7, and satisfying the following assumptions:

(1) The action of I'z, on N/uN is trivial.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢()], commuting
with the action of T'z, and such that ¢(u?N) C u’ N and the cokernel of the
injective map (1 ® ¢): p*(u®N) — PN is killed by [p]2~2.
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Define the [p],-height of N to be the largest value of —a, for a € Z as above. Say that N is
effective if one can take b = 0 and ¢ < 0. A Wach module over BZ‘ is a finitely generated
module M equipped with a Frobenius-semilinear operator ¢ : M[1/u] — M[1/p(w)],
commuting with the action of I'z, and such that there exists a ¢-stable (after inverting i)
and I'z -stable AZ‘-submodule N C M, with N a Wach module over Ag (equipped with
the induced (¢, I'r)-action) and N[1/p] =

Denote the category of Wach modules over A as (¢, I')- Mod[p 1 with morphisms
between objects being Az—linear, I'z -equivariant and ¢-equivariant (after inverting ().

Definition 3.2. Let N be a Wach module over AZ. Define a decreasing filtration on N
called the Nygaard filtration, for k € Z, as

Fil*N := {x € N such that p(x) € [p]];N}.

From the definition, it is clear that N is effective if and only if Fil’ N = N. Similarly, we
can define a Nygaard filtration on M := N[1/p] and it satisfies FilK M = (Fil* N)[1/p].

Extending scalars along AJr — Ay induces a functor (¢, I')- Mod[p b, (¢, T)- ModAL,

and we make the following claim.

Proposition 3.3. The following natural functor is fully faithful:
(p.1)-Mod” — (9. 1)-Mod§,
L
Nr— AL ®,+ N.
L
Proof. We need to show that for Wach modules N and N’, we have a natural bijection,

Hom (F)Md iy (N N') > Homg 1y vogs (AL ®y3 NAL @y N, (B.D)

Note that A7 — A = A [1/u]" is injective, in particular, the map in (3.1) is injective.
To check that (3.1) is surjective, let Dy, := Ay, ®Azr N,D; :=AL ®AZ N’, and take an
Ap-linear and (¢, I'z )-equivariant map f: Dy — D . Then, by base changing f along the
embedding A;, — Aj (see Section 2.1.5), we obtain an A ; -linear and (¢, I'; )-equivariant
map f;:Dj — D/ Usmg the definition and notation precedmg Lemma 2.17, we further
obtain an A —lmear and (@, I'; )-equivariant map fj: j, (DL) — Jj. (D’) where we
abuse notatlons by wrltmg Jj instead of JT(f 7). From Lemma 2.17, note that for some
s € Nand Nj := A N N, we have an inclusion u* Ny C j;7(D;) and the cokernel is
killed by some ﬁmte power of 1. Hence, Ny [1/u] = j.F(Dj)[1/ pL] Similarly, one can
also show that N]E[l/u] = j. (D )[1/1]. Now, from the map f5: jH(D;) — j.- (D’)
we obtain an induced I'y L-equlvarlant map

fiNp[t/pl = jS(DPI/ ] — 5 (DI/ul = Ni[1/pl.
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and from Lemma 3.4 below, we get that f; (N;) C N’i. It is easy to see that N = Ny N
Dy CDjand N' = Ni NnD; C D;:- So, we conclude that f(N) C f; (N;)N f(DL) C
N L N D; = N'. This proves the surjectivity of (3.1). [

Lemma 3.4. Let N and N’ be Wach modules over Az andlet f:N[1/u] — N'[1/u] be
an AZ—linear and I ; -equivariant map. Then f(N) C N'.

Proof. The proof is similar to the proof of [3, Lemma 5.32]. Assume that f(N) C u=*N’,
for some k € N, and consider the reduction of f modulo i, which is again I'; -equivariant.
By definition, we have that I'; acts trivially over N/uN, whereas W kN N S
N'/uN'(=k), i.e., the action of I'; on W RN’/ k1IN is given by y %, where y is the
p-adic cyclotomic character, in particular, (u 8N’/ *T1N")FZ = 0. Since we know
that f is I'; -equivariant, therefore, we must have that k=0,ie., f(N) C N [

Analogous to above, one can define categories (¢, I‘)-ModeJr]q and (¢, F)-Modié;L and
L

a functor from the former to latter by extending scalars along Bz — By. Then, passing to
associated isogeny categories in Proposition 3.3, we obtain the following.

Corollary 3.5. The natural functor (¢, T’ )-Mod[p lo (o, I‘)-Modf‘;L is fully faithful.

B/
Composing the functor in Proposition 3.3 with the equivalence in (2.2), we obtain a
fully faithful functor,

Tr: (¢, F)-Modl[:;q —> Repg, (GL)

3.2)

~

N — (A @, N)*=1 =5 (W(C}) @, N7

Lemma 3.6. Let N be Wach module of [ply-height s and let T := Ty (N ). Then, we have
a G -equivariant isomorphism,

AT[1/u] ®,+ N = A*[1/u] ®2z, T. (3.3)
Moreover, if N is effective, then we have natural G -equivariant inclusions
WA ®z, T) CAY ®,4 N CAT @z, T.

Proof. For r € N large enough, the Wach module u” N(—r) is always effective and we
have that
Tp (1" N(=r)) = TL(N)(~r)

(the twist (—r) denotes a Tate twist on which I'z, acts via y=", where y is the p-adic
cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So assume that N is effective. Now, as N is finite free over AZ, therefore,
by using Definition 3.1(2) and the tensor product Frobenius, we obtain a Frobenius-
semilinear isomorphism

¢: Ainr(OD)1/€] @ N = Aur(Op)[1/8] @+ N.
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Then, from [39, Proposition 6.15] we get the following Gy -equivariant inclusions:
1 (Ainr(0g) ®2, T) C Ainr(0F) ®,+ N C Aine(07) ®2, T C A ®,+ N.

Moreover, from (2.1), we have that A ® AF N S5 A®z » T. Therefore, by taking the
intersection of A ®z, » T with the chain of inclusions above, inside A ® A} NS ARz » T,
we obtain the following Gy -equivariant inclusions:

1 (Ainf(0p) NA) ®z, T C (Aine(Of) NA) ®,r N C (Ainf(Op) NA) ®z, T.

Since AT = Aiy(O3) N A, therefore, we get that the natural map in (3.3) is bijective and
w' (At @z, T) C At ®ur N C A" ®z, T (for N effective), as desired. n

3.2. Finite [ p],-height representations

In this section, we will generalise the definition of finite [p],-height representations from
[3, Definition 4.9] in the imperfect residue field case. Let 7" be a finite free Z,-representa-
tion of Gp, V := T[1/p] and set DZ'(T) = (At ®z, T)HL to be the (¢, 'z )-module
over AZ associated to 7' and let DZ(V) = DZ(T)[l/p] be the (¢, 'z )-module over BZ
associated to V.

Definition 3.7. A finite [p],-height Z,-representation of G is a finite free Z,-module
T admitting a linear and continuous action of G, and such that there exists a finite free
A{-submodule Nz (T) C Dp(T) satisfying the following:

(1) Np(T) is a Wach module in the sense of Definition 3.1.

(2) We have a natural (¢, ['p )-equivariant isomorphism Ay, ®AZ NL(T) = Dp(T).
Set the [p]y-height of T' to be the [p]y-height of Nz (T'). Say T is positive if N (T) is
effective.

A finite [p]g-height p-adic representation of Gz is a finite-dimensional QQ,-vector
space admitting a linear and continuous action of Gy, and such that there exists a G-
stable Zp-lattice T C V with T of finite [p],-height. Let us define Nz (V) := Np(T)[1/ p]
CcDL(T)[1/p] =Dr(V)tobea BZ-submodule of Dy, (V), and satisfying properties ana-
logous to (1) and (2) above. Set the [p],-height of V' to be the [p],-height of T'. Say V is
positive if Ny (V) is effective.

Remark 3.8. For T a finite [p],-height Z ,-representation of G, and r € N, we have that
Nz (T(r)) = p~"Nr(T)(r), in particular, property of being finite [p],-height is invariant
under Tate twists.
Lemma 3.9. Let T be a finite [pl,-height Z,-representation of Gr.

(1) If T is positive, then /LSDZ_ (T) CNp(T) C DZ (T).

(2) The A]'f-module N (T) is unique, i.e., if there exists an AZ-submodule N C

Dy (T) satisfying the conditions (1) and (2) in Definition 3.7, then we must have
that N = Np(T) C Dp(T).
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Proof. Note that Az ® A} N7(T) =Dy (T) and this scalar extension defines a fully faithful
functor as in Proposition 3.3, in particular, we obtain that Tz, (N (7)) = T as represent-
ations of G, (here Ty is the functor defined in (3.2)). This also implies that Lemma 3.6
holds for Nz (T'), so by taking Hp -invariants of the chain of inclusions in the final state-
ment of Lemma 3.6, we obtain that usDZ(T) CNp(T) C Dg (T') which proves (1). The
claim in (2) follows from Proposition 3.3, or using an argument similar to [3, Proposi-
tion 4.13]. [

Remark 3.10. Let V be a finite [p],-height p-adic representation of Gy and T C V
a finite [p],-height G -stable Z,-lattice. Then, we have that Nz (V) = Nz (T')[1/p] and
from Lemma 3.9 we get that if V' is positive then p* DZ’ (V)CNL(V)C DZ’ (V). Moreover,
from Corollary 3.5 (or [3, Proposition 4.13]) it follows that Nz (V') is unique, i.e., if there
exists a BZ’—module M C Dy (V) satisfying the conditions analogous to (1) and (2) in
Definition 3.7, then we must have that M = Nz (V) C Dz (V). In particular, it follows
that Nz (V) is independent of the choice of the lattice 7 C V. Alternatively, note that
since we have Nz, (V(r)) = u~ "N (V)(r), without loss of generality we may assume that
V is positive and T’ C V another finite [p],-height G -stable Z,-lattice. Then, we have
that [LSDZ(V) CNL(TH[1/p] C Dz(V), and using the argument in the proof of [3, Pro-
position 4.13] almost verbatim gives Nz (V) = N1 (T)[1/p] = N (T’)[1/ p] compatible
with the respective (¢, 'z )-actions.

Remark 3.11. From the definition of finite [p],-height representations, Lemma 3.9 and
the fully faithful functor in (3.2), it follows that the data of a finite [p],-height represent-
ation is equivalent to the data of a Wach module.

3.3. Wach modules are crystalline

The goal of this subsection is to prove Theorem 3.12 and Corollary 3.16. To prove our
results, we need certain period rings similar to [3, Section 4.3.1], which we denote as
A}, and OAJP  below. We define these as follows: let @ = {pm — 1, where m > 1 for
p=3andm = 2 for p = 2, and set

Af = A7 [e™ (W] C Aie(OL,).

Restricting the map 6 on Aiy¢(Or, ) (see Section 2.1.1) to AZw’ we get a surjection
0 : Az’w —> OL[w]. Define AJ”  to be the p-adic completion of the divided power
envelope of the map 0 with respect to Ker 8. Moreover, consider the surjective map

0r1: 0L ®7 AT - OL[ID'],

L,w

givenas x ® y — x6(y). Define OAE]’)W to be the p-adic completion of the divided power
envelope of the map 0y with respect to Ker 67 . Similar to [3, Section 4.3.1], one can show
that Azl?w C Auis(OL,,) and (’)AE‘?ZU C OA.is(0OL,,), stable under the Frobenius and
[ -action on latter. We equip A7"  and OAJP_ with induced structures, in particular, a
filtration (same as the filtration by divided powers of Ker # and Ker 87, respectively, see
[3, Remark 4.23]) and a connection d4 on OAE‘?W satisfying Griffiths transversality with
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respect to the filtration and such that (OA}” )40 = = AJ",,. Furthermore, note that we
have natural inclusions B C AP [1/p] - (QA [1/p] C OBZ. (07) C OB (07),
where the last term is the big de Rham period rlng Wthh is an integral domain (see [14,
Proposition 2.9 and Remarque 2.10]). So, it follows that AE],)w [1/p] and OAEI?W [1/p] are
torsion-free modules over the principal ideal domain B}, hence flat. A similar reasoning
shows that Fil* O APD [1/p] is a flat B+-module for any k € N.

cris

Theorem 3.12. Let N be a Wach module over AZ. Then, V := Tr(N)[1/p] is a p-adic
crystalline representation of Gp..

Proof. For r € N large enough, the Wach module u” N(—r) is always effective and we
have that T (u" N(—r)) = Tr(N)(—r) (the twist (—r) denotes a Tate twist on which I'y,
acts via y~", where y is the p-adic cyclotomic character). Therefore, it is enough to show
the claim for effective Wach modules. So assume that N is effective. Note that N is free
over Azr and Ty, (N) is a finite [p],-height Z ,-representation of G, in the sense of Defin-
ition 3.7 (see Remark 3.11). So, the results of [3, Sections 4.3—4.5] can be adapted to the
case of Or, almost verbatim as all objects appearing in loc. cit. admit a natural variation
for O In particular, as we explain below, the proofs of [3, Theorem 4.25 and Proposi-
tion 4.28] can be adapted to get that V' =T (N)[1/ p] is a crystalline representation of G .
Set Dy := (OAP w O N[1/pD't C ODqis.1 (V). Then, from Proposition 3.14 it
follows that Dy is a ﬁmte L-vector space of dimension = rk Aer equipped with a tensor
product Frobenius and a connection induced from the connection on OAPDw satisfying
Griffiths transversahty with respect to the tensor-product filtration defined as Fil*Dy :
Qi =k Fil’ OAP w Oat Fil/ N[1/p])2, where N[1/ p] is equipped with Nygaard fil-
tration of Deﬁmtlon 3 2 (see after Lemma 3.15 for well-definedness of the tensor-product
filtration). Moreover, from Proposition 3.14 below, note that we have a natural isomorph-
ism OAT” ®o0, Dr = OA°  ® a7 N[1/p]. Now, consider the following diagram:

3
OBcns(OL) XL DL % OBcrls(OL) ®A+ N[l/p]

Ml a2 (3.4)
OBCI‘iS(OZ) ®L ODCI‘iS,L(V) —> OBcris(OZ) ®Qp V7

where the left vertical arrow is the extension of the inclusion Dy C ODyis, 1, (V), from
(3.7), along the natural map L — OB.,;s(O7), the top horizontal arrow is the extension of
the isomorphism, in Proposition 3.14, along the natural map OA¥fP ' [1/P] = OBeiis(O51),

the right vertical arrow is the extension of the isomorphism (3.3) in Lemma 3.6, along the
natural map AT [1/ 1] — OB5(Oy) and the bottom horizontal arrow is the natural inject-
ive map (see [14, Proposition 3.22]). Commutativity and compatibility of the diagram with
the respective (¢, G )-actions and connections follow from (3.7) below. Bijectivity of the
top horizontal arrow and the right vertical arrow imply that the left vertical arrow and the
bottom horizontal arrow are bijective as well. Hence, we obtain that V' is a crystalline
representation of Gp.. ]
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Remark 3.13. In diagram (3.4), by taking the G -fixed part of the left vertical arrow, we
get that,
DL - ODcris,L(V)» (35)

compatible with the respective Frobenii and connections. Moreover, since the bottom
horizontal arrow of the diagram (3.4) is compatible with filtrations (see [14, Propos-
ition 3.35]), an argument similar to the proof of [3, Proposition 4.49] shows that the
isomorphism in (3.5) is compatible with filtrations, where we consider the Hodge filtration
on ODcris,L(V)~

The following result was used in the proof of Theorem 3.12.

Proposition 3.14. Let N be an effective Wach module over AZ. Then, the L-vector space
Dy = (OA?,)w ®AZ N[1/p) e is of finite dimension = rkAzr N, and naturally equipped
with a Frobenius, a filtration and a connection satisfying Griffiths transversality with
respect to the filtration. Moreover, we have a natural comparison isomorphism

OAL”y ®0, Di —> OAD, ®¢ N[1/pl. (3.6)
compatible with the respective Frobenii, filtrations, connections and ' -actions.

Proof. We will adapt the proof of [3, Proposition 4.28]. The main idea, as explained
below, is to work over a new period ring OSFP (defined below), prove an isomorph-
ism analogous to (3.6) (see Lemma 3.15), and then, extend the latter isomorphism over
to (’)AE‘?W using the Frobenius. So, following [3, Section 4.4.1], for n € N, let us define
a p-adically complete ring SFP := AZ(%, 2!’;%, o T .). The p-adically com-
pleted divided power ring SFP is equipped with a continuous action of ', and we have a
Frobenius homomorphism ¢: S,” — S;° |, in particular, " (S,”) C Sg° C A}"_, where
the latter inclusion is obvious. The reader should note that in [3, Section 4.4.1] we con-
sider a further completion of SFP with respect to certain filtration by PD-ideals, denoted
§,ll) D in loc. cit. However, such a completion is not strictly necessary and all proofs of loc.
cit. can be carried out without it. In particular, many good properties of §£D restrict to
good properties on SFP as well (for example, the (¢, ['z)-action described above).

Now, consider the OF -linear homomorphism of rings
1: 0 — S,lfD,

sending X; — [XII.’], for 1 < j < d. Using ¢ define an Op-linear morphism of rings
f:0L ®op SIP — SPP via a @ b > 1(a)b. Let OSFP denote the p-adic completion

n

of the divided power envelope of O ® o, SFP with respect to Ker f. The divided power
ring OSFP is equipped with a continuous action of 'z, an integrable connection and we
have a Frobenius

e: OS> _ OSPP |

in particular,
Q" ((’)S,],)D) C OAE]?W.
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X;®1

Moreover, we have that Or, = (OSPP)'L, and with V; : Tak
J

p-adically closed divided power ideals

for1 < j <d, we have

d
JUOS .= <“[k°]]_[(1—1/)["1 k= (ko,kl,...,kd)eNd“suchthatij2i>.

nkqo
Jj=1 Jj=0

Next, let us equip OSF° ® AF N with the tensor product Frobenius and an integrable
connection induced from the connection on OSFP. Then, D, := (OSFP ® AF N[1/p)te
is an L-vector space equipped with an integrable connection and we have an induced
semilinear Frobenius morphism ¢: D,, — D,,_;. In particular,

¢"(Dy) C D = (OAP, @1 N[1/p])™" C (OAwis(Op) ®,: N11/p) ",

where the last inclusion follows since OAJ®  C OA.i(0L,) = OAcm(OL)HL (see
[39, Corollary 4.34]). Let T = Tr(N) be the assomated finite free Z,-representation of
G and V = T[1/p]. Then, we have that,

D1 C (OB (Op) @y N[1/p]) ™
C (OBcris(OZ) ®BZ’ N[l/p])GL — (OBcris(Oi) ®Qp V)GL = ODcris,L(V)’ (3.7)

where the isomorphism follows by taking G -fixed elements of the extension along
A*[1/p] = OBgis(O5) of the isomorphism in Lemma 3.6. Recall that ¢" (D) C Dy, or
equivalently, the L-linear map 1 ® ¢": L ®,n,1 Dn — Dy is injective, therefore, we get
that L ®gn 1 Dy is a finite-dimensional L-vector space. Moreover, ¢ is faithfully flat and
finite of degree p? over L, so it follows that D, is a finite-dimensional L-vector space
equipped with an integrable connection. Furthermore, for n > 1 similar to the proof of
[3, Lemmas 4.32 and 4.36], one can show that

togys = Y (D

o k+1
converge as a series of operators on OSFP @ AF N, where {yg, y1, ..., Y4} are topological

generators of I'z (see Section 2.1).

Lemma3.15. Letm = 1 (letm = 2 if p = 2), then we have a ' -equivariant isomorphism
via the natural map a ® b @ x — ab ® x:

OSPP ®0, Dy —> OSFP ®,4 N[1/p]. (3.8)

Proof. Compatibility of (3.8) with the I'z-action is obvious from the definitions, so we
only need to check that it is bijective. We will first show that (3.8) is injective. Note that
we have an injective ring homomorphism

OSPD[l/p] e OA [l/p] - OBcrls(OL)
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Since D,y is a finite-dimensional L-vector space, therefore, we get that the following map
is injective:

OSSP ®0, Dm = OSFP[1/p] ®L D —> OBis(07) ®pm . Dy (3.9)

Now, recall that V' = T'[1/ p] and consider the following composition:

1Q¢™
OBcris(OZ) ®wm,L Dm —w) OBcris(OZ) XL DL
— OBcris(OZ) L ODcris,L(V)s (3.10)

where the first map is injective because 1 ® ¢™: L ®,m 1 Dy — Dy is injective, and the
injectivity of the second map in (3.10) follows from (3.7), in particular, (3.10) is injective.
Furthermore, similar to (3.9), note that N[1/p] is a finite free B]J:—module, so it follows
that the map

os,p ®a+ N[1/p] = 08, [1/p] ®gr N[1/p] — OBais(0f) &y g+ N[1/p],
is injective as well. Also, recall that we have a Bzr—linear isomorphism,
1® ¢:Bf ®, 5+ N[1/p.1/[plg] = N[1/p.1/[ply].

So, we get that OBcris(OZ) ®¢,m,BZ' N[I/P] = OBcris(O]:) ®BZ' N[l/p]’ since [P]q is
invertible in OB;s(O7). From the preceding two observations, we get that the following
composition is injective:

OS,];D ®A2’ N[l/p] E— OBcris(OZ) ®¢,m,Bz N[l/p]

ﬁi"i OBei(0p) @y N[1/p] 3.11)

Now, consider the following diagram

3.9 (3.10
OS}:,D ®0L D, —— OBcris(OZ) ®¢7”’,L D, —; OBcris(OZ) R ODcris,L(V)

(348)1 l

3.11
OS;];D ®A2’ N[l/p] (_Q OBcris(OZ) ®BZ N[l/p] — OBcris(Oi) ®Qp V»

where the right vertical arrow is the natural injective map (see [ 14, Proposition 3.22]) and
the bottom right horizontal map is the extension of the isomorphism in Lemma 3.6 along
the natural map A [1/u] = OBgyis(O5). The diagram commutes by definition and from
the discussion above it follows that the left vertical arrow, i.e., (3.8), is injective.

Next, let us check the surjectivity of the map (3.8). Define the following operators on
ON!P .= OsPP ®,+ N(1/pl.

—(logyo)/t,  fori =0,
(logy:)/(tV;), forl<i <d,
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where (see [3, Section 4.4.2]),
V=L forl<i<d.

Using the fact that for any g in 'z, and x in OSFP

(g—D(ax) =(g—Da-x+ gla)(g — x,

and from the equality log(y;) = limy— 4o ()/ip o 1)/ p", it is easy to see that d; satisfies
the Leibniz rule, for all 0 < i < d. In particular, the operator

®AZ’ N, we have

0: ON,}:ID — ON,];D ®psEp Qgg
d
X do(x)dt + Y 0 (x)d[X]].

i=1

Sy /0L

defines a connection on ONFP. The connection 9 is integrable since the operators 9;
commute with each other (see [3, Lemma 4.38]) and using the finite [p],-height property
of N it is easy to show that d is p-adically quasi-nilpotent as well (see [3, Lemma 4.39]).

For any x in N[1/ p], similar to the proof of [3, Lemmas 4.41 and 4.43], it follows that
the following sum converges in D,, = (ON'P)IL = (ONFP)I=0:

> ook oo dki(x) fmko (1 — vkl (1 — vk, (3.12)
keNd+1

By choosing a basis of N and using the formula in (3.12) on the basis elements, we
can define a linear transformation « on the finite free OSFP[1/ p]-module ONFP. Now,
similar to the proof of [3, Lemma 4.43] it can easily be deduced that for some large enough
N e N, we can write pV deta € 1 + JOSPP ie., det is a unitin OSEP[1/p] and &
defines an automorphism of O NFP. Finally, as the formula in (3.12) converges in D, it
follows that the map OS'P ® o, D,y — OSFP ®,+ N[1/p]is surjective. Hence, (3.8) is
bijective. ]

We continue with the proof of Proposition 3.14. Note that Dy, is an L-vector space
equipped with the tensor product Frobenius and a filtration given as

FilkDL:( > RIOAR, ®,4 FﬂfN[l/p]) :
i+j=k

where N[1/p] is equipped with the Nygaard filtration of Definition 3.2. The preced-
ing filtration is well defined, i.e., Fil® Dy is a sub vector space of Dy, for each k € N.
Indeed, it is enough to check that Fil' OAT" [1/p] ® AF Fil’ N[1/p] is contained in

OAJ [1/p] ®p¢ N[1/p]asan OAJP [1/ p]-submodule, for each i, j € N. This easily
follows from the fact that the f0110w1ng OA ' [1/ p]-linear composition is injective:
Fil' OAT", [1/p] Ry Fil/ N[1/p] — OAJ",[1/p] ®pt Fil/ N[1/ p]
—>(’)A w1/ P] ®p; N[1/p].
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where the first arrow is obtained by tensoring the BZ -linear inclusion
Fil' OA]%, [1/p] € OAL,[1/p]

with the BZ—module Fil/ N[1/p] which is flat (because it is a finite torsion-free module
over the principal ideal domain Bz), and the second arrow is obtained by tensoring the
B -linear inclusion Fil/ N[1/p] — N[1/p] with the flat B} -algebra OAJ®_[1/p] (see
the discussion at the start of Section 3.3). Next, note that Dy, is equipped with an integrable
connection induced from the connection on (’)A]lil?w satisfying Griffiths transversality with
respect to the filtration since the same is true for the connection on (’)AE . Now, consider

D
,
the following diagram:

1Q¢™
OAE],)w ®0p,¢m Dm — OAE]?W ®o, DL
(“”l* l(“’) (3.13)
OAL, ®4+ on NI1/p] —— OAP, ®,+ N[1/p].

where the left vertical arrow is the extension of the isomorphism (3.8) in Lemma 3.15
along ¢™: OSFP — OAE]?w and the bottom horizontal isomorphism follows from an
argument similar to [3, Lemma 4.46]. By the description of the arrows it follows that
the diagram in (3.13) is commutative and (¢, I'7 )-equivariant. Taking I'z -invariants for
the composition of the left vertical and the bottom horizontal isomorphisms gives an L-
linear isomorphism Of, ® o, o Dm = Dy . So it follows that the top horizontal arrow
in the diagram (3.13) is bijective as well. The preceding observation together with the
bijectivity of the left vertical and the bottom horizontal arrows imply that the right vertical
arrow is bijective as well, in particular, the comparison in (3.6) is an isomorphism com-
patible with the respective Frobenii, connections and I'y -actions. Compatibility of (3.6)
with filtrations follows from an argument similar to [3, Corollary 4.54] (using the filtration
compatible isomorphism (3.5) in Remark 3.13). This concludes our proof. ]

There exists another relation between the Wach module N and ODy, 1. (V). Let us
equip N with a Nygaard filtration as in Definition 3.2. Then, we note that (N/uN)[1/ p]
is a g-module over L, since [p]; = p mod uN and N/uN is equipped with a filtration
Fil*(N/uN) given as the image of Fil* N under the surjection N —> N/uN. We equip
(N/uN)[1/ p] with the induced filtration, in particular, it is a filtered ¢-module over L.

Corollary 3.16. Let N be a Wach module over AZ‘ and V = Tp(N)[1/p] the associ-
ated crystalline representation from Theorem 3.12. Then, we have that (N/uN)[1/p] =
ODyis,1. (V) as filtered ¢-modules over L.

Proof. For r € N large enough, the Wach module p” N(—r) is always effective and we
have that Tz (u” N(—r)) = Tp(N)(—r) (the twist (—r) denotes a Tate twist on which I'y,
acts via y~", where y is the p-adic cyclotomic character). Therefore, it is enough to show
the claim for effective Wach modules. So assume that N is effective and set M := N[1/p]
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equipped with the induced Frobenius, I'z -action and Nygaard filtration. Note that the L-
vector space M/uM is equipped with a Frobenius-semilinear operator ¢ induced from
M such that we have
1® @:p"(M/uM) — M/uM,

because [p]; = p mod p. The filtration Fil*(M/uM) on M/uM is the image of Fil* M
under the surjective map M —> M /uM . From the discussion before Theorem 3.12, recall
that we have a period ring OAE‘?w C OAqis(0OL,,) equipped with a natural Frobenius,
filtration, connection and I'y -action. Moreover, from Theorem 3.12, we have that D; =
(OAE‘?W ® AF Nz (V)I't is equipped with a natural Frobenius, filtration and connection,
such that Dy = OD.;s(V) compatible with the respective Frobenii, filtrations and con-
nections (see (3.5) in Remark 3.13). Now, consider the following diagram with exact rows:

0 > uM > M > M/uM —— 0

| l |

0 — (Fil'OARP ) Ry M —> OAP" ®yy M — L(5) ®L M/uM — 0

zT zT(}.e) zT

0 — (Fil'OAJ® ) ®o, D — OA}® ®0, D — L({) ® DL — 0.

Note that
(Fil' OATY, ®,+ M) N M = (Fil'OAL, NAL) @, M = M.

so the vertical maps from the first to the second row are natural inclusions. Moreover,
from the third to the second row, note that the middle vertical arrow is the isomorphism
(3.6) in Proposition 3.14, from which it easily follows that the left vertical arrow is also
an isomorphism, and hence, the right vertical arrow is an isomorphism as well. Taking the
Gal(L({p)/L)-invariants of the right vertical arrow gives M/uM <— Dy => ODyis, 1. (V),
where the last isomorphism is compatible with the respective Frobenii, filtrations and
connections (see (3.5) in Remark 3.13).

Note that the isomorphism D; = M/uM is compatible with the respective Frobenii
and we need to check the compatibility between the respective filtrations. In the diagram
above, the middle term of the second row is equipped with the tensor product filtration, so
the image of Fil (OAE’?w ® AF M) under the surjective map from the second to the third
term is given as

L(¢p) ® Fil* (M/pM).
Similarly, the middle term of the third row is equipped with the tensor product filtration,
so the image of Fil* (OAE]?W ®o0, Dr) under the surjective map from the second to the
third term is given as
L(¢p) ®L Fil* Dy

Since the isomorphism (3.6) in Proposition 3.14 is compatible with filtrations, we get that
L(p) ®L Fil*D; = L(¢p) ®1L Fil¥(M/uM). Taking Gal(L(¢p)/L)-invariants in the
preceding isomorphism gives Fil* D; = Fil*(M/uM). This allows us to conclude.  m
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4. Crystalline implies finite height
The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Z,-representation of G, such that V :=T[1/p]lisa
p-adic crystalline representation of Gr. Then, there exists a unique Wach module Ny (T')
over Az_ satisfying Definition 3.7. In other words, T is of finite [ p],-height.

Before carrying out the proof of Theorem 4.1, we note the following corollaries: let
RepCZrLS(GL) denote the category of Z,-lattices inside p-adic crystalline representations
of G1. Then, by combining Theorems 3.12 and 4.1 and [3, Proposition 4.14] (for compat-
ibility with tensor products below), we obtain the following.

Corollary 4.2. The Wach module functor induces an equivalence of ®-categories,
Rep3™(GL) > (¢. r)-Modfqu
T — Np(T),
with a quasi-inverse ®-functor given as N +— Tr(N) := (W(CE) ®A2 N)#=1,
Passing to associated isogeny categories, we obtain the following.
Corollary 4.3. The Wach module functor induces an exact equivalence of ®-categories
Rep) (GL) = (p.T)-Mod ",

via V = Np(V), with an exact quasi-inverse ®-functor given as M — V(M) =
(W(C}) ®,4 M)#=".

In the rest of this section, we will carry out the proof of Theorem 4.1 and Corol-
lary 4.2 by constructing Nz (T") and show Corollary 4.3 as a consequence. In Section 4.1,
we collect important properties of classical Wach modules, i.e., the perfect residue field
case. In Section 4.2, we use ideas from [35, 36] to show that classical Wach modules
are compatible with Kisin—Ren modules, and we further show that in our setting, a finite
[p]g-height module on the open unit disk over L descends to a finite [ plq-height module
on the open unit disk over L, similar to [16]. On the module thus obtained, we use res-
ults of Section 2.3 to construct an action of 'y and study its properties in Section 4.3.
Then, in Section 4.4, we check that our construction is compatible with the theory of étale
(¢, ')-modules. Finally, in Section 4.5, we construct the promised Wach module Ny (7)
and prove Theorem 4.1 and Corollary 4.3.

For a p-adic representation of Gy, note that the property of being crystalline and of
finite [ p],-height is invariant under twisting the representation by ", for r € N. So, from
now onwards we will assume that V' is a p-adic positive crystalline representation of G,
i.e., all its Hodge—Tate weights are < 0 and we have T C V a G -stable Z ,-lattice.

4.1. Classical Wach modules

Recall that G; is a subgroup of G, so from [16, Proposition 4.14], it follows that V/
is a p-adic positive crystalline representation of Gy and T C V a G -stable Z-lattice.
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Note that L is an unramified extension of Q) with perfect residue field, therefore, the
G j -representation V' is of finite [p],-height (see [8, 20]). Let the [p],-height of V' be
s € N. One associates to V' a finite free (¢, I’ i)-module over Bz of rank = dime V,
called the Wach module N; (V'), and to T a finite free (¢, I'; )-module over Az of rank
= dime V', called the Wach module Ny (T) (see [8,46,47] and [3, Section 4.1] for a recol-
lection). Let ﬁZ(T) = (Ainr(0p) ®2z, T)HL be the (¢, I'L)-module over Ayye(OL,,) =
Ainf(OZ)HL (see [5, Proposition 7.2]) associated to 7 and let f)Z'(V) = ﬁZ(T)[l/p]
over Bins(OL,,) = Binf(OZ)HL associated to V.

Lemma 4.4 ([8, Lemme I1.1.3, Théoreme I11.3.1]). With notations as above, we have the
following:
() Nj(T)=N;(V)ND;(T) CD; (V).
(2) We have that ju°Aiyi(Of) ®z, T C Aine(Of) ®A+ N; (T) C Aie(Op) ®z, T,
and taking Hj -invariants gives ,uSD+ (T) C Amf(oLoo) ®A+ N;(T) C D+ (7).
Similar claims are also true for V.

By properties of Wach modules, we have the following functorial isomorphisms of
étale (¢, I'r )-modules:

A ®+ Np(T) > Dy(T) and Al ®t Np(T) = Dl (7).
B; ®yr N(V) => Dy (V) and B! Oyt N (V) = DL(v), @
£ @ NL(V) = Djigi(V),
where the second isomorphism in the first row follows from [8, Théoreme II1.3.1].
Let us set Nrig V)= B:g ; ®pt N; (V') equipped with the induced tensor-product
’ > L
Frobenius-semilinear operator ¢ and I'j -action. From [8, Proposition II.2.1], recall that

we have a natural inclusion Do i (V) C N, o 7 (V), which extends B:g’ i-linearly to a
Frobenius and T’ Z-equivariant inclusion,

rlg L ®L cris, L(V) - erg L(V)
such that its cokernel is killed by (¢/u1)* € B:g i (see [8, Propositions I1.3.1 and II1.2.1]).

In particular, we obtain a (¢, I'j )-equivariant isomorphism,

rlg L[ /t] ®L cris, L(V) ,i[ﬂ/t] ®B'LF NL(V) (42)

Moreover, note that from loc. cit., we have a natural L-linear isomorphism of filtered ¢-
modules D_; (V) = Nrig,i(V)/“Nrig,L(V) = N; (V)/uNj (V) such that the largest
Hodge-Tate weight of V' equals s, i.e., the [p]s-height of V. Since ¢/ is a unit in
ch(OLoo) and B"’g . C Brlg 1. C ch(OLoo) therefore, extension of scalars of (4.2) yields

the following ch(OLoo) -linear and (¢, I'; )-equivariant isomorphism:

CrlS(OLoo) ®f crm,L(V) crls(OLoo) ®B+ NL(V) (4.3)
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Lemma 4.5. There exists a natural (¢, Gy )-equivariant commutative diagram as follows:
Bcris(oi) ®1: Dcr,‘Sj‘(V) — Bcris(OZ) ®B"i' NZ(V)

L !

Bms(OZ) ®QP V —/—/—— Bcris(OZ) ®Qp V7

where the top horizontal arrow is the extension of scalars of (4.3) along cns(OLoo) —
B.is(Ogr), and the left vertical arrow is the natural isomorphism as V is a crystalline
representation of G .

Proof. Tt remains to explain the right vertical arrow and the commutativity of the diagram.
From Lemma 4.4 (2), note that we have a (¢, Gy )-equivariant isomorphism

Ainf(OD)[1/ 1] @3+ N (T)) — Ain(Op[1/1] ®z, T.

and extending this isomorphism along Ain(O7)[1/u] — Beis(Of) gives the right ver-
tical isomorphism. Then, the commutativity of the diagram follows because the top hori-
zontal arrow is also the Beis(O7)-linear extension of the natural inclusion Dcris’ (V) c

B:g = N; (V) C Beis(Og) Dyt N;j (V) (see [8, Section I1.2]). "

4.2. Kisin’s construction

Our goal is to construct a Wach module Ny (7") over AZ. To this end, we will adapt some
ideas from [16, 36], generalising the results of Kisin in [35], to first construct a finite
[p]4-height module over Bt

rig, L

Let E(X):= M in Z, [ X] denote the cyclotomic polynomial. We equip Z, [ X]
with the cyclotomic Frobemus operator ¢ given by identity on Z, and setting ¢(X) =
(I +X)? —1, and for n € N we set E,(X) := ¢"(E(X)). In particular, {,n+1 — 11is a
simple zero of E,(X), where {,s+1 is a primitive p"*!-th root of unity. For X = u, we

will write E,(n) = §,,, forn € N,and E(u) = o(n)/pn = §= é}, = [plg-

Remark 4.6. Define ¢r:B] g L= B:'g 1, to be the homomorphism given by the Frobenius
¢r, on L and set ¢ (1) = w, i.e.,

D)t — Y dprlan)n

keN keN

where we used Lemma 2.5 to represent an element of Brl - Then, B ;. is flat and finite

rig,
free of rank p? over Brl > via the map ¢y . Similarly, let ¢ : BJr :g i denote the
homomorphlsm glven by the Frobenius ¢; on L and set ;) = u Moreover, note that
we have ¢j : L L since the residue field of I is perfect, and therefore, we see that ¢

+ 1.p+ + .
is bijective on B ., with its inverse given as :B — BT ., sendin
J L g ¢ rig, L rig,L’ g

> taut — Y e a)ut

keN keN
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Furthermore, from Section 2.1.4, recall that we have an injective homomorphism Brlg L=

B:g Iz which is evidently compatible with ¢, on the left and ¢; on the right.

Remark 4.7. We have that# /. is in Brlg L= B+g i and we canwrite t /=[], cn (Sn/p)
(see [8, Exemple 1.3.3] and [38, Remarque 4.12]). The zeros of ¢ /i are given as Cpn+1 -1,
for all n € N. Moreover, we have that qu” (/) = t/u, therefore, the zeros of ¢>L” (t/ )
are given by {pn+1 — 1 as well.

Now, let B ; ,, denote the completion of L({ ont1) ®F BJr with respect to the maximal
ideal generated by m— (Epntr — 1), Smce {pnt1 —lisa 51mple root of én, therefore, we
see that (i — (§pn+1 — 1)) = (En) c B; 1.n- The local rmg B; 1., aturally admits an action
of I'y ¥ induced by the tensor product action of I'; on L(§ pn+l) ®j B+ We put a filtration
on BL n[l/én] by setting

Fil'B; ,[1/&,] := E;B; . forreZ.

We have inclusions B+ C B+ ;i C BL n[l/s,,]

Let Dy, = ODcns (V) and Dy =D 7 (V), and recall that using the g-equivariant
injection L — L, we have an 1somorph1sm of filtered ¢-modules L® . DL = D j, from
(2.5). Note that Dy, (resp. Dj ) is an effective filtered ¢-module over L (resp. over I:), ie.,
Fil’D; = Dy, (resp. Fil’D; = Dj), and we have a g-equivariant inclusion Dz, C Dj.
Now, consider a map,

+ oLy +
inB ; ® Dy ——— B ; ® Dy — B; , ®; D (4.4)

where ¢ i .Brig, [ Brig, ;s well defined by Remark 4.6, and ¢p,; is the (bijective)

Frobenius-semilinear operator on D ; . The map i, is evidently well defined, and it extends
to a map,
in: B+ [ﬂ/t] ®j Dy — BL W/t ®; D

Define a B+ —module as follows:

M;(Dj):={xe B:Y’L[,u/t] ®; Dj | Vn € N, iy(x) € Fil’(B; [1/5,,] ®; Di)}.

where we note that B+ [,u /t] ®j Dj is equipped with the tensor product Frobenius and

B; ,[1/ E,,] ®j Dj is equlpped with the tensor product filtration. By [35, Lemma 1.2.2]
and [36, Lemma 2.2.1], the B+g --module M (Dy) is finite free of rank = dim; D;,

stable under ¢ and I';, and such that the cokernel of the injective map
1® ¢:9* (M (D)) — M;(Dj)

is killed by §S (where s = height of T = height of V), and the action of I'; is trivial
modulo u. Moreover, from [36, Lemma 2.2.2], there exists a unique L-linear section

a: My (Dj)/uM;i(Dy) — M;(Djy)lp/tl,



Abhinandan 42

such that the image a(M (Dj)/uM;j(Dj)) is T'j -invariant. Furthermore, the section
o is p-equivariant and it induces an isomorphism,

1@aB! ;[n/f0@p (Mp(Dp)/pMp(Dp) —> Mp(Dp)lu/1). (4.5)

Finally, from [36, Proposition 2.2.6] note that we have a natural isomorphism D; =

M;(Dj)/uM;j(D;) compatible with the respective Frobenii and filtrations, and under

the isomorphism (4.5), the image of Dj coincides with a(M; (D;)/uM;j(Dj)).
Next, we note that the B L-module BJr ®B+ . M (Djy) is pure of slope zero

ng,

using [35, Theorem 1.3.8] and [36, Proposmon 2.3. 3] Then, from [36, Corollay 2.4.2]
one obtains an AT i -module Ny finite free of rank = dim; D, equipped with a Frobenius-
semilinear endomorphism ¢ and semilinear and continuous action of I';, and such that
cokernel of the injective map 1 ® ¢: ¢*(Nj) — Nj is killed by §S, the action of I'y is
trivial modulo p and B:g, ;i ® At N; = M (Dj ) compatible with the respective (¢, '} )-

actions.

Lemma 4.8. There is a natural B:g, L—linear and (¢, I'y )-equivariant isomorphism
B: Mj(Dy)— Nﬁg’i(V).
Moreover, it restricts to a B"i-linear and (¢, I'y )-equivariant isomorphism
B:N;[1/p] — N; (V).

Proof. Recall that by definition Nrig, V)= B:g i ®BZ N; (V), and consider the follow-
ing diagram: ’

B! /e D > Ny 2 (V)le/1]

L
| {B 4.6)

B i/0@p (Mp(Dp)/uMy(Dyp)) —go—r Mp(Dp)lu/1l,

where the top horizontal arrow is (4.2), the bottom horizontal arrow is (4.5) and the left
vertical arrow is the extension of scalars of the isomorphism Dy =>M;(Dj)/uM;(Djy)
along the natural (¢, I'j )-equivariant map L— B+ . For the right vertical arrow f,
we consider N;, (V) and M;(Dj) as submodules of BJr [;L/t] ®; D,z (V) and
construct the map as follows: note that from the discussion after (4.2), we have a natural
isomorphism D; = Nrig’ i)/ y,Nrig’ j (V) of filtered p-modules over L. Moreover, from
[36, Lemma 2.1.2], note that the action of I'; on Nrig, j (V) is “O-analytic” in the sense
of [36, Section 2.1.3], where @ = Z, in our case (this is true because in the language
of op. cit., we see that the Lubin—Tate group law over O; that we consider here is given
by the Frobenius power series (1 + X)? — 1 for the uniformiser p). Therefore, from the
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equivalence of categories in [36, Proposition 2.2.6] and its proof, it follows that we have
a natural isomorphism

ﬂ : ML(DI:) — MI:(erg,I:(V)/MNng,I:(V)) — Nrig,i(V)’

as B:_g L-submodules of B:g i [/t] ®; Dj,compatible with the (¢, I'; )-action, and such
that the reduction modulo p of B induces natural isomorphisms,

B mod u: M;(D;)/uMj(Dy) — Dy — Nrig,]:(V)//LNrig,L(V),

of filtered ¢p-modules over L, where the latter isomorphism coincides with the one men-
tioned above (coming from the discussion after (4.2)). Now, by composing the natural
L-linear inclusion

(M;(D;)/uM;(D;)) C ng,i[u/t] ®; (Mj(Dj)/uM;(Dp)).

with the inverse of the left vertical arrow, the top horizontal arrow and the inverse of the
right vertical arrow of the diagram (4.6), provides an L-linear section

Mi(Djp)/pMi(Dy) — My (Dj)lu/1],

satisfying the same properties as « (see the discussion before (4.5)). Therefore, from the
uniqueness of «, it follows that the diagram commutes, thus proving our first claim. For
the second claim, note that as a BT, . -module,

]

T ~, gt
L ®8, Mp(Dp) — B ; Ont , Ny 1 (V)

is pure of slope zero, so from [36, Corollary 2.4.2] we conclude that the isomorphism
induces an isomorphism $ : N [1/p] = Nj (V) compatible with the (¢, I'; )-action. This
allows us to conclude. ]

Recall that from (2.5), we have an isomorphism of filtered ¢-modules L®. DL =D Iz

Definition 4.9. Define the following B oL -module:

Mp(DL) = {x € B}, | [u/t] ®L DL | Yn € N, i(x) € Fil’(B; ,[1/E,] ®; D)}
= (B}, Lln/1]®2 DL) N My (Dp) C BY ;[n/1]®; Dy
From Section 2.1.5, recall that we have a g-equivariant injective homomorphism of
L-algebras Brl I Bt . i therefore, by definition My (Dy) is stable under the induced

tensor product Frobemugs semilinear-operator ¢ on BJFg [u/t] ®; Dj. Then, by using
Lemma 4.8 and the discussion preceding (4.2), we have g-equivariant inclusions,

B! ;®;Dj CM(Dp)C(n/0)'B ;®; Dj.
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Moreover, from Lemma 2.10, recall that B:{g L= B:g i is flat, and from Lemma 2.11 we
have that ,

+ + +
BngLFWU/M)B. =@/WB_ ;.

or equivalently, B+ ﬂ B:g Ll/t] = ng .- So, it follows that we have g-equivariant
inclusions,
B}, . ®r DL C Mp(Dr) C (1/1)°B, ; ®1 Dr. 4.7

Therefore, similar to (4.2), we obtain a ¢-equivariant isomorphism,

Myr(Dp)[n/1] = B, ;[1/t] ®L Dy. (4.8)

~

Lemma 4.10. For each n € N, the natural morphism B+ — By, is flat, and therefore,

— Bt . —>B~ . is flat.

the composition Brlg I e

Proof. Note that we have a natural isomorphism
L(Gpni1) = (L) ® B )/1,

where [ CL(é‘pn+1)® LB+g - denotes the maximal ideal generated by u — ({pnt1 — 1),

rig, L

and let (L(§ 1) @ B ) 7 denote its localisation at /. Then, the natural map

(L@ﬂﬂ)®zBLl)-—»BLw

realises the target as the /-adic completion of the source which is a discrete valuation
ring, in particular, the preceding map is flat. It is easy to see that the first map in the claim
factors as the composition

B+ L(é'pn-%—l) ®L

7 +
g, L (L(é'pn-H) ®f Brig,i) — BL e

rgL

where each map is flat, hence, the composition is flat. Furthermore, recall that the natural

map Brl oL = B+ 1s flat (see Lemma 2.10), therefore, the composition
+ + B.
Brlg L~ Brig,z, - BL,n
is flat as well. ]

Lemma 4.11. Let us consider B indsa B:.g, 1.-algebra via the composition
—n
iL’”:BrJirg,L — B:i_g,z, _—i_> rig, L Ln:
Then, we have the following:

(1) The homomorphism

ﬁi,,n®iL,n,B+ (B L®LDL)—>B ®; Dj <~ B;,® Dy,

rig,

induced by iy, in (4.4), is an isomorphism.
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(2) The isomorphism in (1) induces an isomorphism,
B; ., ®;,, 5, ML(DL) = > & By, ®LFl'DL.
ieN
(3) Extending the Brl _L-linear and @-equivariant inclusion Mp(Dr) € Mj(Dy)
along the map
+ +
Brlg L Brig,L’

yields the following @-equivariant isomorphism of B:g ]:—modules:

+
Brig,I: ®B:i—g,L ML(DL) —> MI:(DI:)

Moreover, My (Dy) is a finite free B oL -module of rank = dimy, Dy.

Proof. The proof follows in a manner similar to [35, Lemma 1.2.1]. Let us first note that
the linearisation of i, along the morphism

; + o + B

lL,n' Brig,I: ~ Brig,z - BL,”’
yields an isomorphism,

B; , ®;. g+ Bt

nPhg i rig, L

®; Dj) —>B;, ®; D

Moreover, from (2.5), we have that D i gy 3 ®r Dy, so we can write,

+ ~. pt ~. B+
Brig,i, (Brlg L ®L Dp) — Brig,i ®r D — Brig,i f DL.
Then, by extending the composition above along i , : B" ﬁ we obtain the iso-

rig, L
morphism claimed in (1):

~ N A
Bin®i,nt,, Bigr ®L DL) — B, ®; Dy
To show (2), let us write for k € N,
Mp(Dr) :={x € Bn‘g,L[M/t] ®7, Dy such that iy (x) € Fllo( «l /& ®; Dj)}-

Then, we have that

Mp(Dr) = ﬂ Mpx(Dr) C B, [1/t] ®1 Dr.
keN

Moreover, using Lemmas 2.10 and 4.10, we see that the morphism iy ;: Brlg L= B is
flat. So, we get that

D _ D +
B, ® 8, ML(DL) = () Bz, ®iy B, My i(Dr)) C B, [1/t] ®L Dr.
keN
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To prove the claim, it suffices to show that the isomorphism in (1) induces the following
two bijections:

ﬁi,n ®tL n,B:qu ML n(DL) - Z S er ®L FﬂrDL,
reN
By, @51, MLk(Dr) => By, [1/E] @ Dy fork #n.
For the first claim, note that by definition, we have a natural inclusion
ﬁi,n ®1L,,,BJr My n(DL) — ZE rB“ ®L Fil" Dy..
reN

To show the converse, note that we have
£ = 20" (/0" Nt/ 1) inBrg /1] and ¢;"(E, ) =&,

So, for any r € N and §;ra ®d in §;rﬁz,n ®y Fil" D, we have that E,,—r ® ¢"(d) is in
My a(Dp), since in(§,” ® ¢"(d)) = £," ® d is in Fil’(B; 211/8n] ®; Dj). Therefore,
gn—ra ®d=a®i, (gn—’ ® ¢™(d)) is in the image of ﬁi 2 ®i Bt ; M n(Dpr). For the
second claim, again note that by definition, we have a natural inclusion

~

By, ®,, 5, MLr(DL) = By [1/&]®L Dy

For the converse, take §;ra ®d in ﬁL " [1/5,,] ®r Dy, for some r € N. Then, note that

§,, is a unit in ]ASL &> since {nt1 — 1 is not a root of Ek as k # n. So, we get that
k(& ®¢"(d) = &7 ®¢"(d)
isin ﬁi «®i Dj C Filo(ﬁ]: k[l/gk] ®; Dj),since Fil° Dy = Dy . In particular, we have
that 5,,—' ® ¢"(d) is in My x(Dr). Therefore, §;ra ®d=a® i,,(?;’ ® ¢"(d)) is in
the image of B; , ®iL B, ML,k(DL)-
5 215 Brig

For (3), note that we have natural inclusions

;®L DL C B i @, Mi(Dr) € M;(Dp) © (1/1)°By, j ®1 D,

l'l

where the first two inclusions follow since the map B L= B+ . is flat (see Lemma 2.10)
and Mp(Dp) C (/,L/t)ang 1, ®L Dy from (4.7). So we get that (t/)* kills the cokernel
of the map

B;—g,i ®B:g,L Mp(Dp) — ML(DZ)'
Moreover, note that

M; (D) C (/L/I)SBJT ; ®1 D

is a closed submodule by [35, Lemmas 1.1.5 and 1.2.2]. Now, since Brlg . C Bng’ 7 is
a closed subring, therefore, we get that My (D) C (u/l)ang 1 ®L Dy is closed and
hence finite free over Brl .1 by Remark 2.14, and of rank = dimz D, by the isomorphism
shown below.
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Let us write B:{g ; = lim, O(D(L, p)) as the limit of rings of analytic functions on
closed disks D(L, p) of radius 0 < p < 1 (see Remark 2.6); similarly let us write

+ 3
B [ =lim O(D(L, p)).

Since My (Dy) and M (D;) are free modules over their respective base rings, there-
fore, we have that

Mp(DL) = 1il§n (O(D(L, p)) O, M¢r(Dyp)).
M (Dj) = lim (O(D(L, p)) Ot M;(Dp)).

Then, to show our claim, it is enough to show that the natural map,

O(D(i,,p)) ®B;rg’L Mp(Dr) — (’)(D(Z,, p)) ®B1‘Tg12 M;(Dj). 4.9)

is a bijection. Note that O(D(L, p)) is a domain, so injectivity of (4.9) can be checked
after passing to the fraction field of O(D(L, p)). To check that (4.9) is surjective, let
QO denote the cokernel of (4.9) and we will show that O = 0. Note that Q is a finitely
generated S := (’)(D(i, p))-module killed by (¢/u1)® and S is a principal ideal domain
(see [13, Chapter 2, Corollary 10]). So, by the structure theorem of finitely generated
modules over S, we can write @ = @.S/a;, where a; = (a;) for some non-zero primary
elements a; € S and such that a; divides (¢/u)*, for each i. Note that ,/a; is a maximal
ideal of S and Q j5; = S/a;, so to obtain that Q = 0, it is enough to show that 0 /o =0.
From [13, Chapter 2, Corollary 13] note that each maximal ideal ,/a; corresponds to a
zero of (¢/p)%, in particular, we are reduced to showing that Q vanishes at zeros of ¢ /.
This follows from (2). Hence, we get that (4.9) is an isomorphism and passing to the limit
over p we obtain that B:irg,i ®B:irg’L Mp(Dr) = M;j(Djy), as desired. ]

Lemma 4.12. We have following properties for the B;fg,L—module Mp(Dp):
(1) The cokernel of the injective map 1 ® ¢: ¢*(Mp(Dr)) = Mp(Dyr) is killed
by [plg-
(2) M_p(Dy) is pure of slope zero, i.e., the Bjig 1 -module Bjig 1 Qp+ B Mp(Dyp) is
> > rig,

pure of slope zero in the sense of [33, Section 6.3].

Proof. For (1), let us first note the following commutative diagram with exact rows:

0 —— Mp(Dp) — ng’L[,lL/l] ®L Dr, > Q > 0

| | |

+ +
0 —— Mp(Dp) — B ;ln/1]®; Dy —— B[ ; @+ O —— 0.

rig,L

where Q is the cokernel of the left horizontal arrow in the first row. All the maps above are
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@-equivariant and the vertical maps are injective (see (4.7), Definition 4.9 and Lemmas 4.8
and 4.11 (3)). From Remarks 2.8, 2.9 and Lemmas 2.10, 2.11, recall that the maps

() BngL —)B

R+ +
7. v —> v
rig L and ¢; Brig’L B

rig,L

are faithfully flat (we write ¢ with subscripts to avoid confusion), the natural map

+ +
Bﬂg L Brig,L
is flat and
+
Brig,i r1g L [I’L/t] rlg L

Then, using Lemma 4.11 (3) and that D =L ®p Dy from (2.5), we get that
¢; (M (Dj)) = B:g’z Ot , 97 (Mr(Dyr)),
oL (B LI/ @1 D) = B, 1 [1/1] @y | ¢[ (B, | ®L Dr)
P/ @ 9L By /1] @1 Di)
= <pL( i p[/11® D).

So, from the preceding discussion and the exactness of both rows in the diagram above, it
follows that,

o7 (Mr(Dr)) = (BE, g L[4/ 1] By, 97 (Mr(Dp))) N (B:g’z By, 97 (Mr(Dr)))
= gDL( rig, L[l’l’/t] QL DL) N (pL( Z(Di,))
= ¢ (B ;ln/®; Dp).

Now, let x in My (D) C M (Dj ), then there exists some y in ¢z () ¥ (Mj(Dj})) such that

1®e)y= Ssx Recall that 1 ® ¢:¢; (Dr) = Dr and ¢(u/t) = (SM)/(pt) therefore,
the cokernel of the induced map 1 ® ¢: <,()L((/L/I)SBHg ;. ®LDp)— (/L/t)ang L ®L Dy
is killed by ES in particular, ésx isin (1® (p)(pL((/,L/t)SB 1L ®LDp). Since 1 ® ¢ is

injective on 07 ((,u/t)sBr‘:r i ®j Dj), therefore, we get that yisin

oL (/0B L ®L DL) N ¢F (M;(D)) = ¢f (ML(DL)).
In particular, the cokernel of the natural map 1 ® ¢: 7 (Mp(Dr)) — Mp(Dy) is killed

by §S .
For (2), note that from Lemma 4.11 (3), we have that

D, Mp(Dr) = M;j(Dj).

+
Brig,I:
Moreover, from [33, Theorem 6.10] we obtain a slope filtration on B;ri oL Rp+ . Mp(Dyp)
> rig,

such that base changing this slope filtration along

Bl B

rig, L rig,i,
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gives a slope filtration on B ®B+ M (D;). However, from [35, Theorem 1.3.8]

and [36, Proposition 2.3.3], we know that B ®B+ . M (D) is pure of slope zero.

Therefore, we must have that My (Dr) is pure of slope ZEero. |

4.3. Stability under Galois action

In this section, we will define and study a finite free (¢, I, )-module Ny, 7. (V') over Bng L

of slope zero, and obtained from the B _-module in Definition 4.9. From Section 2.1.4,

g
recall that we have identifications

Bl , =B =) ¢"(BL,(0L)).
neN

where the last equality follows because ch(OLoo) = ch(OZ)HL (see Section 2.1.1).
Moreover, using the isomorphism in Lemma 2.19 and Remark 2.22, we see that

Bcris(OLoo) QL ODcris,L (V)

is equipped with a continuous action of I'7,. Note that we have E;;gj L ®L ODyis, . (V) C
B.is(OL,,) @1 ODyis,1. (V') and we claim the following.

Lemma 4.13. The B:g L—module Bt g L ®1, ODyis, 1. (V) is stable under the induced action

of I'L. Foranya ® x in Brlg L ®L ODyis, . (V) and g € T'r, this action can be explicitly
described by the following formula:

ga®x)=g@® Y 1‘[8"' (x)]‘[ (g(1x07) — ()™

keNd i=1

Proof. The non-canonical (¢, G )-equivariant L- algebra structure on (’)B:;S(OLOO) from
Section 2.1.1, extends to a (¢, G} )- equlvarlant L- -algebra structure, and thus it provides
(p.Gy)- equlvarlant L-algebra and L- -algebra structures on Bcrls(OLoo) via the compos-

ition L — L — (’)B;S(OLOO) —> crls(OLoo) where the last map is the projection map

described before Lemma 2.19. Moreover, recall that we have
L ®gn,1. ODgis,. (V) —> ODyqyis,.(V), foralln € N.
So, we can write,

Bcns(OLoo) L ODcrls L(V) o BCrlS(OLoo) 73 Dcﬁs,L(V)
— BC”S(OLOO) ®‘PE”,L (I: ®¢E,L Dcris,L(V))‘

Applying ¢” to the isomorphism above gives that

( crls(OLoo) QL ODcm L(V)) e (Y (ch(OLoo)) XL ODcris,L(V)-
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Note that the Frobenius-semilinear endomorphism ¢ of cm(OLoo) &1, ODyi5(V) com-
mutes with the action of I';, described in Remark 2.22. Therefore, the following is stable
under the I'z -action:

) ¢" (B(0L.) 8L ODuss 1 (V) = (1) ¢" (B (0L..)) ) ®2 O (V)
neN neN

IAir-"i_g,L XL ODcris,L (V) .

The second claim follows from Lemma 2.23. [

Extending the isomorphism in (4.2) along the natural map B:irg s/ — ﬁ:g’ L/t
(see Section 2.1.5), yields a ¢-equivariant isomorphism

B, L1/ @1 Dy 1 (V) = Bl /1] @y NL(V).
Now, recall that for any g € 'z, we have that g(z) = x(g)¢ and g(n) = (1 4+ u)¥® — 1,
where y is the p-adic cyclotomic character. Now, using that
L ®1 ODgis 1 (V) > D.i.i (V).
we get g-equivariant isomorphisms
B, L [1/1] @1 O (V) =B, L 11/11®1 Doy 1 (V) > B, 1 [1/1] @ Np(V),

and we equip the last term with a ' -action by transport of structure via this isomorphism.
In particular, the preceding discussion induces an action of I'y, over

B, [u/1] Dyt Nig 2 (V) = B, L [u/1] ®ps Np (V).

Our next goal is to show that B:{gj L ®Br4i-g . Nrig’ j (V) is stable under the action of I'g
induced from the I'; -action on

ng L[M/t] ®B+ rig,i(V)'

We will do this by embedding everything into Beis(O7) ®q, V
Let us fix some elements in Agis(OL ). Forn € N, let n=(p-—1)f(n)+r(n)with
r(n), f(n) e Nand 0 < r(n) < p— 1. Set ¢} := 0 )'pf(n) and define
A= { Z ayt¥™, with a, € OF such thata, — 0asn — —i—oo}
neN

= Of[t, "' /p)W, k e N]" = O [, (w?~' /)W, k eN]",

where ”* denotes the p-adic completion and the isomorphism is induced by the map ¢ —
log(1 4+ @) with the inverse map given as u — exp(¢) — 1 (see [15, Lemme 6.2.13]).
Furthermore, for r € N and 4 := Aj;1(OL ), Ainf(O1), Acris(OL,,) or Agis(O7), set

1M 4 := {a € Asuchthat " (a) € Fil" A forall n € N}. (4.10)
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Lemma 4.14. We note the following facts:
(1) 77! € pAuis(OL ), 7" € Auis(OL ) and t /11 is a unit in A C Auis(OL).
(2) For anyr € N, we have that
1D Aii(OL,,) = W Ai(OL,,) and 177D Aini(OL,,) = 1P~ Ain(OL,,).

(3) Let S = Of[u], then we have the following natural and continuous (for the p-
adic topology) isomorphism of Aine(OL. )-algebras:

Ainf(OLoo) ®S A — Acris(OLoo)

doar® W/ pM i Y ar (™ / p)W,

keN keN
(4) The ideal I(r)Acris(OLoo) is topologically generated by t}, for s > r.
(5) The following natural map is injective:
Aint (0L )/ 1" Aini(O1.,) — Acris(OLo)/ 17 Aciis(OL.,),
and its cokernel is killed by m!p™, where m = I_ﬁj
Similar statements are true for Aiy(Of) and Aqis(OF).

Proof. All claims except (3) follow from [28, Section 5.2] and [45, Section A3]. The proof
of the claim in (3) follows in a manner similar to the proof of [15, Proposition 6.2.14]. =

Remark 4.15. Note that the Q,-algebras Biy(OL,) 1= Ainr(OL,)[1/P], B:;is(OLoo) =
Aeis(Or,)[1/ p] and ﬁ:g’ ,, naturally embed into the Q-algebra Bc;s(OL,,), and we
equip the former rings with a filtration induced from the natural filtration on Bis(OL )
(see Section 2.1.1). Then, one can define ideals similar to (4.10) for these rings and from
Lemma 4.14 (5), we have the following natural isomorphisms:

Bint(Or.)/1 7 Bint(Or,) —> BE (01,))/ 1B (O1.).
Bint(07)/1VBin(01) > BE (07)/1VBE (07).

cris cris

Proposition 4.16. The B;,:(Or ., )-module

H ~
NZ,oo(V) = Binr(OL,.) ®B4L- NL(V) C (Binf(OZ) ®q, V) L — DZ(V),

is stable under the residual action of I'r, on ﬁ}f(V) and we equip Ny (V') with this
action. Then, we have a natural ' -equivariant embedding

N]:’OO(V) - Bcris(OLoo) L ODcris,L(V)a

where we use Remark 2.21 and (2.9) to equip the right hand term with an action of T'L.
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Proof. From Lemma 4.4 (2), consider the following exact sequence:
0 — w*Df (V) — Nj (V) — N; (V)/*Df (V) — 0, (4.11)

where we know that u* l~)2’(V) C ]~)]J:(V) is stable under the action of I'y . Therefore, to
show that the middle term above is stable under the action of I'z, it is enough to show that
for the inclusion,
~ ~ ~ H
i o/ 1W’DF (V) CDF(V)/ 1D (V) C (Binr(Op)/ 1 Bins(O7) ®q, V)"
C Bint(Op)/ i’ Bine(OF) ®q, V,

the image of the first term in the last term is stable under the action of G .

Note that from Lemma 4.5, we have a natural B.;s(O7 )-linear and (¢, G j )-equivariant

isomorphism Be;is(O7) ®p+ Ny (V) = Beiis(Of) ®q, V. In view of Remark 4.15, let us
L
set,

M (1 (S)B(—:ir_ls(OZ) ®Qp V) ( (,[‘lb(OLOO) ®B+ NL(V)) C BUIS(OL) ®Qp

Then we obtain the following diagram with exact rows:

0 — w'DF (V) ——— Nj (V) ———— N; (V)/w*Df (V) —— 0

| | J

00— M — ch(OLoo)®B+NL(V) — (BLIIS(OLOO)®B;NL(V))/M — 0,

where the left vertical arrow is injective by Lemma 4.4 (2) and the middle vertical arrow
is obviously injective. Moreover, we have the following.

Lemma 4.17. The natural embedding Ny (V) C Bcns(OLoo) ®g+ Nj (V) induces the
L

following Biyt(OL . )-linear and Ty -equivarlant isomorphism:
Ni oo (V)/ DL (V) = (B (OLy,) ®gt N:(V))/M.
Proof. First, we observe that by Lemma 4.4 (2) we have that,

M NN; (V) = (I9BL(07) ®g, V) NN; (V)

cris

C (I9B},(07) ®q, V) NDf (V) C u*Df (V).

cris

Therefore, we get that the rightmost vertical map in the diagram above is injective. Next,
we need to show that

3 oo(V) + M cr]s(OL ) ®B+ NL(V)

It is clear that the left expression is contained in the right. To show the converse, let x be
an element of BY. (Or_.) ®pg+ Nj (V). Then, for m € N large enough, we have that p" x
L

cris
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is in A¢is(OL,,) ®Az N; (T). By the isomorphism in Lemma 4.14 (3), for r = [ﬁ],

k € N and x in Nj (T') such that x; — 0 as k — +o00, we can write

pra= awpM= Y @ e Y e/ p

keN 0<k<r—1 k=r

Clearly, the first summation in the rightmost expression is in Ny __ (V). Moreover, from
Lemma 4.14 (1) there exists some v € A*, such that u?~!/p = vtP 1/ p. Therefore, we
obtain that the second summation is in

(I(S)Acris(OZ) ®Zp T) n (Acris(OLoc) ®A‘*L' NL(T)) cM
Hence, x is in NI:’OO(V) + M. |

Next, let consider the following diagram:

cns(OLoo) ®L cris, L(V) - B(—:";IS(OLOO) ®B}t NL(V)

l [

Beis(0r) ®f Doy 1 (V) ———— Bais(0p) ®g, V
*T H (4.12)
Bcns(OZ) L ODcris,L(V) —_— Bcns(OZ) ®@P V

] ]
(OBusis(01) ®1 ODeiy (V)" — (OBuis(07) ®q, V)" ~".

In (4.12) the bottom horizontal arrow is a (¢, G )-equivariant isomorphism since V is a
crystalline representation of G . The left vertical arrow from the fourth to the third row is
induced by the projection OBcis(O7) = Beiis(O5), via X; — [X l!’], it admits a section
as in (2.8), it is evidently ¢-equivariant and it is G -equivariant since the codomain is
equipped with a G -action by transport of structure from the domain (see Remark 2.21).
The right vertical arrow from the fourth to the third row is also induced by the projection
OB,is(01) = Beis(O7), it admits a natural section

9=
B.is(07) ®q, V — (OBeis(07) @ V)'~°,

and it is naturally (¢, G )-equivariant. The horizontal arrow in the third row is the inverse
of the isomorphism in Lemma 2.19, which is given as the composition of the inverse of the
bottom left vertical arrow, the bottom horizontal arrow and the bottom right vertical arrow,
and it is (¢, G )-equivariant by the preceding discussion and Remark 2.21. In particular,
we get that the lower square is commutative and (¢, G )-equivariant. Next, the left vertical
arrow from the third to the second row is an isomorphism since L ® L ODgis, (V) =
7 (V) by (2.5) and its (¢, G} )-equivariance can either be checked by the explicit

CTIQ
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formula in Remark 2.21 or by observing that the non-canonical map L — L — B.is(O7)
is (¢, G )-equivariant (see the proof of Lemma 4.13). The horizontal arrow in the second
row is a (¢, G )-equivariant isomorphism since V' is a crystalline representation of G .
Commutativity of the middle square follows since the outer square between the second and
the fourth row as well as the lower square are commutative. Commutativity and (¢, Gy )-
equivariance of the top square follows from Lemma 4.5.

Furthermore, in the diagram (4.12), the image of composition of the top two left ver-
tical maps inside Bis(O7) ® . ODyris, (V) is stable under the action of G by Remark 2.21.
So the image of composition of the top two right vertical maps inside Bc;is(O7) ®q, V is
stable under the action of G, and it follows that its image

( Lrls(OLoo) ®B+ NL(V))/M C B(,rls(OL)/I(S)Bcns(OZ) ®QP 4
= Bint(07)/10°Bins(0F) ®q, V.

is stable under the action of Gy . Therefore, from Lemma 4.17, we obtain that the image
of NL,OO(V)/,qu)Z(V) C Binf(Op)/1* ®q, V is stable under the action of Gr.. Hence,
from (4.11) we conclude that N i (V) is stable under the action of I'z, and the following
natural composition is I'7 -equivariant:

Binf(OLoo) ®Bz NL (V) CcB cris (OLoo) ®B+ NL (V) —B cris (OLOO) QL ODcns L (V) 4.13)
This concludes our proof. ]

—Rpt . :
Recall that N, V)= Brig’ i ®BZ N; (V') and we note the following.

Corollary 4.18. The ﬁ:{g’ 1. -linear extension of the I' -equivariant embedding
(V) C Bcris(OLoo) QL ODcris,L(V)

from Proposition 4.16, induces an identification of the following Brl L -submodules of
CrlS(OLoo) XL ODCI’]S,L(V)'

B+ _ pt+ _ Bt
Brig,L ®Binf(0Loo) NL,OO(V) - Brig,L ®Bz NL(V) - Brig,L ®B:irg]: Nrig,L(V)’
which are stable under the induced I'y -action.

Proof. The equalities in the claim follows from the definitions and their compatibility
with I'z -actions follows from (4.13). Then, by using (4.2), we see that

rlg L[/’L/[] ®]}+ NL(V) —_> Bng L[/’L/t] ®L Dcris,L(V) - Bcris(OLoo) ®L Dcris,z,(V)
= Bcris(OLoo) XL ODcris,L(V)-
In particular, we obtain that
Bg—g L ®BT NI:(V)

isa Brlg -submodule of Beis(OL ) ® ODvsis, 1 (V'), and the stability of B L®B+ N; (V)

under the I'z -action now follows from Proposition 4.16. ]

I‘l'
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Recall that from Definition 4.9, we have a Bn‘!'g ,-submodule My (ODq;s,1.(V)) C
My D 7 (V) stable under the action of (¢, I'y), and from Lemma 4.8, we have a
B -hnear and (¢, I'y )-equivariant isomorphism g : M; (D 7 (V) = N, i (V). Let

us deﬁne a B oL -submodule of N, o i (V) as,

rig L(V):= IB(ML (ODcris,L(V))) - Nﬁg’i(V)' (4.14)

Note that the map Brlg I B:_, i constructed in Section 2.1.5 is (¢, I'y )-equivariant,
therefore, from (4.14) we obtain a natural Brl -linear and (¢, I'; )-equivariant isomorph-
ism 8 : My (ODygis,.(V)) = Nng,L(V) In particular, from Lemma 4.11 (3), we obtain
that Nyig 7 (V) is a finite free Bn& 1 -module of rank = dimg, V', and the natural BJr A

linear map B ol
since f is (ga, )-equivariant. Moreover, from Lemma 4.12, it follows that Niyg,z (V)

is of finite [p],-height and pure of slope zero. Now, consider the following diagram:

B

~

M (ODcrm L(V))[/'L/t] - Bng L[/'L/t]®L ODcris,L(V) — Nrig,L(V)[/L/t]

l l l (4.15)

M (Do f (V) e/1] == B 5 11/ 1@ Dy ; (V) < Ny (V)[1/1].

®B+ Niig,. (V) — N, (V) is a (p, I'; )-equivariant 1som0rphlsm
rig,L

B

In the diagram (4.15), all vertical arrows are natural inclusions. In the bottom row, the left
to right horizontal arrow is the inverse of the composition of the lower horizontal arrow
and the left vertical arrow of diagram (4.6), the right to left horizontal arrow is the inverse
of (4.2), the curved arrow is the map f in Lemma 4.8 and the resulting triangle commutes
by diagram (4.6). In the top row, the left to right horizontal arrow is the isomorphism in
(4.8), the curved arrow is from (4.14), the right to left horizontal arrow is the compos-
ition of the inverse of B with the inverse of (4.8) and the resulting triangle commutes
by definition. Moreover, the two inner squares commute by definition and all maps are
(¢, I'j )-equivariant.
Using the diagram (4.15) and Definition 4.9, we can write

Nig.£ (V) = (Bl 1 [1/1] @1 O (V) NN, ; (V) C B [0/1] @ Dy 1 (V).

in particular, we will now consider Ny 7 (V) as a B, ¢,.-submodule of Brlg L/l L
ODyyis, 1. (V). Furthermore, from Lemma 2.23, recall that the B:g 7, -submodule

rlg L XL ODCI‘]S L(V) - Bcns(OLoo) QL ODcris,L(V)
is stable under the action of I'z, on the latter, and we equip the former with the induced I'y -
action. Since we have that g(t) = y(g)t and g(u) = (1 + u)*® — 1, forany g € I'; and
)( the p-adic cyclotomic character, therefore, the preceding I'; -action naturally extends to
L[M/Z] QL ODcns L(V)

rlg
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Proposition 4.19. The Brl 1 -submodule Nyig, 1. (V') CBng L/ t1®1 ODyis 1 (V) is stable
under the action of I'r. Moreover, the preceding inclusion extends to a Brlg 1w/ t]-linear
and (¢, T'r)-compatible isomorphism,

né L[/’L/t] ®B+ r1g L(V) — Bng L[M/t] L ODcris,L(V)' (416)
Proof. From Corollary 4.18 and the discussion after (4.14), we have that
f;r—:—g,L ®BI§L Nrig,i(v) — I»ir—g_g,L ®BI@L Nrig,L(V)’

which is stable under the action of I'z, on Beis(OL,.) ® L ODgis, 1. (V). Moreover, using
Lemma 2.23 and the discussion after (4.15), we have a I'z -equivariant embedding

r1g L[:U“/l] L ODCHS L(V) C Bcrls(OLoo) L ODcrls L(V)

Therefore, inside Beis(OL,,) @1 ODqris,.(V), the following intersection is stable under
the action of I'y:

(~r1g L ®B+ rig,L(V)) ( rig, L[M’/t] QL ODcrls L(V))
= (B,. ®p, Nig. () N (B, ,[1/1] @y Neg.2.(V)
(B:g L N B:& L[M/t]) ®B:g,L rig,L(V) = rig,L(V)~

The first equality follows from (4.15) and the second equality follows from Lemma 2.12
and the fact that Ni;g 7 (V) is finite free over B+g 1.- This proves the first claim. For the
second claim, note that by definition, the B+ L[/L/ t]-linear extension of the (¢, I'z)-

equivariant inclusion Ny, 7. (V) C Brlg L/ t] ®1 ODyyis,1.(V), coincides with the top
right horizontal arrow of the diagram (4.15). Hence, the isomorphism in (4.16) follows. m

Corollary 4.20. The action of T'y, on Nyg 1. (V) is trivial modulo .

Proof. Note that we have g(u) = (1 + u)*® — 1 and g(t) = x(g)t, for any g € T,
and x the p-adic cyclotomic character, in particular, (g — 1)(i/t) = pug(u/t), for some
ug € B} . Therefore, using Lemma 2.24 it follows that the action of I'z, is trivial modulo
on Brlg L[M/l] ®L ODqyis 1. (V) < Brlg /1] ®B:(g,L Niig,z (V) (see (4.16)). Next, from

Proposition 4.19, note that we have a (¢, [z )-equivariant inclusion
rlz> L(V) - Bng L[M/I] ®B:gL Nrig,L(V) > B:g L[ /t] L ODcris,L(V)~

Let x be in Ny, 1.(V), then for any g €'z, we have that (g —1)x isin Nyjg 1 (V) C Nrig iV)
and (g — 1)x is also in MB:{g,L[M/f] ®B,~Tg,L Niig, 2. (V). Now, inside Nrig,i,(V)[H’/t]’ we
have that,

r1g L(V) n (I’LBng L[M/[] ®B;iLg,L Nrig,L(V))
= (Br—il—g,i ®B,T Nrig L(V)) N ( rig, L[/'l’/t] ®BJr rig,L(V))

= (B;];’I: ng L[//v/t]) ®B:irg!L rig,L(V) = l/erig,L(VL
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where the first equality follows from the isomorphism (see the discussion after (4.14)),

:i_g,i, ®B:g,L Nrig,L(V) ;) Nrig,]:(V)’

the second equality follows since Ny 7 (V) is free over B;'i'g ;, and the last equality fol-
lows from Lemma 2.11. Hence, we conclude that (g — 1)x is in Ny, (V), for any x in
Nig,z(V)and g € T'. [ ]

4.4. Compatibility with (¢, 'z )-modules

From Sectlon 2.2, recall that D;rl, 1 (V) is a pure of slope zero finite free (¢, 'z )-module
over Br - functorially associated to V. The following result is a generalisation of [7,

Proposmon 3.5 and Théoreéme 3.6] from the perfect residue field case to L.

Proposition 4.21. There are natural (¢, G )-equivariant isomorphisms,
(1) BE[1/1] ®L ODeis (V) = B [1/1] ®q, V

rig
2) BT [1/[] XL ODCI‘H L(V) - Blg[l/t] ®BT ng L(V)
rig, L ’

rig
Proof. For (1), recall that from Lemma 4.13, there is aB o~linear and (¢, G.)-equivariant
map,

L ODCI‘H L(V) — Bcn%(OL) ®L ODcrm L(V) _) Bcrl%(OL) ®Qp 5

r1g

where the isomorphism is from Lemma 2.19. Extending the isomorphism in (4.2) along
B:{g’L [/t] — B:g[l/z] and using (2.5), we obtain a g-equivariant isomorphism,

[1/[] L ODcrls L(V) — B+ [1/[] ®L Dcris,L(V) — B+ [1/[] ®Bz NL(V)

ng rig rig

The preceding isomorphism fits into a commutative diagram compatibly with (4.12),

r,g[l/t] L ODcrls L (V) — BCrlS(OL) L ODcrls L (V)
lz \ 4.17)

rlg[l/t] ®B+ N; (V) ———— ng[l/t]®(@p V —— Buis(0p) ®q, V,

where the left horizontal arrow in the bottom row is induced from the natural isomorphism
Aint(Op)[1/11] ® y+ N; (T) = Aint(Op)[1/1] ®z, T (see Lemma 4.4 (2)), the slanted
isomorphism is theLisomorphism in the third row of (4.12) and the rest are natural injective
maps. Since the slanted isomorphism is (¢, G )-equivariant, therefore, we obtain that
the isomorphism B1 [1/t] ®1 ODqyis,.(V) = BJr [l/t] ®q, V is ((p, G )-equivariant,
showing (1). For (2) by extending the 1sornorphlsm in (1) along Bng[l/t] — B:rlg[l/t]
and using (2.3), we obtain (¢, G )-equivariant isomorphisms,

Blo[1/1] ®1 ODess (V) = Bl[1/1] 8, V = B,[1/1]®y Dl (V). =
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From the discussion after (4.14) and Proposition 4.19, note that Br1 L®pt ; Niig, . (V)
is a pure of slope zero finite free (¢, 'z )-module over BJr oL of rank = dlm&p V. There-
fore, by the equivalence of categories in [41, Lemma 4. 5 7] there exists a unique finite

free étale (¢, I'r)-module DZ over Bz of rank = dimg, V' such that
BIT]g,L ®B:g ng L(V) —_> Br]g L ®BT Z’

compatible with the (¢, I'z)-action.

Corollary 4.22. There exists a natural (¢, G1,)-equivariant isomorphism

rlg ®BJr rig,L(V) — ﬁ;rlg ®Bz v,

inducing natural (¢, I'y)-equivariant isomorphisms DJr = DT (V) and
Bl ®pt , Nupr(V) == Bl @y DL (V).

Proof. Consider the following diagram:

St ~ St
B, ®uy,, Nuwr (V) —— Bl @y Ny i (V) —=— B @0,V

! ! l

[1/[] ®B+ ng L(V) —> B [1/t] ®L ODLns L(V) —> Bng[l/[] ®Qp V.

ng rig

In the top row, the left horizontal arrow is the extension along BJr P~ B;rlg of the nat-
ural isomorphism B i ® Niig, (V) = Nrlg i (V) (see the dlscuss1on after (4.14)), and
the right horizontal atgrow is the extension along Aine(O7)[1/u] — Bzg of the natural iso-
morphism Aiy(O7)[1/p] ® y+ Nj (T) = Aine(O07)[1/1] ®2z, T (see Lemma 4.4 (2)). In
the bottom row, the left horizéntal arrow is induced by the (¢, I'r )-equivariant isomorph-
ism Brlg /1] ®B+ Niig,2. (V) = Brlg Lln/t] ®L ODeis 1. (V) (see (4.16) in Proposi-
tion 4.19) and the rlght horizontal arrow is induced from Proposition 4.21 (1). The left and
the right vertical arrows are natural maps and the middle vertical arrow is induced from
(4.2) and (2.5). Commutativity of the left square follows from (4.15) and commutativity
of the right square follows from (4.17). This shows the first claim.

For the second claim, set V' := (I~3T gt DZ)“’=1, and note that it is a p-adic rep-
resentation of Gy with dimg, V' = dimg, LV (see [6, Théoreme 4.35]). Moreover, we
have

V' c @B ®

rlg Dz)(D:l = ( rig ®B+ rig,L(V))(p — (BT

=1 __
rig ®q, V= =,

where the first isomorphism follows from the discussion before the statement of the claim
above, the second isomorphism follows from the first claim proven in the previous para-
graph, and the last equality follows from Lemma 2.3. Therefore, we obtain that V' = V as
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G -representations and it implies that Dl = DIJE( Vh = D}: (V) as étale (¢, I'r,)-modules
over Bz. It is straightforward to verify that this isomorphism is compatible with the com-
mutative diagram above. This concludes our proof. ]

Remark 4.23. As indicated before Corollary 4.22, for a p-adic crystalline representation
of V, combining the (¢, 'z )-equivariant isomorphism

t ~ ut t
Brig,L ®B:g,L Nrig,L(V) — Brig,L ®BI DL(V)’

together with the inverse of the isomorphism (4.16), gives a Bji . . -linear (¢, I'z.)-equivari-
ant isomorphism,

B!

rig, L L ODyis, (V) — B:‘ig,L ®B2 Dz(V)~ (4.18)

The isomorphism (4.18) generalises [7, Proposition 3.7] from the perfect residue field case
to L.

4.5. Obtaining Wach module

The finite free B;’g’ 1 -module Ny;g 7 (V) is of finite [p],-height s and pure of slope zero

(see Lemma (4.12)), therefore, from Lemma 2.13 (2) there exists a unique finite free BZ—
module of rank = dimg, V' and finite [p],-height s, whose extension of scalars along
B/ — B, ; gives Nig 2. (V). In particular, from the proof of Lemma 2.13, we note the
following.

Definition 4.24. Define Nz (V) := Nije, (V) N DZ(V) C D;ri&L(V).

The BZ—module NL (V) is finite free of rank = dimg, V' and it is equipped with an
induced Frobenius-semilinear endomorphism ¢ such that the cokernel of the injective map
(1® ¢):p*(NL(V)) — Np(V) is killed by [p]3, since Ny, (V) is of finite [p]s-height
sand 1 ® ¢: <p*(DZ(V)) = DZ(V). Moreover, we have that Ny (V) C DZ(V) because

inside D;rig’ 1. (V) we have,

NL(V) =N, (V) ND] (V) € (B, ®g, V) N (BT ®q, V)
c (B, ®q, V) N B' &g, V)™
c (B, nBY ®qg, V)™
= Bt ®q, V)t =D} (V).

Furthermore, since Ny 7. (V) and DZ(V) are stable under the compatible action of I'y,
(see Proposition 4.19 and Corollary 4.22), we conclude that Ny (V) is stable under the
induced I'z-action. In particular, from the preceding discussion and Lemma 2.13, we
obtain (¢, I'z,)-equivariant isomorphisms,

B}, , @y NL(V) => Nig 1 (V) and B} Qs NL(V) > D(V).  (4.19)
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Lemma 4.25. The action of I'r, on Np (V') is trivial modulo p.

Proof. Let g € I'p, and x € Np (V). Then, (g — 1)x is in N (V) C D}:(V). Moreover,
from Corollary 4.20, we have that (g — 1)x is in uNyg 7 (V). Therefore, inside D;rig, L V),
by using (4.19) we get that,

(g = Dx € DL(V) N puNeg, (V) = (B N B, 1) @yt NL(V) = uNL(V),

as claimed. [

Definition 4.26. Define the Wach module over Azr = BZ NAz C Bp as,
NL(T) :=No(V)NDL(T) CDL(V).

Proof of Theorem 4.1. We will show that Ny (7") from Definition 4.26 satisfies all axioms
of Definition 3.7. From the definition, note that Nz, (7') is a finitely generated torsion-free
AZ -module and an elementary computation shows that Nz (7)) N u"Ng (V) = u"Np(T),
for all n € N, in particular, Ny, (T")/uNr(T) is p-torsion-free. Moreover, we have that
N.(T)[1/p] = Np(V), and a simple diagram chase shows that (N (T")/pNr(T))[u] =
(NL(T)/uNL(T))[p] = 0 and

(AL ® s NL(T))/p(AL ®xr NL (T)) = (NL(T)/pNp(T))[1/ .

So, for all n € N, we have that

NL(T)/p"Np(T)C (NL(T)/p"Np(T))[1/u] = (AL ® 5 NL (T))/p" (AL ®a+NL (T)).
and therefore, Nz (T') N p" (AL ®AZ N7 (T)) = p"Np(T), in particular, it follows that we
have Nz (V) N (AL ®Azr N.(T)) = NL(T). Now, by using Remark 2.16, it follows that

Nz (T) is a finite free AZ -module of rank = rky+ Ny (V) = dimg, V. Alternatively, to get
the preceding statement, one can also use [8, Lemme II.1.3] (the proof of loc. cit. does not
require the residue field of discrete valuation base field, L in our case, to be perfect).

From the definition, it also follows that Nz (T') N p"Dp(T) = p"Np(T), in particular,
we have that Nz (T)/p"Np(T) C DL(T)/ p"Dr(T), and therefore,

(NL(T)/p"NL(T))[1/u] C DL(T)/p"Dr(T).
So, we get that
(AL ®,+ NL(T))/p" (AL ®,+ NL(T)) € DL(T)/p"DL(T).

or equivalently, (Az ®Azr NL(T)) N p"D(T) = p" (AL ®Azr N (T)). Note that we have
(AL ®Az N (T))[1/p]=BL ®BZ Nz (V) = Dy (V), where the last isomorphism follows
from (4.19). Therefore, we get that

Ar ®A2’ N.(T)=Dr(T)N (AL ®A2’ NL(T))[I/[)] = D, (T)NDg(V) =Dp(T).
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Next, note that Ny, (7) is equipped with an induced Frobenius-semilinear endomorph-
ism ¢. We have that ¢: AZ —>AZ is faithfully flat and finite of degree p?*! and p* (AL ) =>
AZ‘ ®,. AF Ay and similarly (p*(BZ') = AZ‘ ®,. AF BZ‘ (see Section 2.1.2). Therefore, we
get that

¢*(NL(V)) = Bf ®, 5+ NL(V) => Af ®, 4+ NL(V),
@*(DL(T)) = AL ®gp.a, DL(T) > Af ®gp.a; DL(T).

Then, it easily follows that ¢*(Nz (T)) = ¢*(NL(V)) N*(DL(T)) C ¢*(Dr(V)). Now,
since 1 ® ¢ is injective on *(Dr(V)), 1 ® ¢: ¢*(DL(T)) = Dr(T) and the cokernel
of 1 ® ¢:¢*(NL(V)) — N (V) is killed by [p];, therefore, we get that the cokernel of
the injective map 1 ® ¢: ¢*(NL(T)) — NL(T) is killed by [p]3. Finally, note that Ny (7')
is equipped with an induced I'z-action such that 'y, acts trivially on Nz (7")/uNp(T)
(follows easily from Lemma 4.25), and we have that Ay, ®Azr N.(T) = Dr(T). Hence,
we conclude that T is of finite [p],-height. [

Corollary 4.27. There exists a natural isomorphism of étale (¢, I'y )-modules
Aj ®a, DL(T) — Dy (T)
and a natural isomorphism of Wach modules AZ ®Az NL(T) = N; (T).

Proof. Note that we have an injection of étale (¢, I'; )-modules A; ®4, D (T) CD; (T)
and isomorphisms of G ; -representations:

(W(C}) ®a, DL(T))*™" =5 T <= (W(C}) ®a, D; (T))"~ .

So, we get that Ay ®4, Dz(T) = Dj (T). Furthermore, we have a (¢, I'y )-equivariant
injection of Wach modules Az ® AF N (T) C N;(T). So, by the uniqueness of a Wach
module attached to 7' (see Lemma 3.9), it follows that

A—li: ®A2— NL(T) = NI:(T). u

Proof of Corollary 4.3. The equivalence of ®-categories follows from Theorem 4.1 and
we are left to show the exactness of the functor Ny since the exactness of the quasi-
inverse functor follows from Proposition 3.3 and the exact equivalence in (2.2). From
Section 2.1.5, recall that A/ — A is faithfully flat, therefore, B — B is faithfully
flat. Moreover, for a p-adic crystalline representation V' of G, from Corollary 4.27, note
that we have B‘Lf ®BZ NL(V) = Nj (V). So, given an exact sequence,

00—V —V, — V3 —0, (4.20)

of p-adic crystalline representations of Gz, it is enough to show that the following sequence
is exact:
0 —> Nj (V1) — Nj (V2) —> Nj (V3) — 0. 4.21)
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Furthermore, note that (4.20) is exact if and only if it is exact after tensoring with Q,(r),
for any r € Z. Similarly, (4.21) is exact if and only if it is exact after tensoring with
nr Bz (). So we may assume that (4.20) is an exact sequence of positive crystalline
representations, i.e., the Wach modules in (4.21) are effective. Moreover, the map

BT — B" .

L rig,L

is faithfully flat (by an argument similar to Lemma 2.7), so it is enough to show that the
following sequence is exact:

00— Nrig,i(Vl) — Nrig,L(VZ) — Nrig’]:(V3) — 0.

Exactness of the preceding sequence follows from Lemma 4.8, [35, Theorem 1.2.15], [36,
Proposition 2.2.6] and the exactness of the functor D ; ;. This allows us to conclude. =
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