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On sets where lip f is infinite for monotone continuous
functions

Martin Rmoutil and Thomas Zürcher

Abstract. Given an F�ı subset in the real line of measure zero, we explain how to obtain a nonde-
creasing absolutely continuous function such that the derivative is infinite at every point in the set
and the little Lipschitz constant (the lower scaled oscillation) is finite at each point outside the set.

As a teacher and coauthor, our beloved colleague Jan Malý helped to shape our
mathematical and world view. He is sorely missed. With admiration, we dedicate

this paper to him.

1. Introduction
In [13], H. Rademacher proved that Lipschitz functions between Euclidean spaces are
differentiable almost everywhere, see Satz I. As we look at functions on the real line,
we mention that the one-dimensional case (actually for the larger class of functions of
bounded variation) is due to Lebesgue, see [9, p. 128], republished in [10]. A strengthening
of Rademacher’s result is by W. Stepanov in [15], but before detailing it, let us introduce
some notation. Although our setting is the real line, the following definition is of a metric
flavor, and hence we give it for metric spaces.

Definition 1.1. Let .X; dX / and .Y; dY / be metric spaces and f WX ! Y be a mapping.
Then we define

lipf .x/ WD lim inf
r!0C

sup
y2B.x;r/

dY
�
f .y/; f .x/

�
r

;

Lipf .x/ WD lim sup
r!0C

sup
y2B.x;r/

dY
�
f .y/; f .x/

�
r

:

In case we have X; Y � R, we sometimes replace B.x; r/ in the above formulae by
.x � r; x� and Œx; x C r/. We indicate this by using Lip.x�/ and Lip.xC/, respectively
and the same for lip.

Stepanov proved that functions f WRm!Rn are differentiable at almost every point in
the set where Lipf is finite. We also would like to mention the slick proof of this statement
by J. Malý in [11]. Z. Balogh and M. Csörnyei showed in [1] that there are functions f
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that fail to be differentiable at almost every point in the set where lip f is finite, see
Theorems 1.3 and 1.4 in their paper highlighting two different issues. However, they also
showed in Theorem 1.2 that Stepanov-type theorems still hold if the integrability of lip
and the size of the set where lip is infinite satisfy certain carefully balanced restrictions.

While these results shed light on the size of the set where lip is infinite and its con-
nection to differentiability, in the current paper, we are interested to know more about
the structure of this set. This is in the tradition of studying the structure of the set where
the derivative of a function is infinite. Note that lip f .x/ D 1 whenever f 0.x/ D 1. A
testament to the inquiry of the sets where the derivative is infinite are for example the
two papers (written in German) by V. Jarník, [7], and by Z. Zahorski, [16]. Jarník proved
(Satz 3) the following.

Theorem 1.2 (Jarník). Given a Gı set G � R of measure zero, there is a nondecreasing
continuous function f WR! R such that f 0.x/ D 1 for x 2 G and all Dini derivatives
are finite for x … G.

Zahorski improved the above result by finding such a function that has an infinite
derivative at each point in G and a finite derivative at each point in the complement of G.

The analysis for Lip is much easier to do than the one for lip. For example, The-
orem 3.35 and Lemma 2.4 in [5] show that, given a set A � R, there is a continuous
function f WR! R satisfying A D ¹x 2 R j Lipf .x/ D1º if and only if A is a Gı set.
The just mentioned Lemma 2.4 also states that the set where lip is infinite for a continuous
function is an F�ı set. We conjecture that whenever A is an F�ı set in the real line, there
exists a continuous function f WR!R such thatAD ¹x 2R j lipf .x/D1º. In [5], such
functions are given in case A is an F� set. In this paper, we replace the assumption that
A be an F� set by A being an F�ı set of measure zero. Moreover, the fact that the set has
vanishing measure enables us to find appropriate functions that are not only continuous
but actually absolutely continuous and nondecreasing.

To close the introduction, we look at some further papers connected to our research.
One part of B. Hanson’s Theorem 1.3 in [6] tells us that ifE �R is aGı set with measure
zero, then there exists a continuous, monotonic function f WR! R such that the set ED
¹x2R jLipf .x/D1º and ¹x2R j lipf .x/D1ºD;. Moreover, f may be constructed so
that lipf .x/D 0 for all x 2E. Theorem 1.2 deals with the case where f is not monotonic.

A similar topic as the one in our paper is the study of sets E such that there is a
continuous function f satisfying lip f .x/ D �E .x/ (or Lip f .x/ D �E ). We refer the
interested reader to the papers [2–4], where characterizations of such sets are found.

2. The statement of the main result and an explanation of the
strategy of its proof

Theorem 2.1 (Main result). Assume that A � R is an F�ı set of measure zero, then
there exists a nondecreasing absolutely continuous function gWR! R such that g0.x/ D
lipg.x/ D1 for every x 2 A and lipg.x/ <1 for every x … A.
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We already mentioned the results by Jarník and Zahorski in the introduction. Our proof
actually makes use of the function that Jarník found. Moreover, our overall proof strategy
shows similarities to the one employed by Jarník. Neither Jarník nor Zahorski state that
the constructed function is absolutely continuous.

Let us give a brief description of Jarník’s construction with an interwoven argument
why the constructed function is absolutely continuous.

He starts with an arbitrary Gı set G written as countable intersection of open sets On.
In the next step, he replaces the open sets by better suited open sets Un. Following this,
he defines fk.x/ D L1..�1; x/\ Uk/. Finally, he adds up all the functions fk to obtain
a function f having the claimed properties. That f 0.x/ D 1 for x 2 G follows since
f 0
k
.x/ D 1 for all such x. Note that f 0

k
.x/ D 0 for x outside the closure of Uk . The

sets Uk are chosen so small that
P1
kD1kfkk1 <1. This guarantees that f is absolutely

continuous, see Lemma 3.1.
That the Dini derivatives are finite outside G needs the cleverly chosen sets Uk and

some careful computations and estimates.
Behind the choice of fk lies the fact that given a set A, setting f .x/ D

R x
0
�A guaran-

tees that f 0.x/ D 1, whenever x is a density point of A.
In Jarník’s case, the main reason for the modification of the sets On to the sets Un is

to make sure that the points outside the intersection of all these open sets are such that the
function has finite derivative there; in our case we also need to focus on the points in the
intersection. In some sense, we need to transform these points into density points.

Having reviewed Jarník’s proof strategy, it is now time to talk about the ideas behind
the results in our paper.

The main part of our main result is covered by Lemma 4.6, which is almost our main
result Theorem 2.1, but contains the additional assumption that the F�ı set A be meagre.
A brief outline and an explanation of the proof follow.

The desired function g will be constructed in the form
P1
kD1gk , where each gk will be

carefully crafted to have the desired properties. We record the creation of these functions
in Lemma 4.5 and its proof allowing for particular choices of the parameters of the lemma,
especially the sets E;F;H .

First we express the set A in a more convenient form, namely we find closed sets Fk
(k 2 N) such that A is exactly the set of points belonging to infinitely many Fk’s. More-
over, the sets Fk are chosen so that for any indices k; l 2 N with k < l , if Fk \ Fl ¤ ;,
then Fl � Fk . Our method of proof relies heavily on these properties. It is useful to note
that such an arrangement of closed sets is essentially a level-disjoint Suslin scheme. The
disjointness and nestedness are essential for our method, and they can be achieved thanks
to the assumption that A be meagre; without it, we can run into problems: For example,
let AD .0; 1/ and AD

T
Ln with Ln of the type F� for every n, and Ln � Lm whenever

n > m. Then for some n0 and any n > n0 we have 0; 1 … Ln, and by intersecting with
Œ0; 1�, we may assume also that Ln � Œ0; 1�, so Ln D .0; 1/. But then, by a classical result
of W. Sierpiński [14], Ln cannot be expressed as the union of countably many pairwise
disjoint closed sets.
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To resume our thoughts about the Suslin scheme, we note that in particular, the sets
Fk are naturally arranged (by inclusion) in a tree. Any vertex of this tree (i.e. any of the
sets Fk) can be seen as the root of a subtree, which we (for the purposes of this explanatory
remark) call a family of (all descendants of) the set Fk . Clearly, if we pick two indices
k; l such that Fk \ Fl D ;, then the corresponding subtrees (families) are also disjoint,
and any member of one subtree is disjoint from any set of the other. The two families,
i.e. the one started by Fk and the one started by Fl , can thus be seen as “unrelated”.
For the purposes of this remark, we shall use the words “descendant” and “ancestor” in
the obvious sense of the tree order, while the words “previous” or “past”, and “later” or
“future” will refer simply to the order of indices; that is, if j < k, then Fj is previous to
Fk and Fk is future to Fj .

Next we use the fact that A is Lebesgue null to find pairwise disjoint measurable
sets Mk contained in the complement Ac of A, each with positive measure in every
nonempty open interval in R. These are used in Lemma 4.4 to obtain the compact setsHk
satisfying Fk � Hk � Fk [Mk ; the set Hk is where the function gk is later allowed to
grow (see Lemma 4.5 (i)). Requirement (ii) in Lemma 4.5 on the function makes it clear
that the set Fk itself is not sufficient for this purpose and must be enlarged.

Now we make the important step to define the closed sets
#»
H k D

S
Hj where the union

is over all j with Fj � Fk , i.e. over all the family of Fk . It can be seen from the definition
that the ordering by inclusion of the sets

#»
H k is the same as that of the sets Fk in the sense

that if Fk � Fl , then also
#»
H k �

#»
H l . However,

#»
H k and

#»
Hj need not be disjoint, even if

Fk and Fj are, a fact that is a source of some complications. The set
#»
H k contains Fk (as

well as all of its descendants, of course) as its “core” and it also covers the whole space in
which any of the corresponding descendant functions (i.e. all gj for j such that Fj � Fk)
will be allowed to grow. The notation tries to convey that

#»
H k takes responsibility for the

whole future of the family.
We also define the closed sets Ek D

S #»
Hj where the union is over all j < k (so

the union is already clear to be over finitely many sets) with Fj \ Fk D ;, that is, over
“previous families unrelated to that of Fk”. The union is finite, so only finitely many
families are involved; on the other hand, each of them is involved as a whole because we
use the sets

#»
Hj (and not just Hj ) in the definition of Ek .

At this point we are finally ready to apply, for each k 2 N, Lemma 4.5 with E;F;H
replaced by Ek ; Fk ;Hk , and obtain the functions gk . We may adopt the “family terminol-
ogy” also for the functions, e.g. gj is a descendant of gk if Fj � Fk .

The role of the sets Ek is key and is largely revealed by Lemma 4.5 (iv): loosely
speaking, gk is forced to “behave nicely” in the vicinity of Ek . But Ek is the set where
the previous unrelated functions (i.e. with smaller indices from different families), as well
as all their descendants, are allowed to grow. This means that gk is chosen so carefully
that it does not “provide unsolicited support to the achievements of previous unrelated
functions”; simply put, the growths of all the functions gk do not add up too much where
they should not, and this allows us later to prove that for g WD

P1
kD1 gk we have lipg.x/ <

1whenever x …A. Another way to put this is as follows: For any two unrelated functions,
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say gj and gk with j < k, we have Hj � Ek (even
#»
Hj � Ek) and so gk must “behave

nicely” close to where gj grows. That is, the later of the two unrelated functions is taking
responsibility for the control we need. Of course, this is just a very rough general idea. The
remainder of the proof is to show precisely that g indeed enjoys the desired properties.

It is easy to show that g0.x/D1 at each point x 2 A, as x belongs to Fk for infinitely
many indices k, and for such k we have g0

k
.x/D 1 by Lemma 4.5 (iii); a notable condition

in (iii) is that x … Ek , and it must therefore be shown that this is the case whenever
x 2 A\ Fk . This is not as trivial as it might seem at a first glance because – as mentioned
above – the sets

#»
H k and

#»
Hj are not necessarily disjoint even if Fk and Fj are. But it

follows from the construction that these intersections are contained in the sets Mk , which
are all disjoint from A; since x 2 A, we indeed get that x … Ek .

Assume, now, that x … A. Showing that this implies lip g.x/ <1 is more involved,
and it seems to require the careful preparation above. Since x 2Fk for finitely many k, one
can easily show the same also for the sets

#»
H k , so let l be the largest index with x 2

#»
H l .

Since Lipgk.x/<1 for every k, we do not have to care about finitely many summands gk .
Hence, we only look at indices k > l , in particular, indices k such that x …

#»
H k . So let

k > l . If x 2 Ek , then any interval containing x meets Ek , and the function gk satisfies
the strong estimates Lemma 4.5 (iv); this takes care of all gk for k such that x 2 Ek .

The core of our argument deals with the set of indices J WD ¹k > l j x … Ekº. We set
h D

P
j2J gj and want to prove that liph.x/ <1. So we wish to find a suitable decreas-

ing sequence of radii .rp/1pD1, one that witnesses that the lower limit in the definition of
liph.x/ is finite. We define the radii as follows: let j1 2 J be minimal such that

#»
Hj1 meets

the interval .x � 1; x C 1/, and r1 D dist.x;
#»
Hj1/. Next, let j2 2 J be minimal such that

#»
Hj2 meets .x � r1; x C r1/, and set r2 D dist.x;

#»
Hj2/. We continue this process; if it

stops after finitely many steps, it means that h is constant on an open neighborhood of x.
Similarly, if R WD limp!1 rp > 0 we easily reach the same conclusion: h is constant on
.x �R; x CR/.

The main case is when limp!1 rp D 0. To treat it, we fix an arbitrary j 2 J and aim
to estimate the oscillation of gj on every interval Ip WD .x � rp; x C rp/ for p 2 N. So
we fix a p 2 N. If Ip \ Hj D ;, then gj is constant on Ip , so assume Ip \ Hj ¤ ;.
Then we obtain that j > jp , and it also follows that gj belongs to an unrelated family, i.e.
Fj \ Fjp D ;. Thus, by the definition of Ej , we have that Hjp (even

#»
Hjp ) is contained

in Ej . (Indeed, Ej “looks at past unrelated families”; but jp is the “past” as j > jp .) But
the content of Lemma 4.5 (iv) is to provide an oscillation estimate for gj on any interval
that meets Ej , in particular on the interval Ip that clearly meets Ej , even

#»
Hjp . Summing

over j 2 J we find that also h “behaves nicely” on Ip , for any p. Thus we obtain that
lip h.x/ <1.

The preceding paragraph describes the central argument of the proof. It reveals the
reason for using the sets

#»
H k , especially in the definition ofEk , instead of justHk : without

this trick we would not be able to prove that j > jp . Therefore we would not necessarily
have that the appropriate set (in this case that would be Hjp ) is contained in Ej , and in
turn, gj would not be guaranteed to “behave nicely” in Ip .
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3. Preliminaries

Here we list some of the notation and conventions that we use, besides the notions of
lip and Lip introduced in Definition 1.1. Throughout the paper, we work with the real
line R, functions from R to R, the Lebesgue measure on R etc. We follow the convention
0 … N, and we use the term “countable” for “at most countable”. We use the standard
notation .a; b/ for open intervals, and Œa; b� for closed intervals in R. When we talk about
intervals, then we tacitly assume that they are nontrivial, i.e. a < b. Given x 2 R and
r > 0, by B.x; r/ we mean the usual open ball (with respect to the usual metric on R),
i.e. the open interval .x � r; x C r/; of course, any bounded open interval is an open ball,
a fact we will occasionally use without further explanation. For x 2 R and A � R, we
write dist.x; A/ WD inf¹jx � yj j y 2 Aº, the distance of x from A. Given any set A � R,
we denote its complement R n A by Ac , its closure by xA and its boundary xA \ Ac by @A;
since we only use the notion of boundary for intervals, we could equivalently say that,
for an interval I , @I is the set of its (at most two) endpoints. For a Lebesgue measurable
(or just “measurable”), A � R we use the symbol jAj to denote its Lebesgue measure, or
jAj DL1.A/. A set in R is nowhere dense if its closure has empty interior; a set A � R is
said to be meagre if it can be written as the union of countably many nowhere dense sets.

For any function f WR! R and a set U � R, we denote by osc.f; U / the oscillation
of f over U , i.e. osc.f; U / WD sup¹jf .x/ � f .y/j j x; y 2 U º. However, we use this
notation exclusively for nondecreasing functions f and intervals U , so osc.f; U / is just
the increment of f over U . The support of f is the set

supp.f / WD
®
x 2 R j f .x/ ¤ 0

¯
:

We denote the right (resp. left) derivative of f at x by f 0C.x/ (resp. f 0�.x/). We write
kf k1 D

R
Rjf j for the L1-norm of f ; the supremum norm is kf k1 D supx2Rjf .x/j.

Given a set A � R, the symbol 1A denotes the characteristic function of A.
We shall be using some well-known facts about absolutely continuous functions, some

of which are arranged into the following lemma.
We do not give the detail of its proof; it can be proved by a combination of Fubini’s

theorem about interchanging the order of summation and differentiation (see for example
[8, Theorem 1.4.1]) and the monotone convergence theorem.

Lemma 3.1. Let fk WR! R be locally absolutely continuous and monotone increasing
such that f WD

P1
kD1 fk exists. Then the function f is locally absolutely continuous.

If moreover
P1
kD1kf

0
k
k1 <1, then f is absolutely continuous. A special case is if

' 2 L1, and gWR! R is defined by g.x/D
R x
�1

'.t/dt , then g is absolutely continuous.

We shall also need the following simple lemma. We shall be using the term disjointK�
(which we abbreviate DK� ) for any set that can be expressed as the union of countably
many pairwise disjoint compact sets.

Lemma 3.2. Any meagre F� -set in R is DK� .
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Proof. Let us first make two simple observations, providing a proof only for the second
one:

• A countable union of pairwise disjoint DK� -sets is itself DK� .

• Let F � R be a nowhere dense closed set, and I D .a; b/� R (a; b 2 R[ ¹�1;1º)
be an open interval. Then F \ I is DK� .

The first observation is obvious. To prove the second one, we use the nowhere dense-
ness of F to find an increasing sequence .xn/1nD�1 in I n F such that limn!�1 xn D a

and limn!1 xn D b. Then we have the following expression of F \ I , which makes it
apparent that F \ I is DK� :

F \ I D F \ .a; b/ D

1[
nD�1

Œxn; xnC1� \ F:

Having taken care of the two observations, we take an arbitrary meagre set B � R of
the type F� . ThenB can be written as

S1
nD1Fn where all Fn are compact. Moreover, each

Fn is also nowhere dense: Indeed, if Fn were not nowhere dense, then it would contain a
nontrivial open interval, which would make B nonmeagre by the Baire category theorem.

We can express B as the following disjoint union:

B D F1 [ .F2 n F1/ [
�
F3 n .F1 [ F2/

�
[ � � � D

1[
nD1

�
Fn n

n�1[
kD1

Fk

�
;

so (by the first observation) it suffices to show, given a natural number n > 2, that the
difference Fn n

Sn�1
kD1 Fk isDK� . To that end, define 	 to be the set of all components of

R n
Sn�1
kD1 Fk ; then the elements of 	 are pairwise disjoint open intervals. Now we have

Fn n

n�1[
kD1

Fk D
[
I2	

.Fn \ I /;

where the union on the right-hand side is clearly disjoint, and each of the sets Fn \ I is
DK� by the second observation. Hence, the first observation implies Fn n

Sn�1
kD1 Fk to be

DK� as required. The proof is complete.

4. Proofs

In this section, we gradually build towards a proof of Theorem 2.1. Although the longest
proof is that of Lemma 4.5 as we need to prove the function g constructed therein has
many particular properties, the main ideas are contained in the proof of Lemma 4.6, which
is essentially the same as the main theorem but contains the extra assumption that A be
meagre. Getting rid of meagreness is then a simple task.

Definition 4.1 (Everywhere positive measure, EPM). We say that a measurable subset
of the real line has everywhere positive measure (EPM) if its intersection with every
nonempty open interval has positive Lebesgue measure.
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Lemma 4.2. Let M � R have EPM. Then there are disjoint subsets M1;M2 �M , both
having EPM.

Proof. Let .In/1nD1 be a basis of open sets in R consisting of open intervals. By the regu-
larity of the Lebesgue measure, we may choose disjoint compact sets K1; L1 � I1 \M
of positive Lebesgue measure; we can also assume them to be nowhere dense: indeed, if
e.g. K1 were not, then it would contain a nontrivial interval J as it is closed. We would
then replace K1 by a “fat Cantor set” contained in J .

Now, assume that the nowhere dense compacta K1; L1; : : : ; Kn; Ln have already
been constructed. Then K WD

Sn
iD1.Ki [ Li / is nowhere dense, so InC1 n K contains

a nonempty open interval, say zInC1. Again, choose disjoint nowhere dense compact sets
KnC1; LnC1 � zInC1 \M of positive measure.

SettingM1 D
S1
nD1Kn andM2 D

S1
nD1Ln, it is easy to observe thatM1;M2 �M ,

we have M1 \M2 D ;, and that both sets have EPM.

Notation 4.3. Given a closed set F � R, we denote

.F /" D ¹x 2 R j dist.x;F / < "º and yF D F [

1[
nD1

²
x 2 R j dist.x;F /D

1

n

³
: (4.1)

Lemma 4.4. Suppose F � R is closed and M � R is a measurable set having EPM.
Then for every " > 0 there is a closed set H such that

(1) F � H � .F [M/ \ .F /";

(2) H meets the middle third of every component of yF c \ .F /" in a set of positive
measure.

Proof. Assume F ¤ ;; the statement is trivial otherwise. The set yF is easily seen to be
closed, so if J is an arbitrary component of yF c \ .F /", it is an open interval. Given any
such J D B.c; r/, the regularity of the Lebesgue measure permits us to choose a compact
set HJ with jHJ j > 0 and

HJ � B
�
c;
r

3

�
\M � J \M I (4.2)

in particular, HJ is contained in the middle third of J . We define

H WD F [
[
J

HJ ; (4.3)

where the union is over all components J of yF c \ .F /"; then (1) and (2) are obviously
satisfied (by the choice of HI ).

We are left to show that H is closed. Pick an arbitrary x … H . Then x … F , so there
exists a component .a; b/ of F c (with a; b 2 R [ ¹�1;1º) containing the point x. We
set ı0 WD 1

2
dist.x; F /, which is positive as F is closed, and we have

a < aC ı0 6 x � ı0 < x < x C ı0 6 b � ı0 < b:
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Let J be the family of all the components of yF c \ .F /" that meet the interval .a C ı0;
b � ı0/. Then clearly

.aC ı0; b � ı0/ \
�
F [

[
J…J

HJ

�
D ;: (4.4)

It is easy to see that J is finite (including the cases when a or b is infinite). Hence,

C WD
[
J2J

HJ

is closed. Since x … H and C � H , we have x … C implying that ı1 WD dist.x; C / > 0.
We set ı WD min¹ı0; ı1º; then B.x; ı/ \ C D ;. Together with (4.4), this shows that
B.x; ı/ \H D ;, concluding the proof.

Lemma 4.5. Suppose E;F � R are closed, A;M � R are measurable, jAj D 0 and M
has EPM. Let " > 0 and H be the closed set from Lemma 4.4:

(1) F � H � .F [M/ \ .F /";

(2) H meets the middle third of every component of yF c \ .F /" in a set of positive
measure.

Then there is a nondecreasing absolutely continuous function gWR! Œ0; "� such that

(i) supp.g0/ � H ;

(ii) Lipg.x/ <1 for every x 2 R;

(iii) g0.x/ D 1 for every x 2 A \ F \Ec;

(iv) osc.g; U / 6 "jU j whenever U is an interval meeting E;

(v) kg0k1 < ".

Proof. Without loss of generality, we may assume that all components ofEc are bounded:
Indeed, since A has measure zero, we may find a strictly increasing sequence .xk/1kD�1
without accumulation points such that none of the xk’s lies in A and limk!�1 xk D �1

and limk!1 xk D 1. It is now clear from the statement of the lemma, that if we prove
it with E replaced by the (obviously closed) set E [ ¹xk j k 2 Zº, it will also be proved
for E. Hence, there is no loss in generality in the assumption, which we shall adopt, that
the complement of E is a countable union of bounded open intervals.

Let 	 be the collection of all components I of Ec . Denote zA D A \ F \ Ec , and let
G0 � R be an open set such that zA � G0 � .F /" and jG0j < ".

Pick any I 2 	; then I D .a; b/ is a bounded open interval. Let us choose a sequence
.GnI /

1
nD1 of open subsets of I satisfying, for every n 2 N, the following conditions (as

j zAj D 0, we can find such sets):

• zA \ I � GnI � I ;

•
�
aC jI j

n
; b � jI j

n

�
� GnI ;

• jGnI \
�
a; aC jI j

n

�
j < "

4
�
jI j
nC1

;

• jGnI \
�
b � jI j

n
; b
�
j < "

4
�
jI j
nC1

.
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SetGI WDG0 \
T1
nD1G

n
I ; we show thatGI is open, using, in particular, the second of the

above conditions: Indeed, given any x 2 GI � I D .a; b/, there clearly exist ı1 > 0 and
n0 2 N such that for all n > n0 we have B.x; ı1/ �

�
aC jI j

n
; b � jI j

n

�
� GnI . Of course,

the sets G0 and GnI , n 2 ¹1; : : : ; n0 � 1º, are all open and contain x, so there is some
ı2 > 0 such that B.x; ı2/ � G0 \

Tn0�1
nD1 G

n
I , and it follows that B.x;min¹ı1; ı2º/ � GI .

Claim. For any interval U � I D .a; b/ with @U \ @I ¤ ; we have

jGI \ U j <
"

4
jU j: (4.5)

For the proof of the claim, suppose U D .a; c/ for some c 2 .a; b�; the other case can
be dealt with using a symmetric argument. Take the unique n 2 N with

aC
jI j

nC 1
< c 6 aC

jI j

n
:

The following estimates prove the claim:

jGI \ U j 6 jGnI \ U j 6
ˇ̌̌̌
GnI \

�
a; aC

jI j

n

�ˇ̌̌̌
<
"

4
�
jI j

nC 1
<
"

4
.c � a/ D

"

4
jU j:

Having finished the above construction for every I 2 	, we now set G WD
S
I2	 GI .

Note that
zA � G � Ec \G0 � .F /" (4.6)

and jGj < "; indeed, zA \ I � GI for all I 2 	, zA � Ec , and Ec D
S

	; moreover,
jG0j < " and G0 � .F /".

Next, let us consider the set yF (see Notation 4.3); clearly, yF is closed as F is closed.
We define

J to be the set of all components J of
�
yF
�c with J � GI (4.7)

observe that the set yF [
S

J contains zA in its interior. Further, each J 2 J is contained
in some I 2 	 as J is connected and J � G � Ec , so it is contained in some component
of Ec . Now, for every interval J D B.c; r/ 2 J, choose a bounded measurable function
'J > 0 supported in H \ B

�
c; r
3

�
such that

R
J
'J D jJ j; this is possible thanks to the

fact that H meets the middle third of every J 2 J in a set of positive measure, as follows
from Lemma 4.4 (2) (note that every J 2 J satisfies J � G � .F /"). Remembering that
the sets GI are pairwise disjoint and that their union is by definition G, we define

' WD
X
J2J

'J C
X
I2	

1F\GI D
X
J2J

'J C 1F\G and g.t/ WD

Z t

�1

': (4.8)

We show g has the desired properties, starting with (v). First we observe that ' is inte-
grable; indeed, all the summands in the definition of ' are nonnegative, so the monotone
convergence theorem yieldsZ

R
' D

X
J2J

Z
R
'J C

Z
R
1F\G D

X
J2J

jJ j C jF \Gj 6 jGj;
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where the last inequality follows from the fact that the intervals J 2 J, together with
F \G, are pairwise disjoint subsets of G. As ' is nonnegative, g is nondecreasing. Since
jGj < ", we have gWR ! Œ0; "�, as required. Moreover, Lemma 3.1 implies that g is
absolutely continuous. Therefore, g0 D ' almost everywhere, whence kg0k1 D

R
Rjg
0j DR

Rj'j D
R

R ' 6 jGj < ", implying (v).
We show (i). By their definitions, all of the summands in (4.8) are supported in the

closed set H . Therefore, given any x … H , there exists ı > 0 such that ' D 0 in B.x; ı/;
that obviously makes g constant on B.x; ı/, whence x … supp.g0/. Thus is proved (i).

To prove (ii), we pick an arbitrary x 2 R. If x … H , then g is constant on a neighbor-
hood of x by the above, so Lip g.x/ D 0; hence, we assume x 2 H . We divide the task
into two parts by setting

g1.t/ WD

Z t

�1

X
J2J

'J and g2.t/ WD

Z t

�1

1F\G I

we then have g D g1 C g2 and since Lip g.x/ 6 Lip g1.x/ C Lip g2.x/, it suffices to
prove that Lipg1.x/ and Lipg2.x/ are both finite.

We start with g1; recall that we are in the case where x 2H . If x 2 J for some J 2 J,
then for any y 2 J we haveˇ̌

g1.y/ � g1.x/
ˇ̌
D

ˇ̌̌̌Z y

x

'J

ˇ̌̌̌
6 jy � xjk'J k1:

As 'J is bounded, this shows that Lipg1.x/ 6 k'J k1 <1.
If, on the other hand, x … J for any J 2 J, then we observe what happens on either

side (i.e. left or right) of x, starting with the right. If there is a ı > 0 such that .x; xC ı/\S
J D ;, then we obviously get Lipg1.xC/ D 0.
Hence, assume that for every ı > 0 we have .x; x C ı/ \

S
J ¤ ;. Now, if x is the

left endpoint of some J 2 J, then g1 is clearly constant in a right neighborhood of x,
namely the left third of J . (In fact, it is easy to infer from x 2 H and the construction
of H in Lemma 4.4, more precisely, (4.2) and (4.3), that x … @J for any J 2 J; in other
words, the case just treated cannot actually occur.) Thus the only case left for us to treat is
when there is an infinite sequence of elements of J converging to x from the right.

Hence, let us assume x is approximated from the right by intervals in J, and take an
arbitrary y > x. Assume first that y …

S
J. Taking the sum over all intervals J 2 J that

are contained in .x; y/, we haveˇ̌
g1.y/ � g1.x/

ˇ̌
D

X
jJ j 6 jy � xj: (4.9)

If, on the other hand, there is J 2 J with y 2 J , then there are two cases:

(a) y is in the open left third of J , or

(b) not.

Let z D infJ ; by the assumption on x, we have x 6 z.
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Assume (a) is the case. As 'J is supported in the middle third of J , we see that
g1.z/ D g1.y/. Using this and the estimate (4.9) with y replaced by z, we obtainˇ̌

g1.y/ � g1.x/
ˇ̌
D
ˇ̌
g1.z/ � g1.x/

ˇ̌
6 jz � xj < jy � xj:

If the case that occurs is (b), then jy � zj > jJ j
3

, and clearly jg1.y/� g1.z/j 6 jJ j by
the choice of 'J ; hence ˇ̌

g1.y/ � g1.z/
ˇ̌

6 3jy � zj:

Moreover, (again by (4.9)) we have jg1.z/ � g1.x/j 6 jz � xj. It follows thatˇ̌
g1.y/ � g1.x/

ˇ̌
6
ˇ̌
g1.y/ � g1.z/

ˇ̌
C
ˇ̌
g1.z/ � g1.x/

ˇ̌
6 3jy � zj C jz � xj 6 3jy � zj C 3jz � xj D 3jy � xj:

Thus we conclude that if x …
S

J, then Lipg1.xC/6 3. Similarly, we obtain the inequality
Lipg1.x�/ 6 3, and so, again, Lipg1.x/ <1.

As for g2, by its definition we have, for all x; y 2 R,ˇ̌
g2.y/ � g2.x/

ˇ̌
D

ˇ̌̌̌Z y

x

1F\G

ˇ̌̌̌
6 jy � xj;

so g2 is 1-Lipschitz. Thus we obtain

Lipg.x/ D Lip.g1 C g2/.x/ 6 Lipg1.x/C Lipg2.x/ <1;

and (ii) is proved.
Instead of proving directly the full version of (iii), we only aim to prove that the right

derivative equals 1 at any point of zA D A \ F \ Ec , which easily follows from Claim 3
below. The left derivative can be handled analogously. Our strategy shall be to prove
Claim 3 below; we then apply this result, almost immediately obtaining g0C.x/ D 1 for
any x 2 zA. We shall need to distinguish several cases based on the choice of y. In Claim 1,
we start with the simplest one, y 2 yF , which will later be useful multiple times. We then
move on to Claim 2, proving the estimate under the assumption .x; y/ \ F D ;. The
proof of Claim 3 consists in applying both Claims 1 and 2 to treat the remaining case
.x; y/ \ F ¤ ;. We keep in mind, in particular, the definitions of yF , J and g (see (4.1),
(4.7), and (4.8)).

Claim 1. For any x 2 F \G, and any y 2 yF \ .x;1/ such that Œx;y��G \ . yF [
S

J/,
we have g.y/ � g.x/ D y � x.

To prove the claim, choose arbitrary x; y as in the statement. Let us note that yF n F is
countable (F c has countably many components and yF is countable in each of them), and

.x; y/ � F [ . yF n F / [
[
.�/

J (4.10)

where by .�/ we mean all J 2 J with J � .x; y/ (recall that y 2 yF ). Explaining the
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individual equalities just below, we perform the following computation:

g.y/ � g.x/ D

Z y

x

1F\G C

Z y

x

X
J2J

'J

D

Z y

x

1F C
X
.�/

Z y

x

'J

D
ˇ̌
F \ .x; y/

ˇ̌
C

X
.�/

jJ j

D
ˇ̌
.x; y/

ˇ̌
D y � x:

(4.11)

The first equality is from the definition of g, the second equality holds as .x; y/ � G and
by the monotone convergence theorem, and the fourth equality is by (4.10). Claim 1 is
proved.

Claim 2. For any x 2F \G, any y >x with Œx;y��G \ . yF [
S

J/ and .x;y/\F D;,
and any N > 2 with y < x C 1=N , we have

g.y/ � g.x/

y � x
2

�
N � 1

N C 1
;
N C 1

N � 1

�
: (4.12)

In order to prove the claim, we pick arbitrary x; y; N as in the statement. We may
further assume y … yF as Claim 1 clearly covers the opposite possibility. Let J D .u;v/2J

be the one element satisfying y 2 J ; it exists as y 2
S

J. Then J is bounded because
y 2 .x; x C 1=N/ � .x; x C 1=2/. As u 2 yF , we have g.u/ � g.x/ D u � x by Claim 1
(where we replace y by u). Therefore we obtain

g.y/ � g.x/ D g.y/ � g.u/C g.u/ � g.x/ D g.y/ � g.u/C u � x:

Since g.y/ � g.u/ D
R y
u
'J 2 Œ0; jJ j� by the choice of 'J , it follows that

g.y/ � g.x/ 2 Œu � x; u � x C jJ j� D Œu � x; v � x�;

from where we infer, using that y 2 J D .u; v/,

g.y/ � g.x/

y � x
2

�
u � x

v � x
;
v � x

u � x

�
: (4.13)

Now, if y is in an unbounded component of F c (i.e. .x;1/\F D;), then the interval
J 2 J containing y is of the form .u; v/D .x C 1

nC1
; x C 1

n
/ for some natural number n;

clearly, n > N as y < x C 1=N . But this implies�
u � x

v � x
;
v � x

u � x

�
D

�
n

nC 1
;
nC 1

n

�
�

�
N

N C 1
;
N C 1

N

�
: (4.14)

Of course, (4.13) and (4.14) yield

g.y/ � g.x/

y � x
2

�
N

N C 1
;
N C 1

N

�
: (4.15)
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On the other hand, if y is in a bounded component of F c , say .x; b/, then the distribution
of yF in .x; b/ is symmetric, and the J 2 J with J � .x; b/ are of three types:

(a) J is contained in the left half of .x; b/;

(b) J is contained in the right half of .x; b/;

(c) J contains the center of .x; b/.

If J is of type (a), then J D .u; v/D .x C 1
nC1

; x C 1
n
/, and we obtain (4.14), and subse-

quently (4.15), in the same way as above. If we have (b), by the symmetry of yF in .x; b/,
the interval J D .u; v/ has a symmetric counterpart J 0 D .u0; v0/ in the left half of .x; b/.
Set d WD u � u0 > 0 (then d D v � v0). Now we have�

u � x

v � x
;
v � x

u � x

�
D

�
u0 � x C d

v0 � x C d
;
v0 � x C d

u0 � x C d

�
�

�
u0 � x

v0 � x
;
v0 � x

u0 � x

�
�

�
N

N C 1
;
N C 1

N

�
where the last inclusion follows from case (a): Recall that J 0 D .u0; v0/ is in the left half
of .x; b/, so (4.14) is satisfied with u;v replaced by u0; v0, respectively. By virtue of (4.13)
we, again, obtain (4.15).

Finally, if (c) occurs, we have J D .x C 1
n
; b � 1

n
/ for some n 2 N. Then n > N as

1=n < y � x < 1=N . Let us now observe that x C 1
n�1

is not in the left half of .x; b/ as
otherwise we would have x C 1

n�1
2 yF and x C 1

n�1
2 .x C 1

n
; b � 1

n
/ D J , so J would

not be a component of yF c , a contradiction. Since J shares its center with .x; b/, it follows
that x C 1

n�1
is not in the left half of J D .x C 1

n
; b � 1

n
/ either, and thus we obtain

jJ j

2
6
�
x C

1

n � 1

�
�

�
x C

1

n

�
D

1

n.n � 1/
:

Denoting J D .u; v/, we therefore have u� x D 1
n

and v � x D u� xC jJ j D 1
n
C jJ j6

1
n
C

2
n.n�1/

, whence

u � x

v � x
>

1
n

1
n
C

2
n.n�1/

D
1

1C 2
n�1

D
n � 1

nC 1
:

Using this and (4.13), we immediately derive (4.12):

g.y/ � g.x/

y � x
2

�
n � 1

nC 1
;
nC 1

n � 1

�
�

�
N � 1

N C 1
;
N C 1

N � 1

�
: (4.16)

We summarize our findings by stating that in every possible case we either have (4.11), or
(4.15), or (4.16), and that each of these propositions implies (4.12). The claim is proved.
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Claim 3. For any x 2 G \ F , any y > x with Œx; y� � G \ . yF [
S

J/, and any N > 2

with y < x C 1=N , we have (4.12).

For the proof of the claim, we again pick any x;y;N satisfying the assumptions of our
claim, and by the preceding claims we may further assume that y … yF and .x;y/\F ¤;.

Set z D max..x; y/ \ F / and let us check the assumptions of Claim 2 for the inter-
val Œz; y�, i.e. with x replaced by z: By the choice of z, we have z2F and .z; y/\F D;.
Moreover, Œz;y�� Œx;y��G \ . yF [

S
J/, the second inclusion being one of the assump-

tions of the present claim, and we also have y < x C 1=N < z C 1=N .
By Claim 2 (with x replaced by z) we thus have

g.y/ � g.z/

y � z
2

�
N � 1

N C 1
;
N C 1

N � 1

�
:

and by Claim 1 (with y replaced by z, and noting that z 2 F � yF ),

g.z/ � g.x/

z � x
D 1:

Since the average slope of g over Œx; y� (i.e., the quotient .g.y/ � g.x//=.y � x/) is a
convex combination of the average slopes over Œx; z� and Œz; y�, we immediately see that
(4.12) holds also in the present case, concluding the discussion of all possible cases and
thus also the proof of the claim.

To conclude the proof of (iii), pick any x 2 zAD A\ F \Ec and any � > 0; by (4.6),
x 2 G \ F . Recall that J is the set of all components of yF c contained in G, which easily
implies that yF [

S
J contains zA in its interior. Therefore there is N > 2 such that�

x; x C
1

N

�
� G \

�
yF [

[
J
�

and
�
N � 1

N C 1
;
N C 1

N � 1

�
� .1 � �; 1C �/:

Obviously, for any y 2 Œx; x C 1=N � we now have Œx; y� � G \ . yF [
S

J/, whence, by
virtue of Claim 3,

g.y/ � g.x/

y � x
2

�
N � 1

N C 1
;
N C 1

N � 1

�
� .1 � �; 1C �/:

The proof of (iii) is finished.
Finally, we prove (iv), which states that, for any interval U � R with U \E ¤ ;, we

have
osc.g; U / 6 "jU j: (4.17)

Recall that " > 0 was fixed already in the statement of the lemma, E is closed, and 	

is the collection of all components of Ec . Recalling the definition of J (see (4.7)) and
the observation just below it, we see that the elements of J are pairwise disjoint open
intervals, each contained in some I 2 	. We shall, first, prove the statement in a special
case.
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Claim. Let U � Ec be an interval with @U \E ¤ ;. Then (4.17) holds.

We prove the claim. Note that osc.g; U / D osc.g; xU/ and that, unlike U , the closed
interval xU meets E. (So the claim is indeed a special case of (iv).) Hence, we can assume
U to be open.

Fix the interval I D .a; b/ 2 	 for which U � I and @U \ @I ¤ ;. There is no loss
of generality in assuming that U shares with I its left endpoint, i.e. U D .a; c/ for some
c 2 .a; b�; the other case can be dealt with analogously.

Keeping in mind the definitions of ' and g (cf. (4.8)), in particular the fact that ' > 0

so g is monotone, we compute (explanations of the last three steps and the corresponding
notations follow just afterwards):

osc.g; U / D g.supU/ � g.infU/ D
Z
U

'

D

Z
U

�X
J2J

'J C 1G\F

�
D jG \ F \ U j C

X
J2J

Z
U

'J

D jGI \ F \ U j C
X
.�/

jJ j C
X
.��/

Z
U

'J

6 jGI \ U j C
X
.��/

Z
U

'J

<
"

4
jU j C

X
.��/

Z
U

'J :

(4.18)

Here by .�/ we mean all the intervals J 2 J with J � U . By .��/ we mean all the
intervals J 2 J with J \ U ¤ ; and J ª U . The fifth equality is a consequence of
the following facts: U � I and G \ I D GI , whence G \ U D GI \ U ; for any J 2 J,R

R 'J D
R
J
'J D jJ j. The next inequality follows from the fact that all J 2 J are pairwise

disjoint, disjoint from F , and the ones pertaining to .�/ are contained inGI \U . The final
inequality is from (4.5).

Since each J 2 J is contained in some I 2 	 and we are looking at such an I sharing
its left endpoint with the one of U , it is easy to see that .��/ represents at most one
interval, so the sum has at most one summand. If the sum

P
.��/ in the above computation

is empty, then we are done. So let us assume there is K 2 J such that K \ U ¤ ; and
K ª U . Then, clearly, K D .u; v/ � I with u < c < v. There are two cases: jKj 6 3jU j

or jKj > 3jU j.
We consider the case jKj > 3jU j, first. We have intervals U; K � I such that K is

more than three times the length of U and U shares its left endpoint with I . From this
it is obvious that U \K is contained in the (open) left-hand side third of the interval K,
and so (by the choice of 'K) we have

R
U
'K D 0. That is, the sum

P
.��/ consists of one

summand whose value is 0, and we are, again, done by (4.18).
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Suppose jKj 6 3jU j and set U1 WD U [K D .a; v/, and replace U by U1 in compu-
tation (4.18) and adapt the meaning of .�/ and .��/; then the sum

P
.��/ becomes empty.

We now obtain the desired estimate as follows:

osc.g; U / 6 osc.g; U1/ <
"

4
jU1j C 0

6
"

4

�
jKj C jU j

�
6
"

4

�
3jU j C jU j

�
D "jU j:

Thus the claim is proved.
Now we use the above claim to show (4.17) in general: Let U be any interval meet-

ing E. Remembering that G is contained in Ec , it follows immediately from the defini-
tions that ' D 0 on E, and obviously

U D .U \E/ [ .U \Ec/ D .U \E/ [
[
.C/

.U \ I /;

where .C/ represents all I 2 	 with U \ I ¤ ;. Using these observations we get

osc.g; U / D
Z
U

' D

Z
U\E

' C
X
.C/

Z
U\I

' D
X
.C/

Z
U\I

':

For every I 2 	, we set UI WD U \ I ; then each nonempty UI is an interval. Let us
observe that for any I 2 	 with .C/ (i.e. UI ¤ ;) we have @UI \ @I ¤ ;: Indeed, we
assumed U \ E ¤ ;, i.e. U ª Ec , and in particular, no I 2 	 contains U . Hence, for
any I 2 	 meeting U , the set U contains a point outside of I , and by its convexity, it also
contains a point of @I .

We have just checked that each nonempty UI shares an endpoint with I , so the above
claim yields osc.g; UI / 6 "jUI j. Using these observations, we may resume the above
computation as follows:

osc.g; U / D
X
.C/

Z
UI

' D
X
.C/

osc.g; UI / 6 "
X
.C/

jUI j 6 "jU j:

This shows (4.17) for any interval U meeting E, and thus it concludes the proof of (iv),
and the lemma.

Lemma 4.6. Suppose A � R is F�ı , meagre, and Lebesgue null. Then there is a nonde-
creasing absolutely continuous function gWR! R such that g0.x/ D 1 for every x 2 A
and lipg.x/ <1 for every x … A.

Proof. As the zero function takes care of the case where A D ;, we assume that A 6D ;.
We claim that there are nonempty compact sets Fk � R (k 2 N) such that

(a) F0 D R;

(b) for all k; l 2 N, if k > l and Fk \ Fl ¤ ;, then Fk � Fl ;
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(c) A D
T
N2N

S
k>N Fk , that is, A is precisely the set of points x 2 R belonging

to infinitely many Fk’s.

Indeed, the meagreness ofA implies the existence of anF� meagre setB containingA.
Since A is F�ı , there exist F� sets Bn such that A D

T1
nD1 Bn. By intersecting each Bn

with B , we may, and will, assume that Bn is meagre for every n. Moreover, we may
assume that the sets Bn are nested as the intersection of any two F� -sets is F� ; that is,
we have Bn � BnC1 for every n 2 N. By Lemma 3.2, each Bn is disjoint K� , i.e. can
be expressed as the union of countably many pairwise disjoint compact sets. It follows
that A can be expressed in the form A D

T1
nD1 Bn D

T1
nD1

S1
mD1 F

m
n where each Fmn

is compact and nowhere dense, and for any n 2 N and any distinct m1; m2 2 N we have
F
m1
n \ F

m2
n D ;.

We shall now recursively construct (for all n 2 N) the systems .Dm
n /
1
mD1 of pairwise

disjoint compact sets with
S1
mD1D

m
n D Bn such that

for any n > 2 and any m there is k such that Dm
n � D

k
n�1. (4.19)

(If we consider the lower index n as “level”, then this requirement means that each set of
level n is contained in some set of level n � 1.) We start with level n D 1 where for each
m 2 N we set Dm

1 WD F
m
1 .

Assuming we have already performed the construction up to level n � 1 for some
n > 2, we now take all the sets of the form F in \D

j
n�1, i; j 2 N, discard the ones that are

empty and order the remaining ones into a sequence .Dm
n /
1
mD1.

Having finished this construction for every n, we need to check that the above
conditions on the sets Dm

n are all met. The pairwise disjointness, compactness, and the
condition (4.19) are obvious; by induction we shall prove, for every n 2 N, the equalityS1
mD1D

m
n D Bn.

For nD 1 the statement is obvious, so assume we have already proved
S1
mD1D

m
n�1 D

Bn�1 for some n> 2. Take any x 2 Bn; then x 2 Bn�1 by the nestedness of Bn’s, so there
exists j 2 N such that x 2 Dj

n�1. Moreover, as x 2 Bn D
S1
mD1 F

m
n , there also exists i

such that x 2 F in . Thus x 2 F in \D
j
n�1, so this last intersection is one of the nonempty

sets that get arranged into the sequence .Dm
n /
1
mD1 in the n-th step of the above recursive

construction. Thus x 2
S1
mD1D

m
n , and we get Bn �

S1
mD1D

m
n ; the opposite inclusion

follows immediately from the fact
S1
mD1D

m
n �

S1
mD1 F

m
n D Bn.

It is now easy to order all the sets Dm
n (n;m 2 N) into a sequence .Fn/1nD1 satisfying

conditions (b), and (c), and we set F0 D R, satisfying (a).
Since A is Lebesgue null, it easily follows from Lemma 4.2 that we can find pairwise

disjoint measurable sets Mk (k 2 N) such that for every k, we have A \Mk D ; and
jI \Mkj > 0 for every k and every interval I . Now, for each k > 1, we use Lemma 4.4
to obtain a compact set Hk such that (cf. Notation 4.3)

• Fk � Hk � .Fk [Mk/ \ .Fk/2�k ;

• Hk meets the middle third of every component of yF c
k
\ .Fk/2�k in a set of positive

measure.



On sets where lipf is infinite for monotone continuous functions 19

Next, we define H0 D R,
#»
H 0 D R, E0 D ;, and for k > 1 we set

#»
H k WD

[
Fj�Fk

Hj and Ek WD
[

j<k; Fj\FkD;

#»
Hj : (4.20)

We now argue that the sets
#»
H k (and thus also the sets Ek) are all closed. Indeed, recall

that given k, for each j > k with Fj � Fk we haveHj � .Fj /2�j � .Fk/2�j . Let x …
#»
H k ;

then ˛ WD d.x; Fk/ > 0 and we can pick j0 > k such that 2�j0 < ˛=2. It follows that for
any j > j0 with Fj � Fk , d.x;Hj / > ˛=2. Thus

d.x;
#»
H k/ > min

�®
d.x;Hj / j Fj � Fk and j < j0

¯
[ ¹˛=2º

�
> 0;

and we see that
#»
H k is closed.

Finally, given k > 1, we recall that we obtained in Lemma 4.5 a nondecreasing abso-
lutely continuous function gk WR! Œ0; 2�k � satisfying the following properties:

(i) supp.g0
k
/ � Hk ;

(ii) Lipgk.x/ <1 for every x 2 R;

(iii) g0
k
.x/ D 1 for every x 2 A \ Fk \Eck ;

(iv) osc.gk ; I / < 2�kjI j whenever I is an interval meeting Ek ;

(v) kg0
k
k1 < 2

�k .

We will show that the statement holds with g D
P1
kD1 gk . That g is nondecreasing is

clear, and the absolute continuity is a consequence of Lemma 3.1.
First, we prove that g0.x/ D 1 for every x 2 A. We do this by using (iii). As x 2 A,

there are infinitely many indices k such that x 2 Fk . We fix such an index k, and hence
have x 2 A\ Fk . In view of (iii), we want to show that x … Ek D

S
j<k; Fj\FkD;

#»
Hj . To

that end, suppose that 1 6 j < k and Fj \ Fk D ;. Since A \
S1
iD1Mi D ;, we have

x …

1[
iD1

Mi �

1[
iD1

.Hi n Fi / �
[
Fi�Fj

.Hi n Fi / �
[
Fi�Fj

.Hi n Fj / D
#»
Hj n Fj ;

so x …
#»
Hj n Fj , which together with x 2 Fk and Fj \ Fk D ; implies x …

#»
Hj , which

yields x … Ek .
Overall, for all k 2N such that x 2 A\Fk we have, in fact, that x 2 A\Fk \Eck , so

g0
k
.x/D 1. Since, by (c), there are infinitely many such indices k, and all the functions gk

are nondecreasing, we easily obtain that g0.x/ D1.
Having finished the proof in the first case, let us now assume x … A; we aim to prove

lipg.x/ <1. By (c) there are only finitely many indices k with x 2 Fk . Moreover, since
the sets Mk are pairwise disjoint, there is at most one k with x 2 Mk . It immediately
follows that there are finitely many k such that x 2 Hk (as Hk � Fk [Mk); thus we
can define l to be the largest index with x 2 Hl . Now we give an argument showing
that, in fact, l is also the largest index k with x 2

#»
H k . Indeed, if we had p > l with
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x 2
#»
Hp D

S
Fj�Fp

Hj , then there would exist j such that Fj � Fp (whence j > p

by (b)) and x 2 Hj . Since j > p > l , this would be in contradiction with our choice of l .
To prove lip g.x/ < 1, we divide g D

P1
jD1 gj into three summands as we now

describe. First, we introduce

J D ¹j > l j x … Ej º;

K D ¹j > l j x 2 Ej º

and then write

g D
X
j2J

gj C
X
j2K

gj C

lX
jD1

gj :

We will show that the first summand has finite lip at x, while the other two even have finite
Lip at this point. We define

h D
X
j2J

gj ;

and want to show that lip h.x/ <1. If there is r > 0 such that

.x � r; x C r/ \
[
j2J

#»
Hj D ;;

then (i) implies h to be constant on .x � r; x C r/, so lip h.x/ D 0, and we are done.
Hence we assume

.x � r; x C r/ \
[
j2J

#»
Hj ¤ ; for every r > 0: (4.21)

It suffices to find a sequence .rp/1pD1 of positive radii converging to 0, and for which

lim
p!1

sup
y2B.x;rp/

ˇ̌
h.y/ � h.x/

ˇ̌
rp

<1:

Let r0 D 1, and for p D 1; 2; : : : ; we define recursively jp 2 J and rp > 0 by letting

jp D min
®
j 2 J j .x � rp�1; x C rp�1/ \

#»
Hj ¤ ;

¯
;

rp D dist.x;
#»
Hjp /;

Ip D .x � rp; x C rp/:

By (4.21), jp and rp are well defined, and it is easy to see that j1 < j2 < � � � ; and
r0 > r1 > � � � : We now argue by contradiction that R WD limp!1 rp D 0; so assume not,
i.e. R > 0. Take k 2 J such that .x �R; x CR/\

#»
H k 6D ;. Since limp!1 jp D1, we

may pick p 2 N with k < jp . As rp�1 > R, we have .x � rp�1; x C rp�1/ \
#»
H k ¤ ;;

therefore, the fact that k < jp is in contradiction with the definition of jp .
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Next we note that Fjp \ Fjq D ; whenever p ¤ q: Assume, for a contradiction, p < q
and Fjp \Fjq ¤ ;. Then jp < jq , and (b) yields Fjp � Fjq , whence

#»
Hjp �

#»
Hjq , implying

rp 6 rq , a contradiction.
Fix arbitrary p 2N and j 2J; we shall estimate the oscillation of gj on Ip . If Ip \Hj

D ;, then gj is constant on Ip; hence, we shall assume Ip \Hj ¤ ;. Then Ip \
#»
Hj ¤ ;,

and rp > dist.x;
#»
Hj /. By the construction of jp and rp , this yields jp < j and jpC1 6 j .

We verify next that Fj \ Fjp D ;. Indeed, by (b) and as j > jp , the only alternative
is Fj � Fjp ; but in that case we would also have

#»
Hj �

#»
Hjp , which is impossible as

#»
Hj

meets Ip and
#»
Hjp (by the definition of Ip) does not.

To summarize, we have fixed arbitrary p 2 N, j 2 J, and assumed Ip \ Hj ¤ ;,
obtaining jp < jpC1 6 j and Fj \ Fjp D ;. Thus

Ej D
[

k<j;Fk\FjD;

#»
H k �

#»
Hjp ;

and since clearly the closure Ip meets
#»
Hjp , it therefore also meets Ej . Property (iv) of gj

yields the estimate

osc.gj ; Ip/ D osc
�
gj ; Ip

�
6 2�j � jIpj D 2

�j
� jIpj:

Since this estimate holds for any j 2 J, by summing over j 2 J, and using (in the first
equality) that all gj ’s are nondecreasing, we obtain

osc.h; Ip/ D
X
j2J

osc.gj ; Ip/ 6
X
j2J

2�j jIpj 6 jIpj:

This estimate holds for every p 2 N, and since rp ! 0 (i.e. jIpj ! 0) as p !1, we
conclude

lip h.x/ D lim inf
R!0C

sup
y2B.x;R/

ˇ̌
h.y/ � h.x/

ˇ̌
R

6 lim inf
p!1

sup
y2Ip

ˇ̌
h.y/ � h.x/

ˇ̌
jIpj=2

6 2 lim inf
p!1

osc.h; Ip/
jIpj

6 2:

Now, take any j > l such that x 2 Ej (i.e. j … J); then any interval containing x
meets Ej . Thus, for any r > 0, osc

�
gj ; .x � r; x C r/

�
< 2�j � 2r D 21�j � r . Setting

f D
P
j>l;j…J gj , we obtain

Lipf .x/ D lim sup
y!x

ˇ̌
f .y/ � f .x/

ˇ̌
jy � xj

6 lim sup
r!0C

osc
�
f; .x � r; x C r/

�
r

D lim sup
r!0C

P
j>l;j…J osc

�
gj ; .x � r; x C r/

�
r

6 lim sup
r!0C

21�j r

r
6
1X
jD2

21�j D 1:
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Finally, as g D hC f C
Pl
jD1 gj , we obtain the following estimate:

lipg.x/ 6 lip h.x/C Lipf .x/C
lX

jD1

Lipgj .x/ 6 2C 1C

lX
jD1

Lipgj .x/ <1:

This concludes the proof.

Finally, we are ready for the proof of our main result.

Proof of Theorem 2.1. Since all Borel sets have the Baire property (see e.g. [12, Theo-
rem 4.3]), by [12, Theorem 4.4], there are a meagre F�ı set A0 and a Gı set G such that
A0 \G D ; and A0 [G D A (the disjointness is not clearly stated in [12], but can easily
be seen from the proof).

Theorem 1.2 yields a nondecreasing absolutely continuous function f WR! R such
that f 0.x/ D 1 for every x 2 G and Lip f .x/ <1 for every x … G. Note that this also
shows that Lip f .x/ D 1 for x 2 G. From the meagre case, Lemma 4.6, we know that
there is a nondecreasing absolutely continuous function gWR! R such that g0.x/ D 1
for every x 2 A0 and lip g.x/ <1 for x … A0. Again, we note that Lip g.x/ D 1 for
every x 2 A0.

We define h WD f C g. It is clear that h is nondecreasing and absolutely continuous. If
f 0.x/ D 1 or g0.x/ D 1, then also h0.x/ D 1. This shows that h0.x/ D 1 for x 2 A,
and hence that lip h.x/ D1.

Now, we assume that x … A. Hence, Lip f .x/ <1 and lip g.x/ <1. This tells us
that lip h.x/ <1 for x … A.

We have found a function with all the required properties.
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