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Liouville-type theorems for stationary Navier–Stokes
equations with Lebesgue spaces of variable exponent

Diego Chamorro and Gastón Vergara-Hermosilla

Abstract. In this article we study some Liouville-type theorems for the stationary 3D Navier–
Stokes equations. These results are related to the uniqueness of weak solutions for this system
under some additional information over the velocity field, which is usually stated in the literature in
terms of Lebesgue, Morrey or BMO�1 spaces. Here we will consider Lebesgue spaces of variable
exponent which will provide us with some interesting flexibility.

1. Introduction

The purpose of this article is to study the uniqueness of weak solutions for the 3D incom-
pressible stationary Navier–Stokes equations in R3. Let us recall that this system is given
by the following equations 8<:�Eu � .Eu � Er/Eu � ErP D 0;div.Eu/ D 0;

(1.1)

where EuWR3 ! R3 is the velocity of the fluid and P WR3 ! R denotes its pressure.
Although it is an easy exercise to obtain solutions .Eu; P / for this equation in the space
. PH 1.R3/; PH

1
2 .R3// (see for instance [14, Theorem 16.2]), the uniqueness of such solu-

tions is still a challenging open problem. More precisely, we have the following problem
(which was initially mentioned in the book [10, Remark X.9.4 and Theorem X.9.5] and
also stated in the article [17]):

Show that any solution Eu of the problem (1.1) which satisfies the conditions

Eu 2 PH 1.R3/ and Eu.x/! 0 as jxj ! C1; (1.2)

is identically equal to zero.
Remark that, in the setting stated in the problem (1.2) above, by the classical Sobolev

embeddings we have the space inclusion PH 1.R3/ � L6.R3/ from which we can deduce
some specific decay at infinity for a solution Eu, however this L6-decay seems not enough
to conclude that a solution Eu 2 PH 1.R3/ of the equation (1.1) is null. Nevertheless, if we

Mathematics Subject Classification 2020: 35Q30 (primary); 76D05 (secondary).
Keywords: Navier–Stokes equations, Liouville theorems, Lebesgue spaces of variable exponent.

https://creativecommons.org/licenses/by/4.0/


D. Chamorro and G. Vergara-Hermosilla 2

assume an additional hypotheses, for example Eu 2 E.R3/ where E is a “nice” functional
space (i.e. with a stronger decay at infinity thanL6), then statements of the following form
have been shown:

If Eu 2 PH 1.R3/ \E.R3/ is a solution of the equation (1.1) in R3, then we have Eu � 0,

and this type of result is known in the literature as a Liouville-type theorem for the Navier–
Stokes equations (see e.g. [1–3,5,6,12,18]). For example, in [10, Theorem X.9.5] the case
EDL

9
2 .R3/ was studied while the space EDBMO�1.R3/ was considered in [16]. Other

functional spaces can also be taken into account, see for example the articles [7, 11, 13].
Let us remark that we can consider a larger functional framework than PH 1.R3/ and

we can work with weak solutions such that .Eu; P / 2 .L2loc.R
3/;D 0.R3//. It is clear that

the trivial solution Eu D 0 satisfies (1.1), but in this L2loc setting this solution is not unique:
indeed, if we define the function  WR3 ! R by

 .x1; x2; x3/ D
x21
2
C
x22
2
� x23

and if we set the functions Eu and P by the identities Eu.x1; x2; x3/ D Er .x1; x2; x3/ D
.x1; x2;�2x3/ and P.x1; x2; x3/D�12 jEu.x1; x2; x3/j

2, then we have Eu 2 L2loc.R
3/ (since

jEu.x/j � jxj) and using the usual rules of vector calculus we have that the couple .Eu; P /
given by the expressions above satisfies (1.1).

Note now that if we assume an additional information, for example if E is a Lebesgue
space Lp.R3/ with 3 � p � 9

2
, then is it possible to prove in the setting L2loc \E that the

trivial solution is unique (see [7]). However the case when E D Lp.R3/ with 9
2
< p � 6

remains widely open and we can state the following problem:

Prove that if Eu 2 L2loc.R
3/ is a weak solution of the stationary Navier–Stokes

equations (1.1) such that Eu 2 Lp.R3/ with
9

2
< p, then we have Eu � 0. (1.3)

The main feature of this work is thus to explore a uniqueness result for equations (1.1)
using some additional information for the velocity field Eu stated in terms of a Lebesgue
spaces of variable exponent Lp.�/.R3/ – instead of the classical Lebesgue spaces Lp.R3/
– and to give some insights to the previous problem (1.3).

These functional spaces Lp.�/ are quite different from the usual Lebesgue spaces Lp .
Indeed, to define the space Lp.�/.R3/, we will proceed as follows: given a function
p.�/WR3 ! Œ1;C1�, we say that p.�/ 2 P .R3/ if p.�/ is a measurable function. Then,
for a measurable function Ef WR3 ! R3, we define the modular function %p.�/ associated
to p.�/ by the expression

%p.�/. Ef / D

Z
R3

ˇ̌
Ef .x/

ˇ̌p.x/
dx: (1.4)

Next, we consider the Luxemburg norm k � kLp.�/ associated to the modular function %p.�/
(see the books [8, 9])

k Ef kLp.�/ D inf
®
� > 0 W %p.�/. Ef =�/ � 1

¯
; (1.5)
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and we define the Lebesgue spaces of variable exponentLp.�/.R3/ as the set of measurable
functions such that the quantity k � kLp.�/ given above is finite. Of course there are no simple
relationships between the spaces Lp.�/.R3/ and Lp.R3/ (see the previously cited books
or Section 2 below for more details).

We will see in this article how to exploit the flexibility of the variable exponent p.�/
in order to deduce a uniqueness result of Liouville type. This flexibility will allow us in
Theorem 1 below to consider the integrability interval �9

2
; 6Œ (and beyond) in some regions

of the space R3. The interplay of the variable exponent p.�/ with some particular regions
of the space R3 will be studied in more detail in Theorems 2 and 3.

Let us remark that, to the best of our knowledge, the use of Lebesgue spaces of vari-
able exponent Lp.�/ to establish Liouville-type theorems for the stationary Navier–Stokes
system (1.1) seems to be new and we hope that the results presented in this article would
shed some light to the problems stated in (1.2) and (1.3). To finish, we note that some
recent results in the study of the Liouville problem are given in [4, 15] where anisotropic
Lebesgue spaces and weighted mixed-norm Lebesgue spaces are considered. However
our results are different as the functional framework of the Lebesgue spaces of variable
exponent cannot be compared to those ones.

The outline of the article is the following. In Section 2 we first present a small review
of the main properties of the spaces Lp.�/ and then we state our main results. Section 3 is
devoted to the proof of the theorems.

2. Preliminaries and presentation of the results

For n � 1, let us first consider a function p W Rn! Œ1;C1Œ, we will say that p 2 P .Rn/
if p.�/ is a measurable function and we define

p� D inf ess
x2Rn

®
p.x/

¯
and pC D sup ess

x2Rn

®
p.x/

¯
:

In order to distinguish between variable and constant exponents, we will always denote
exponent functions by p.�/, moreover, for the sake of simplicity and to avoid technicalities
(see [9, Chapter 3]), we will always assume here that we have

1 < p� � pC < C1;

unless specifically stated otherwise.
With these exponents we can define the spacesLp.�/.Rn/ as the set of measurable func-

tions such that the Luxemburg norm in (1.5) is finite. These functional spaces Lp.�/.Rn/
possess the structural properties of normed spaces and they are moreover Banach spaces,
see [9, Theorem 3.2.7] for more details.

Similarly to the classical case, given p.�/ 2 P .R3/ we can define the variable conju-
gate exponent q.�/ 2 P .R3/ by the pointwise relationship

q.x/ D
p.x/

p.x/ � 1
:



D. Chamorro and G. Vergara-Hermosilla 4

Thus, from the previous formula and from the definitions of pC, p�, the following rela-
tions hold

q� D
pC

pC � 1
�

p�

p� � 1
D qC: (2.1)

In this setting, the Hölder inequalities have the following version: let p.�/; q.�/; r.�/ 2
P .Rn/ be functions such that we have the pointwise relationship

1

p.x/
D

1

q.x/
C

1

r.x/
; x 2 Rn:

Then there exists a constant C > 0 such that for all f 2 Lq.�/.Rn/ and g 2 Lr.�/.Rn/, the
pointwise product fg belongs to the space Lp.�/.Rn/ and we have the estimate

kfgkLp.�/ � Ckf kLq.�/kgkLr.�/ ;

see [8, Theorem 2.26] or [9, Lemma 3.2.20] for a proof. This estimate can be easily gen-
eralized to vector fields Ef ; Eg W Rn ! Rn and to the product Ef � Eg.

Now, let us consider a measurable domain� such that� � R3 and let p.�/ 2 P .R3/.
We will denote by p�.�/ the variable exponent restricted to the set �, i.e. p�.�/ D p.�/j�
and we write

p�� D inf ess
x2�

®
p.x/

¯
and pC� D sup ess

x2�

®
p.x/

¯
:

Moreover, by the definition of the Luxemburg norm for f 2 Lp.�/.R3/ we have the for-
mula

kf kLp�.�/.�/ D kf 1�kLp.�/.R3/; (2.2)

see [8, Section 2.3, p. 21]. The following results will be useful in the sequel.

Lemma 2.1. Consider a measurable set� � R3 and p.�/ 2 P .R3/ a variable exponent,
assume that we have j�j < C1. Then

k1kLp�.�/.�/ � 2max
®
j�j

1
p� ; j�j

1

pC
¯
:

The proof of this result can be consulted in [9, Lemma 3.2.12]. Here is another useful
property:

Lemma 2.2. Let��R3 and p.�/ 2P .R3/ a variable exponent. Then, we have the space
inclusion L1.�/ � Lp�.�/.�/, if and only if 1 2 Lp�.�/.�/ and we have the estimate

kf kLp�.�/.�/ � kf kL1.�/k1kLp�.�/.�/:

In particular, the embedding holds if j�j < C1.

The proof of this result can be founded in [8, Proposition 2.43]. For more details on
the Lebesgue spaces of variable exponent, on their inner structure as well as many other
properties, see the books [8, 9].

With these preliminaries at our disposal we can state our main results.
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Theorem 1. Let .Eu;P / 2 .L2loc.R
3;D 0.R3// be a weak solution of the stationary Navier–

Stokes equation (1.1). Consider the following cylinder

C D
®
.x1; x2; x3/ 2 R3 W x22 C x

2
3 � 1; x1 2 R

¯
:

Moreover, consider the variable exponent p.�/ 2 P .R3/ defined by

p.x/ D

8<: 3 < p�.R3nC/
� p.R3nC/.x/ � p

C

.R3nC/
< 9

2
;

9
2
< p�C � pC.x/ � p

C
C < C1:

(2.3)

If we assume the additional hypotheses Eu 2 Lp.�/.R3/ and P 2 L
p.�/
2 .R3/, then we have

Eu D 0.

Some remarks are in order here. First note that, besides the additional condition Eu 2
Lp.�/.R3/ over the velocity field, we also demand the hypothesis P 2 L

p.�/
2 .R3/ for the

pressure. Let us explain this constraint: recall that, using the divergence-free property of
Eu, we have the classical relationship ��P D div.div.Eu ˝ Eu// from which we deduce
the expression P D

P3
i;jD1 RiRi .uiuj / where Ri are the usual Riesz transforms. We

can thus obtain quite easily some information over the pressure P from the information
available over Eu, as long as the Riesz transforms are bounded in the functional frame-
work considered. However, to the best of our knowledge, in the case of the Lebesgue
spaces of variable exponents, the Riesz transforms are not bounded in Lp.�/.R3/ unless
the exponent p.�/ satisfies the lower and upper bounds 1 < p� � p.�/ � pC < C1 and
one additional condition (see [9, Lemma 12.4.3]) which can be easily stated in terms of the
log-Hölder regularity property:1 we will say that p.�/ is log-Hölder continuous (denoted
by p.�/ 2 P log.R3/) ifˇ̌̌̌

1

p.x/
�

1

p.y/

ˇ̌̌̌
�

C

log
�
e C 1=jx � yj

� for all x; y 2 R3;ˇ̌̌̌
1

p.x/
�

1

p1

ˇ̌̌̌
�

C

log
�
e C jxj

� for all x 2 R3; where
1

p1
D lim
jxj!C1

1

p.x/
:

(2.4)

See [9, Definitions 4.1.1 and 4.1.4] for more details about the log-Hölder regularity prop-
erty. Remark that the condition (2.4) above imposes a specific behavior of the variable
exponents at infinity which is not satisfied by the function p.�/ considered in (2.3). Thus,
since we cannot deduce as easily as for the classical Lebesgue spaces some interesting
control over the pressure P from the information of Eu, we therefore ask here the con-
straint P 2 L

p.�/
2 .R3/ which does not interfere with the general purposes of our theorems.

1For the sake of completeness, we point out that the boundedness of the Riesz transforms in the spaces
Lp.�/.R3/ can be expressed by a more general and more technical condition: we have kRi .f /kLp.�/.R3/ �

Ckf kLp.�/.R3/ if we have 1 < p� � pC < C1 and p.�/ 2A, where the rather technical definition of the
class of variable exponents A is given in [9, Definition 4.4.6]. Of course we have that if p.�/ 2 P log .R3/

then we have p.�/ 2A. See the book [9] for more details.
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Next, we remark that over the set R3 n C (i.e. outside the cylinder C) we impose to the
variable exponent p.�/ to be in the open interval �3; 9

2
Œ and these are the known restrictions

from which we can deduce the uniqueness of the trivial solution (see [7]). The novelty
comes then from the conditions inside the cylinder C where we can consider integrability
values beyond this range, in fact the constraint (2.3) was precisely made to study case
p.�/ > 9

2
and this result gives some information related to the problem (1.3). Note also

that the Lebesgue measure of the cylinder is infinite (i.e. jCj D C1) and the previous
result can be extended to many different subsets of R3 as long as they satisfy some simple
restrictions (for example a finite union of such cylinders): this shows that we can obtain
the uniqueness of the trivial solution with a slow decay at infinity in some non-negligible
regions of the space R3.

Finally, we note that in the definition of the variable exponent p.�/ given (2.3) we are
considering (for the sake of simplicity) the lower bound 3 < p� and open intervals in the
different constraints. Some of these conditions may probably be relaxed and we do not
claim any kind of optimality in our results.

In the following theorem, we study in more detail the behavior of the variable exponent
p.�/ in the case 9

2
< p.�/ over larger subsets of R3.

Theorem 2. Let .Eu;P /2.L2loc.R
3/;D 0.R3// be a weak solution of the stationary Navier–

Stokes equation (1.1). Consider now S the set defined by

S D
°
.x1; x2; x3/ 2 R3 W

q
x22 C x

2
3 � x



1 ; x1 > 0

±
;

where 0 < 
 < 1. We define the variable exponent p.�/ by the following conditions:

p.x/ D

8<: 3 < p�
.R3nS/

� p.R3nS/.x/ � pC
.R3nS/

< 9
2
;

9
2
< p�S � pS.x/ � pCS <

6
C3
2


:
(2.5)

If we have the restriction Eu 2 Lp.�/.R3/ and P 2 L
p.�/
2 .R3/, then we obtain that Eu D 0.

As we can observe here, the larger the set S is (reflected by 
 ! 1�), the more the
upper bound for the variable exponent pCS tends towards known values (i.e. we have
6
C3
2

!

9
2

C
). Note also that, if 
 ! 0C the shape of the set S tends to the cylinder C

considered in Theorem 1 above and then we have that the upper bound satisfy

6
 C 3

2

!C1;

which is the second condition stated in the expression (2.3). This theorem shows how the
variable exponent p.�/ may vary over a set S whose Lebesgue measure is also variable:
indeed, if the measure of this set is “reasonable” then we can consider a mild decay at
infinity and we can still obtain the uniqueness of the trivial solution. However, if the mea-
sure of this set is “too big” then we shall recover the known upper bound 9

2
which allows

us to solve the uniqueness problem considered here. Note that when 
 D 1 this result gives
an example of such big sets.
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It is worth to remark now that, although integrability values outside the interval �3; 9
2
Œ

can be considered in the two previous results (namely 9
2
< p.�/;p.�/ over suitable subsets

of R3, C or S), we always have the upper bounds pC; pC < C1. In the next theorem we
study the case when we can have p.�/ D C1 over a particular subset of R3.

Theorem 3. Let .Eu;P /2.L2loc.R
3/;D 0.R3// be a weak solution of the stationary Navier–

Stokes equation (1.1). We define the set N by the condition

N D
°
.x1; x2; x3/ 2 R3 W

q
x22 C x

2
3 � x

� �2
1 ; x1 > 0

±
;

with 0<� <1. Consider now the variable exponent p.�/ given by the following conditions:

p.x/ D

8<: 3 < p�
.R3nN/

� p.R3nN/.x/ � pC
.R3nN/

< 9
2
;

pN.x/ D C1:
(2.6)

If we have the restriction Eu 2 Lp.�/.R3/ and P 2 L
p.�/
2 .R3/, then we obtain that Eu D 0.

First note that the Lebesgue measure of the set N is infinite, so we can consider here
vector fields Eu satisfying the equation (1.1) which are L2loc.R

3/, have a suitable decay
at infinity in a large portion of the space R3 but that can be constant at infinity over a
non-negligible subset of R3. Thus considering all these restrictions, we can deduce the
uniqueness of the trivial solution and this result may suggest that some decay at infinity is
not absolutely necessary to solve the problem (1.2). Of course, and as pointed out before,
we do not claim any optimality in our results and many others subsets of the space R3 can
be studied with similar conclusions.

3. Proof of the theorems

The proof of the three previous theorems is relatively similar: we start by localizing the
information with a smooth cut-off function supported in a ball B.0; R/ and then we ana-
lyze the behavior of the localized information as R! C1: it is in this step that we will
exploit the different hypotheses stated in Theorems 1, 2, and 3 to deduce the uniqueness
of the trivial solution.

3.1. General framework

Let us start with a divergence-free vector field Eu 2 L2loc.R
3/ that satisfies in the weak

sense the stationary Navier–Stokes equations (1.1). Since by [8, Theorem 2.51] we have
the space inclusion

Lp.�/.R3/ � Lp
�

.R3/C Lp
C

.R3/;

and since by the definition of the variable exponent p.�/ (or p.�/ or p.�/) used in our
theorems we always have the lower and upper bounds 3 < p� � pC � C1 (see (2.3) for
p.�/, (2.5) for p.�/ and (2.6) for p.�/), then we deduce the following embeddings

Lp.�/.R3/ � Lp
�

.R3/C Lp
C

.R3/ � Lp
�

loc .R
3/C L

pC

loc .R
3/ � L3loc.R

3/:
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Now, as we have Eu 2 L3loc.R
3/, then following [10, Theorem X.1.1] we obtain that the

velocity field Eu and the pressure P are regular functions.
Now, let � 2 C10 .R

3/ be a cut-off function such that 0 < � < 1, �.x/ D 1 if jxj < 1
2

,
�.x/ D 0 if jxj > 1. Given R > 1, we define the function �R by �R.x/ D �. x

R
/: thus,

�R.x/ D 1 if jxj < R
2

and �R.x/ D 0 if jxj � R. By testing the Navier–Stokes equations
(1.1) with �R Eu and using the fact that supp.�R Eu/ � BR D B.0;R/ we obtainZ

BR

��Eu � .�R Eu/C .Eu � Er/Eu � .�R Eu/C ErP � .�R Eu/dx D 0: (3.1)

Note that since Eu and P are smooth enough, all the terms in the identity above are well
defined. Then, by using the fact that div.Eu/ D 0 and integrating by parts, we obtain that
the terms in the left-hand side of (3.1) can be rewritten respectively asZ

BR

��Eu � .�R Eu/dx D �

Z
BR

��R

�
jEuj2

2

�
dx C

Z
BR

�Rj Er ˝ Euj
2dx;Z

BR

.Eu � Er/Eu � .�R Eu/dx D �

Z
BR

Er�R �

�
jEuj2

2
Eu

�
dx;Z

BR

ErP � .�R Eu/dx D �

Z
BR

Er�R � .P Eu/dx:

Considering these identities, we can rewrite (3.1) in the following mannerZ
BR

�Rj Er ˝ Euj
2dx D

Z
BR

��R
jEuj2

2
dx C

Z
BR

Er�R �

��
jEuj2

2
C P

�
Eu

�
dx:

Since we have �R.x/ � 1 over the set jxj < R
2

, we can writeZ
BR
2

j Er ˝ Euj2dx �

Z
BR

��R
jEuj2

2
dx„ ƒ‚ …

˛.R/

C

Z
BR

Er�R �

��
jEuj2

2
C P

�
Eu

�
dx„ ƒ‚ …

ˇ.R/

: (3.2)

To conclude that we have Eu D 0 in the context of Theorems 1, 2, and 3, we aim to prove
in the next subsections that we have the following limits

lim
R!C1

ˇ̌
˛.R/

ˇ̌
D lim
R!C1

ˇ̌
ˇ.R/

ˇ̌
D 0: (3.3)

Indeed, if we establish these limits, we can conclude from the estimate (3.2) above that

lim
R!C1

Z
BR
2

j Er ˝ Euj2dx D kEuk PH1 D 0; (3.4)

from which we deduce, by the Sobolev embeddings, that kEukL6 D 0 and thus that we have
Eu � 0.
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3.2. Proof of the Theorem 1

As said previously, we only need now to study the terms ˛.R/ and ˇ.R/ defined in the
expression (3.2) and to show that these quantities tend to 0 as R!C1.

(1) Control for ˛.R/. For studying the term ˛.R/ in (3.2), the Hölder inequality2 with
2
p.�/
C

1
q.�/
D 1 (see [8, Theorem 2.26]) yields the following estimateˇ̌

˛.R/
ˇ̌
�

Z
BR

j��Rj
jEuj2

2
dx �

Z
R3

j��Rj
jEuj2

2
dx � Ck��RkLq.�/.R3/



jEuj2


L
p.�/
2 .R3/

;

since we have the identity kjEuj2k
L
p.�/
2 .R3/

D kEuk2
Lp.�/.R3/

(see [8, Proposition 2.18]) we
can write ˇ̌

˛.R/
ˇ̌
� Ck��RkLq.�/.R3/kEuk

2
Lp.�/.R3/

: (3.5)

Note that, by hypothesis we have kEukLp.�/.R3/ < C1, so we only need to estimate the
quantity k��RkLq.�/.R3/. Since the variable exponent p.�/ satisfies the relationships stated
in (2.3), from the pointwise Hölder relationship

2

p.�/
C

1

q.�/
D 1;

we deduce that the variable exponent q.�/ satisfies the equation q.�/ D p.�/
p.�/�2

, i.e.:

q.x/ D

8<: 9
5
< q�

.R3nC/
� q.R3nC/.x/ � q

C

.R3nC/
< 3;

1 < q�C � qC.x/ � q
C
C < 9

5
;

(3.6)

where C D ¹.x1; x2; x3/ 2 R3 W x22 C x
2
3 � 1; x1 2 Rº.

Now, to estimate the first term in the right-hand side of the expression (3.5) above, we
recall that from the definition of the function �R we have

supp.��R/ � C
�
R
2
; R
�
D
®
x 2 R3 W R

2
� jxj � R

¯
and we have

k��RkLq.�/.R3/ D k��RkLq.�/.C.R2 ;R//
: (3.7)

To continue, we denote by C1 and C2 the sets defined by

C1 D C
�
R
2
; R
�
\ C and C2 D C

�
R
2
; R
�
n C; (3.8)

respectively. Then, from the property (2.2) we have

k��RkLq.�/.C.R2 ;R//
D


��R.1C1 C 1C2/

Lq.�/.C.R2 ;R//

� k��RkLqC1 .�/.C1/
C k��RkLqC2 .�/.C2/

: (3.9)

We will study these two terms separately.

2Note that by (2.3) we always have 1 � p.�/
2
� C1 and thus we can apply the Hölder inequalities in

the setting of Lebesgue spaces of variable exponents.
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� In order to control the quantity k��RkLqC1 .�/.C1/ above, by the Lemma 2.2, we can
write

k��RkLqC1 .�/.C1/
� Ck��RkL1.C1/k1kLqC1 .�/.C1/

: (3.10)

Then, by the definition of the function �R, since C1 D C.R
2
; R/ \ C � C.R

2
; R/, we

have k��RkL1.C1/ � k��RkL1.C.R2 ;R// � CR
�2 and we obtain

k��RkLqC1 .�/.C1/
� CR�2k1k

L
qC1

.�/
.C1/

:

Now, as C1 D C.R
2
; R/ \ C � C, we have q�C � q

�
C1
� qCC1 � q

C
C and thus, applying

the Lemma 2.1 to estimate the quantity k1k
L
qC1

.�/
.C1/

, we can write

k��RkLqC1 .�/.C1/
� CR�2 max

°ˇ̌
C
�
R
2
; R
�
\ C

ˇ̌ 1
q�
C ;

ˇ̌
C
�
R
2
; R
�
\ C

ˇ̌ 1

qC
C

±
: (3.11)

Noticing that we have the set inclusion

C
�
R
2
; R
�
\ C � A D

®
.x1; x2; x3/ 2 R3 W x22 C x

2
3 � 1; �R < x1 < R

¯
;

we easily deduce that jC.R
2
;R/\ Cj � jAj D CR, since A is a cylinder of diameter 1

and height 2R. We thus obtain

k��RkLqC1 .�/.C1/
� C max

°
R
�2C 1

q�
C ; R

�2C 1

qC
C

±
; (3.12)

but since, by (3.6), we have 5
9
< 1

qCC
�

1
q�C
< 1, it comes �2C 1

qCC
� �2C 1

q�C
< �1

from which we obtain that

k��RkLqC1 .�/.C1/
�����!
R!C1

0: (3.13)

� We consider now the second term in the right-hand side of (3.9). By the same argu-
ments as above we can write

k��RkLqC2 .�/.C2/
� Ck��RkL1.C2/k1kLqC2 .�/.C2/

; (3.14)

again, since C2 D C.R
2
; R/ n C � C.R

2
; R/ we have

k��RkL1.C2/ � k��RkL1.C.R2 ;R//
� CR�2;

and we obtain
k��RkLqC2 .�/.C2/

� CR�2k1k
L
qC2

.�/
.C2/

;

and applying Lemma 2.1 we deduce the estimate

k��RkLqC2 .�/.C2/
� CR�2 max

°
jC2j

1
q�
C2 ; jC2j

1

qC
C2

±
:
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At this point we remark that we have the set inclusions C2 D C.R
2
;R/ n C�R3 n C so

we obtain, by the first relationship in (3.6), that 9
5
< q�

.R3nC/
<q�C2�q

C
C2
<qC

.R3nC/
<3,

i.e.
1

3
<

1

qC
.R3nC/

<
1

qCC2

�
1

q�C2
<

1

q�
.R3nC/

<
5

9
:

Moreover, since jC2j D jC.R2 ; R/ n Cj � jC.
R
2
; R/j � CR3 we have

k��RkLqC2 .�/.C2/
� CR�2 max

²
R

3
q�
.R3nC/ ; R

3

qC

.R3nC/

³
� C max

²
R
�2C 3

q�
.R3nC/ ; R

�2C 3

qC

.R3nC/

³
: (3.15)

Observing that we have the bounds �2C 3

qC
R3nC

< �2C 3
q�

R3nC
< �1

3
, we can deduce

that
k��RkLqC2 .�/.C2/

�����!
R!C1

0: (3.16)

With the information (3.13) and (3.16), we can come back to the estimate (3.9) and we
obtain that

k��RkLq.�/.C.R2 ;R//
D k��RkLq.�/.R3/ �����!

R!C1
0:

From this control and from the estimate (3.5), we can directly deduce thatˇ̌
˛.R/

ˇ̌
�����!
R!C1

0:

(2) Control for ˇ.R/. We recall that from the definition of �R we have supp. Er�R/ �
C.R

2
; R/. Thus, by the definition of the term ˇ.R/ given in (3.2) we can writeˇ̌

ˇ.R/
ˇ̌
D

ˇ̌̌̌ Z
BR

Er�R �

��
jEuj2

2
C P

�
Eu

�
dx

ˇ̌̌̌
�
1

2

Z
C.R2 ;R/

j Er�RjjEuj
3dx„ ƒ‚ …

ˇ1.R/

C

Z
C.R2 ;R/

j Er�RjjP kEujdx„ ƒ‚ …
ˇ2.R/

: (3.17)

We aim to prove now that we have limR!C1 ˇ1.R/ D limR!C1 ˇ2.R/ D 0 and these
two limits will be studied separately.

� For the term ˇ1.R/ we write, by the Hölder inequality3 with 3
p.�/
C

1
r.�/
D 1:

ˇ1.R/ D

Z
C.R2 ;R/

j Er�RjjEuj
3dx � Ck Er�RkLr.�/.C.R2 ;R//



jEuj3


L
p.�/
3 .C.R2 ;R//

;

3Recall that by (2.3) we always have 1 � p.�/
3
� C1 so we can apply the Hölder inequality with

parameter p.�/
3

.
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now, since kjEuj3k
L
p.�/
3 .C.R2 ;R//

� kjEuj3k
L
p.�/
3 .R3/

, we have

ˇ1.R/ � Ck Er�RkLr.�/.C.R2 ;R//



jEuj3


L
p.�/
3 .R3/

� Ck Er�RkLr.�/.C.R2 ;R//
kEuk3

Lp.�/.R3/
; (3.18)

where we used the identity

jEuj3


L
p.�/
3 .R3/

D kEuk3
Lp.�/.R3/

:

Since, by hypothesis, we have kEukLp.�/.R3/ <C1, to prove that limR!C1ˇ1.R/D 0,
we only need to study the quantity

k Er�RkLr.�/.C.R2 ;R//
:

For this, we note that as the variable exponent p.�/ satisfies the relationships stated in
(2.3), from the pointwise Hölder relationship 3

p.�/
C

1
r.�/
D 1, we have r.�/ D p.�/

p.�/�3
,

i.e.,

r.x/ D

8<: 3 < r�.R3nC/
� r.R3nC/.x/ � r

C

.R3nC/
< C1;

1 < r�C � rC.x/ � r
C
C < 3;

(3.19)

where C D ¹.x1; x2; x3/ 2 R3 W x22 C x
2
3 D 1; x1 2 Rº. Using the sets C1 and C2

defined in (3.8) and proceeding just as in the estimate (3.9) above, we can write

k Er�RkLr.�/.C.R2 ;R//
� kEr�RkLrC1 .�/.C1/

C kEr�RkLrC2 .�/.C2/
:

Following the same ideas that leaded us to the estimates (3.12) and (3.15) (with the
difference that k Er�RkL1 � CR�1) we obtain

k Er�RkLr.�/.C.R2 ;R//
� C max

²
R
�1C 1

r�
C ; R

�1C 1

rC
C

³
C C max

²
R
�1C 3

r�
.R3nC/ ; R

�1C 3

rC

.R3nC/

³
; (3.20)

now, by the values of the function r.�/ given in (3.19) we easily have that

�1C
1

rCC
� �1C

1

r�C
< 0 and � 1C

3

rC
.R3nC/

� �1C
3

r�
.R3nC/

< 0;

from which we deduce that

lim
R!C1

k Er�RkLr.�/.C.R2 ;R//
D 0;

and thus, by the control (3.18) we have limR!C1 ˇ1.R/ D 0.
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� We continue now with the analysis of the term ˇ2.R/ given in the expression (3.17).
Applying the Hölder inequalities with 1

p.�/
C

2
p.�/
C

1
r.�/
D 1 (see [8, Corollary 2.30]),

we have

ˇ2.R/ D

Z
C.R2 ;R/

j Er�RjjP kEujdx

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .C.R2 ;R//

kEukLp.�/.C.R2 ;R//

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .R3/

kEukLp.�/.R3/:

Since we have by hypothesis that Eu 2 Lp.�/.R3/ and P 2 L
p.�/
2 .R3/, we only need

to study the quantity k Er�RkLr.�/.C.R2 ;R// where the exponent r.�/ satisfies (3.19). Fol-
lowing the same arguments as above we obtain

lim
R!C1

k Er�RkLr.�/.C.R2 ;R//
D 0;

and thus we have the limit limR!C1 ˇ2.R/ D 0.

With these two limits at hand for the quantities ˇ1.R/ and ˇ2.R/, we easily deduce from
(3.17) that limR!C1 jˇ.R/j D 0.

We have thus proven that the terms ˛.R/ and ˇ.R/ given in (3.2) tend to 0 as R !
C1: the proof of Theorem 1 is now complete.

3.3. Proof of the Theorem 2

Following the main ideas of the Section 3.1, we only need to prove the limits (3.3) where
the quantities ˛.R/ and ˇ.R/ are defined in (3.2).

(1) Control for ˛.R/. Proceeding as in (3.5) we have the estimate

j˛.R/j �

Z
BR

j��Rj
jEuj2

2
dx � Ck��RkLq.�/.R3/kEuk

2
Lp.�/.R3/

; (3.21)

where we applied the Hölder inequalities with 2
p.�/
C

1
q.�/
D 1 (i.e. q.�/D p.�/

p.�/�2
). Since the

variable exponent p.�/ satisfies the conditions (2.5), we thus have the following conditions
for q.�/:

q.x/ D

8<: 9
5
< q�

.R3nS/
� q.R3nS/.x/ � qC

.R3nS/
< 3;

6
C3
2
C3

< q�S � qS.x/ � qCS <
9
5
;

(3.22)

where S D ¹.x1; x2; x3/ 2 R3 W x22 C x
2
3 � x



1 ; x1 > 0º and 0 < 
 < 1.

Since we have by hypothesis that Eu 2Lp.�/.R3/, as explained previously, we can focus
ourselves on the quantity k��RkLq.�/.R3/. Again, by the support properties of this localiz-
ing function �R we can write (see (3.7) above):

k��RkLq.�/.R3/ D k��RkLq.�/.C.R2 ;R//
:
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Now, we denote by S1 and S2 the sets defined by

S1 D C
�
R
2
; R
�
\ S and S2 D C

�
R
2
; R
�
n S;

and we obtain

k��RkLq.�/.C.R2 ;R//
� k��RkLqS1

.�/
.S1/
C k��RkLqS2

.�/
.S2/

: (3.23)

For the first term of the right-hand side above, following the same ideas given in (3.10)–
(3.11), we have

k��RkLqS1
.�/
.S1/
� Ck��RkL1.S1/k1kLqS1

.�/
.S1/
� CR�2k1k

L
qS1

.�/
.S1/

� CR�2 max
°ˇ̌

C
�
R
2
; R
�
\ S

ˇ̌ 1
q�
S ;
ˇ̌
C
�
R
2
; R
�
\ S

ˇ̌ 1

qC
S

±
:

Since we have

C
�
R
2
; R
�
\ S � B D

°
.x1; x2; x3/ 2 R3 W

q
x22 C x

2
3 � x



1 ; 0 < x1 < R

±
;

by computing the volume of the solid of revolution B defined above, we have

ˇ̌
C
�
R
2
; R
�
\ S

ˇ̌
� jBj D C

Z R

0

x
2

1 dx1 D CR

2
C1;

and we can write

k��RkLqS1
.�/
.S1/
� C max

°
R
�2C

2
C1
q�
S ; R

�2C
2
C1

qC
S

±
: (3.24)

But since by (3.22), we have 5
9
< 1

qCS
�

1
q�S
< 2
C3

6
C3
, it comes (recall that 0 < 
 < 1)

�2C
2
 C 1

qCS
� �2C

2
 C 1

q�S
< �2C .2
 C 1/

2
 C 3

6
 C 3
< 0;

and thus all the powers of R > 1 in the formula (3.24) are negative, from which we easily
deduce that

k��RkLqS1
.�/
.S1/
�����!
R!C1

0:

For the second term in the right-hand side of (3.23), since we have S2 D C.R
2
; R/ n S �

R3 n S, by the same arguments given in (3.14)–(3.15) we obtain

k��RkLqS2
.�/
.S2/

R!C1
�����! 0:

With all these estimate at hand and coming back to (3.21) we finally obtain that

lim
R!C1

ˇ̌
˛.R/

ˇ̌
! 0:
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(2) Control for ˇ.R/. Following the ideas in (3.17) we haveˇ̌
ˇ.R/

ˇ̌
�
1

2

Z
C.R2 ;R/

j Er�RjjEuj
3dx„ ƒ‚ …

ˇ1.R/

C

Z
C.R2 ;R/

j Er�RjjP kEujdx„ ƒ‚ …
ˇ2.R/

: (3.25)

For the first term in the right-hand side above, following (3.18) we write:

ˇ1.R/ � Ck Er�RkLr.�/.C.R2 ;R//
kEuk3

Lp.�/.R3/
; (3.26)

where we used the Hölder inequality with 3
p.�/
C

1
r.�/
D 1 (i.e. we have r.�/D p.�/

p.�/�3
). Since

the exponent p.�/ is now driven by the conditions stated in (2.5), the variable exponent r.�/

satisfies:

r.x/ D

8<: 3 < r�
.R3nS/

� r.R3nS/.x/ � rC
.R3nS/

< C1;

2
 C 1 < r�S � rS.x/ � rCS < 3:
(3.27)

Again, since by hypothesis we have kEukLp.�/.R3/ < C1, to understand the behavior of

ˇ1.R/ we only need to study the quantity k Er�RkLr.�/.C.R2 ;R//
. Following the main ideas

used to obtain the estimate (3.20) and by the same arguments displayed above (recall that
jC.R

2
; R/ \ Sj � CR2
C1), we have

k Er�RkLr.�/.C.R2 ;R//
� C max

²
R
�1C

2
C1
r�
S ; R

�1C
2
C1

rC
S

³
C C max

²
R
�1C 3

r�
.R3nS/ ; R

�1C 3

rC

.R3nS/

³
:

Now, by the restrictions (3.27), we easily deduce that

�1C
2
 C 1

rCS
� �1C

2
 C 1

r�S
< 0 and � 1C

3

rC
.R3nS/

� �1C
3

r�
.R3nS/

< 0;

and since all the powers of the parameter R > 1 are negative we have the following limit
k Er�RkLr.�/.C.R2 ;R//

�����!
R!C1

0. Thus, getting back to (3.26) we have limR!C1ˇ1.R/D 0.

For the term ˇ2.R/ given in (3.25) we proceed as follows: by the Hölder inequalities
with 1

p.�/
C

2
p.�/
C

1
r.�/
D 1, we obtain

ˇ2.R/ D

Z
C.R2 ;R/

ˇ̌
Er�RkP kEu

ˇ̌
dx

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .C.R2 ;R//

kEukLp.�/.C.R2 ;R//

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .R3/

kEukLp.�/.R3/:

Now, since we have by hypothesis that Eu 2 Lp.�/.R3/ and P 2 L
p.�/
2 .R3/, as before, we

only need to study the quantity k Er�RkLr.�/.C.R2 ;R//
where the exponent r.�/ satisfies this
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time the relationships 1
p.�/
C

2
p.�/
C

1
r.�/
D 1, i.e. r.�/ D p.�/

p.�/�3
, where r.�/ verifies (3.27).

Thus, following exactly the same arguments as above we obtain that

lim
R!C1

k Er�RkLr.�/.C.R2 ;R//
D 0;

and we finally obtain the limit limR!C1 ˇ2.R/ D 0.
We have obtained that limR!C1 ˇ1.R/D limR!C1 ˇ2.R/D 0, from which, getting

back to the expression (3.25), we easily deduce that limR!C1 jˇ.R/j D 0.
After the previous estimates for the terms ˛.R/ and ˇ.R/, we can consider the control

(3.2), and we deduce, by (3.4), that kEuk PH1 D 0 and that Eu� 0. The proof of the Theorem 2
is now finished.

3.4. Proof of Theorem 3

As in the proof of the two previous results, our starting point is the inequality (3.2) given
by Z

BR
2

j Er ˝ Euj2dx �

Z
BR

��R
jEuj2

2
dx„ ƒ‚ …

˛.R/

C

Z
BR

Er�R �

��
jEuj2

2
C P

�
Eu

�
dx„ ƒ‚ …

ˇ.R/

;

and we aim to prove that limR!C1 j˛.R/j D limR!C1 jˇ.R/j D 0.
(1) Control for ˛.R/. By the Hölder inequalities with4 2

p.�/ C
1

q.�/ D 1, we obtain

j˛.R/j �

Z
BR

j��Rj
jEuj2

2
dx � Ck��RkLq.�/.R3/kEuk

2
Lp.�/.R3/

:

As before, since we have by hypothesis that kEukLp.�/.R3/ < C1, in order to study the
behavior asR!C1 of the quantity ˛.R/, we only need to study the term k��RkLq.�/.R3/.

Now, as the variable exponent p.�/ satisfies the conditions (2.6), we deduce that the
variable exponent q.�/ D p.�/

p.�/�2 is given by

q.x/ D

8<: 9
5
< q�

.R3nN/
� q.R3nN/.x/ � qC

.R3nN/
< 3;

qN.x/ D q�N D qCN D 1;
(3.28)

where N D ¹.x1; x2; x3/ 2 R3 W x22 C x
2
3 � x

� �2
1 ; x1 > 0º and 0 < � < 1. We thus write,

k��RkLq.�/.R3/ D k��RkLq.�/.C.R2 ;R//
� k��RkLqN1 .�/.N1/

C k��RkLqN2 .�/.N2/
: (3.29)

with N1 D C.R
2
; R/ \N and N2 D C.R

2
; R/ nN.

4Recall that the Hölder inequalities are still fully available in this context with the values 1 � p.�/ �
C1, see the book [8, Theorem 2.26] for more details.
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For the term k��RkLqN1 .�/.N1/
given in (3.29), we write

k��RkLqN1 .�/.N1/
� CR�2k1k

L
qN1 .�/.N1/

� CR�2 max
°ˇ̌

C
�
R
2
; R
�
\N

ˇ̌ 1
q�
N ;
ˇ̌
C
�
R
2
; R
�
\N

ˇ̌ 1

qC
N

±
:

Now, since C.R
2
; R/ \N � N we thus have by (3.28)) that q�N D q�N D 1, moreover we

have the set inclusion

C
�
R
2
; R
�
\N � D D

°
.x1; x2; x3/ 2 R3 W

q
x22 C x

2
3 � x

� �2
1 ; 0 < x1 < R

±
;

and computing the volume of the solid of revolution of the set D we obtain the following
estimate (recall that 0 < � < 1):ˇ̌

C
�
R
2
; R
�
\N

ˇ̌
� jDj D C

Z R

0

x��1 dx1 D CR
1�� ;

and we can write
k��RkLqN1 .�/.N1/

� CR�1�� �����!
R!C1

0:

We study now the term k��RkLqN2 .�/.N2/
given in (3.29). Since we have the set inclusions

N2 D C.R
2
; R/ nN � R3 nN and since over this set we have that the variable exponent

q.�/ satisfies the condition (3.28), by the same arguments given in (3.14)–(3.15) we obtain

k��RkLqN2 .�/.N2/
�����!
R!C1

0:

With these two estimates at hand we deduce, coming back to (3.29), that we have

k��RkLq.�/.R3/ �����!
R!C1

0

and this fact implies the limit ˇ̌
˛.R/

ˇ̌
�����!
R!C1

0:

(2) Control for ˇ.R/. The control of this terms follows the same general ideas used in
(3.17), we can thus writeˇ̌

ˇ.R/
ˇ̌
�
1

2

Z
C.R2 ;R/

j Er�RjjEuj
3dx„ ƒ‚ …

ˇ1.R/

C

Z
C.R2 ;R/

ˇ̌
Er�RkP kEu

ˇ̌
dx„ ƒ‚ …

ˇ2.R/

: (3.30)

For the first term in the right-hand side above, following (3.18) we write:

ˇ1.R/ � Ck Er�RkLr.�/.C.R2 ;R//
kEuk3

Lp.�/.R3/
; (3.31)

where we used the Hölder inequality with 3
p.�/ C

1
r.�/ D 1. Since the exponent p.�/ is given
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by the conditions stated in (2.6), the variable exponent r.�/ D p.�/
p.�/�3 satisfies:

r.x/ D

8<: 3 < r�
.R3nN/

� r.R3nN/.x/ � rC
.R3nN/

< C1;

r�N D rN.x/ D rCN D 1:
(3.32)

To understand the behavior of ˇ1.R/, since by hypothesis we have kEukLp.�/.R3/ < C1,
we only need to study the quantity k Er�RkLr.�/.C.R2 ;R//

. Following the main ideas used to
obtain the estimate (3.20), we have

k Er�RkLr.�/.C.R2 ;R//
� CR�1 max

²ˇ̌
C
�
R
2
; R
�
\N

ˇ̌ 1
r�
N ;
ˇ̌
C
�
R
2
; R
�
\N

ˇ̌ 1

rC
N

³
C CR�1 max

²ˇ̌
C
�
R
2
; R
�
nN

ˇ̌ 1
r�
.R3nN/ ;

ˇ̌
C
�
R
2
; R
�
nN

ˇ̌ 1

rC
.R3nN/

³
:

Recalling that we have jC.R
2
; R/ \Nj � CR1�� and jC.R

2
; R/ nNj � CR3, we obtain,

since r�N D rN.x/ D rCN D 1:

k Er�RkLr.�/.C.R2 ;R//
� CR�� C C max

°
R
�1C 3

r�
.R3nN/ ; R

�1C 3

rC
.R3nN/

±
Now, by the restrictions (3.32) we easily deduce that

�1C
3

rC
.R3nN/

� �1C
3

r�
.R3nN/

< 0

and since all the powers of the parameter R > 1 are negative we then have the limit
k Er�RkLr.�/.C.R2 ;R//

�����!
R!C1

0. Thus, getting back to (3.31), we have

lim
R!C1

ˇ1.R/ D 0:

For the term ˇ2.R/ given in (3.30) we proceed following the same ideas used previ-
ously: by the Hölder inequalities with 1

p.�/ C
2

p.�/ C
1

r.�/ D 1, we obtain

ˇ2.R/ D

Z
C.R2 ;R/

ˇ̌
Er�RkP kEu

ˇ̌
dx

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .C.R2 ;R//

kEukLp.�/.C.R2 ;R//

� Ck Er�RkLr.�/.C.R2 ;R//
kP k

L
p.�/
2 .R3/

kEukLp.�/.R3/:

Since by hypothesis Eu 2Lp.�/.R3/ andP 2L
p.�/
2 .R3/, as before, we only need to study the

quantity k Er�RkLr.�/.C.R2 ;R//
where the variable exponent r.�/ D p.�/

p.�/�3 is given by (3.32).
Thus, following exactly the same arguments as above we obtain

lim
R!C1

k Er�RkLr.�/.C.R2 ;R//
D 0;

and we finally obtain the limit limR!C1 ˇ2.R/ D 0.
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We have obtained that

lim
R!C1

ˇ1.R/ D lim
R!C1

ˇ2.R/ D 0;

from which, getting back to the expression (3.30), we easily deduce that

lim
R!C1

ˇ̌
ˇ.R/

ˇ̌
D 0:

We have thus proven that the terms ˛.R/ and ˇ.R/ given in (3.2) tend to 0 as R !
C1: the proof of Theorem 3 is now complete.
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