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From snapping-out Brownian motions to Walsh’s spider
processes on star-like graphs

Adam Bobrowski and Elżbieta Ratajczyk

Abstract. We prove that a snapping-out Brownian motion with large permeability coefficients is a
good approximation of Walsh’s spider process on the star-like graph K1;k . Thus, the latter process
can be seen as a Brownian motion perturbed by a trace of semi-permeable membrane at the graph’s
center. Besides convergence of processes and semigroups we establish, via the Lord Kelvin method
of images and analysis of ergodic properties of matrices involved, convergence of cosine families
underlying the semigroups and thus gain additional insight into the approximation theorem.

1. Introduction

1.1. Sticky snapping-out Brownian motion

Given a natural number k � 2 and non-negative parameters

ai ; bi ; ci ; i 2K WD ¹1; : : : ; kº

with bi ; ci > 0, we think of the following Markov process on the compact space

Sk WD
[
i2K

�
¹iº � Œ0;1�

�
:

While on the i th copy of Œ0;1�, our process is initially indistinguishable from the sticky
Brownian motion with stickiness coefficient ai=bi , as described, for example, in [33] (see
also [12]); in the particular case of ai D 0, the sticky Brownian motion is the reflected
Brownian motion. However, when the time spent at the i th copy of 0 exceeds an expo-
nential time (independent of the Brownian motion) with parameter proportional to ci , the
process jumps to one of the points .j; 0/; j 6D i , all choices being equally likely. At the
moment of jump the process forgets its past and starts to behave like a sticky Brownian
motion on the j th copy of Œ0;1�, and so on (see Figure 1).

The so-defined process has Feller property and thus can be characterized by means
of a Feller generator in C.Sk/, the space of continuous functions on Sk . To describe this
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Figure 1. Sticky snapping-out Brownian motion is a Feller process on k copies of Œ0;1� (here
k D 3), which on the i th copy behaves like a one-dimensional sticky Brownian motion with sticki-
ness coefficient ai=bi . After spending enough time at .i; 0/ the process jumps to one of the points
.j; 0/; j 6D i to continue its motion on the corresponding copy of Œ0;1�, and so on. Times between
jumps are governed by parameters ci .

generator, say, As-o
p (subscript p is a shorthand for the ordered set of parameters ai ; bi ; ci

described above), in detail, we introduce first the space C Œ0;1� of real-valued, continuous
functions f on Œ0;1/ such that the limits limx!1 f .x/ exist and are finite, and note that
C.Sk/ is isometrically isomorphic to

Fk WD
�
C Œ0;1�

�k
;

the Cartesian product of k copies of C Œ0;1�; we identify a sequence .fi /i2K with the
function f WSk ! R given by

f .i; x/ WD fi .x/; i 2K; x 2 Œ0;1/:

Then, we define the domain D.As-o
p / of As-o

p as composed of .fi /i2K 2 Fk such that

(1) each fi is twice continuously differentiable with f 00i 2 C Œ0;1�,

(2) we have

aif
00
i .0/ � bif

0
i .0/ D ci

�
1

k � 1

X
j¤i

fj .0/ � fi .0/

�
; i 2K: (1.1)

Moreover, for such .fi /i2K , we agree that As-o
p .fi /i2K D .f

00
i /i2K .

Boundary/transmission conditions of the type (1.1) have been studied and employed
extensively by a number of authors in a variety of contexts (see, e.g., the abundant bib-
liography in [10]). Among more recent literature involving relatives of (1.1), one could
mention the model of inhibitory synaptic receptor dynamics of P. Bressloff [21]; see also
[20], and references given in these papers. It seems that the probabilistic meaning of rela-
tions (1.1), in the case of k D 2, a1 D a2 D 0, has been first explained in [15], where
they were put in the context of Feller boundary conditions; the subsequent [32] provides
a construction of the underlying process and introduces the name snapping-out Brownian
motion. The same process is constructed by approximation in [34] and called Brownian
motion with hard membrane.

Our main theorem in this paper says that snapping-out Brownian motion with very
large coefficients ci can be used as an approximation for the famous Walsh’s spider pro-
cess.
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f̌ 00.0/ D

kX
iD1

˛if
0
i .0/

Figure 2. The infinite star-like graph K1;k with k D 8 edges. Walsh’s sticky process on K1;k is
a Feller process whose behavior at the graph’s center is characterized by the boundary condition
visible above; outside of the center, on each of the edges, the process behaves like a standard one-
dimensional Brownian motion.

1.2. Walsh’s sticky process

Walsh’s sticky process (a generalization of Walsh’s spider process) is a Feller process on
the space obtained from Sk by lumping together all the points .i; 0/ 2 Sk , i 2 K , that is,
on the infinite metric graph K1;k depicted at Figure 2. The space C.K1;k/ of continuous
functions on K1;k can be identified with the subspace

F0
k WD

®
.fi /i2K 2 Fk j fi .0/ D fj .0/; i; j 2K

¯
� Fk I

for f 2F0
k

, the common value of fi .0/, i 2K , can be thought of as the value of the corre-
sponding member ofC.K1;k/ at the graph center, and will in what follows be denoted f .0/.

The generator, say, Asp
q , of Walsh’s sticky process is characterized by non-negative

numbers ˇ and ˛i , i 2 K such that ˇ C
P
i2K ˛i D 1—subscript q denotes the ordered

set of such numbers. Namely, see [30, Thm. 2.2], we define the domain D.Asp
q / � F0

k
of

A
sp
q as composed of .fi /i2K 2 F0

k
such that

(1) each fi is twice continuously differentiable with f 00i 2 C Œ0;1�,

(2) whereas f 0i .0/, i 2 K may depend on i , f 00i .0/, i 2 K does not; this common
value is denoted f 00.0/,

(3) f̌ 00.0/ D
P
i2K ˛if

0
i .0/,

and for .fi /i2K 2 D.A
sp
q / agree that Asp

q .fi /i2K D .f
00
i /i2K . Notably, by condition (2)

above, Asp
q f belongs to F0

k
.

The related process was first introduced in the case of k D 2 and ˇ D 0 by Ito and
McKean (see [27, p. 115]) under the name of skew Brownian motion: it differed from the
standard Brownian motion on R only in the fact that signs of its excursions from 0 were
determined by independent Bernoulli variables. It seems that Portenko, in the somewhat
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forgotten work [38], has discovered this process independently as a particular case of his
generalized diffusions—see also [39, Thm. 3.4, p. 146]. Later the process was generalized
and popularized by the influential Walsh’s paper [41]. In an informal description of the
process generated by Asp

q in the general case of k � 2 (still with ˇ D 0) we think of
the graph as the spider’s web, and of ˛i as the probability that a spider passing through
graph’s center will continue its movement on the i th edge of the graph; ˇ is an additional
parameter (playing a similar role to ai s of (1.1); this fact is also reflected in (1.2)) that
tells us how sticky the graph’s center is. For more on the Walsh’s process see [3, 4, 14, 16,
29, 31, 35, 42].

1.3. The main result

Let p be a fixed set of parameters for As-o
p , and for " > 0 let p."/ be the same set with ci s

replaced by "�1ci , i 2K . Our first limit theorem (Theorem 3.2) says that the semigroups
generated by As-o

p."/ converge, as "! 0, to the semigroup of sticky Walsh’s process with
parameters

˛i WD dbic
�1
i ; i 2K and ˇ WD d

X
j2K

aj c
�1
j (1.2)

where d WD Œ
P
j2K.aj C bj /c

�1
j ��1 is a normalizing constant; this set of parameters will

be denoted q.p/. In the case of k D 2 and a1 D a2 D 0 the result described above has been
proved in [9], and later reproduced in [10]; see also [18] for a recent continuation.

To explain the meaning of the theoremwe note first that the state-space of the snapping-
out Brownian motion can also be thought of as the K1;k graph, provided that we imagine
that at the graph’s center there is a multi-faceted, semi-permeable membrane, and thus we
distinguish between positions ‘virtually at the graph’s center’ but on the i th edge, i 2 K

(we are thus doing a reverse process to that of lumping points). In this interpretation, ci is
a permeability coefficient, telling us how quickly a particle diffusing on the i th edge can
filter through the membrane to continue its random motion on the other side. By replacing
ci by "�1ci for all i 2K and letting "! 0we make the membrane completely permeable,
and thus the limit process’s state-space reduces to K1;k (see Figure 3). Formulae (1.2)
show that despite the apparent absence of the membrane, in the limit there remains some
kind of asymmetry in the way particles approaching the graph’s center from different

"! 0

Figure 3. State-space collapse. As permeability coefficients ci become infinite (being multiplied by
"�1), times spent at the points .i; 0/, i 2 K before jumps become shorter and shorter. As a result,
in the limit all these points are lumped together and Sk becomes K1;k (here k D 5).
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edges pass through this center. Thus, Walsh’s sticky process can be seen as a process with
a trace of semi-permeable membrane at the graph’s center.

On the more technical side, Theorem 3.2 says that the semigroups ¹etA
s-o
p."/ ; t � 0º,

which are defined on C.Sk/, converge only on C.K1;k/ � C.Sk/. In Sections 4 and 5,
devoted to the case of ai D 0, i 2 K , we complement this theorem with information
on convergence outside of C.K1;k/, and on convergence of the related cosine families—
see Theorems 4.1 and 5.1, and Corollary 5.2. Ergodic properties of stochastic matrices
involved constitute a key to the analysis.

The main results are preceded with Section 2 where, as a preparation, we prove two
generation theorems, and Section 3.1, where they are put into the perspective of the general
theory of convergence of semigroups and cosine families.

2. Two generation theorems

In this section, we show that operators defined in the Introduction are indeed Feller gen-
erators; in particular, we compute their resolvents which will constitute a key to our main
limit theorem. We start with a linear algebra lemma.

Lemma 2.1. Let Ai ; Bi ; Ci , i 2 K be given constants such that Ai > 0. Then, for any
" > 0 there is precisely one solution .Di ."//i2K 2 Rk to the system

"AiDi ."/ D "Bi C
1

k � 1

X
j¤i

�
Cj CDj ."/

�
� Ci �Di ."/; i 2K: (2.1)

Moreover, the limits lim"!0Di ."/, i 2K exist and are finite.

Proof. The idea is to rewrite (2.1) so that uniqueness and convergence of Di ."/ becomes
evident. To this end, we let

D."/ WD
X
i2K

AiDi ."/ (2.2)

and note that, by (2.1), D."/ D
P
i2K Bi . It follows that D."/ in fact does not depend on

" and we will write simply D instead.
Without loss of generality, we assume from now on that Ak D maxi2K Ai . Then, by

substituting D
Ak
�
P
i 6Dk

Ai
Ak
Di ."/ forDk."/ into (2.1), we obtain the following system of

relations�
1C "Ai C

Ai

.k � 1/Ak

�
Di ."/

D "Bi C
1

k � 1

X
j 6Di

Cj � Ci C
D

.k � 1/Ak
C

1

k � 1

X
j 6Di;k

�
1 �

Aj

Ak

�
Dj ."/;

involving variables with the first k � 1 indexes

i 2 L WD ¹1; : : : ; k � 1º:
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This system is easier to handle. To see this, we equip Rk�1 with the norm k.�i /i2Lk WD

maxi2L j�i j. Then, for any " � 0, the norm of the linear operatorO"WRk�1! Rk�1 given
by

O".�i /i2L D

�
1

k � 1

1

mi ."/

X
j2Ln¹iº

�
1 �

Aj

Ak

�
�j

�
i2L

where mi ."/ WD 1C "Ai C Ai
.k�1/Ak

> 1, is smaller than 1. For, kO"k does not exceed

max
i2L

1

k � 1

1

mi ."/

X
j2Ln¹iº

�
1 �

Aj

Ak

�
< max

i2L

1

k � 1

X
j2Ln¹iº

�
1 �

Aj

Ak

�
<
k � 2

k � 1
< 1:

Hence, I �O" is invertible and so (2.1) has the unique solution�
Di ."/

�
i2L
D .I �O"/

�1
�
Ei ."/

�
i2L

(2.3)

where

Ei ."/ D
1

mi ."/

�
"Bi C

1

k � 1

X
j 6Di

Cj � Ci C
D

.k � 1/Ak

�
; i 2 L:

Moreover, we have

lim
"!0

O" D O0 and lim
"!0

Ei ."/ D
1

mi .0/

�
1

k � 1

X
j 6Di

Cj � Ci C
1

k � 1

D

Ak

�
; i 2K:

Hence, (2.3) establishes convergence of .Di ."//i2L, as " ! 0. Since the sum in (2.2)
does not depend on " and Ai s are non-zero, this implies convergence of all Di ."/s and
thus completes the proof.

Proposition 2.2. For any set p of non-negative parameters ai ; bi ; ci with bi ; ci > 0, the
operator As-o

p of Section 1.1 is a Feller generator.

Proof. As-o
p is obviously densely defined, and arguing as, for example, in [11, Sec. 6]

we find out that this operator satisfies the positive-maximum principle. Hence, by [28,
Thm. 19.11] or [7, Thm. 8.3.4], we are to check only that for any g 2 C.Sk/ and � > 0
there is an f 2 D.As-o

p / solving �f � As-o
p f D g, that is, for any .gi /i2K 2 Fk and

� > 0 there is an .fi /i2K 2D.A
s-o
p / such that �fi � f 00i D gi , i 2K . (Such an .fi /i2K is

unique, because As-o
p satisfies the positive-maximum principle and is thus dissipative—see

[23, Lem. 2.1, p. 165].)
To this end, we search for fi s of the form

fi .x/ WD Cie
p
�x
CDie�

p
�x
�

1
p
�

Z x

0

sinh
p
�.x � y/gi .y/ dy; x�0; i 2K; (2.4)

for some constants Ci ; Di , i 2 K , and note that the limits limx!1 fi .x/ exist and are
finite iff

Ci D
1

2
p
�

Z 1
0

e�
p
�ygi .y/ dy; i 2K: (2.5)
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Moreover, condition (1.1) is satisfied iff


Ci Di D 

�
i Ci C aic

�1
i gi .0/C

1

k � 1

X
j¤i

.Cj CDj / � Ci �Di ; i 2K (2.6)

where 
˙i WD bic
�1
i

p
� ˙ �aic

�1
i , i 2 K . Since (2.6) is obviously a particular case of

(2.1) with " D 1, Ai D 
Ci and Bi D 
�i Ci C aic
�1
i gi .0/, existence of (unique) solution

to this system is guaranteed by Lemma 2.1.

Our second generation theorem is a simple case of the general result of [29, Thm. 2.8]
and [30, Thm. 3.7], but we sketch its proof here since in what follows we need the form
of the resolvent of Asp

q .

Proposition 2.3. Operator Asp
q is a Feller generator.

Proof. We proceed as in the proof of the previous proposition. First of all, density of
D.A

sp
q / and the positive-maximum principle for Asp

q do not pose a problem. Secondly, to
find a solution to the resolvent equation we search for fi s of the form (2.4) (with Ci s
defined by (2.5)), and note that the defining conditions (2) and (3) are satisfied iff

fi .0/ D fj .0/ that is Ci CDi D Cj CDj ; i; j 2K (2.7)

and
ˇ
�
�.Ci CDi / � g.0/

�
D
p
�
X
j2K

j̨ .Cj �Dj /; i 2K; (2.8)

respectively. Denoting by f .0/ the common value of (2.7) we check that the system (2.7)–
(2.8) has the following unique solution: Di D f .0/ � Ci , i 2K where

f .0/ D
ˇg.0/C 2

p
�
P
i2K ˛iCi

�ˇ C
p
�.1 � ˇ/

:

This completes the proof.

3. The main convergence theorem

3.1. A sketch of the theory of convergence of semigroups and bird’s-eye view of our
results

The main idea of the Trotter–Kato–Neveu convergence theorem [1, 22, 25, 37], a corner-
stone of the theory of convergence of semigroups [10,19], is that convergence of resolvents
of equibounded semigroups in a Banach space F, gives an insight into convergence of the
semigroups themselves. Hence, in studying the limit of equibounded semigroups, say,
¹etB" ; t � 0º, generated by the operators B", " > 0 we should first establish existence of
the strong limit

R� WD lim
"!0

.� � B"/
�1:
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The general theory of convergence (see [10, Chap. 8]) covers also the case in which, unlike
in the classical version of the Trotter–Kato–Neveu theorem, the (common) range of the
operators R�, � > 0 so-obtained is not dense in F, and stresses the role of the so-called
regularity space, defined as the closure of the range of R�:

Freg WD cl.RangeR�/ � F:

Namely, Freg turns out to coincide with the set of f 2 F such that the limit

T .t/f WD lim
"!0

etB"f

exists and is uniform with respect to t in compact subintervals of Œ0;1/; then ¹T .t/; t�0º,
termed the regular limit of ¹etB" ; t � 0º, " > 0, is a strongly continuous semigroup in Freg.

It should be stressed, though, that this statement does not exclude the possibility of
the existence of f 62 Freg such that the strong limit lim"!0 etB"f exists for all t � 0. Such
irregular convergence of semigroups, which is known to be always uniform with respect
to t in compact subsets of .0;1/—see [6] or [10, Thm. 28.4]—is not so uncommon,
especially in the context of singular perturbations [2, 10, 36], but needs to be established
by different means.

In our first limit theorem (Theorem 3.2) we fix the set p of parameters ai ; bi ; ci of
Section 1.1 and consider operators As-o

p."/, " > 0 defined as As-o
p with p D p."/ obtained

from p by replacing all ci s by "�1ci and leaving the remaining parameters intact. We prove
that the regularity space for this family of semigroups of operators is C.K1;k/ � C.Sk/,
and that the sticky Walsh’s process is their regular limit. In Section 4, under additional
assumption that all ai are zero, we will show As-o

p."/ generate also equibounded cosine
families, and, as a result, that the limit

lim
"!0

etA
s-o
p."/f; t � 0

exists also for f 2 C.Sk/ n C.K1;k/. In Section 5 we show that convergence of semi-
groups (and cosine families) on the regularity space is in fact uniform with respect to t ,
and that outside of this subspace the cosine families do not converge at all.

3.2. The main theorem

Let p and p."/, " > 0 be as in the preceding section. In other words, elements of the domain
of As-o

p."/ satisfy the transmission conditions

"aif
00
i .0/ � "bif

0
i .0/ D ci

�
1

k � 1

X
j¤i

fj .0/ � fi .0/

�
; i 2K;

and we are interested in the strong limit of the semigroups ¹etA
s-o
p."/ ; t � 0º generated by

As-o
p."/, as "! 0. As explained above, our first task is to prove existence of the limit of

resolvents of As-o
p."/. This is achieved in the following proposition.
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Proposition 3.1. The limit R�g WD lim"!0.� � A
s-o
p."//

�1g exists for all g 2 C.Sk/ and
� > 0, and the regularity space for

¹etA
s-o
p."/ ; t � 0º; " > 0

coincides with C.K1;k/. Moreover, for g 2 C.K1;k/, R�g D .� � A
sp
q.p//

�1g where q.p/
is the set of parameters given in (1.2).

Proof. Fix g 2 C.Sk/. Function f" WD .� � As-o
p."//

�1g solves the resolvent equation for
As-o

p."/ and hence, as we know from the proof of Proposition 2.2, is of the form (2.4)–(2.5)
with certain Di D Di ."/. More specifically, the vector of these coefficients is a unique
solution to the system

"
Ci Di ."/ D "

�
i Ci C "aic

�1
i gi .0/C

1

k � 1

X
j¤i

�
Cj CDj ."/

�
� Ci �Di ."/; (3.1)

where, as in Proposition 2.2, 
˙i WD bic
�1
i

p
�˙ �aic

�1
i , i 2K . We are thus dealing again

with a special case of (2.1), and Lemma 2.1 tells us that the limits D0
i WD lim"!0Di ."/,

i 2 K exist and are finite. Since neither the first nor the third term in (2.4) depend on ",
this establishes existence of the limit lim"!0.� � A

s-o
p."//

�1g.
To prove the second sentence in the proposition, we first let "! 0 in (3.1) to obtain

Ci CD
0
i D

1

k � 1

X
j 6Di

.Cj CD
0
j /; i 2K:

This shows that fi .0/ D Ci CD0
i does not depend on i 2 K , that is, that R�g belongs

to C.K1;k/. Next, we sum both sides of (3.1) over i 2K , divide by " and let "! 0. This
rendersX

i2K

�
bic
�1
i

p
�C �aic

�1
i

�
D0
i D

X
i2K

�
bic
�1
i

p
� � �aic

�1
i

�
Ci C

X
i2K

aic
�1
i gi .0/:

If g 2 C.K1;k/, that is, if gi .0/ does not depend on i , this relation can be rearranged asX
i2K

.aic
�1
i /

�
�.Ci CD

0
i / � g.0/

�
D
p
�
X
j2K

bj c
�1
j .Cj �D

0
j /:

This means, however, that condition (2.8) is satisfied with ˛i s and ˇ specified in (1.2),
because we know that Ci C D0

i does not depend on i . It follows that for the stated
choice of parameters, Di s of (2.7)–(2.8), coincide with D0

i s. This establishes R�g D
.� � A

sp
q.p//

�1g for g 2 C.K1;k/.

As a by-product, the range of R� contains D.Asp
q.p//, and since the latter is dense in

C.K1;k/ the closure of the range ofR� contains C.K1;k/. But we have already established
that this range is contained in C.K1;k/. Hence, the closure of the range of R� coincides
with C.K1;k/, as claimed.
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Proposition 3.1 says in fact more than it is visible on its surface. To wit, the fact that
on the regularity space C.K1;k/, R� coincides with .��Asp

q.p//
�1 implies that Asp

q.p/ is the
generator of the regular limit of ¹etA

s-o
p."/ ; t � 0º—see, e.g., [10, Thm. 8.1 and Cor. 8.3],

compare [7, Sects. 8.4.3 and 8.4.4]. As an immediate corollary we obtain thus the follow-
ing main theorem of this section.

Theorem 3.2. We have

lim
"!0

etA
s-o
p."/f D etA

sp
q.p/f; f 2 C.K1;k/

with the limit uniform with respect to t in compact subsets of Œ0;1/.

Inview of the Trotter–Sova–Kurtz–Mackevic̆ius theorem [28], this result canbe seen as
expressing a convergence of the random processes involved. We note that A. Gregosiewicz
in [26] has found a different proof of our theorem based on a decomposition of resolvents
involved.

4. Convergence outside of C.K1;k/

4.1. Introductory remarks

As already mentioned in Section 3.1, Theorem 3.2 need not tell the entire story: it may
happen that lim"!0 etA

s-o
p."/f exists also for f 2 C.Sk/ n C.K1;k/, except that this limit

cannot be uniform in compact subintervals containing 0. Such convergence of semigroups
outside of regularity space can be deduced from the convergence of their resolvents pro-
vided that the semigroups enjoy additional regularity properties, such as being uniformly
holomorphic—see, e.g., [10, Chap. 31]. In [17] it has been proved that, in the case of kD 2
and a1 D a2 D 0, each As-o

p is a cosine operator family generator, and all these families
are formed by operators of norm not exceeding 5. As a corollary, in [18] we show that in
this case convergence spoken of in Theorem 3.2 extends beyond f 2 C.K1;k/.

It is the purpose of this section to prove a similar result for general k � 3. Hence, in
what follows we assume that ai D 0, i 2 K and, without loss of generality, take bi D 1,
i 2K , so that the entire generatorAs-o

p is characterized by the vector c D .c1; : : : ; ck/ 2Rk

of (positive) permeability coefficients; to stress this in what follows we write As-o
c instead

of As-o
p . As a result, transmission conditions (1.1) take the form

f 0i .0/ D ci

h
fi .0/ �

1

k � 1

X
j¤i

fj .0/
i
; i 2K: (4.1)

We will show (see Theorem 4.1) that each As-o
c generates a strongly continuous cosine

family ¹CosAs-o
c
.t/; t 2 Rº such that

CosAs-o

c
.t/


 �M DM.c/; t 2 R;
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whereM.c/ has the following property: for any r > 0,M.rc/DM.c/. In particular, even
though we cannot claim that (as in the case of k D 2) there is a universal bound for all
cosine families generated by As-o

c s, we know that for fixed c the operators As-o
c."/, defined

as As-o
c with c replaced by "�1c, generate cosine families that are bounded by a universal

constant: 

CosAs-o
c."/
.t/


 �M.c/; t 2 R; " > 0: (4.2)

Theorem 3.2 says that the semigroups generated by operators As-o
c."/ converge, as "! 0, to

the semigroup describing the Walsh’s process with parameters

˛i WD
1

ci
P
j2K c�1j

; i 2K and ˇ WD 0: (4.3)

To denote this simpler set of parameters we write ˛.c/ instead of q.p/.
As explained in detail in [18], estimate (4.2), when combined with Proposition 3.1,

implies the following second main result of our paper.

Theorem 4.1. (a) For f 2 C.K1;k/,

lim
"!0

CosAs-o
c."/
.t/f D CosAsp

˛.c/
.t/f uniformly in t 2 Œ0; t0� for t0 > 0:

(b) For f 2 C.Sk/ n C.K1;k/,

lim
"!0

etA
s-o
c."/f D etA

sp
˛.c/f uniformly in t 2 .t�10 ; t0/ for t0 > 1:

To elaborate on these succinct statements: first of all, Asp
˛.c/ is also the generator of

a cosine family in C.K1;k/ (see Section 5 for more details). As such, despite not being
densely defined in C.Sk/, it is also the generator of a semigroup ¹etA

sp
˛.c/ ; t � 0º of oper-

ators in C.Sk/—see, e.g., [5, Cor. 5.1]. These operators are extensions of those defined in
C.K1;k/, and the semigroup generated by Asp

˛.c/ is not strongly continuous in t 2 Œ0;1/
but merely in t 2 .0;1/ (of course, for f 2 C.K1;k/, limt!0C etA

sp
˛.c/f D f ). This clar-

ifies statement (b).
Point (a) also requires a comment. Since we were able to extend convergence of semi-

groups from C.K1;k/ to the entire C.Sk/, it may seem natural to ask weather the same can
be done with convergence of the related cosine families. However, as proved in [13] (see
also [10, Chap. 61]), cosine families by nature cannot converge outside of the regularity
space. As applied to our case, this theorem tells us that (a) is the best result possible in
the sense that the limit cosine family cannot be extended beyond C.K1;k/—see also our
Section 5.

Finally, we remark that the fact that each As-o
c is the generator of a cosine family

can also be proved using decomposition of resolvent techniques (see [26]); however, this
approach does not give a universal bound for the norm of CosAs-o

c."/
.t/, t 2 R, " > 0 (found

in (4.2)).
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4.2. Definition of M.c/

Given c D .c1; : : : ; ck/ with all ci > 0 we think of the k � k intensity matrix Q D
.qi;j /i;j2K given by

qi;j D

´
�ci ; i D j;
ci
k�1

; i ¤ j:
(4.4)

The Markov chain generated byQ is irreducible and its invariant measure is ˛D .˛i /i2K ,
where ˛i are defined in (4.3).

Let c WD maxi2K ci and Q0 WD c�1Q. We denote the entries of the matrix etQ0 by
p0i;j .t/. Since Q0 C Ik , where Ik is the k � k identity matrix, is a transition matrix of
an irreducible and reversible discrete time Markov chain with the invariant measure ˛,
[40, Cor. 2.1.5] implies thatˇ̌

p0i;j .t/ � j̨

ˇ̌
� e�!t

r
j̨

˛i
D e�!t

r
ci

cj
; t � 0; i; j 2K; (4.5)

where the spectral gap ! is the smallest non-zero eigenvalue of �Q0. We note that Q0
does not change if c is replaced by rc where r > 0, and thus neither does change the !. It
follows that the same applies to the constant

M DM.c/ WD
�
1C 2max

i2K

ci

c!

X
j2K

�r
ci

cj
C

1

k � 1

X
`¤i

r
c`

cj

��
: (4.6)

4.3. Cosine families

A strongly continuous family ¹C.t/; t 2 Rº of operators in a Banach space F is said to be
a cosine family iff C.0/ is the identity operator and

2C.t/C.s/ D C.s C t /C C.t � s/; t; s 2 R:

The generator of such a family is defined by

Af D lim
t!0

2t�2
�
C.t/f � f

�
for all f 2 F such the limit on the right-hand side exists. For example, in C Œ�1;1�, the
space of continuous functions on R that have finite limits at˙1, there is the basic cosine
family given by

C.t/f .x/ D
1

2

�
f .x C t /C f .x � t /

�
; x 2 R; t 2 R:

Its generator is the one-dimensional Laplace operator f 7! f 00 with domain composed of
twice continuously differentiable functions on R such that f 00 2 C Œ�1;1�.

Each cosine family generator is automatically the generator of a strongly continuous
semigroup (but not vice versa). The semigroup such operator generates is given by the
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Weierstrass formula (see, e.g., [1, p. 219])

T .0/f D f and T .t/f D
1

2
p
�t

Z 1
�1

e�
s2

4t C.s/f ds; t > 0; f 2 F:

This formula expresses the fact that the cosine family is thus (in this case) a more funda-
mental object than the semigroup, and properties of the semigroup can be hidden in those
of the cosine family (see, e.g., [12]). Moreover, semigroups that are generated by gener-
ators of cosine families are much more regular than other semigroups. In particular, such
semigroups are holomorphic, but even among holomorphic semigroups there are those
that are not generated by cosine family generators (see [1] again).

4.4. Lord Kelvin’s method of images and the generation theorem

For a number of Laplace operators in C Œ0;1� with domains characterized by Feller–
Wentzel boundary conditions at xD 0 the cosine families they generate can be constructed
semi-explicitly as (isomorphic images of) subspace cosine families for the basic cosine
families in C Œ�1;1�—see [8, 17] and references given there. The trick, known as the
Lord Kelvin method of images [8, 24], comes down to noticing that each boundary condi-
tion unequivocally shapes extensions of elements of C Œ0;1� to elements of C Œ�1;1�;
for example, the Neumann and Dirichlet boundary conditions lead to even and odd exten-
sions, respectively. These extensions form an invariant subspace for the basic cosine fam-
ily, and the cosine family we are searching for turns out to be an isomorphic image of the
basic cosine family as restricted to this subspace.

In this section we use the same idea to show that the operator As-o
c with transmission

conditions (4.1) generates a cosine family ¹CosAs-o
c
.t/; t 2 Rº of operators in Fk : we will

construct ¹CosAs-o
c
.t/; t 2 Rº as an isomorphic image of a subspace cosine family of the

Cartesian product cosine family ¹CD.t/; t 2Rº (‘D’ for ‘Descartes’). The latter is defined
in the Cartesian product space

Gk WD
�
C Œ�1;1�

�k
;

(equipped with the maximum norm) by the formula

CD.t/.fi /i2K D
�
C.t/fi

�
i2K

; .fi /i2K 2 Gk ; t 2 R:

This is to say that CosAs-o
c
.t/ will be found to be of the form

CosAs-o
c
.t/.fi /i2K D RCD.t/. Qfi /i2K ; .fi /i2K 2 Fk ; t 2 R; (4.7)

where Qfi 2 C Œ�1;1�, i 2K , is a suitable extension of fi 2 C Œ0;1� and RWGk ! Fk

is the restriction operator assigning to a .gi /i2K 2 Gk the member .fi /i2K of Fk given
by fi D gi jRC ; i 2 K . Our first lemma says that extensions Qfi ; i 2 K are determined
uniquely by the fact that a cosine family leaves the domain of its generator invariant.

Lemma 4.2. For .fi /i2K 2 D.A
s-o
c / there exists its unique extension . Qfi /i2K 2 Gk such

that
RCD.t/. Qfi /i2K 2 D.A

s-o
c /
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for t 2 R. Moreover, each Qfi ; i 2 K belongs to the domain of the generator of the basic
cosine family and 

. Qfi /i2K




Gk
�M



.fi /i2K




Fk
; (4.8)

where M is defined in (4.6).

Proof. The proof consists of four steps.

Step I: existence and uniqueness of Qfi , i 2K . Our task is to find

gi .x/ WD Qfi .�x/; x � 0; i 2K; (4.9)

satisfying compatibility conditions fi .0/D gi .0/. Since CD.t/D CD.�t /, t � 0, we must
also have

d
dx

�
Qfi .x � t /C Qfi .x C t /

�
jxD0
D ci

h
Qfi .t/C Qfi .�t / �

1

k � 1

X
j¤i

�
Qfj .t/C Qfj .�t /

�i
;

that is
f 0i .t/ � g

0
i .t/ D ci

h
fi .t/C gi .t/ �

1

k � 1

X
j¤i

�
fj .t/C gj .t/

�i
; (4.10)

for t � 0, i 2K . This system can be rewritten as

.gi � fi /
0
i2K D Q.gi � fi /i2K C 2Q.fi /i2K ;

where Q D .qi;j /i;j2K is the intensity matrix defined in (4.4). Hence, gi are uniquely
determined and (because of the compatibility condition) given by�

gi .t/
�
i2K
D
�
fi .t/

�
i2K
C 2

Z t

0

Œe.t�s/QQ�
�
fi .s/

�
i2K

ds; t � 0: (4.11)

From now on, we treat (4.9) and (4.11) as the definition of . Qfi /i2K .

Step II: an estimate for p0i;j .t/. We note that etQ, t � 0 is the matrix of transition proba-
bilities, say, pi;j .t/, for the Markov chain with intensity matrix Q, whereas

QetQ D etQQ D
d
dt

etQ D
�
p0i;j .t/

�
i;j2K

:

Moreover, ˇ̌
p0i;j .t/

ˇ̌
D

ˇ̌̌ X
`2K

qi;`p`;j .t/
ˇ̌̌

D

ˇ̌̌X
`¤i

ci

k � 1
p`;j .t/ � cipi;j .t/

ˇ̌̌
�

ci

k � 1

X
`¤i

ˇ̌
p`;j .t/ � pi;j .t/

ˇ̌
�

ci

k � 1

X
`¤i

�ˇ̌
p`;j .t/ � j̨

ˇ̌
C
ˇ̌
pi;j .t/ � j̨

ˇ̌�
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for t � 0, i; j 2K . Next, (4.5) and pi;j .t/ D p0i;j .ct/, i; j 2K imply thatˇ̌
pi;j .t/ � j̨

ˇ̌
� e�c!t

r
ci

cj
; t � 0; i; j 2K: (4.12)

This in turn rendersˇ̌
p0i;j .t/

ˇ̌
D cie�c!t

�r
ci

cj
C

1

k � 1

X
`¤i

r
c`

cj

�
; t � 0; i; j 2K: (4.13)

The last two estimates will be of key importance in what follows.

Step III: each Qfi belongs to C Œ�1;1�, and (4.8) holds. For our first claim in this step it
suffices to show that gi 2 C Œ0;1�, and since continuity of gi is clear, it is enough to prove
that the integral in (4.11) converges, as t !1, to …m�m where m WD .mi /i2K , mi WD
limt!1 fi .t/ and…mD .

P
j2K j̨mj /i2K . Now, the last statement is true if fi .t/Dmi

for t � 0 and i 2 K because then the integral equals
R t
0

e.t�s/QQm ds D etQm �m and
(4.12) implies that limt!1 etQmD…m. Hence, we are left with showing that the integral
in question converges to 0 provided that m D 0.

To this end, we let Rk be equipped with the maximum norm. Then, (4.13) shows that
the norm of etQQ as the operator in Rk can be estimated as follows:

ketQQk D max
i2K

X
j2K

ˇ̌
p0i;j .t/

ˇ̌
� cM0e�c!t ; t � 0; (4.14)

where M0 WD maxi2K

P
j2K

�q
ci
cj
C

1
k�1

P
`¤i

q
c`
cj

�
.

Next, ifmD 0, given � > 0we can find a t0 > 0 such that jfi .s/j< �, i 2K as long as
s � t0. Hence, for t > t0 the integral in question does not exceed

R t0
0
ke.t�s/QQkkf kFk

ds
C �

R t
t0
ke.t�s/QQk ds. Since, by (4.14) the first summand converges to 0, as t !1, and

the second is bounded by �M0

!
, our first claim follows.

As to the other claim, (4.13) implies alsoZ 1
0

ˇ̌
p0i;j .t/

ˇ̌
dt �

ci

c!

�r
ci

cj
C

1

k � 1

X
`¤i

r
c`

cj

�
:

Thus, (4.11) combined withZ t

0

Œe.t�s/QQ�
�
fi .s/

�
i2K

ds D
�X
j2K

Z t

0

p0i;j .t � s/fj .s/ds
�
i2K

shows that 

.gi /i2K



 � �1C 2max
i2K

X
j2K

Z 1
0

ˇ̌
p0i;j .t/

ˇ̌
dt
�
�M



.fi /i2K



:
Hence, (4.8) is established.
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Step IV: Qfi is in the domain of the generator of the basic cosine family. Since fi are
twice continuously differentiable on Œ0;1/, (4.11) shows that so are gi , i 2 K . Also, by
differentiating (4.11) we recover (4.10), which in turn, when evaluated at t D 0 yields
g0i .0/ D f 0i .0/ � 2ci Œfi .0/ �

1
k�1

P
j¤i fj .0/� D �f

0
i .0/, i 2 K . This proves that the

left-hand and right-hand derivatives of Qfi agree at t D 0, and we see from (4.10) that Qfi
is continuously differentiable on the entire R. The same relation reveals, furthermore, that
g0i is continuously differentiable on Œ0;1/, since so is f 0i , and a little calculation using
the already established f 0i .0/ D �g

0
i .0/ yields f 00i .0/ D g

00
i .0/ completing the proof that

Qfi is twice continuously differentiable.
We are left with proving that the limits limt!1 g

00
i .t/ exist and are finite. To this

end, we note first that existence of finite limits limt!1 f
00
i .t/ implies limt!1 f

0
i .t/ D 0,

i 2K . Furthermore, since, as we have established in Step III, limt!1.gi .t//i2K D mC

2.…m �m/, and (4.10) can be rewritten as .g0i .t//i2K D .f
0
i .t//i2K �QŒ.gi .t//i2K C

.fi .t//i2K �, we obtain limt!1.g
0
i .t//i2K D�2Q…mD 0. Hence, differentiating (4.10)

once again shows that limt!1 g
00
i .t/ exists and equals limt!1 f

00
i .t/.

Lemma 4.2 tells us in particular that if (4.7) is to define a cosine family generated by
As-o

c , there is but one choice for extensions Qfi , i 2 K . Hence, we introduce the extension
operator

EWFk 3 .fi /i2K 7! . Qfi /i2K 2 Gk ;

where, for all .fi /i2K 2Fk (not just for .fi /i2K 2D.A
s-o
c /), Qfi , i 2K are given by (4.9)

and (4.11). In terms of E, (4.7) can be written as

CosAs-o
c
.t/ D RCD.t/E; t 2 R; (4.15)

and, since, by the lemma, kEk �M , and clearly kRk � 1, we conclude that

CosAs-o
c
.t/


 �M; t 2 R:

Theorem 4.3. Formula (4.15) defines a strongly continuous cosine family in Fk . More-
over, this cosine family is generated by As-o

c .

Proof. Let s 2 R and .fi /i2K 2 D.A
s-o
c /. By Lemma 4.2, RCD.t/E.fi /i2K 2 D.A

s-o
c /

for all t 2 R, and the cosine equation for ¹CD.t/; t 2 Rº implies that

RCD.t/CD.s/E.fi /i2K D
1

2
RCD.t C s/E.fi /i2K C

1

2
RCD.t � s/E.fi /i2K

belongs toD.As-o
c / for t 2R. By uniqueness of extensions for elements ofD.As-o

c /, estab-
lished in Lemma 4.2, it follows that CD.s/E.fi /i2K equals ERCD.s/E.fi /i2K . Hence,
for all t 2 R

2CosAs-o
c
.t/CosAs-o

c
.s/.fi /i2K D 2RCD.t/

�
ERCD.s/E

�
.fi /i2K

D 2RCD.t/CD.s/E.fi /i2K

D RCD.t C s/E.fi /i2K CRCD.t � s/E.fi /i2K

D CosAs-o
c
.t C s/.fi /i2K C CosAs-o

c
.t � s/.fi /i2K :
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Since D.As-o
c / is dense in Fk , this proves that ¹CosAs-o

c
.t/; t 2 Rº is a cosine family. The

family is strongly continuous since so is the Cartesian product cosine family¹CD.t/; t2Rº.
Turning to the claim concerning the generator: Let .fi /i2K 2D.A

s-o
c /. By Lemma 4.2

each Qfi belongs to the domain of the basic cosine family and thus we have

lim
t!0

2

t2

�
C.t/ Qfi � Qfi

�
D Qf 00i ; i 2K

in the sense of the supremum norm of C Œ�1;1�. It follows that

lim
t!0

2

t2

�
CD.t/. Qfi /i2K � . Qfi /i2K

�
D . Qf 00i /i2K

in the norm of Gk . Hence, .fi /i2K belongs to the domain of the generator, say, G,
of the cosine family ¹CosAs-o

c
.t/; t 2 Rº, and G.fi /i2K D R. Qf 00i /i2K D .f 00i /i2K D

As-o
c .fi /i2K . On the other hand, D.As-o

c / cannot be a proper subset of the domain of G
since As-o

c is a Feller generator and, in particular, for � > 0, � � As-o
c is injective and its

range is Fk (see e.g. [7, p. 267]).

Remark 4.4. A close inspection of the proof of Theorem 4.1 reveals that the space of
extensions, that is, the range of E, is an invariant subspace for ¹CD.t/; t 2 Rº. As
restricted to this range, ¹CD.t/; t 2 Rº is a strongly continuous cosine family, and (4.15)
says that ¹CosAs-o

c
; t 2 Rº is an isomorphic image of this cosine family.

5. Convergence of cosine families

It may seem unclear how do we know, in Theorem 4.1, that Asp
˛.c/ is a cosine family gen-

erator. The generation theorem for Asp
˛.c/ can be proved directly, but can also be obtained

as a by-product of Proposition 3.1, Theorem 3.2 and estimate (4.2). Indeed, as proved in
[10, Chap. 60], if (4.2) holds, Proposition 3.1 implies existence of a strongly continuous
cosine family in C.K1;k/ given by Cos.t/f D lim"!0CosAs-o

c."/
.t/f , t 2 R, f 2 C.K1;k/.

Denoting by G the generator of this family we see also, by the Weierstrass formula, that
lim"!0 etA

s-o
c."/f D etGf , t � 0, f 2 C.K1;k/. Hence, by Theorem 3.2, we need to have

G D A
sp
˛.c/, showing that Asp

˛.c/ is a cosine family generator.
In this section, we want to argue that the abstract Kelvin formula (4.15) provides an

additional insight into both the convergence theorem (Theorem 4.1) and the generation
theorem for Asp

˛.c/. Details are given in Theorem 5.1, below. Its notations involve the pro-
jection operator …WFk ! F0

k
given by

….fi /i2K D

�X
j2K

j̨fj

�
i2K

where ˛i , i 2K are defined in (4.3). We recall that in Step III of the proof of Lemma 4.2
we used … to denote the operator …WRk ! Rk which formally acts in the same way as
the one introduced here; below, notationally we will not distinguish between these two
operators either.
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Theorem 5.1. (a) For f 2 C.K1;k/, lim"!0CosAs-o
c."/
.t/f D CosAsp

˛.c/
.t/f uniformly

in t 2 R.

(b) For f 2 C.K1;k/, lim"!0 etA
s-o
c."/f D etA

sp
˛.c/ uniformly in t � 0.

(c) The cosine family generated by Asp
˛.c/ is given by the abstract Kelvin formula

CosAsp
˛.c/
.t/ D RCD.t/E; t 2 R;

where EW C.K1;k/.
iz
D F0

k
/ ! Gk maps a vector .fi /i2K 2 F0

k
to the vector

. Qfi /i2K 2 Gk of extensions of fi s given by Qfi .�x/ D gi .x/, x � 0, i 2K and

.gi /i2K D 2….fi /i2K � .fi /i2K :

Proof. Condition (b) is a direct consequence of (a) by the Weierstrass formula (see [18] for
details, if necessary). Also, by Theorem 4.3, CosAs-o

c."/
.t/ is given by (4.15) with E D E."/

defined in (4.9) and (4.11) with Q replaced by "�1Q. Therefore, since we already know
that the limit cosine family is generated by Asp

˛.c/, to show (a) and (c) simultaneously it
suffices to prove that, for any .fi /i2K ,

I".t/ WD "
�1

Z t

0

Œes"
�1QQ�

�
fi .t � s/

�
i2K

ds

converges uniformly in t � 0 to ….fi .t//i2K � .fi .t//i2K . In the special case where
fi .x/ does not depend on x � 0 or i 2 K , this results is immediate, since then the inte-
grand above is zero, and so is ….fi .t//i2K � .fi .t//i2K . Therefore, we are left with
proving this convergence for .fi /i2K such that fi .0/ D 0; i 2K .

Under this assumption, given � > 0 one can find a ı > 0 such that jfi .s/j < �, i 2K

as long as s < ı. Therefore, by (4.14), for t � ı,

I".t/

 � �cM0

"

Z t

0

e�"
�1c!s ds <

�M0

!
;

and so

I".t/ �…�fi .t/�i2K
C
�
fi .t/

�
i2K



 � �2C M0

!

�
�; t 2 Œ0; ı�; " > 0: (5.1)

Also, there is a ı1, and without loss of generality we can assume that ı1 < ı, such that
jsj < ı1 implies jfi .t � s/� fi .t/j < �, i 2K , t > ı, because fi , i 2K , being members
of C Œ0;1�, are uniformly continuous. Hence, introducing

J".ı1; t / WD "
�1

Z ı1

0

Œes"
�1QQ�

�
fi .t/

�
i2K

ds;

and arguing as above we obtain kI".ı1/ � J".ı1; t /k � �M0

!
. At the same time, using

estimate (4.14) again,

I".t/ � I".ı1/

 �M0



.fi /i2K




Fk

e�!"
�1ı1 :
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Hence, for M1 WD max.2C M0

!
;M0k.fi /i2KkFk

/,

I".t/ � J".ı1; t /

 �M1.� C e�!"
�1ı1/; t � ı; " > 0: (5.2)

Finally, we have
J".ı1; t / D e"

�1ı1Q.fi .t//i2K � .fi .t//i2K

and we know that (a) operators e"
�1ı1Q, " > 0 are contractions in Rk (and thus are in

particular equibounded) and lim"!0 e"
�1ı1Qv D …v for any v 2 Rk , and (b) the set®

u 2 Rk j v D
�
fi .t/

�
i2K

for some t � ı
¯

is compact in Rk . It follows that for sufficiently small "

sup
t�ı



J".ı1; t / �…�fi .t/�i2K
C
�
fi .t/

�
i2K



 � �:
This, when combined with (5.1) and (5.2), shows that

lim sup
"!0

sup
t�0



I".t/ �…�fi .t/�i2K
C
�
fi .t/

�
i2K



 � .M1 C 1/�:

Since � is arbitrary, the proof is complete.

We note that point (c) in the theorem just proved implies that each Asp
q is a cosine

family generator, as long as ˇ D 0. Indeed, given ˛ D .˛i /i2K with positive ˛i such thatPk
iD1 ˛i D 1 we can take c WD .˛�1i /i2K and then ˛ D ˛.c/.
It is also interesting to note that the proof of convergence of the integral I".t/ to

….fi /i2K � .fi /i2K carries out also to .fi /i2K 2 C.Sk/ n C.K1;k/ except that then
the limit function is not continuous at t D 0, and therefore the limit cannot be uniform.
Indeed, only in the first step of the proof, where we look at the case of constant functions,
do we see a difference: in the case under consideration the constant depends on the edge,
that is, we have fi .x/ D ui , x � 0, i 2K where u D .ui /i2K 2 Rk . Hence, the integral
equals e

t
"Qu � u, and this, for t > 0 converges to …u � u 6D 0, whereas e0Qu � u D 0.

Here is an immediate corollary to this remark.

Corollary 5.2. For f 2 C.Sk/ n C.K1;k/, the limit lim"!0 CosAs-o
c."/
.t/f exists only for

t D 0.

This result, which complements Theorem 5.1 (a), provides a much more specific infor-
mation than the general theorem of [13], which says simply that there is at least one t 6D 0
for which the above limit does not exist.
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