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Benjamini–Schramm vs. Plancherel convergence

Giacomo Gavelli and Claudius Kamp

Abstract. We show that Plancherel convergence is strictly stronger than Benjamini–Schramm con-
vergence. In order to do so, we introduce two criteria for Plancherel and Benjamini–Schramm
convergence in terms of counting functions of the length spectrum.

1. Introduction

Let G be a connected semisimple Lie group of non-compact type, K � G a maximal
compact subgroup and let X D G=K the associated Riemannian symmetric space. A lat-
tice � � G gives rise to a locally symmetric space M D � nX . A sequence .Mj /j2N of
locally symmetric spacesMj D �j nX is said to be Benjamini–Schramm convergent toX
if, for every R > 0, the ball of radius R centered at a random point in Mj is almost surely
isometric to an R-ball in X as j !1. This definition of Benjamini–Schramm conver-
gence fits into a more general notion of convergence, the nuances of which are beyond the
scope of this paper. For a survey on Benjamini–Schramm convergence and its relation with
invariant random subgroups, Farber sequences and more, we refer to [14, Sections 3–4].
A family of lattices in G is uniformly discrete if there is a neighborhood of the identity in
G that intersects all of its conjugates trivially. Benjamini–Schramm convergence has been
extensively studied in relation to the asymptotic behavior of L2-invariants [1,2] and quan-
tum ergodicity properties [4, 15, 17]. Next, one can associate to any uniform lattice � in a
locally compact group G the spectral measure �� on the unitary dual yG. A sequence of
lattices ¹�j ºj2N is said to be Plancherel convergent if the sequence ¹��j ºj2N converges
to the Plancherel measure of yG in a certain sense, which will be specified in Section 2.1.
This kind of convergence has also been studied in many instances [2,8,10,12,13,16]. It is
known that Plancherel convergence implies Benjamini–Schramm convergence [9, Theo-
rem 2.6]. Regarding the converse direction, the authors of [2] have shown that a uniformly
discrete Benjamini–Schramm sequence is Plancherel convergent. Since uniform discrete-
ness for sequences of lattices in higher rank Lie groups would follow from the Lehmer
conjecture, these notions of convergence are expected to be equivalent in the higher rank
case. This bears the question whether these two notions of convergence are always equiv-
alent. We will demonstrate that this is not the case by constructing a Benjamini–Schramm
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convergent sequence, which is not Plancherel convergent. For this we start with the well-
known principal congruence subgroups

�.N/ D

²�
a b

c d

�
2 SL2.Z/ W a; d � 1 .modN/; b; c � 0 .modN/

³
of SL2.Z/ and replace the cusps of the associated congruence surfacesX.N/D�.N/ nH
with short geodesics. By identifying these geodesics in pairs we end up with compact sur-
faces. An explicit study of the length spectrum of these surfaces allows one to directly
check whether they fulfill the above notions of convergence. This verification is based on
the criteria for Benjamini–Schramm convergence (Proposition 3.2) and Plancherel con-
vergence (Proposition 3.3) that we introduce in Section 3.

2. Preliminaries

In this Section we collect some terminology and known results about locally compact
groups and hyperbolic surfaces that we will need in the following.

2.1. Plancherel and Benjamini–Schramm convergence

Let G be a connected semisimple Lie group of non-compact type and fix a Haar measure
� on G. Let � � G be a uniform lattice and yG be the unitary dual of G. Let �Pl be the
Plancherel measure on yG. The right regular representation R on L2.� n G/ defined by
Ry�.x/ WD �.xy/ decomposes into a direct sum of unitary irreducible representations,

L2.� nG/ Š
M
�2 yG

N�.�/�;

with finite multiplicities N�.�/, see, e.g., [11, Theorem 9.2.2].

Definition 2.1 (Plancherel convergence). Let ı� denote the Dirac measure for � 2 yG. The
measure on yG defined by

�� D
X
�2 yG

N�.�/ı�

is called the spectral measure associated with � . A sequence .�j /j2N of uniform lattices
in G is called Plancherel convergent (or a Plancherel sequence) if for every f 2 C1c .G/

1

vol.�j nG/
��j .

Of /
j!1
����! �Pl. Of /: (2.1)

If the sequence ¹�j ºj2N is Plancherel convergent, we also call the associated sequence of
locally symmetric spaces �j nG=K Plancherel convergent.

Let us turn to Benjamini–Schramm convergence. In the following, ¹�j ºj2N is always
a sequence of torsion-free lattices in G.
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Definition 2.2. Let X D � n G=K be a locally symmetric space. For p 2 X , we define
the injectivity radius at p as

InjRad.p/ D sup
®
r 2 R W exppWBr .0/! X is injective

¯
;

where exppWTpX ! X is the exponential map. The injectivity radius of X is defined as

InjRad.X/ D inf
p2X

InjRad.p/:

For R > 0 we define the R-thin part of X as

X<R D
®
p 2 X W InjRad.p/ < R

¯
:

Definition 2.3 (Benjamini–Schramm convergence). We say that a sequence .Xj /j2N of
locally symmetric spaces given by Xj D �j n G=K is Benjamini–Schramm convergent
(or BS-convergent) to the universal cover G=K if for every R > 0

vol
�
.Xj /<R

�
vol.Xj /

j!1
����! 0: (2.2)

In this case, we will also say that the associated sequence of lattices .�n/n2N is Benjamini–
Schramm convergent.

Finally, we notice that for ls;j the length of a shortest closed geodesic on Xj , also
called the systole of Xj , the sequence .Xj /j2N is uniformly discrete if and only if there is
a uniform lower bound for the systoles ls;j for all j 2 N.

2.2. Decompositions of hyperbolic surfaces

In this section we collect known results concerning hyperbolic surfaces and their decom-
position into (possibly degenerate) pairs of pants (or Y -pieces). For a complete treatment
of the topic, we refer to [5]. LetX be a smooth closed hyperbolic surface. ThenX is a quo-
tient X D � nH, where � is a purely hyperbolic Fuchsian group and H is the hyperbolic
plane

H D ¹z D x C iy 2 C W y > 0º

equipped with the Riemannian metric ds2 D dx2Cdy2

y2
. We write g D g.X/ for the genus

ofX and note that Gauss–Bonnet Theorem implies vol.X/D 4�.g � 1/. A compact topo-
logical surface has signature .g; n/ if it is obtained from a closed topological surface of
genus g by removing the interior of n disjoint topological disks. A closed hyperbolic sur-
face of signature .0; 3/ is called a Y-piece or a pair of pants. For any triple of positive real
numbers l1; l2; l3 there exists a pair of pants Yl1;l2;l3 with boundary geodesics 
1; 
2; 
3
of respective lengths l1; l2; l3. Such a Y -piece is obtained by pasting together two copies
of a geodesic hexagon.

Theorem 2.4 (Collar theorem). Let X be a smooth closed hyperbolic surface of genus g.
Let 
1; : : : ; 
m be pairwise disjoint simple closed geodesics on X . Then:

(1) m � 3g � 3;
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(2) There exist simple closed geodesics 
mC1; : : : ; 
3g�3, which together with 
1; : : : ;

m decompose X into Y -pieces;

(3) The collars
C.
i / D

®
p 2 X I dist.p; 
i / � wi

¯
of widths

wi D sinh�1
�

1

sinh.li=2/

�
are pairwise disjoint for i D 1; : : : ; 3g � 3.

In order to construct Benjamini–Schramm convergent sequences which are not uni-
formly discrete, we need to extend our discussion of Y -pieces to possibly non-compact
surfaces. A degenerate hexagon is a hexagon with either one, two or three points at infinity.
We will also refer to points at infinity as punctures. One can paste together two degenerate
hexagons to get a degenerate Y -piece (or degenerate pair of pants). We extend the nota-
tion Yl1;l2;l3 to degenerate Y -pieces by writing li D 0 for any boundary component arising
from a puncture. A degenerate Y -piece contains a neighborhood C around each puncture,
which is isometric to .�1; log 2� � S1 equipped with the Riemannian metric

ds2 D dr2 C e2rdt2:

This neighborhood is called a cusp. A Y -piece has signature .0; pI q/ if it has p bound-
ary geodesics and q punctures. A smooth hyperbolic surface of genus g is said to have
signature .g; pI q/ if it has p boundary geodesics and q cusps.

Theorem 2.5. LetX be a (possibly non-compact) smooth hyperbolic surface of signature
.g; 0I q/. Let 
1; : : : ; 
m be pairwise disjoint simple closed geodesics on X . Then:

(1) m � 3g � 3C q;

(2) There exist simple closed geodesics 
mC1; : : : ; 
3g�3Cq , which together with 
1;
: : : ; 
m decompose X into (possibly degenerate) Y -pieces;

(3) The collars C.
i /, i D 1; : : : ; 3g� 3C q and the cusps C1; : : : ;Cq are all pairwise
disjoint.

If we pinch a simple closed geodesic 
 on a smooth hyperbolic surface X , i.e., we
let l
 ! 0, then we expect that the collar C.
/ around 
 converges in a suitable sense to
two copies of a cusp C . To make this more precise we need some additional terminology
(cf. [7]). Let Yl1;l2;l3 be a non-degenerate Y -piece with boundary geodesics 
i , i D 1; 2; 3.
For 0 � ri � wi , The distance sets



ri
i D

®
p 2 Y W dist.p; 
i / D ri

¯
are called equidistant curves. For degenerate Y -pieces the equidistant curves are given by
horocycles

hr D
®
p 2 C W dist.p; @C/ D r

¯
:
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Now, select in each half-collar or cusp an equidistant curve ˇi of length �i . Then the
closure of the connected component of Yl1;l2;l3 n .ˇ1 [ ˇ2 [ ˇ3/ not containing any of
the boundary geodesics or punctures of Yl1;l2;l3 is called a restricted Y -piece and denoted
Y
�1;�2;�3
l1;l2;l3

. We will write Y c
l1;l2

instead of Y l1;l2;c
l1;l2;0

. A homeomorphism �WY ! Y 0 of (possi-
bly restricted) Y -pieces is called boundary-coherent if for corresponding boundary curves
˛i of Y and ˛0i of Y 0 in standard parametrization.1 one has

�
�
˛i .t/

�
D ˛0i .t/; 8t 2 Œ0; 1�:

For each boundary length li we let

Pi D
®
p 2 Yl1;l2;l3 W dist.p; 
i / < log.2=li /

¯
if 0 < li < 2 and Pi D ; for li � 2. In the degenerate case, we let Pi be the connected
component of Yl1;l2;l3 n h1 which contains the puncture corresponding to li D 0. Then

OYl1;l2;l3 D Yl1;l2;l3 n .P1 [ P2 [ P3/

is called a reduced Y -piece. Let us recall that a piecewise smooth map2 ‰WM ! N of
Riemannian manifolds M and N is called a quasi-isometry if there exists d > 0 such that
for any p 2M and any v 2 TpM

1

d
kvkM �



D‰.v/


N
� dkvkM ; (2.3)

where k � kM and k � kN are the norms associated to the Riemannian metrics on M and N
respectively. The infimum over all possible d > 0 such that (2.3) holds is called the length
distortion and is denoted by d‰ .

Proposition 2.6. Let 0 < l1; l2 and let 0 < " < 1
2

. Set "� D 2
�
". Then there exists a

boundary-coherent homeomorphism

�WYl1;l2;" ! Y "
�

l1;l2

such that

(1) �. OYl1;l2;"/ D OYl1;l2;0;

(2) The restriction of � to OYl1;l2;" is boundary-coherent and has length distortion d� �
1C 5

4
"2.

Proof. [7, Theorem 5.1].

Remark 2.7. The above proposition can be extended in an obvious manner to Y -pieces
with more than one degenerating boundary geodesic.

1The precise description of this terminology can be found in [7, p. 2].
2A piecewise smooth map is a continuous map which is smooth on the complement of a finite number

of curves.
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3. Criteria for Benjamini–Schramm and Plancherel convergence

Given a smooth closed hyperbolic surfaceX andR>0, we denote byN.X;R/ the number
of closed geodesics on X of length � R and with Ns.X;R/ the number of simple closed
geodesics onX with length�R. Let .Xn/n2N be a sequence of smooth closed hyperbolic
surfaces. By [18, Proposition 2.2], if

N.Xn; R/

vol.Xn/
n!1
����! 0; (3.1)

then .Xn/n2N is Benjamini–Schramm convergent. We improve this result by showing
that it is enough to consider simple closed geodesics. This will be key in the proof of
Theorem 4.1. Moreover, we show that (3.1) implies Plancherel convergence.

Proposition 3.1. Let .Xn/n2N be a sequence of closed hyperbolic surfaces. If for every
R > 0

Ns.Xn; R/

vol.Xn/
n!1
����! 0; (3.2)

then the sequence .Xn/n2N is Benjamini–Schramm convergent.

Proof. The proof of this result is given in Section 5.1.

We get the following characterization of Plancherel convergence.

Proposition 3.2. A sequence of closed hyperbolic surfaces .Xn/n2N is Plancherel con-
vergent if and only if for every R > 0

1

vol.Xn/

X
Œ
�¤1
l
�R

l
0
sinh.l
=2/

n!1
����! 0; (3.3)

where the sum runs over the length spectrum of Xn and, for each closed geodesic 
 , 
0 is
the correspondent primitive geodesic.

Proof. The proof of this result is given in Section 5.2.

Corollary 3.3. Let .Xn/n2N be a sequence of closed hyperbolic surfaces. If for every
R > 0

N.Xn; R/

vol.Xn/
n!1
����! 0;

then the sequence .Xn/n2N is Plancherel convergent.

Proof. Notice that for any closed geodesic 
 on Xn,

l
0

sinh
� l

2

� � 2:
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Hence,
1

vol.Xn/

X
Œ
�¤1
l
�R

l
0
sinh.l
=2/

� 2
N.Xn; R/

vol.Xn/
n!1
����! 0:

Therefore, .Xn/n2N is Plancherel convergent.

4. A degenerate Benjamini–Schramm sequence

This section is to devoted to the proof of the following theorem.

Theorem 4.1. There exists a Benjamini–Schramm convergent sequence .Xn/n2N of smooth
closed hyperbolic surfaces, which is not Plancherel convergent.

For this, we adapt an example from [6]. Let us recall a few facts about the principal
congruence subgroups

�.N/ D

²�
a b

c d

�
2 SL2.Z/ W a; d � 1 .modN/; b; c � 0 .modN/

³
:

We denote by X.N/ D �.N/ nH the congruence surface of level N . We write gN and
bN respectively for the genus and the number of boundary components of X.N/. The
principal congruence subgroup �.N/ is torsion-free forN � 3. All boundary components
of X.N/ are punctures and we have

gN D 1C
dN .N � 6/

24N
; bN D

dN

2N
; (4.1)

where dN is given by d2 D 12 and dN D N 3
Q
pjN .1 �

1
p2
/ for N � 3 (cf. [20]). Note

that the number of cusps ofX.N/ is always even forN � 3. By [19, Lemma 2] the systole
ls;N of X.N/ is given by

2 cosh
�
ls;N

2

�
D N 2

� 2: (4.2)

Now, decompose X.N/ into (possibly degenerate) pairs of pants. The boundary compo-
nents of the pants are either geodesics or punctures. We keep the boundary geodesics and
replace each puncture by a geodesic of length t > 0. Let us reassemble these pieces using
the old identifications. Since the number of cusps of X.N/ is even, we can identify the
remaining geodesics in pairs. This yields a closed hyperbolic surface Xt .N /. Notice that
the surface Xt .N / depends on the pants decomposition and on the choice of which pairs
of boundary geodesics of length t to identify. However, this does not affect the following
argument. By counting the number of Y -pieces involved one can show that

g
�
Xt .N /

�
� gN : (4.3)

We also note that the surface Xt .N / contains bN
2

disjoint simple closed geodesics 
i ,
i D 1; : : : ; bN

2
of length t . Now, let .Nj /j2N be a sequence of natural numbers such that

Nj � 3 andNj
j!1
����!1. Let .tj /j2N be a sequence of positive real numbers converging
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towards 0. Let us write bj D
bNj
2

and gj D gNj . Let .Xj /j2N be the sequence of closed
hyperbolic surfaces defined by Xj D Xtj .Nj /. Also, let �j denote the lattice in G such
that Xj D �j nH.

Proposition 4.2. The sequence .Xj /j2N is Plancherel convergent if and only if t�1j grows
sub-exponentially in Nj .

Proof. Let us fix R > 0 and let .tj /j2N be a sequence converging towards 0. We claim
that for j large enough, any geodesic 
 in Xj of length l
 � R is the power of one of the
geodesics 
1; : : : ; 
bj . For a fixed j 2 N, let 
 be a simple closed geodesic in Xj , which
is not freely homotopic to some power of one of the geodesics 
1; : : : ; 
bj . If 
 intersects
any of the geodesics 
i , i D 1; : : : ; bj we get from [5, Corollary 4.1.2] that

sinh.l
=2/ �
1

sinh.tj =2/
: (4.4)

Hence, 
 can be dismissed for j large enough. If 
 does not intersect any of the 
i ,
i D 1; : : : ; bj , then we have by [5, Theorem 4.1.1] that 
 lies outside of the collars C.
i /,
i D 1; : : : ; bj . In this case, there exists a boundary-coherent quasi-isometry

�WXj n

bj[
iD1

Pi ! X.Nj / n

bj[
iD1

P 0i

given by the identity on any Y -piece where no boundary geodesic has been replaced in the
above process, and the map from Theorem 2.6 in the remaining cases. Its length distortion
is bounded by d� � 1C 5

4
t2j . Therefore, �.
/ defines an element Œ�.
/� 2 �.Nj / such

that

l�.
/ �

�
1C

5

4
t2j

�
l
 :

We claim that Œ�.
/� is covered by a hyperbolic transformation, i.e., there exists a closed
geodesic in the free homotopy class of �.
/. Assume otherwise that Œ�.
/� can be covered
by a parabolic transformation. Then by [3, p. 72] the curve �.
/ can be homotoped into the
power of a simple loop around a puncture ofX.Nj /. Now, applying ��1 gives a homotopy
of 
 into the collar around some geodesic 
i0 for i0 2 ¹1; : : : ; bj º. Hence, 
 is homotopic
to some power of 
i0 , which is a contradiction to our assumption on 
 . Consequently, there
exists a hyperbolic transformation �
 2 �.Nj / which covers Œ�.
/� and we get from (4.2)
that

arccosh
�
.N 2
j � 2/=2

�
� l�
 � l�.
/ �

�
1C

5

4
t2j

�
l
 : (4.5)

Since tj is bounded from above, inequality (4.5) shows that for Nj large enough there are
no simple closed geodesics 
 in Xj of length l
 � R apart from 
1; : : : ; 
bj .

Next, let 
 be a non-simple closed geodesic different from a power of any of the
geodesics 
1; : : : ;
bj . According to [5, Theorem 4.2.4], any non-simple primitive geodesic
of smallest length is a figure eight geodesic ı (i.e., a closed geodesic with exactly one
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self-intersection) embedded into a Y -piece. Any Y -piece contains at least one boundary
geodesic not belonging to ¹
1; : : : ; 
bj º, as X.Nj / would otherwise not be connected.
Then the length formula for ı (see [5, Equation (4.2.3)]) yields

l
 � lı � 2

�
1C

5

4
t2j

��1
arccosh

�
.N 2
j � 2/=2

�
:

This proves that for j large enough any geodesic in Xj of length � R is a power of one
of the geodesics 
1; : : : ; 
bj . Finally, we want to use the characterization of Plancherel
convergence given in Proposition 3.2. For j large enough,X
Œ
�¤1
ly�R

l
0
sinh.l
=2/

D bj
X
k2N
ktj�R

tj

sinh.ktj =2/
D bj

X
k2N
ktj�R

1

k

ktj

sinh.ktj =2/
� 2bj

X
k2N
ktj�R

1

k
; (4.6)

where we used x � sinh.x/ for x 2 R. Plugging into (4.6) the asymptotic expansion of
the harmonic series

nX
kD1

1

k
D lognC 
E CO

�
1

n

�
;

where 
E is the Euler–Mascheroni constant, we obtain the estimateX
Œ
�¤1
ly�R

l
0
sinh.l
=2/

� C1bj j log tj j (4.7)

for some sufficiently large constant C1. Plugging the values for bj and gj from (4.1)
into (4.7) yields

1

vol.Xj /

X
Œ
�¤1
ly�R

l
0
sinh.l
=2/

�
3C1j log tj j
�.Nj � 6/

: (4.8)

In particular, the right-hand side of (4.8) converges to 0 if t�1j grows sub-exponentially in
Nj , in which case .Xj /j2N is Plancherel convergent. Similarly, we get the lower boundX

Œ
�¤1
ly�R

l
0
sinh.l
=2/

D bj
X
k2N
ktj�R

1

k

ktj

sinh.ktj =/
� CRbj

X
k2N
ktj�R

1

k
� CRbj j log tj j; (4.9)

for CR some positive constant depending on R. Hence, we get

1

vol.Xj /

X
Œ
�¤1
ly�R

l
0
sinh.l
=2/

� C 0R
j log tj j
Nj � 6

; (4.10)

for C 0R only depending on R. In particular, the right-hand side of (4.10) diverges if t�1j
grows at least exponentially in Nj . This concludes the argument.
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Let us turn to Benjamini–Schramm convergence of the sequence .Xj /j2N .

Proposition 4.3. The sequence .Xj /n2N is Benjamini–Schramm convergent if tj con-
verges to 0 as j !1.

Proof. Let R > 0 be given. As in the proof of Proposition 4.2 we get that, for Nj large
enough, there is no simple closed geodesic in Xj of length � R except for 
1; : : : ; 
bj
and they all have length tj . Therefore, we have NS .Xj ; R/ D bj in the terminology of
Corollary 3.1. Thus, we have for j large enough that

NS .Xj ; R/

vol.Xj /
D

bj

4�.g.Xj / � 1/
�
C0

Nj
;

for C0 some positive constant, where we made use equation (4.1) and g.Xj / � gj . There-
fore, .Xj /j2N is Benjamini–Schramm convergent.

The existence of the example from Theorem 4.1 follows from Proposition 4.2 and
Proposition 4.3 by choosing a sequence .tj /j2N such that t�1j grows at least exponentially
in Nj .

5. Appendix

5.1. Proof of Proposition 3.1

For any simple closed geodesic 
 in X we define

CR.
/ D
®
p 2 X W dist.p; 
/ � wR.
/

¯
; wR.
/ D sinh�1

�
sinh.R/

sinh.l
=2/

�
:

Notice that thanks to the Collar Theorem [5, Theorem 4.1.1], for zR D sinh�1.1/ and
w.
/ D w zR.
/, C zR.
/ is isometric to the cylinder C.
/ D Œ�w.
/; w.
/� � S1 with the
Riemannian metric ds2 D d�2 C l2.
/ cosh2.�/dt2. In an analogous way we define, for
any simple closed geodesic 
 and R > 0, the cylinder CR.
/ D Œ�wR.
/; wR.
/� � S1,
endowed with the same Riemannian metric as above. Hence,

vol
�
CR.
/

�
D 4�l.
/ sinh

�
wR.
/

�
D 4� sinh.R/

l


sinh.l
=2/
: (5.1)

Proposition 5.1. Let X be a closed hyperbolic surface and R > 0. Then

X<R �
[


2�2R.X/

CR.
/;

where �R.X/ is the set of simple closed geodesics on X with length � R. Moreover,

vol.X<R/ � CR �Ns.X; 2R/; (5.2)

where Ns.X; R/ is the number of simple closed geodesics on X with length � R and
CR D 8� sinh.R/ is a constant only depending on R.
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T( )

Figure 1. lift to universal cover. Up to isometry, 
 can always be lifted to the imaginary axis.

Estimate (5.2) on the volume of the R-thin part of a hyperbolic surface immediately
implies Proposition 3.1.

Proof of Proposition 3.1. By Proposition 5.1 we immediately get, for every R > 0,

vol
�
.Xn/<R

�
vol.Xn/

�„ƒ‚…
(5.2)

CR
Ns.Xn; 2R/

vol.Xn/
n!1
����! 0:

Therefore the sequence .Xn/n2N is Benjamini–Schramm convergent.

We are only left with the proof of Proposition 5.1. For this we will make use of the
following result.

Lemma 5.2. Let X be a closed hyperbolic surface, p 2 X and R > 0. If InjRad.p/ � R,
then there exists a simple closed geodesic 
 such that l
 � 2R and �D dist.p;
/�wR.
/.

Proof. We adapt the proof of [5, Theorem 4.1.6]. Recall that a geodesic loop is a geodesic
arc 
 W Œa; b� ! X such that 
.a/ D 
.b/. Let p 2 X such that InjRad.p/ � R. There
exists a simple geodesic loop c at p of length 2 InjRad.p/, and its free homotopy class
contains a unique simple closed geodesic 
 [5, Theorem 1.6.6]. Since 
 has minimal
length in the free homotopy class of c, we immediately get l
 � 2R. Let x 2 
 be the
point at minimal distance to p, i.e., � D dist.p; 
/ D dist.p; x/. Let z
 be a lift of 
 , and
let T be the covering transformation with axis z
 closing 
 . Let Qx 2 z
 be a lift of x and
Qp be the lift of p at distance � from Qx. Consider the geodesic quadrangle with vertices
Qp; Qx; T . Qx/; T . Qp/ whose sides have length �; l
 ; �; 2 InjRad.p/ (see Figure 1). Dropping

the common perpendicular between the geodesic segments Œ Qp; T . Qp/� and Œ Qx; T . Qx/� we
obtain two isometric trirectangles. Standard results from hyperbolic trigonometry [5, The-
orem 2.3.1] yield

sinh
�
InjRad.p/

�
D sinh.l
=2/ cosh.�/:

Hence, sinh.l
=2/ sinh.�/ � sinh.l
=2/ cosh.�/ � sinh.R/. Therefore,

dist.p; 
/ D � � sinh�1
�

sinh.R/
sinh.l
=2/

�
D wR.
/:
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Proof of Proposition 5.1. Let p 2X such that InjRad.p/�R. Then, by Lemma 5.2, there
exists a simple closed geodesic such that 
0 2 �2R.X/ and p 2 CR.
0/. Therefore, we
obtain

X<R �
[


02�2R.X/

CR.
0/:

We claim that for any simple closed geodesic 
0 on X , and for any R > 0,

vol
�
CR.
0/

�
� vol

�
CR.
0/

�
: (5.3)

Assuming the Claim, it is immediate to see that

vol.X<R/�
X


02�2R.X/

vol
�
CR.
0/

�
�„ƒ‚…

(5.3)

X

02�2R.X/

vol
�
CR.
0/

�
�„ƒ‚…

(5.1)

X

02�2R.X/

4� sinh.R/
l
0

sinh.l
0=2/„ ƒ‚ …
�2

�

X

02�2R.X/

8� sinh.R/D8� sinh.R/Ns.X; 2R/:

In order to conclude the proof, we are only left with the proof of Claim. Let � � G be
the uniform lattice in SL2.R/ such that X D � nH. We denote by T0 2 � the primitive
element of � corresponding to the geodesic 
0 inX . Let �
0 DhT0i be the cyclic subgroup
of � generated by T0, and consider the cylinderC.
0/ given by the quotient �
0 nH. Since
�
0 � � is a subgroup, thenC.
0/D �
0 nH is a covering ofX D � nH. Let � WC.
0/!
X be the covering projection. The image of CR.
0/ under � is exactly CR.
0/, so that

vol
�
CR.
0/

�
� vol

�
CR.
0/

�
;

which concludes the proof.

5.2. Proof of Proposition 3.2

In order to prove Proposition 3.2 we need to introduce some more terminology and recall
known results concerning the representation theory of SL2.R/. For the following, we refer
the reader to [11, Chapter 11]. The Hecke algebra H of G D SL2.R/ is the set of K-bi-
invariant functions on G which are in L1.G/. We call H� the subalgebra of the Hecke
algebra consisting of smooth functions f 2 H such that 'f 2 �.Œ0;1// is a Schwartz
function. For every f 2 H , there exists a unique function 'f on Œ0;1/ such that f .x/ D
'f .tr.xT x/ � 2/ for every x 2 G. To any f 2 H� we associate a function hf .r/ D
tr�ir .f /, where the �ir ’s are, for r � 0, the unitary principal series representations of G
[11, Lemma 11.2.6 and Proposition 11.2.9]. For f 2 H� , one gets the following explicit
expression, also known as an explicit Plancherel theorem (see [11, Theorem 11.3.1]):

�Pl . Of / D f .1/ D
1

4�

Z
R
hf .r/ tanh.�r/rdr: (5.4)
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Now let � �G be a uniform lattice and let .rj /j2N be a sequence in C such that irj 2 iR[
.0; 1

2
/, with the property that �irj is isomorphic to a subrepresentation of .R;L2.� nG//

and the value r D rj is repeated in the sequenceN�.�ir / times. For a function f 2H for
which the operator R.f / is of trace class, one gets

trR.f / D
X
�2 yG

N�.�/ tr�.f / D
1X
jD0

hf .rj /:

In particular, if f 2 H� \ C1c .G/, one can apply Selberg trace formula to obtain
1X
jD0

hf .rj / D
vol.� nH/

4�

Z
R
hf .r/ tanh.�r/rdr C

X
Œ
�¤1

l
0
2 sinh.l
=2/

gf .l
 /; (5.5)

where
gf .r/ D

Z
R
'f
�
2 cosh.r/ � 2C s2

�
ds:

(5.4) and (5.5) yield the following result.

Lemma 5.3. Let .Xn/n2N be a Plancherel sequence of hyperbolic surfaces. Then, for any
f 2 C1c .G/ \H� ,

1

vol.Xn/

X
Œ
�¤1

l
0
2 sinh.l
=2/

gf .l
 /
n!1
����! 0; (5.6)

We are finally able to prove Proposition 3.2.

Proof of Proposition 3.2. We start by assuming that (3.3) holds and prove Plancherel con-
vergence. Let f 2 C1c .G/ and let us write Kf WD supp.f /. Also, denote

Bn WD

ˇ̌̌̌
��n.

Of /

vol.Xn/
� �Pl . Of /

ˇ̌̌̌
:

Notice that Plancherel convergence of .Xn/ is equivalent to Bn
n!1
����! 0. Applying Sel-

berg’s trace formula yields

Bn D
1

vol.Xn/

ˇ̌̌̌ X
Œ
�¤1

l
0

Z
G
nG

f .x�1
x/dx

ˇ̌̌̌
:

Since the orbital integral is invariant under conjugation, we may assume


 D

�
el
=2 0

0 e�l
=2

�
:

Let G D ANK be the Iwasawa decomposition of G D SL2.R/. By compactness of Kf ,
there exists R D R.f / > 0 such that

Bn �
1

vol.Xn/

X
Œ
�¤1
l
�R

l
0

Z
G
nG

ˇ̌
f .x�1
x/

ˇ̌
dx:
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A quick computation shows that the centralizer G
 of 
 in G is G
 D A, so thatZ
G
nG

ˇ̌
f .x�1
x/

ˇ̌
dx D

1

2 sinh.l
=2/

Z
R

Z 2�

0

ˇ̌̌̌
f

�
k�1�

�
el
=2 y

0 e�l
=2

�
k�

�ˇ̌̌̌
d�dy:

The integrand on the right-hand side can only be non-zero if�
el
=2 y

0 e�l
=2

�
2 KKfK DW K

0
f :

K 0
f

is compact. Hence, there exists Mf > 0 solely depending on f such thatZ
G
nG

ˇ̌
f .x�1
x/

ˇ̌
dx �

Mf

sinh.l
=2/
:

Thus,

Bn �
Mf

vol.Xn/

X
Œ
�¤1
ly�R

l
0
sinh.l
=2/

:

(3.3) implies thatBn
n!1
����! 0, so that .Xn/n2N is Plancherel convergent. For the converse,

we start by observing that for every ' 2 C1c .Œ0;1// the function f .x/D '.tr.xT x/� 2/
is such that f 2 C1c .G/ \H� and ' D 'f .

Next, for every R < 0, choose ' 2 C1c .Œ0;1// such that ' � 0 and gf .r/ > 0 for
every r 2 Œ0; R�. Let us denote mR WD minŒ0;R� gf .r/. We get,X

Œ
�¤1
l
�R

l
0
sinh.l
=2/

�

X
Œ
�¤1
l
�R

l
0
sinh.l
=2/

gf .l
 /

mR
�
1

m

X
Œ
�¤1

l
0
sinh.l
=2/

gf .l
 /:

By Lemma 5.3, the last term vanishes as n!1, and this concludes the proof.
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