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ABSTRACT. The workshop provided a venue for discussing several recent ma-
jor developments in graph theory, with a primary focus on results concerning
the notion of twin-width and hereditary properties of graphs. Both areas
have seen a very rapid development recently, as reflected in the many results
presented during the workshop. In addition to many interesting talks span-
ning the whole breadth of graph theory, the workshop also offered valuable
collaboration opportunities, which also engaged early career researchers.
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Introduction by the Organizers

Graph theory has seen many significant results over the past three years. The
workshop offered an opportunity for the community to meet and discuss the major
recent developments. Talks covering two main themes of the workshop, hereditary
properties of graphs and the notion of twin-width, were complemented by more
focused talks highlighting recent advancements in other areas of graph theory.

The workshop was attended by 44 participants on-site and 4 participants on-
line. One on-line participant was unable to attend due to parenting responsibilities,
one due to visa related issues and two due to health reasons. We are indebted to
Oberwolfach Research Institute for making arrangements for the on-line atten-
dance of these four participants, particularly for providing excellent technical fa-
cilities supporting the hybrid format of the workshop. We would also like to thank
Marcin Brianski and Tung Nguyen for taking great care of the videoconferencing
facilities throughout the entire workshop.
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The workshop program started on Monday morning and concluded in the early
afternoon on Friday. Each of the five days began with a 50-minute overview talk,
followed by a 10-minute discussion. These talks were given by Maria Chudnovsky,
Eun Jung Kim, Jacob Fox, Piotr Micek and Luke Postle. In particular, Maria
Chudnovsky opened the theme of hereditary properties of graphs in her Monday
talk, while Eun Jung Kim surveyed the notion of twin-width in her Tuesday talk.
Most of the remaining program on Monday was devoted to 3-minute minipresenta-
tions that were given by each participant; the minipresentations were intended to
introduce the participants and their research areas to one another. The full Mon-
day program concluded with an open problem session designed to spark productive
discussions for the rest of the week. The scientific program on the following days
included 21 short talks, in addition to the 5 long talks given at the beginning of
each day. A substantial part of the afternoon each day was left free for collab-
orative work while Wednesday afternoon was completely free for the traditional
workshop trip. We were pleased that the workshop attendees included many early
career researchers and females, and this diversity was also well reflected among
those giving the talks.

The two main themes were hereditary properties of graphs, i.e., those closed
under taking induced subgraphs, and the notion of twin-width. Both themes
have seen very major developments recently. On Monday, Maria Chudnovsky
reported on her work on induced subgraph obstructions to bounded pathwidth
(path and tree decompositions are powerful tools in structural and algorithmic
graph theory with many applications). Later in the week, Tung Nguyen updated
the participants on his results on the Erdés—Hajnal conjecture, a major open
problem concerning homogeneous subgraphs in hereditary classes of graphs, and
Peter Nelson discussed the conjecture in the matroid setting.

The survey talk by Eun Jung Kim in the morning on Tuesday kicked off the
theme of twin-width, a recent graph parameter interlinking several seemingly dif-
ferent width notions. Indeed, classes of graphs with bounded twin-width general-
ize many well-established classes of (both sparse and dense) graphs, such as minor
closed classes of graphs and classes of graphs with bounded rank-width, while pre-
serving good algorithmic and structural properties. The twin-width parameter has
already found many algorithmic applications and has been attracting substantial
attention within the computer science community (as witnessed by presentations at
top conferences such as FOCS, ICALP, SODA and STOC). The workshop partic-
ipants were also updated on other recent developments in graph theory, including
the Erdés—Pdsa properties, which concern covering and packing subgraphs, the
dimension of posets whose diagram is a planar graph, and the refined absorption
method yielding a more compact proof of the Existence Conjecture.

The workshop participants, representing all areas of graph theory, were updated
on recent major developments across graph theory. We were pleased to experience
an atmosphere that fostered collaboration and we would like to thank all workshop
participants for creating such an extremely stimulating scientific atmosphere. Our
thanks also go to the staff of the Oberwolfach Research Institute for providing an
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excellent environment and outstanding support for this workshop. We would also
like to thank Emma Hogan for her assistance in preparing this report.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Equiangular lines via improved eigenvalue multiplicity
MaAT1IA Buci¢
(joint work with Igor Balla)

1. EQUIANGULAR LINES

A family of lines passing through the origin in an inner product space is said to
be equiangular if every pair defines the same angle. The study of large families of
equiangular lines dates back to 1947 and it has since found numerous interesting
connections and applications in a wide variety of different areas. These include
elliptic geometry, polytope theory, frame theory, Banach spaces, and quantum
information theory with connections to algebraic number theory and Hilbert’s
twelfth problem.

Determining the maximum number of equiangular lines in R" is widely consid-
ered as one of the founding problems of algebraic graph theory and features in
most introductory courses on the subject. The well-known absolute bound (see
e.g. [6]) states that the answer is at most (T'gl), which is tight up to a multiplica-
tive constant and it is a difficult open problem to determine whether there are
infinitely many r for which it holds with equality.

The more refined version of this question, where we additionally specify the
common angle between the lines, was first posed by Lemmens and Seidel [6] in 1973.
Given « € [0,1), we will refer to a family of lines passing through the origin as
a-equiangular if the acute angle between any two lines equals arccos . Lemmens
and Seidel also gave a good partial answer to their question when r < 1/a? — 2,
but until recently, our understanding of the complementary regime r > 1/a? — 2
has been much more limited. After a series of recent breakthroughs [3, 2, 5, 1]
we now know the answer precisely for any « and r at least doubly exponential
in O(kloga™!)), where k is the smallest order of a graph with largest eigenvalue
equal to 12_—07

In the subexponential regime, besides the aforementioned bound of Lemmens
and Seidel from 1973, [8, 4, 1] recently significantly extended the regime for which
we essentially know the answer to r < r, =~ ﬁ. Beyond this range the best
known bound is linear in 7.

Our first result determines the answer up to lower order terms provided r is
superpolynomial in 1/a — co.

Theorem 1. If « — 0 and r > 1/a*®), then the mazimum number of o-
equiangular lines in R" is r + o(r).

We note that the assumption that 1/« is growing is necessary due to the stan-
dard construction in the classical case when 1/« is an odd integer. Furthermore,
we note that the results of [5] establish this theorem when r is at least doubly expo-
nential in 1/a2, so the main new contribution of the above theorem is an improved



12 Oberwolfach Report 1/2025

requirement on r from double exponential to only super polynomial in 1/«. When
7 is at most exponential in 1/a, our bound is of the form r + r/(log, )=o)
and in fact, it already beats the previously best known (linear) bound when r is
a large polynomial in 1/«. When r is at least exponential in 1/, our bound is of
the form r + ra®=°M),

In the exponential regime, i.e. when r is at least exponential in 1/«

prove an even more precise result which turns out to be tight.

O we can

Theorem 2. Given 0 < o < 1, if r > 21/0‘0(1), then the number of a-equiangular

lines in R"™ is at most
2
-1 —1)- .

The standard construction in the classical case, when the angle is one over an
odd integer, shows that our theorem is tight. In particular, we get the following
corollary.

kO™

Corollary 3. Given an integer k > 2, if r > , then the mazimum number

1 . . .
of sp— -equiangular lines in R" equals

14 r—1
r— .
kE—1
This improves upon the previously best-known doubly exponential constraint
on r from [5, 1].

2. SECOND EIGENVALUE MULTIPLICITY.

A crucial ingredient in the quest to solve the equiangular lines problem, which
was brought to the table in [5], is a relation between it and the multiplicity of the
second largest eigenvalue of a certain auxiliary graph.

In addition to the relation to the equiangular lines problem, the question of
bounding the multiplicity of the second eigenvalue of a graph has a number of
other connections and is a very interesting problem in spectral graph theory in its
own right. For example, the case of Cayley graphs is already quite interesting due
to it having connections to deep results in Riemannian geometry. For instance,
following the approach of Colding and Minicozzi on harmonic functions on man-
ifolds and Kleiner’s proof of Gromov’s theorem on groups of polynomial growth,
Lee and Makarychev showed that in groups with bounded doubling constant, the
second eigenvalue multiplicity is bounded. Owing to the fact that many algorith-
mic problems become much easier on graphs with few large eigenvalues, there are
also interesting connections to computer science. For instance, McKenzie, Ras-
mussen, and Srivastava [7] do an excellent job of motivating the problem from
this perspective and give a detailed history. In addition, they mention further
connections to higher-order Cheeger inequalities, typical support size of random
walks, and the properties of the Perron eigenvector. Finally, the second eigen-
value multiplicity question is also relevant in the study of Schrodinger operators
on two-dimensional Riemannian manifolds. Indeed, the connection between the
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spectral theory of graphs and Schrodinger operators on surfaces is a point of view
emphasized by Colin de Verdiere and is the underlying motivation for the defini-
tion of his graph parameter. In particular, Letrouit and Machado were recently
able to make progress on a conjecture of de Verdiere by extending the ideas of [5]
to Laplacians of negatively curved surfaces.

Our main result here is the following improved bound on the second eigenvalue
multiplicity of an arbitrary graph.

Theorem 4. Let G be an n-vertex graph with second eigenvalue Ao and mazimum
degree A > 2. Then,

7nG(A2)EZDnn({n/Aéch),n/UogA7ﬂ1_°O)}.

In the subexponential regime, our bound improves upon and significantly extends
a result of McKenzie, Rasmussen, and Srivastava [7], who proved an upper bound
n(log d)*/4
(logy n)1/4=e()
removing the regularity assumption is key for our applications to the equiangular
lines problem. Furthermore, their bound is trivial already when d > 29(‘/@),
whereas our result remains non-trivial all the way up to d = n®*®)_ In fact, our
bound here is the first non-trivial upper bound on the second eigenvalue multi-

plicity for arbitrary n-vertex graphs with maximum degree larger than logn.
While the bound of Theorem 4 in the subexponential regime is behind our proof
of Theorem 1, the bound it gives in the superexponential regime is just slightly
insufficient to conclude Theorem 2. The additional ingredient that comes to our
rescue in the equiangular lines setting, is that we can reduce to working with
connected graphs. Note that Jiang, Yao, Tidor, Zhang, and Zhao [5] also made
use of this assumption, showing that in an n-vertex connected graph of maximum
degree A, the second eigenvalue multiplicity is at most O(n/logx logn). While
Theorem 4 improves upon this so long as the graph is not very sparse, we can
slightly improve this and put the two bounds together in the connected case.

of the form for a d-regular graph with d = Q(10g1/4 n). In particular,

Theorem 5. Let G be a connected n-vertexr graph with second eigenvalue Ao,
A=A(G) >2, and § = §(G). Then, provided logn > AW we have
n

< .
me (h2) < A2 + Q(dloga logn)
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Beyond Tutte’s 2-separator theorem
JOHANNES CARMESIN
(joint work with Jan Kurkofka)

A tried and tested approach to a fair share of problems in structural and topological
graph theory — such as the two-paths problem [5, 6, 7] or Kuratowski’s theorem [8]
— is to first solve the problem for 4-connected graphs. Then, in an intermediate
step, the solutions for the 4-connected graphs are extended to the 3-connected
graphs, by drawing from a theory of 3-connected graphs that has been established
to this end. Finally, the solutions for the 3-connected graphs are extended to all
graphs, in a systematic way by employing decompositions of general graphs along
their cutvertices and 2-separators.

The intermediate step of this strategy seems curious: why should the step from
4-connected to 3-connected require an entirely different treatment than the sys-
tematic step from 3-connected to the general case? Indeed, the intermediate step
carries the implicit believe that it is not possible to decompose 3-connected graphs
along 3-separators in a way that is on a par with the renowned decompositions
along separators of size at most two. Our main result offers a solution to this
long-standing hindrance. To explain this, we start by giving a brief overview of
the renowned decompositions along low-order separators.

Graphs trivially decompose into their components, which either are 1-connected
or consist of isolated vertices. The 1-connected graphs are easily decomposed
further, along their cutvertices, into subgraphs that either are 2-connected or Ks’s
which stem from bridges.

When decomposing 2-connected graphs further, however, things begin to get
more complicated. Indeed, a 2-separator — a set of two vertices such that deleting
the two vertices disconnects the graph — may separate the vertices of another 2-
separator. Then if we choose one of them to decompose the graph by cutting at the
2-separator, we loose the other. In particular, it is not possible to decompose a 2-
connected graph simply by cutting at all its 2-separators. An illustrative example
for this are the 2-separators of a cycle.

There is an elegant way to resolve this problem. If two 2-separators are com-
patible with each other, in the sense that they do not cut through each other,
then we say that these 2-separators are nested with each other. Let us call a
2-separator totally-nested if it is nested with every 2-separator of the graph. The
solution is that every 2-connected graph decomposes into 3-connected graphs, cy-
cles and K3’s, by cutting precisely at its totally-nested 2-separators. Tutte [10]
found this decomposition first, but with a different description. The description
via total nestedness was discovered later by Cunningham and Edmonds [3].
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A mized-separation of a graph G is a pair (A, B) such that AU B = V(G) and
both A\ B and B\ A are nonempty. We refer to A and B as the sides of the
mixed-separation. The separator of (A, B) is the disjoint union of the vertex set
AN B and the edge set E(A\ B, B\ A). If the separator of (A, B) has size three,
we call (A, B) a mized 3-separation. A tri-separation of a graph G is a mixed 3-
separation (A, B) of G such that every vertex in AN B has at least two neighbours
in both G[A] and G[B].

Given a 3-connected graph G and a set N of pairwise nested tri-separations,
we can say which parts we obtain by decomposing G along N. Roughly speaking,
these are maximal subgraphs of G that lie on the same side of every tri-separation
in V, with some edges added to represent external connectivity in G. We call the
resulting minors of G the torsos of N, as they generalise the well known torsos of
tree-decompositions from the theory of graph minors.

According to the 2-separator theorem, some of the building blocks for 2-connect-
ed graphs are K5’s. The analogue of these building blocks for 3-connected graphs
turn out to be thickened K3 ,,’s with m > 0: these are obtained from K3 ,, by
adding edges to its left class of size three to turn it into a triangle.

Theorem 1. Let G be a 3-connected graph and let N denote its set of totally-
nested nontrivial tri-separations. Each torso 7 of N is a minor of G and satisfies
one of the following:

(1) 7 is quasi 4-connected;

(2) T is a wheel;

(3) T is a thickened K3 or G = Kg , with m > 0.

We emphasise that the sets N = N(G) obviously are canonical, meaning that
they commute with graph-isomorphisms: N(p(G)) = ¢(N(G)) for all p: G — G'.

Applications. We provide the following applications of our work. It is well known
that all Cayley graphs of finite groups are either 3-connected, cycles, or complete
graphs on at most two vertices [4]. By heavily exploiting the fact that our de-
composition of 3-connected graphs is canonical, we can refine this fact: every
vertex-transitive finite connected graph G either is essentially 4-connected, a cy-
cle, or a complete graph on at most four vertices. Another application comes in
the form of an automatic proof of Tutte’s wheel theorem [9]. In the upcoming
work [2], Theorem 1 will be used to construct an FPT algorithm for connectivity
augmentation from 0 to 4, and the property of total nestedness is crucial for that.

When canonicity and an explicit description matter. Recall that the tri-
separation decomposition of Theorem 1 is canonical and is explicitly described
so that it is uniquely determined for every 3-connected graph. These two of its
aspects are absolutely crucial for a number of its applications:

(1) For vertex-transitive graphs, such as Cayley graphs, exploiting the combi-
nation of canonicity and total-nestedness makes up the entire proof. Just
recently, this combination has also been exploited when using the Tutte-
decomposition in the proof of a low-order Stallings-type theorem for finite
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nilpotent groups [1]. An obvious next step in this direction would be to
exploit this combination with the tri-separation decomposition.

(2) For Connectivity Augmentation, canonicity and access to an explicit de-
scription are key [2].

(3) Total-nestedness is incredibly desirable in Parallel Computing, the founda-
tion of every supercomputer. Splitting the workload of finding the decom-
position is a lot easier when all the partial solutions, which would come in
the form of sets of already found totally-nested tri-separations, can always
be combined without conflict.

(4) Finally, as the Tutte-decomposition is canonical and explicit, we believe
that any decomposition result that claims to generalise Tutte should be
both canonical and explicit.
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Induced subgraphs and pathwidth
MARIA CHUDNOVSKY
(joint work with Sepehr Hajebi, Sophie Spirkl)

Tree decompositions, and in particular path decompositions, are a powerful tool in
both structural graph theory and graph algorithms. Many hard problems become
tractable if the input graph is known to have a tree decomposition of bounded
“width”. Exhibiting a particular kind of a tree decomposition is also a useful way
to describe the structure of a graph.

For a graph G = (V(G), E(G)), a tree decomposition (T,x) of G consists of a
tree T and a map x : V(T) — 2(¢) with the following properties:

(i) For every v € V(G), there exists t € V(T') such that v € x(t).
(ii) For every vivy € E(G), there exists t € V(T') such that vy, v € x(¢).
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(iii) For every v € V(G), the subgraph of T induced by {t € V(T) | v € x(t)}

is connected.

The width of a tree decomposition (T, x), denoted by width(T', x), is
max.cy (7) |X(t)] —1. The treewidth of G, denoted by tw(G), is the minimum width
of a tree decomposition of G. A path decomposition is a tree decomposition (T, x)
where T is a path. The pathwidth of G, denoted by pw(G), is the minimum width
of a path decomposition of G.

Given a graph G, a subgraph of G is a graph obtained from G by a sequence
of vertex and edge deletions. A minor of G is a graph obtained from a subgraph
of G by repeatedly contracting edges. In the context of simple graphs the minor
operation is modified slightly: parallel edges obtained in the contraction process
are deleted.

Families of bounded treewith and pathwidth have been completely characterized
in terms of forbidden subgraphs (and minors) in the 1980s [7] and [8].

Theorem 1 (Robertson and Seymour [7]). For every forest F, there is a positive
integer pp such that every graph G with pw(G) > pr has a minor isomorphic to
H. Moreover, if F is not a forest, then no such pg exists.

Theorem 2 (Robertson and Seymour [8]). For every planar graph H, there is pos-
itive integer cy such that every graph G with tw(G) > cy has a minor isomorphic
to H. Moreover, if H is not planar, then no such cy exists.

An analogue of Theorem 1 can be stated in the language of subgraphs, rather
than minors. For a positive integer r > 1, the binary tree of height r is the unique
(up to isomorphism) rooted tree of radius r such that the root has degree 3 and
every vertex that is neither the root nor a leaf has degree 2.

Theorem 3 (Robertson and Seymour [7]). For every binary tree T there is a
positive integer pr such that every graph G with pw(G) > pr has a subgraph
isomorphic to a subdivision of T.

There is also a subgraph analogue of Theorem 2, but we will not state it here.

Given a graph G, a graph H is an induced subgraph if G if V(H) C V(Q),
and two vertices of H are adjacent in H if and only if they are adjacent in G.
An induced minor of G is a graph obtained from an induced subgraph of G by
contracting edges (and removing parallel edges that may have resulted from the
contractions).

Studying obstructions to bounded therewith and pathwidth in connection with
induced subgraph or induced minor containment relations is a relatively new re-
search direction. Here we present a complete analogue of Theorems 1 and 3 for
induced minors and induced subgraphs, respectively. This is based on [4], which
in turn relies on many results proved earlier papers in the same series. We start
with an analogue of Theorem 1, which is easier to state.

Theorem 4. For every positive integer t and every forest F', there is an integer
pre such that every graph G with pw(G) > ppy has a subgraph isomorphic to
K41, an induced minor isomorphic to Ky or an induced minor isomorphic to F'.
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To state the induced subgraph version, we need a few definitions. A constella-
tion is a graph ¢ in which there is a stable set S. such that every component of
¢\ S. is a path, and each vertex z € S has at least one neighbor in each component
of ¢\ S.. We denote by L. the set of all components ¢\ S (each of which is a
path), and denote the constellation ¢ by the pair (S¢,L:). For positive integers
l,s, by an (s,1)-constellation we mean a constellation ¢ with |S¢| = s and |L| = L.
Given a graph G, by an (s,1)-constellation in G we mean an induced subgraph of
G which is an (s, !)-constellation.

We will need a few notions associated with a constellation ¢ = (S, L), which
we define below:

e By a c-route we mean a path R in ¢ with ends in S; and with R* C V(L.),
or equivalently, with R* C L for some L € L..

e For a positive integer d we say that ¢ is d-ample if there is no c-route of
length at most d+ 1. We also say that ¢ is ample if ¢ is 1-ample. It follows
that ¢ is ample if and only if no two vertices in S. have a common neighbor
in V(Le).

e We say that c¢ is interrupted if there is an enumeration x1,...,x, of all
vertices in S, such that for all 7, j, k € Ny with ¢ < j < k and every c-route
R from x; to x;, the vertex x; has a neighbor in R.

e For a positive integer ¢, we say that ¢ is g-zigzagged if there is an enu-
meration x1,...,zs of all vertices in S; such that for all integers i,k > s
with ¢ < k and every c¢-route R from z; to zy, fewer than ¢ vertices in
{z; :i < j < k} are anticomplete to R in c.

Interrupted constellations form a slight extension of another construction from
[1, 2], and zigzagged constellations are a fairly substantial generalization of a
construction from [5, 6] (see [3] for further discussion). We can now state the
induced subgraph analogue of Theorem 3.

Theorem 5. For all positive integers d,r,1,1',s,s', there is an integer pyr.i i .s,s
such that if G is a graph with pw(G) > pa,ri,1.s,s', then one of the following holds.

(a) There is an induced subgraph of G isomorphic to K11, Ky, a subdivision
of a binary tree of height 2r, or the line graph of a subdivision of a binary
tree of height 2r.

(b) There is a d-ample interrupted (s,1)-constellation in G.

(c) There is a d-ample 2"+ -zigzagged (s',1')-constellation in G.

Theorem 5 is “qualitatively” best possible, in the sense that:

e the outcomes of 5 themselves can have arbitrarily large pathwidth; and
e the statement of 5 will be false if any of the outcomes is omitted.

The first point is straightforward to check, and the second point is easily seen to
be true for 5(a). For 5(b) and 5(c), the second point follows from results of [3] and
the fact that all constellations are K4-free, and all ample constellations are K3 3-
free. Additionally, one might hope that 5(c) could be refined further to coincide
with the Pohoata-Davies graphs [5, 6], but [3] shows that this is not possible.
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To deduce Theorem 5 from Theorem 4 we rely on the main result of [3] that
describes unavoidable induced subgraphs of large complete bipartite induced minor
models.
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A width parameter that exhibits local-global structure
REINHARD DIESTEL
(joint work with Tara Abrishami and Paul Knappe)

Tree-decompositions of a graph exhibit its tree-like global structure. Graphs that
are not globally tree-like can more fittingly be described by decompositions mod-
elled on graphs other than trees (Figure 1). We indicate how these may be found.

Given graphs G and H, we call a family (Gp,)nep of induced subgraphs Gy, of G
indexed by the nodes h of H an H -decomposition of G with model H and width
max{ |Gx| : h € H} if |J,cy Gr = G and, for all vertices v of G, the H-subgraphs

H,:=H[{h € H:v € G,}] are connected. (1)
Note the duality v € G, & h € H, between the parts G, and the co-parts H,,.
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F1GURE 1. An H-decomposition of a graph G with H a cycle

Like the analogous axiom for tree-decompositions, (1) relates the structure of H
to that of G: without (1), these would not be related. In Figure 1, the cyclic global
structure of G is reflected in the model H of its decomposition, which is a cycle C.
Deleting the edge h'h” from C turns it into a path P, which no longer reflects the
global structure of G as well. And indeed, (Gp)rep violates (1).

In the example we can repair (1), and thus turn (Gp)rep into a P-decomposition
of G, by adding the vertices u and v to all the parts Gj. So the drop in quality as
we turn our fitting cyclic decomposition into a less fitting path-decomposition is
detected by a simple parameter: the decomposition’s width increases from 5 to 7.

Motivated by this example, here is an intriguing idea. Might we be able to find
a fitting H-decomposition of a graph G, one whose model H describes the global
structure of G better than other decompositions, simply by minimising the width
of those decompositions while allowing H to vary?

A moment’s thought shows that this will not work without any requirements
on H: if we allow H to be complete, for example, then (1) will always be satisfied.
To rule out such H, we might try to emulate tree-decompositions a little more
closely: while allowing H to contain cycles, we might still require it to be sparse
in some sense. Graph minor theory suggests that, perhaps, we might require H to
be embeddable in some surface of low genus depending on G.

But even requiring H to be planar allows H-decompositions we clearly do not
want to allow. For example [4], consider the H-decomposition of a complete
graph K of order n, where H is the (n x n)-grid with rows and columns both
indexed by the vertices of K. For all h = (u,v) let Gj, := {u,v}. This makes
(Gh)hen into an H-decomposition of K of width 2, which is clearly minimum over
all choices of H. But we can hardly claim that the grid H captures anything like
‘global structure’ of the complete graph K.

Yet while grids are sparse in the sense of containing few edges, they are not
sparse in our local-global sense: unlike the graphs which Erdés [5] found to have
high chromatic number for global reasons alone, they have low girth. Since our aim
is that H should be a model for the global structure of G, should we require H to
have large girth? This would also rule out both grids and complete graphs for H.
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With a small adjustment, this does indeed work. An adjustment is needed,
because large girth can be achieved for H simply by subdividing its edges, assigning
to nodes subdividing an edge hh' either G, or G/, which does little to improve
the value of H as a model of the global structure of G. Yet what we are aiming
for is not that our models H themselves be locally tree-like but that what they
model in G should be. And this is indeed what our condition on H will imply: the
H-decompositions of G we shall admit will induce low-width tree-decompositions
everywhere locally in G. Hence those models H neither represent, nor add to,
the existing local connectivity in G (which resides entirely in the parts Gj) while
reflecting, by virtue of (1), all the global connectivity of G that determines how
those local tree-decompositions fit together to form a uniform overall structure.

Given an integer r > 0, we say that an H-decomposition of G is r-acyclic if
there is no cycle in any of the subgraphs (J,c x Ho of H generated by a set X of
at most r vertices of G. Note that deleting nodes h with G, = 0 or edges hh' with
Gr NGy =0 in H will not invalidate an r-acyclic H-decomposition, so we shall
normally assume that these are non-empty.

The models H of r-acyclic decompositions are easily seen to have girth g(H) > 7.
But the condition is stronger, since vertices v of G can lie in many parts Gy, and
so even a single co-part H, might contain a cycle.

These decompositions achieve our benchmark for modelling global structure,
in a way that lets us choose our desired local-global threshold by prescribing r:

Theorem 1. FEvery r-acyclic H-decomposition of G induces tree-decompositions
on the (r/2)-local neighbourhoods B(v,r/2) in G of the vertices v of G.

For odd r, the T-decomposition (say) induced on B by the H-decomposition of G
is obtained from the H-decomposition (B N Gp)nen of B = B(v,r/2) by deleting
nodes h of H with BN Gy, = () and edges hh' with BN G}, NGy = 0 to obtain T.
For even r we need a small technical adjustment, but the idea is the same.

The least width of an r-acyclic decomposition of G is its r-acyclic width, r-aw(Q).
In order to find our desired local-global decomposition of a given graph G, we
now fix our desired threshold r first, and then take any r-acyclic decomposition
of G of minimum width. Its model H reflects only the global structure of G, by
Theorem 1, while the G}, reflect only its local structure since they are small.

Our ability to choose r is key to adjusting the balance between two possible aims.
If we choose r small we allow more variety for H, and minimising the width will
produce models H that hug G so closely that they add no new perspective. Indeed,
for r = 2 we can choose H as a subdivision of GG, assigning a node h subdividing
the edge uv the part Gj, C G induced by {u,v}. If we let r > |G|, on the other
hand, then no cycles are allowed in H. Then the r-acyclic width of G equals its
tree-width (plus 1), and even a minimum-width decomposition will have parts so
large that no interesting connectivity structure lies between them, modelled by H.

In the remainder of these notes, we list some known properties of these decompo-
sitions. For a start, note that the r-acyclic width of a graph G increases with r:
from at most 2 for = 2 up to the tree-width of G (plus 1) for r > |G|, as noted.
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For r > 3 we have r-aw(G) < 2 if and only if ¢(G) > r, and r-aw(G) > w(G)
for all G, where g and w denote girth and clique number, respectively. Indeed,
unlike in our earlier unnatural grid-decomposition of a complete graph we have
the following more natural property:

Theorem 2. Every clique in G lies in a part of any r-acyclic decomposition of G
if r > 3. In particular, the cycle-decomposition in Figure 1 has minimum width
amongst all r-acyclic graph-decompositions of G for 3 <r <9.

The tree-width of a graph G is well known to equal the least clique number
(minus 1) of a chordal supergraph of G, which can be obtained by adding edges
to the parts of any minimum-width tree-decomposition to make them complete.
This fact extends to r-acyclic decompositions: making the parts of any r-acyclic
decomposition of G complete yields a supergraph of G that is r-locally chordal in
the sense that all the (r/2)-local neighbourhoods B(v,r/2) of its vertices v are
chordal. In fact, we have the following more general equivalence:

Theorem 3. [1] Given r > 3, a finite graph has an r-acyclic decomposition into
cliques if and only if it is r-locally chordal.

By Theorem 3, the r-acyclic width of G is thus equal to the least clique number
of an r-locally chordal supergraph of G.

Recall that the r-local width of a grid, however large, becomes 2 if we subdivide
it sufficiently to give it girth > r. Grids whose faces are bounded by r-cycles, on
the other hand, have unbounded r-width:

Theorem 4. Given r > 3, the r-acyclic width of any grid whose faces are bounded
by cycles of length at most r is at least its tree-width.

Proof sketch. We start from any optimal r-acyclic decomposition of the given
graph G. Making its parts complete we obtain an r-locally chordal supergraph G’
of G by Theorem 3. The covering G.. of G’ for the subgroup of m1(G’) generated
by the cycles of length at most 7 as characteristic subgroup, see [3], is a chordal
graph [1]. Since all the cycles of G C G’ lie in this subgroup, G. contains a copy
of G and thus has tree-width at least that of G. As G!. is chordal, its tree-width
(plus 1) equals its clique number w(G?.), which in turn equals w(G’) and thereby
the width of our original decomposition of G. O

The proofs [2] of Theorems 1, 3 and 4 rely on our theory of local-global structure
theory for finite graphs based on tangle analysis of their r-local covering spaces [3].

Our new width parameter gives rise to some immediate questions, both technical
and more fundamental. Technically, we would like to know which operations on G
that make it smaller will also reduce its r-acyclic width, or at least cannot in-
crease it. Deleting vertices or edges of G leave any r-acyclic decomposition intact,
and hence cannot increase the width. We thus have, in principle, Kuratowski-type
characterisations of all the classes G;, of graphs of r-acyclic width at most k, given
by the C-minimal graphs of r-acyclic width > k as ‘forbidden subgraphs’.
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Contracting edges, however, can increase the r-acyclic width: recall that for
C™ ! this is 2, while for CT it is 3, the tree-width of C™ (plus 1).

Problem 5. Which edge contractions cannot increase the r-acyclic width of G ¢

Note that H-decompositions of GG induce H-decompositions on minors of (7, as
with tree-decompositions. The induced decompositions just need not be r-acyclic
if the original was. They will, however, be (r/s)-acyclic if the minor’s branch sets
have diameter at most about s < r [2].

A more fundamental question is what certificates of large r-acyclic width, if
any, will necessarily occur in graphs of large enough r-acyclic width. For example:

Problem 6. Given r > 3, is there an N — N function f such that every graph of
r-acyclic width at least f(k) contains a subdivided grid of r-acyclic width at least k¢

Although we noted that requiring H to be sparse in terms of edge density is not
enough to ensure that H-decompositions separate out the global-local structure of
a graph as intended, one can still ask how sparse our models H can be in that sense:

Problem 7. Is there an N — R function h — 0 such that |[H|| € O(|G|*"(")) for
some minimum-width r-acyclic H-decompositions of graphs G and r > 39

Finally, we can ask how our global-local distinction works with graph invariants
which, like the chromatic number, can be large for local or global reasons alone.
For example, if G has large chromatic number and (Gp,)nep is a minimum-width
r-acyclic decomposition of G, must either some ‘local’ G, or some ‘global’ large-
girth subgraph of H have large chromatic number?

Problem 8. Given r > 3, let H be the model of any r-acyclic decomposition of
width w = r-aw(G) of a graph G. Let k be the largest chromatic number of any
topological minor H' of H of girth > r. Can G be coloured with wk colours?
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Long induced paths
Louis ESPERET
(joint work with Julien Duron, Jean-Florent Raymond)

For a graph class G, and an integer n, let fg(n) be the largest integer k such
that any graph G € G with a path on n vertices contains an induced path on
k vertices. What natural conditions on G ensure that fg(n) — oo ? Complete
bipartite graphs must be forbidden as subgraphs, since these graphs have long



24 Oberwolfach Report 1/2025

paths but no induced paths of order 3. A classical result of Galvin, Rival, and
Sands [7] states that if G contains an n-vertex path and is K ;-subgraph-free, then
it contains an induced path of order Q((logloglogn)/3=°(M). In [3], we recently

improved this bound to 2 ((lolgoil%)lw). The main idea of our proof is to

use Ramsey’s theorem for triples, instead of Ramsey’s theorem for quadruples in
the proof of [7]. Our result was recently improved to Q(]Olgolgol%) by Hunter,
Milojevié, Sudakov, and Tomon in [8]. This is close to best possible, as Defrain
and Raymond [4] recently constructed an infinite family of 2-degenerate (and thus

K3 3-subgraph-free) Hamiltonian n-vertex graphs without induced path of order
Q((loglogn)?).

The study of fg(n) has also been investigated extensively when G is the class of
outerplanar graphs, planar graphs or graphs of bounded genus [1, 5, 6], graphs
of bounded pathwidth or treewidth [5, 9], degenerate graphs [4, 10], and graphs
excluding a minor or topological minor [9].

In [3], we recently observed that most of the known results on this question can
be recovered in a simple and unified way by considering the following variant of
the problem. Consider that the vertices of the n-vertex path P in G are ordered
following their occurrence in P. What forbidden ordered subgraphs in G — E(P)
force the existence of a long induced path in G? In [3], we showed that forbid-
ding ordered matchings yields an induced path of order poly(n) or polylog(n),
depending on the structure of the matching. This is enough to imply most ex-
isting lower bounds in the area. For instance, by considering a specific matching
on 4 edges, we can deduce that every planar graph with a path on n vertices has
an induced path on Q(y/logn) vertices, recovering a result from [5] (whose proof
was quite intricate). The best known upper bound in the case of planar graphs
is O(logn/loglogn) and it is an interesting problem to close the gap between the
lower and upper bounds.

In [2] we completely characterized the forbidden ordered subgraphs yielding in-
duced paths of order polylog(n). These graphs are star forests with a specific
vertex ordering, which we call constellations. Our proof has two parts: we first
show that forbidding a constellation yields induced paths of order polylog(n), and
we then construct a graph without any of these constellations, which has no in-
duced path of order ((loglogn)?). The construction is inspired by the recent
construction of [4] of a 2-degenerate Hamiltonian n-vertex graph without induced
path of order Q((loglogn)?).

As a direct consequence of our result, we obtain that graphs which do not contain
K as a topological minor, and which contain a path on n vertices also contain
an induced path of order (logn)2(1/t1°e”t)  This simplifies and improves upon
an earlier result of [9], in which the exponent was an unspecified function of ¢
(relying on structure theorems of Robertson and Seymour, and Grohe and Marx).
In the particular case of forbidden K; minors, this also improves upon the bound

of order (logn)?(/ ) obtained in [3] using forbidden ordered matchings (we note
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that the proof of the weaker bound in [3] is significantly simpler than the proof of
the stronger bound obtained in the present paper).
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Extremal graph theory methods for forbidden induced subgraphs
JacoB Fox
(joint work with Matija Buci¢, Huy Tuan Pham)

What can we say about the structure of induced H-free graphs G? More generally,
what about graphs in a hereditary family F'? In this talk, we discuss some of the
major results and open problems in this area, focusing on methods that come from
extremal graph theory.

A very basic example which shows the difficulty is to study the structure of
triangle-free graphs. Some basic questions remain open, including the following
two conjectures.

Conjecture 1. There is ¢ > 0 such that every graph G on n > 3 vertices with
a(G) = 2 contains the complete bipartite graph Kye cp.

Conjecture 2. There is ¢ > 0 such that every graph G on n > 3 vertices with
a(G) = 2 contains a connected matching of size cn.

Some powerful extremal graph theory methods include Szemerédi’s regularity
method, dependent random choice, the containers method, and the greedy em-
bedding method. Using Szemerédi’s regularity lemma one can prove the following
result, which is a strengthening of the graph removal lemma.
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Theorem 3. If G is an induced H-free graph, then G has edit distance at most
e|lV(G)|* from a graph G' such that G' has an induced homomorphism to an in-
duced H-free graph F with at most My (e) vertices.

Understanding how small My (¢) is as a function of € is an important problem
with various applications in computer science, combinatorics, discrete geometry,
and number theory. See the paper [3] by Zhao and the speaker for more about
this problem.

Another major open problem in this area is the Erdés-Hajnal conjecture:

Conjecture 4. For each graph H there is ¢c(H) > 0 such that every induced H -free
graph on n vertices contains a clique or independent set of size at least nc.

It is well-known that polynomial versions of theorems of R6dl and Nikiforov,
as conjectured by Fox and Sudakov and Nguyen, Scott and Seymour imply the
classical Erdés-Hajnal conjecture. In the recent paper [1], Buci¢, Pham, and the
speaker proved that these three conjectures are in fact equivalent, extending several
previous particular results in this direction by Fox, Nguyen, Scott and Seymour;
Nguyen, Scott and Seymour and Gishboliner and Shapira. We deduce that the
family of string graphs satisfies the polynomial R6dl conjecture. The proof utilizes
the graph container method, a powerful method in extremal graph theory. In this
talk, we also presented a simple inductive proof of the graph container lemma
from [1]. We also derived analogous results for hypergraphs, tournaments, ordered
graphs, and colored graphs.

In the direction of the Erdés-Hajnal conjecture, Erdés and Hajnal used the
greedy embedding method to prove the following result. For every induced H-free
graph G on n®W) vertices with n > 2, G or its complement G contains Ky, as
a subgraph. The greedy embedding method is a general technique that is used
in many extremal graph theory problems. The basic idea is to try to embed a
copy of a graph one vertex at a time, keeping the sets of future potential vertices
as large as possible. Using the powerful probabilistic method dependent random
choice, Sudakov and the speaker [2] improved this to the following result in the
direction of the Erdds-Hajnal conjecture. For every induced H-free graph G on
nCU) vertices, G contains an independent set of order n or K., » as a subgraph.
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Discrepancy of spanning substructures in hypergraphs
STEFAN GLOCK
(joint work with Lior Gishboliner, Peleg Michaeli, Amedeo Sgueglia)

The basic question in combinatorial discrepancy theory can be phrased as follows:
Given an integer r > 2, a finite ground set 2 and a family P of subsets of €,
can we partition §2 into r parts such that every set P € P contains (roughly) the
same number of elements from each part? Or is there always some “discrepancy”
no matter how the partition is made? In the context of graph theory, a well-
studied question is whether for a given k-uniform graph (k-graph for short) and
an integer r > 2, any r-colouring of its edges must contain a certain substructure
with high discrepancy, meaning that within this substructure one of the colour
classes is significantly larger than the others. Classical results include the works
of Erdés and Spencer [6] on cliques and of Erdds, Fiiredi, Loebl and Sés [5] on
spanning trees. By now, there is a large collection of results for 2-graphs, but very
little is known for hypergraphs. Here, we present some recent results for spanning
substructures of hypergraphs such as perfect matchings, tight Hamilton cycles and
Steiner triple systems.

Tight Hamilton cycles. (Joint work with Lior Gishboliner and Amedeo Squeglia)
A tight Hamilton cycle of a k-graph G is a cyclic ordering vy, .. ., v, of the vertices
of G such that v;v;41 ... v;41—1 is an edge for every 1 < i < n, with indices taken
modulo n. For a k-graph G and a set S C V(G), we say that the degree of S in G,
denoted by dg(S), is the number of edges containing S. We use §(G) to denote
the minimum (k — 1)-degree, which is the minimum of dg(.S) over all (k — 1)-sets
S CV(Q).

We determine the optimal minimum (k — 1)-degree condition for a tight Hamil-
ton cycle of high discrepancy for any uniformity & > 3 and any number of colours
r>2.

Theorem 1. For all k,7 € N with k > 3 and r > 2, and all ¢ > 0, there exists
1> 0 such that the following holds for all sufficiently large n. Let G be an n-vertex
k-graph with §(G) > (1/2 4 €)n whose edges are r-coloured. Then there exists a
tight Hamilton cycle in G which contains at least (1+p)% edges of the same colour.

This establishes a discrepancy version of the celebrated theorem of Rodl, Rucinski
and Szemerédi [10], who proved that 1/2 is the (asymptotic) threshold for the
existence of a tight Hamilton cycle. The graph case k = 2 was already settled
in [2, 7, 9], in which case the discrepancy threshold is strictly larger than the
existence threshold and decreases as r increases. Our proof combines various
structural techniques such as Turan-type problems and hypergraph shadows with
probabilistic techniques such as random walks and the nibble method.

Note that if n is divisible by &, then a tight Hamilton cycle decomposes into k
perfect matchings. Therefore, under the same hypotheses we also find a perfect
matching with high discrepancy and, again, the constant 1/2 is asymptotically
best possible. We remark that this corollary was proved independently by Balogh,
Treglown and Zirate-Guerén [3].
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Steiner triple systems. (Joint work with Lior Gishboliner and Amedeo Squeglia)
A Steiner triple system (STS for short) of order n is a set S of 3-subsets of [n]
such that every 2-subset of [n] is contained in exactly one of the triples of S. STSs
are one of the central objects of study in the theory of combinatorial designs and
graph decompositions, and also have applications in other areas. By a famous
result of Kirkman, an STS of order n exists if and only if n = 1,3 (mod 6).

The following construction shows that there is a 2-edge-colouring of the 3-
subsets of [n] (equivalently of the edges of K,(LB), i.e. the complete 3-graph on n
vertices) where every STS has roughly the same number of triples of each colour
(recall that an STS has (3)/3 triples).

Example 2. Partition [n] into two sets X and Y, and assign colour blue to all
triples touching both X and Y, and colour red to all the other triples. In an STS,
every edge between X andY must be covered by a blue triple, and every blue triple
covers exactly two of these edges. Hence, in any STS, the number of blue triples
is W;ﬂ By choosing | X| = L?’Jrcf\/gnj, one can show that |X‘2‘Y| is roughly (%) /6.
Thus, in this colouring, any STS is roughly balanced.

However, we can show that this is essentially the only 2-edge-colouring of K,S,B)

which does not contain an STS with high discrepancy.

Theorem 3. For every n > 0, there exists p > 0 such that the following holds
for all sufficiently large n with n = 1,3 (mod 6). Every 2-edge-colouring of Kr(f)
either contains a Steiner triple system with at least (1/2+ p)(%)/3 triples of the
same colour, or it can be obtained from the colouring in Example 2 by switching
the colour of at most mm? triples.

In contrast with the 2-colour case, when the number of colours is three or more,
we can show that an STS with high discrepancy always exists.

Theorem 4. For all r € N with r > 3, there exists p > 0 such that the following
holds for all sufficiently large n with n = 1,3 (mod 6). Fuvery r-edge-colouring of

K contains a Steiner triple system with at least (1/r + p)(5)/3 triples of the
same colour.

Defect and transference versions of the Alon—Frankl-Lovasz theorem.
(Joint work with Lior Gishboliner, Peleg Michaeli and Amedeo Squeglia)
Confirming a conjecture of Erdds [4] on the chromatic number of Kneser hy-
pergraphs, Alon, Frankl and Lovész [1] proved that in any r-colouring of the
edges of the complete k-graph, there exists a monochromatic matching of size
Uji:jj This bound is best possible. Moreover, by arbitrarily adding edges to
this monochromatic matching, we can complete it to a perfect matching with high
discrepancy (assuming k | n of course). In this sense, the AFL Theorem is a
discrepancy result for perfect matchings.

Many classical theorems concerning dense graphs (or hypergraphs) have cor-
responding analogues in the setting of (sparse) random graphs. Such results are
usually known as transference theorems. We prove a transference version of the
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AFL Theorem. The random hypergraph model we consider is the binomial ran-
dom k-graph G®*)(n,p), which has n vertices, and where each k-set of vertices
forms an edge independently with probability p.

Theorem 5. For all k,r € N with k,r > 2, and all p > 0, there exists C > 0 such
that, provided p > Cn=*t1, w.h.p. the following holds for G ~ G¥)(n,p): For any
r-colouring of the edges of G, there exists a monochromatic matching of size at
least (1 — p) gi— -
The size of the matching is asymptotically best possible since one cannot do better
even in the complete k-graph. The graph case k = 2 was already proved in [8].
We prove Theorem 5 by combining the sparse hypergraph regularity method
with the following “defect” version of the AFL Theorem. It shows that, for large n,
the conclusion of the AFL theorem approximately holds even for edge-colourings
of almost complete k-graphs.

Theorem 6. For all k,7 € N with k,v > 2, and all u > 0, there exists € > 0 such
that the following holds for all sufficiently large n. Let G be an n-vertex k-graph
whose edges are r-coloured and assume e(G) > (1 —¢)(}). Then G contains a
monochromatic matching of size at least (1 — p) = -

The main challenge for proving this result is that the proof of Alon, Frankl and
Lovész uses the topological method, which does not seem to work in the almost-
complete setting. Instead, we pursue a novel approach using tools from extremal
set theory developed in the study of the Erdds matching conjecture.
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Twin-width
EuN Jung Kim
(joint work with Edouard Bonnet, Stéphan Thomassé, Rémi Watrigant)

Twin-width is a notion introduced in 2020 by Bonnet, Kim, Thomassé and Wa-
trigant [1] which provides a unified perspective on a range of important graph
classes, encompassing both sparse and dense classes. A contraction sequence of an
n-vertex graph G is a sequence G,,,G,—1, -+, Gy of so called trigraphs, in which
a graph has three binary relations, namely (black) edges, non-edges and red edges,
such that G,, = G, G is a single-vertex graph and each G;_; is obtained from G;
by identifying two vertices u, v to a new vertex z and defining the relation between
z and w € V(G;) \ {u,v} as follows: zw is a black edge (respectively, non-edge)
if and only if both uw and vw are black edges (respectively, non-edges); in all
other cases, zw becomes a red edge. Twin-width of a graph G is the maximum red
degree of a trigraph, i.e. the maximum number of red edges incident with a vertex
in a trigraph, in a contraction sequence taken over all contraction sequences of G.

The notion of twin-width was strongly inspired by the work of Guillemot and
Marx [3], which proposed a linear-time algorithm to decide if a given permutation
7 contains a permutation pattern o as a subpattern. A key insight of their work
was that one of the following possibilities occur. If the permutation matrix of
7 contains a |o|-grid, namely a partition of the columns and rows into |o| parts
consisting of consecutive rows and columns (division) so that each cell contains
an entry 1, then 7 contains any permutation of length |o| as a subpattern. If
the permutation matrix of = does not contain |o|-grid, then there is a sequence of
merging adjacent row parts and column parts, starting from the finest division of
the permutation matrix into the coarsest division, in such a way that the division
sequence can be used to design an algorithm for detecting o as a subpattern. The
classic result of Markus and Tardos [4] which bounds the density of 1-entries in a
(0,1)-matrix excluding a grid of fixed size crucially underlies their result.

An underlying idea of twin-width is that the matrix viewpoint and the use of
merge sequence for either detecting an obstruction (such as o, if you are interested
in a permutation class avoiding o as a permutation) or for finding a well-behaved
sequence can be exploited for graphs and binary structures in general. Many
graph classes ranging from planar graphs, H-minor-free graphs to proper interval
graphs and graphs of bounded cliquewidth have bounded twin-width. This new
perspective also allows us to establish powerful properties such as (polynomial) x-
boundedness [5, 2] and tractability of First-Order model checking on many graph
classes [1] in a unified way. Twin-width is now an important part of the toolbox
for structural graph theory, algorithms design, logic on finite graphs and data
structure.
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A coarse Erdés-Pésa theorem
O-J0oUNG KWON
(joint work with Jungho Ahn, Pascal Gollin, Tony Huynh)

An induced packing of cycles in a graph is a set of vertex-disjoint cycles with
no edges between them. We generalise the classic Erdés-Pésa theorem to in-
duced packings of cycles. More specifically, we show that there exist functions
f(k,€) = O(tklogk) and g(k) = O(klogk) such that for all integers k > 1 and
¢ >3, every graph G contains either an induced packing of k cycles of length
at least ¢, not necessarily induced cycles, or sets X; and X5 of vertices with
|X1| < f(k,£) and |X2| < g(k) such that, after removing the closed neighbour-
hood of X7 or the ball of radius ¢ around X5, the resulting graph has no cycle
of length at least ¢ in G. Our proof is constructive and yields a polynomial-time
algorithm finding either the induced packing or the sets X; and X5 when / is a
constant. Furthermore, we show that for every positive integer d, if a graph G does
not contain two cycles at distance more than d, then G contains sets X; and X5
of vertices with | X;| < 12(d+ 1) and | X2| < 12 such that, after removing the ball
of radius 2d around X; or the ball of radius 3d around X, the resulting graphs
are forests.

As a corollary, we prove that every graph with no K induced subgraph and
no induced packing of k cycles of length at least £ has tree-independence number
at most O(tlklog k), and one can construct a corresponding tree-decomposition in
polynomial time when ¢ is a constant. This resolves a special case of a conjecture
of Dallard et al. (arXiv:2402.11222), and implies that on such graphs, many
NP-hard problems, such as MAXIMUM WEIGHT INDEPENDENT SET, MAXIMUM
WEIGHT INDUCED MATCHING, GRAPH HOMOMORPHISM, and MINIMUM WEIGHT
FEEDBACK VERTEX SET, are solvable in polynomial time. On the other hand, we
show that the class of all graphs with no K 3 induced subgraph and no two cycles
at distance more than 2 has unbounded tree-independence number.

We conjecture that the following generalisation of our main result holds.

Conjecture 1. There exist functions f(k) = O(klogk) and g(d) = O(d) such that
for all positive integers k and d, every graph G contains either a family of k cycles
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whose pairwise distance is more than d, or a set X of at most f(k) vertices such
that G — Bg(X, g(d)) is a forest.

Palettes determine uniform Turan density
ANDER LAMAISON

The Turdn density of an r-uniform hypergraph F' (or r-graph for short) is the
largest value of d such that there exist arbitrarily large r-graphs F', with edge-
density arbitrarily close to d, not containing F' as a subgraph.

Most of the extremal constructions for Turan problems in the hypergraph set-
ting have large independent sets, i.e., linear-sized sets of vertices with no edges.
This lead Erdds and Sés [1, 3] to propose studying the uniform Turdn density of
hypergraphs, which is the density threshold for the existence of a hypergraph with
the additional requirement that the edges of the host hypergraph are distributed
uniformly. We define this notion as follows:

Definition 1. A hypergraph H is said to be locally (d,e)-dense if any subset
S CV(H) of size at least €|V (H)| has edge density at least d —e. A sequence of
hypergraphs {H;}52, is said to be locally d-dense if each H; is locally (d,e;)-dense
with ; — 0, and |V (H;)| — oo.

The uniform Turdn density m,(F') of an r-graph F is defined as the supremum
of the values of d, for which there exists a locally d-dense sequence of r-graphs
which do not contain F as a subgraph.

In all exact results on the uniform Turan density of 3-graphs, palette construc-
tions, which were introduced by Reiher [5], extending constructions by Erdés and
Hajnal [2] and Rodl [7], act as the lower bound construction. Palettes can be seen
a way to generate locally dense sequences of 3-graphs.

Definition 2. A palette P is a pair (C,.A), where C is a finite set (whose elements
we call colors) and a set of (ordered) triples of colors A C C3, which we call the
admissible triples. The density of P is d(P) := |A|/|C|3.

If P is a palette with density d, one can construct a locally d-dense sequence
of 3-graphs {H;}5°,. To generate H,, take [n] as the vertex set. Color each pair
of vertices uv with a color p(uv) € C chosen uniformly at random. The edges of
H,, are the triples v < v < w such that (p(uwv), p(vw), p(vw)) € A. With high
probability, the resulting sequence is locally d-dense.

Definition 3. We say that a 3-graph F admits a palette P if there exists an order
= on V(F) and a function ¢ : (V(QF)) — C such that for every edge vvw € E(F)
with uw < v < w we have (p(uv), p(uw), p(vw)) € A.

It is easy to see that any subgraph of H,, admits the palette P. Therefore, if
a 3-graph F' does not admit P, then it is not a subgraph of the locally d-dense
sequence {H;}2,, and so m,(F) > d = d(P).
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All the lower bound constructions for the known tight results on uniform Turan
density mentioned above are derived from palettes via this procedure. This mo-
tivated the question, which had circulated in the community and is explicitly
discussed in [5, Section 3], of whether all lower bounds on uniform Turdn density
can be obtained or approximated arbitrarily with palette constructions. Our main
theorem answers this question in the affirmative.

Theorem 4. For every 3-graph F,

(1) 7w (F) = sup{d(P) : P palette, F does not admit P}.

The proof of the main theorem is based on a method developed by Reiher [5],
using some auxiliary structures called reduced hypergraphs. This method is itself
based on the hypergraph regularity method, where the properties of locally dense
sequences of hypergraphs are used to simplify the structure of their regularity
partitions. To prove the main theorem, we show that every large enough reduced
hypergraph, with edge density d, contains large repetitive substructures (which can
be associated with the regularity partitions of palette constructions) with density
at least d — . The proof is based on an iterative algorithmic approach, in which
randomized vertex selections are alternated with applications of the hypergraph
Ramsey theorem.

An important reason why Theorem 4 is significant is that, judging from all the
proofs available so far, the right hand side of (1) is considerably easier to compute
than the left hand side. The simplicity of the palette method compared to the
regularity method has allowed for more exact values of 7, to be found. Previous
to Theorem 4, the only values of d for which hypergraphs F' with 7, (F) = d were
known to exist were 0,1/27,4/27,1/4 and 8/27. Using Theorem 4, for each k > 2
we constructed a hypergraph Fj, with m,(Fy) = % — ﬁ

The k-star Sy, is a 3-graph on k41 vertices u, v1,vs, ..., v, where the edges are
all the triples of the form wv;v; with 1 <¢ < j < k. Reiher, R6dl and Schacht [6]
studied the uniform Turadn density of stars, and proved that

k2 —5k+7 E—2\?
_ < < | — .
(k—1)? ”“(S’“)<k_1)
k2 —5k+7

In [4], Wu and the author used Theorem 4 to prove that m,(Sg) = e
for all £ > 48, providing another infinite family of values of the uniform Turan
density.
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Disjoint paths problem with group-expressable constraints
CHuN-HuNG Liv
(joint work with Youngho Yoo)

The Disjoint Paths Problem is an algorithmic problem that gives a graph G and k
pairs of vertices {s1,%1},...,{sk, tx} in G and asks us to determine whether there
exists a set of k disjoint paths Py, ..., Py such that P; joins s; and ¢; for all ¢ € [k].
This problem is known to be NP-complete [3]. On the other hand, Robertson
and Seymour [7] gave an O(n?) time algorithm for the k-Disjoint Paths Problem
where k is fixed. This running time was later improved to O(n?) in [4] and, more
recently, to almost-linear time in [6].

In this talk, we consider a variant of the k-Disjoint Paths Problem that not
only asks for paths linking the given pairs of terminals but also asks those paths
to satisfy additional constraints.

For an integer f, an f-group-expressable property is a property Q for paths
and cycles in G such that there exists an abelian group I', a subset I’ of I" with
|F| < f, and a function ¢ : E(G) — T such that a path or cycle P in G satisfies the
property Q if and only if EeeE(P) ¢(e) € T — F. For integers d and f, we say that
a property Q is (d, f)-group-expressable if there exist an integer d’ with 0 < d' < d
and f-group-expressable properties Q1, Qo, ..., Qg such that Q = ﬂ?;l Q;.

Examples of (d, f)-group-expressable properties include:

e The property “having length £ modulo m”, where £ and m are nonnegative
integers with m > 2.

o Let S be a subset of E(G) or V(G), and let £ and m be integers with
m > 2.

— The property “passing through S at least ¢ times”.
— The property “passing through S x times, where x = ¢ (mod m)”.

e The property “having length at least dist(s,t) + ¢” for paths between two
fixed vertices s and ¢, where ¢ is a nonnegative integer and dist(s, ) is the
distance between s and ¢.

e The property “having length at least g+ £” for cycles, where g is the girth
and / is a nonnegative integer.

The following is the main result of this talk.

Theorem 1 (Liu, Yoo). For any positive integers k,d, f, and for any (d, f)-
group-expressable properties Q1, Qa, ..., Qr, there exists an algorithm which, given
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as input a simple graph G and k pairs {s1,t1}, ..., {Sk, tx} of vertices of G, either
finds k disjoint paths Py, Ps, ..., Py in G such that P; is a path between s; and t;
satisfying Q; for every i € [k], or concludes that no such k disjoint paths exist,
with running time O(|V (G)®).

Theorem 1 generalizes results in [2, 5] on polynomial time algorithms for the
k-Disjoint Paths Problem with parity constraints, though with worse running time.

The k = 1 case of Theorem 1 immediately leads to the following corollary that
solves an open problem stated in [1].

Corollary 2 (Liu, Yoo). If £ and m are nonnegative integers with m > 2, then
there exists an O(n®) time algorithm that determines whether an input n-vertex
simple graph with specified vertices s and t contains a path between s and t of
length ¢ modulo m.

Our algorithm for the k-Disjoint Paths Problem with (d, f)-group-expressable
properties also leads to the following algorithm for testing the existence of a sub-
division of a fixed graph with requirements on the paths between branch vertices.

Corollary 3 (Liu, Yoo). For any graph H, integers d, f and a collection {Q, : e €
E(H)} of (d, f)-group expressable properties, there exists an algorithm which, given
as input a simple graph G, either finds a subgraph of G isomorphic to a subdivision
of H such that for every e € E(H), the path in the subdivision corresponding to
e satisfies Qe, or concludes that mo such a subgraph exists, with running time

O(|V(G)|IVUDIFS),

Taking H to be a loop in Corollary 3 immediately leads to the following corol-
lary, which solves another open problem in [1].

Corollary 4 (Liu, Yoo). If £ and m are nonnegative integers with m > 2, then
there exists an O(n®) time algorithm that determines whether an input n-vertex
simple graph contains a cycle of length £ modulo m.

The case £ = 0 in Corollary 4 were proved independently in [1, 8.

Problem 5. Let £ and m be nonnegative integers with m > 2.

(1) Does there exist a polynomial time algorithm which either finds a shortest
path in an input graph between two specified vertices s and t of length £
modulo m, or conclude that no such a path exists?

(2) Does there exist a polynomial time algorithm which either finds a shortest
cycle in an input graph of length £ modulo m, or concludes that no such a
cycle exists?
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Monadically stable graph classes
RosE McCARTY

(joint work with Jan Dreier, Eleftheriadis, Jacob Gajarsky, Nikolas M&hlmann,
Pierre Ohlmann, Michal Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz,
Marck Sokotowski, Szymon Toruiiczyk)

Introduction. Stability is a notion which originates in model theory; it was first
studied by Baldwin and Shelah [3], and it played a significant role in Shelah’s clas-
sification theory [14]. Later on, Adler and Adler [2] noticed a surprising connection
between stability and the theory of “sparsity” of Nesetfil and De Mendez [13]. This
theorem gives a wonderful connection between model theory and graph minors, a
fundamental subject in graph theory.

Moreover, stability provides a dividing line in computational complexity. In
2017, Grohe, Kreutzer, and Siebertz [12] proved that a subgraph-closed class of
graphs F is stable if and only if there exists an “efficient” algorithm to determine
whether an n-vertex graph in F satisfies or “models” a given first-order sentence ¢.
(To be more precise, this theorem holds under the widely-believed assumption that
FPT # AW [*]. We omit further discussion of the technical aspects for now.) To
prove this theorem, Grohe, Kreutzer, and Siebertz also introduced a combinatorial
game called the “Splitter Game”. They showed that the Splitter Game can be used
to characterize which subgraph-closed classes of graphs are stable.

Unfortunately, all of the theorems discussed above only work for classes of
graphs that are closed under taking subgraphs. These theorems do not hold un-
der the weaker assumption that the class of graphs is closed under taking induced
subgraphs. This has been a major focus of study in recent years. That is, how can
we generalize this new combinatorial theory of stability to classes which are closed
under taking induced subgraphs (but are not necessarily closed under taking sub-
graphs)? The talk focused on recent developments in this area, drawing parallels
to the theorems discussed above.

Characterizations of stability. In this section we provide a brief overview of
several new combinatorial characterizations of stable graph classes.

We note that, in the area, it is typical to discuss a slightly more technical notion
of monadic stability rather than stability. However, Braunfeld and Laskowski [6]
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showed that the two notions coincide for classes of graphs that are closed under
taking induced subgraphs. So we just discuss stability. Roughly, a class of graphs
F is stable if there is no first-order formula that defines arbitrarily large linear
orders when applied to graphs in F. See, for instance, [15, Chapter 8] for a full
introduction to stability.

For a class of graphs F that is subgraph-closed, Adler and Adler [2] showed
that F is stable if and only if for each r € N, there exists ¢ = ¢(r) € N such
that no graph in F contains a clique on c¢ vertices as an r-shallow graph minor.
Informally, a graph minor is r-shallow if it has a minor model where each bag
induces a subgraph of radius at most r.

Buffiere, Kim, and Ossona de Mendez [7] recently proved an analogous theorem
without the assumption that F is subgraph-closed. They proved that a class of
graphs F is stable if and only if for each r € N, there exists ¢ = ¢(r) € N such that
no graph in F contains a half-graph of order ¢ as an r-shallow vertex-minor. The
half-graph of order c is the graph with 2c-many vertices a1, as, ..., a¢,b1,ba, ..., b,
where a; is adjacent to b; if j > 4. (Intuitively, these graphs encode a linear order.)
An r-shallow vertex-minor of a graph G is any graph which can be obtained from
G by performing the following operation at most r times. Locally complementing
on an independent set S C V(G) switches the adjacency between two vertices
u,v € V(G)\ S if v and v have an odd number of common neighbors in S.

For a class of graphs F that is subgraph-closed, Grohe, Kreutzer, and Siebertz
[12] proved that F is stable if and only if for each r € N, Splitter wins the radius-
r Splitter Game on F. This characterization is more constructive, because it
means that we can verify a class is stable by exhibiting a winning strategy for a
certain player in a sequence of two-player combinatorial games. Moreover, this
game is a key step in Grohe, Kreutzer, and Siebertz’s algorithm for first-order
model-checking.

Recently, Gajarsky, Mahlmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski,
Siebertz, Sokotowski, and Toruniczyk [11] found an analogous game in the more
general setting. They proved that for a class of graphs F which is closed under
induced subgraphs, F is stable if and only if for each » € N, Flipper wins the
radius-r Flipper Game on F.

Model-checking Algorithms. On the algorithmic side, we say that first-order
model-checking is fized-parameter tractable (FPT) on a graph class F if for each
first-order sentence ¢, there is an algorithm which can determine whether an n-
vertex graph G € F satisfies ¢ in time Oy(n°), where ¢ > 0 is some constant that
is allowed to depend on F, but not on the sentence ¢ or the graph G.

Recall that Grohe, Kreutzer, and Siebertz [12] proved that first-order model-
checking is FPT on any graph class which is stable and is closed under taking
subgraphs. Very recently, Dreier, Mahlmann, and Siebertz [9] used the Flipper
Game to show fixed-parameter tractability on monadically stable classes under
the assumption that a second key ingredient — sparse neighborhood covers — is
also present. Finally, Dreier, Eleftheriadis, Mahlmann, McCarty, Pilipczuk, and
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Toruriczyk [8] showed that every monadically stable class admits sparse neighbor-
hood covers. Thus, putting the results from [6, 8, 9, 11] together, we have that
first-order model-checking is FPT on any class which is stable and is closed under
taking induced subgraphs.

We note that the hardness direction does not hold in general. This, for instance,
follows from results of Bonnet, Kim, Thomassé, and Watrigant [5] about twin-
width. The folklore conjecture is that a different notion from model theory, called
monadic dependence, is the right dividing line for the computational complexity
of first-order model-checking.

Conjecture 1 (see e.g. [1, 4, 9, 10]). Let F be a class of graphs which is closed
under taking induced subgraphs. If F is monadically dependent, then first-order
model checking is FPT on F. Otherwise, first-order model checking is AW []-hard
on F.
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Planarity and Dimension
P1oTR MICEK

(joint work with Heather S. Blake, Jedrzej Hodor, Michal Seweryn,
and William T. Trotter)

We study finite partially ordered sets, called posets for short. Dimension is a key
measure of complexity for posets, and the dimension of a poset P, denoted by
dim(P) is the least positive integer d such that P is isomorphic to a subposet of
R? equipped with the product order. The problem of testing whether dimension is
at most d (for d > 3) appeared on the famous Garey-Johnson list of problems [6].
Nowadays, we know that dimension is NP-hard to compute [13, 3] and hard to ap-
proximate [1]. The dimension captures important graph concepts like planarity [9]
or nowhere denseness [7].

Dimension was introduced in a foundational paper [2] by Dushnik and Miller in
1941. This paper also includes the canonical structure in posets forcing dimension
to be large, namely, the family of standard examples. For each integer n with
n > 2, the standard example of order n, denoted by S,,, is a poset on 2n elements
Q1,...,Qpn,b1,...,b, such that aq,...,a, are pairwise incomparable, b1, ..., b, are
pairwise incomparable, and for all 7, j € {1,...,n}, we have a; <b; in S,, if i # j
and a; || b; if ¢ = j. It is one of the first exercises in dimension theory to show
that dim(S,,) = n for all n with n > 2. Since dimension is a monotone parameter,
dim(P) > n whenever P contains a subposet isomorphic to S,,.

However, large standard examples are not the only way to drive dimension up.
There are families of posets with arbitrarily large dimension such that for some
integer d with d > 2, no poset in the family contains Sy, e.g., incidence posets of
complete graphs (as proved by Dushnik and Miller [2]), interval orders (see a tight
asymptotic bound on their dimension by Fiiredi, Hajnal, Rodl, and Trotter [5]),
adjacency posets of triangle-free graphs with large chromatic number (as shown
by Felsner and Trotter [4]). These results motivate the following definitions. The
standard ezample number of a poset P, denoted se(P), is set to be 1 if P does not
contain a standard example; otherwise, se(P) is the maximum order of a standard
example contained in P. Clearly, for every poset P, we have se(P) < dim(P).
A class of posets C is dim-bounded if there is a function f such that dim(P) <
f(se(P)) for every P in C. As we discussed, the class of all posets is not dim-
bounded.

The dimension of a poset P can be defined equivalently as the chromatic number
of the hypergraph on the set of all incomparable pairs of P with the edge set given
by the set of all alternating cycles in P. This establishes an analogy between
dimension of posets and chromatic number of graphs. The inequality se(P) <
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dim(P) for all posets P parallels the inequality w(G) < x(G) for all graphs G.
Both inequalities are far from tight. A class of graphs C is x-bounded if there is a
function f such that for every G in C, we have x(G) < f(w(G)). We refer readers
to the recent survey by Scott and Seymour [10] on the extensive body of research
done on this topic. The analogy breaks with the celebrated Four Color Theorem,
which states that planar graphs have chromatic number at most four.

An element y in a poset P covers an element = in P if x < y in P and there is
no z in P with x < z <y in P. The cover graph of a poset P is the graph whose
vertices are the elements of P and two elements are adjacent if one covers the other.
Somewhat unexpectedly, posets with planar cover graphs can have arbitrarily large
dimension, as we learned® in 1978, see [11]. A diagram of P is a drawing of the
cover graph of P in the plane such that whenever xy is an edge in the cover
graph and x < y in P, the relation is represented by a curve from x to y going
upwards. In 1981, Kelly [8] published a viral construction of posets with planar
diagrams and arbitrarily large dimension. However, all known constructions of
planar posets with large dimension contain large standard examples. Thus, since
the early 1980’s, it remained a challenge and perhaps the most important problem
in poset theory to settle the following.

Conjecture 1.

(1) The class of posets with planar diagrams is dim-bounded.
(2) The class of posets with planar cover graphs is dim-bounded.

We believe that the first published reference to Conjecture 1(1) is an informal
comment on page 119 in [12] published in 1992. However, the conjecture was
circulating among researchers soon after the constructions appeared. Accordingly,
Conjecture 1(1) is more than 40 years old and obviously Conjecture 1(2) is a
stronger statement. In this talk, we announce that both statements are true and
that we proved the following theorem.

Theorem 2. For every poset P with a planar cover graph, dim(P) < 256(se(P) +
1)% 4 264.
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Three-edge-coloring cubic graphs on surfaces of small Euler genus
BoJaN MOHAR

(joint work with Yuta Inoue, Ken-ichi Kawarabayashi, Atsuyuki Miyashita,
Tomohiro Sonobe)

I. The Four-Color Theorem, nowhere-zero flows, snarks. The Four-Color
Theorem (4CT) states that every loopless planar graph is 4-colorable. It was first
shown by Appel and Haken [1, 2] in 1977, and a simplified version of the proof
was given in 1997 by Robertson et al. [11].

Tutte proved that a plane graph is k-colorable (for any k£ > 2) if and only if
its dual graph admits a nowhere-zero k-flow.Since having a nowhere-zero 4-flow
in a cubic graph is the same as having a 3-edge-coloring, this gives the following
equivalent formulation of the 4CT (this equivalence was first observed by Tait in
1880 [13]).

Theorem 1. Every 2-connected cubic planar graph is 3-edge-colorable.

While the 4CT has no extension outside the realm of planar graphs, the version
of Theorem 1 has some chance to hold under some additional assumptions. In
particular, in 1966 Tutte [14] proposed his famous 4-Flow Conjecture.

Conjecture 2 (Tutte, [14]). Every 2-connected graph without a Petersen graph
as a minor admits a nowhere-zero 4-flow.

Although this conjecture is still open, its special case restricted to cubic graphs
was proved in 1997 by Robertson, Seymour, and Thomas [12]. The proof of this
major achievement is based on two nontrivial results, one about doublecross graphs
[4], and the other one about apex cubic graphs. (The full proof of the latter case
was not published.)
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When considering 3-edge-colorings of cubic graphs, it is easy to make a re-
duction to cyclically 4-edge-connected cubic graphs. These are 3-connected cubic
graphs in which every 3-edge-cut is formed by three edges incident with a single
vertex. Moreover, one can eliminate presence of cycles of length 4. Cyclically 4-
edge-connected cubic graphs with girth of at least 5 that are not 3-edge-colorable
are called snarks.

II. Snarks on the projective plane. The Petersen graph is the only known
snark that can be embedded in the projective plane. Mohar conjectured in 2004
(see [9]) that there are no other projective planar snarks. In our paper presented
at FOCS 2024 [6], we proved this conjecture.

Theorem 3 ([6]). The only snark embeddable in the projective plane is the Pe-
tersen graph.

Theorem 3 has two notable consequences. The first one is a strengthening of
the Tutte 4-Flow Conjecture 2 for graphs on the projective plane. We say that a
graph G is Petersen-like if it can be obtained from the Petersen graph by replacing
some of its vertices by connected planar graphs.

Theorem 4 ([6]). A 2-connected graph embedded in the projective plane admits a
nowhere-zero 4-flow if and only if it is not Petersen-like.

Theorem 4 in particular resolves the following conjecture of Neil Robertson from
mid-1990s (see Problem 5.5.19 in [10]).

Conjecture 5 (Robertson, 1994). Every 2-edge-connected graph on the projective
plane whose face-width is at least 4, has a nowhere-zero 4-flow.

Robertson made a more general conjecture:

Conjecture 6 (Robertson, 1994). For every surface S, there is a constant r such
that every 2-edge-connected graph embedded in S with face-width at least r has a
nowhere-zero 4-flow.

It is possible that there exists r such that Conjecture 6 holds for every surface
with the same value of 7.

The coloring-flow duality that holds for planar graphs no longer holds for graphs
on any other surface. However, an unexpected corollary of our Theorem 3 is that
there is a similar duality on the projective plane. Namely, the following result is
equivalent to Theorem 3.

Theorem 7. A cubic graph embedded in the projective plane is 3-edge-colorable if
and only if its dual is vertex 5-colorable.

Theorem 7 is indeed a surprising outcome since it was believed that there is no
coloring-flow duality for graphs on nonorientable surfaces (see [10] or [3]).
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IIT1. Snarks on the torus. A well-known conjecture by Griinbaum from 1968 [5]
asserts that every cubic graph with a polyhedral embedding (i.e., graphs whose
dual triangulation is a simple graph) in an orientable surface is 3-edge-colorable.
This conjecture was disproved by Kochol [8], who found a counterexample of genus
5. However, it was left unresolved whether the conjecture holds for surfaces of
smaller genus. The main version for the torus can be restated as follows.

Conjecture 8 (Griinbaum, 1968). If G is a 2-connected cubic graph embedded in
the torus and G is not 3-edge-colorable, then G contains two edges whose removal
gives a planar graph.

Vodopivec [15] proved that there are infinitely many snarks that can be embed-
ded in the torus. They are certain dot products of copies of the Petersen graph;
each of them contains two edges whose removal yields a planar graph. In our
recent work [7], we indeed show that the provided examples are the only toroidal
snarks, which implies the conjecture of Griinbaum [5].

Theorem 9. The only snarks embeddable in the torus are the Petersen graph and
the Blanu$a-Vodopivec dot products of copies of the Petersen graph.

Theorem 9 yields a strong version of the Tutte 4-Flow Conjecture for graphs
on the torus.

Theorem 10. FEvery cyclically-4-edge-connected toroidal graph different from the
Petersen graph and the BlanuSa-Vodopivec snark family admits a nowhere-zero
4-flow.

Theorem 10 implies Robertson’s Conjecture 6 for the torus with r = 3.

Theorem 11. Every 2-edge-connected graph in the torus whose face-width is at
least 3, has a nowhere-zero 4-flow.
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Erdés—Pésa property of cycles that are far apart
PAT MORIN
(joint work with Vida Dujmovié¢, Gwenaél Joret, Piotr Micek)

We prove that there exist functions f,g : N — N such that for all nonnegative
integers k and d, for every graph G, either G contains k cycles such that vertices
of different cycles have distance greater than d in G, or there exists a subset X
of vertices of G with |X| < f(k) such that G — Bg(X,g(d)) is a forest, where
Bg(X,r) denotes the set of vertices of G having distance at most r from a vertex
of X.

Turan densities for daisies and hypercubes
IMRE LEADER
(joint work with David Ellis, Maria Ivan)

An r-daisy is an r-uniform hypergraph consisting of the six r-sets formed by taking
the union of an (r — 2)-set with each of the 2-sets of a disjoint 4-set. Bollobds,
Leader and Malvenuto, and also Bukh, conjectured that the Turan density of the r-
daisy tends to zero as r — co. In this paper we disprove this conjecture. Adapting
our construction, we are also able to disprove a folklore conjecture about Turian
densities of hypercubes. For fixed d and large n, we show that the smallest set of
vertices of the n-dimensional hypercube @, that intersects every copy of Q4 has
asymptotic density strictly below 1/(d+1), for all d > 8. In fact, we show that this
asymptotic density is at most cd, for some constant ¢ < 1. As a consequence, we
obtain similar bounds for the edge-Turan densities of hypercubes. We also answer
some related questions of Johnson and Talbot, and disprove a conjecture made by
Bukh and by Griggs and Lu on poset densities.
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Recent work on the Erdés—Hajnal conjecture
TUNG NGUYEN
(joint work with Alex Scott, Paul Seymour)

A cornerstone of Ramsey theory, due to Erdds and Szekeres from 1935 [7], states
that every n-vertex graph has a clique or stable set of size at least %log n. This
cannot be asymptotically improved as Erdds [8] proved by a foundational proba-
bilistic argument that a typical n-vertex graph has no clique or stable set with at
least 2logn vertices. A 1977 conjecture of Erdds and Hajnal [5] predicts a very
different behaviour in graphs with a forbidden induced subgraph; formally, their
conjecture says that:

Conjecture 1 (Erdés-Hajnal). For every graph H, there exists ¢ > 0 depending
on H only such that every n-vertex graph with no induced copy of H has a clique
or stable set of size at least n°.

This conjecture remains open despite a substantial body of work. It lies at the
intersection of graph Ramsey theory and structural graph theory, and is connected
to other mathematical areas such as geometry, model theory, and probability. In
joint work with Alex Scott and Paul Seymour, we have obtained several partial
results towards the conjecture:

(1) A proof of the bound 2¢viegnloglogn for every forbidden graph H (also
joint with Matija Bucié¢) [2]. This asymptotically improves the general
bound 2¢V™°&" proved by Erdés and Hajnal from 1977 [5, 6].

(2) A proof of the conjecture when H is the five-vertex path Ps [12]. This
was the last open case of the problem of deciding the conjecture for every
excluded graph H on five vertices, which was first posed by Gyarfas in
1997 [10].

(3) A proof of the conjecture in the setting of graphs of bounded VC-dimension
[13]. This extends and unifies a number of previous results in geometric
graph theory and model theory, and resolves a problem posed indepen-
dently by Fox—Pach—Suk [9] and Chernikov—Starchenko—Thomas [3].

(4) A construction of infinitely many prime graphs {Hj}ir>1 such that the
conjecture holds for H = Hy, for every k > 1 [11], which settles a problem
of Chudnovsky in 2014 [4]. Here, a graph is prime if it cannot be obtained
by blowing up smaller graphs, and a theorem of Alon—Pach—Solymosi [1]
reduces the conjecture to the case when H is prime.
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Rainbow triangles and the Erdés-Hajnal problem in
projective geometries

PETER NELSON

(joint work with Carolyn Chun, James Dylan Douthitt, Wayne Ge, Tony Huynh,
Matthew E. Kroeker)

We formulate a geometric version of the Erdoés-Hajnal conjecture that applies to
finite projective geometries rather than graphs, in both its usual ‘induced’ form
and the multicoloured form.

An s-colouring of a finite projective geometry PG(n—1, ¢) is a function from the
points of G to {1,...,s}. If n > ng, we say that an s-colouring c of G = PG(n—1, q)
contains an s-colouring ¢g of Go = PG(ng — 1,¢) if there is a colour-preserving
embedding of Gy in G. The following is a slightly simplified version of our main
conjecture.

Conjecture 1 (Multicoloured geometric Erdés-Hajnal conjecture). For every
prime power q, aoll k,s € N and every s-colouring co of PG(k — 1,q), there exists
0,C > 0 such that, for alln € N and every co-free colouring ¢ of G 2 PG(n—1,q),
there is a subspace of G with dimension at least Cn® that uses at most s—1 colours.

In other words, an s-colouring omitting all copies of any fixed small s-colouring
must be very ‘far from random’ in the sense of containing a large subspace in
which some colour fails to appear.

Our main results resolve the conjecture in all the cases where (k,q) = (2,2),
and certain cases with (k, ¢, s) = (2,3), and (k,q, s) = (3,2,2).

If (k,q) = (2,2), then ¢p is a colouring of a three-element ‘triangle’, and there
are three essentially different cases, all of which we resolve. We derive both the
cases where ¢y assigns the same colour to two different elements from a recent
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breakthrough result in additive combinatorics due to Kelley and Meka; this also
implies a particular case with (k, ¢, s) = (3,2, 2), via an existing structure theorem.

The main contribution of the work is the case where (k, ¢, s) = (2,2,3). In this
case, ¢g is a ‘rainbow’ colouring of the three-point ‘triangle’ in binary projective
space. We resolve this via a structure theorem, which prove that rainbow-triangle-
free colourings of projective geometries are exactly those that admit a certain
decomposition into two-coloured pieces. This theorem is closely analogous to a
theorem of Gallai on rainbow-triangle-free coloured complete graphs.

The structure theorem, which is in fact proved at the generality of arbitrary
modular matroids rather than binary projective geometries, is a little too techni-
cal to state here, but has the following consequence, which is enough to resolve
Conjecture 1 in the (k,q,s) = (2,2, 3) case.

Theorem 2. Letn € N, let q be a prime power, and ¢ be a colouring of the points
of G 2 PG(n — 1,q) so that |c(L)| < 2 for each two-dimensional subspace L of
G. Then there are subspaces ) = Wo C Wi C ... C Wi = G of G such that
lc(Wit1 — W) <2 for all 0 <i < k.

Colouring t-perfect graphs
SANG-1L OUM
(joint work with Maria Chudnovsky, Linda Cook, James Davies, Jane Tan)

A clique is a set of pairwise adjacent vertices and a stable set is a set of pairwise
nonadjacent vertices. The stable set polytope of a graph G = (V, E) is the convex
hull of the incidence vectors of stable sets of GG, where the incidence vector of a
set S C V is the vector € RY such that , = 1 if v € S and z, = 0 otherwise.
The fractional stable set polytope of a graph is the set of all vectors z in RY that
satisfy the following linear inequalities:

(1) (Nonnegativity) z, > 0 for allv € V,
(2) (Clique inequalities) D . 2, < 1 for all cliques K of G.

It is easy to see that the stable set polytope of a graph is contained in its fractional
stable set polytope. Remarkably, it has been known since 1970s that the stable
set polytope of a graph is equal to its fractional stable set polytope if and only if
the graph is perfect. A graph is perfect if for every induced subgraph H of G, the
chromatic number of H, denoted by x(H), is equal to the size of the largest clique
of H, denoted by w(H).

Motivated by perfect graphs, in 1970s, Chvatal introduced t-perfect graphs. A
graph is t-perfect if its stable set polytope is equal to the set of all vectors x in RV
that satisfy the following linear inequalities:

(1) (Nonnegativity) =, > 0 for all v € V,
(2) (Edge inequalities) x,, + z, < 1 for all edges uv of G,

V(©)
S 73

(3) (Odd cycle inequalities) >, ¢y (o) Zv =L for every odd cycle C

of G.
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In 1984, Sbihi and Uhry introduced h-perfect graphs. A graph is h-perfect if its
stable set polytope is equal to the set of all vectors x in RY that satisfy the
following linear inequalities:

(1) (Nonnegativity) =, > 0 for all v € V,

2) (Clique inequalities x, < 1 for all cliques K of G,

(2) (Cliq q veK q

3) (Odd cycle inequalities T, < WI=L g every odd cycle C
veV(C) 2

of G.

One can easily deduce that every perfect graph is h-perfect and t-perfect graphs
are precisely h-perfect graphs without K4 subgraphs.

If a graph is t-perfect, then its stable set polytope contains %1, where 1 is the
all-one vector. This implies that the fractional chromatic number of a t-perfect
graph is at most 3. This motivates a problem of determining an upper bound
for the chromatic number of t-perfect graphs, proposed by Shepherd in 1990s.
So far, we have only two 4-critical t-perfect graphs; the complement of the line
graph of the complement of Cg found by Laurent and Seymour [4, p. 1207] and
the complement of the line graph of the 5-wheel found by Benchetrit [1, 2]. A
computer search shows that there are no other 4-critical t-perfect graphs with at
most 11 vertices.

In 1995, Shepherd wrote that

for every k > 4, it is not known whether each t-perfect graph is
k-colourable.

We prove that every t-perfect graph is 199053-colourable. This is the first finite
bound on the chromatic number of t-perfect graphs. Our proof also shows that
every h-perfect graph G is (w(G) + 199050)-colourable.

Still, we do not know whether every t-perfect graph is 4-colourable.

This is joint work with Maria Chudnovsky, Linda Cook, James Davies, and
Jane Tan [3].
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Refined Absorption: A New Proof of the Existence Conjecture
LUKE POSTLE
(joint work with Michelle Delcourt)

The study of combinatorial designs has a rich history spanning nearly two cen-
turies. In a recent breakthrough, the notorious Existence Conjecture for Com-
binatorial Designs dating back to the 1800s was proved in full by Keevash via
the method of randomized algebraic constructions. Subsequently, Glock, Kiihn,
Lo, and Osthus provided an alternate purely combinatorial proof of the Existence
Conjecture via the method of iterative absorption. We introduce a novel method
of refined absorption for designs; here as our first application of the method we
provide a new alternate proof of the Existence Conjecture.

A Steiner system with parameters (n,q,7) is a set S of ¢g-subsets of an n-set X
such that every r-subset of X belongs to exactly one element of S. More generally,
a design with parameters (n,q,r, \) is a set S of g-subsets of an n-set X such that
every r-subset of X belongs to exactly A elements of S.

The notorious Existence Conjecture originating from the mid-1800’s asserts
that designs exist for large enough n provided the obvious necessary divisibility
conditions are satisfied as follows‘: Let ¢ > r > 2 and A > 1 be integers. If n is
sufficiently large and (97°) | A("7}) for all 0 < i < 7 — 1, then there exists a design
with parameters (n, g, r, A).

In 1847, Kirkman [9] proved this when ¢ = 3, r = 2 and A = 1. In the 1970s,
Wilson [11, 12, 13] proved the Existence Conjecture for graphs, i.e. when r = 2 (for
all ¢ and A). In 1985, Rodl [10] introduced his celebrated “nibble method” to prove
that there exists a set S of g-subsets of an n-set X with |S| = (1 —0o(1)) (Z::) such
that every r-subset is in at most one element of S, thereby settling the approximate
version of the Existence Conjecture (known as the Erdés-Hanani Conjecture [6]).
Only in the last decade was the Existence Conjecture fully resolved as follows.

Namely in 2014, Keevash [8] proved the Existence Conjecture using randomized
algebraic constructions. Thereafter in 2016, Glock, Kiihn, Lo, and Osthus [7] gave
a purely combinatorial proof of the Existence Conjecture via iterative absorption.
Both approaches have different benefits and each has led to subsequent work using
these approaches.

Here [5] we introduce our method of refined absorption and then to provide a
new alternate proof of the Existence Conjecture via said method. We note that our
proof assumes the existence of K -absorbers (as established by Glock, Kiihn, Lo,
and Osthus [7], a short proof inspired by Keevash was recently given by Delcourt,
Kelly and Postle [2]) but sidesteps the use of iterative absorption. Our approach
has some of the benefits of both of the previous proofs, namely we provide a purely
combinatorial approach but one that utilizes single-step absorption and has the
potential to be useful for a number of applications. For example, in a follow-up
paper [4], we used this new approach to prove the existence of high-girth Steiner
systems.
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Refined Absorption. A transformative concept that upended design theory and
many similar exact structural decomposition problems is the absorbing method, a
method for transforming almost perfect decompositions into perfect ones, wherein
a set of absorbers are constructed with the ability to ‘absorb’ any particular un-
covered ‘leftover’ of a random greedy or nibble process into a larger decomposition.

The Existence Conjecture may be rephrased in graph theoretic terms, namely
an (n, ¢, r)-Steiner system is equivalent to a K -decomposition of Kj. For K-
decompositions, the key definition of an absorber is as follows: Let L be a K-
divisible hypergraph. A hypergraph A is a K -absorber for L if V(L) C V(A) is
independent in A and both A and L U A admit Kj-decompositions.

Glock, Kiihn, Lo, and Osthus [7] proved that a K -absorber Ay, exists for any
K -divisible graph L. The main use of absorbers is to absorb the potential ‘left-
over’ K-divisible graph of a specific set/graph X after a nibble/random-greedy
process constructs a K;-decomposition covering all edges outside of X. To that
end, we make the following definition: Let ¢ > r > 1 be integers. Let X be a
hypergraph. A hypergraph A is a Kj-omni-absorber for X if V(X) = V(A), X
and A are edge-disjoint, and for every K/-divisible subgraph L of X, there exists
a K -decomposition of L U A.

In particular note that since the empty subgraph is K-divisible, the definition
above implies that A admits a K;-decomposition. Moreover, since an absorber Ay,
exists for every L, we have that a K -omni-absorber for X exists provided that X
has enough isolated vertices compared to its number of edges; the construction is
simply taking A to be the disjoint union of the Ay, for every K/ -divisible subgraph
L of X.

A natural question then is how efficient an omni-absorber can we build? Taking
disjoint absorbers for every L yields an omni-absorber A with e(A) = 2%((X)),
One main purpose of our work was to show that an extremely efficient K} -omni-
absorber A for X exists, in particular such that A(A) = O(A(X)) provided that
A(X) is large enough (where A(A) denotes the (r — 1)-degree of A, also written
as A,_1(A), that is defined as the maximum over all (r — 1)-sets S of the number
of edges of A containing .5).

Here is the key definition for proving their existence: Let C' > 1 be real. We
say a Kgj-omni-absorber A for a hypergraph X is C-refined if every edge is in at
most C' cliques among the K -decompositions of L U A taken over all K -divisible
subgraphs L of X.

Our main result for omni-absorbers is the following: For all integers ¢ > r > 1,
there exist an integer C' > 1 and real € € (0, 1) such that the following holds: Let G
be an r-uniform hypergraph on n vertices with 6(G) > (1 —¢)n. If X is a spanning

subhypergraph of G’ with A(X) < & and we let A := max {A(X), ni=r . logn}7

then there exists a C-refined K g—omni—absorber A C G for X such that A(4) <
C-A.

We note that the above theorem with its extremely efficient omni-absorbers is
the key to our new proof of the Existence Conjecture. Namely, we will take X
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to be a random subset of the edges of K" (taken independently with some well-
chosen small probability p), apply the above theorem to find a K -omni-absorber
A for X, and then use the Boosting Lemma of Glock, Kiithn, Lo, and Osthus [7]
combined with the nibble method to find a Kj-packing of K7, \ A that covers all
edges in K\ (X U A). By the definition of omni-absorber then, any leftover L of
X can be absorbed into L U A, thereby completing the K -decomposition.

The inquiring reader may wonder then whether it is necessary to prove that
the Kj-omni-absorber is C-refined for our proof of the Existence Conjecture.
Technically, the refinedness property is not needed and only the high efficiency
(A(A) < C - A) is required. However, the property of being C-refined is key to
the other applications in our work; furthermore, it is necessary for our proof of
the above theorem which proceeds by induction on the uniformity and uses the
C-refinedness inductively.

The true benefit of our new proof of the Existence Conjecture is in the ro-
bustness of the proof structure. One may use our omni-absorber theorem as a
structural black box - a template that one can modify to prove various generaliza-
tions or variations of the Existence Conjecture. By embedding various gadgets on
to the cliques of the decompositions of the omni-absorber (what we generally call
boosters), we can build omni-absorbers suited to other settings. Note this is only
possible since our omni-absorbers are C-refined and hence the number of cliques
in the decomposition family is also small. Indeed, we used this proof structure
and black-box theorem in our other work, namely in the proof of the High-Girth
Existence Conjecture with Delcourt [4], in finding clique decompositions of ran-
dom graphs with Delcourt and Kelly [1] and in improving the upper bound for the
threshold of (n, ¢,2)-Steiner systems with Delcourt and Kelly [3].
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Colouring t-perfect graphs
CLEMENT RAMBAUD

For every k € Ny U {400}, we define the k-treedepth as the largest graph param-
eter tdy satisfying
(1) tdx(0) =0,
(2) tdx(G) < 1+ tdg(G — u) for every graph G and every vertex u € V(G),
and
(3) tdi(G) < max{tdx(G1),tdr(G2)} if G is a (< k)-clique-sum of G; and Ga,
for all graphs G1, Gs.
A (< k)-clique-sum of G and G3 is a graph obtained from the disjoint union of
G1 and G2 by identifying two cliques respectively in G; and G of the same size,
which is less than &, and then possibly removing some edges in the resulting clique.
In particular, a (< 1)-clique-sum of G; and Gs is always the disjoint union of G
and Go. This gives a well-defined parameter because if P is the family of all the
graph parameters satisfying 1-3, then tdy: G — maxpep p(G) also satisfies 1-3.
Note that the 1-treedepth is the usual treedepth, the 2-treedepth coincides with
the homonymous parameter tds introduced by Huynh, Joret, Micek, Seweryn, and
Wollan in [HJM+21], and that the +oo-treedepth coincides with the treewidth plus
1. Hence, for every graph G,

td(G) = td1(G) = tda(G) > -+ > td oo (G) = tw(G) + 1.

We characterize classes of graphs having bounded k-treedepth in terms of ex-
cluded minors.

Theorem 1. Let k be a positive integer. A class C of graphs has bounded k-
treedepth if and only if there exists an integer £ such that for every tree T on k
vertices, no graph in C contains TP, as a minor.

Here, O denotes the Cartesian product: for all graphs Gi,G2, G10OGy =
(V(G1) x V(Ga), {(u,v)(w/,v") | (u=v and w'v' € E(G2)) or (wv € E(G1) and v/
= v’)}); and P, denotes the path on £ vertices. For k = 1, this theorem implies
that a class of graphs has bounded treedepth if and only if it excludes a path as
minor, and for £ = 2 that a class of graphs has bounded 2-treedepth if and only if
it excludes a ladder as a minor, as proven by Huynh, Joret, Micek, Seweryn, and
Wollan [HIM+21].

As a corollary of Theorem 1, we obtain the following structural property for the
graphs excluding the k x ¢ grid as a minor, when k is small compared to ¢. This is
a qualitative strengthening of the celebrated Grid-Minor Theorem by Robertson
and Seymour [RS86].
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Corollary 2. There is a function f: N2> — N such that for all positive integers
k,?, for every graph G, if the k x £ grid is not a minor of G, then

tdas_1(G) < f(k, 0).
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Essentially tight bounds for rainbow cycles in proper edge-colourings
LI1SA SAUERMANN
(joint work with Noga Alon, Matija Buci¢, Dmitrii Zakharov, Or Zamir)

It is very well-known that every graph with average degree at least 2 must contain
a cycle. This talk concerned a rainbow version of this classical result: What
average degree is needed in a properly edge-coloured n-vertex graph in order to
guarantee a rainbow cycle, i.e. a cycle in which every colour appears at most
once? This problem was raised by Keevash, Mubayi, Sudakov and Verstraéte [7]
in 2007 and has resisted numerous attempts over the years. It is known, already
due to [7], that for an n-vertex graph an average degree of at least Q(logn) is
needed to guarantee a rainbow cycle. This remains the best-known lower bound
(up to the implicit constant factor). The upper bound has been the subject of a
series of improvements, starting with an initial upper bound of Keevash, Mubayi,
Sudakov and Verstraéte [7], who showed that any properly edge-coloured graph on
n vertices without a rainbow cycle has average degree at most O(n'/?) (i.e. it has
at most O(n*/?) edges). The first improvement of this bound was due to Das, Lee
and Sudakov [2], showing an upper bound of the form e(°8 W)MEED g0 the average
degree. This was in turn improved by Janzer [4] to O(log* n) and subsequently to
a bound of the form (logn)?T°(") by Tomon [8]. Very recently, the o(1) term in
the exponent was removed independently by Janzer and Sudakov [5] and by Kim,
Lee, Liu and Tran [6], showing the current state-of-the-art bound of O(log?n).
Our main result is an essentially tight answer to the question of Keevash, Mubayi,
Sudakov and Verstraéte, determining the average degree needed in a properly edge-
coloured graph on n vertices in order to guarantee a rainbow cycle up to lower
order terms.

Theorem 1. There exists a constant C' > 0 such that every properly edge-coloured
graph on n > 3 vertices with average degree at least C' -logn - loglogn contains a
rainbow cycle.

Our result is tight up to the loglogn factor. In particular, our result shows
that every properly edge-coloured graph on n vertices without a rainbow cycle
must have average degree at most (logn)'*°() which is tight up to the o(1)-
term. Our result can also be rephrased as saying that for a certain absolute
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constant C' > 0, every properly edge-coloured graph on n vertices with at least
C-n-logn-loglogn edges contains a rainbow cycle. The maximal possible number
of edges in a properly edge-coloured graph on n vertices without a rainbow cycle
may be viewed as the rainbow Turdn number of the family of all cycles. Our result
shows an upper bound of O(n - logn - loglogn) for this rainbow Turdn number,
which is optimal up to the loglogn factor.

The previous work on this question can be split into two fairly different proof
approaches. The previous state-of-the-art results [5, 6] both follow the “homo-
morphism counting” approach pioneered by Janzer in [4]. The other approach
of “passing to an expander” was first applied to this problem by Das, Lee and
Sudakov [2] and later significantly refined by Tomon in [§8]. Our argument falls in
the latter camp, and in the first step of our proof we pass to a subgraph which is
a robust sublinear expander of essentially the same average degree as our initial
graph. We note that our expander subgraph does not have quantitatively stronger
expansion properties compared to that of [8], and our method of finding it is actu-
ally very similar to that of [8]. The crucial difference in our argument compared to
[8] is that in our setup the expansion properties are much more robust, in a sense
that was first introduced in [3] and subsequently used and further developed in
[1]. We introduce various new tools for working with such expanders, which may
also be useful for other applications. The main part of our argument for finding a
rainbow cycle in such an expander subgraph is a carefully designed random process
that we analyse relying on the (robust) expansion properties and delicate multiple
exposure arguments. In particular, a key point of our argument is a setup where we
condition on the current state of the random process while keeping both the past
and the future sufficiently random. At every step, we then show that (with high
likelihood) we have significant expansion of a certain “rainbow-reachable” vertex
set when going to the next step, or we had significant expansion when compared to
the previous step. Interestingly, we cannot guarantee significant expansion of this
“rainbow-reachable” vertex set for every step, but only going forwards or going
backwards from any given step. Then, when comparing every other step, we have
significant expansion and can complete our argument.

The bound obtained in Theorem 1 represents a hard limit for our approach.
However, it is unclear whether the loglogn is actually necessary:

Question 2. Is the loglogn factor in the bound for the average degree in Theo-
rem 1 mecessary in order to guarantee a rainbow cycle?
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Resolution of the Kohayakawa-Kreuter conjecture
RAPHAEL STEINER
(joint work with Micha Christoph, Anders Martinsson, Yuval Wigderson)

The talk concerned thresholds for Ramsey properties of graphs. Given an r-tuple
(Hi,...,H,) of graphs, a graph G is said to be Ramsey for (Hu,...,H,) if every
r-coloring of the edges of G contains a monochromatic copy of H; in color 4, for
some 1 < i < r. Equivalently, in the language above, G is Ramsey for (Hy, ..., H,)
if there is no decomposition of G into the edge-union of r graphs, the ith of which
is H;-free. In general, the fundamental question of graph Ramsey theory is to
understand which graphs G are Ramsey for a given r-tuple; for more information,
see e.g. the survey [3]. An important special case of this question, which came
to prominence in the late 1980s thanks to pioneering work of Frankl-Rodl [5] and
Luczak-Ruciniski—Voigt [14], is the question of when a random graph is Ramsey
for a given r-tuple with high probability. More precisely, if G, , denotes the
binomial random graph with edge density p, then the question is for which values
of p = p(n) one has that G,, , is Ramsey for (Hy,..., H,) a.a.s. In the symmetric
case H; = --- = H,, this question was completely resolved in seminal work of R6dl
and Rucinski [20, 18, 19]. For a graph J, let us denote by v(J),e(J) its number
of vertices and edges, respectively, and let us define the maximal 2-density of a
graph H with e(H) > 2 to be

-1
mo(H) = max{% :JCH,v(J)> 3} .
With this notation, the random Ramsey theorem of R6dl and Rucinski [20, 18] is
as follows.

Theorem 1 (Rodl-Rucinski). Let H be a graph which is not a forest and let r > 2
be an integer. There exist constants C' > ¢ > 0 such that

1 ifp> Cn—1/ma(H)

lim P(G,,, is Ramsey for (H,...,H)) = { ifp=Cn ’

n—oo

0 ifp< en~1/m2(H),

There is a simple heuristic explanation for why the threshold for the Ramsey
property is controlled by the quantity mq(H). To explain it, let us suppose for
simplicity that H is strictly 2-balanced, meaning that mo(J) < mo(H) for any
proper subgraph J C H. Then one can easily verify that at the regime p <
n~1/m2(H) " an average edge of G, p lies in a constant number of copies of H. Thus,
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if p < en=Y/m2(H) where ¢ < 1, then a typical edge lies in no copy of H, and one
expects the copies of H in G, to be “well spread-out”. Thus, it is reasonable
to expect that one can r-color the edges without creating monochromatic copies
of H. On the other hand, if p > Cn~'/"2(H) where C' > 1, then a typical edge
lies in a large (constant) number of copies of H. In this regime, we expect a lot of
interaction between different H-copies, and it should be difficult to avoid creating
monochromatic copies.

Theorem 1 provides a very satisfactory answer to the question “when is Gy, p
Ramsey for (Hi, ..., H,)?” inthe case that H; = --- = H,., but says nothing about
the general case. However, nearly thirty years ago, Kohayakawa and Kreuter [9]
formulated a conjecture for the threshold for an arbitrary r-tuple of graphs. Given
two graphs Hy, Hy with mo(H;1) > mo(Hs), they defined the mized 2-density to
be

e(J)
—2 + ]./mQ(HQ)

mo(Hy, Hy) := max :JCHy,v(J)>2;.

v(J)
It is well-known and easy to verify (see e.g. [12, Lemma 3.4] or [2, Proposition
3.1]) that mo(Hy) > mao(Hy, Ha) > mo(Hz), and that both inequalities are strict
if one is.

Conjecture 2 (Kohayakawa—Kreuter). Let Hy,...,H, be graphs, and suppose
that mg(H1) > -+ - > mo(Hy) and mo(Hz) > 1. There exist constants C > ¢ > 0
such that

1 ifp> Cn~Y/ma(HyHz)

lim P(G,, , is Ramsey for (Hy,...,H;)) = {O if p < en-1/ma(Hi ),

n—oo

Just as in the case of Theorem 1, there is a simple (and mostly analogous)
heuristic explanation for why the function mo(Hy, H2) controls the threshold for
the asymmetric Ramsey property of G, ,. Conjecture 2 has received a great deal
of attention over the past three decades [9, 15, 10, 12, 2, 11]. For many years,
most papers on the topic aimed to prove the Kohayakawa—Kreuter conjecture
for certain special families of Hy,..., H,; such as when the graphs are cycles or
cliques. More recent works have proved results in greater generality. Notably,
Mousset, Nenadov, and Samotij [16] established the 1-statement of Conjecture 2
for all (Hy,...,H,). Subsequently, Bowtell-Hancock-Hyde [2] and Kuperwasser—
Samotij-Wigderson [12] took a major leap forward by showing that Conjecture 2
reduces to a necessary deterministic graph decomposition statement. To under-
stand this, note that apart from the previously mentioned global reason, a random
graph could also be Ramsey for (Hi,...,H,) due to a potential “local” reason:
for any fixed graph G that is Ramsey for (Hq,..., H,), if G is a subgraph of G,, p,
then certainly G, , is Ramsey for (Hu,..., H,). Therefore, in order to prove the
0-statement in Theorem 1, one necessarily has to prove that when p < en=1/m2(H)
then G, a.a.s. does not contain any fixed G which is Ramsey for (H,...,H). It
is well-known that the threshold for appearance of G in G,, ,, is determined by the
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maximal density of G, defined as

m(G) := max{% JCG,v(J) > 1}.
Thus, a necessary condition for the O-statement in Theorem 1 is that every Ramsey
graph G for (Hy,..., H,) satisfies m(G) > mqo(Hy, Hz). As alluded to before,
Bowtell-Hancock-Hyde and Kuperwasser-Samotij-Wigderson established that this
is the only remaining obstacle towards Conjecture 2.

Theorem 3 (Bowtell-Hancock-Hyde, Kuperwasser—Samotij—Wigderson). Sup-
pose that for every pair of graphs (Hy, Hs) with mo(Hy) > mo(Hs) > 1, the
following holds: if G is Ramsey for (Hy, Hs), then m(G) > mo(Hy, Hs). Then
Conjecture 2 is true.

Theorem 3 is a generalization of the Rédl-Ruciniski probabilistic lemma dis-
cussed above. Indeed, the condition in Theorem 3 is clearly necessary for the
O-statement of Conjecture 2 to hold, as if there were some G with m(G) <
mo(Hy, He) which is Ramsey for (Hy, Hy), then that G appears with positive
probability in G, ,,—1/mo(m,,1,) for any constant ¢ > 0, and hence the 0-statement
of Conjecture 2 would be false. Theorem 3 then says that this necessary condition
is also sufficient. Thus, the validity of Conjecture 2 is reduced to a deterministic
graph decomposition question. In both [2, 12], this deterministic condition was
verified for most pairs (Hy, Hs), but its verification for all pairs remained open.

Our main result confirms that this condition always holds, thus completing the
proof of Conjecture 2.

Theorem 4. Let Hy, Hs be graphs with mo(Hy) > mo(Hz) > 1. If a graph G is
Ramsey for (Hy, H3), then m(G) > mo(Hy, Ho).

Equivalently, in the graph decomposition language, Theorem 4 states that if
m(G) < mo(Hy, H2), then G can be edge-partitioned into an Hi-free graph and
an Ho-free graph.

In fact, we prove two more general graph decomposition theorems, Theorems 6, 5
below, which we expect to be of independent interest. It is not hard to see (and
we show this in the next section) that these two results, plus simple well-known
arguments, suffice to prove Theorem 4.

Recall that a pseudoforest is a graph in which every connected component
contains at most one cycle. If F' is a subgraph of G, we denote by G — F the
subgraph of G comprising all edges not in F.

Theorem 5. Fvery graph G contains a pseudoforest F C G such that mo(G—F) <

m(G).
On its own, Theorem 5 already suffices to prove Cpnjecture 2 in almost all
cases, namely for all tuples (Hy, ..., H,) where Hs contains a strictly 2-balanced

subgraph H) with ma(H2) = ma(H)) such that H) is not a cycle; this includes
almost all cases that were known before. However, Theorem 5 cannot be used to
resolve the remaining cases, so to prove Theorem 4 we need another decomposition
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result, which needs a new density parameter called the mazimal %—density of G.
We omit the technical definition.

3

Theorem 6. Let m > 5 be a real number. Every graph G with m(G) < m
contains a forest F C G such that ma (G—F)<m.

il
2
3
[4
5
6
[7
8

[9

[10]

[11]

[12]

[13

[14]

[15]

(16

18
19

[20

[22

]
]

REFERENCES

Balogh, J., Morris, R. & Samotij, W. Independent sets in hypergraphs. J. Amer. Math.
Soc.. 28, 669-709 (2015)

Bowtell, C., Hancock, R. & Hyde, J. Proof of the Kohayakawa—Kreuter conjecture for the
majority of cases. (2023), Preprint available at arXiv:2307.16760

Conlon, D., Fox, J. & Sudakov, B. Recent developments in graph Ramsey theory. Surveys
In Combinatorics 2015. 424 pp. 49-118 (2015)

Conlon, D. & Gowers, W. Combinatorial theorems in sparse random sets. Ann. Of Math.
(2). 184, 367-454 (2016)

Frankl, P. & Ro4dl, V. Large triangle-free subgraphs in graphs without K4. Graphs Combin..
2, 135-144 (1986)

Friedgut, E. & Krivelevich, M. Sharp thresholds for certain Ramsey properties of random
graphs. Random Structures Algorithms. 17, 1-19 (2000)

Friedgut, E., Rodl, V. & Schacht, M. Ramsey properties of random discrete structures.
Random Structures Algorithms. 37, 407-436 (2010)

Hyde, J. Towards the 0-statement of the Kohayakawa-Kreuter conjecture. Combin. Probab.
Comput.. 32, 225-268 (2023)

Kohayakawa, Y. & Kreuter, B. Threshold functions for asymmetric Ramsey properties in-
volving cycles. Random Structures Algorithms. 11, 245-276 (1997)

Kohayakawa, Y., Schacht, M. & Spohel, R. Upper bounds on probability thresholds for
asymmetric Ramsey properties. Random Structures Algorithms. 44, 1-28 (2014)
Kuperwasser, E. & Samotij, W. The list-Ramsey threshold for families of graphs. (2023),
Preprint available at arXiv:2305.19964.

Kuperwasser, E., Samotij, W. & Wigderson, Y. On the Kohayakawa—Kreuter conjecture.
Preprint avilable at arXiv:2307.16611.

Liebenau, A., Mattos, L., Mendonga, W. & Skokan, J. Asymmetric Ramsey properties of
random graphs involving cliques and cycles. Random Structures Algorithms. 62, 1035-1055
(2023)

Luczak, T., Rucinski, A. & Voigt, B. Ramsey properties of random graphs. J. Combin.
Theory Ser. B. 56, 55-68 (1992)

Marciniszyn, M., Skokan, J., Spohel, R. & Steger, A. Asymmetric Ramsey properties of
random graphs involving cliques. Random Structures Algorithms. 34, 419-453 (2009)
Mousset, F., Nenadov, R. & Samotij, W. Towards the Kohayakawa—Kreuter conjecture on
asymmetric Ramsey properties. Combin. Probab. Comput.. 29, 943-955 (2020)

Ramsey, F. On a problem of formal logic. Proc. London Math. Soc. (2). 30, 264-286 (1929)
Rodl, V. & Rucinski, A. Lower bounds on probability thresholds for Ramsey properties.
Combinatorics, Paul Erdds Is Eighty, Vol. 1. pp. 317-346 (1993)

Rodl, V. & Rucinski, A. Random graphs with monochromatic triangles in every edge color-
ing. Random Structures Algorithms. 5, 253-270 (1994)

Rodl, V. & Rucinski, A. Threshold functions for Ramsey properties. J. Amer. Math. Soc..
8, 917-942 (1995)

Saxton, D. & Thomason, A. Hypergraph containers. Invent. Math.. 201, 925-992 (2015)
Schacht, M. Extremal results for random discrete structures. Ann. Of Math. (2). 184, 333-
365 (2016)



Graph Theory 59

Hamiltonicity of expanders: optimal bounds and applications
BENNY SUDAKOV

(joint work with Nemanja Dragani¢, Richard Montgomery, David Munhd
Correia, Alexey Pokrovskiy)

1. INTRODUCTION

A Hamilton cycle in a graph G is a cycle that contains all the vertices of G.
The presence of such a cycle categorizes G as Hamiltonian. This fundamental
concept in Graph Theory has been extensively studied. Deciding whether a graph
is Hamiltonian or not is an NP-complete problem, and thus it is an important
area of research to find simple conditions which imply Hamiltonicity. One classic
example is Dirac’s theorem [11] that any graph with n > 3 vertices and minimum
degree at least n/2 is Hamiltonian. Almost all of the other famous conditions
also imply that the graph is dense. Hence, it is of particular interest to find
Hamiltonicity conditions which also apply to sparse graphs.

Over the past 50 years, a central focus in random graph theory has been de-
termining when sparse random graphs are Hamiltonian. Pédsa [24] introduced
the rotation-extension technique and established the threshold for Hamiltonicity
in G(n,p). This result was later refined by Bollobds [5] and Komlds and Sze-

merédi [18], who independently showed that G(n,p) is almost surely Hamiltonian
log n+log log n+w(1)

when p = - , whereas a smaller p leads to the presence of isolated
vertices. Random regular graphs can be even sparser yet still Hamiltonian with
high probability for all 3 < d < n — 1, see e.g. Cooper, Frieze, Reed [9] and
Krivelevich et al. [21].

The well-established understanding of Hamiltonicity in random graphs presents
an important step towards the search for simple properties of sparse graphs which
imply Hamiltonicity. It points to considering natural ‘pseudorandom’ conditions
which are required by a deterministic graph to resemble a random graph. How-
ever, forgoing the randomness of G(n,p) and relying only on these pseudorandom
properties to find a Hamilton cycle presents a significantly firmer challenge, simi-
lar to the generalisation of other problems from random to pseudorandom graphs.
Pseudorandom graphs have been systematically studied since work by Thoma-
son [26] in the 1980’s and their history can be found in the survey by Krivelevich
and Sudakov [20]. The most studied class of pseudorandom regular graphs was
introduced by Alon and is defined using spectral properties. Recalling that if a
graph G is d-regular then its largest eigenvalue is d, we denote the second largest
eigenvalue of G in absolute value by A(G). Then, a graph G is an (n,d, \)-graph
if it is d-regular with n vertices and satisfies |[A\(G)| < A.

The first major step towards understanding the Hamiltonicity of such pseudo-
random graphs was made by Krivelevich and Sudakov in 2003 in their influential
paper [19]. They showed that if d/\ > loglfo(l) n, then the graph is Hamiltonian.
In the same paper, Krivelevich and Sudakov made the beautiful conjecture that
the bound can be replaced by % > C for some large constant C, as follows.
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Conjecture 1. There exists C' > 0 such that zf% > C, then every (n,d, \)-graph
is Hamiltonian.

That is, if the absolute value of every other eigenvalue of a regular graph is at
most a small constant fraction of the largest eigenvalue, then the graph should be
Hamiltonian.

Considering the result in [19] in the context of random graphs allows us to
benchmark this progress in a broad sense. That is to say, the result of [19] is strong
enough to prove the likely Hamiltonicity of the random regular graph G,, 4 when
d> 10g2_°(1) n, while the ultimate goal, Conjecture 1, would be strong enough to
prove the likely Hamiltonicity of the random regular graph G,, ¢ when d is at least
some large constant. Despite a great deal of attention, through various relaxations
and generalisations of the problem, as well as many incentivising applications, the
bound established in [19] remained unchallenged for 20 years. Only recently, Glock,
Munh4 Correia and Sudakov [14] finally improved this, significantly strengthening
the result of [19] by showing that, for some large constant C' > 0, d/\ > Clogl/3 n
suffices to imply Hamiltonicity. Moreover, they showed that Conjecture 1 holds in
the special case when d > n®, for any fixed a.

Krivelevich and Sudakov applied their bound to several other problems on the
Hamiltonicity of sparse graphs; these and other applications are discussed in Sec-
tion 1.1. To allow applications to non-regular graphs, other pseudorandom condi-
tions which imply Hamiltonicity were also studied. Motivated by this, shortly after
Conjecture 1 was stated, several papers considered an even stronger conjecture,
singling out the key properties of (n,d, \)-graphs thought to give some potential
for proving Hamiltonicity. To state this even stronger conjecture, a variant of
which appeared for example in [6], we need the following definition.

Definition 2. An n-vertex graph G with n > 3 is a C-expander if: (a) |[N(X)| >
C|X| for all vertex sets X C V(G) with | X| < n/2C; (b) there is an edge between
any disjoint vertex sets X,Y C V(G) with | X|,|Y| > n/2C.

Conjecture 3. For every sufficiently large C > 0, every C-expander is Hamilton-
1an.

In 2012, Hefetz, Krivelevich and Szabd [16] made progress on this problem; the
precise expansion conditions used in their result can be found in Theorem 1.1
of [16] (in particular weakening (a) in our Definition 2), but imply that every
(log' =™ n)-expander is Hamiltonian.

We prove Conjecture 3, thus completing an extensive line of research on Hamil-
tonicity problems.

Theorem 4. For every sufficiently large C' > 0, every C-expander is Hamiltonian.

This result has a large number of applications, as discussed below. In particular,
it is a standard exercise to show that for every C' > 0 there exists a constant Cj
such that, if % > Cy, then every (n,d, \)-graph is a C-expander. Thus, clearly
Conjecture 1 is implied by Theorem 4, giving the following.
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Theorem 5. There is a constant C' > 0 such that zf% > C then every (n,d, \)-
graph is Hamiltonian.

We note here that in fact a stronger result than Theorem 4 holds — such graphs
are not only Hamiltonian, but Hamilton-connected. Furthermore, the Hamilton
cycle in Theorem 5 can be found in polynomial time. We finish by giving some
examples of the applications of Theorems 4 and 5.

1.1. Applications. Pseudorandom conditions for Hamiltonicity have found a
large variety of applications, and Theorems 4 and 5 immediately improve the
bounds required for many such applications. Notable examples are solving a con-
jecture of Pak and Radoi¢ié¢ on random Cayley graphs [23], which is a probabilistic
version of Lovdsz’s famous Hamiltonicity conjecture [22], then giving improved
bounds to a problem of Alon and Bourgain on additive patterns in multiplica-
tive subgroups [1] and other topics such as the Hamiltonicity in well-connected
graphs (see [14]), Hamilton cycles with few colours in edge-coloured graphs (see
[14]), positional games (see, e.g., [15]), coverings and packings of Hamilton cy-
cles in random and pseudorandom graphs (see, e.g., [12, 17]) and Hamiltonicity
thresholds in different random graph models (see, e.g., [2, 13]). Below we further
describe the first example.

In 1969, Lovéasz [22] made the following famous conjecture about the Hamil-
tonicity of vertex-transitive graphs, which are graphs in which any vertex can be
mapped to any other vertex by an automorphism.

Conjecture 6. Fvery connected vertezx-transitive graph contains a Hamilton path,
and, except for five known examples, a Hamilton cycle.

As Cayley graphs are vertex-transitive and none of the five known exceptions in
Conjecture 6 are Cayley graphs, Lovasz’s conjecture implies the following earlier
conjecture, posed in 1959, by Strasser [25].

Conjecture 7. Every connected Cayley graph is Hamiltonian.

Conjecture 7 is known to be true when the underlying group is abelian, but the
only progress towards the conjectures in general is a result of Babai [4] that every
vertex-transitive n-vertex graph contains a cycle of length Q(y/n) (see [10] for a
recent improvement by DeVos) and a result of Christofides, Hladky and Méathé [7]
that every vertex-transitive graph of linear minimum degree contains a Hamilton
cycle. The “random version” of Conjecture 7 is a natural relaxation of the original
problem. Alon and Roichman [3] showed that there is a constant C' > 0 for which,
for any group G, the Cayley graph generated by a random set S of C'log |G|
elements, I'(G, S) say, is almost surely connected. Hence, an important instance
of Conjecture 7 is to show that I'(G, S) is almost surely Hamiltonian. This problem
was also stated as a conjecture by Pak and Radoicié [23]. Since then, several papers
have made progress on this problem. Krivelevich and Sudakov [19] showed that
O(log® n) generators suffice, Christofides and Markstrom [8] improved this bound
to O(log®n), and Glock, Munhg Correia, and Sudakov [14] further refined it to
O(log®3 n).
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Theorem 5 resolves this conjecture. Indeed, Alon and Roichman [3] showed
that if |S| > Clog|G| for some large constant C, then I'(G,S) is almost surely
an (n,d, A)-graph with d/\ > K for some large constant K. Thus, we obtain the
following.

Theorem 8. Let C' be a sufficiently large constant. Let G be a group of order n
and d > Clogn. If S C G is a set of size d chosen uniformly at random, then,
with high probability, T'(G,S) is Hamiltonian.

(1]

S
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Factoring pattern-free permutations into separable ones
STEPHAN THOMASSE
(joint work with Edouard Bonnet, Romain Bourneuf, Colin Geniet)

1. INTRODUCTION

Given a class C of discrete structures, the arguably preeminent algorithmic task
is the one of recognition: does the input belong to C? This problem is often tied
with an effective construction of the class C by performing elementary operations
on some basic building blocks. For instance, totally unimodular matrices [10],
minor-closed classes [9], and perfect graphs [6] can be constructed from simpler
objects, respectively, network matrices, graphs embeddable on low-genus surfaces,
and variants of bipartite graphs. In this talk we show that strict classes of permu-
tations, that is, those avoiding a fixed pattern, can be constructed from separable
permutations (the basic class) via a bounded number of compositions (the elemen-
tary operation).

Given a positive integer n, we denote by [n] the set {1,2,...,n}. Let n < m be
two integers, we say that a permutation 7 € &, is a pattern of o € &, if there
is an increasing function f from [n] to [m] such that 7(i) < m(j) if and only if
o(f(i)) < o(f(j)) for all 4,5 € [n]. Another way of characterizing patterns is to
associate to a permutation o € &,, its n x n matrix A(o) = (a;;) with a;; = 1 if
j = o(i), and a;; = 0 otherwise. Observe that 7 is a pattern of o if and only if
A(m) is a submatrix of A(o). For instance, 12345 is a pattern of ¢ if it contains
an increasing subsequence of length five. A crucial achievement in permutation
patterns is the Guillemot—Marx algorithm, which decides if a permutation 7 is a
pattern of o in time f(w) - |o|, where |o| is the size of o.

Patterns readily offer a complexity notion for permutations: A permutation is
“simple” if it does not contain a fixed small pattern. We will consider classes of
permutations, which are assumed closed under taking patterns. The existence of
a gap between the class of all permutations and any strict class is illustrated by
the Marcus—Tardos theorem, answering the Stanley—Wilf conjecture: Every strict
class of permutations has at most 2°(™ permutations of size n, whereas the class of
all permutations obviously has n! = 29("1°2n) sych permutations. From an algo-
rithmic perspective, sequences avoiding a fixed pattern can be comparison-sorted
in almost linear time O (n . 2(1+°(1))a(”)) where « is the inverse Ackermann func-
tion [4, 8, 5], while linear algorithms when excluding some specific small patterns
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have been long known [7, 1]. Furthermore, as a generalisation of Guillemot—Marx
algorithm, any property defined using first-order logic (FO) can be tested inside
any strict permutation class C in linear time [2]. For instance, given a fixed per-
mutation 7, one can decide in linear time if an input n-permutation o in C is such
that every pair of elements 4, j € [n] is contained in a pattern 7 of . Observe that
even the existence of a linear-size positive certificate for this seemingly quadratic
problem is far from obvious.

Strict classes of permutations are thus significantly simpler, both algorithmically
and in terms of growth. The next question is to construct them from a basic
class using some simple operations. In the case of permutations, possibly the
most natural elementary operation is the product (or composition). Furthermore,
the class of separable permutations is basic in several ways. It consists of those
permutations whose permutation graph is a cograph; an elementary graph class
(which coincides with graphs of twin-width 0). Like cographs have a natural
auxiliary tree structure (the cotrees), separable permutations inherit their own tree
structure, the so-called separating tree [3]. Separable permutations are originally
themselves defined from the trivial permutation 1, by successively applying direct
sums (setting two permutation matrices as diagonal blocks of the new permutation
matrix) or skew sums (the same with antidiagonal blocks), or equivalently by
closing {12,21} under substitution. They are well known to be the permutations
avoiding the patterns 2413 and 3142 [3].

As our main result, we show:

Theorem 1. For any pattern w, there exists k, = 222" such that every permu-

tation avoiding m is a product of at most k. separable permutations.

Theorem 1 with the definition of separable permutations, every permutation
of Au(w), the set of permutations avoiding the pattern 7, can be built from the
trivial permutation 1 via direct and skew sums, followed by a bounded-length
product. Conversely, remark that for any ¢, the class of products of ¢ separable
permutations avoids some pattern, since it contains only 29(¢™ permutations on n
elements.

The proof is effective, and yields a fixed-parameter tractable (FPT) algorithm
to compute the factorisation. With some more work, we show how to implement
it in linear time.
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A tamed family of triangle-free graphs with unbounded chromatic
number

Nicoras TROTIGNON

(joint work with Edouard Bonnet, Romain Bourneuf, Julien Duron, Colin Geniet
and Stéphan Thomassé)

One of the main questions on the chromatic number x(G) of a graph G is how it
compares to the clique number w(G). Indeed, while w(G) < x(G), early construc-
tions by Blanche Descartes [4], Zykov [12], and Mycielski [9] show that there are
triangle-free graphs with arbitrarily large x. Such graphs have been an important
source of inspiration in graph theory. For instance, a distinctive early success of
the probabilistic method was the construction by Erd6s [5] of graphs with large
girth and large chromatic number. Another example is the proof by Lovédsz [8] of
the Kneser conjecture [7], a cornerstone of the introduction of topological methods
to combinatorial problems.

There is also an interesting interplay of these graphs with discrete geometry
in the plane. For instance, triangle-free segment intersection graphs were shown
to have unbounded chromatic number [10], disproving a question of Erdds and
Gyaérfas [6]. The proof consists of astutely representing Burling graphs (another
class of triangle-free graphs of unbounded chromatic number that are intersection
graphs of boxes of R?) [2] as intersection graphs of segments in the plane.

We present in this talk a new explicit sequence of triangle-free graphs Gy, which
we call twincut graphs, satistying x(Gy) = k with the following striking property:
all their induced subgraphs have non-adjacent twins (two vertices with the same
neighborhood), or an edgeless vertex cutset of size at most two. This is very
surprising since both situations are, when considered individually, particularly
favourable to keeping the chromatic number low. On the one hand, creating twins
does not change the chromatic number. On the other hand, Alon, Kleitman, Saks,
Seymour and Thomassen [1] proved that the closure of any basic class under gluing
along bounded subsets of vertices preserves bounded chromatic number. This was
later refined by Penev, Thomassé and Trotignon [11] who showed that such closure
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admits extreme decompositions: a small vertex cutset isolates a basic subgraph of
the final graph, hence allowing a coloring with few colors.

A natural question is to consider two different types of closure, each behaving
well with respect to the chromatic number, and try to combine them. Along those
lines, Chudnovsky, Penev, Scott, and Trotignon [3] asked whether the closure of a
x-bounded class under substitutions and bounded cutsets could remain y-bounded,
where a y-bounded class is a hereditary class of graphs such that there exists a
function f satisfying x(G) < f(w(G)) for all graphs of the class.

It may seem at first that this is just a matter of finding the right induction
hypothesis, but twincut graphs show that the answer is negative in the seemingly
easiest case: the closure C of {K7, K2} (the 1-vertex graph, and the edge) under
the two operations of vertex replication (i.e., creating a non-adjacent twin) and
gluing two graphs on up to two non-adjacent vertices. To our surprise, the class
C turned out to contain all twincut graphs.
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Optimally edge coloring multigraphs
XINGXING YU
(joint work with Guantao Chen, Yanli Hao, Wenan Zang)

Let G be a loopless multigraph. Denote by V(G) and E(G) the vertex set and edge
set of G, respectively. Let A(G) denote the maximum degree of G and let x'(G)
denote the chromatic index of G. Vizing’s classical theorem on edge coloring states
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that x'(G) € {A(G),A(G) + 1} when G is a simple graph. (However, deciding
whether x'(G) = A(G) is NP-complete, see [6].) This result no longer holds for
multigraphs. Shannon [12] showed that x'(G) < 2A(G); and Vizing [15] and
Gupta [4] proved, independently, that x'(G) < A(G) + u(G), where u(G) is the
maximum number of edges between two vertices of G. Let

I*(G) := max{|E(H)|/||V(H)|/2] : H C G and |V (H)| > 2}, and
I(G) = [I'"(G)],

where H C G means that H is a subgraph of G. When |V (G)| > 3 there exists
H C G such that |V(H)| is odd and T'(G) = {&—‘ It is also easy to see

V() -1)/2
that I'(G) < 2A(G).

Edmonds’ matching polytop theorem [2] implies that x*(G) := max{A(G),
I'*(G)} is the fractional chromatic index of G. (See Seymour [11] for a shorter
proof.) By definition, x'(G) > [x*(G)] = max{A(G),I'(G)}. Padberg and
Rao [10] proved that x"*(G) can be computed in polynomial time. Goldberg ([3],
1973) and Seymour ([11], 1974) independently conjectured that, for any multi-
graph G, ¥/ (G) < max{A(G) + 1,I'(G)}.

The Goldberg-Seymour conjecture has been studied extensively; see the book
[13] by Stiebitz, Scheide, Toft, and Favrholdt, which has four chapters devoted
to this conjecture. It has also been studied algorithmically. Hochbaum, Nishizeki
and Shmoys [5] conjectured in 1986 that a max{A(G) + 1, x'(G)}-edge-coloring
of G can be found in polynomial time. Iliopoulos and Sinclair [7] recently gave a
polynomial time algorithm for Kahn’s result [9] that Goldberg-Seymour conjecture
holds asymptotically.

A proof of the Goldberg-Seymour conjecture was announced in 2019 [1] and
a more recent proof [8] was announced; both proofs are long and have not been
independently verified, and the proof in [8] is essentially the same as in [1] by elimi-
nating one single case. We give a combinatorial algorithm that finds in polynomial
time a max{A(G) + 1,I'(G) }-edge-coloring, establishing the Hochbaum-Nishizeki-
Shmoys conjecture as well as giving a different and much shorter (and manageable)
proof of the Goldberg-Seymour conjecture.

Theorem 1. For multigraphs G, one can find a max{A(G) + 1,T'(G)}-edge-
coloring of G in O(|V(G)|*|E(GQ)|?) time.

We use natural numbers to denote colors. For a positive integer k, let [k] :=
{1,...,k}. For a graph G and a set S C E(G), a partial edge coloring of G with
support S is a function ¢ : S — [k] (for some positive integer k) such that no two
adjacent edges of G receive the same color. (When S = E(G), we have the usual
edge coloring.) For any v € V(G), we write B(v) := [k]\¢(E(v)N.S), where E(v) is
the set of edges of G incident with v. For any U C V(G), let (U) := ey P(v).
For any subgraph H of G, let 3(H) := ¢(V(H)) and ¢(H) := ¢(E(H)), and we
use G[H] to denote the subgraph of G induced by V(H) and dgH (or simply 0H)
to denote the set of edges of G with exactly one incident vertex in H.
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We wish to understand the structure of a multigraph G that would imply
X' (G) = T'(G). So suppose x'(G) = T'(G). Let ¢ : E(G) — [I'(G)] be an edge
coloring of G and assume that H C G such that % =TI'(G) and |V (H)|
is an odd integer. Then for every a € [['(G)], ¢~ !(a) N E(H) is a matching in H
and has size (|[V(H)| — 1)/2; thus,

(a) for distinct vertices u,v of H, p(u) Ng(v) = 0;
(b) B(H)Np(0H) = 0;
(c) for any a € [[(G)|\P(H), |¢ " (a)NOH| = 1.

We say that a subgraph H of G is: ¢-elementary if (a) holds; ¢-closed if (b) holds;
w-mazximal if both (b) and (c) hold.

Let G be a multigraph and k := max{A(G) + 1,T(G)}]. We greedily color
the edges of G using colors from [k] and let ¢ denote the resulting partial edge
coloring. If E(G) = ¢ 1([k]) then ¢ gives the desired coloring. So assume
g € E(G)\¢ *([k]). We will find a partial edge coloring 7 such that 7=1([k]) =
o Y([k]) U {g}, by growing a tree T starting from g in a structured way. Observe
that such T cannot be both (p-elementary and ¢-maximal; since, otherwise, for
every a € [k], p~1(a) N E(G[T)) is a matching of size (|V(T)| — 1)/2 and, hence,
I'G) > % > k, a contradiction.

Such a tree T is constructed in stages, which are trees Ty, T4, . .., T41 such that
T;—1 C T; for i € [n+ 1]. This step terminates when T, is not y-elementary
but T, is p-elementary. We then refine the construction from 7, to T,41 by
constructing from T, o := T}, trees 15, 0, Tn,1, - - - s Tonyms Trom+1, such that 15, ;1 C
T, for ¢ € [m + 1]. This step terminates when T}, ,,+1 is not g-elementary but
Th,m is p-elementary. We further refine the construction from T, ., to T m41
by constructing from Ty m.0 := Tn,m trees Ty im0, -+ Tn,m,q> In,m,q+1 such that
Tomyi-1 C Tnm,i for i € [¢+ 1]. This step terminates when T, ¢+1 is Dot
p-elementary but Ty, ,n,q is p-elementary. Choose T to be a minimal subtree of
T.m,q+1 that is not g-elementary. We define s(T') :=n, ¢(T) := m, and p(T') := q.
We also define additional parameters ¢(T") and b(T") similar to what was used before
by Tashkinov [14].

We perform Kempe changes based on the structure of T' to obtain a tree 77 and
a coloring 7 from ¢ such that 7" is not m-elementary and (s(7"), £(T"), p(T"), t(T"),
b(T")) precedes (s(T'),4(T),p(T),t(T),b(T)) under the lexicographic ordering. This
step takes O(|V(G)|°|E(G)|?) time. By repeating this step O(|V|?) times, we ar-
rive at a partial edge coloring that is Kempe equivalent to ¢ for which there is
a color 8 not used by any edge incident with g; so we can extend 7 by assigning
B to g. We repeat the above process O(|E(G)|) time to obtain the desired edge
coloring.

There are many interesting open problems about edge-coloring, and we refer
the reader to the excellent book [13] by Stiebitz, Scheide, Toft, and Favrholdt.
In particular, the book mentions Twenty Pretty Edge Coloring Conjectures, and
several of those are related to Theorem 1.
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