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Abstract. Set theory has experienced rapid development in the recent years,
both in pure set theory and in its applications to other fields of mathemat-
ics. We have seen breakthroughs in combinatorial set theory, forcing, inner
models, descriptive set theory, Borel combinatorics, and moreover, exciting
new connections between some of these areas. The workshop succeeded in
presenting and discussing the important developments, fostering interaction
between researchers, and stimulating the field.
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Introduction by the Organizers

This workshop covered the state of the art in set theory developments. In pure set
theory topics included forcing axioms, infinitary combinatorics, inner model theory
and the core model induction, HOD (the hereditarily ordinal definable sets). In
applied set theory there were talks on Borel combinatorics, ergodic theory, and
applications to group theory, dynamics, and topology.

Lietz talked about exciting new connections between between forcing axioms like
PFA and large cardinals. His work moves us closer to addressing the long standing
problem on whether PFA and supercompact cardinals are equiconsistent. Lietz
introduced promising methods to attack this. In another line, also motivated
by this problem, and more generally, on lower bounds of consistency strengths,
Müller and Schlutzenberg gave insightful talks in inner model theory. Müller
reported on recent applications of genericity iterations to generic absoluteness and
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LSA (the Largest Suslin Axiom). And Schlutzenberg uncovered new properties
about how “correct” definable sets of reals in the model L(R) can be, assuming
the axiom of determinacy. In a related theme, Jackson reported new results on
the comnbinatorics of models of determinacy.

Moving to combinatorial set theory, Adkisson presented new theorems about
the tree property and successors at singular cardinals. The tree property is a
key compactness principle in set theory; it “captures” the combinatorial essence
of large cardinals. Related compactness-type properties are reflections principles.
Hamkins reported on recent connections between reflection and large cardinals.
Levine explored ways in which forcing can non-trivially change the cofinality of
cardinals, from large cardinals, focusing on Namba forcing. Gitik showed a new
way of increasing the powerset of a measurable cardinal, while preserving its mea-
surability, using Matthias style forcing. And (originally) motivated by Woodin’s
HOD dichotomy, Poveda discussed exciting new results, many joint with Gold-
berg, on compactness in HOD and to what extend cardinals are computed in
HOD correctly. Circling back to compactness, Viale showed the existence of higher
analogues of the compactness theorem from first order logic to L∞,∞.

Regarding applications of PFA, Moore announced an amazing result pinpointing
the consistency strength of Shelah’s conjecture, which says that every Aronszajn
line contains a Countyman suborder. This result falls into the category of using
PFA to analyze the combinatorics of ℵ1. In contrast, Rinot showed that ZFC
implies that this conjecture cannot generalize to higher cardinals.

Another hot topic was the interplay between large cardinals and ultrafilters.
Foreman presented new ways to analyze ineffable cardinals and various strength-
enings (all of which are types of large cardinals) and games on ultrafilters and
ideals. Also, on the topic of ultrafilters, Benhamou reported on striking new
theorems about the Tukey order on measurable cardinals, using combinatorial
principles, such as the the Galvin property and Prikry style, He also presented
connections between Tukey orders and Goldberg’s Ultrapower Aioms (UA). An-
other tour-de-force talk was the one by Dobrinen, who reported on the state of the
art of infinitary Ramsey theory. She discussed big Ramsey degrees and construc-
tions ranging from classical coloring problems to Galvin-Prikry style theorems.
Her talk also went over connections with computability and Borel combinatorics.

At the applied end of set theory, we had talks about the current developments
of descriptive set theory, Borel classifications, and applications of set theoretic
techniques to dynamics and group theory. In Borel combinatorics, there has been
a number of new developments on countable Borel equivalence relations (CBERs).
Tserunyan discussed treeable CBERs (i.e. those that admit an acyclic graphing)
and presented the striking theorem that quasi-treeable already implies treeable.
Her methods involve graph theory, Stone duality, and ultrafilters. Also on the
topic of CBERs, Iyer showed that groups which are locally of finite asymptotic di-
mension give rise to hyperfinite actions. Hyperfinite is a strengthening of treeable;
both are prominent in the theory of Borel classification of equivalence relations
and are considered “well-behaved”. On the other end of the spectrum are more
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complicated equivalence relations, and that was the subject of the Sabok’s talk.
He reported on various theorems on how conjugacy relations can be very “compli-
cated”, for example, turbulent in some cases.

Many new developments in ergodic theory and descriptive set theoretic applica-
tions to group theory were also discussed. Zomback talked about ergodic theorems
for Borel probability measure preserving (pmp) actions. Also discussing pmp ac-
tions, Tsankov provided new insights on the ergodic theory of infinite permutation
groups.

There were also talks on set theoretic applications to topology. Vaccaro pre-
sented theorems about properties of compact manifolds, more precisely, which
compact surfaces have generic chains. In a different vein, Solecki analyzed fil-
trations of topologies, motivated by connecting κ-Borel sets and κ-Bairness with
respect to varying topologies. The broader context is studying Polishable equiva-
lence relations. Finally, Calderoni discussed new results on idealistic equivalence
relations. While every orbit equivalence relations is idealistic, he showed that the
converse is false, in joint work with Motto Ros. Moreover, (assuming some de-
terminacy) they prove that there are continuum many ≤B-incomparable idealistic
equivalence relations. While orbit equivalence relations have been studied a lot,
fairly little is known about idealistic equivalence relations. The work of Calderoni
and Motto Ros ushers in a new promising research topic.

This workshop featured a lot of early career mathematicians: Andreas Lietz,
Hannes Jakob, William Adkisson, Eliott Glazer, Andreas Vaccaro, Jenna Zomback,
Eyal Kaplan, Tom Benhamou, and others. It was exciting to hear new research
progress – both motivated by some of classical problems in set theory, but with
new techniques and ideas, and also work on brand new topics. There was a lot of
fruitful interaction between students, postdocs, and more established experts, all
in the informal and productive Oberwolfach environment.
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Abstracts

Equiconsistencies between strengthenings of PFA and strengthenings
of supercompact cardinals

Andreas Lietz

Determining the exact consistency strength of the Proper Forcing Axiom (PFA) is
one of the holy grails of Set Theory. It is widely believed to be the known upper
bound, a supercompact cardinal, based on the following compelling evidence.

Theorem (Magidor[2], Viale [3]). Relative to a supercompact cardinal, it is con-
sistent that κ is supercompact and

Vκ |= “PFA fails in all forcing extensions”.

Theorem (Viale-Weiß [4]). Suppose κ is inaccessible and P is a proper standard
forcing iteration of length κ which forces PFA and turns κ into ω2. Then κ is
supercompact.

The best known lower bound for the consistency strength of PFA is provided by
the Inner Model Theory Program and is in the region of many Woodin cardinals.

We show that under mild additional assumptions, it is possible to determine the
exact strength of stronger forms of PFA which were introduced by Ben Goodman
[1].

Definition (Goodman). Suppose Γ is a class of formulas. Then Γ-CPFA holds
iff for any ϕ(x) ∈ Γ so that

ZFC ⊢ ∀x(ϕ(x) → ∀proper P 
P ϕ(x̌)),

any regular sufficiently large θ, proper P, any P-name ȧ ∈ Hθ, there is some
X ≺ Hθ of size ω1 with ω1 ∪ {P, ȧ} ⊆ X so that if π : X → M is the transitive
collapse then there is a π(P)-generic filter g over M so that V |= ϕ(π(ȧ)g).

PFA is equivalent to Σ1-CPFA and Σ2-CPFA holds in the standard model of
PFA, see [1]. For sufficiently large Γ it is possible to recover very large cardinals
from Γ-CPFA in the mantle, assuming the Bedrock Axiom (BA).

Theorem 1. Suppose n ≥ 4, Πn-CPFA and BA hold. Then ω2 is supercompact
for C(n) in the mantle.

See [1] for a definition of supercompact for C(n) cardinals. Combining this with
the proof of consistency of Σn-CPFA from large cardinals of Goodman [1], we
arrive at an equiconsistency.

Corollary 2 (Goodman, L.). For n ≥ 4, the following theories are equiconsistent:

(1) ZFC + ∃κ “κ is supercompact for C(n)”.
(2) ZFC + Σn+1-CPFA + BA.
(3) ZFC + Πn-CPFA + BA.
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Without assuming BA, we can prove a dichotomy reminiscent of Woodin’s
HOD-dichotomy [5].

Theorem 3. Suppose Π4-CPFA holds. Let N be the inner model obtained by
constructing with κ ∩ cof(ω) and NSκ ↾ cof(ω) for all κ of uncountable cofinality
over the mantle. Exactly one of the following holds.

(1) Every singular cardinal λ is singular in N and (λ+)N = λ+.
(2) Every regular cardinal λ ≥ ω2 is measurable in N .
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Quasi-treeable equivalence relations are treeable

Anush Tserunyan

(joint work with Ruiyuan Chen, Antoine Poulin, Ran Tao)

Countable Borel equivalence relations (CBERs) on standard Borel spaces are ex-
actly the orbit equivalence relations of Borel actions of countable groups. Thus,
we may view CBERs as a generalization of groups in the Borel context – indeed,
CBERs are Borel groupoids.

The analogues of Cayley graphs of groups in the context of CBERs are graph-
ings, namely, a graphing of a CBER E on a standard Borel space X is a Borel
graph G on X whose connected components are exactly the E-classes. Conse-
quently, the analogue of free groups are the treeable CBERs, i.e. those which
admit acyclic graphings, called treeings. Treeable CBERs form a special class
among CBERs that is rich in terms of Borel reducibility [3], but rather fragile oth-
erwise: it is not closed under products or countable increasing unions, and whether
it is closed under finite-index extensions remains a notoriously open question [4,
6.4(B)]. It is, however, a theorem of Jackson, Kechris, and Louveau [4, 3.4] that
the orbit equivalence relations of free Borel actions of virtually free groups are
treeable.

A well-known result from geometric group theory [2, 7.19] states that if a Cayley
graph of a finitely generated group is a quasi-tree (i.e. is quasi-isometric to a tree),
then the group is virtually free. It was asked by R. Tucker-Drob in 2015 whether
the analogue of this holds in the context of CBERs. We give a positive answer to
this question in [1]:

https://arxiv.org/abs/2405.09674
https://arxiv.org/abs/2405.09674
https://www.sciencedirect.com/science/article/pii/0003484376900243
https://www.sciencedirect.com/science/article/pii/0003484376900243
http://www.jstor.org/stable/27588460
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Theorem 1. If a CBER E admits a locally finite graphing G, each of whose
connected components is a quasi-tree, then E is treeable.

We also prove another version of this theorem, replacing the geometric notion
of being a quasi-tree with the combinatorial notion of having bounded tree width.
This version was also independently proven by H. Jardón-Sánchez [5] via a different
method.

Theorem 2. If a CBER E admits a locally finite graphing G, each of whose
connected components has bounded tree width, then E is treeable.

One should emphasize that in the hypotheses of these theorems, we do not
assume that there are uniformly Borel witnesses to each component being a quasi-
tree or having bounded tree width. Rather, these assumptions are abstract and
apply separately to each component; part of our proofs involves translating these
abstract extrinsic hypotheses into intrinsic Borel information about the graph G.
Due to this translation, both of these theorems are derived from the following
main result:

Theorem 3. If a CBER E admits a locally finite Borel graphing G and a Borel
family H of half-spaces (cuts) in G, which is finitely separating and dense towards
ends in each component of G, then E is treeable.

By a half-space in a graph G, we mean a connected and co-connected (within
the same connected component) set of vertices with finite edge-boundary. Clearly,
the complement of a half-space within the same connected component is again a
half-space, so in 3 we may assume that H is closed under such complements, and
thus forms a pocset: a poset under ⊆ with the complement operation.

Our proof of 3 exploits the Stone duality between pocsets and median graphs
(1-skeleta of CAT(0) cube complexes). More precisely, we construct a treeing not
on X directly, but on the space of all clopen ultrafilters (called orientations)
on the pocset H. We then transfer this treeing back to X through the principle
ultrafilter map.

The natural relation of nearness on these clopen ultrafilters defines a median
graph, i.e. a graph where every triple of vertices admits a unique median; in other
words, the intersection of all geodesics between these three vertices is a singleton.
The hypothesis on H ensures that this median graph is standard Borel (equiva-
lently, locally finite) and has finite hyperplanes. Using the convexity properties of
median graphs and the finiteness of hyperplanes, we construct a spanning tree in
each component of this median graph in a uniformly Borel manner, proving 3.

In [1], we also analyze the cases in 1, 2, 3 where G is one-ended, or more
generally, there is a Borel selection of one end in each component. In this case, we
show that E is, in fact, hyperfinite.
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Ergodic theory of infinite permutation groups

Todor Tsankov

Exchangeability theory in probability is concerned with classifying all possible
distributions of a collection of random variables (Xa : a ∈ M) invariant under a
certain permutation group G ≤ Sym(M). Classical theorems of de Finetti, Ryll-
Nardzewski, Aldous and Hoover, and Kallenberg give a complete answer when
G = S∞ or G = Aut(Q) (for all possible actions) but the general situation remains
largely mysterious.

I will discuss some recent results concerning probability measure preserving and
measure class preserving actions of large permutation groups. The first result is
that if G is a Roelcke precompact subgroup of S∞ (for example, an oligomorphic
permutation group), Gy X is a Borel action on a standard Borel space, and µ is
a Borel measure on X such that g∗µ is equivalent to µ for every g ∈ G, then there
is a σ-finite measure ν equivalent to µ, which is G-invariant. This generalizes a
result of Nessonov [3] for S∞.

The second result a generalization of de Finetti’s theorem. It gives more or less
optimal conditions under which, for a given permutation group GyM , the only
ergodic G-invariant measures on [0, 1]M are the product measures. The necessary
conditions are primitivity of the action and the lack of algebraicity (this means
that for every finite A ⊆ M , the stabilizer GA has infinite orbits outside of A).
However, as an example of Jahel and Perruchaud [1] shows, these conditions are
not sufficient. The result that I will discuss proves the conclusion under a slight
strengthening of either of the two hypotheses, which are satisfied in the presence
of compactness (for example if G is Roelcke precompact). This extends previous
results of Jahel and Tsankov [2].

The results in this talk are from [4].
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Non-structure theorems for higher Aronszajn lines

Assaf Rinot

(joint work with Tanmay Inamdar)

One of the great successes of set theory is the development of consistent axioms
asserting that the universe is saturated enough to the extent that objects that may
be added by forcing must already exist. These axioms enable rough classification
results for structures of size the first uncountable cardinal, ℵ1. Recall that by a
‘rough classification’ of a class C of structures equipped with a quasi-ordering ≺ we
refer to the study of global properties of (C,≺) such as the existence of universal
and minimal elements, of a small basis, well foundedness, etc.

Classes of countable structures tend to be ‘tame’, whereas classes of structures
of size continuum tend to be ‘chaotic’. It follows that the Continuum Hypothesis
implies that classes of structures of size ℵ1 are chaotic, but using forcing axioms,
some of them may be tamed.

The first forcing axiom came to life [ST71] in the course of proving the consistency
of the Souslin Hypothesis [Sou20] asserting that ‘(R, <) is the unique complete

linear order without end points and such that every pairwise disjoint collection of

open intervals is countable’. Back when Kurepa was working on this problem, he
discovered a duality between uncountable linear orders and transfinite trees. His
conversations with Aronszajn on the topic led to the discovery of an Aronszajn
tree which, by duality, gives rise to an Aronszajn line — an uncountable linear
order that is far from all previously known examples: uncountable sets of reals,
uncountable well-orders, and uncountable anti-well-orders. Curiously, this new
type of uncountable linear order was later rediscovered by Specker and then again
by Countryman.

A linear order (L,<) is monotone iff for every injection f from some X ⊆ L
of full size to L, there exists a Y ⊆ X of full size on which f is either strictly
increasing or strictly decreasing. In his work on topological spaces having a σ-
monotone base [Cou70], Countryman proved that an uncountable linear order
(L,<) that is uniformly monotone in the sense that L × L may be covered by
countably many sets C such that for all (x, y), (x′, y′) ∈ C, x < x′ → y ≤ y′,
must be far from uncountable separable orders, ω1 and its reverse ω∗

1 (i.e., must
be an Aronszajn line). He conjectured that these uniformly monotone lines are
too good to be true, but then Shelah [She76] ingeniously constructed one. At the
end of his paper, Shelah proposed a strong form of Souslin’s Hypothesis asserting
that every Aronszajn line must contain a Countryman line. Shelah may have
anticipated that together with Baumgartner’s Theorem [Bau73] that under the
Proper Forcing Axiom (PFA) the class of uncountable separable orders admits a
one element basis, a solution of this problem would pave the way to proving that
the class of uncountable linear orders may consistently admit a five element basis.
Three decades later, Shelah’s problem was solved by Moore [Moo06] who proved
that under PFA the class of Aronszajn lines admits a two element basis consisting
of a Countryman line and its reverse.
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In a previous installment of this workshop in 2011, Neeman presented a new
proof of the consistency of PFA using a finite support iteration. His method
suggested a way to obtain higher analogs of consequences of PFA. Subsequently,
the topic of ‘taming’ ℵ2 has been the subject of numerous workshops followed by
quite a few successful works.

In the proceedings [Mat16] to a workshop at the American Institute of Mathe-
matics in 2016 dedicated to the development of forcing axioms at ℵ2 and beyond,
Moore asked about a higher analog of his result. Here we solve this problem in
the negative. Interpreted positively, our work shows that ZFC is powerful enough
to decide Shelah’s strong form of Souslin’s Hypothesis at all successors of regular
cardinals except ℵ1.

Theorem 1. For every regular uncountable cardinal µ, if there is a µ+-Aronszajn
line, then there is one without a µ+-Countryman subline.

More generally, for the class of special Aronszajn lines we find that in the trich-
tomy between ‘trivial structure’, ‘tame structure’, and ‘chaotic structure’ that may
exist at successors of uncountable regular cardinals, there is in fact a dichotomy
between the two extreme possibilities.

Theorem 2. Suppose that κ = µ+ for a regular uncountable cardinal µ. Then all
of the following are equivalent:

• There is special κ-Aronszajn line;
• The class of special κ-Aronszajn lines is not well-founded;
• There exist a special κ-Aronszajn line that is monotone and a special κ-
Aronszajn line with no monotone subline;

• Any basis for the class of special κ-Aronszajn lines has size 2κ.

Analogous results are also obtained for successors of singulars and inaccessibles.
In order to secure the chaotic behaviour of the class of Aronszajn lines, we

formulated an anti-Ramsey relation T
∧
X−→ [κ]nθ and proved that it holds for various

canonical trees T. Its impact is exemplified by the following fact.

Fact 3. For κ is a regular uncountable cardinal, θ is an infinite cardinal, and
n ≥ 2, Each of the following clauses implies the next:1

(1) There exists a lexicographically ordered κ-Aronszajn tree T such that T
∧
X−→

[κ]nθ holds;
(2) There exists a (κ, n)-entangled sequence of 2θ-many κ-Aronszajn lines

none of which contains a monotone subline;
(3) There are 2θ-many pairwise monotonically far κ-Aronszajn lines;
(4) No basis for the class of κ-Aronszajn lines has size less than 2θ.

Our most general theorem yields anti-Ramsey relations from optimal anti-large-
cardinal hypotheses, where the combinatorial hypothesis �(κ) (resp. �<(κ)) of the
upcoming theorem hold true for every regular uncountable cardinal κ that is not
weakly compact (resp. Mahlo) in Gödel’s constructible universe.

1This remains true once adding ‘special’ before ‘κ-Aronszajn’ in all four clauses.
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Theorem 4. Let κ be a regular cardinal bigger than ℵ1.

• If �(κ) holds, then there is a lexicographically ordered κ-Aronszajn tree T

such that T
∧
X−→ [κ]nκ holds for every positive integer n;

• If �<(κ) holds, then there is a lexicographically ordered special κ-Aronszajn

tree T such that T
∧
X−→ [κ]nκ holds for every positive n.

The trees that satisfy our anti-Ramsey relation are obtained from walks on
ordinals. For this, we are chaining several steps together: first, finding sufficient

conditions on a C-sequence ~C to obtain a strong colouring for ω-many colours

of the corresponding κ-tree T (ρ
~C
0 ), then, via further conditions on ~C to step the

number of colours up into the maximal number of colours κ, and finally to obtain

suitable ~C meeting all of these conditions. Each of these steps is divided into
multiple cases in order to address all possible cardinals and cardinal arithmetic
configurations that may arise in ZFC. The third step is the most demanding one
and we now have a new vocabulary backed up by a factory for producing C-
sequences of prescribed characteristics. As a by-product, we were able to also
answer a question of Todorčević [Tod07, Question 2.2.18] concerning walks on

countable ordinals. He asked for a condition to put on ~C to ensure that T (ρ
~C
1 ) be

special. We found one and also addressed the problem of when T (ρ
~C
2 ) is special.

As a corollary, we get the following equivalence between special Aronszajn trees
and canonical special Aronszajn trees.

Theorem 5. For every regular cardinal µ, the following are equivalent:

• There exists a special µ+-Aronszajn tree;

• There exists a µ-bounded C-sequence ~C over µ+ for which T (ρ
~C
0 ), T (ρ

~C
1 )

and T (ρ
~C
2 ) are all special µ+-Aronszajn trees.
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Generic absoluteness for Chang-type models of determinacy and LSA

Sandra Müller

Universally Baire sets originate in work of Schilling and Vaught [5], and they were
first systematically studied by Feng, Magidor, and Woodin [4]. Since then they
play a prominent role in many areas of set theory. Recall that a set of reals is
universally Baire if all of its continuous preimages in compact Hausdorff spaces
have the property of Baire.

Assuming a proper class of Woodin cardinals, the study of the model L(A,R),
where A is a universally Baire set, is completely parallel to the study of L(R), and
most of the theorems proven for L(R) can be easily generalized to L(A,R). For
example, assuming a proper class of Woodin cardinals, generalizing the proof for
L(R), Woodin showed that the theory of the model L(A,R) cannot be changed by
forcing, and in fact, for every V -generic g and V [g]-generic h, there is an elementary
embedding

j : L(Ag,Rg) → L(Ag∗h,Rg∗h)

such that j ↾ Rg = id and j(Ag) = Ag∗h, and also L(A,R) |= AD+.
However, the model L(Γ∞,R) is much harder to analyze, where Γ∞ denotes the

set of all universally Baire sets of reals. For example, it is not clear that assuming
large cardinals, L(Γ∞,R) |= AD+ or even

℘(R) ∩ L(Γ∞,R) = Γ∞.

Woodin’s Sealing deals with the aforementioned issues.

Definition 1 (Woodin). Sealing is the conjunction of the following statements.

(1) For every set generic g over V , L(Γ∞
g ,Rg) |= AD+ and ℘(Rg)∩L(Γ∞

g ,Rg)
= Γ∞

g .

(2) For every set generic g over V and set generic h over V [g], there is an
elementary embedding

j : L(Γ∞
g ,Rg) → L(Γ∞

g∗h,Rg∗h)

such that for every A ∈ Γ∞
g , j(A) = Ah.

Inspired by the work done in [3] and [2], we, in joint work with Grigor Sargsyan,
introduce a new technique for establishing generic absoluteness results for models
containing Γ∞ in [1]. Our main technical tool is an iteration that realizes Γ∞

as the sets of reals in a derived model of some iterate of V . We show, from a
supercompact cardinal κ and a proper class of Woodin cardinals, that whenever
g ⊆ Col(ω, 22

κ

) is V -generic and h is V [g]-generic for some poset P ∈ V [g], there

is an elementary embedding j : V → M such that j(κ) = ω
V [g∗h]
1 and L(Γ∞,R)

as computed in V [g ∗ h] is a derived model of M at j(κ). Here j is obtained
by iteratively taking ultrapowers of V by extenders with critical point κ and its
images.

As a corollary we obtain that Sealing holds in V [g], which was previously demon-
strated by Woodin using the stationary tower forcing. Also, using a theorem of
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Woodin, we conclude that the derived model of V at κ satisfies ADR + “Θ is a
regular cardinal”.

Inspired by core model induction, we introduce the definable powerset A∞ of
Γ∞ and use our derived model representation mentioned above to show that the
theory of L(A∞) cannot be changed by forcing. Working in a different direction,
we also show that the theory of L(Γ∞,R)[C], where C is the club filter on ℘ω1

(Γ∞),
cannot be changed by forcing. Proving the two aforementioned results is the first
step towards showing that the theory of L(Ordω ,Γ∞,R)([µα : α ∈ Ord]), where
µα is the club filter on ℘ω1

(α), cannot be changed by forcing.
In joint work in progress with Lukas Koschat and Grigor Sargsyan, we con-

sider extensions of the model L(A∞) of the form L((η∞)ω ,A∞) where η∞ is the
supremum of all ordinals onto which there is an OD in the universally Baire sets
surjection of ℘(R). Based on this we argue that assuming there are two super-
compact cardinals κ0 < κ1, in a Col(ω, 2κ0)-generic extension (and because of
Sealing in any further generic extension) there are LSA pointclasses cofinally in
the universally Baire sets.
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Surfaces and other Peano Continua with no Generic Chains

Andrea Vaccaro

(joint work with Gianluca Basso, Alessandro Codenotti)

Let X be a metrizable compact connected space. A maximal chain of compact
connected sets of X – simply chain from now on – is a collection of compact
connected subsets of X which is linearly ordered by inclusion and maximal with
respect to this property. Equivalently, a chain can be described as a homeomorphic
image of the interval [0, 1] in the hyperspace of compact connected subsets of X
such that 0 is mapped to a singleton, 1 to X and, for each s < t, the image of s
is a subset of the image of t. Broadly speaking, the collection Φ(X) of all such
chains represents all the different ways in which it is possible to start, say at time
0, from a point of X , and then continuously grow out of it until, at time 1, the
whole space X has been covered.
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The question I would like to address is the following: for which spaces is there
essentially only one chain? A more rigorous way to formulate this question is
asking whether, given X , there is C ∈ Φ(X) such that its orbit under the action
Homeo(X) y Φ(X) is comeager in Φ(X), endowed with its natural compact
hyperspace topology. In such case, C is a generic chain of X .

Consider compact manifolds: on the circle S1, the chain consisting of all in-
tervals centered around some point x0 is generic in Φ(S1). A similar statement
is true for the closed interval. On the other hand, Gutman, Tsankov and Zucker
proved in [1] that no closed manifold of dimension at least 3 has generic chains,
and the same is true for the Hilbert cube. The case of surfaces was left open.

The following is a corollary of the main theorem presented in this talk.

Theorem 1. If X is a compact surface other than the sphere or the real projective
plane, then X has no generic chain.

The methods used to prove Theorem 1 are purely combinatorial. They allow
not only to recover the aforementioned result from [1], but cover moreover a vast
class of Peano continua – i.e. metrizable compact connected spaces which are
locally connected – going well beyond the setting of manifolds.

Theorem 2. Let X be a Peano continuum with no locally separating points. If X
either

(1) has a locally non-planar open subset,
(2) has a planar open set containing a simple closed curve which is not locally

separating,
(3) has a circular covering,

then X has no generic chain.

Instead of introducing all definitions appearing in the theorem, I will discuss
how they translate to manifolds: a compact manifold has a locally separating point
if and only if it is 1-dimensional, and it has a locally non-planar open subset if
and only if it is at least 3-dimensional. A boundary of a surface is an example of a
simple closed curve which is not locally separating and which lies in a planar open
set. Finally, the sphere and the real projective plane are the only closed surfaces
without a circular covering, which roughly means that they admit no finite covering
whose elements are regular open, connected subsets and whose nerve graph is a
cycle.

Notable examples covered by Theorem 2 that are not manifolds include the
Sierpiński carpet, the Menger curve and all universal k-dimensional compacta µk,
as well as any compact connected µk-manifold, for k ≥ 1.

The following questions are still open

Question 3 ([1]*Question 1.3). Is there a generic chain on the sphere? What
about the real projective plane?

As previously mentioned, the proof of Theorem 2 is combinatorial: the result
is in fact proved by first establishing a correspondence between Peano continua
and open sets of chains on one side, and finite connected graphs and walks on
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these graphs on the other. After that, a combinatorial necessary condition for
the existence of a generic chain on a Peano continuum is identified – based on a
well-known criterion due to Rosendal (see [2, Proposition 3.2]) – and proved to
fail under the assumptions of Theorem 2.

More precisely, the combinatorial condition is an off-by-one weak amalgamation
principle, stating that each walk can be refined by another walk in such a way that
any two different walks refining it can be reconciled by a small perturbation. Its
failure is obtained by producing irreconcilable walks that wind enough times in
opposite directions around circular subgraphs, with a combinatorial adaptation of
an idea that goes back to [1].

Theorem 2 has relevant consequences regarding the dynamics of the groups of
homeomorphisms of the spaces involved. If G is a topological group, a G-flow is a
continuous action Gy X on a compact Hausdorff space X . A G-flow is minimal
if every orbit is dense. Both classifying minimal flows of a group G and, vice versa,
classifying groups based on the properties of their minimal flows – often described
with a single object known as the universal minimal flow – are central goals in
abstract topological dynamics.

This classification is based on some fundamental dividing lines: a topological
group G is extremely amenable if it has only one minimal flow, the trivial one,
or, equivalently, if all G-flows have a fixed point. Beyond the extremely amenable
case, another measure of complexity for Polish groups is understanding whether all
minimal flows are metrizable, and a further dividing line is given by the so called
generic point property – implied by the aforementioned metrizability condition in
the Polish case, see [2] – which asserts that all minimal G-flows have a comeager
orbit. On a conceptual level, the latter condition isolates those Polish groups
whose minimal dynamics is tractable (see [4]).

After Uspenskij’s seminal work [5], it became clear that, given a flow G y X ,
the study of the induced action Gy Φ(X) often gives definitive information on the
dynamics of G. Building upon this insight, in [1] the authors prove that Homeo(X)
does not have the generic point property whenever X is a closed n-manifold for
n ≥ 3. They show moreover that the subgroup Homeo0(X) of homeomorphisms
isotopic to the identity does not have metrizable minimal flows, for any closed
surface X . It was however left open whether such groups have the generic point
property. Since for a closed surface X the flow Homeo0(X) y Φ(X) is minimal,
Theorem 1 allows to cover all but two of these cases.

Corollary 4. If X is a closed surface which is not the sphere or the real projective
plane, then Homeo0(X) does not have the generic point property.

The following open problem is tightly related to Question 3.

Question 5 ([1]*Question 1.3). Does Homeo0(S2), where S2 is the sphere, have
the generic point property? What about the real projective plane?

Theorem 2 can be used to deduce the failure of the generic point property
for Homeo(X) for spaces X (not necessarily manifolds) for which the action
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Homeo(X) y Φ(X) is minimal. Such condition is verified if X satisfies a strong
form of homogeneity called strong local homogeneity.

Corollary 6. If X is a strongly locally homogeneous Peano continuum (e.g. a
closed manifold or the Menger curve) which is not the circle, the sphere, or the
real projective plane, then Homeo(X) does not have the generic point property.

Other examples which fit the hypotheses of Corollary 6 are the universal k-
dimensional compacta µk and any compact connected µk-manifold, for k ≥ 1.

The Sierpiński carpet S is not homogeneous, but the minimality of the ac-
tion Homeo(S) y Φ(S) can be proved by hand. Theorem 2 thus also gives the
following.

Corollary 7. Let S be the Sierpiński carpet. The group Homeo(S) does not have
the generic point property.

Finally, for spaces as in Corollary 6 it is moreover possible to prove that the
action Homeo(X) y Φ(X) is generically turbulent, which implies a strong non-
classifiability result for the orbit equivalence relation of the action, thanks to a
fundamental theorem due to Hjorth ([6]).

Corollary 8. If X is a strongly locally homogeneous Peano continuum (e.g. a
closed manifold or the Menger curve) which is not the circle, the sphere, or the
real projective plane, then chains on X are not classifiable by countable structures.

All these results are part of the joint project [3] with Gianluca Basso and
Alessandro Codenotti.
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Tree Properties at Successors of Singulars of Many Cofinalities

William Adkisson

An old problem of Magidor is to obtain the tree property at every regular cardinal
greater than ℵ1. If there is to be a positive answer to this question, we must
obtain the tree property at many successors of singular cardinals; in particular, we
must obtain the tree property at successors of singular cardinals of many different
cofinalities. This is easy to arrange near large cardinals, since the successor of a
limit of supercompacts always has the tree property, but is much more difficult to
obtain at small cardinals.

The primary difficulty is that in the standard constructions to obtain the tree
property at the successor of a singular (e.g. [2]), the forcing selects a new cardinal
to become the successor of the desired cofinality. That is, if we want to obtain
the tree property at ℵω+1, we will have to select a new ω1. To obtain the tree
property at ℵω1+1, we need to select a new ω2. If we are forcing the tree property
at both cardinals, we will need to select a new ω1 and ω2. These selections cannot
be made in advance, and require complete knowledge of the forcing (other than
the selection at hand); this makes making multiple such selections difficult.

In previous work [1], the author developed a construction that, for any fixed
natural number n, could obtain the tree property at ℵωi+1 for all i < n. We
present that technique, and discuss it’s fundamental limitations. In particular,
it cannot obtain the tree property at successors of singulars of infinitely many
different cofinalities simultaneously.

In this talk, we present a new techniques that can be used to obtain the tree
property at successors of singulars with infinitely many different cofinalities simul-
taneously. In particular, we prove the following theorem:

Theorem 1. Let 〈κα | α < κ0〉 be a sequence of supercompact cardinals. Then
there is a forcing extension in which the tree property holds at ℵω+ω+1 and at
ℵωi+1 for all 0 < i < ω simultaneously.

This technique inductively selects a new ωi that will obtain the tree property
at ℵω+ωi+1 no matter what we choose for the later elements in the sequence. This
removes any possible interference between the cardinals, allowing us to choose a
new ωi for all i without disrupting any previous choices.

In the past two decades there has been a resurgence of interest in strengthenings
of the tree property, and the Magidor’s question can be posed for these principles
as well. We focus on the strong tree property, a strengthening of the tree property
that is closely linked with strongly compact cardinals. In particular, an inacces-
sible cardinal is strongly compact if and only if the strong tree property holds.
The constructions to force the strong tree property at successors of singular car-
dinals are similar to the tree property, but more delicate techniques are required.
We show how to use those techniques to generalize our result to the strong tree
property:
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Theorem 2. Let 〈κα | α < κ0〉 be a sequence of supercompact cardinals. Then
there is a forcing extension in which the strong tree property holds at ℵω+ω+1 and
at ℵωi+1 for all 0 < i < ω simultaneously.

Finally, we discuss how to extend these results to uncountably many different
cofinalities at once. These sequences can be very large, bounded above only by
the least supercompact used in the construction.
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Mouse sets and correctness in L(R)

Farmer Schlutzenberg
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Work in ZF + AD + V = L(R). Given a nicely definable countable set X
of reals, it is natural to ask whether X is a mouse set; that is, whether there is
a mouse M such that X = R ∩M . If so, can the mouse M be characterized?
Secondly, how correct is X (how elementary is X in R, etc)?

For example, the set of all OD reals is a mouse set (see [9]). We consider more
local versions of ordinal definability. At the projective level, R ∩Mn is exactly
the set of reals which are ∆1

n+2 in a countable ordinal, where Mn is the canonical
proper class mouse with n Woodin cardinals (here M0 = L). Moreover, M2n is
Σ1

2n+2- but not Σ1
2n+3-correct, and M2n+1 is also Σ1

2n+2- but not Σ1
2n+3-correct.

(Define M−1 = Lωck
1

. Then the same results hold, except that R ∩ Lωck
1

is the

set of ∆1
1 reals (in no parameters).) Moreover, writing <Mn for the usual order

of constructibility of Mn, <Mn↾ RMn is (a wellorder of RMn which is) (∆1
n+2)Mn -

definable.
Although M = Lωck

1
is not Σ1

1-correct, it can define Σ1
1 truth, via the following

anti-correctness phenomenon, due to Spector-Gandy and Ville:

– (Π1
1)V ↾M is uniformly (Σ1

1)M , meaning that there is a recursive ϕ 7→ ψϕ

sending Π1
1 formulas ϕ to Σ1

1 formulas ψϕ, such that for all x ∈ R ∩M ,

ϕ(x) ⇐⇒ M |= ψϕ(x).

– Similarly, (Π1
1)M is uniformly (Σ1

1)V ↾M .

Higher up, (Σ1
3)V ↾ L is not definable, and in fact, there are ∆1

3 reals which are
not in L. But the anti-correctness for Lωck

1
has an analogue for M1,Π

1
3:
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– (Π1
3)V ↾M1 is uniformly (Σ1

3)M1 (Woodin, via genericity iterations),
– (Π1

3)M1 is uniformly (Σ1
3)V ↾M1 (Martin-Mitchell-Steel).

The L(R) language is the language of set theory augmented with a constant
symbol for R. For definability over levels Jα(R) of L(R), we use this language. We
also write ΣR

1 for Σ1, and for integers n > 0, ΠR
n denotes ¬ΣR

n, and ΣR
n+1 denotes

∃RΠR
n. For ordinals α > 0 and integers n > 0, ODαn denotes the set of reals y

such that for some ξ < ω1 and some Σn formula ϕ of the L(R) language,

y = the unique real z such that Jα(R) |= ϕ(w, z)

whenever w is a real coding wellorder of ordertype ξ. Define ODR
αn likewise, but

with ΣR
n formulas ϕ replacing Σn. Woodin showed in the 1990s that for each

ordinal λ > 0, ODλ1 = ODR
λ1 is a mouse set; see [8].

Recall [7] that a Σ1 gap is an ordinal ordinal [α, β] which is maximal such that
Jα(R) 4Σ1

Jβ(R). Recall a gap [α, β] is projective-like if Jα(R) is non-admissible.
(In this case α = β.) Say [α, β] is admissible if Jα(R) is admissible. Admissible
gaps are divided further into strong and weak varieties. Say a projective-like gap
[α, α] is scale-cofinal if α is not of form γ + 1 where γ ends a strong gap.

Rudominer and Steel (see [3] and [1]) showed that if [α, α] is projective-like with

α of uncountable cofinality and n ≥ 1, then ODR
αn = ODαn is a mouse set.

Regarding projective-like gaps in general, Rudominer asked whether ODαn =
ODR

αn, and Rudominer and Steel conjectured that ODR
αn is a mouse set.

Rudominer defined the ladder mouse Mld in the 1990s, slightly beyond the
projective in complexity. It is the least mouse M such that for each n < ω
there is an M -cardinal δ such that M#

n (M |δ) ⊳M and δ is Woodin in M#
n (M |δ).

Rudominer showed that R ∩Mld ⊆ OD12. Woodin showed in 2018 [2] that R ∩
Mld = OD12 (so this is a mouse set). He also showed that Mld can compute
(ΣV

2 ) ↾ RMld , but did not establish the optimal anti-correctness result. His proof
used the stationary tower.

Theorem 1 (S. [4], 2024). Let [α, α] be a scale-cofinal projective-like gap. Let

n ≥ 1. Then ODαn = ODR
αn is a mouse set.

The proof gives a new proof that OD12 = R ∩Mld, avoiding the stationary
tower. It also gives anti-correctness for Mld:

Theorem 2 (S., [4], 2024). Anti-correctness holds for Π
J (R)
2 andM = Mld. There

is a unique Σ1-elementary σ : J (RM ) → J (R) and moreover:

– Π
J (R)
2 is uniformly Σ

J (RM )
2 ,

– Π
J (RM )
2 is uniformly Σ

J (R)
2 .

There is also a version for all scale-cofinal projective-like gaps, on a cone.
Now consider admissible gaps [α, β]. Then ODξn = ODα1 for all ξ ∈ [α, β)

and n ≥ 1. Moreover, if [α, β] is strong, Martin’s argument in [6] adapts in a
straightforward manner to give the same when ξ = β.

This leaves ODβn and ODR
βn when [α, β] is weak and n ≥ 2 (the n = 1 case is

uninteresting), and ODβ+1,n and ODR
β+1,n when [α, β] is strong and n ≥ 2.
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Theorem 3 (S., [4], 2024). Let [α, γ] be a weak gap, or γ = β + 1 where [α, β] is
a strong gap. Then for a cone of reals x, there is a “γ-ladder” x-mouse Mγ

ld(x)
definable over x from Jγ(R), analogous to Mld over J (R).

Theorem 4 (S., [4], 2024). Let [α, γ] be a weak gap, or γ = β + 1 where [α, β] is

a strong gap. Let e be least such that ρ
Jγ (R)
e+1 = R. Then ODγn is a mouse set for

n ≥ e+ 3, and for n ≤ e+ 1.

So this leaves n = e+2 open, and somewhat more naturally, ODγ,e+2({~p
Jγ(R)
e+1 }),

though this is still probably not quite the right question. There is a more natural
variant of ODR

γ,e+n in the current context; call it OD∗R
γ,e+n. Then we have:

Theorem 5 (S., [4], 2024). Let γ, e be as above. Then:

(1) For n ≥ 3, OD∗R
γ,e+n = ODγ,e+n is a mouse set.

(2) For a cone of reals x, OD∗R
γ,e+2(x) = R ∩Mγ

ld(x) is a mouse set.

In sufficiently “canonical” cases, the cone is not needed, and OD∗R
γ,e+2 is the

mouse set R ∩Mγ
ld. But in general, it remains open whether OD∗R

γ,e+2 is a mouse
set (without the cone).

These results also relate to the correctness conjecture of Rudominer and Steel
in [1], that, also assuming ZF + AD + V = L(R), given any (0, ω1 + 1)-iterable
mouse M , there are ordinals γ̄, γ and n < ω such that:

(i) RM = Jγ̄(RM ),
(ii) π : Jγ̄(RM ) → Jγ(R) is Σn+1-elementary (for the L(R) language),

(iii) there is wellorder of RM which is Σn+2-definable over Jγ̄(RM ) from a
parameter p ∈ RM .

Rudominer and Steel proved the conjecture in some cases, but not in general.
The conjecture has now almost been confirmed:

Theorem 6 (Steel, S., [5], 2024). The following variant of the Rudominer-Steel
correctness conjecture holds: in property (iii) of the conjecture, allow an arbitrary
parameter p ∈ Jγ̄(RM ), instead of demanding p ∈ RM .

(The current versions of the preprints [4] and [5] contain only parts of the results
mentioned above. The full results will be made available in due course.)
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The Tukey Order on Measurable Cardinals

Tom Benhamou

We say that a poset P is Tukey below Q if there is a function from P to Q which
maps unbounded subsets of P to unbounded subsets of Q. In this talk we will be
interested in particular posets– ultrafilters ordered by reverse inclusion and reverse
inclusion modulo the bounded ideal. This has been studied by many including
Dobrinen, Isbell, Milovich, Raghavan, Shelah, and Todorcevic. The results mostly
concentrate on ultrafilters on ω.

In the first part of the talk we will present results connecting the Tukey or-
der and recent developments in Prikry-type theory. More specifically, we connect
the Galvin property and Tukey-top ultrafilters. The Galvin property of an ultra-
filter U over κ says that given any 2κ-many sets in U , there are κ-many whose
intersection form a U -large set. In a joint work with Dobrinen we establish the
equivalence between being a κ-complete non-Galvin ultrafilter with the property
of being Maximl in the Tukey order among κ-directed posets of cardinality at most
2κ. In Prikry theory this is used for example to characterize when are old sets
of cardinality κ are dense in sets of cardinality 2κ in a Prikry extension with the
ultrafilter.

This observation initiated a joint project with Dobrinen in which we generalized
many results from the countable to the measurable settings. Surprisingly, we also
found some discrepancies and I will present one of them in this talk: for any two
κ-complete ultrafilters U,W , the Fubini product of U and W is Tukey equivalent
to the Cartesian product of U and W .

We will also discuss generalizations of Galvin’s theorem which says that normal
ultrafilters have the Galvin property. We will present a generalization that all
the ultrafilters in the class of finite iterated sums of p-points have the Galvin
property. In particular, in L[U ] every ultrafilter has the Galvin property. Also,
Supercompact cardinals always carry a non-Galvin ultrafilter. This raises a natural
question: can non-Galvin ultrafilters exist in the canonical inner models?

I will present a joint result with G. Goldberg resolving this question, we classify
the Galvin ultrafilters ultrafilters under UA+“every irreducible is Dodd-sound”.
These assumptions hold in the known canonical inner models.

In the next part of the talk we provide an ultrapower characterization of the
Tukey order: We prove that a poset P is Tukey below an ultrafilter U if in the
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ultrapower MU there is a thin cover of j′′UP . A thin cover is a cover which does not
contain jU (A) for any A ⊆ P unbounded. We use that to derive a characterization
for the Galvin property: U is non-Galvin if and only if there is a cover of j′′U2κ

which does not contain jU (A) for any set A of size κ.
Finally, we improve a theorem of Kanamori that if 2κ = κ+ then every uniform

ultrafilter over κ is not (κ+, κ+)-cohesive and show that in general every uniform
ultrafilter over κ is not (cf(ch(κ)), cf(ch(κ)))-cohesive. We then use the notion of
a Pλ-point at a measurable cardinal to answer a question of Kanamori regarding
the existence of a (κ+, κ+)-cohesive ultrafilter.

Particularly, we show that the existence of a (κ+, κ+)-cohesive ultrafilter is
equivalent to the existence of a Pκ++ -point and use known techniques to get such
an ultrafilter. Then we show that there is a non-trivial lower bound to the existence
of a Pκ++ -point, namely a 2-strong cardinal.

The compactness theorem for L∞∞

Matteo Viale

(joint work with Juan Manuel Santiago Suárez)

The infinitary logic Lκλ admits as formulae those constructed from the atomic
formulae of the signature L using negation, conjunctions and disjunctions of size
less than κ, and blocks of quantifiers ∃(xi : i < γ), ∀(xi : i < γ) on a string
of variables indexed by some γ < λ. The Lκλ-formulae can only have less than
λ-many free variables.1

The logic L∞λ is the union of the logics Lκλ for κ a (regular) cardinal; the logic
L∞∞ is the union of the logics Lκλ for κ, λ (regular) cardinals. Our focus in this
note is on the logics L∞ω and L∞∞.

We present the generalization to L∞∞ of the usual compactness theorem for
first order logic. While doing so we elaborate a bit on what are the right semantics
for these logics.

The Tarski semantics for the sublogics of L∞∞ in an L-stucture M is defined as
expected. Any usual proof system for first order logic can be naturally generalized
to L∞∞, and it is straightforward to establish the correctness theorem relative
to the Tarski semantics for L∞∞. However the completeness theorem for these
natural proof systems fails relative to Tarski semantics; specifically there is an
Lω2ω-sentence ψ which is provably consistent but does not hold in any Tarski
model (in a suitable signature L, ψ asserts that there is a bijection of ω onto ωV

1 ).
So one is left with two options: either change the semantics or change the proof

system.
It is the case that the main developments in the analysis of (the infinitary

sublogics of) L∞∞ followed the second path, i.e. most authors sticked to Tarski

1Hence infinitary disjunctions/conjunctions on a set of Lκλ-formulae are allowed only if the
formulae have all their free variables occurring in a fixed set of size less than λ.
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semantics, and either did not pay particular attention to syntactic proofs, or de-
vised new proof systems which yield a completeness theorem for this semantics
(e.g. this is the approach taken in the monographs on infinitary logics [2, 5]).

We address the discrepancy between the above proof system and Tarski seman-
tics for L∞∞ following the alternative pattern of changing the semantics. This
approach has already been pursued by Mansfield and Karp independently [1, 12],
who proved a completeness theorem relative to boolean valued semantics.

Below are the relevant definitions and results. We refer the reader to [8, 9] for
a deeper analysis of the merits of our approach in the study of L∞∞ and L∞ω and
for the definition of boolean valued model and of mixing model (the latter defines
a category which is equivalent to that of sheaves on a complete boolean algebras
for the sup-topology [4, Example (e), p. 115]), see [3].

Definition 1 (Santiago & V. 2024). Let ψ0, ψ1 be L∞∞-sentences such that ψ1 ⊢
ψ0.
ψ1 is a conservative strengthening of ψ0 if for all finite sets s of subsentences

of ψ0, ψ0 ∧
∧
s is consistent if and only if so is ψ1 ∧

∧
s.

Definition 2 (Santiago & V. 2024). Let {ψi : i ∈ I} be a family of consistent
L∞∞-sentences.

{ψi : i ∈ I} is finitely conservative if for all u finite subsets of I∧
i∈u ψi is a conservative strengthening of all the ψi with i in u.

Note that the following is a finitely consistent (but not finitely conservative)
Lω1ω-theory which is not boolean consistent:

T = {
∨
n<ω

cω = cn} ∪ {cn 6= cm : n < m ≤ ω}.

t = {
∨

n<ω cω = cn, c0 6= cω} is not finitely conservative: c0 = cω is consistent
with

∨
n<ω cω = cn, but not with

∧
t.

Theorem 1 (Compactness for L∞∞, Santiago & V. 2024). Let {ψi : i ∈ I} be a
family of L∞∞-sentences.

Then
∧

i∈I ψi ihas a boolean valued model if and only if {ψi : i ∈ I} is finitely
conservative.

Furthermore if each ψi is an L∞ω-sentence,
∧

i∈I ψi has a mixing model.

The theorem generalizes first order compactness in view of the following (com-
bined with [6, Thm. 6.3.7] and the observation that mixing models are full):

Theorem 2 (Santiago & V. 2024). Let T be a finitely consistent first order theory.
Then there exists T ∗ such that :

• T ∗ is provably equivalent to T , and
• T ∗ is finitely conservative.

We can also prove that our compactness theorem (almost) implies the Barwise
compactness theorem from [7].

The proofs of these results and other applications of the L∞∞-compactness
theorem appear (or will appear) in [8, 9, 10, 11].
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The second to last word on the consistency of Shelah’s conjecture

Justin Moore

(joint work with John Krueger)

In 2006, Moore proved that the Proper Forcing Axiom (PFA) implies that every
Aronszajn line contains a Countryman suborder; this later statement is sometimes
known as Shelah’s Conjecture. Unlike nearly all previous applications of PFA to
the combinatorics of ℵ1, this use seemed to need a significant amount of the consis-
tency strength of PFA. Also, PFA itself was needed in order to prove the existence
of a proper poset that introduces a Countryman suborder to an Aronszajn line. In
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particular, it was not clear if the Bounded Proper Forcing Axiom (BPFA) implied
Shelah’s Conjecture.

In 2008, the consistency strength of Shelah’s Conjecture was reduced to some-
thing less than the existence of a Mahlo cardinal by König, Larson, Moore, and
Veličković. Their arguments, however, still required something more than the ex-
istence of a reflecting cardinal—the exact consistency strength of BPFA. On the
other hand, the arguments showed that BPFA together with the assertion that all
Aronszajn trees are saturated does imply Shelah’s Conjecture. Here an Aronszajn
tree is saturated if any family of (uncountable) subtrees with pairwise countable
intersection has cardinality at most ℵ1.

In this talk, we announce that if there is an inaccessible cardinal κ, then there
is a κ-c.c. proper forcing which forces the conjunction of Shelah’s conjecture, PFA
for posets of cardinality ℵ1, Moore’s measuring principle, the assertion that all
Aronszajn trees are saturated, and the assertion that any two ℵ1-dense subsets of
R are isomorphic. In particular, if L is an Aronszajn line, there is a proper partial
order in Vκ which forces the existence of a Countryman suborder of L. This also
shows that the consistency strength of Aronszajn tree saturation and, e.g., MAℵ1

,
is exactly that of an inaccessible cardinal, answering a question of Moore. This is
joint work with John Krueger.

Consistency results regarding the Ketonen order and the
Lipschitz order

Eyal Kaplan

In recent years, Goldberg discovered and thoroughly analyzed the Ultrapower
Axiom (UA), which states that any pair of ultrapowers formed via σ-complete
ultrafilters can be compared by taking further internal ultrapowers. Goldberg’s
study of the UA has led to a series of striking results regarding the structure of
the set-theoretic universe (see [2]). For instance :

Theorem 1 (Goldberg). Assume UA. Then the least strongly compact cardinal is
supercompact.

Theorem 2 (Goldberg). Assume UA. Then GCH holds above a strongly cardinal.

Motivated by the second theorem, Goldberg asked whether the UA is consistent
with the violation of GCH on a measurable cardinal. This was lately answered in
[1]:

Theorem 3 (Ben-Neria, Kaplan). It is consistent (from large cardinals) that UA
holds, and GCH is violated on a measurable cardinal.

Theorem 3 demonstrates that forcing could be useful to obtain consistency
results regarding UA and related concepts. One of the fundamental UA-related
concepts is the Ketonen order.

In his study of the UA, goldberg observed that UA implies that the class of
σ-complete ultrafilters is well-ordered with respect to the Ketonen order. The
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modern formulation of the order is due to Goldberg, building on earlier work
by Ketonen, who introduced this order restricted to the class of weakly normal
ultrafilters [3].

Definition 1 (The Ketonen order). Let U,W be σ-complete ultrafilters. We say
that U is Ketonen below W , and denote U <k W , if and only if there exists
I ∈ W and a sequence 〈Uξ : ξ ∈ I〉 of σ-complete ultrafilters, such that each Uξ is
a uniform ultrafilter on some ordinal δξ ≤ i, and, for every X ⊆ κ (where κ is the
underlying ordinal of U),

X ∈ U ⇐⇒ {ξ ∈ I : X ∩ δξ ∈ Uξ} ∈ W.

The Ketonen order is a strict well-founded order on the class of all σ-complete
ultrafilters (see [2, Subsection 3.3.2]). When restricted to normal measures, the
Ketonen order coincides with the Mitchell order (see [2, Theorem 3.4.1]). Goldberg
observed that the Ketonen order is especially relevant in the study of the UA. In
fact, he proved:

Theorem 4 (Goldberg). UA is equivalent to the linearity of the Mitchell order.

Goldberg also observed that Ketonen relations between pairs of ultrafilters im-
ply that certain games involving these ultrafilters are determined. The determi-
nacy of these games is commonly used in descriptive set theory to order sub-
sets of the Cantor space according to the Lipschitz order. We provide below
the definition of the Lipschitz order only between σ-complete ultrafilters on some
ordinal κ. For that, we describe the Lipschitz game Gκ(W,U). The game is be-
ing held between two players, I and II, and consists of κ stages. On the i-th
stage (i < κ), Player I chooses a bit a(i) ∈ {0, 1}, and Player II replies with
a bit b(i) ∈ {0, 1}. Since Player I moves first, they are aware to the sequences
〈a(j) : j < i〉, 〈b(j) : j < i〉 constructed so far; Player II moves second, being aware
to the values of 〈a(j) : j ≤ i〉, 〈b(j) : j < i〉. After κ-many rounds, the players have
constructed a pair of subsets of κ,

a = {i < κ : a(i) = 1}

b = {i < κ : b(i) = 1}.

Player II wins if a ∈ W ↔ b ∈ U . Otherwise, Player I wins.

Definition 2 (The Lipschitz order). Let U,W be σ-complete ultrafilters on some
ordinal κ. We say that U is Lipschitz below W , and denote U <L W , if player I
has a winning strategy in Gκ(W,U).

The Lipschitz order is a strict partial order on the class of σ complete ultrafilters.
It is not known (in ZFC) whether it must be well-founded. Goldberg observed
that it is under UA:

Theorem 5 (Goldberg). Assume that U,W are σ-complete ultrafilters on κ. Then
U <k W implies U <L W .
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Goldberg raised the question whether the Ketonen and the Lipschitz orders
could be separated (see [2, Question 9.2.10]). We will sketch the proof of the
following:

Theorem 6 (Kaplan). There exists a cardinal preserving forcing extension of L[U ]
in which there is a pair of Ketonen-incomparable σ-complete ultrafilters, V ,W,
such that V is Lipschitz below W.

The same result can be obtained in a model in which every σ-complete ultrafilter
is a finite product of the normal measures U0, U1.
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Filter Games and Ineffable Cardinals

Matthew Foreman

Acknowledgement: This work was partially supported by the US National Sci-
ence Foundation grant number DMS-2100367, and the Max Planck Institut for
Mathematics.

Filter games are a type of Challenge-Response game where Player I plays a κ
complete subalgebras A of P(κ) and Player II plays a κ-complete ultrafilter on
A. In previous work Foreman, and Magidor, jointly with Zeman showed that if
Player II wins the game of length γ a regular uncountable countable cardinal, then
there is a precipitous ideal on κ with a dense tree of height γ that is closed under
decreasing sequences of length less than γ.

However, that construction did not control which sets the ideal concentrates
on. This talk is about an ideal, the superineffable ideal. A main result proves
that if A0 is positive for this ideal, and Player II wins the game where she is
required to play normal, κ complete filters then the precipitous ideal concen-
trates on A0. In particular this technique can produce precipitous ideals on
{α : α is measurable of order α+} or {α : α is supercompact}.

Other results include:

• the necessity for the superineffable ideal to be a proper ideal for the game
to go even ω steps.

• The levels in the construction of the superineffable ideal intertwine with
the notion due to Baumgartner of n-ineffability. (n-ineffability is equiva-
lent to the statement that any partition f : [κ]n+1 → 2 has a stationary
homogeneous set.)
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The last results are that the superineffable ideal on κ is proper if and only if κ
is completely ineffable and that this is not downwards absolute.

Some new ways of blowing up the power of a measurable cardinal

Moti Gitik

Which forcing notions can be used to blow up the power of a measurable cardinal
preserving its measurability? Starting with a Laver indestructible supercompact
cardinal κ, basically any κ−directed closed forcing can be used. The situation
changes drastically if instead of a supercompacts we work under weaker assump-
tions, say no inner model with a strong. H. Woodin was the first to show that it is
possible. He used the Cohen forcing for this. The main difficulty here is to obtain
a generic object over the ultrapower with an extender which is not closed enough.
Later S. Friedman, K. Thompson and S. Friedman, L. Zdomskii showed that it is
possible to use generalized versions of Sacks and Miller forcings for this purpose,
as well. O. Ben-Neria and the author used a non-stationary Cohen forcing. In
this constructions, in contrast to Woodin’s, a generic object over the ultrapower
with an extender is already generated by pointwise image of those over V . C.
Merimovich used the extender based Radin forcing.

The Woodin construction starts with a GCH model V , j : V → M, κM ⊆
M, (κ++)M = κ++. The Cohen forcing which adds ν++ subsets to each inaccessi-
ble ν ≤ κ is iterated with the Easton support. Denote by G a generic set for this
iteration. The final stage is to find an M -generic G∗ such that j′′G ⊆ G∗ and j
extends to j∗ : V [G] → M [G∗]. The difficulty here is that M is not closed under
κ+−sequnces. Woodin forced with Cohen(κ+, κ++) in order to produce such G∗.
Y. Ben Shalom, O. Keshet and the author showed that there is no need in this
additional forcing and G∗ can be constructed already in V [G].

A question on the strength of a small number of generators of a normal ultrafilter
over a measurable κ was addressed. The following was shown:

Theorem 1. Starting with o(κ) = κ+3, it is possible to force a model in which κ
is a measurable, 2κ = κ++, there is a normal ultrafilter over κ generated by mod
Cubκ by κ+−many sets.
It is possible also to have two normal ultrafilters - one generated (mod Cubκ) by
κ+−many sets and another by κ++−many sets.

Using Mathias type forcing suggested by T. Benhamou, we can prove the fol-
lowing:

Theorem 2. Assume o(κ) = κ++. There is a forcing extension in which κ is a
measurable, 2κ = κ++ and there is ⊆∗ −decreasing of clubs of κ.
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Idealistic equivalence relations remastered

Filippo Calderoni

(joint work with Luca Motto Ros)

An equivalence relation E on a standard Borel space X is idealistic if there is a
Borel map C 7→ IC , assigning to each equivalence class a ccc σ-ideal of subsets of
C, which is Borel-on-Borel: For each Borel set A ⊆ X2, the set AI defined by

x ∈ AI ⇐⇒ {y ∈ [x]E : (x, y) ∈ A} ∈ I[x]E

is a Borel subset of X .
If a Polish group G acts on the standard Borel space X in a Borel fashion, then

the orbit equivalence relation EX
G induced by the action is analytic. As observed

in [Kec92, Section 1.II] all orbit equivalence relations are idealistic.
Although orbit equivalence relations have been widely studied in the literature,

very little is known about idealistic equivalence relations and their structure up
to the pre-order of Borel reducibility. (E.g., see [KecLou].) The following funda-
mental question is still open and motivates our work.

Question 1. Is every idealistic equivalence relation on a standard Borel space is
Borel bi-reducible to an orbit equivalence relation?

In this talk, we discuss the following result, which is heavily based on the
unpublished result of Becker [Bec01].

Theorem 2. Assume Σ1
1-determinacy. There is a Σ1

1 idealistic equivalence rela-
tion E with Borel equivalence classes, that is not class-wise Borel embeddable into
any orbit equivalence relation.

To clarify the above statement, we explain the definition of class-wise Borel re-
ducibility, a strengthening of the more classical notion of Borel reducibility. Given
two analytic equivalence relations E,F on standard Borel spaces X,Y , respec-
tively, we say that E is classwise Borel isomorphic to F , in symbols E ≃cB F , if
there is a bijection f : X/E → Y/F such that both f and f−1 admit Borel liftings.
Moreover, we say that E classwise Borel embeds into F , in symbols E ⊑cB F , if
there is a Borel F -invariant subset A ⊆ Y such that E ≃cB F ↾ A.

Our method also shows that the structure of the equivalence relations as in the
statement of our main theorem is positively complicated. Let I be the collection
of all idealistic analytic equivalence relations which have only Borel equivalence
classes (like all orbit equivalence relations), yet they are not classwise Borel iso-
morphic to an orbit equivalence relation.

Theorem 3. Assume Σ1
1-determinacy. Then there is an embedding of (O,≤B)

into (I,≤B), where O is the class of all Borel orbit equivalence relations with
uncountably many orbits.

In particular, there are continuum many ≤B-incomparable idealistic equivalence
relations which are not classwise Borel isomorphic to an orbit equivalence relation.

This is a joint work with Luca Motto Ros.
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A hypertalk

Elliot Glazer

This talk begins with a summary of William Zwicker’s hypergame paradox, regard-
ing a self-referential game in which the first player chooses a finite game, and then
the second player becomes first player of that game. The question of whether the
hypergame is a finite game is paradoxical in a manner similar to that of Russell’s
paradox. We emulate this paradox by allowing the audience to choose one of sev-
eral talks to present, include the hypertalk. The audience chose nonconservativity
of Global Choice over subsystems of ZFC as the topic.

We recently proved that Global Choice (GC) is not conservative over Z or over
ZFC - Fnd (where Fnd is the Axiom of Foundation). After using the easier case of
Z to demonstrate some basic techniques for building foundationless set theoretic
models, we discussed a surprisingly concrete instance of nonconservativity of GC
over ZFC - Fnd. Namely, we proved that the classical topology result that there
are exactly four homeomorphism classes of connected 1-dimensional manifolds (not
necessarily second countable or set-sized) is not a theorem in ZFC - Fnd, but is
provable from this theory plus GC. From a choice of one point from every subset
of a class curve C and a well-ordering of Vω·2, one can define a surjection from R

to C.
Even simple variations of the main result remain open. For example, a natural

generalization is that ZFC - Fnd + GC proves that every topological manifold is a
set, but the methods for proving the 1-dimensional case do not seem to suffice for
the 2-dimensional case. Of course, it is enough to assume the stronger principle
that there is a global bijection of the universe with Ord (this suffices to prove all
structural consequences of Fnd).

A model W of ZFC - Fnd where the classification of curves fails can be built
by considering the ZFCA model generated by any V |= ZFC and an ordered
set of atoms which externally satisfy (A,≤) ∼= (R), but internally only the proper
initial segments are sets. Replace the atoms with Quine atoms, and use ill-founded
coding to define the ordering of A. Then (A,≤) is a proper class long line in this
model. We obtain a sentence σ which holds in W but is inconsistent with GC by
defining the underlying manifold structure of A and declaring it to be a proper
class manifold.

Focusing on the nonconservativity aspect of this result, natural strengthenings
can be proven with a little extra effort. Global Binary Choice is nonconservative
over ZFC, with an example obtained by strengthening the hypothesis of σ to
include the assertion that there is a definable map assigning to every x some x′
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and a map from {tournaments on x′} to {choice functions on x}. This trick can
be used to prove most global choice principles to be nonconservative over Z or
ZFC - Fnd.

A more interesting improvement is to only extend the Comprehension Schema,
and not the Replacement Schema, with formulas which include the Global Choice
symbol. In this system, it is consistent to have the continuum map onto some
proper class long line L, but a contradiction can still be obtained by further posit-
ing a definable map from a parameterized collection of subclasses of L onto 2c+.
This implies a failure of Comprehension on 2c. More philosophically, this shows a
genuine structural distinction between the proper class long line and the set long
line of this model.

We briefly discussed the foundationless multiverse, sketching a proof in ZFC
that V is the pure part of some ZFC - Fnd model in which every set is a surjective
image of the power class of some definable class long line. In the language of modal
logic, we conclude “Global Choice possibly necessarily fails.”
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On the covering reflection principle

Joel David Hamkins

(joint work with Nai-Chung Hou, Andreas Leitz, Farmer Schlutzenberg)

The covering reflection principle asserts that every large structure is covered by
elementary images of a suitable fixed small structure. The principle, we shall
prove, has a remarkable large cardinal strength. This is joint work originating in
a robust exchange on MathOverflow [1, 2, 3, 4], which lead to our current joint
paper in progress [6].

The main principle is the following:

Definition 1. The covering reflection principle (CRPδ) holds of a cardinal δ if
for every first-order structure B in a countable language L, there is an L-structure
A of size less than δ, such that B is covered by the elementary images of A in

https://doi.org/10.4064/fm-71-1-43-62
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B. That is, every element b ∈ B is in the range of some elementary embedding
j : A→ B.

The main questions are:

Question 1. Does covering reflection occur? How large is the smallest cardinal
exhibiting covering reflection? Is the covering reflection principle consistent? What
is the consistency strength?

It is easy to see that the least δ with covering reflection is uncountable and
indeed strictly larger than the continuum, in light of the structure of the real field
〈R,+, ·, 0, 1, <〉, which is not covered by images of any proper substructure. But
also, one can show that δ must have cofinality exceeding the continuum and much
more. Ultimately, the least cardinal δ with covering reflection will be regular and
truly enormous.

The covering reflection principle is equivalently formulated for finite languages,
for languages of size continuum, and for much larger languages. The principle is
also equivalently formulated for structures B only of size at most 2<δ, and from
this it follows that the covering reflection principle for a regular cardinal δ is Π1

1-
expressible in Vδ. Consequently, the least such δ is not weakly compact and is below
the first Σ2 correct cardinal. In particular, covering reflection begins below the
first strong cardinal, if at all. The covering reflection principle is also equivalently
formulated by requiring that for every structure B in a countable language there
is a small structure A such that every countable subset X ⊆ B is covered by some
elementary image of A. And it is similarly equivalent to insist that sets X of
size continuum or indeed much larger sets are all covered by elementary images
of A in B. Model theorists may find it natural to consider the covering reflection
principle in connection with fixed particular theories or for classes of structures
of some particular kind. For example, we prove that if a countable theory T is
κ-categorical in some power κ, then every uncountable model of T is covered by a
fixed countable model.

We begin to establish the remarkable strength of the covering reflection principle
by proving large-cardinal lower bounds very high in the large cardinal hierarchy.

Theorem 1. If the covering reflection principle holds for δ, then there is a mea-
surable cardinal λ below δ that is a limit of cardinals that are λ-extendible cardinals.
In particular, Vλ is a model of ZFC with a proper class of fully extendible cardinals.

The proof proceeds by considering the structure B = 〈Vδ+1,∈〉. By covering
reflection there is a small covering structure 〈A,∈〉, which admits many elementary
embeddings j : A→ B. By analyzing the nature of the critical points and covering
sets that arise, we show that A includes a large rank-initial segment of the universe
Vλ, where λ is measurable, and there are numberous embeddings j : A→ B whose
critical points are extendible cardinals inside Vλ. Generalizations of the method
establish as lower bounds the strength of extendible limits of extendible cardinals
and limits of limits and so forth.

For an upper bound, we prove:
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Theorem 2. If κ is huge, then the covering reflection principle holds of κ. The
least cardinal δ exhibiting covering reflection is therefore strictly less than κ.

For this, we argue with a delightful trick. Namely, if j : V → M is a huge-
ness embedding and B is a counterexample to covering reflection, then j(B) is a
counterexample at j(κ) in M , but also in V by hugeness. In particular, the small
structure B does not cover j(B) in V , omitting some point x ∈ j(B). By elemen-
tarity, j(B) does not cover j(j(B)) in M , missing j(x). Except that by hugeness,
j ↾ j(B) : j(B) → j(j(B)) is available in M and it is elementary and sends x to
j(x), a contradiction.

Finally, aiming at an exact equiconsistency, we introduce the following large
cardinal notion.

Definition 2. A cardinal κ is an anchor cardinal κ if for every X ⊆ Vκ there is
κ0 < κ1 < κ and elementary embedding j : 〈Vκ1

,∈, X ∩ Vκ1
〉 → 〈Vκ,∈, X〉 with

κ0 = cp(j) and j(κ0) = κ1.

This notion is related to links and chains in [5]. Every huge cardinal, it turns
out, has a normal measure concentrating on anchor cardinals. Ultimately we settle
the exact consistency strength with the following theorem:

Theorem 3. The least cardinal δ with covering reflection is exactly the least an-
chor cardinal.
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Classification of Cardinal Exponentiation and the Exponent ω.

William Chan

This talk will determine the cardinality relation between any two cardinal expo-
nentiation below Θ, the supremum of the ordinals onto which R surjects, under
determinacy hypothesis. Some additional cardinality and combinatorial properties
concerning ω-sequences of ordinals, which is the smallest nonwellorderable cardinal
exponentiation, will also be presented.

The following are the main results.
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(1) Assume AD+. If ω ≤ α ≤ β < Θ and ω ≤ γ ≤ δ < Θ are cardinals, then
|αβ| ≤ |γδ| if and only if α ≤ γ and β ≤ δ.

(2) Assume AD+. If ω < κ < Θ is a cardinal and ǫ < κ is an ordinal, then
PB(κ), the set of subsets of κ which are bounded below κ, does not inject
into ǫON, the class of ǫ-sequences of ordinals.

(3) Assume AD+. If ω ≤ κ < Θ is a cardinal and δ < κ, then B(ω, κ) (the set
of bounded ω-sequences through κ) and ωκ do not inject into P(δ) ×ON.

(4) Assume AD+. Let κ < Θ be such that cof(κ) = ω. Then ωκ is ON-regular:
For all Φ : ωκ→ ON, there is an α ∈ ON so that |Φ−1[{α}]| = |ωκ|.

(5) Assume AD+. Let ω < κ < Θ be such that cof(κ) = ω. Then B(ω, κ)
is not ω-regular but for all n < ω, B(ω, κ) is n-regular: There is a Ψ :
B(ω, κ) → ω so that for allm ∈ ω, |Ψ−1[{m}]| < |B(ω, κ)| but for all n ∈ ω
and Φ : B(ω, κ) → n, there is some m < n so that |Φ−1[{m}]| = |B(ω, κ)|.

Suppose β ≤ α < Θ are cardinals. If α is finite, then αβ is finite exponentiation.
Suppose α is infinite. If β = 1, then |αβ| = |α|. If 2 ≤ β, then |αβ| = |P(α)|.
Thus assume α ≤ β < Θ. If β is finite, then αβ is again finite exponentiation.
Suppose β is infinite but α is finite, then |αβ| = |β|. By these reduction, the com-
plete classification of cardinal exponentiation is obtained by comparing cardinals
exponentiations of the form αβ when ω ≤ α ≤ β < Θ. In this way, result (1)
provides a complete classification of all cardinal exponentiation below Θ.

Steel [1] and Woodin showed that AD+ implies boldface GCH holds below Θ,
which is the statement that for all infinite cardinal κ, there is no injection of κ+

into P(κ). The boldface GCH below Θ and result (2) imply result (1) as follows:
Assume α ≤ β < Θ and γ ≤ δ < Θ. It is clear that if α ≤ γ and β ≤ δ, then
αβ injects into γδ. Suppose δ < β and there is an injection of αβ into γδ. Then
|β| ≤ |αβ| ≤ |γδ| ≤ |δδ| = |P(δ)| where the second inequality is witnessed by the
injection. Since δ < β, δ+ ≤ β. Hence there is an injection of δ+ into P(δ) which
violates boldface GCH at δ. Suppose γ < α and there is an injection of αβ into γδ.
|PB(α)| ≤ |P(α)| ≤ |α2| ≤ |αβ| ≤ |γδ|. Thus there is an injection of PB(α) into
γON where γ < α in violation of result (2).

Next, one will sketch the main ideas for the proof of result (2): For simplicity
assume V = L(R). Suppose result (2) fails. By Σ1-reflection, there are ordinals
ω < κ < δ

2
1, ǫ < κ, and an injection Φ : PB(κ) → ǫON. In L(R), all sets are

ordinal definable from some real. Without loss of generality, suppose Φ is OD.
Consider the forcing Coll(ǫ+, ǫ++)HOD of partial functions from ǫ+ into ǫ++ as
defined within HOD. One will need to solve the following two problems:

• (Generic Existence Problem) There is a G ⊆ Coll(ǫ+, ǫ++)HOD in the real
world, L(R), which is generic over HOD.

• (Capturing Problem) There is a G ⊆ Coll(ǫ+, ǫ++)HOD generic over HOD
such that HOD[G] = HOD{G}.

Assuming the solution to these two problems, one can show result (2). Let G ⊆
Coll(ǫ+, ǫ++)HOD generic over HOD with the above two properties. G is essentially
an element of PB(κ). Φ(G) is clearly OD{G} and thus Φ(G) ∈ HOD{G} = HOD[G].

Since Coll(ǫ+, ǫ++)HOD is < ǫ+-closed within HOD, G adds no new ǫ-sequences
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of ordinals over HOD. Since Φ(G) ∈ ǫON, one must have Φ(G) ∈ HOD and
thus Φ(G) is ordinal definable. Then G = Φ−1(Φ(G)) is ordinal definable. Thus
G ∈ HOD which is impossible since G is generic over HOD.

The solution to both the Generic Existence Problem and the Capturing Problem
requires the analysis of HOD by inner model theory established by Steel [1].

(Generic Existence Problem) Since HOD |= GCH, the collection D of all dense
subsets of Coll(ǫ+, ǫ++) in HOD has cardinality ǫ+++ in HOD. By the Steel’s
HOD analysis, the real world cofinality of all successor cardinals of HOD is ω.

Using the fact that cofL(R)((ǫ+)HOD) = ω, one can patch together ω-many sur-
jection of (ǫ+)HOD onto various ordinals cofinal through (ǫ++)HOD to obtain a
HOD-amenable surjection of g : (ǫ+)HOD → (ǫ++)HOD, which means that g re-
stricted to any α < (ǫ+)HOD belong to HOD. Repeating this procedure again, one
obtained a HOD-amenable surjection of (ǫ+)HOD onto (ǫ+++)HOD. Thus there is
a HOD-amenable surjection h of (ǫ+)HOD onto D, the collection of dense subset of
Coll(ǫ+, ǫ++)HOD in HOD. With this HOD-amenable surjection h, one can build
a generic G for Coll(ǫ+, ǫ++)HOD in (ǫ+)HOD-steps by meeting the dense sets enu-
merated by the surjection h and using the internal < ǫ+-closedness of the forcing
Coll(ǫ+, ǫ++)HOD within HOD. The HOD-amenability of h is important to getting
each step of the construction internal to HOD.

(Capturing Problem) Woodin and Ikegami-Trang showed that if f ∈ ωκ where
κ < Θ, then HOD[f ] = HODf . Woodin showed that under AD+, there are
always uncountable A ⊆ ω1 so that HOD{A} 6= HOD[A]. A generic filter for

Coll(ǫ+, ǫ++)HOD is generally an uncountable set of ordinals. However, the fact
that the real world cofinality of successor cardinals of HOD is ω implies that ev-
ery generic filter for Coll(ǫ+, ǫ++)HOD is countably generated in the real world.
This means such a generic filter G has a countable set σ ⊆ G in the real world
so that G is the upward closure of σ by the forcing relation. σ contains all in-
formation about G and the idea is to pick an ω-enumeration f of σ, then one
can try to use the Woodin and Ikegami-Trang result that HOD{f} = HOD[f ].
However, there is no uniform way to pick a countably generating set σ for G and
to pick an ω-enumeration of σ. Since ǫ < κ < δ

2
1 which is the largest Suslin

cardinal of L(R), Harrington-Kechris [2] showed there is a supercompact measure
ν on |Coll(ǫ+, ǫ++)|HOD and Woodin [3] showed this supercompact measure ν is
OD. The idea is now to look at the ν-large set of countable generating set σ for
G. The ω-enumeration of σ will be obtained by going into a Coll(ω, σ) forcing
extension. The real world truth about ordinals and G will be expressed inside
HOD[G] by integrating over the supercompact measure ν some statement involv-
ing forcing with Coll(ω, σ) (for all σ in a ν-large set) and the OD ∞-Borel code
forcing (a highly absolute variation of the Vopěnka forcing). The uniqueness of
the supercompact measure is important since it implies ν is OD so the ultrapower
by ν does not contribute any additionally complexity. These ideas will show that
HOD{G} = HOD[G] which resolves the capturing problem.
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Filtrations between topologies

S lawomir Solecki

Filtrations are certain transfinite sequences of topologies increasing in strength
and interpolating between two given topologies σ and τ , with τ being stronger
than σ. We prove general results on stabilization at τ of filtrations interpolating
between σ and τ . These topological results involve an interplay between κ-Borel
sets with respect to the topology σ and κ-Baireness of the topology τ . They are
part of a broader project of analyzing Polishable equivalence relations, which is,
in turn, connected with the conjectural E1-dichotomy.

Let σ ⊆ τ be topologies, and let ρ be an ordinal. A transfinite sequence (τξ)ξ<ρ

of topologies is called a filtration from σ to τ if

σ = τ0 ⊆ τ1 ⊆ · · · ⊆ τξ ⊆ · · · ⊆ τ

and, for each α < ρ, if F is τξ-closed for some ξ < α, then

(1) intτα(F ) = intτ (F ).

Condition (1) asserts that τα computes correctly, that is, in agreement with τ , the
interiors of sets that are simple from the point of view of α, that is, sets that are
τξ-closed with ξ < α. A filtration from σ to τ can be thought of as a walk from σ
to τ through intermediate topologies, where each step is required to contribute a
nontrivial advance towards τ , if such an advance is at all possible.

The following question about filtrations immediately presents itself. Given a
filtration (τξ)ξ<ρ from σ to τ , does the filtration actually reach its goal τ and, if
so, at what stage? That is, does τξ = τ for some ξ < ρ and is there an upper
estimate on such ξ?

One expects a positive answer to the question above under an appropriate
assumption—τ should be at a visible distance from σ. We phrase this as follows.
Let κ be an infinite cardinal such that τ is κ-Baire. (An infinite cardinal κ like
that exists for each topology τ .) The assumption on the pair of topologies σ ⊆ τ
is then for τ to have a neighborhood basis that consists of sets that are κ-Borel
with respect to σ. In this situation, the distance from σ to τ is quantified by the
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complexity of sets in the neighborhood basis of τ as measured by the classical
descriptive set theoretic hierarchy of κ-Borel sets.

Here is our main theorem. The notions involved in it are defined below. We
write (τξ)ξ≤ρ for (τξ)ξ<ρ+1.

Theorem. Let σ ⊆ τ be topologies with τ semiregular. Let κ be an infinite cardinal
such that τ is κ-Baire, and let 1 ≤ α ≤ κ be an ordinal. Assume that τ has a
neighborhood basis consisting of sets in

⋃
ξ<α Πκ,0

1+ξ with respect to σ. If (τξ)ξ≤α

is a filtration from σ to τ , then τ = τα.

We define now the notions involved in the theorem above.
A topology is called semiregular if it is generated by its regular open sets,

that is, by sets that are interiors of their closures. To compare semiregularity with
regularity of a topology, note that a topology is regular if and only if, for each
open set U , there exists a family F of closed sets such that

U =
⋃

{F | F ∈ F} =
⋃

{int(F ) | F ∈ F}.

If we recall that a set is regular open precisely when it is equal to the interior of a
closed set, it becomes clear that a topology is semiregular if and only if, for each
open set U , there exists a family F of closed sets such that

U =
⋃

{int(F ) | F ∈ F}.

In particular, it follows that each regular topological space is semiregular. The
notion of semiregularity goes back to M. H. Stone.

A set is called κ-meager if it is the union of < κ many τ -nowhere dense sets.
Observe that ω-meager sets are τ -nowhere dense sets. The topology τ is called
κ-Baire if the complement of each κ-meager set is dense.

We define κ-Borel sets and their stratification into Π classes. Some care in
formulating these definitions is needed as we want to incorporate the case of sin-
gular cardinals κ in the right way. In the case of regular κ, the definitions we give
coincide with the naive definitions—see the observations below.

First, for a cardinal ν, let

bor(ν)

be the smallest family of sets containing all closed sets and closed under taking
complements and unions, and therefore also intersections, of families of cardinality
≤ ν. Define κ-Borel sets as⋃

{bor(ν) | ν a cardinal number, ν < κ}.

Observe that ω-Borel sets form the algebra of sets generated by closed or open
sets. The case κ = ω1 is the case studied in classical Descriptive Set Theory.

Observation. Assume κ is regular. The family of κ-Borel sets is equal to the
smallest family containing all closed sets and closed under taking complements
and unions, and therefore also intersections, of families of cardinality < κ.
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To clarify further our definition of κ-Borel sets, note that if κ is singular, then
the family of sets defined by the condition in the observation above is equal to
κ+-Borel sets and not κ-Borel sets.

We describe now a well known stratification of the family of κ-Borel sets. We
define classes Πκ,0

1+ξ, for ξ < κ. To incorporate singular cardinals κ, the same type
of care is needed here as in the definition of κ-Borel sets. When κ = ω1, the classes
above form the well-studied hierarchy of Borel sets from Descriptive Set Theory.
We conform to the tradition of enumerating these classes starting with 1 rather
than 0.

For a cardinal ν > 0 and an ordinal ξ < ν+, we define families

Pν
ξ .

Let Pν
0 be the family of all closed sets and, for 0 < ξ < ν+, let Pν

ξ consist of

intersections of subfamilies of cardinality ≤ ν of complements of sets in
⋃

γ<ξ P
ν
γ .

For an ordinal ξ < κ, define

Πκ,0
1+ξ =

⋃
{Pν

ξ | ν a cardinal, ν < κ, ξ < ν+}

Observation. (i) Πκ,0
1 is the class of all closed sets.

(ii) If κ is regular, then, for 0 < ξ < κ, Πκ,0
1+ξ consists of all intersections of

< κ many complements of sets in
⋃

γ<ξ Π
κ,0
1+γ.
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Generic actions of countable groups

Sumun Iyer

(joint work with Forte Shinko)

LetG be a countable group. We will consider the space Act(G, 2N) of all continuous
actions of G on Cantor space. Let Homeo(2N) be the Polish group of all homeo-
morphisms of Cantor space with the uniform convergence topology. We think of
Act(G, 2N) as a subspace of the space of all functions G→ Homeo(2N). With the
inherited topology, Act(G, 2N) is a Polish space. The motivation for studying this
space comes from work of Hochman and Frisch-Kechris-Shinko-Vidnyanszky [2, 3].
In particular, Hochman proved that any property which is generic in Act(G, 2N)
is generic in the space of all continuous actions of G on compact Polish spaces [3].

Given a continuous action of a countable group G on a Polish space X , the
orbit-equivalence relation {(x, y) : ∃g ∈ G g · x = y} is a countable Borel equiv-
alence relation (CBER) i.e., the relation is Borel in X ×X and each equivalence
class is countable. A CBER is hyperfinite if it is the increasing union of finite
Borel equivalence relations. Hyperfinite relations are the simplest non-trivial ones
amongst the CBERs. A CBER E on space X is measure hyperfinite if for ev-
ery probability measure µ on X there is a µ-co-null E-invariant set A such that
E ↾A×A is hyperfinite. It is currently not known if there is an example of a mea-
sure hyperfinite CBER which is not hyperfinite [5]. This question is related to an
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important long open question about hyperfiniteness and amenability of groups,
see [5].

A group G is exact if its reduced C∗-algebra is exact. Exact groups are a
broad class of groups which include the amenable groups and the free groups. It
is a theorem of Suzuki that if G is exact then the generic element of Act(G, 2N)
is measure hyperfinite [6]. This raises the natural question: for G exact, is the
generic element of Act(G, 2N) hyperfinite?

Our main theorem is:

Theorem 1. If G is a group which is locally of finite asymptotic dimension, then
the generic element of Act(G, 2N) is hyperfinite.

We now explain the condition in the theorem. Let G be a finitely generated
group and let dG be a proper left-invariant metric on G. The group G has asymp-
totic dimension at most n if for any R > 0 there exists a coloring c of the group
by n + 1 colors such that the sizes of connected components of the graph on G
given by {(g, h) : dG(g, h) < R and c(g) = c(h)} are uniformly bounded. This
notion is originally due to Gromov. For example, the group Zn has asymptotic
dimension n and finite rank free groups have asymptotic dimension 1. A group
is locally of finite asymptotic dimension if every finitely generated subgroup of it
has finite asymptotic dimension. From Theorem 1 we get the following corollary
which answers a question from [2]:

Corollary 2. The generic action of a free group on Cantor space is hyperfinite.

The proof of Theorem 1 uses the connection between finite Borel asymptotic
dimension and hyperfiniteness developed in [1]. Following Theorem 1, there are
still many groups for which we do not know if their generic action is hyperfinite,
even among the amenable groups. For example the following is open:

Question 3. Is the generic action of Z ≀ Z on Cantor space hyperfinite?
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All you need is HOD

Alejandro Poveda

A set X is ordinal definable (in symbols, X ∈ OD) if there is a formula ϕ(x, x0, . . . ,
xn) of the language of set theory which, together with ordinals α0, . . . , αn, defines
X ; namely, X = {x : ϕ(x, α0, . . . , αn)}. Additionally, X is Hereditarily Ordinal
Definable (in symbols, X ∈ HOD) if X ∈ OD and the transitive closure of {X}.
HOD is a transitive class containing all the ordinals and satisfying ZFC. In modern
set-theoretic terminology, HOD is an inner model – in fact, it is the broadest of all
inner models. Woodin’s work on HOD [Woo10] concerns the question of whether
HOD is close to resembling the mathematical universe. In the presence of strong
enough large cardinals, his HOD hypothesis implies that the answer is yes: the
two models closely resemble one another in terms of their large cardinal structure.

Definition ([Woo17]). The HOD hypothesis states that there is a proper class of
regular cardinals that are not ω-strongly measurable in HOD.

Theorem (HOD Dichotomy, [Woo17]). If δ is an extendible cardinal then exactly
one of the following holds:

(1) HOD is a weak extender model for the supercompactness of δ.
(2) Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

The HOD dichotomy has placed the foundations of mathematics at a critical
crossroad. Namely, either there are reasonable prospects for completing Gödel’s
inner model program, or there is no fine-structural insight into the mathematical
universe V . Therefore, which of these scenarios prevails? The HOD hypothesis
implies that the prevailing scenario is the first one.

In this presentation we report on some recent results joint with Gabe Goldberg
following this line of research. Our work focuses on two aspects; namely, the
optimality of Woodin’s HOD Dichotomy [GOP24] and the study of compactness
phenomena in HOD [GP24].

On the optimality of the HOD dichotomy. Woodin showed that if δ is the
first extendible cardinal and the HOD hypothesis holds then δ is supercompact
in HOD. Also, under the same assumptions, he showed that if κ > δ is (say)
extendible then it remains so in HOD. A natural question thus emerges – What
can be said about the first extendible cardinal in HOD? More specifically, must
the first extendible be extendible in HOD? The answer turns to be negative, as we
show next:

Theorem 1 (Goldberg, P.). Assume that δ is an extendible cardinal. Then there
is a generic extension where:

(1) The HOD hypothesis holds.
(2) δ is the first extendible cardinal.
(3) HOD |= “δ is the least strongly compact cardinal”.
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By our comments above this result is best possible. Bearing on results from
[Pov24], we also improve a theorem of Woodin by showing that the first extendible
must be a “large” supercompact cardinal in HOD:

Theorem 2 (Goldberg, P.). Assume the HOD hypothesis holds. Then, the first
extendible cardinal is C(1)-supercompact in HOD.

Following up on this vein, we also investigate cardinal correct extendible cardi-
nals (for short, cce) in HOD. This large cardinal notion was introduced in [GO24] in
connection to Löwenheim–Skolem-type numbers of the equicardinality logic. Our
main result on this respect is that, assuming a bit more than the HOD hypothesis,
every extendible cardinal is cce:

Theorem 3 (Goldberg, Osinski, P.). Assume HOD is cardinal correct. If δ is
extendible then it is cce in HOD.

Using this one can show that the first cce can be the first strongly compact.
This answers a question from [GO24].

An immediate corollary of the HOD dichotomy theorem is that, if δ is extendible
and the HOD hypothesis holds then HOD is a weak extender model for “δ is su-
percompact”. As it turns, Woodin showed that the same conclusion can be gotten
just from a HOD-supercompact. Could this be proven if δ is just supercompact?
Yet again, the answer is no:

Theorem 4 (Goldberg, P.). Assume δ is supercompact. Then, there is a generic
extension where:

(1) The HOD Hypothesis holds.
(2) δ is a supercompact cardinal.
(3) HOD |= “δ is strongly compact yet not 2δ-supercompact”.

Incidentally, this answers a question by Cheng–Hamkins–Friedman [CFF15].

Starting from (much) weaker assumptions than extendibility, Goldberg proved the
following variation of the HOD dichotomy theorem:

Theorem (Goldberg). Assume that δ is supercompact. Then exactly one of the
following hold:

(1) If κ ≥ δ is singular, κ is singular in HOD and κ+HOD = κ+.
(2) All sufficiently large regular cardinals are ω-strongly measurable in HOD.

A natural question is whether one can improve even further the large cardinal
assumptions needed to prove the HOD dichotomy. Building upon a previous work
by Cummings–Friedman–Golshani [CFG15] we show that, yet again, the answer
is no:

Theorem 5 (Goldberg-P.). Assuming the GCH and the existence of a supercom-
pact cardinal, there is a model of ZFC where the HOD hypothesis holds, δ is the
first supercompact cardinal and there is a club D ⊆ δ of cardinals κ such that
κ+HOD < κ+ and HOD |= “κ is regular”.
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In the same paper, Cummings–Friedman–Golshani asked whether or not below
the first supercompact cardinal δ, κ+HOD < κ+ for all cardinals κ. We answer this
is negatively, with the proviso that the HOD hypothesis holds:

Theorem 6 (Goldberg–P.). Assume the HOD hypothesis. If δ is supercompact
then there is a stationary set S ⊆ δ such that for each cardinal θ ∈ S, HOD is a
weak extender model for “θ is θ+ω+1-supercompact”. In particular,

(1) θ+ω+1 = (θ+ω+1)HOD and θ+ω is singular in HOD.
(2) Under the HOD hypothesis, every supercompact cardinal is a limit of HOD-

measurables.

Compactness phenomena in HOD

Compactness is the phenomenon by which the local properties of a mathemati-
cal structure determine the nature of the structure itself. A famous compactness
theorem in set theory, due to Silver, establishes that the Singular Cardinal Hy-
pothesis cannot first fail at a singular cardinal of uncountable cofinality. Thus, if
2ℵα = ℵα+1 for all α < ω1 then 2ℵω1 = ℵω1+1.

With Goldberg [GP24], we prove the following:

Theorem 7 (Goldberg-P.). Suppose that κ is a singular cardinal with cf(κ) ≥ ω1

and {δ < κ | cfHOD(δ) < δ} is stationary. Then cfHOD(κ) < κ.

Theorem 8 (Goldberg-P.). Suppose that κ is a singular strong limit cardinal with
cf(κ) ≥ ω1 and {δ < κ | δ+HOD = δ+} is stationary. Then κ+HOD = κ+.

Moreover, we can show that these results are provably optimal.

Theorem 8 seems relevant for a possible refutation of Woodin’s HOD conjecture.
For singular cardinals of countable cofinality, Poveda [Pov23] shows that starting
from large cardinal hypothesis in the realm of I2 one can force “local failures” of
the HOD conjecture:

Theorem 9 (P.). Suppose that j : V → M is an elementary embedding with
crit(j) = κ, the critical sequence 〈jn(κ) | n < ω〉 → λ consists of supercompact
cardinals, Vλ ⊆ M and there is an inaccessible cardinal > λ. Then, there is a
model of ZFC where:

(1) The HOD hypothesis holds.
(2) κ is <λ-extendible.
(3) λ is a strong limit cardinal with cf(λ) = ω.
(4) (λ+)HOD < λ+.

The situation for uncountable cofinalities is pretty much open. In fact, in light
of Theorem 8, an analogous configuration for singulars of uncountable cofinalities
will be very close to refuting the HOD Conjecture. Thus, we ask:

Question 10 (Goldberg-P.). Is the above configuration consistent (with ZFC) for
a cardinal λ with cf(λ) = ω1?
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On Namba Forcing and Minimal Collapses

Maxwell Levine

One way to study the properties of the infinite cardinals is to examine the extent
to which they can be changed by forcing. In 1969 and 1970, Bukovský and Namba
independently showed that ℵ2 can be forced to be an ordinal of cofinality ℵ0

without collapsing ℵ1. The forcings they used and their variants are now known
as Namba forcing. Shelah proved that Namba forcing collapses ℵ3 to an ordinal
of cardinality ℵ1. In a 1990 paper, Bukovský and Copláková showed that Namba
forcing is |ℵV

2 | = ℵ1-minimal—meaning that it forces ℵV
2 to have cardinality ℵ1,

but there are no strictly intermediate models between the ground model and the
generic extension collapsing ℵV

2 to ℵ1 [1]. They also asked whether there can be
an |ℵV

2 | = ℵ1-minimal extension preserving regularity of ℵV
3 . We show up to the

consistency of a measurable cardinal that there is such an extension.
In a slightly more general phrasing, we have the following:

Theorem 1. Assume the consistency of a measurable cardinal µ. Then it is
consistent that there is a model V in which there is a regular cardinal ν such that
µ = ν++ such that there is a also an extension W ⊃ V that is |µ| = ν+-minimal
and which preserves regularity of µ+.

This theorem can be found in a recent preprint. (See [3]; one can also find
updated versions of my preprints on my website.) The idea of the proof is to use
a strengthening of precipitousness due to Laver that we denote LIP(ν++, ν) [2].
Laver’s property provides us with a dense subset D of ν++∩cof(ν+) that has a lot
of closure and a lot of flexibility for obtaining partitions. Then we use a Namba-
style forcing of height ν+ and Miller-style splitting in which the successors of
splitting nodes are taken from from the dense set D provided by LIP(ν++, ν). The
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crux is a sort of “sweeping argument” that seems to have a number of applications
and does not seem to appear in the earlier literature in any overt form.

Similar arguments can be employed to obtain approximation-like properties for
a variety of Namba-like forcings (see [4], [5, Section 2.1], [5, Section 4.1]), and it
seems reasonable to expect more applications.

We conclude with some questions.

Question 2. Does the conclusion of Theorem 1 require consistency of a measurable
cardinal?

It does seem that the answer is plausibly yes. If µ = ν++ is not measurable
in any inner model, then we would have a sequence of length µ+ witnessing the
non-saturation of µ ∩ cof(ν+). Then one may be inclined to use the ideas of the
proof of Shelah that you cannot singularize µ without collapsing µ+. However, it is
not clear where the hypothesis of minimality would be used in such an argument.

There is also the question of the extent to which the main theorem can be
stratified.

Question 3. Assume LIP(λ, µ) where ω < κ < λ < µ are regular cardinals. Can
we find a forcing like the one used in Theorem 1 that preserves cardinals ν ≤ λ?

It should be noted that there are a number of open questions—even besides
those highlighted by Bukovský and Copláková—regarding whether Namba-style
forcings produce cardinal collapses and whether they embed certain forcing orders
(i.e. at the end of [6]). Such questions are sensitive to the dimensions and splitting
behavior of the Namba forcing in question.
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Ergodic theorems, weak mixing, and chaining

Jenna Zomback

(joint work with Anush Tserunyan)

In general, an ergodic, probability-measure-preserving (pmp) action of a countable
(discrete) group G on a standard probability space (X,µ) is said to have the
pointwise ergodic property along a sequence (Fn) of finite subsets of G, if for every
f ∈ L1(X,µ), for a.e. x ∈ X ,

lim
n→∞

1

|Fn|

∑
g∈Fn

f(g · x) =

∫
fdµ.

It is a celebrated theorem of Lindenstrauss [2] that the pointwise ergodic prop-
erty is true for the pmp actions of all countable amenable groups along tempered
Følner sequences.

The fact that the Følner sets Fn have small boundary relative to their size is
essential for the pointwise ergodic property as it ensures that the limit of averages
is an invariant function. Hence, to obtain versions of the pointwise ergodic theorem
for nonamenable groups, e.g. for the nonabelian free groups Fr, one has to imitate
the almost invariance of finite sets by taking weighted averages instead, so that
the weight of each sphere in Fr is equal to 1. The first instance of this was proven
by Grigorchuk [1], and independently by Nevo and Stein [3]:

Theorem 1 (Grigorchuk 1987; Nevo–Stein 1994). Let r < ∞ and let Fr yα

(X,µ) be a (not necessarily free) ergodic pmp action of the free group Fr. For any
f ∈ L1(X,µ), for a.e. x ∈ X,

lim
n→∞

1

n+ 1

∑
w∈Bn

f(w · x)m(w) =

∫
f(x) dµ(x),

where Bn is the (closed) ball of radius n in the standard symmetric (left) Cayley
graph of Fr, mu is the uniform Markov measure on Fr.

We strengthen the previous theorem in [4] by expanding the class of measures
on the free group, and generalizing the sequences where we calculate the ergodic
averages. Below, ∂Fr is the space of infinite, reduced words in the generators of
Fr, and the boundary action is by concatenation, with cancellation if necessary.

Theorem 2 (Tserunyan–Z. 2020). Let Fr be the free group on 2 ≤ r < ∞ gen-
erators and m be any stationary Markov measure on Fr such that the induced
boundary action of Fr on ∂Fr is weakly mixing. Let (τn) be an arbitrary sequence
of finite subtrees of the (left) Cayley graph of Fr containing the identity such that
limn m(τn) = ∞. Then for every f ∈ L1(X,µ), for a.e. x ∈ X,

lim
n→∞

1

m(τn)

∑
w∈τn

f(w · x)m(w) =

∫
f(x) dµ(x).

Of course, it is natural to ask which stationary Markov measures induce a weakly
mixing boundary action, and in turn yield ergodic pmp actions that satisfy the
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pointwise ergodic property. Our main result is a complete characterization of
such measures. It turns out that they are exactly the Markov measures arising
from strictly irreducible transition matrices, a condition introduced by Bufetov
in 2000 for a different purpose. The proof of this characterization goes through
proving equivalences with a new combinatorial condition on the action that we
call chaining:

We say that a group action Γ y (X,µ) is k-chaining if for any positive measure
sets A and B, there are group elements γi (i ≤ k) so that γiA ∩ γi+1A, γ0A ∩ A,
and γkA ∩B have positive measure.

Theorem 3. The following are equivalent for a stationary Markov measure on
Fr, r <∞:

(A) The boundary action is weakly mixing.
(B) The boundary action is 2r-chaining.
(C) P is strictly irreducible.

Finally, we note that the condition of k-chaining is not specific to boundary
actions of free groups, and can be applied to general group actions. Our proof of
the previous theorem yields the following for general pmp group actions.

Theorem 4. The following are equivalent for any Borel pmp action of a countable
group Γ y (X,µ):

(A) α is weakly mixing.
(B) α is chaining (i.e., k-chaining for some k).
(C) α is 1-chaining.

However, in the null-preserving setting, we do not know whether weak mixing
is equivalent to chaining, nor whether 1-chaining is equivalent to chaining.

Question 5. Is chaining equivalent to weak mixing for measure-class-preserving
actions?

Question 6. Are there measure-class-preserving actions that are chaining but not
1-chaining?
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On Friedman’s Property

Hannes Jakob

For κ regular and λ ≤ κ a cardinal, let F (λ, κ) state that any regressive function
from κ into λ is constant on a closed set of ordertype ω1. For (Di)i∈ω1

a partition of
ω1, let F+((Di)i∈ω1

, κ) state that for any sequence (Ai)i∈ω1
of stationary subsets

of κ ∩ cof(ω) there is a normal function f : ω1 → κ such that for every i ∈ ω1,
f [Di] ⊆ Ai. F (λ, κ) is a parametrized variant of the property F (κ) which was
introduced by H. Friedman in [1], while F+((Di)i∈ω1

, κ) was previously studied
by Foreman-Magidor-Shelah [2], Feng-Jech [3] and Fuchs [4].

The strongest possible form of F+((Di)i∈ω1
, κ), where Di = {i}, follows from

the Strong Reflection Property, a consequence of Martin’s Maximum. The other
extreme, the failure of F (2, κ) for every regular κ ≥ ω2, can be forced simply by
collapsing ω1 to ω using finite conditions, as has been observed by Silver (see again
[1]).

In this talk, we introduce posets which add witnesses to the failure of any such
property by forcing with initial segments as conditions. These orders force F and
F+ to fail in a more gentle way and allow the lifting of ground-model embeddings
and thus the preservation of large cardinals. Additionally, forcing with these posets
over the standard model of Martin’s Maximum yields the consistency of maximal
versions of MM which are compatible with some failure of F or F+ and will also
be introduced in the talk.

The most prominent usage of these forcing axioms is the separation of instances
of F and F+: We show that for any cardinal λ ≤ ω2, it is consistent that F (λ, ω2)
fails but F (λ′, ω2) holds for any λ′ < λ, so it is e.g. consistent for any n ∈ ω,
n ≥ 1 that every partition of ω2 into n pieces must have one piece which includes
a closed set of ordertype ω1 while there is a partition of ω2 into n+ 1 pieces where
no piece includes a closed set of ordertype ω1. For F+, we show that implications
between instances of F+(D,ω2) and F+(E,ω2) are almost perfectly characterized
by the relation D ≤∗ E stating that D refines E on a club subset of ω1. We show
that whenever D and E are partitions of ω1 in the standard model of MM and
D 6≤∗ E, there is a forcing extension where F+(D,ω2) holds but F+(E,ω2) fails.
This additionally resolves a question of Fuchs from [4] in a very strong manner.
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Recent Results in the Combinatorics of Determinacy Models

Stephen Jackson

We present some joint work with William Chan and Nam Trang concerning the
combinatorics of determinacy models. A common theme amongst several of these
results is a result/conjecture which we call the “ABCD conjecture.” This describes
the relations between the possible cardinalities of the form αβ where α, β are
ordinals (enough to consider cardinals) below Θ (the supremum of the lengths of
the prewellorderings of R). Specifically the conjecture is the following. Here we
write |X | ≤ |Y | for sets X,Y to mean there if an injection from X into Y .

Conjecture (ABCD conjecture). Assume ZF + AD. Suppose α, β, γ, δ < Θ are
ordinals and β ≤ α, δ ≤ γ. Then |αβ | ≤ |γδ| iff |β| ≤ |δ| and |α| ≤ |γ|.

In full generality, that is, just assuming ZF + AD, the conjecture is still open,
although special cases have been established just from this hypothesis (which we
mention below). However, assuming Woodin’s axiom AD+ (a strengthening of AD,
although it is not known to be strictly stronger, and in all known natural models
of ZF+AD we have that AD+ holds; in particular in all derived models of AD from
large cardinals AD+ holds) Chan has recently shown the conjecture holds:

Theorem (Chan). Assume AD+. Then the ABCD conjecture holds.

Recently another, somewhat simpler, proof of the ABCD conjecture from AD+

has been found and which makes use of a result about generalized ∞-Borel sets
which may be of independent interest. To state this, first recall that part of the
axioms AD+ asserts that every set of reals A ⊆ ωomega is ∞-Borel. This means
that there is a wellfounded tree on λ ∈ On whose terminal nodes are attached
codes for basic open sets in ωω, and a non-terminal node is assigned the union
or intersection of the sets corresponding to nodes below it according to some
convention. A theorem of Woodin says that this is equivalent to having a set of
ordinals S such that x ∈ A iff L[S, x] |= ϕ(S, x) for some formula ϕ.

We can generalize the notion of an ∞-Borel code to sets A ⊆ P(κ) for κ > ω. An
analog of Woodin’s theorem applies, and we can take either form of the definition
of A being ∞-Borel. Woodin showed that even for κ = ω1 that not every A ⊆ P(κ)
is ∞-Borel, so we cannot extend AD+ to all A ⊆ P(κ) for κ > ω. However, we
can show that certain sets A ⊆ P(κ) are ∞-Borel. Namely, define a topology τ on
P(κ) as follows. Given f ⊆ κ (or f : κ → 2) and a countable set σ ⊆ κ, a τ basic
open set about f is a set is Nσ(f) = {g : κ → 2: ∀α ∈ σ f(α) = g(α)}. We then
have the following.

Theorem. Assume AD+ and let κ < Θ. If A ⊆ P(κ) is Borel in the τ -topology,
then A is ∞-Borel.

The current authors used this result about generalized ∞-Borel sets to give a
fairly simple proof of the ABCD conjecture.

We note that the ABCD conjecture completely describes the relations between
cardinals of the form αβ , where α, β < Θ. The statement of the conjecture requires
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β ≤ α and δ ≤ γ but the other other cases easily follow from AD+ or can be reduced
to the stated case.

There are special cases of the ABCD conjecture that follow just from AD,
and in fact follow just from partition arguments. The authors have shown various
combinatorial properties that hold at partition cardinals, and these arguments can
be used to establish instances of the ABCD conjecture (the partition properties
follow from just AD).

The partition relation κ → (κ)κ defines a measure on the set of functions
f : κ → κ of the correct type (increasing, discontinuous, and of uniform cofinality
ω). Likewise, the relation κ → (κ)ǫ gives a measure on the functions f : ǫ → κ of
the correct type. There are a number of interesting open problems about these
functions space measures (for example computing jν(ω2) where ν is the function

space measure on ωω1

1 ; Chan has shown that jν(ω1) < δ
1
3). We have the following

monotonicity results for functions from these function spaces into the ordinals.

Theorem. Suppose κ → (κ)κ. Let Φ: κκ → On. Then there is a measure one
set on which Φ is monotonically increasing. That is, there is a c.u.b. C ⊆ κ such
that if f, g : κ → C are of the correct type and f(α) ≤ g(α) for all α < κ, then
Φ(f) ≤ Φ(g).

A similar theorem holds for the function space κǫ assuming the corresponding
partition relation.

Another result which is similar to the above theorem, and is proved using similar
techniques, is the following.

Theorem. Suppose κ→ κǫ·ǫ where ǫ < κ is additively indecomposable and cof(ǫ) =
ω. Suppose Φ: [κ]ǫ∗ → On. Then there is a club C ⊆ κ and a δ < κ such that for
all f, g ∈ [κ]ǫ∗, if f ↾ δ = g ↾ δ and sup(f) = sup(g), then Φ(f) = Φ(g).

Thus, almost everywhere a function Φ(f) can only depend on a bounded part
of f and sup(f).

The previous theorem is related to the ABCD conjecture, and gives instances
of it. Specifically, we have the following corollary.

Corollary. Suppose κ has the weak partition property, that is, ∀ǫ < κ κ → (κ)ǫ.

Then for all δ < κ, κ<κ does not inject into Onδ.

The proof of the Corollary shows that if δ1 < δ2 < κ with δ2 regular, then κδ2

does not inject into Onδ1 . This gives an instance of the ABCD conjecture just
from partition properties of κ.

Infinite Structural Ramsey Theory: A progress report

Natasha Dobrinen

The simplest form of the infinite Ramsey theorem states that, given any color-
ing of all pairs of natural numbers into two colors, there is an infinite subset of
natural numbers in which all pairs have the same color. When moving from sets
to structures, some suprising pheomena occur: For example, there is a coloring
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of pairs of rational numbers into two colors such that both colors persist in any
subset of the rationals forming a dense linear order (Sierpiński 1933); likewise, for
edge colorings in the Rado graph (Erdős–Hajnal–Posá 1975). These bounds were
later shown to be optimal by Galvin (unpublished) and by Pouzet–Sauer (1996),
respectively. The study of optimal bounds for colorings of copies (or embeddings)
of a finite substructure inside an infinite structure is the subect of big Ramsey
degrees. Optimal bounds are connected with optimal structural expansions which
produce analogues of the infinite Ramsey theorem.

An infinite structure S is said to have finite big Ramsey degrees iff for each finite
substructure A of S, there is some positive number n such that for any coloring
of the copies of A in S into finitely many colors, there is a subcopy S′ of S in
which the copies of A take no more than n colors. The least such n is called
the big Ramsey degree of A in S, denoted by BRD(A,S) or just BRD(A) , the
terminology being coined in (Kechris–Pestov–Todorcevic 2005). Often S is taken
to be the Fräıssé limit of Fräıssé class that has a Ramsey expansion (i.e., small
Ramsey degrees).

The rationals were the first structure for which a full characterization of big
Ramsey degrees was accomplished. Laver (unpublished) proved that the rationals
as a dense linear order have finite big Ramsey degrees. D. Devlin characterized the
degrees in his 1979 PhD thesis. The big Ramsey degrees of the Rado graph were
characterized in a series of two papers by Sauer (2006) and Laflamme–Sauer–
Vuksanovic (2006). In fact, they characterized the big Ramsey degrees for free
amalagmation homogeneous structures with finitely many binary relations and no
forbidden substructures of size greater than two, which includes the homogeneous
digraph and random graphs with finitely many different edge relations. Their
proof that the big Ramsey degrees are finite utilized Milliken’s Theorem. While
this method works well for so-called unrestricted structures, it does not work when
there are forbidden substructures of size greater than the arity of the relations in
it, for instance Kn-free graphs where n ≥ 3.

In order to prove that all finite triangle-free graphs have finite big Ramsey
degrees, Dobrinen devised the notion of coding tree of 1-types induced by a well-
ordered homogeneous structure and developed forcings on them in order to prove
new Ramsey theorems for colorings of particular level sets of the trees. In turn,
she used those theorems to prove that the triangle-free and then all k-clique-
free homogeneous graphs have finite big Ramsey degrees. These new methods
led to a rapid expansion of new results on big Ramsey degrees, some of which are
listed below in chronological order of their arxiv dates with journal citations where
available.

• 2017. Triangle-free Henson graphs: Upper Bounds. Dobrinen, JML 2020.
• 2018. Certain homogeneous metric spaces: Upper Bounds. Mašulović, J.

Combin. Theory Ser. A, 2020.
• 2019. k-clique-free Henson graphs: Upper Bounds. Dobrinen, JML 2023.
• 2019. Big Ramsey degrees for countable ordinals as linear orders. Mav-

sulović and Šobot, Combinatorica 2021.
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• 2019. 3-uniform hypergraphs: Upper Bounds. Balko, Chodounský,
Hubička, Konečný, and Vena, Combinatorica 2022.

• 2020. SDAP+ implies Exact BRD characterized by diagonal antichains.
Coulson, Dobrinen, and Patel, 2 papers submitted.

• 2020. Binary rel. Forb(F), finite F : Upper Bounds. Zucker, Adv. Math.,
2022.

• 2020. Circular directed graphs: Exact BRD Computed. Dasilva Barbosa,
submitted.

• 2020. Homogeneous partial order: Upper Bounds. Hubička, submitted.
• 2021. Homogeneous partial order: Exact BRD. Balko, Chodoun- ský,

Dobrinen, Hubička, Konečný, Vena, Zucker, Trans. AMS, to appear.
• 2021. Homogenous graphs with forbidden cycles and metric spaces: Upper

Bounds. Balko, Chodounský, Hubička, Konečný, Nešetřil, Vena, submit-
ted.

• 2021. Binary rel. Forb(F), finite F : Exact BRD. Balko, Chodounský,
Dobrinen, Hubička, Konečný, Vena, Zucker, JEMS, to appear.

• 2023. Big Ramsey degrees for unrestricted relations on possibly infinite
languages. Braunfeld, Chodounský, de Rouncourt, Hubička, Kawach,
Konečný, submitted.

• 2023. Type-respecting amalgamation and big Ramsey degrees. Aranda,
Braunfeld, Chodounský, Hubička, Konečný, Nešetřil, Zucker, 2023 Euro-
Comb extended abstract.

• 2023. Big Ramsey degrees in the metric space setting. Bice, de Rancourt,
Hubička, Konečný, 2023 EuroComb extended abstract.

• 2023. A new method for generating topological Ramsey spaces with a
theorem which recovers the Carlson-Simpson and Milliken Tree Theorems
as corollaries. Gives upper bounds for finite big Ramsey degrees for many
structures. Balko, Chodounský, Dobrinen, Hubička, Konečný, Nešetřil,
Vena, Zucker, arxiv preprint.

Work on big Ramsey degrees is ongoing.
In very recent work with Chodounský, Eskew, and Weinert, we showed that

the two-branching countable pseudotree has finite big Ramsey degrees for finite
chains, but antichains even of size two have infinite big Ramsey degrees. This is
the first example of a homogeneous structure where some finite substructures have
finite big Ramsey degrees while others do not.

Answering questions of Dobrinen, computability theorists have started working
on big Ramsey degree questions from the standpoint of how many Turing jumps
are needed to obtain the results. This has implications for reverse mathematics as
well. The first body of work in this area turned into an AMS Memoirs book by
Angles d’Auriac, Cholak, Dzafarov, Monin, and Patey, 2023. Work in this area
continues.

Infinite-dimensional structural Ramsey theory came into focus by a question
in Kechris–Pestov–Todorcevic 2005. The general question is whether, given a
homogeneous structure H, there is some topology on the set of its subcopies so
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that an analogue of the Galvin–Prikry or Ellentuck theorems on [ω]ω hold on the
space of the subcopies H. The first work on this was due to Dobrinen in 2019
on the Rado graph, and will appear in the Prague Ramsey Theory DocCourse
special issue. This use the coding trees and forcing to produce a Galvin-Prikry
style theorem.

At Oberwolfach in 2022, I gave a talk on preliminary results on infinite-dimen-
sional Ramsey theory of homogeneous structures satisfying the Substructure Dis-
joint Amalgamation Property+. This work is now finished and is submitted. The
SDAP+ is a property that holds for the rationals, QQ, k-partite graphs, the generic
tournament, and many other structures. However, it does not hold in the k-clique
free Henson graps. Building on this and other prior work, Dobrinen and Zucker
proved infinite-dimensional Ramsey theorems for all free amalgamation classes
with finitely many relations of arity at most two, with finitely many forbidden fi-
nite irreducible substructures. An unexpected outcome of this work was the proof
that so-called A.3(2) ideals suffice in place of the stronger axiom A.3(2) to obtain
the conclusion of Todorcevic’s Abstract Ramsey Space Theorem. It is not known
if this reduced axiom is necessary or whether it can be further weakened. The
following papers develop infinite-dimensional Ramsey theorems, the latter two of
which also directly recover the known exact big Ramsey degree theorems.

• 2019. Infinite-dimensional Ramsey theory for Borel sets of Rado graphs.
Dobrinen, Prague Ramsey Theory DocCourse. To appear.

• 2022. ∞-dimensional Ramsey theory of homogeneous structures with
SDAP+. (recovers exact BRD). Dobrinen, submitted.

• 2023 ∞-dimensional Ramsey theory for binary relational Flim(Forb(F)),
finite F . (recovers exact BRD). Dobrinen, Zucker, submitted.

Combinatorics of MAD families

Michael Hrušák

(joint work with J. Brendle, O. Guzmán, D. Raghavan)

An infinite family A of infinite subsets of a countable set ω is almost disjoint if any
two distinct elements of A have finite intersection. A is maximal almost disjoint
(MAD) if it is maximal under inclusion or, equivalently, if for every infinite subset
X of ω there is an A ∈ A such that X ∩ A is inifinite.

Combinatorial properties of maximal almost disjoint (MAD) families are intro-
duced and studied here. The initial motivation for this research is the following
problem (still unsolved) attributed to Judy Roitman:

Problem. (Roitman) Does d = ω1 imply a = ω1?

and the closely related problem:

Problem. For every MAD family, is there a proper forcing that destroys it and
does not add unbounded reals?
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In this way, we are naturally led to the study of the indestructibility of MAD

families. Once again, there are two very relevant open questions, due to Steprāns
and the third author, which are the second motivation for this work:

Problem. (Steprāns) Is there a MAD family that is Cohen indestructible?

Problem Is there a MAD family that is Sacks indestructible?

Having these questions in mind, we decided to find the strongest notion of
indestructibility for maximal almost disjoint families that we could imagine. This
notion is what we call Shelah-Steprāns.

Definition. A MAD family A is Shelah-Steprāns if for every sequence X of
non-empty finite subsets of ω there is an element of the ideal I(A) which either
intersects every element of X or contains infinitely many elements of X .

This notion is strong enough to imply the indestructibility of the MAD family by
Cohen, Sacks, Miller, random forcings, and much more. Nevertheless, we prove
that Shelah-Steprāns MAD families can be destroyed without adding dominating
or unsplit reals.

We also study properties of the MAD family generically added by countable ap-
proximations.

We would like to know if there is a combinatorial property that characterizes the
generic MAD families over L(R). We note that generic MAD families are Shelah-
Steprāns, in fact, they possess a substantial strengthening of this property we call
raving.

We consider non-existence of certain types of MAD families in specific models,
existence of such families under additional axioms, as well as examples for non-
implications between various properties.

As an application we study topological properties of the weak* duals of the
Johnson–Lindenstrauss Banach spaces naturally associated to the almost dis-
joint families. In particular, we show that Z-MAD families produce Johnson–
Lindenstrauss spaces whose duals are not Efremov, i.e. there are convex sets
whose weak* closures cannot be reached by converegent sequences. This last part
is a joint work with Luis David Reyes Saenz.

Bowen’s Problem 32 and the conjugacy problem for systems
with specification

Marcin Sabok

(joint work with Konrad Deka, Dominik Kwietnia, Bo Peng)

The methods of mathematical logic can be useful in establishing impossibility re-
sults. For example, a descriptive set-theoretic complexity argument was used by
Wojtaszczyk and Bourgain who solved Problem 49 from the Scottish book by es-
tablishing the non-existence of certain types of Banach space. In a similar vein,
the theory of complexity of Borel equivalence relations can be used to demonstrate
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the impossibility of classifying certain mathematical objects. An equivalence rela-
tion E on a standard Borel space X is smooth if there exists a Borel assignment
f : X → Y of elements of another standard Borel space Y to elements of X which
provides a complete classification of the equivalence relation E, i.e., two elements
x, y ∈ X are E-related if and only if f(x) = f(y). The definition is broad enough
to justify a Borel version of the Church–Turing thesis, namely that an isomorphism
relation admits a concrete classification if and only if it is smooth.

Smooth equivalence relations are actually only at the beginning of a larger hi-
erachy of descriptive set-theoretic complexity. Given two equivalence relations E
and F on standard Borel spaces X and Y , respectively, we say that E is Borel-
reducible to F , written E ≤B F if there exists a Borel map f : X → Y such that
for (x1, x2) ∈ X ×X we have (x1, x2) ∈ E if and only if (f(x1), f(x2))) ∈ F . The
Borel complexity of an isomorphism problem measures how complicated the prob-
lem is in comparison with other equivalence relations, when we compare equiv-
alence relations using Borel reductions. Equivalence relations which are Borel-
reducible to the equality = on the real numbers, or anything that can be coded
by real numbers, are exactly the smooth ones. However, the hierarchy goes much
higher. The next step is formed by the hyperfinite equivalence relations, that
is those which are induced by Borel actions of the group Z. Another successor of
= is defined in terms of the Friedman–Stanley version of the Turing jump, and
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is denoted by =+. The jump can be iterated and all of the countable iteration
of + on = are induced by Borel actions of the group S∞ of permutations of N.
The class of equivalence relations reducible to actions of S∞ is quite large (cf. the
recent result of Paolini and Shelah [56]) but not every Borel equivalence relation
is in that class. Hjorth developed the theory of turbulence and showed that tur-
bulent group actions are not Borel reducible to any Borel S∞-action. The theory
of complexity of equivalence relations also continues in the class of equivalence
relations induced by actions of more general groups than S∞ (cf. [29, 30, 34, 35]).
A lot of effort has been put in measuring the complexity of problems arising in
dynamical systems, where the classification problems and their complexity are
understood in the same way as in descriptive set theory. The breakthrough for
measure-preserving systems came with the results of Foreman and Weiss [38] and
of Foreman, Rudolph and Weiss [37]. In [38] Foreman and Weiss showed that the
conjugacy relation of ergodic transformations is turbulent and in [37] Foreman,
Rudolph and Weiss showed that the conjugacy relation of ergodic transformations
is not Borel, and thus the classification problem in ergodic theory is intractable.
In topological dynamics, Camerlo and Gao proved that the conjugacy of Cantor
systems is the most complicated among equivalence relation induced by actions
of S∞ and for minimal Cantor systems it is shown in [46] that the relation is not
Borel.

In contrast, the conjugacy relation of symbolic systems is quite simple from the
point of view of descriptive set theory. Since every isomorphism between symbolic
systems is given by a block code, the conjugacy of symbolic systems is a countable
Borel equivalence relation, i.e. a Borel equivalence relation whose equivalence
classes are countable. Clemens proved that the topological conjugacy of symbolic
subshifts is a universal countable Borel equivalence relation. Gao, Jackson and
Seward generalized it to G-subshifts any countable group G which is not locally
finite, while for a locally finite groupG they showed that the conjugacy of symbolic
G-subshifts is hyperfinite. In case of minimal systems, Gao, Jackson and Seward
proved that the conjugacy relation of minimal symbolic G-subshifts is not smooth
for any countable infinite groupG, and Thomas showed that the conjugacy relation
of Toeplitz symbolic subshifts is not smooth. It remains unknown whether the
conjugacy of minimal symbolic subshifts is hyperfinite, which is connected to a
conjecture of Thomas on the isomorphism of complete groups. In fact, it is not
known [55, Question 1.3] whether the conjugacy relation restricted to Toeplitz
systems is hyperfinite or not.

A special class of symbolic systems is formed by systems with specification,
considered by Bowen [1]. A dynamical system satisfies the specification property if
for every ε > 0 we can find k ∈ N such that given any collection of finite fragments
of orbits, there exists a point which is ε-closely following these orbit segments and
takes k steps to switch between consecutive orbit segments. Nowadays, the speci-
fication property in symbolic systems for general discrete groups goes also under
the name of strong irreducibility. Around 1970’s Bowen wrote an influential
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list of open problems, which is now maintained on the webpage [32]. Problem 32
[31] asks to

classify symbolic systems with specification.

Several results in the direction of a classification have been obtained, as reported
on the website [31]. For example Bertrand proved that every symbolic system with
specification is synchronized and Thomsen found a connection with the theory of
countable state Markov chains. However, a complete classification has not been
obtained. Buhanan and Kwapisz proved a result suggesting that systems with
specification are quite complicated. They considered the cocyclic shift spaces,
which is a countable family of symbolic systems with specification and proved
that the problem of equality of cocyclic shift spaces is undecidable. However, the
equality relation is a much simpler relation than the conjugacy on such systems.
In in talk we discuss the following result, which shows that a classification with
any concrete invariants is impossible.

Theorem 1. The conjugacy relation of symbolic systems with the specification
property is not smooth.

In fact,we prove that the conjugacy relation of symbolic systems with specifica-
tion is not hyperfinite and essentially the same proof shows that it is not treeable.

Next, we look the conjugacy relation of pointed systems with the specification
property and consider its complexity. It turns out that in order to compute the
complexity for pointed Cantor systems with the specification property, we need to
solve a problem posed in a paper of Ding and Gu [45].

In [45] Ding and Gu consider the equivalence relation Ecs defined on the space of
metrics on N, where two metrics are equivalent if the identity map on N extends to
a homeomorphism of the completions of N with respect to those two metrics. The
restriction of Ecs to the set of metrics whose completion is compact is denoted by
Ecsc. This is a natural equivalence relation from the point of view of descriptive set
theory, and it is interesting to ask what is its complexity. Indeed, Ding and Gu ask
[45, Question 4.11] whether for a given countable ordinal α and a natural number n,
the restriction of Ecsc to the metrics whose completion is homeomorphic to ω1+α ·
n+ 1 is Borel-reducible to =+. Even though this question does not seem directly
connected to the topological conjugacy of systems with specification, we find a
connection between the relation Ecsc and Cantor systems, using a construction
coming from the work of Williams and the work of Kaya and we answer it in the
positive, by showing a slightly stronger statement. By X0-dim we denote the set of
metrics on N whose completion is zero-dimensional. The result below implies in
particular a positive answer to [45, Question 4.11].

Theorem 2. The relation Ecsc restricted to X0-dim is Borel bi-reducible with =+.

Finally, in [44] Bruin and Vejnar also studied the conjugacy relation of pointed
transitive systems and asked [44, Table 1, Question 5.6] about the complexity of
the conjugacy of pointed transitive homeomorphisms of the Hilbert cube. It turns
out that the conjugacy of pointed transitive homeomorphisms of the Hilbert cube



Set Theory 133

homeomorphisms pointed transitive homeomorphisms
interval Borel-complete ∅

circle Borel-complete =
Cantor set Borel-complete =+

Hilbert cube complete orbit e.r. ?
Table 1. Source: [44, Table 1].

has the same complexity as the conjugacy relation of Hilbert cube systems with
the specification property and in this paper we answer this question as follows.

Theorem 3. The conjugacy relation of pointed transitive Hilbert cube systems is
Borel bireducible with a turbulent group action.

In particular, the conjugacy of pointed transitive Hilbert cube systems is not
classifiable by countable structures, as opposed to most other relations considered
in [44].
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Department of Mathematics

University of Toronto

BA 6270

40 St. George Street

Toronto, Ont. M5S 2E4

CANADA

Dr. Nam Trang

Department of Mathematics

University of North Texas, GAB 418B

1155 Union Circle #311430

Denton, TX 76203-5017

UNITED STATES

Prof. Dr. Todor Tsankov

Institut Camille Jordan
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