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Abstract. In machine learning, a field addressing the extraction of infor-
mation and structure from finite data with the means of computer science
and mathematics, maps from finite-dimensional spaces of data or compu-
tations into spaces of higher, or infinite dimensionality are a central theme.
The workshop brought together researchers with diverse viewpoints to discuss
how different theoretical sub-communities within the field treat the resulting
ill-posed operations, and what kind of features of algorithms and models can
emerge as a result.
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Introduction by the Organizers

1. Topical Overview

While machine learning (ML) currently enjoys outsized interest by the public as
well as by multiple scientific domains, it is still a relatively young field, drawing
methods, concepts, and formalisms from older domains. Since its inception, the
ML community has struck a productive balance between empirical and applied
work on the one hand, and a desire for rigorous theoretical analysis on the other.
This has allowed field to identify new, and often disruptive ideas quickly, but to
then also develop them into general, efficient, well-understood frameworks. In the
early years of this decade, the empirical side of the field has once again taken
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the lead, making ground-breaking advances in particular in the area of generative
modelling from unsupervised data using deep neural architectures (parametrized
differentiable functions) to address extremely high-dimensional structured prob-
ability distributions. These models, which were elevated with two Nobel prizes
in 2024, pose many theoretical questions about their behaviour, limitations, and
efficient algorithmic means to train and control them.

Oberwolfach Workshop 4/2025 sought to bring together members of multiple
theoretical sub-communities of machine learning, mostly from Europe, to discuss
recent advances in their work. We made a deliberate effort to connect people
with different perspectives to draw connections across the field, even if this meant
that the title of the workshop became a bit unwieldy. For, as the field continues
to grow, similar observations are made repeatedly, from different viewpoints and
using different technical vocabularies. The central operation of machine learning is
that of inference: Mapping from a finite-dimensional space of data, prompts, inputs
into a typically much higher – or infinite-dimensional space of answers, hypotheses,
or otherwise latent variables. This is principally an ill-posed process, and different
sub-communities address the resulting challenges and features differently. A few
examples of the resulting questions are as follows:

• From the perspective of probability theory, identifiability is associated
with uncertainty quantification. But most contemporary deep architec-
tures do not quantify epistemic uncertainty. Several of the talks at the
workshop discussed approximate techniques to endow advanced, contem-
porary deep models with such posterior probability measures, including for
models with nonparametric, function-valued outputs. Numerical meth-

ods commonly used in machine learning (optimization, least-squares, sim-
ulation methods, etc.) also have internal discretization leading to mis-
specification and uncertainty. This error interacts non-trivially with the
empirical estimation error caused by finite data. By modelling computa-
tional error with probability measures Probabilistic numerics envisions
a unified notion of uncertainty / error estimation across the methodologi-
cal stack, from algorithm to model, incorporating data and computation.
Several talks covered such methods, and their integrative use within the
ML stack.

• Partial monitoring is the most fundamental paradigm for the analysis of
sequential decision-making problems. In this framework, the perfor-
mance of an algorithm is typically measured via the regret against the op-
timal decision in hindsight. The structure of the decision space, the shape
of the utility function, the nature of the environment, and the amount of
feedback the learner receives after each decision round are the parameters
that control the optimal (minimax) regret. While the landscape is rela-
tively well understood for finite decision spaces, the crucial properties of
the parameters the determine the minimax rates in continuous decision

spaces are yet to be clarified. The workshop included talks discussing the
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implications of regret minimization in multi-agent settings, such as online
market problems.

• The traditional model of learning theory assumes a stationary joint prob-
ability distribution over a set of observables (random variables), from
which both training and test observations are sampled. In practice, how-
ever, this model is inappropriate in at least three significant aspects. First,
real-world data generating distributions may drift between training and
testing, calling for suitable representations of, and metrics for, probability
distributions, methods to identify invariant components, and learning
algorithms incorporating those (out-of-distribution generalization). Some
speakers discussed how recently emerging model classes, e.g. for sequen-
tial data-types, provide new ways to do so. The set of variables that are
jointly observed may be also incomplete and differ from training to testing
(out-of-variables generalization). And real-world scenarios will often in-
clude agents that intervene in a system. We heard talks explaining that,
when, and why, it can still be possible to identify hypotheses correctly in
such settings under mild assumptions.

• One of the goals of this workshop was investigating questions at the in-
tersection of reinforcement learning and causal discovery. System
identification and model estimation in reinforcement learning (RL) are ef-
fectively causal discovery tasks. Yet, so far, the interaction between the
causal discovery and theoretical RL communities has been limited. Sev-
eral speakers discussed how insights from causal discovery can be used to
analyse and accelerate system identification and model estimation in rein-
forcement learning, and to what extent the opportunity to explore in RL
remedy identifiability issues in causal discovery. Another, unusual perspec-
tive on the interactive setting we discussed is the social question whether
humans affected by algorithmic decisions can deliberately use their role
as the source of training data to affect and change the outcome of an
algorithmic decision in a manner desirable to them.

• Only few years ago, the success of deep learning questioned traditional
machine learning theory and the established mechanisms that were thought
to enable successful learning and generalization: small function classes,
regularization, and convex problems. In statistics, researchers could not
understand why the bias-variance trade-off did not seem to matter any
more, and in optimization, people were puzzled why simple stochastic
gradient descent was so successful on a highly non-convex optimization
surface. Since then, a new era of learning theory has unfolded. First impor-
tant steps and mechanisms have been achieved by now (benign over-fitting,
double descent, robust interpolation, etc.), but formal results often concern
simple model classes (linear problems in high-dimensional spaces). We ur-
gently need to understand how these methods scale. Limit results like the
neural tangent kernel apply to simple network architectures (few layers,
infinitely wide), but we still do not understand the complex architectures
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used in practice (why do we need depth in networks? Do transformers
actually add anything fundamental beyond scale?). Modern learning

theory is still in its infancy, so teasing out the right questions to ask
and concepts to establish was a high-level goal of our discussions. Several
talks at the workshop provided new insights on this end, analysing both
the model classes used in modern architectures and their capacity, and the
optimization methods used to train these models.

2. Summary of Plenary Discussions

There were two plenary discussions on a set of topics suggested by all participants.
The first discussion was introduced by Yishay Mansour, who presented a historical
perspective on the development of Artificial Intelligence and Machine Learning,
highlighting how the dominating paradigm shifted from symbolic manipulation
to data-driven methods. Some of the most notable successes of the field that
were mentioned included: statistical learning with sample complexity and com-
putational complexity analyses of learning problems, the online learning model,
the connection with optimization (stochastic gradient descent and Tikhonov reg-
ularization), probabilistic modeling, causality, and reinforcement learning. Some
approaches that did not live up to their expectations were also mentioned. For
example: logics, inductive inference, and learning of formal languages. The ensu-
ing discussion concerned the most problematic issues in the current research. For
example, how to reduce the growing gap between theory and practice in Machine
Learning and how theory can inform the engineering of large-scale systems (like
Large Language Models). The final part of the discussion involved emerging issues
in the teaching of Machine Learning, especially the tension between the teaching
of foundational aspects and the pressure from the job market. The second plenary
discussion, introduced by Alberto Bietti, was more technical and mainly focused
on the connections between overparameterization, scaling laws, and generalization
in deep learning and large language models.
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Marvin Pförtner (joint with Jonathan Wenger, Nathaël Da Costa, Lancelot
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Abstracts

Selective induction Heads: How Transformers Select Causal

Structures in Context

Nicolas Flammarion

(joint work with Francesco D’Angelo, Francesco Croce)

Transformers have exhibited exceptional capabilities in sequence modelling tasks,
leveraging self-attention and in-context learning. Critical to this success are induc-
tion heads, attention circuits that enable copying tokens based on their previous
occurrences. In this talk, we introduce a novel synthetic framework designed to en-
able the theoretical analysis of transformers’ ability to dynamically handle causal
structures. Existing works rely on Markov Chains to study the formation of in-
duction heads, revealing how transformers capture causal dependencies and learn
transition probabilities in-context. However, they rely on a fixed causal structure
that fails to capture the complexity of natural languages, where the relationship
between tokens dynamically changes with context. To this end, our framework
varies the causal structure through interleaved Markov chains with different lags
while keeping the transition probabilities fixed. This setting unveils the formation
of Selective Induction Heads, a new circuit that endows transformers with the
ability to select the correct causal structure in-context. We empirically demon-
strate that attention-only transformers learn this mechanism to predict the next
token by identifying the correct lag and copying the corresponding token from the
past. We provide a detailed construction of a 3-layer transformer to implement the
selective induction head, and a theoretical analysis proving that this mechanism
asymptotically converges to the maximum likelihood solution. Our findings ad-
vance the theoretical understanding of how transformers select causal structures,
providing new insights into their functioning and interpretability.

References

[1] F. D’Angelo, F. Croce, and N. Flammarion Selective induction Heads: How Transformers
Select Causal Structures in Context, The Thirteenth International Conference on Learning
Representations, 2025.

Recent Trends in Learning Operators

Nicole Mücke

(joint work with Mike Nguyen)

Operator learning extends machine learning principles, originally developed for
function estimation from finite-dimensional data, to the estimation of operators
from infinite-dimensional data. This paradigm enables the supervised learning of
operators between function spaces, offering a natural framework for accelerating
scientific computation and discovery. Such a framework can facilitate the devel-
opment of fast surrogate models that approximate costly existing simulations or
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enable the discovery of new models consistent with observed data in the absence
of first-principles-based models.

We approach this topic from a learning-theoretical perspective, introducing the
neural tangent kernel (NTK) regime for two-layer neural operators and analyz-
ing their generalization properties. For early-stopped gradient descent, we derive
fast convergence rates that are minimax optimal within the framework of non-
parametric regression in reproducing kernel Hilbert spaces (RKHS). Additionally,
we provide bounds on the number of hidden neurons and second-stage samples
required for generalization.

To justify the NTK regime, we show that any operator approximable by a neural
operator can also be approximated by an operator from the RKHS associated with
the NTK.

A key application of neural operators is learning surrogate maps for solution
operators of partial differential equations (PDEs). To illustrate our theoretical
findings, we demonstrate simulations using the standard Poisson equation.

References
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Understanding Aggregate Shap Values

Rhobi Bhattacharjee

The shap explainability methods one of the most widely used local explanation
methods. One popular use case is for feature selection where practitioners compute
the average (absolute) to eliminate unimportant features despite its widespread
use, the theoretical underpinnings of this practice remain unexplored.

In this work we investigate how theoretically sound the idea is. We give sufficient
conditions under which a uniformly 0 Shapley value provably implies that the
corresponding feature can be safely removed without a loss in performance. Our
analyses involve a natural Lie algebra constructed with Shapley value functions
that may be of independent interest.

Theoretical Foundations and Optimization of Deep

State-Space Models

Antonio Orvieto

Structured state-space models (SSMs) are gaining popularity as effective founda-
tional architectures for sequential data, demonstrating outstanding performance
across a diverse set of domains alongside desirable scalability properties. Recent
developments show that if the linear recurrence powering SSMs allows for a selec-
tivity mechanism leveraging multiplicative interactions between inputs and hidden
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states (e.g. Mamba (2), GLA, Griffin..), then the resulting architecture can sur-
pass attention-powered foundation models trained on text in both accuracy and
efficiency, at scales of billion parameters. In this talk, we give an introduction to
SSM and study their expressivity using tools from Rough Path Theory. We pro-
vide a framework for the theoretical analysis of generalized selective SSMs, fully
characterizing their expressive power and identifying the gating mechanism as the
crucial architectural choice. Our study provides a closed-form description of the
expressive powers of modern SSMs, such as Mamba, quantifying theoretically the
drastic improvement in performance from the previous generation of models, such
as S4. Our theory not only motivates the success of modern selective state-space
models but also provides a solid framework to understand the expressive power
of future SSM variants. In particular, it suggests cross-channel interactions could
play a vital role in future improvements. We will discuss on topics such as opti-
mization of recurrent layers, and outline a few directions for future improvements.

Computation-aware Gaussian Processes: Blurring the Line Between

Computation and Inference

Jonathan Wenger

(joint work with Kaiwen Wu, Philipp Hennig, Jacob R. Gardner, Geoff Pleiss,
John P. Cunningham)

Inference and model selection in Gaussian processes scales prohibitively with the
size of the training dataset, both in time and memory. While many approximations
exist, all incur inevitable approximation error. We will introduce a new class of GP
approximations for which, surprisingly, this inevitable error can be tractably quan-
tified in the form of computational uncertainty. This enables an explicit tradeoff
between computational efficiency and precision. This class of computation-aware
GPs extends a range of existing approximations and enjoys strong theoretical
guarantees. Experiments demonstrate that our approach can outperform state-of-
the-art methods like SGPR, CGGP and SVGP on benchmark regression datasets
with up to 1.8M datapoints, while requiring only a single GPU. In summary,
we demonstrate how to train Gaussian processes on large-scale datasets without
significantly compromising their ability to quantify uncertainty – a fundamental
prerequisite for optimal decision-making.

References
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Aware Gaussian Processes: Model Selection And Linear-Time Inference, Advances in Neu-
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Scaling Insights from Infinite-Width Theory for Next Generation

Architectures and Learning Paradigms

Leena Chennuru Vankadara

Scaling is pivotal to the success of modern machine learning. However, this up-
scaling also introduces new challenges, such as increased training instability. In
this talk, I will discuss how infinite-width theory can be utilized to establish op-
timal scaling rules across various architectures and learning paradigms. I will
begin by discussing the scaling behaviour of Multilayer Perceptrons (MLPs) un-
der Sharpness-Aware Minimization—a min-max learning formulation designed to
enhance generalization. The analysis extends naturally to other architectures like
transformers, ResNets, and CNNs. Additionally, I will discuss the scaling be-
haviour of structured state space models (SSMs), which have emerged as efficient
alternatives to transformers. Owing to the unique structure of their transition
matrices, SSMs defy conventional scaling analyses and necessitate specialized ap-
proaches. I will discuss the scaling of SSMs within the standard minimization
framework, highlighting the need for and implications of specialized scaling strate-
gies.

Learning to act in noisy contexts using deep proxy learning

Arthur Gretton

(joint work with Liyuan Xu, Heishiro Kanagawa)

We consider problem of evaluating the expected outcome of an action or policy, us-
ing off-policy observations, where the relevant context is noisy/anonymized. This
scenario might arise due to privacy constraints, data bandwidth restrictions, or
both. As an example, users might wish to determine the anticipated outcome of
an exercise regime, with only an incomplete view available of their fitness levels
(for instance, from journaling or wearables). We will employ the recently devel-
oped tool of proxy causal learning to address this problem. In brief, two noisy
views of the context are used: one prior to the user action, and one subsequent
to it, and influenced by the action. This pair of views will allow us to provably
recover the average causal effect of an action under reasonable assumptions. As a
key benefit of the proxy approach, we need never explicitly model or recover the
hidden context. Our implementation employs learned neural net representations
for both the action and context, allowing each to be complex and high dimensional
(images, text). We demonstrate the deep proxy learning method in a setting where
the action is an image, and show that we outperform an autoencoder-based alter-
native.

References
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Confounded Bandit Policy Evaluation, Advances in Neural Information Processing Systems
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Beyond the Curse of Dimensionality with Hyper-Kernel

Ridge Regression

Shuo Huang

(joint work with Hippolyte Labarrière, Ernesto De Vito, Tomaso Poggio,
Lorenzo Rosasco)

Compared to kernel methods, neural networks inherently learn a data representa-
tion during the training process. This data-driven representation can adapt to the
problem at hand, potentially reducing the need for data and mitigating the curse
of dimensionality. The multi-index model (MIM) is a classic statistical framework
that can be used to investigate some of these ideas. In this paper, we explore an
extension of kernel ridge regression where kernels are composed with a linear rep-
resentation that can be learned. We refer to this approach as hyper-kernel ridge
regression (H-KRR). H-KRR is conceptually similar to neural networks while pre-
serving some of the favorable mathematical properties of kernel methods. Our
main contribution is to show that H-KRR can learn MIM effectively from finite
samples, thereby escaping the curse of dimensionality. Additionally, some numer-
ical experiments are provided to verify the effectiveness of the algorithm. Our
analysis builds on and extends ideas from kernel methods theory to account for
the compositional nature of hyper-kernels.

References

[1] S. Huang, H. Labarrière, E. De Vito, T. Poggio, L. Rosasco, Beyond the Curse of Dimen-
sionality with Hyper-Kernel Ridge Regression, preprint.

Market Making without Regret

Tom Cesari

(joint work with Nicolò Cesa-Bianchi, Roberto Colomboni, Luigi Foscari,
and Vinayak Pathak)

We consider a sequential decision-making setting where, at every round t, a market
maker posts a bid price Bt and an ask price At to an incoming trader (the taker)
with a private valuation for one unit of some asset. If the trader’s valuation is lower
than the bid price, or higher than the ask price, then a trade (sell or buy) occurs.
If a trade happens at round t, then letting Pt be the market price (observed only
at the end of round t), the maker’s utility is Pt−Bt if the maker bought the asset,
and At −Pt if they sold it. We characterize the maker’s regret with respect to the
best fixed choice of bid and ask pairs under a variety of assumptions (adversarial,
i.i.d., and their variants) on the sequence of market prices and valuations. Our
upper bound analysis unveils an intriguing connection relating market making
to first-price auctions and dynamic pricing. Our main technical contribution is
a lower bound for the i.i.d. case with Lipschitz distributions and independence
between prices and valuations. The difficulty in the analysis stems from the unique
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structure of the reward and feedback functions, allowing an algorithm to acquire
information by graduating the “cost of exploration” in an arbitrary way.

References

[1] N. Cesa-Bianchi, T. Cesari, R. Colomboni, L. Foscari, V. Pathak, Market Making without
Regret, preprint arXiv:2411.13993 (2024).

How to jit your jet: Accelerating Differential Operators

with Linearity

Felix Dangel

(joint work with Marius Zeinhofer)

We explore automating the acceleration of differential operators through compute
graph simplifications based on the concept of linearity. These occur in common
differential operators like the Laplacian, that computes then sums diagonal ele-
ments of the Hessian using Taylor mode automatic differentiation (jets). Instead,
we show that the Taylor coefficients can first be summed, then propagated, which
reduces computational cost. Due to the simplicity of this simplification (propagat-
ing a sum up a computation graph), we argue it could (or should) be performed by
the just-in-time (jit) compiler in machine learning frameworks. Our preliminary
experiments achieve promising, fully automated, speed-ups, which we believe can
easily be integrated into automatic differentiation libraries.

References

[1] Griewank, A., & Walther, A., Evaluating derivatives: principles and techniques of algorith-
mic differentiation, SIAM (2008).

[2] Li, R., Ye, H., Jiang, D., Wen, X., Wang, C., Li, Z., Li, X., ... Forward laplacian: a new

computational framework for neural network-based variational monte carlo. (2023).

Rethinking Approximate Gaussian Inference in Classification

Nathaël Da Costa

(joint work with Bálint Mucsányi, Philipp Hennig)

In classification tasks, softmax functions are ubiquitously used as output acti-
vations to produce predictive probabilities. Such outputs only capture aleatoric
uncertainty. To capture epistemic uncertainty, approximate Gaussian inference
methods have been proposed, which output Gaussian distributions over the logit
space. Predictives are then obtained as the expectations of the Gaussian distribu-
tions pushed forward through the softmax. However, such softmax Gaussian inte-
grals cannot be solved analytically, and Monte Carlo approximations can be costly
and noisy. We propose a simple change in the learning objective which allows the
exact computation of predictives and enjoys improved training dynamics, with no
runtime or memory overhead. This framework is compatible with a family of out-
put activation functions that includes the softmax, as well as element-wise normal
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cumulative distribution function and sigmoid. Moreover, it allows for approximat-
ing the Gaussian pushforwards with Dirichlet distributions by analytic moment
matching. We evaluate our approach combined with several approximate Gauss-
ian inference methods (Laplace, HET, SNGP) on large- and small-scale datasets
(ImageNet, CIFAR-10), demonstrating improved uncertainty quantification capa-
bilities compared to softmax models with Monte Carlo sampling.

References

[1] B. Mucsányi, N. Da Costa, P. Hennig, Rethinking Approximate Gaussian Inference in Clas-
sification, arXiv:2502.03366 (2025).

Empirical risk minimization for risk-neutral composite optimal control

with applications to bang-bang control

Daniel Walter

(joint work with Johannes Milz)

Nonconvex optimization problems governed by differential equations arise in a
multitude of application areas, such as sensor placement, resource assessment of
renewable tidal energy, and design of groundwater remediation systems. In this
talk, we consider risk-neutral composite optimal control problems where the objec-
tive function is the sum of a potentially nonconvex expectation function and a non-
smooth convex function. While a proper choice of the latter promotes favourable
structural features of the obtained minimizers, it also significantly complicates,
both, the theoretical analysis of the problem as well as its realization, e.g. due
to a lack of strong convexity. In the present setting, a further layer of difficulty
is added by random parameters in the underlying equation. To approximate the
risk-neutral optimization problems, we use a Monte Carlo sample-based approach,
study its asymptotic consistency, and derive nonasymptotic sample size estimates
relying on a covering number approach. Our analyses leverage problem structure
commonly encountered in PDE-constrained optimization problems, including com-
pact embeddings and growth conditions. We apply our findings to bang-bang-type
optimal control problems and propose the use of a conditional gradient method
to solve them effectively. Numerical illustrations are presented for, both, linear as
well as bilinear elliptic PDEs demonstrating the sharpness of some of the obtained
results.
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Bandits for free in Multiclass Classification

Yishay Mansour

(joint work with Liad Erez, Alon Cohen, Tomer Koren, Shay Moran)

We revisit the classical problem of multiclass classification with bandit feedback
(Kakade, Shalev-Shwartz and Tewari, 2008), where each input classifies to one of K
possible labels and feedback is restricted to whether the predicted label is correct
or not. Our primary inquiry is with regard to the dependency on the number of
classes K, which is often very large in multiclass problems. I will survey two recent
results in this context:

(1) A characterization of the minimax regret of bandit multiclass, establishing

that it is of the for min{|H | +
√
T ,

√

KT log(|H |)} for finite hypothesis
class H ; In particular, we present a new bandit classification algorithm
that guarantees this rate, improving over classical algorithms (such as
EXP4) for moderately-sized hypothesis classes, and give a matching lower
bound establishing tightness (up to log-factors) in all parameter regimes.

(2) A novel learning algorithm for the agnostic PAC version of the problem,
with sample complexity of O((poly(K) + 1/ǫ2) log(|H |/δ)); our algorithm
utilizes a stochastic optimization technique to minimize a log-barrier po-
tential based on Frank-Wolfe updates for computing a low-variance ex-
ploration distribution over the hypotheses, and is made computationally
efficient provided access to an ERM oracle over H .

We also provide an extension general classes and establish similar sample complex-
ity bounds in which log |H | is replaced by the Natarajan dimension. Surprisingly,
these results match the asymptotic optimal rates with full-information, and re-
veal a stark contrast between the PAC and regret-minimization versions of the
problem.
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Denoising diffusion models without diffusion

Francis Bach

(joint work with Saeed Saremi, Ji-wei Liao)

Denoising diffusion models lead to state-of-the-art performance for sampling com-
plex objects. They are based on the idea of sampling by denoising from Hyvärinen
(2005), the possibility of learning denoiser from empirical data (the key idea of
Vincent), by score matching, and the possibility of progressive denoising. The pro-
gressive denoising can be achieved through continuous-time stochastic processes
(diffusions), as done by Song & Ermon (2019).
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In this work, we propose a diffusion-free view that can be readily extended to
discrete data.
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Attention-based predictors and single location regression

Claire Boyer

(joint work with Pierre Marion, Raphaël Berthier, Gérard Biau)

Attention-based models, such as Transformer, excel across various tasks but lack a
comprehensive theoretical understanding, especially regarding token-wise sparsity
and internal linear representations. To address this gap, we introduce the single-
location regression task, where only one token in a sequence determines the output,
and its position is a latent random variable, retrievable via a linear projection of
the input. To solve this task, we propose a dedicated predictor, which turns
out to be a simplified version of a non-linear self-attention layer. We study its
theoretical properties, by showing its asymptotic Bayes optimality and analyzing
its training dynamics. In particular, despite the non-convex nature of the problem,
the predictor effectively learns the underlying structure. This work highlights the
capacity of attention mechanisms to handle sparse token information and internal
linear structures.
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Causal Representation Learning with the Invariance Principle

Francesco Locatello

(joint work with Dingling Yao, Dario Rancati, Riccardo Cadei, Marco Fumero)

Machine learning and AI have the potential to transform data-driven scientific dis-
covery, enabling not only accurate predictions for several scientific phenomena but
also causal understanding. Toward this, we present a new framework for causal rep-
resentation learning based on the invariance principle that generalizes most exist-
ing methodologies across levels of the causal hierarchy [1]. Thanks to the increased
flexibility, we show improved performance on our ISTAnt data set, the first real-
world benchmark for estimating causal effects from high-dimensional observations
in experimental ecology [3]. Further, we connect causal representation learning
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with recent advances in dynamical systems discovery that, when combined, en-
able learning scalable and controllable models with identifiable trajectory-specific
parameters [2], which we apply to real-world climate data.
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Mind the Spikes: Benign Overfitting of Kernels and Neural Networks

in Fixed Dimension

Moritz Haas

(joint work with David Holzmüller, Ulrike von Luxburg, Ingo Steinwart)

The success of over-parameterized neural networks trained to near-zero training
error has caused great interest in the phenomenon of benign overfitting, where
estimators are statistically consistent even though they interpolate noisy train-
ing data. While benign overfitting in fixed dimension has been established for
some learning methods, most of the literature suggests that for regression with
typical kernel methods and wide neural networks, benign overfitting requires a
high-dimensional setting where the dimension grows with the sample size. In
this talk, we show that the smoothness of the estimators, and not the dimension,
is the key: benign overfitting is possible if and only if the estimator’s derivatives
are large enough. We generalize existing inconsistency results to non-interpolating
models and more kernels to show that benign overfitting with moderate derivatives
is impossible in fixed dimension. Conversely, we show that rate-optimal benign
overfitting is possible for regression with a sequence of spiky-smooth kernels with
large derivatives. Using neural tangent kernels, we translate our results to wide
neural networks. We prove that while infinite-width networks do not overfit be-
nignly with the ReLU activation, this can be fixed by adding small high-frequency
fluctuations to the activation function. Our experiments verify that such neural
networks, while overfitting, can indeed generalize well even on low-dimensional
data sets.
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LUNO: Linearization turns neural operators into function-valued GPs

Emilia Magnani

(joint work with Marvin Pförtner, Tobias Weber, Philipp Hennig)

Neural operators generalize neural networks to learn mappings between function
spaces from data. They are commonly used to learn solution operators of paramet-
ric partial differential equations (PDEs) or propagators of time-dependent PDEs.
However, to make them useful in high-stakes simulation scenarios, their inher-
ent predictive error must be quantified reliably. We introduce LUNO, a novel
framework for approximate Bayesian uncertainty quantification in trained neural
operators. Our approach leverages model linearization to push (Gaussian) weight-
space uncertainty forward to the neural operator’s predictions. We show that
this can be interpreted as a probabilistic version of the concept of currying from
functional programming, yielding a function-valued (Gaussian) random process
belief. Our framework provides a practical yet theoretically sound way to apply
existing Bayesian deep learning methods such as the linearized Laplace approxi-
mation to neural operators. Just as the underlying neural operator, our approach
is resolution-agnostic by design. The method adds minimal prediction overhead,
can be applied post-hoc without retraining the network, and scales to large mod-
els and datasets. We evaluate these aspects in a case study on Fourier neural
operators.
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Associative Memories as a Building Block in Transformers

Alberto Bietti

(joint work with Vivien Cabannes, Elvis Dohmatob, Diane Bouchacourt, Hervé
Jegou, Leon Bottou, Eshan Nichani, Jason Lee)

Large language models based on transformers have achieved great empirical suc-
cess. However, as they are deployed more widely, there is a growing need to better
understand their internal mechanisms in order to make them more reliable. These
models appear to store vast amounts of knowledge from their training data, and to
adapt quickly to new information provided in their context or prompt. Through
toy tasks for reasoning and factual recall, we highlight the role of weight matrices
as associative memories, and provide theoretical results on how gradients enable
their learning during training, as well as how over-parameterization affects their
storage capacity. Specifically, the associative memory building block takes the
following form

W =
∑

z∈[N ]

uf(z)e
⊤
z ∈ R

d×d,

https://arxiv.org/abs/2406.05072
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where d is the model width, ez, uy ∈ R
d are random input/output embeddings,

and N is the number of target associations (z, f(z)) that we want to store. This
structure arises naturally from gradients at intermediate layers of deep networks,
and is amenable to a precise study of memorization capacity at finite width.
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Nonsmooth optimization for machine learning

Andrea Walther

(joint work with Aswin Kannan, Timo Kreimeier)

The retail industry is governed by crucial decisions on inventory management,
discount offers and stock clearings yielding various optimization problems. One
important task is to learn the demand (sales) elasticity with respect to product
prices. Another one is the dynamic revenue maximization problem, which takes
in the coefficients of demand as inputs. While both tasks present nonsmooth and
data-driven optimization problems, the latter is a challenging nonlinear problem in
massive dimensions that is also subject to constraints. Traditional approaches to
learn the corresponding parameters relied on using reformulations and approxima-
tions, thereby leading to potentially suboptimal solutions. In this work, we exploit
the nonsmooth structure generated by the piecewise linear and piecewise smooth
structure of the target function. Further details can be found in [1]. Furthermore,
we adapted the Constrained Active Signature Method (CASM) [2] to solve the
resulting tasks. Two real world retail examples (UK and US market data from
2017–2019) and one simulated use-case are studied from an empirical standpoint.
Numerical results demonstrate good performance of our approach.
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Probabilistic Functional Programming

Marvin Pförtner

(joint work with Jonathan Wenger, Nathaël Da Costa, Lancelot Da Costa, Tim
Weiland, Emilia Magnani, Tobias Weber, Jon Cockayne, Ingo Steinwart, Philipp

Hennig)

Most approaches to supervised machine learning aim to infer an unknown function
from pointwise observations. However, especially in scientific inference, we often
encounter more general sources of information about an unknown function such
as the fact that a partial differential equation (PDE) holds. In this talk, I will
argue that a principled approach to nonparametric Bayesian inference under such
information operators requires functions to be treated as first-class citizens, just
like in functional programming. I will give an introduction to the theory of Gauss-
ian measures on (infinite-dimensional) real vector spaces and demonstrate how
this framework can be used to make Gaussian process inference with observations
made through linear functionals rigorous [1, 2]. Finally, I will show two applica-
tions of this theoretical result: probabilistic numerical PDE solvers [1, 3, 4], and
a method for approximate Bayesian uncertainty quantification in neural operators
that is based on function-valued Gaussian processes [6, 7].
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Causal de Finetti & Do Finetti: On causality for exchangeable data

Siyuan Guo

Like many machine learning methods, causality is developed based on the as-
sumption of independent and identically distributed (i.i.d.) data. However, it
is well-known that even with infinite i.i.d. data, constraint-based causal discov-
ery methods can only identify causal structures up to broad Markov equivalence
classes, posing fundamental limitations for causal discovery.

In causal de Finetti, we observe that exchangeable data contains richer con-
ditional independence structure than i.i.d. data. This richer structure can be
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leveraged for causal discovery. Do Finetti further builds on the causal framework
and studies interventions by establishing formal do-calculus in exchangeable data
and proving generalized truncated factorization for identification and computation
of causal effects.

Algorithmic Collective Action in Machine Learning

Celestine Mendler-Dünner

(joint work with Moritz Hardt, Eric Mazumdar, Tijana Zrnic)

I present a simple theoretical model to initiate a principled study of algorithmic
collective action in learning systems [1]. It describes a collective interacting with
a firm that deploys a machine learning algorithm. Each individual in the collec-
tive controls a single training data point and together they execute an algorithmic
strategy to modify their data and achieve a collective goal. In three fundamental
learning-theoretic settings – the case of a nonparametric optimal learning algo-
rithm, a parametric risk minimizer, and gradient-based optimization – I present
coordinated algorithmic strategies and characterize natural success criteria as a
function of the collective’s size. Complementing our theory, I present systematic
experiments on a skill classification task using a transformer-based language model
and demonstrate a striking correspondence between our empirical observations and
the predictions made by our analysis. Taken together, our results broadly support
the conclusion that algorithmic collectives of exceedingly small fractional size can
exert significant control over a platform’s learning algorithm.
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Optimal transport distances for Markov chains

Gergely Neu

(joint work with Sergio Calo, Anders Jonsson, Ludovic Schwartz,
and Javier Segovia-Aguas)

How can one define similarity metrics between stochastic processes? Understand-
ing this question can help us design better representations for dynamical systems,
study distances between structured objects, formally verify complex programs, and
so on. In the past, the dominant framework for studying this question has been
that of bisimulation metrics, a concept coming from theoretical computer science.
My recent work has been exploring an alternative perspective based on the the-
ory of optimal transport, which has led to surprising results, including a proof of
the fact that bisimulation metrics are, in fact, optimal transport distances. This
realization allowed us to import tools from optimal transport and develop compu-
tationally efficient methods for computing distances between Markov chains via
the reduction of the problem to a finite-dimensional linear program. In this talk,
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I have introduced this framework and the foundations of the most recent algorith-
mic developments, as well as discussed the potential for representation learning in
more detail.

Are self-supervised models doing kernel PCA?

Debarghya Ghoshdastidar

(joint work with Gautham G. Anil, Pascal Esser, Maximilian Fleissner)

This talk will have two parts. In the first part, I will briefly introduce self-
supervised pretraining commonly used in foundation models for vision and tabular
data. I will also introduce the key question related to statistical generalisation in
foundation models: How do we guarantee statistical generalisation for different
downstream prediction tasks given that the model is pre-trained with large amount
of unlabelled (augmented) data? I will conclude this part with some initial ideas
and results assuming that the foundation model uses a kernel-based encoder to
learn representations via self-supervised pre-training.

In the second part part, I will focus on the equivalence between self-supervised
neural networks and kernel principal component analysis (PCA). This equivalence
is based on two ideas: (i) optimal solution of self-supervised kernel models can be
computed as a spectral embedding [1], and (ii) infinitely wide neural networks are
equivalent to kernel models, characterised by the neural tangent kernel (NTK).
I conclude with our recent results on the convergence to the NTK under self-
supervised training [2, 3].
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Achievable distributional robustness when the robust risk is only

partially identified

Fanny Yang

(joint work with Julia Kostin, Nicola Gnecco)

In safety-critical applications, machine learning models should generalize well un-
der worst-case distribution shifts, that is, have a small robust risk. Invariance-
based algorithms can provably take advantage of structural assumptions on the
shifts when the training distributions are heterogeneous enough to identify the ro-
bust risk. However, in practice, such identifiability conditions are rarely satisfied –
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a scenario so far underexplored in the theoretical literature. In this paper, we aim
to fill the gap and propose to study the more general setting when the robust risk
is only partially identifiable. In particular, we introduce the worst-case robust risk
as a new measure of robustness that is always well-defined in this setting. Its min-
imum corresponds to an algorithm-independent (population) minimax quantity
that measures the best achievable robustness under partial identifiability. While
these concepts can be defined more broadly, in this paper we introduce and derive
them explicitly for a linear model for concreteness of the presentation. Specifically,
we prove how previous approaches rank differently in terms of worst-case robust
risk and are suboptimal in the partially identifiable case. We then evaluate these
approaches and the minimizer of the (empirical) worst- case robust risk on and find
a similar trend: the test error of existing robustness methods grows increasingly
suboptimal as the fraction of data from unseen environments increases.
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Why does Adam work so well? Heavy-tailed class imbalance in

language models

Frederik Künstner

(joint work with Alberto Bietti, Jacques Chen, Wilder Lavington, Alan Milligan,
Mark Schmidt, and Robin Yadav)

Adam has been shown to outperform gradient descent in optimizing large language
transformers empirically, and by a larger margin than on other tasks, but it is
unclear why this happens. We show that the heavy-tailed class imbalance found in
language modeling tasks leads to difficulties in the optimization dynamics. When
training with gradient descent, the loss associated with infrequent words decreases
slower than the loss associated with frequent ones. As most samples come from
relatively infrequent words, the average loss decreases slowly with gradient descent.
On the other hand, Adam and sign-based methods do not suffer from this problem
and improve predictions on all classes. To establish that this behavior is indeed
caused by class imbalance, we show empirically that it persist through different
architectures and data types, on language transformers, vision CNNs, and linear
models. We study this phenomenon on a linear classification with cross-entropy
loss, showing that heavy-tailed class imbalance leads to ill-conditioning, and that
the normalization used by Adam can counteract it.
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Towards Practical Probabilistic PDE Solvers

Tim Weiland

(joint work with Marvin Pförtner, Philipp Hennig)

Physical simulations are subject to various sources of uncertainty arising from
noisy or missing measurements, unknown parameters, and discretization error of
a numerical PDE solver. Probabilistic PDE solvers generalize classic numerical
solvers while providing a principled treatment of these uncertainties. Yet, despite
their theoretical properties, such solvers have not seen much practical use so far. In
my talk, I discuss two techniques to greatly improve the scalability of probabilistic
PDE solvers. First, viewing a PDE as an ”infinite data source” in the sense of
probabilistic numerics, we consider the idea of alternative ways of ”drawing infor-
mation” from this data source. Concretely, we construct volumetric information
operators which reproduce the finite volume method, and discuss efficient compu-
tational techniques. Second, we challenge the popular approach to probabilistic
PDE solvers of using a Gaussian process prior in covariance function form. We see
that stochastic PDEs allow for a much more rich, physically meaningful expression
of prior knowledge, while simultaneously providing drastic computational benefits
through Gaussian Markov Random Field priors which allow for the use of highly
efficient sparse linear algebra.
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What is a causal representation?

Bernhard Schölkopf

Epistemology is traditionally concerned with human knowledge, yet it extends to
artificially intelligent agents. We aim to contribute to its formalization by analyz-
ing processes of model building in artificial intelligence (AI). Given that our access
to the world is an indirect one, mediated by processes of sensory transduction, can
we nevertheless build models that are structurally related to the world?

For an active agent, it is not sufficient for a world model to represent what
is there, as done in the popular paradigm of statistical representation learning.
Representations should also support interventions, i.e., include causal information.
Ultimately, interventional representations could form the basis of thinking as acting
in an imagined space [4]. A key obstacle preventing the use of causal models in
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200 Oberwolfach Report 4/2025

AI, however, is the requirement that the relevant causal variables or “symbols” be
specified a priori and/or directly observed. This underscores the need to combine
causal modeling with representation learning. What makes a good representation?

Leibniz developed the following thought [2]. Suppose that the concept of ‘living
being’ were represented by the number 2, and the concept ‘rational’ were repre-
sented by the number 3. Then the concept of ‘human’ would correspond to the
product of 2 and 3, yielding 6. This is an example of a homomorphism, where
structure in one domain (here, logical relationship) is expressed in another do-
main (integer multiplication). By expressing it in another space, homomorphisms
preserve relevant structure while making it easier to handle.

Helmholtz asked himself how we arrive at reliable perceptions. Hypothesizing
that we make predictions and test them sensori-motorically, he viewed perceptions
as unconscious inductive inferences. Pragmatic criteria for testing representations
may involve actions and their perceptual consequences. Hertz argued that we
create internal illusions or symbols of external objects, and we do so in such a way
that the images’ consequences that are necessary in thought always coincide with
the images of the depicted objects’ consequences that are necessary in nature [1].
This form of consistency [6] constitutes a desideratum for causal representations.

To gain further intuition on the link between the world and models thereof,
let us consider an example [7]: if variations of natural lighting (the position of
the sun, clouds, etc.) imply that the visual environment can appear in brightness
conditions spanning orders of magnitude, then visual processing algorithms in our
nervous system should employ methods that represent (and thus factor out) these
variations, rather than building separate sets of face recognizers, say, for every
lighting condition. If our brain were to compensate for the lighting changes by a
gain control mechanism, say, then this mechanism in itself need not have anything
to do with the physical mechanisms bringing about brightness differences. It
would, however, play a role in a world model’s mathematical structure akin to the
role the physical mechanisms play in the world’s modular structure.

Causal representations should preserve not just statistical, but also interven-
tional information. Consider a class of maps A : X → X , each representing the
physical operation of an intervention on the world, observed through X ∈ X . A
causal representation comprises a map φ taking an observation X to Z ∈ Z,
and a map Φ taking an intervention to a map Z → Z, such that (φ,Φ) pre-
serve interventional information in the sense that the effect of interventions can
consistently be computed in the space Z, i.e., the below diagram commutes.

Z Z

X X

Φ(A)

φ

A

φ

In a biological system, φ might be a sensory mapping implemented by the eye and
the visual cortex, while Φ might be realized through efference copies, i.e., internal
copies of motor signals generated by an animal’s brain. In order to realize an
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internal world model, those copies should then be processed and represented in Z
where they can be related to sensory representations generated by φ.

While the above implements Hertz’ notion of consistency, it also allows for
incorporation of homomorphism. E.g., if we assume a group structure on the class
of interventions, we may require that Φ be a homomorphism to a group of linear
operators on a suitable Z, i.e., Φ(A1) ◦ Φ(A2) = Φ(A1 ◦A2) [3].

Imagine, for instance, that we have a set of objects making up a scene. Assume
that X contains high-dimensional images of the scene, whereas Z only contains
location coordinates of the objects. Consider an intervention that shifts the po-
sition of one object along one coordinate: this intervention is complicated in X ,
(nonlinearly) affecting many pixels at the same time, yet it corresponds to a simple
change to one coordinate in Z. Only representing the positions of objects is not a
rich representation; however, if that is all we can intervene upon, then there is no
need for more. If other interventions are possible, e.g., changing the illumination,
then φ should represent additional parameters, such as appearance or material
properties of the objects in the scene.

In causal modeling, we are often dealing with probability distributions over the
observations X and the latent variables Z respectively. Recall that A(X) is the
result of applying the intervention A on X, and assume that in the latent space Z,
we have an interventional calculus do [5] that allows us to compute the distribution

P
do(A)
Z

obtained by performing an intervention A. Then the commutative diagram
can be expressed as

(1) (φ∗(PX))
do(Φ(A))

= φ∗(A∗(PX)),

where the asterisk ∗ denotes the push-forward of probability distributions. The
mapping Φ on A needs to be known or estimated from data. Multiple mappings
may satisfy the condition, differing in which information they capture and how
well they disentangle the interventions. Let us consider several special cases.

Statistical representations. If the class of interventions is trivial (i.e., only
containing the identity), (1) is satisfied irrespective of φ.

Causal graphs. Causal graphs are directed acyclic graphs G where each node
represents a variable and comes with a “mechanism” modeled as a conditional of
the node given its parents, and the “do-calculus” [5] tells us how to modify the
entailed joint distribution when interventions (i.e., changes to some conditionals)

occur. In (φ∗(PX))
do(Φ(A))

, the term φ∗(PX) is the observational distribution
mapped into the latent space, and the notation do(Φ(A)) denotes that we are
applying the rules of the do-calculus with respect to G to update the distribution
φ∗(PX) according to the intervention A. We thus think of G as part of (the image
under) Φ. Learning Φ includes learning a causal graph G along with its mechanisms
and the intervention targets such that the given interventions A can be realized
as do-interventions in the graph.

Invertible representations. A class of representations that satisfy (1) are those
where φ is invertible, and Φ(A) := φ ◦ A ◦ φ−1. One such case is Independent
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Component Analysis (ICA), which can be used for source separation. Imagine we
have several independent acoustic sources and we observe a mixture X, recorded
by several microphones. Assume that our interventions A affect the volume of
one source at a time. Observed through X, each intervention simultaneously
changes the volume in all microphones, by different amounts, giving us a vector
each. Putting the vector obtained for the different source interventions next to
each other, we get a matrix A that characterizes how the interventions affect
our observations X. ICA aims to find a matrix φ diagonalizing the intervention
matrix. The action of our interventions mapped in the representation space, i.e.,
Φ(A) := φ ◦A ◦ φ−1, will correspond to atomic intervention affecting one Zi at a
time. In practice, subject to suitable conditions, ICA is carried out by computing
φ such as to minimize the dependence between the variables Zi. In this case, the
Zi correspond (up to certain degrees of freedom) to the sources. One can think of
ICA as the process of fitting a simple causal model to the observed data [8].

Generative setting. A fruitful point of view, further generalizing that of ICA,
can be developed for the case where we assume that the observations X are the
result of applying a generative mapping ψ to unobserved physical variables Z.

Disentangled causal representations. In practice, we are interested in map-
pings that leads to interventions acting sparsely yet nontrivially. E.g., if all Φ(A)
only affect single mechanisms on Z, then the resulting push forward model recovers
what has been called the causal disentangled factorization, with factors satisfying
the Independent Causal Mechanisms condition [7]. We may call a causal repre-
sentation (φ,Φ) disentangled w.r.t. a class of interventions A if every Φ(A) is an
atomic intervention, i.e., it affects only a single variable (or causal mechanism).
We may call it faithful with respect to a set of interventions if Φ : A 7→ Φ(A) is
injective.

Note, finally, that our notion of a causal representation does not require the ex-
istence of a ground truth generative model for the data. Rather, it is instrumental :
the value of a causal representation is not determined by whether it recovers a hy-
pothetical ground truth, but by whether it allows us to consistently compute the
effect of actions or interventions.
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72076 Tübingen
GERMANY
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Maria-von-Linden-Straße 2
& Max Planck Institute
for Intelligent Systems
Max-Planck-Ring 4
72076 Tübingen
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Universität Tübingen
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72076 Tübingen
GERMANY

Vaclav Voracek

Universität Tübingen
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