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Introduction by the Organizers

The mini-workshop New Directions in Correlated Quantum Systems was orga-
nized by Emanuela L. Giacomelli (Milan), Jinyeop Lee (Basel) and Marius Lemm
(Tübingen) and brought together 16 participants (including the organizers and one
remote attendee). The group consisted of experts of different academic seniority
and was well-balanced in various dimension, including gender, geographical repre-
sentation, and scientific background. The workshop focused on both the dynamical
and static properties of quantum many-body systems, with particular emphasis
on the role of correlations. The aim was to foster a dialogue between researchers
from two different areas of mathematical physics, both of which have recently seen
significant progress:

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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(I) The mathematical analysis of quantum many-body systems in scaling
regimes, which has led to precise asymptotic expansions of ground state
energy and time evolution, in particular through higher-order Bogoliubov
theory.

(II) The study of strongly correlated quantum systems using techniques from
quantum information theory. A key tool in this area is the Lieb-Robinson
bound, which provides fundamental insights into the propagation of quan-
tum correlations.

The primary goal of the workshop was to learn about the key ideas of the
respective other field. The secondary goal was to explore novel connections and
to generate new research ideas.

These goals were reflected in the program. The workshop included four one-hour
tutorials, nine one-hour talks, several open discussion sessions, an open problem
session, and a wrap-up session. Throughout the week, all participants gave a
talk, focusing on conveying the central conceptual and methodological points,
especially to the participants from the further away area. Key themes included
particle propagation and Lieb-Robinson bounds, effective dynamics of quantum
system, positive temperature systems, and ground state energy expansions.

To ensure a shared basis of understanding, Monday consisted of introductory
and advanced tutorials across these areas. Experts Andrew Lucas and Tomotaka
Kuwahara presented on bosonic Lieb-Robinson bounds, while Arnaud Triay and
Marcello Porta covered the derivation of effective evolution equations for many-
body quantum systems.

Following the tutorial sessions, Tan Van Vu provided insights into the maxi-
mal speed of particle transport in closed and open quantum systems, while Carla
Rubiliani presented recent progress on propagation bounds for lattice bosons un-
der long-range interactions. For positive-temperature systems, Robert Seiringer
discussed results on the Heisenberg ferromagnet which linked spin systems to di-
lute Bose gases. Phan Thán Nam presented recent advances in the description
of the Gibbs state of the mean-field Bose gas. Lieb-Robinson bounds were ex-
amined from different perspectives: Oliver Siebert addressed their formulation in
the continuum, while Tom Wessel discussed their application to study equilibrium
physics in lattice models. Bridging the two areas of research, Jingxuan Zhang
presented on local enhancement of the mean-field approximation for bosons, while
Simone Rademacher presented an asymptotic formula for the out-of-time ordered
correlators for mean-field bosons. The ground state energy properties of quantum
systems were also explored, with Christian Hainzl discussing recent advances in
understanding the low-density Fermi gas.

On Wednesday morning, the open problem session provided a platform for in-
depth discussions on cutting-edge methodologies and future research directions.
The session was structured in two parts: first, participants formed small groups
– each with a balanced mix of senior and junior researchers – to explore new
ideas regarding specific topics. The topical groups were called Bose-Hubbard type

Hamiltonians, dynamical bounds for continuum systems, and positive temperature
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systems. After about two hours of discussion, in the second part, the different
groups came together again, to share their insights, which led to further comments
from other participants and a productive discussion.

The mini-workshop concluded with a wrap-up session, in which participants’
talks were located in a Venn diagram of the two fields. Connections that were found
during the week were drawn into the diagram. Afterwards, a list of interesting open
problems was compiled.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Introduction to the Lieb-Robinson Theorem

Andrew Lucas

In special relativity, the speed of light c sets a fundamental limit on how quickly
information can be sent in any physical system. But many physical systems have
emergent speed limits on information transfer; for example, sound waves propa-
gating through air travel at ∼ 10−6c. The Lieb-Robinson Theorem, first proved
in 1972 [3], demonstrates that many-body quantum lattice models can also have
such emergent speed limits.

I presented a tutorial on the Lieb-Robinson Theorem, beginning by motivating
how the transfer of quantum information and correlations is quantified through
the operator norm of the commutator of two local operators: ‖[Ax(t), By ]‖, where
Ax and By act locally on degrees of freedom at lattice site x and y respectively,
and time-evolution is generated by the Heisenberg equation of motion

Ȧx(t) = i[H(t), Ax(t)].

A typical Hamiltonian of interest takes the form

H =
∑

x∼y
Hxy(t)

where Hxy acts on the degrees of freedom at two sites x ∼ y which are adjacent on
a suitable interaction graph. Following [1], and assuming H is time-independent, I
then showed how to expand [Ax(t), By] as a Taylor series in t, using a generalization
of the Duhamel identity that keeps track of the “irreducible path” between the
points x and y. The resulting Lieb-Robinson Theorem took the form

‖[Ax(t), By]‖
2‖Ax‖‖By‖

≤
∞∑

l=0

(2t)l

l!

∑

self-avoiding x → v1 · · · vl−1 → y

l∏

j=1

‖Hvj−1vj‖

where x = v0 and y = vl in a path of length l. Emphasis in the derivation was
placed on how unitarity of quantum mechanics is crucial in the bound; this is not
a purely combinatorial result.

Much of the subsequent workshop was then dedicated to a better understand-
ing of how these Lieb-Robinson bounds can and have been generalized to other
problems [2]. We also discussed some more fundamental prospects, including Lieb-
Robinson bounds which are tailored to specific states, or which use specific features
of a state, such as its quantum metastability [4].

References
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Advanced Tutorial on the bosonic Lieb-Robinson bound

Tomotaka Kuwahara

(joint work with Tan Van Vu, Keiji Saito)

The Lieb-Robinson bound provides a fundamental constraint on the speed of in-
formation propagation in quantum many-body systems, playing a crucial role in
understanding entanglement structure, quantum simulations, and computational
complexity. While the original Lieb-Robinson bound is well-established for systems
with short-range interactions and finite local energy, its extension to bosonic sys-
tems presents significant theoretical challenges due to the possibility of unbounded
local energy [1, 2, 3, 4, 5, 6].

In this tutorial, we review the historical development and key results of the
Lieb-Robinson bound [5], highlighting its further generalization and remaining
open problems. We discuss the breakdown of conventional techniques in bosonic
systems and present recent advances addressing this issue. In particular, we out-
line the optimal light cone for Bose-Hubbard-type models and the corresponding
constraints on information propagation.

The lecture covers the following main topics:

(1) Motivation and Background: The role of the Lieb-Robinson bound
in quantum many-body physics and its relevance in practical quantum
simulations.

(2) Challenges in Interacting Bosonic Systems: The impact of un-
bounded local energy on conventional proofs and the necessity of alter-
native approaches.

(3) Recent Advances: New techniques that establish finite-speed informa-
tion propagation under physically relevant conditions.

(4) Remaining open problems: Generalization to long-range interacting
systems and improving the light cone in translation invariant systems [7].

Our discussion also explores implications for quantum computation, particu-
larly in estimating circuit depth for bosonic simulations. The tutorial aims to
provide both an accessible introduction for newcomers and an in-depth techni-
cal perspective for researchers interested in quantum information and many-body
physics.

References
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Basic tutorial: Effective equations around Bose-Einstein condensation

Arnaud Triay

In this tutorial, I explained the main intuitions behind the validity of the Hartree
(or Gross-Pitaevskii) and Bogoliubov theories in the effective description of the
evolution of Bose-Einstein condensates. This is based on results and methods
of [3, 2, 1].

Let us consider N weakly interacting bosons, their Hamiltonian is given by

HN =

N∑

j=1

−∆xj
+

1

N − 1

∑

1≤j<k≤N
V (xj − xk)

acting on the Bosonic space L2
s (R

dN ) (N, d ≥ 1) of square integrable functions
which are symmetric under permutations of their N variables. The state of the
system is given by a wave function L2

s (R
dN ) and its evolution is governed by the

Schrödinger equation
i∂tΨN (t) = HNΨN(t).

For initial data satisfying Bose-Einstein condensation, one can show that conden-
sation is preserved at later time

ΨN(0) ≃ u(0)⊗N =⇒ ΨN (t) ≃ u(t)⊗N(1)

where u(t) follows the Hartree equation. To see this, observe that the energy of
such states is given by the Hartree energy

EH(u) :=
∫

Rd

|∇u|2 + 1

2

∫

Rd

V ∗ |u|2|u|2 = N−1 〈HN 〉u⊗N(2)

and the Hartree dynamics is given by the Hamiltonian evolution of EH , that is

i∂tu(t) =
(
−∆+ V ∗ |u(t)|2

)
u(t).(3)

Note that the approximation (1) has little chance to hold in norm, since this
would require that every particle is close to the condensate wave function, observe
for instance that ‖u⊗N−u⊗N−1⊗v‖L2(RdN ) = ‖u−v‖L2(Rd). However, (1) holds in
a statistical way, and a precise statement can be made using the density matrices
of the system

γ
(k)
ΨN (t)

:= Trk+1→N (|ΨN(t)〉〈ΨN (t)|) −→
N→∞

|u⊗k(t)〉〈u⊗k(t)|
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if true for t = 0.
In fact, the Hartree theory (2) also predicts correctly the dynamics of the fluc-

tuations around u(t)⊗N and allows for an approximation in norm. To focus on the
fluctuations, we write

ΨN =

N∑

k=0

ϕk ⊗s uN−k

and define

ΦN := {ϕk}k ∈ F≤N
+ (u⊥) =

N⊗

k=0

{u⊥}⊗sk.

Note that the map ΨN 7→ ΦN is isometric. The dynamics of the fluctuations
i∂tΦ(t) = H(t)Φ(t) is governed by the second quantization of the Hessian of EH

H =

∫
a∗x
(
−∆x + V ∗ |u(t)|2 +K1(t)

)
ax +

1

2

∫∫
K2(t, x, y)a

∗
xa

∗
y + h.c.

where Kj are the projection onto u⊥ of K̃1(t, x, y) = u(t, x)V (x − y)u(t, y) and

K̃2(t, x, y) = u(t, x)V (x− y)u(t, y). Indeed, we have that for all t ∈ R

lim
N→∞

‖ΦN (t)− Φ(t)‖F≤N

+

= 0.

References
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Dynamics of high density Fermi gases

Marcello Porta

(joint work with Luca Fresta, Benjamin Schlein)

We consider the dynamics of N interacting fermionic particles, initially confined
in a region Λ ⊂ R

3, with density N/|Λ| =: ̺≫ 1. Let us introduce the parameter
ε = ̺−1/3. The Hamiltonian of the system is

(1) HN =

N∑

j=1

Kj + ε3
N∑

i<j

V (xi − xj) on L2
a(R

3N )

with Kj = −ε2∆j (non-relativistic case) or Kj =
√
1− ε2∆j (pseudo-relativistic

case). The ε-dependence of the Hamiltonian defines the high density scaling, and it
is introduced in order to guarantee that kinetic and interaction energy are balanced
as ̺≫ 1. The mean-field regime is a special case, equivalent to ̺ ∼ N (and hence
|Λ| ∼ 1).



Mini-Workshop: New Directions in Correlated Quantum Systems 349

We are interested in the dynamics of initial data ψN under the evolution gen-
erated by (1), ψN,t = e−iHN t/εψN . In particular, we shall focus on the evolution
of the one-particle density matrix, defined as

(2) γ
(1)
N,t = N tr2,3,...,N |ψN,t〉〈ψN,t|,

an operator on L2(R3). We would like to compare this operator with the solution
of the time-dependent Hartree equation, defined as

(3) iε∂tωN,t = [K + ε3(ρt ∗ V ), ωN,t], ωN,0 = ωN ,

with K = −ε2∆ or K =
√
1− ε2∆, and ρt(x) = ωN,t(x;x). At high density, and

choosing ωN close to γN in a suitable topology, eq. (3) is expected to effectively
describe the dynamics of the one-particle density matrix (2) of the system. A
better approximation should be obtained considering the Hartree-Fock equation,
differing from the Hartree equation by the presence of the exchange term, which
is however subleading at high density.

In the mean-field regime, the first rigorous derivation of the Hartree equation
from the many-body Schrödinger equation in the mean-field/semiclassical scaling
has been obtained in [1], for short times. A different method has then been intro-
duced in [3], that allows to prove convergence for all times, and for a larger class
of interaction potentials. The work [3] allows to consider the dynamics of initial
data that enjoy a suitable semiclassical structure, expected to hold for the ground
state of confined systems.

Recently, in [4, 5] we extended the method of [3], in order to give a rigorous
derivation of the time-dependent Hartree equation for the dynamics of extended
fermionic systems at high density, that is for which N and |Λ| are arbitrarily
large, and where N/|Λ| = ̺ ≫ 1 is fixed (and N -independent). Let us informally
describe the results. In the work [4] we gave a derivation of the Hartree equation for
non-relativistic and for pseudo-relativistic fermions, in a global sense. We proved
that, choosing for simplicity γN = ωN with ωN = ω2

N (Slater determinant), and
assuming a suitable, local semiclassical structure for ωN

(4) tr |γ(1)N,t − ωN,t|2 ≤ C(t)Nε,

for all times t smaller than a suitable T∗ > 0, which is O(1) and finite in the
non-relativistic case, and arbitrary in the pseudo-relativistic case. The result (4)
allows to prove the closeness of many-body and Hartree dynamics, at the level of
expectation values of Hilbert-Schmidt operators (recall that the trivial bound for
the Hilbert-Schmidt norms squared of the density matrices is N).

It is a natural question to try to resolve the Hartree dynamics on a local scale,
that is comparing expectation values of observables which are localized in space.
This has been achieved in [5], for the pseudo-relativistic dynamics of high-density
Fermi gases. Let Oz(x) ≡ O(x − z) be a smooth and fast decaying function,
centered at z. Under the assumption that ωN satisfies a suitable local semiclassical
structure, we proved

(5)
∣∣∣ trOz(x̂)(γ(1)N,t − ωN,t)

∣∣∣ ≤ C(t)ε−2,
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for all times. Being much smaller than the density ̺ = ε−3, this bound proves
closeness of many-body and Hartree dynamics on a local scale.

The method of proof of [5] is based on the control of the local fluctuations,
that quantify the deviation in time between Hartree and many-body dynamics
locally in space. In order to keep track of the locality of the fluctuation dynamics,
a crucial role is played by a suitable regularization procedure, that replaces the
initial zero temperature state by a state at temperature of order ε, using the Araki-
Wyss representation of mixed states of [2]. The introduction of a small positive
temperature improves the decay properties of the density matrix ωN , which turn
out to be stable against the Hartree flow. The improved decay properties of the
solution of the Hartree dynamics imply better locality properties for the fluctuation
dynamics, which ultimately allow to prove that the evolution of local fluctuations
stays local.

An advantage of considering pseudo-relativistic fermions is that the group ve-
locity of the particles is bounded. It is an interesting open problem to extend
the result (5) to the case of non-relativistic fermions, in which the single particle
velocity is a priori unbounded.

References
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Maximal speed of particle transport in closed and open

quantum systems

Tan Van Vu

(joint work with Tomotaka Kuwahara, Keiji Saito, Hongchao Li, Cheng Shang)

The speed at which particles can be transported places fundamental constraints
on the dynamics of both isolated and open quantum systems. In this talk, I
present recent advances in understanding the maximal speed of macroscopic par-
ticle transport in bosonic systems with long-range hopping and interactions. We
develop a framework that unifies the quantum speed limit with optimal transport
theory. Focusing on generalized Bose-Hubbard models, we derive a universal lower
bound on the operational time required to transfer a macroscopic number of bosons
between spatially separated regions. Our approach captures the geometric struc-
ture of transport dynamics and provides a rigorous classification of the effective
light cone governing particle transport, thereby resolving a long-standing question
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about transport speed in generic bosonic systems. I also briefly discuss how this
framework could be extended to open quantum systems, where dissipative particle
loss further limits transport speed.

We consider a generic model of bosons on an arbitrary D-dimensional lattice,
wherein bosons can hop between arbitrary sites and interact with each other. The
time evolution of the system’s density matrix is given by ˙̺t = −i[Ht, ̺t], where
the time-dependent Hamiltonian is of the form

(1) Ht = −
∑

i6=j∈Λ

Jij(t)b̂
†
i b̂j +

∑

Z⊆Λ

hZ(t).

Here, Λ denotes the set of lattice sites, b̂†i and b̂i are bosonic creation and anni-
hilation operators at site i, and hZ(t) is an arbitrary function of {n̂i}i∈Z , where
n̂i := b̂†i b̂i is the number operator. The hopping amplitudes Jij(t) decay accord-
ing to a power law, |Jij(t)| ≤ J/‖i − j‖α, where ‖·‖ denotes the Euclidean norm
and α > D.

To date, the Lieb-Robinson bound [6], which characterizes the optimal light cone
for information propagation, has been comprehensively studied for long-range in-
teracting spin and fermionic systems [3, 11]. However, bosonic systems present
additional challenges due to their unbounded particle occupation numbers. Al-
though some results are available for systems with short-range hopping [9, 4],
the case of long-range hopping remains underexplored. Regarding the problem
of macroscopic particle transport, Faupin et al. [1] recently demonstrated the ex-
istence of a linear light cone for α > D + 2, but the case α > D has remained
unresolved. In what follows, we close this gap by establishing results for the entire
range α > D.

Using optimal transport theory, we define the discrete L1-Wasserstein dis-
tance [12] between two distributions ~x and ~y as

(2) W(~x, ~y) := min
π∈Π(~x,~y)

∑

i,j

cijπij .

Here, Π(~x, ~y) denotes the set of couplings π (i.e. joint probability distributions of
~x and ~y). The cost matrix [cij ] can be specified arbitrarily, as long as symmetry
(cij = cji) and the triangle inequality (cij + cjk ≥ cik) are fulfilled. For any time-
dependent nonnegative vector ~xt evolving as ẋi(t) =

∑
j( 6=i) fij(t), where fij =

−fji, we can prove that the minimum time required to transform ~x0 into ~xτ is
always lower bounded as [13]

(3) τ ≥ W(~x0, ~xτ )〈∑
i>j cij |fij(t)|

〉
τ

.

Here, 〈zt〉τ := τ−1
∫ τ
0 dt zt is the time-average quantity of zt. The unified speed

limit (3) includes all the essence to extend the use of the conventional quantum
speed limit [8] to a wide range of quantum many-body systems with various geo-
metric structures.

The problem of macroscopic particle transport can be fully resolved by assigning
the vector of boson concentrations to ~xt (i.e. xi(t) = N−1 tr(n̂i̺t), where N
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denotes the total number of bosons) and by considering the cost matrix cij =

‖i− j‖min(1,α−D−ε). Consider a situation where a fraction µ ∈ (0, 1] of all bosons
is transported from region X to a distant region Y , separated by a distance dXY .
Then, the speed limit (3) derives that the operational time τ required for this
macroscopic bosonic transport is lower bounded by the distance between the two
regions as [13]

(4) τ ≥ κε1 d
min(1,α−D−ε)
XY ,

where 0 < ε < α −D is an arbitrary number and κε1 > 0 is a constant indepen-
dent of the system size. This result holds for arbitrary initial states, including
both pure and mixed states, and for the entire range of the power decay α > D.
The bound (4) indicates the existence of a linear light cone for bosonic trans-
port when α > D + 1. Furthermore, it is optimal in the sense that there exist
transport protocols such that bosonic transport can be accomplished within time

τ = O(d
min(1,α−D)
XY ) [10].

Thus far, we have exclusively considered particle transport within closed quan-
tum systems. In the following, we extend the framework to open quantum systems,
where the dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad
equation [2, 7]

(5) ˙̺t = −i[Ht, ̺t] +
∑

k

(Lk̺tL
†
k − {L†

kLk, ̺t}/2).

Here, Lk ∝ bnk

k (with nk ≥ 1) are jump operators that characterize particle loss.
In contrast to the closed-system case, the total particle number is not conserved in
this open setting. To address this, we introduce a modified Wasserstein distance
for unbalanced distributions ~x and ~y, which satisfy ‖~x‖1 ≥ ‖~y‖1, defined as

(6) W̃(~x, ~y) = min
~x�~x′�~0,~y′�~y,‖~x‖1=‖~y‖1

W(~x′, ~y′).

Here, ~x � ~y means that xi ≥ yi for all i and ‖~x‖1 :=
∑

i xi. Once again, considering
the vector of boson concentrations ~xt, we can derive ẋi(t) = di(t) +

∑
j( 6=i) fij(t),

where di ≤ 0 accounts for particle loss caused by the jump operators. Notably, an

analogous version of the speed limit (3) can be obtained, with W replaced by W̃ .
Following the same reasoning, we recover the same bound (4) for the open-system
case [5]. This result implies that particle loss cannot enhance the transport speed.
The appearance of the same bound stems from the existence of decoherence-free
subspaces. For example, when mink nk > 1 and the system contains only a single
particle, the open system effectively behaves like a closed system.
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Particle Propagation Bounds for Lattice Bosons under

Long-Range Interactions

Carla Rubiliani

(joint work with Marius Lemm, Jingxuan Zhang)

The focus of this talk are particle propagation bounds for bosonic systems and
their applications. The talk starts with a recap on Lieb-Robinson bounds (LRB),
which are bounds on the propagation of information, first proven in 1972 [1] for
spin-systems governed by a Hamiltonian H given by sum of local and bounded
terms. They state that there exists a system dependent constant vLR, the so-
called Lieb-Robinson velocity, such that, given two bounded operators A and B
supported on two disjoint regions of the lattice X and Y , X ∩ Y = ∅,

‖[e−itHAeitH , B]‖ ≤ ‖A‖‖B‖e−c(d(X,Y )−vLRt).(1)

Intuitively, at time t = 0 the commutator between the two operators vanishes as
their supports do not overlap, as we let one of them time evolve under the Heisen-
berg evolution, such commutator will not vanish anymore as the support of the
time-evolved operator will spread on the entire lattice, but still, if the distance
between the initial supports is big compared to time, the commutator stays small.
In other word, the support of the operator grows linearly in time, up to expo-
nentially decaying tails. Starting from the early 2000s, as Hastings, in a series of
papers [2]–[5], showed the utility and versatility of LRB, many efforts were invested
into extending them to more general settings. A question that still remains not
fully solved, is the extension of such bounds to bosonic systems, which are charac-
terized by unbounded interactions, due to the possible accumulation of bosons in
a finite region of the lattice. Because of this issue, the tools previously developed
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to deal with spin and fermionic systems can not be applied in this setting. The
main difference compared to those settings is that, for bosonic systems, one can
only hope to control expectation values, as there may be very badly behaved initial
states, with very high concentration of bosons on a few lattice sites, that could lead
to accelerated dynamics. The goal is then to obtain such bounds for the most gen-
eral initial state possible or to add interesting further assumptions to improve the
bounds. Additionally, Eisert and Gross [6] in 2009 showed how, for special bosonic
systems that are one-dimensional, translation invariant and time-independent, the
velocity scales exponentially with time. This result highlights how deriving LRB
for bosonic systems is not at all a trivial question. The idea on how to derive LRB
for bosonic systems, due to Schuch, Harrison, Osborne, and Eisert [7], is to first
control the propagation of particles, since if we start from a nice initial state with
controlled density, if we know how fast bosons can propagate, we can be sure that
until a certain time the state stays well-behaved, not displaying big accumulation
of bosons, and one can then hope to obtain LRB until such time. This shows the
possible applicability of bosons propagation bounds. In our work, Marius Lemm,
Jingxuan Zhang and me, were able to obtain such particle propagation bounds for
Bose-Hubbard type Hamiltonians

H =
∑

x,y∈Λ

Jxyb
†
xby + V(2)

where b†x, bx are the bosonic creation and annihilation operator. The first term, the
hopping term, describes one particle jumping from site y to site x with jumping
rate given by the hopping matrix (Jxy). The second term is an arbitrary real
potential V = Φ({nx}x∈Λ) with nx := b†xbx the local number operator. Assuming
polynomial decay of the hopping matrix,

|Jxy| ≤ CJ |x− y|−α for α > d+ 1(3)

and controlled density for the state at initial time,

∃ λ2 > λ1 > 0 s.t. λq1 ≤ 〈nqx〉0 ≤ λq2 ∀x ∈ Λ(4)

we were able to show

〈
Np
Br

〉
t
≤
〈
Np
BR

〉
0
exp

{
C

Rd
+

vt

R− r

}
(vt ≤ R− r),

〈
Np
BR

〉
t
≥
〈
Np
Br

〉
0
exp

{
−
(
C

Rd
+

vt

R− r

)}
(vt ≤ R− r),

for any R > r > 1 satisfying appropriate assumptions. Such result is very inter-
esting as the decay condition for the hopping term is believed to be optimal, as
for the non-interacting case the same threshold appears, and we do not expect the
interacting systems behaving better than the non-interacting one. Furthermore,
is important to notice that the decay of the hopping does not depend on the mo-
ment of the number operator we aim to bound, this is especially interesting as
to obtain LRB from particle propagation bounds one needs to be able to control
high moments, and if the decay threshold would be coupled with the momentum
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parameter than one would require non-optimal decay of the hopping term for the
LRB. The main tools we employ to show such particle propagation bounds are the
ASTLOs (adiabatic space-time localization observables), which allow us to track
particles moving across the lattice smoothly and for which we are able to obtain
time-evolution estimates. The second important tool is a multiscale analysis, we
set up a downwards multiscale induction to control the smaller scales, the ones
we are interested in controlling, thanks to the higher ones, that are well-behaved.
This allows us to control particles very far away from the regions of interest, par-
ticles that intuitively should not be significant as they are very far and would
require a lot of time to reach the regions we are looking at. We conclude the talk
by exploring a new research direction focused of substituting particle propagation
bounds with energy propagation bounds in order to improve existing LRB, the
intuition being that bad states with high accumulation of particles should not be
energetically favoured under a repulsive potential.
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Local enhancement of the mean-field approximation for bosons

Jingxuan Zhang

(joint work with Marius Lemm, Simone Rademacher)

The nonlinear Hartree equation describes the macroscopic dynamics of initially
factorized N -boson states as N → ∞. Global estimates on the rate of con-
vergence of the microscopic quantum mechanical evolution towards the limiting
Hartree dynamics have been derived in the seminal works of Erdős-Schlein-Yau [1],
Rodnianski-Schlein [2], etc. A benchmark result in this direction is due to [2] (see
Thm. 1.1 therein). Consider the following N -body Hamiltonian acting on R

3N

HN =

N∑

i=1

−∆xi
+

1

N

N∑

i<j

V (xi − xj).(1)

Under suitable regularity assumptions on the interaction V , the N -body evolution
ψN,t = e−iHN tψN,0 with a purely factorized initial state ψN,0 = ϕ⊗N

0 , where
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ϕ0 ∈ H1(R3), satisfies

∣∣Tr(γψN,t
− |ϕt〉〈ϕt|)

∣∣ ≤ CeKt

N1/2
.(2)

Here γψN,t
is the one-body reduced density operator associated with ψN,t, and ϕt

solves the following Hartree equation with initial condition ϕt|t=0 = ϕ0

i∂tϕt = −∆ϕt + (V ∗ |ϕt|2)ϕt, on R
d.(3)

While prior approximation results probe the quantum gas globally in space,
we may expect that the mean-field approximation can be locally enhanced based
on the physical principle of spatial locality. Informally, this means that quantum
information (similar to typical classical physical quantities) should only propagate
with some bounded speed, up to small errors due to quantum effects.

To this end, in our work [4], we seek localization conditions on the initial states
ψN,0 and ϕ0 that lead to an improved approximation error bound at time t > 0.
To ensure a bounded one-body group velocity and avoid technical complications
due to energy cutoffs, we consider the Bose-Hubbard type Hamiltonian acting on
the integer lattice ZdN , d ≥ 3,

HN =
∑

x∈Zd

∑

y∼x
a∗xay +

λ

2N

∑

x∈Z
d

a∗xa
∗
xaxax.(4)

Here λ is a real, order 1 parameter. The corresponding Hartree equation becomes
the cubic discrete nonlinear Schrödinger equation

i∂tϕt = −∆ϕt + λ|ϕt|2ϕt, on Z
d.(5)

We prove a local enhancement of the mean-field approximation in the following
sense: At a positive distance ρ > 0 from the initial BEC, the mean-field approxi-
mation error at time t ≤ ρ/v is bounded as ρ−n for arbitrarily large n ≥ 1.

Specifically, we consider purely factorized initial states ψN,0 = ϕ⊗N
0 , with ϕ0

supported away from the origin, i.e.

ϕ0(x) = 0 for all |x| ≤ R.

We show that for smaller distances r < R, the mean-field approximation for |x| ≤ r
near the origin is significantly enhanced, for times short compared to ρ = R − r,
the distance that has to be traversed.

To quantify this, take any bounded one-particle operator O with a kernel sat-
isfying O(x; y) = 1|x|≤rO(x; y)1|y|≤r. Then, for any n ≥ 1, there holds

(6)
∣∣Tr

((
γψN,t

− |ϕt〉〈ϕt|
)
O
)∣∣ ≤ Cn|O|op

N

1

ρn
, for t ≤ ρ

v
.

Here, v can be chosen as any number that is strictly larger than the norm of
the one-body group velocity operator ‖i[−∆, |x|]‖ ≤ 2d. In particular, v is state-
independent and of order 1.

The proof is based on new ballistic propagation bounds on the quantum fluc-
tuations around the Hartree states, through a variant of the ASTLO (adiabatic
spacetime localization observable) method, developed in our earlier works (see
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e.g. [3]), for the particle non-conserving generator of the fluctuation dynamics
around Hartree states.
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The Heisenberg ferromagnet: a dilute Bose gas in disguise

Robert Seiringer

We revisit the quantum Heisenberg model of a ferromagnet. For Λ ⊂ Zd a finite

subset of Zd, and ~S = (S1, S2, S3) an irreducible representation of su(2) with
dimension 2S + 1, S ∈ 1

2N, it is given by the Hamiltonian

HΛ =
∑

x∼y∈Λ

(
S2 − ~Sx · ~Sy

)

where x ∼ y denotes nearest neighbours on Λ. We recall basic properties of this
model, as well as the famous open problem concerning the appearance of long-
range order at low temperature: for d ≥ 3 and T small enough, it is expected
that

lim
Λ→Zd

1

|Λ|2
∑

x,y∈Λ

〈
~Sx · ~Sy

〉
T,Λ

> 0

where 〈 · 〉T,Λ = Tr · e−HΛ/T /Tr e−HΛ/T denotes the finite volume Gibbs state at
temperature T > 0. We then explain the spin-wave approximation, and sketch the
proof of its validity in the form of a low-temperature expansion of the free energy:
With

f(T ) = −T lim
Λ→Zd

1

|Λ| lnTr e
−HΛ/T

the free energy per site in the thermodynamic limit, we have

(1) lim
T→0

T−1−d/2f(T ) = Sd/2
1

(2π)d

∫

Rd

ln(1− e−p
2

) dp

The leading term in this expansion is thus equal to the one of an ideal Bose gas
at criticality, a manifestation of the fact that low-energy excitations form a dilute
gas of bosons, known as “magnons”. The validity of (1) for d = 3 was proved
in [1], and that proof readily extends to d ≥ 3. The case d = 1 was proved more
recently in [2], while the case d = 2 is still open. (To be precise, it is open as a
lower bound; an upper bound of the correct form was proved in [2].)
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The Gibbs state of the mean-field Bose gas

Phan Thành Nam

(joint work with Andreas Deuchert and Marcin Napiórkowski)

We consider a Bose gas in the torus Λ = [0, 1]3 with the mean-field interac-
tion N−1v, described by the grand-canonical Gibbs state

Gβ,N = Z−1
β,N exp


−β

( ∑

p∈Λ∗

(|p|2 − µβ,N)a
∗
pap +

1

2N

∑

k,p,q∈Λ∗

v̂(k)a∗p+ka
∗
q−kaqap

)



on the Fock space F(L2(Λ)). Here a∗p and ap are the standard creation and an-

nihilation operators associated with momentum p ∈ Λ∗ = 2πZ3. We focus on
temperatures comparable to the critical temperature of Bose-Einstein condensa-
tion, namely,

β−1 ∼ β−1
c = 4π

(
N

ζ(3/2)

)2/3

.

The chemical potential µβ,N ∈ R is chosen such that the Gibbs state has N parti-
cles on average, i.e., Tr[NGβ,N ] = N . We also assume that v̂ is non-negative and
decays sufficiently fast.

In this mean-field regime, the low-lying excitation spectrum was computed in
Seiringer’s seminal paper [9], which establishes the validity of Bogoliubov theory
for the ground state and the Gibbs state at temperatures of order 1. In particular,
at low temperatures, most particles condense into the zero-momentum mode, with
only a finite number remaining in the thermal cloud.

In contrast, at temperatures of the order of the critical temperature β−1
c , the

number of thermally excited particles is always comparable to the total number
of particles, a phenomenon already observed in the ideal gas. Consequently, the
justification of temperature-dependent Bogoliubov theory becomes significantly
more subtle. This relates to a question raised in the physics literature about the
potential breakdown of Bogoliubov theory at high temperatures; see e.g. [1]. Our
main result shows that, since the interaction is sufficiently weak in the mean-field
regime, Bogoliubov theory remains valid for all temperatures of order β−1

c .

Temperature-dependent Bogoliubov theory. A key idea proposed by Bo-
goliubov [3] is to replace a0 in the Hamiltonian with a complex number z, where
|z|2 ∼ Tr[a∗0a0Gβ,N ] ≫ 1. This can be implemented using coherent states [8],

|z〉 = exp(za∗0 − za0)|Ω0〉, a0|z〉 = z|z〉, z ∈ C,

where Ω0 is the vacuum of the zero-momentum Fock space F0.
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Formally, if we replace the Gibbs state Gβ,N with the ansatz |z〉〈z|⊗G(z), then
the c-number substitution suggests that G(z) is close to the Gibbs state associated
with the Bogoliubov Hamiltonian

HBog(z) =
∑

p6=0

(p2−µ0)a
∗
pap+

N0

2N

∑

p6=0

v̂(p)
(
2a∗pap + (z/|z|)2a∗pa∗−p + (z/|z|)2apa−p

)

on the excited Fock space F+. Here, we take the chemical potential µ0 of the ideal
gas, chosen such that the non-interacting Gibbs state

Gid
β,N = (Z id

β,N)
−1 exp

(
−β

∑

p∈Λ∗

(|p|2 − µ0)a
∗
pap

)

has N particles on average. We also follow an idea in [6] to take the simplification

|z|2 ≃ N0 = Tr[a∗0a0G
id
β,N ] = (e−βµ0 − 1)−1.

All of this results in the Bogoliubov Gibbs state on F+:

GBog(z) = (ZBog)−1 exp
(
−βHBog(z)

)
.

Note that GBog(z) is solvable since the spectrum of HBog(z) can be computed
explicitly by Bogoliubov diagonalization method.

Φ4-theory for the condensate. While Bogoliubov theory describes the ther-
mally excited particles, the condensate is described by the probability distribution

gBEC(z) = (ZBEC)−1 exp

(
−β
(
v̂(0)

2N
|z|4 − µBEC|z|2

))
, z ∈ C,

where the chemical potential µBEC is chosen such that
∫

C

|z|2gBEC(z) dz +Tr[NGBog(z)] = N,

with dz = π−1 d(ℜz) d(ℑz). This one-mode Φ4-theory is related to the classical
field theory derived in [7, 5], which concerns stronger interactions, and it was also
used in [2] for a trial state in the context of the Gross-Pitaevskii regime.

Main result. Our main result is a justification of Bogoliubov theory as a norm
approximation of the Gibbs state for all temperatures β−1 ∼ β−1

c :

(1) Tr |Gβ,N − Γβ,N | ≤ O(N−1/48)

with

Γβ,N =

{∫
C
|z〉〈z| ⊗GBog(z)gBEC(z) dz, if N0 ≥ N2/3

Gid
β,N if N0 ≤ N2/3.

Note that each state |z〉〈z| ⊗GBog(z) is a quasi-free state, but averaging with
respect to the Φ4-measure gBEC(z)dz destroys this property. Thus, if N0 ≥ N2/3,
our result goes beyond the standard quasi-free approximation. If N0 ≤ N2/3,
the mean-field effect forces the Gibbs state to behave like a non-interacting one
(when N0 ∼ N2/3, a nontrivial behaviour is visible if the interaction is stronger;
see [7, 5]).
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As a consequence of the norm approximation, we also obtain approximate ex-
pressions for the one- and two-particle density matrices of the Gibbs state, as well
as a detailed classification of the limiting particle number distributions for the
condensate.

An important ingredient in the proof of (1) is an asymptotic expansion of
the free energy associated with the Gibbs state Gβ,N , accurate up to o(N2/3).
Note that both the contributions of individual Bogoliubov modes and the particle
number fluctuations in the condensate are of order N2/3, and achieving higher
accuracy is crucial for determining the structure of the Gibbs state.

Correlation inequality. In the first step of our proof we derive bounds for the
free energy up to O(N2/3). Using a Griffith (or Hellmann-Feynman) argument,
we obtain |Tr[BpGβ,N ]| ≤ O(N2/3) with Bp =

∑
r,r+p6=0(a

∗
r+par + h.c.). But to

validate Bogoliubov theory, we need |Tr[B2
pGβ,N ]| ≤ O(N4/3).

The desired second moment bound is obtained by a new abstract correla-
tion inequality. To be precise, we prove that if the perturbed Gibbs state Γt =
Z−1
t exp(−A+ tB) satisfies supt∈[−1,1] |Tr(BΓt)| ≤ a, then

(2) Tr[B2Γ0] ≤ a ea +
1

4
Tr([[B,A], B]Γ0).

The idea of using a first-moment estimate for perturbed Gibbs states to deduce a
second-moment estimate for the original Gibbs state is inspired by the recent work
of Lewin, Nam, and Rougerie [7, Theorem 7.1]. Our proof of (2) is based on the
key observation that Stahl’s theorem [10], formerly known as the Bessis-Moussa-
Villani (BMV) conjecture, implies an elegant convexity property of the Duhamel
two-point function. We hope that this general result will find applications in other
contexts. To access two-body density matrices, we also develop a higher-order
version of (2), which is of independent interest. Further results and discussions
can be found in our paper [4].

From a conceptual perspective, an interesting feature of our approach is that
it does not rely entirely on the coercivity of the energy functional. We hope that
this type of argument will be useful for understanding systems without a kinetic
spectral gap, such as the Bose gas in the thermodynamic limit.
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Out-of-time ordered correlators for mean-field bosons

Simone Rademacher

(joint work with Marius Lemm)

Out-of-time ordered correlators (OTOCs) are quantifiers used in quantum many-
body chaos to study the scrambling of quantum information among a large number
of degrees of freedom. Quantum many-body chaos rests on the prediction that
OTOCs can be derived as the limit of a classical dynamics, and, building on that,
on the idea that exponential growth of OTOCs at a rate called butterfly velocity
can be related to chaotic behaviour of the scrambling of quantum information.
We study OTOCs to quantify correlations for the dynamics of mean-field bosons.
Our first result is an asymptotic formula for the OTOCs in the large particle limit
(Theorem 1) that we use in our second result to derive an upper bound on the
butterfly velocity (Corollary 1).

To be more precise, we consider the dynamics of N bosons described on the
symmetric Hilbert space L2

s(R
3N ) by the mean-field Hamiltonian

HN =

N∑

i=1

(−∆i) +
1

N

∑

1≤i<j≤N
v(xi − xj)

where we assume that the two-body interaction potential v : R3 → R satisfies weak
regularity assumptions v2 ≤ C(1 −∆) for some C > 0. We study the OTOC for
the Heisenberg dynamics w.r.t to the mean-field Hamiltonian of suitable centered
observables

At := eitHN
(
A(1) − 〈ϕt, Aϕt〉

)
e−itHN(1)

where A(1) denotes the N -particle operator that acts as the bounded one-particle
A : L2(R3) → L2(R3) on the first, and as identity on the remaining N −1 particles
and ϕt denotes the solution the Hartree equation

i∂tϕt = hϕt
ϕt, with hϕt

= −∆+ (v ∗ |ϕt|2).(2)

In fact, it is well known that for an initial pure condensate of the form

ψN = ϕ⊗N
0(3)

for a suitable one-particle wave function ϕ0 ∈ L2(R3) with ‖ϕ0‖2 = 1, the operator
At satisfies a law of large numbers, in the sense that for any bounded one-particle
operator, it holds 〈ψN ,AtψN 〉 → 0 as N → ∞.
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We are interested in analysing the quantum fluctuations around the expectation
〈ϕt, Aϕt〉 of the condensate ϕt using OTOCs. For this we study the commutator
of At with the averaged operator

B0 :=

N∑

j=1

(
B(j) − 〈ϕ0, Bϕ0〉

)
(4)

in the large particle limit and prove the following asymptotic formula.

Theorem 1 (Theorem 2.1 in [3]). Let v ≤ C(1 − ∆) and ϕ0 ∈ H4(R3) with

‖ϕ0‖L2(R3) = 1. Let t > 0 and ϕt denote the solution to the Hartree equation (2)

with initial data ϕ0. Fix two self-adjoint, real operators A,B on L2(R3) satisfying
the regularity assumptions

‖(−∆+ 1)A(−∆+ 1)−1‖, ‖(−∆+ 1)B(−∆+ 1)−1‖ ≤ C.

Let ψN be given by (3), then we have for At and B0 given by (1) and (4), respec-
tively,

lim
N→∞

〈ψN ,
(
i
[
A(1)
t ,B0

])2
ψN 〉 = 1

4

(
〈(ϕ0, ϕ0),

[
B, Ã(t;0)

]
(ϕ0, ϕ0)〉S

)2

(5)

where 〈·, ·〉S denotes the symplectic form defined below in (7) and

Ã(t;0) := Θ(t; 0)AΘ(t; 0)−1

with the symplectic dynamics Θ(t; 0) given by (6) below.

The OTOC is asymptotically well described by the symplectic Bogoliubov dy-
namics Θ(t; s) : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3) satisfying

i∂sΘ(t; s) = TsΘ(t; s), with Ts =
(
hϕs

+ K̃1,s −K̃2,s

K̃2,s −hϕs
− K̃1,s

)
(6)

and Θ(t; t) =

(
1 0
0 1

)
, where K̃1,s = qsK1,sqs, qsK2,sqs with qs = 1 − |ϕs〉〈ϕs|

and

K1,s = v(x− y)ϕs(x)ϕs(y), K2,s = v(x− y)ϕs(x)ϕs(y).

The symplectic Bogoliubov dynamics Θ(t; s) has been first observed in [1] in the
context of central limit theorems for mean-field bosons and is well known to provide
an effective description of the many-body mean-field dynamics. Moreover, Θ(t; s)
is a unitary operator w.r.t. the symplectic form defined for fi, gj ∈ L2(R3) by

〈(f1, f2), (g1, g2)〉S := 〈(f1, f2), S(g1, g2)〉S , with S =

(
1 0
0 −1

)
.(7)

As a consequence of the asymptotic formula in Theorem 1, we furthermore get
an expansion of the OTOC for small times and an upper bound for the butterfly
velocity for all times.

Corollary 1 (Corollary 2.2 in [3]). Under the same assumptions as in Theorem 1,

the following holds:
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(i) There exists T > 0 such that for sufficiently small |t| ≤ T

lim
N→∞

〈ψN ,
(
i
[
A(1)
t ,B0

])2
ψN 〉

= − 1

2i
〈ϕ0, [A,B]ϕ0〉

×
(
1− 2tℜ

〈
ϕ0, B

[
hϕ0

+ K̃1,0 − K̃2,0J,A
]
ϕ0

〉)
+O(t2).

(ii) We have for all t ∈ R

lim
N→∞

〈ψN ,
(
i
[
A(1)
t ,B0

])2
ψN 〉 ≤ C eC|t|

where the constant C depends on ϕ0 through ‖ϕ0‖H1 .

Corollary 1 (i) shows that the rate of initial scrambling of information for the
many-body mean-field dynamics can be computed explicitly in terms of one-
particle data. Such precise statements are usually not available for quantum
many-body systems. For mean-field bosons so far only rough exponential bounds
have been proven [2]. For larger times, we can only prove an upper bound on the
butterfly velocity in Corollary 1 (ii). It is an interesting open question under which
circumstances the OTOC actually grows exponentially since this corresponds to
quantum many-body chaos. Theorem 1 turns this open problem into a question
about non-linear dispersive PDEs.
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Lieb-Robinson bounds and the thermodynamic limit for

continuous fermions

Oliver Siebert

(joint work with Benjamin Hinrichs and Marius Lemm)

For interacting non-relativistic fermions in Rd with a one-body potential V and
a two-body interaction potential W , the standard Hamiltonian acting on the
fermionic Fock space is given by

H =

∫

Rd

(∇a∗x∇ax + V (x)a∗xax) dx+

∫

Rd

∫

Rd

W (x− y)a∗xa
∗
yayax dxdy.(1)

For such a system, bounded velocities are not expected for general observables, and
as in the few-body case, one must impose some kind of high-energy regularization.
This has been implemented by Gebert, Nachtergaele, Reschke and Sims in [4] via
a UV regularization in the two-body interaction. To this end, one replaces the
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pointwise creation and annihilation operators a∗, a in the second term in (1) by
smeared-out operators, leading to the Hamiltonian

HΛ =

∫

Rd

(∇a∗x∇ax + V (x)a∗xax) dx

+

∫

Λ

∫

Λ

W (x− y)a∗(ϕσx)a
∗(ϕσy )a(ϕ

σ
y )a(ϕ

σ
x) dxdy,

where ϕσx is a Gaussian function centered at point x with standard derivation σ and
Λ ⊂ R

d is a bounded subset. Let τΛt (A) := eitH
σ
ΛAe−itHσ

Λ denote the Heisenberg
time evolution and τ0t the free time evolution (where W = 0). They then obtain a
many-body LRB that bounds the overlap (anticommutator) between the creation
and annihilation operators in f and g for the difference between the interacting
and the free time evolution,

‖{(τΛt − τ0t )(a(f)), a
∗(g)}‖+ ‖{τΛt (a(f)), a(g)}‖

≤ Cσ(t)

∫

Rd

∫

Rd

exp

(
−|x− y|

4ct

)
|f(x)||g(y)| dxdy,(2)

where ct ∼ t2 + 1. The constant Cσ(t) is independent of Λ, f, g, but grows expo-
nentially in t, so the light cone grows exponentially as well. Furthermore, Cσ(t)
diverges for σ → 0. A first step in their analysis is the proof of a one-body LRB

for the Schrödinger operator with a cubic light cone |x− y| . 〈t〉3 where the class
of admissible one-body potentials V is rather restricted to those which can be
expressed as a Fourier transform of a signed compactly supported measure. The
many-body bound can then be derived from the one-body bound by a Gronwall
type argument.

In [5] Hinrichs, Lemm and I apply the technique of ASTLOs to the model of
regularized interacting continuous fermions from [4]. We first show a one-body
maximum velocity propagation estimate for Schrödinger operators as in [1] with
explicit tracking of the constants, in particular, the energy dependence. This
allows us to derive a one-body LRB

∣∣∣
〈
e−itH1

f, ϕσx

〉∣∣∣
2

≤ Cn,σ 〈t〉1+2δ
∫ (

1 ∧ 〈t〉
|x− y|

)n
|f(y)|2 dy,(3)

where ∧ denotes the minimum. In this bound, the energy and the spatial cutoff
necessary for the norm propagation bound are now ‘hidden’ in the Gaussian, which
is localized in both position and momentum space. The major improvement of this
result over the similar one-body bound in [4] is the almost linear light cone for

large n, namely given by |x − y| . 〈t〉1+(1+2δ)/n. Moreover, our result also holds
for a more general class of one-body potentials V that are sufficiently regular and
for which Kato-Rellich is applicable. One drawback is that the ASTLO method
only yields a polynomial decay of power n, which can be chosen to be arbitrarily
strong. With a similar Gronwall-type argument we get from (3) a many-body
result as in [4]. The light cone is then exponentially large as well, but still applies
to the more general class of one-body potentials.
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By standard commutator and anticommutator expansions, we can extend (2)
to observables that are polynomials in a∗, a operators (in contrast to single a∗, a
operators). However, such bounds are not uniform in the operator norm and
therefore do not allow an approximation argument for general observables of the
CAR algebra.

We also discuss several applications of our result similar to those for lattice
systems. We show a clustering result for ground states ψ0 which are separated
from the rest of the spectrum by a gap γ > 0 as in [6],

|〈ψ0, ABψ0〉| .
1√
γ ∧ 1

exp

(
−γ ∧ 1

2
(n log(dist(A,B) + 1))1/4

)
,(4)

where dist(A,B) is the distance between the supports of the observables A and B.
Although A and B can be general polynomials in a∗, a, the constants are not
uniform in the operator norm. In contrast to [6], the decay in (4) is only subpoly-
nomial in dist(A,B) due to the polynomial decay and the exponentially growing
prefactors in the many-body LRB. Finally, we construct a conditional expectation
on the CAR algebra in the continuum to approximate quasi-local (time-evolved
local) observables with strictly local ones. This was inspired by [7], where it was
done for lattice fermions. However, the current LRB only allows for the approxi-
mation with a weaker form where finitely many modes for fixed regions are traced
out in the complement. This is due to the fact that our LRB is not uniform in the
number of a∗, a factors in the observables.

Moreover, analogously to [4], we show the existence of the thermodynamic limit
for our class of one-body potentials. In [4] they show that the time evolution
on the infinite volume system forms a strongly continuous group (τt)t∈R of ∗-
automorphisms on the CAR algebra A and thus the tuple (A, τt) is a C

∗-dynamical
system. It should be noted that it is not difficult to show that (1) defines a self-
adjoint Hamiltonian and hence a unitary group of ∗-automorphisms which are
continuous in the (weaker) strong operator topology. Strong continuity, however,
means that t 7→ τt(A) is continuous in norm.

An open question is if the strong continuity still persists when the regularization
gets removed, i.e., in the limit σ → 0. This is actually true for the free dynamics
when W = 0, which leads to the convenient setting of C∗-dynamical systems.
However, this seems to be a peculiarity of the free case, and it is generally believed
that including interactions between particles violates this property. For example,
one could think of states that develop arbitrarily large local densities or energies
within a finite time by filling the phase space with an increasing number of fermions
at the same location with different momenta. Due to the non-zero repulsion or
attraction at fixed distances, this would lead to arbitrarily strong attractions on
individual fermions and thus to a discontinuity in the time evolution.

Instead, one can consider a weaker version of this question and try to construct
a thermodynamic limit on a sufficiently big subalgebras of the CAR algebra. To
this end, I showed in [8] how the resolvent algebra approach of Buchholz [2, 3] for
bosons can also be applied to continuous fermions. In this way one can construct
an extension of the CAR algebra over L2(Rd), where the dynamics acts as a group
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of ∗-automorphisms which are continuous in time with respect to the norms of all
n-particle sectors. By considering time averages, one then obtains a subalgebra in
which the dynamics is even strongly continuous and which is dense in the extended
CAR algebra with respect to all norms of the n-particle sectors. Therefore, one
obtains a C∗-dynamical system, which provides a potential framework to discuss
KMS states for interacting systems in infinite volume.

References

[1] J. Arbunich, F. Pusateri, I. M. Sigal, and A. Soffer, Maximal speed of quantum propagation,
Lett. Math. Phys. 111 (2021), 1–16.

[2] D. Buchholz, The resolvent algebra of non-relativistic Bose fields: observables, dynamics
and states, Commun. Math. Phys. 362 (2018), no. 3, 949–981.

[3] D. Buchholz, The resolvent algebra of non-relativistic Bose fields: sectors, morphisms, fields

and dynamics, Commun. Math. Phys. 375 (2020), no. 2, 1159–1199.
[4] M. Gebert, B. Nachtergaele, J. Reschke, and R. Sims, Lieb-Robinson bounds and strongly

continuous dynamics for a class of many-body fermion systems in Rd, Ann. Henri Poincaré
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Lieb-Robinson Bounds for Static Properties

Tom Wessel

Lieb-Robinson bounds (LRBs) are propagation bounds on the Heisenberg dynam-
ics τHt (A) = eitH A e−itH . They say that τHt (A) is mostly supported on the en-
larged set Xr = { y | d(x, y) ≤ r } with r ∼ v t for all operators A supported on
X . Here, v is the Lieb-Robinson velocity and depends on H , but not on A. This
notion is made precise in the commutator version of the LRB, which states that
‖[τHt (A), B]‖ is small whenever the supports X and Y of A and B, respectively,
are far apart in the sense d(X,Y ) > v t. And while these bounds are of dynamic
nature, they can also be used to understand static properties via so-called spectral
filter functions.

In the talk I consider a quantum spin system H =
⊗

z∈ΛC
q on a finite lattice

Λ ⋐ ZD. The Hamiltonian H =
∑
Z⊂Λ Ψ(Z) is given by an interaction Ψ with

local terms Ψ(Z) = Ψ(Z)∗ ∈ AZ , where A ∈ AZ means that A = A ⊗ 1Λ\Z .
We implicitly assume good decay of ‖Ψ‖ in diam(Z) the sense of some interaction
norm, such that good LRBs for H(s) are known. It is crucial to note that all
results hold uniformly in Λ, but we only state them for a fixed Λ for simplicity.
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1. Spectral Flow and Automorphic Equivalence

Hastings in 2004 [4] first used filter functions for what he called quasi-adiabatic

continuation, which is now also known as spectral flow. Therefore, consider a
smooth family of Hamiltonians [0, 1] =: I ∋ s 7→ H(s) with a uniformly gapped
spectral patch in the following sense: There exist g > δ > 0 and for each s ∈ I
there is a part of the spectrum σ∗(s) ⊂ σ(H(s)) which is gapped d

(
σ∗(s), σ(H(s))\

σ∗(s)
)
≥ g and not too big diam(σ∗(s)) ≤ δ. And there exist smooth functions

f± : I → R such that f±(s) ∈ R \ σ(H(s)) and σ∗(s) = [f−(s), f+(s)] ∩ σ(H(s)).
Now, let P (s) be the spectral projection onto σ∗(s). Then there exists a unitary
U(s) such that

(1) P (s) = U(s)P (0)U(s)∗,

with generator G(s), i.e. U solves

−i ∂sU(s) = G(s)U(s) U(0) = 1.

Differentiating (1) gives

(2) −i ∂sP (s) =
[
G(s), P (s)

]
.

One easily checks that one can add any diagonal (w.r.t. P ) term G̃ = P G̃P +

P⊥ G̃ P⊥ to G without changing (2). Hence, there are many generators G(s)
such that (1) is satisfied. One possible choice for G(s) is the Kato generator

K(s) = −i
[
Ṗ (s), P (s)

]
, however, it is not local in general.

Another choice for G(s) is the Hastings generator D(s) = IH(s)(Ḣ(s)) :=

IH(s),g,δ(Ḣ(s)) where

(3) IH,g,δ(A) :=
∫

R

Wg,δ(t) e
itH A e−itH dt =

√
2π
∑

n,m

Ŵg,δ(Em − En)PnAPm

and Wg,δ is a function with Fourier transform Ŵg,δ satisfying

Ŵg,δ(ω) =

{
− i√

2π ω
|ω| ≥ g

0 |ω| ≤ δ.

To obtain the equality in (3) we write eitH =
∑

n e
itEn Pn in its energy eigenbasis

and use the definition of the Fourier transformation. The first insight here is that
IH exactly inverts the Liouvillian on off-diagonal operators A = P AP⊥+P⊥AP ,
i.e. −i

[
H, IH(A)

]
= A, which allows proving that Ṗ = −i

[
IH(Ḣ), P

]
. The second

insight is, that the integral representation in (3) enables us to use LRBs for times
|t| ≤ T , to approximate the integrand on an enlarged support. And for large times
it turns out that one can construct a function Wg,δ with the above properties and
stretched-exponential decay in t. This allows to bound the remaining integral for
|t| > T .

One particular application of the spectral flow is the proof of a local per-

turbations perturb locally (LPPL) principle [2]: Assume, that V ∈ AX and all
H(s) = H + s V have a uniformly gapped ground state P (s) in the above sense.
Then the ground states P (0) and P (1) agree away from X in the sense that the
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difference in expectation value
∣∣〈B〉P (1) − 〈B〉P (0)

∣∣ decays in the distance d(X,Y )
for all B ∈ AY . Other important applications are automorphic equivalence [2],
response theory [1, 7, 8] and stability of the gap [6].

2. Quantum Belief Propagation

In 2007 Hastings [5] introduced a very similar approach, which he called quantum
belief propagation (QBP), to relate Gibbs states at any positive temperature with
another. Therefore, let H(s) = H + s V and denote the Gibbs state at inverse
temperature β > 0 by ρβ(s) = e−βH(s)/ tr(e−βH(s)). It satisfies

∂s ρβ(s) = −β
2

{
ρβ(s),Φ

H(s)
β

(
V − 〈V 〉ρβ(s)

)}
,

where 〈V 〉ρβ(s) = tr
(
ρβ(s)V

)
,

(4) ΦHβ (V ) =

∫

R

fβ(t) e
itH A e−itH dt,

and fβ(t) is an explicit function, which has good decay in t. As for the spectral
flow, we find an operator η̃(s) such that ρβ(s) = η̃(s) ρβ(0) η̃(s)

∗ and this operator
can be approximated locally using LRBs and the decay of fβ . However, η̃(s) is not
unitary, which complicates the derivation of LPPL and requires assuming decay

of correlations in the unperturbed Gibbs state ρβ(0). Moreover, the constants are
not uniform in β and one cannot take the β → ∞ limit. In [3] we rigorously discuss
QBP and use it to prove an equivalence of decay of correlations, LPPL and local

indistinguishability for Gibbs states, which I briefly explain in the talk.

3. Comments and Open Questions

There are more applications of LRBs for static properties, e.g. to prove decay of
correlations for gapped ground states. And many of these have been generalized
to broader classes of interactions, e.g. with only polynomial decay. For many of
the results, improved LRBs, e.g. for special classes of Hamiltonians, also lead to
improved results.

The main open question in view of this talk is to find some mapping between
low temperature Gibbs states of gapped Hamiltonians (with constants uniform
in β) under suitable additional assumptions.
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The Huang-Yang conjecture for the low-density Fermi gas

Christian Hainzl

(joint work with Emanuela Giacomelli, Phan Thành Nam, Robert Seiringer)

We investigate the ground state energy of a low-density repulsive Fermi gas in the
thermodynamic limit, confirming a longstanding conjecture by Huang and Yang
regarding its expansion in the small parameter aρ1/3, where the scattering length
a is much smaller than the average interparticle distance.

The system is governed by the Hamiltonian

HN := −
N∑

j=1

∆xj
+

∑

1≤i<j≤N
V (xi − xj),

acting on the antisymmetric Hilbert space
∧N L2(Λ,C2). As HN is spin-inde-

pendent, it preserves the subspace h(N↑, N↓), consisting of wave functions with
exactly Nσ particles of spin σ ∈ {↑, ↓}.

The ground state energy is defined as

EL(N↑, N↓) = inf
ψ∈h(N↑,N↓)

〈ψ,HNψ〉
〈ψ, ψ〉 ,

and its density in the thermodynamic limit is given by

e(ρ↑, ρ↓) = lim
L→∞

Nσ/L
3→ρσ ,σ∈{↑,↓}

EL(N↑, N↓)

L3
.

Using a pseudopotential method, Huang and Yang predicted the following low-
density expansion:

e(ρ↑, ρ↓) =
3

5
(3π2)2/3ρ5/3 + 2πaρ2 +

4

35
(11− 2 log 2)(32π)2/3a2ρ7/3 + o(ρ7/3)ρ→0.

The first term represents the kinetic energy of the filled Fermi sea, while the second,
already highly nontrivial, was proven by Lieb, Seiringer, and Solovej (2005). Fal-
coni, Giacomelli, Hainzl, and Porta provided an alternative proof using a method
aligned with recent advances in bosonic systems by Schlein et al. Building on
this, my talk focused on the final term, proportional to ρ7/3, which we establish
through distinct methods for the upper and lower bounds. The upper bound is de-
rived using a trial state constructed via Bogoliubov-type unitary rotations, while
the lower bound follows from a refined completion-of-squares argument.
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Open Problem Session

The participants split into three subgroups: Bose-Hubbard type Hamiltonians, dy-
namical bounds for continuum systems, and positive temperature systems.

1. Bose-Hubbard Type Hamiltonians

The first group investigated bosonic systems on a d-dimensional lattice Λ with
Hamiltonians of the form

H =
∑

x,y∈Λ

Jxy b
∗
x by + h.c.+ U

(
{nx}x∈Λ

)
,

where b∗x and bx are bosonic creation and annihilation operators satisfying the
canonical commutation relation (CCR) [bx, b

∗
y] = δxy, the first term is a general

hopping term, and the second term is a density interaction, where nx = b∗x bx is
the number operator.

For low-density initial states, there exist Lieb-Robinson bounds (LRBs) on in-
formation transport with Lieb-Robinson velocity v ∼ td−1 logn(t) for some n (the
expectation is that n = 0 should work) and macroscopic as well as microscopic
particle propagation bounds for local Jxy with velocity v ∼ 1. The used meth-
ods are adiabatic spacetime localization observables (ASTLOs), “quantum” walk
techniques and projection onto few-particle sectors.

1.1. Improved Lieb-Robinson Bounds. The first discussed open question in
this area is to improve the information and particle propagation bounds and unify
the two. In particular, known protocols that would violate better LRBs use time-
dependent Hamiltonians, special initial states and are not stable, i.e. they need to
be implemented exactly. Hence, to obtain stronger bounds, one needs to restrict
to a physically relevant class of special initial states. In particular, one seeks to
obtain tighter bounds on the time-evolved local particle number under certain
initial conditions, e.g., that 〈nx(t)p〉 ∼ tdp is improved to 〈nx(t)p〉 ∼ cp t

d. These
moment estimates are crucial because they can be used to truncate the unbounded
operators to bounded ones via Markov’s inequality. Physically, such improvements
should come from tracking the dynamical growth of other local physical quantities
than particle number, e.g., local energy.

Another direction is to additionally restrict to special Hamiltonians and initial
states, where one might achieve Lieb-Robinson velocities v ∼ log t or even v ∼ 1.
One example could be metastable states.

2. Dynamical Bounds for Continuum Systems

The idea for the second group was to combine Lieb-Robinson type estimates with
continuum quantum systems.
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2.1. Local Estimates in Extended Boson Systems. The first investigated
problem concerned systems of N bosons at fixed (high) density ρ in an arbitrarily
large domain Λ ⊂ R3 at zero temperature, with Hamiltonian

HN =

N∑

i=1

(−∆i) +
1

ρ

∑

1≤i<j≤N
V (xi − xj).

Here ρ = N/|Λ| ≫ 1 in the limit |Λ|, N → ∞. The proposed approach is to adapt
recent techniques developed for fermionic systems in order to demonstrate that the
many-body evolution can be locally approximated by the corresponding Hartree
dynamics. Through group discussions, a suitable class of initial data was identified,
corresponding to zero-temperature states that satisfy certain local bounds, ensur-
ing that the approximation remains effective over an appropriate time interval.
The plenary discussion touched on propagation bounds for the nonlinear Hartree
equation and on a potentially problematic terms in the Bogoliubov expansion.

2.2. Lieb-Robinson Bounds for Fermions in the Continuum. The second
discussed question concerns fermions on Rd with Hamiltonian

HΛ = dΓ(−∆) +

∫∫

Λ×Λ

V (x− y) a∗x ax a
∗
y ay dxdy

for which Lieb-Robinson type estimates are proven if one replaces a#x = a#(δx)

with a smeared out version a#(φx). Denote the smeared out version with H̃Λ.
These LRBs then allow to take the thermodynamic limit and prove that

(1) t 7→ eitH̃Rd a(f) e−itH̃
Rd

is strongly continuous. It is expected that strong continuity fails for the Hamil-
tonian HΛ without the regularization. The open question is to find a particular
interaction V and states to see that (1) for HΛ is not strongly continuous.

3. Positive Temperature Systems

The third group studied expansions of thermodynamic functions and the validity
of first-order perturbation theory at positive temperature for extended systems
interacting via a pair potential λV , for a proper λ ∈ R. The goal was to derive
an expansion of the free energy in powers of λ. At first order, the free energy
corresponds to the non-interacting case, while the second-order term should be
given by perturbation theory, i.e.,

Tr(H
(0)
N ρ)− T S(ρ)− F0 = T S(ρ, ρ0),

with the relative entropy S(ρ, σ) = Tr(ρ log ρ) − Tr(σ log ρ). It now remains to
bound the relative entropy from above by O(λ). Note that by Pinsker’s inequality
S(ρ, ρ0) ≥ 1

2 ‖ρ− ρ0‖21, but this is not useful in the thermodynamic limit Λ ր Rd.
The key challenge is to establish an upper bound of O(λ) for the relative entropy
that is useful in the thermodynamic limit. Achieving this requires bounds that
compare locally the Gibbs state of the interacting system with that of the free
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system. However, a direct approach to this remains unclear. Cluster expansion
techniques provide a viable solution at high temperatures, but the primary interest
lies in regimes near the Fermi temperature, where λ must be chosen independently
of temperature. During the plenary discussion, it was commented that close to a
classical phase transition, λ could lead to crossing the phase transition. Hence,
extra conditions on ρ0 might be necessary. Indeed, for ρ0 satisfying decay of
correlations, there might be relations to quantum belief propagation which is used
to prove local indistinguishability from decay of correlations in lattice systems.

Reporter: Tom Wessel
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72076 Tübingen
GERMANY

Dr. Jingxuan Zhang

Yau Mathematical Sciences Center
Tsinghua University
Beijing 100 084
CHINA


