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ABSTRACT. The general subject of the conference was geometric group the-
ory, that is the study of groups via suitable actions on spaces endowed with
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them with natural compatibilities. The interactions with other mathematical
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Introduction by the Organizers

The meeting reflected the diversity of the numerous facets of geometric group
theory. For instance, some well-established subfields in their relationship with the
nowadays traditional questions asked by Gromov in the early 90s, as well as some
emerging questions such as the study of groups using their profinite completions,
were addressed.

A traditional source of techniques and questions comes from the analogy be-
tween some finitely presented groups and lattices in hyperbolic spaces such as
Kleinian or Fuchsian groups. The generalization of cocompact lattices in hyper-
bolic spaces leads to the notion of Gromov hyperbolic groups, while the general-
ization of non-uniform lattices in hyperbolic spaces results in various definitions
of relatively hyperbolic groups. This wide class of groups shows many instances of
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interplays between algebraic properties of groups and metric properties of spaces
on which these groups act. The first natural ground where these relationships can
be observed is the Cayley graph of a finitely generated group: it is a prototype in
the sense that the construction of the space is elementary but some deep results
can be obtained following the idea that for these questions the large scale geome-
try of the groups is the most fruitful viewpoint. This is how Gromov proved the
equivalence, for finitely generated groups, of being virtually nilpotent and having
polynomial growth.

Hyperbolic groups can also be seen, via combinatorial approaches such as small
cancellation theory, as generalizations of non-abelian free groups, and this leads to
a natural interaction with mathematical logic. In addition to these connections,
analytic techniques play an increasingly important role. Analysis happens to be
precious when dealing with boundaries of groups, whose (quasi-)conformal struc-
ture allows to use geometric measure theory in order to obtain rigidity results in
the context of negatively curved spaces. But it also turns out to be useful when
dealing with quasi-isometries: roughly speaking, two metric spaces are said to be
quasi-isometric with one another if they are equivalent for a relation obtained from
bi-Lipschitz equivalence by allowing additive error terms in the definition. Some
invariants, such as LP-cohomology, have a strong analytic flavor and are useful
when dealing with continuous families of groups (for instance solvable Lie groups).
Last but not least, functional analysis plays a prominent role when dealing with
problems related operator algebras and representation theory. Among its numer-
ous equivalent formulations, Kazhdan’s property (T) can be defined as a fixed
point property for actions of Hilbert spaces; it turns out that using wider classes
of topological vector spaces as coefficient modules is crucial for new problems in
rigidity theory.

A meeting in geometric group theory often covers a wide range of classes of
groups and of problems. The classical families of examples are free groups F;, and
their groups of outer automorphisms Out(F},), mapping class groups MCG(X) of
surfaces, arithmetic groups of matrices seen as lattices in topological groups, braid
groups, Artin groups and Coxeter groups. One new trend consists in studying Lie
groups, or more generally locally compact groups, as geometric objects themselves,
the class of totally disconnected groups being sometimes particularly interesting
because it contains automorphism groups of many interesting discrete structures.
These groups are intriguing and challenging because their study can no longer rely
on techniques available for linear groups.

Among the new questions emerging in the field, one is of particular interest since
it is, so to speak complementary to equivalence relations involving distances and/or
measures: it is the problem of studying a (residually finite) finitely generated group
via the collection of its finite quotients, or more conceptually (but equivalently)
via its profinite completion. This is a more algebraic approach, but it is deeply
rooted in geometric group theory in the sense that the class of groups for which the
most striking results are available so far, for instance profinite rigidity, is provided
by Fuchsian and Kleinian groups. Taking into account finiteness properties, in the
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most standard meaning from classical algebraic topology, is crucial to understand
the subtleties of some rigidity results. In other words, this is a nice way to go back
to topological techniques for group theory, and also to build another link with
number theory when dealing with some arithmetic hyperbolic groups.

We had 52 participants (49 in person and 3 remote) from a wide range of countries,
and 25 lectures.
The staff in Oberwolfach made a tremendous job as usual, from all viewpoints.
We think that this meeting has been a great scientific and human event, thanks
to the official talks — all of great quality, and to the informal discussions. Once
again, the unique environment at the MFO was one of the main reasons explaining
this success.






Geometric Structures in Group Theory 279

Workshop: Geometric Structures in Group Theory

Table of Contents

Pierre-Emmanuel Caprace (joint with Tom De Medts)
Lattice envelopes of RAAGS ... ..o 281

Elia Fioravanti
Growth of automorphisms of virtually special groups ................. 282

Monika Kudlinska (joint with Motiejus Valiunas)
Free-by-cyclic groups are equationally Noetherian .................... 285

Koji Fujiwara (joint with Amos Nevo)
Hardy-Littlewood maximal inequality for hyperbolic groups ............ 287

Vincent Guirardel (joint with Chloé Perin)
Algebraic groups over the free groups and hyperbolic groups ........... 288

Anne Thomas (joint with Pallavi Dani, Yusra Naqvi, Ignat Soroko)
Hypergraph index, divergence and thickness for general Coxeter groups . 290

Mikael de la Salle (joint with Tim de Laat)
Actions of higher-rank lattices on uniformly conver Banach spaces . .. .. 292

Federico Vigolo (joint with Diego Martinez)

C* -rigidity for proper metric SPACES . .. .. .....ui i 294
Richard D. Wade (joint with Dan Petersen)

The handlebody group is a virtual duality group ..................... 297
Antonio Lépez Neumann

On LP-cohomology of semisimple groups . ............c..ooiiiiiiion.. 299
Petra Schwer (joint with Elizabeth Mili¢evi¢ and Anne Thomas)

The geometry of conjugation in Euclidean isometry groups ............ 301
Anna Wienhard

On and around Anosov representations ..................coueeueon.. 307
Andreas Thom (joint with Lukas Gohla)

Computing certain invariants of topological spaces of dimension three .. 309
Z1il Sela

On the structure of varieties over free associative algebras ............ 311

Bruno Martelli
A 4-dimensional pseudo-Anosov map . ... 312

Denis Osin (joint with Koichi Oyakawa)
Classifying group actions on hyperbolic spaces ....................... 313



280 Oberwolfach Report 6/2025

Claudio Llosa Isenrich (joint with Sam Hughes, Pierre Py, Matthew Stover,
Stefano Vidussi)

Profinite rigidity of Kdahler groups .......... ... .. 313
Alan W. Reid (joint with Martin R. Bridson, Ryan Spitler)

Profinite rigidity: Finitely presented versus finitely generated .......... 316
Andrei Jaikin-Zapirain (joint with Ismael Morales)

Toward Profinite Rigidity of Free and Surface Groups ................ 319
Stefanie Zbinden

The contraction space and its applications ...............c.c.ccuvenen.. 321
Jonathan Fruchter (joint with Dario Ascari)

Virtual homological torsion in graphs of free groups with cyclic edges ... 321
Harry Petyt (joint with Davide Spriano, Abdul Zalloum)

Stable cylinders for hyperbolic groups .......... ... ... ... ... .. ... ... 323
Olga Varghese (joint with Samuel M. Corson, Sam Hughes and Philip

Moller)

Profinite properties of Cozeter groups ........... .. .. ... .. 327

Roman Sauer (joint with Uri Bader)
Waist inequalities and the Kazhdan property ......... ... ... .. ... ... 330

Daniel Groves (joint with Peter Hailssinsky, Jason Manning, Damian
Osajda, Alessandro Sisto, Genevieve Walsh)
Drilling hyperbolic groups . ...... ... .o 331



Geometric Structures in Group Theory 281

Abstracts

Lattice envelopes of RAAGs
PIERRE-EMMANUEL CAPRACE
(joint work with Tom De Medts)

Given a countable discrete group I', a (cocompact) lattice envelope of I is a
locally compact group G possessing a (cocompact) lattice isomorphic to I'. Lattice
envelopes were introduced by Furstenberg [Fur67], who focused on envelopes that
are Lie groups. The Mostow rigidity theorem (and its generalizations by Mar-
gulis and Prasad) can be formulated as a theorem classifying the lattice envelopes
(and the lattice embeddings) of certain discrete groups amongst semisimple Lie
groups. Furman [Fur01] has obtained a striking generalization by classifying the
lattice envelopes of higher rank lattices (e.g. SL3(Z)) amongst all locally compact
groups. More recently, Bader—Furman—Sauer [BFS20] initiated the study of lattice
envelopes on a general level, without no restriction on the source I' and on the
target G. Using their results, one can show the following.

Proposition 1 (See [CDM]). Suppose that T' satisfies the following conditions.

(i) T 4s acylindrically hyperbolic.

(ii) T s linear over a field (or T is finitely generated and residually finite).

(iii) Finite subgroups of T' have a uniformly bounded order (e.g. T is virtually

torsion-free).

(iv) T is not relatively hyperbolic with respect to virtually nilpotent subgroups.
Then every lattice envelope of T' is cocompact, and totally disconnected modulo a
compact normal subgroup.

Given a finite simple graph M with vertex set S, the associated right-angled
Artin group (or RAAG), defined by the presentation

T'(M) = (S|[s, ] if s is adjacent to t),

satisfies the hypotheses of the proposition provided M is connected and the com-
plement graph M€ is also connected. In particular, every lattice envelope of T'(M)
is a compactly generated locally compact group that is quasi-isometric to I'(M).
Relying on deep results by Huang—Kleiner [HK18] on the quasi-isometric rigidity
of RAAGs, we establish the following.

Theorem 2 (See [CDM]). Suppose that M satisfies the following conditions, where
the symbol s denotes the set of those t € S different from s that are adjacent to
s in M.

(R1) For each s € S, the induced graph on S\ (sU st) is connected.

(R2) For all s,t € S, if s- CtUtt, then s =t.

(R3) For each s € S, the only automorphism of M fizing s\U s pointwise is the
identity.

(R4) The complement graph M€ is connected
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Then every locally compact group quasi-isometric to T'(M) has a discrete quotient
commensurable with the right-angled Coxeter group W(M).

In particular, it follows that such a locally compact group cannot be virtually
simple. Combining both results mentioned above, we infer that no lattice envelope
of T'(M) is virtually simple. This is in sharp contrast with the case of free groups
(i.e. RAAGs defined by empty graphs), or of right-angled Coxeter groups of type
M (even if M satisfies all the conditions of the theorem).

Under the same conditions on M, we also show that the full automorphism
group G of the Cayley graph of I'(M) with respect to its natural generating set,
which is a cocompact lattice envelope of I'(M), possesses a smallest non-trivial
normal subgroup G which is simple, and such that the quotient G/G™ is isomor-
phic to W(M) x Aut(M). In particular I'(M) has a lattice envelope that is almost
simple (but not virtually simple).

Examples of graphs satisfying the conditions (R1)—(R4) include the n-cycles
with n > 5. It can be shown that all finite simple graphs satisfy (R1)-(R4)
asymptotically almost surely.

The theorem above can be combined with recent results by Horbez—Huang
[HH23] on measure equivalence rigidity of RAAGs.
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Growth of automorphisms of virtually special groups
ELIA FIORAVANTI

Breakthroughs of Rips and Sela in the 90s have led to a complete description of the
outer automorphism group Out(G) for any Gromov-hyperbolic group G [6, 7, 8].
This relied on two fundamental properties of (torsion-free) hyperbolic groups:

e Out(@) is infinite if and only if G splits as an amalgamated product or
HNN extension over a cyclic subgroup (either trivial or & Z);

e if G is 1-ended, there is an Out(G)-invariant JSJ decomposition of G over
subgroups = Z.
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To this day, very little is known on the general behaviour of outer automorphisms
beyond (relatively) hyperbolic groups. Already for non-positively curved groups
(e.g. right-angled Artin groups), it is known that Out(G) can be infinite even if
G does not split over any virtually abelian subgroups. Moreover, constructing
Out(G)—invariant decompositions becomes particularly delicate if edge groups are
large or if G has flats with a complicated intersection pattern.

Rips recently asked about the structure of the group Out(G) at least when G
is cubulated [9]. We address this problem in the slightly more restricted setting of
(compact) special groups. A group G is special if it is the fundamental group of a
compact special cube complex [4]; equivalently, G is a convex-cocompact subgroup
of a right-angled Artin group.

Theorem 1 ([3]). Let G be special and 1-ended. Then G admits an Out(G)-
imwvariant splitting as a graph of groups with the following properties:

(1) edge groups are either = Z, or equal to centralisers of subsets of G;
(2) wvertex groups are either quadratically hanging (with trivial fibre), or “rigid”
and convex-cocompact in G;
(3) if H < G is a direct product of infinite groups, then H is elliptic in the
splitting.
Moreover, there is a finite-index subgroup Out’(G) < Out(G) with a restriction
homomorphism resy : Out®(G) — Out(V) for each vertex group V. If V is “rigid”,
then the image of resy virtually embeds in a finite direct product [, Out(H;), where
the H; are special groups of lower complezity than G.

Thus, rigid vertex groups can still have infinite outer automorphism groups,
unlike in the hyperbolic setting. However, their automorphism groups are of lower
“complexity” than the initial one. The notion of convex-cocompactness on G is not
canonical, and it rather depends on the particular choice of the convex-cocompact
embedding of G into a right-angled Artin group. Nevertheless, rigid vertex groups
are convex-cocompact with respect to all such choices.

Using the fact that rigid vertex groups have “simpler” outer automorphism
groups than G, one obtains the following general properties of Out(G) by induction
on the complexity of G:

Corollary 2 ([3]). For any virtually special group G:

(1) Out(Q) satisfies the Tits alternative: each subgroup of Out(G) is either
virtually polycyclic or contains Fs;

(2) Out(QG) is virtually torsion-free with finite cohomological dimension;

(8) Out(G) is boundary amenable.

One can also deduce results on growth of outer automorphisms. While the
previous corollary was known when G is a right-angled Artin group [5, 2, 1], the
following results appear to have been open even in this special case. We denote
by || - || the conjugacy length of elements of G with respect to any finite generating
set of G. The stretch factor of an outer automorphism ¢ is then the number

str(¢) := sup limsup [|¢" (g)||*/".
geG n—+o0
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Corollary 3 ([3]). For any virtually special group G and any ¢ € Out(G):

(1) the stretch factor str(@) is an algebraic integer and a weak Perron number;

(2) if str(¢) = 1, then ¢ grows at most polynomially;

(3) for some k € N, the stretch factor str(¢) is realised on a ¢* —invariant
subgroup of G that is either a surface group, a free product, or a group
with a free abelian direct factor.

More precise growth information can be obtained when ¢ coarsely preserves the
coarse median on G induced by a convex-cocompact embedding in a right-angled
Artin group. The simplest examples of automorphisms ¢ with this property are: all
automorphisms of Gromov-hyperbolic groups, all automorphisms of right-angled
Coxeter groups, untwisted automorphisms of right-angled Artin groups.

Corollary 4 ([3]). Let G be virtually special and ¢ coarse-median preserving.

(1) There are only finitely many growth rates n— ||¢"™(g)|| up to bi-Lipschitz
equivalence. Fach of these is either < nP for some p € N, or it is ~ nPA"
for some p € N and some weak Perron number A > 1.

(2) There is a “Nielsen—Thurston decomposition” for ¢: for each growth rate
0, there are only finitely many G—conjugacy classes of maximal subgroups
of G all of whose elements grow at speed < 0 under ¢. Moreover, all these
subgroups are convex-cocompact in G.
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Free-by-cyclic groups are equationally Noetherian
MoNIKA KUDLINSKA
(joint work with Motiejus Valiunas)

Let F}, denote the free group of rank n and let G be a collection of groups. Given a
subset S C F,,, we let Vg(S) denote the set of all homomorphisms ¢: F,, — G, for
some G € G, such that ¢(w) = 1 for all w € S. We say that G is an equationally
Noetherian family if for every n and every subset S C F),, there exists a finite
subset Sg C S such that
Vg(S) = Vg(So).

A group G is equationally Noetherian if G = {G} is an equationally Noetherian
family.

Whilst the property of being an equationally Noetherian group can be shown
to hold in many cases, infinite equationally Noetherian families are rare. Indeed,
every linear group is equationally Noetherian by Hilbert’s basis theorem, how-
ever the family of all linear groups is not equationally Noetherian (see, e.g., [11,
Corollary 1.2(iv)]). By the work of Z. Sela [10], every torsion-free word hyperbolic
group is equationally Noetherian, however the family of all such groups is not an
equationally Noetherian family [5, Example 3.15]. Remarkably,

Theorem 1 (Groves—Hull-Liang [6]). The collection of all 3-manifold groups
forms an equationally Noetherian family.

A group G is free-by-cyclic if it contains a finitely generated free normal sub-
group F' < G such that G/F = Z. Free-by-cyclic groups share many similarities
with the family of 3-manifold groups. For instance, all free-by-cyclic groups are co-
herent by the work of Feighn—Handel [2]. Moreover, atoroidal free-by-cyclic groups
are word-hyperbolic [1] and act geometrically on CAT(0) cube complexes [7], and
thus are virtually special.

However, unlike in the case of finite-volume hyperbolic 3-manifold groups, there
are examples of hyperbolic free-by-cyclic groups which are not LERF [8]. Further-
more, recent work of Munro—Petyt shows that there are free-by-cyclic groups which
do not admit coarse median structures and thus are not hierarchically hyperbolic
[9].

Our main result is the following.

Theorem 2. Every free-by-cyclic group is equationally Noetherian.

The key application is to the study of growth rates in free-by-cyclic groups. If
G is a group and X a finite generating set for G, we write 3,(G, X) denote the
number of elements of G which can be expressed as a word of length at most n in
X*. The growth rate of G with respect to X is

¢(G,X) := lim Bn(G, X)1/™.
We let £(G) denote the set of growth rates
&(G) :={e(G,X) | X finite generating set of G}.
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Fujiwara—Sela show that for any word-hyperbolic group G, the set of growth
rates £(G) is well ordered [4]. This was extended by K. Fujiwara to show that any
equationally Noetherian group that admits a non-elementary acylindrical action
on a hyperbolic space with uniformly short loxodromics has a well-ordered set of
growth rates [3].

The geometry of a free-by-cyclic group G = F,, X, Z is determined by the
dynamics of the automorphism ¢ € Aut(F,). If the word length of some element
g € F, grows exponentially under the iterations of ¢, the free-by-cyclic group G
admits a non-trivial relatively hyperbolic structure. We further show that any
free-by-cyclic group G = F,, X, Z where ¢ € Aut(F,,) acts polynomially on every
g € F,, either virtually splits as a direct product F),, X Z, or acts 4-acylindrically
on a simplicial tree. Combining these facts with the work of Fujiwara, we obtain
the following corollary.

Corollary 3. If G is a free-by-cyclic group then the set of exponential growth rates
&(G) is well ordered.

An immediate question is the following

Problem 4. Characterise the finite generating sets X of G which realise the min-
imum of £(G).

Motivated by the similarities between the family of free-by-cyclic groups and
fundamental groups of 3-manifolds, it is tempting to ask:

Question 5. Do free-by-cyclic groups form an equationally Noetherian family?

REFERENCES

(1] P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000),
no. 5, 1071-1089; MR1800064

[2] M. E. Feighn and M. Handel, Mapping tori of free group automorphisms are coherent, Ann.
of Math. (2) 149 (1999), no. 3, 1061-1077; MR1709311

(3] K. Fujiwara, The rates of growth in an acylindrically hyperbolic group, Groups Geom. Dyn.
19 (2025), no. 1, 109-167; MR4862328

[4] K. Fujiwara and Z. Sela, The rates of growth in a hyperbolic group, Invent. Math. 233
(2023), no. 3, 1427-1470; MR4623546

[5] D. Groves and M. Hull, Homomorphisms to acylindrically hyperbolic groups I: Equationally
noetherian groups and families, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7141-7190;
MR4024550

[6] D. Groves, M. Hull and H. Liang, Homomorphisms to 8-manifold groups, preprint.

[7] M. F. Hagen and D. T. Wise, Cubulating hyperbolic free-by-cyclic groups: the general case,
Geom. Funct. Anal. 25 (2015), no. 1, 134-179; MR3320891

(8] I. J. Leary, G. A. Niblo and D. T. Wise, Some free-by-cyclic groups, in Groups St. Andrews
1997 in Bath, II, 512-516, London Math. Soc. Lecture Note Ser., 261, Cambridge Univ.
Press, Cambridge, ; MR1676647

[9] Z. Munro, H. Petyt, Coarse obstructions to cocompact cubulation, preprint.

[10] Z. Sela, Diophantine geometry over groups. VII. The elementary theory of a hyperbolic
group, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 217-273; MR2520356
[11] M. Valiunas, On equationally Noetherian and residually finite groups, J. Algebra 587 (2021),

638-677; MR4309430



Geometric Structures in Group Theory 287

Hardy-Littlewood maximal inequality for hyperbolic groups
KoJr FUJIWARA
(joint work with Amos Nevo)

Let f : R? — R be a locally integrable function. For 2 € R?, define

1
Mfa) =swp o [ (pwldy,
r>0 [B(2,7)| /B,
where B(x,r) is the ball of radius r at x and | B(x, )| is its Lebesgue volume. This

sublinear operator M is called the Hardy-Littlewood mazimal operator.

Hardy-Littlewood (in the case d = 1 in 1930) and Wiener (in the case d > 2 in
1939) proved the following theorem called the Hardy-Littlewood mazimal inequal-
ity.

Theorem 1. For d > 1, there is a constant Cy > 0 such that for all A\ > 0 and
f € LY(RY), we have

C
M > M < Sl

The Hardy-Littlewood maximal inequality has been generalized to locally sym-
metric spaces of non-compact type (Stromberg, 1981).

The Hardy-Littlewood maximal operator makes sense for a metric space with
a measure. For a graph I with the counting measure on the set of vertices, define
for f € (Y(T):

1
(z,r)

The Hardy-Littlewood maximal inequality has been (essentially) known for reg-
ular trees by Rochberg-Taibleson (1991) using random walks. More recently, Naor-
Tao [NT] gave a new proof of the inequality for k-regular trees. Namely, there
exists a constant C' > 0 such that for any ¢'-function f and a constant A > 0, we
have:

M5 > 3] < Sl

The constant C' does not depend on k. One of the key ideas is geometric, which
they call “expander estimates”, which states the following:

Let T be the infinite (k 4 1)-regular tree with k£ > 2. Let E, F be finite subsets
of T, and r > 0. Then

H(z,y) € Ex F:d(z,y) =1} < 2|E|1/2|F|1/2kr/27

where |E| is the cardinality of E.
Genaralizing their expander estimates, we prove the Hardy-Littlewood maximal
inequality for a hyperbolic group (in the sense of Gromov) as follows.

Theorem 2. [FN]. Let G be a non-elementary hyperbolic group, and S a finite
generating set. Let I be the Cayley graph for (G,S), with the counting measure
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on the set of vertices. Then the Hardy-Littlewood maximal inequality holds for
fei(I).

In our theorem, the constant C' depends on G and S. To prove the theorem,
we follow the argument by Naor-Tao, showing an expander type estimate for I'.

Lemma 3. Let k be the exponential growth rate of I'. Then there exists a constant
D such that for any r > 0 and any finite sets E, F C I', we have

{(e.y) € E x F: d(z,y) = r}| < DIEM2|F|Y2k72,

We also use the following estimate on growth due to Coornaert: there is a
constant A such that for any r > 0

k’l"
X S |B(7ﬁ)| S Akrv
where B(r) is the ball of radius r centered at the identity.
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Algebraic groups over the free groups and hyperbolic groups
VINCENT GUIRARDEL
(joint work with Chloé Perin)

The context of this talk is algebraic geometry over groups. We fix a base group
I', thought as the group of constants. Here, I' will be a fixed non-elementary
torsion-free hyperbolic group. As a replacement of polynomials, we have words in
formal variables such as w(X7, X2, X3) = Xfanngbelc where a,b,c € T" are
constants. More generally, words are elements of the free product T'x (X1,..., X,,)

An algebraic variety is a subset V' C I'™ defined by a collection word equations
of the form w(Xy,...,X,) = 1. It is irreducible if it cannot be written as a union
of two proper subvarieties. An algebraic map between algebraic varieties V, W is
amap F : V — W given as the restriction of a tuple of word maps.

Definition 1. An (affine) algebraic group over T' is an algebraic variety V. C T™
together with a group law V x V. — V given by an algebraic map, and where
g — g~ is also an algebraic map.

The question we address is a classification of algebraic groups over a torsion free
hyperbolic group I". We can rephrase this into the following provocative question:
can we define SLy(T") for T' a hyperbolic group ?

Here are easy examples of algebraic groups over I':

e VV =T with its standard multiplication
o Given c € I', V = Z(c) with its standard multiplication
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e If V1, V5 are algebraic groups, then V7 x V5 is an algebraic group too.
e Here is a complicated multiplication law on I'%:

<$1> '<y1> _ ( 1$%w51yfy51w2xij2yfi 1)
x2) \y2 T2a7 Y2y T1Ty YTYs TaTy Yoyr

. (1 . . .
where the neutral element is (1) This looks complicated but this is

just the standard law on I'? twisted by the algebraic bijection <§1) —
2

X192
ToT1T2 )’

To give more context we can look at the more general notion of definable or
even interpretable groups over different groups I'. For instance, if T' is SLy(C)
or the Heisenberg group H3(C), then any interpretable subgroup in I' is in fact
interpretable over the field C. One can then apply a theorem by Hrushosvki and
Weil saying that any interpretable group over C is an algebraic group (maybe not
affine). Conversely, (C,+,.) is interpretable in H3(C) so every algebraic group
over C is interpretable over the group I' = H3(C).

For the same reason, (Z,+,.) is interpretable in the group I' = H3(Z): arith-
metic is interpretable in H3(Z). This implies for instance that any finitely pre-
sented group is interpretable over the group Hs(Z).

Back to the case where T is a torsion-free hyperbolic group, the theorem we prove
is the following;:

Theorem 2. Let I' be a non-elementary, torsion-free hyperbolic group. Let V be
an irreducible algebraic group over T'.

Then V is isomorphic as an algebraic group to T' x Z(c1) x ... Z(cy,) for some
leNandcy,...,c; €T.

The main tools we use for the proof are:

(1) The formalism for algebraic geometry over groups by Baumslag-Miasnikov-
Remeslennikov [BMR99].

(2) The structure of I'-limit groups by Sela and Kharlampovich-Miasnikov and
their JSJ decompositions [Sel01, KM98].

(3) A result from the theory of automorphisms of free groups or free products
by Handel-Mosher and G-Horbez [HM20, GH22].
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Hypergraph index, divergence and thickness for general
Coxeter groups

ANNE THOMAS
(joint work with Pallavi Dani, Yusra Naqvi, Ignat Soroko)

The divergence of a pair of geodesic rays measures how fast they move away
from each other. In symmetric spaces of noncompact type, divergence is either
linear or exponential, and Gromov suggested in [18, 6.Ba(h), p. 133] that the same
dichotomy should hold for CAT(0) spaces. In the 1990s, Gersten [16] used the
idea of divergence of geodesic rays to define a quasi-isometry invariant, also called
divergence.

For many important families of groups, it is now known that divergence can
be linear, quadratic or exponential; these families include 3-manifold groups [17],
mapping class groups [2, 13] and right-angled Artin groups [1, 3]. The first con-
structions of families of CAT(0) groups with divergence polynomial of any integer
degree are due to Behrstock-Drutu [4] and independently Macura [23]. Brady and
Tran [8, 9] constructed finitely presented groups (including subgroups of CAT(0)
groups) with divergence neither polynomial of integer degree nor exponential.

The quasi-isometry invariant thickness was introduced by Behrstock, Drutu and
Mosher [5] as a means to understand the geometry of non-relatively hyperbolic
groups. A metric space X is thick of order 0 if none of its asymptotic cones has
a cut-point (i.e. it is wide), and for integers n > 1, the space X is thick of order
n if any two points in X can be connected by a “chain” of subsets, each of which
is thick of order n — 1. Behrstock and Drutu proved in [4, Corollary 4.17] that a
group which is thick of order at most n has divergence at most r"+1.

In the setting of right-angled Coxeter groups, the study of divergence was be-
gun by Dani and Thomas [15], and continued by Behrstock, Falgas-Ravry, Ha-
gen and Susse [6], Behrstock, Hagen and Sisto [7], and Levcovitz [20, 21, 22].
In [21], Levcovitz introduced the hypergraph index h = h(Wr) of a right-angled
Coxeter group Wr, a computable combinatorial invariant which takes values h €
{0,1,2,...} U{oc}.

Right-angled Coxeter groups are rigid, meaning that up to isomorphism they
have unique defining graphs [24], but in general Coxeter groups are not rigid. Thus
we refer to Coxeter systems rather than Coxeter groups. For arbitrary Coxeter
systems (W, S), Caprace [10, 11] characterised the collections of special subgroups
of W such that W is hyperbolic relative to such a collection, while Behrstock,
Hagen, Sisto and Caprace proved in the Appendix to [7] that W admits a canonical
minimal relatively hyperbolic structure, whose peripheral subgroups are in fact
special subgroups. In the same Appendix, these four authors also proved that any



Geometric Structures in Group Theory 291

Coxeter group is either thick or is relatively hyperbolic, and provided an inductive
construction of all Coxeter systems (W,S) such that W is thick. The idea of
Levcovitz’s hypergraph index is to compress into a single step certain stages of
this construction which have the same effect upon the order of thickness.

Our first main result characterises linear and quadratic divergence for arbitrary
Coxeter systems (W, S) (see Corollary 1.2 of [14]). The proof is brief and combines
a Coxeter-theoretic result of Caprace and Fujiwara [12] with a general result of
Kapovich and Leeb [19].

We introduce hypergraph index h = h(W, S) for general Coxeter systems (W, .5),
generalising Levcovitz’s definition in the right-angled case [21], and then relate
hypergraph index, thickness and divergence as follows (see Theorem 1.4 of [14]).
We prove:

(1) h =0 if and only if W has linear divergence.

(2) If h =1, then W has quadratic divergence.

(3) If h is finite, then W is thick of order at most h.
(4) h = oo if and only if W is relatively hyperbolic.

Our proofs make key use of the special subgroup structure of Coxeter groups.
We then conjecture that the following are equivalent:
(1) h is finite;
(2) W is thick of order h; and
(3) the divergence of W is polynomial of degree h + 1.

In the right-angled case, this conjecture was proved by Levcovitz as Theorem A
of [22]. If our conjecture holds, there are many interesting corollaries, as in [22].
For instance, the quasi-isometry invariants divergence and thickness are difficult to
compute, but hypergraph index provides an algorithmic way to detect them. It also
follows that the divergence of any 1-ended Coxeter group is either polynomial of
integer degree or exponential. In addition, our conjecture implies that hypergraph
index is a (computable) quasi-isometry invariant of 1-ended Coxeter groups, which
is not obvious from the definition. As evidence for our conjecture, we build on a
family of examples from [15] to construct “many” examples of non-right-angled
Coxeter systems for which this conjecture holds.

For our last main result, let b;(A) be the first Betti number of the Dynkin
diagram A for the Coxeter system (W,S). We prove that if h is finite, then
h < b1(A) + 1 (see Theorem 1.7 of [14]). We do not know whether this bound is
sharp.
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Actions of higher-rank lattices on uniformly convex Banach spaces
MIKAEL DE LA SALLE
(joint work with Tim de Laat)

The talk, based on a joint work [3] with Tim de Laat and a previous breakthrough
by Izhar Oppenheim [6], was devoted to group actions by isometries on real Banach
spaces. Before entering further into the subject, let us start with a classical fact:

Theorem 1. (Mazur-Ulam) Every isometry of a Banach space is affine.
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Therefore, the natural objects when considering group actions by isometries on
Banach spaces are affine Banach spaces, that is Banach spaces where we forget
the place of the origin. And a group I' acting by isometries on an affine Banach
space has a fixed point if and only if there is a choice of origin for which it becomes
linear. When this holds for every action on a given space E, we say that I' has
the fixed point property with respect to F, and write I has FE.

The following examples are good to have in mind:

Example 2. If T is a finite group, every affine action on a real vector space has
a fixed point.

Example 3. If T is an infinite group, the natural (left-translation) action on
{f € (/) | >, f(v) = 1} is a fized-point free isometric action on an affine
Banach space isometric to (§(T).

Example 4. If T is an infinite group, there is a proper function f: ' — R such
that sup, |f(v"'g) — f(g)| < oo for every g (for example the word-length with
respect to a finite generating set if T' is finitely generated). Then the natural (left-
translation) action on f 4 £°°(T') is an isometric action with unbounded orbits on
an affine Banach space isometric to £>°(T).

Example 5. (Delorme-Guichardet, see [2]) A countable group has Kazdhan’s prop-
erty (T) (meaning that the trivial representation is isolated in the unitary dual,
that is the space of irreducible unitary representations equippd with Fell’s topology)
if and only if every action by isometries on a Hilbert space has a fized point.

Therefore there are plenty of groups that have F¢2, but no countable infinite
group has F¢> or F(}.

Probably motivated by these examples, results that they obtained by L,, spaces,
and the general belief that higher-rank simple groups and lattices have the strongest
forms of rigidity, Bader, Furman, Gelander and Monod [1] conjectured that if G
is an almost simple connected linear algebraic group over a local field, and I' < G
is a lattice, then I has F'F for every uniformly convex spaces.

Lafforgue and Liao [4, 5] confirmed this conjecture for non-archimedean local
fields (finite extension of Q, of F,((T))). The proof for archimedean local fields
(R or C) took longer to be obtained: Oppenheim [6] proved the case when the Lie
algebra of G contains a copy of sly(R), and we extended it to all groups in [3].

Both proofs of Lafforgue-Liao, and ours, uses the same pattern: by a classical
induction procedure, we can consider actions of G by isometries on F, and the idea
is to construct, by hand, a sequence of probability measures u, on G such that,
for every starting point £ € F, the sequence p, - € := [ g - &dpn(g) is Cauchy and
almost invariant. The difficult part is to prove the Cauchy criterion, and the proof
has two aspects: an analytic one where one shows that certain moves y — p’ in the
space of measures give rise to very small moves p - & — p’ - £, and a combinatorial
one where one explores efficiently the set of measures along such moves in order.
And here the proofs diverge. In the non-archimedean case, u, can essentially
be taken as any sequence of probability measures that are invariant by left and
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right-multiplication by a maximal compact subgroup, so that the set of possible
measures is parametrized by the Weyl chamber. In the real case, the measures
are less natural: they are convolution of Gaussian probability measures in various
1-parameter subgroups of G (corresponding to the roots spaces associated to the
root system). At the heart of the analytic part are some estimates for actions of
nilpotent groups on uniformly convex Banach spaces. This provides in particular
a new proof of property (T) for SL3(R).
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C*-rigidity for proper metric spaces
FEDERICO VIGOLO
(joint work with Diego Martinez)

This talk is centered around the interplay between coarse geometry and operator
algebras. Starting with the former, recall that a function f: X — Y between
metric spaces is called controlled if for every r > 0 there is some R > 0 such that if
d(z,z") < rthen d(f(z), f(2")) < R. A mapping g: Y — X is a coarse inverse for
f if go f is within bounded distance from the identity (i.e. g(f(x)) stays uniformly
close to  when x ranges in X). The spaces X and Y are then coarsely equivalent
if there are controlled maps f: X — Y and ¢g: Y — X that are coarse inverses to
one another. In other words, the only piece of information about X that is always
retained up to coarse equivalence is which families of subsets of X have uniformly
bounded diameter.

On the operator-algebraic side, the Roe algebra Cf,.(X) of a proper metric space
X is a C*-algebra consisting of limits of locally compact linear operators of finite
propagation. The original interest in these algebras stemmed from index-theoretic
considerations [7, 11, 12, 14], and they have since played a major role in the theory
of operator algebras and noncommutative geometry.

If M is a complete Riemannian manifold of dimension greater than one, then
Ctio0(X) can be constructed as a subalgebra of B(L*(M)). To do so, we say that
an operator has finite propagation if there is some r > 0 such that

(1) Latlg =0
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for all A, B C M measurable with d(A, B) > r, where 1.y € B(L*(M)) is the
operator defined by multiplication with the indicator function. The operator ¢ is lo-
cally compact if t1 4 and 1 4t are compact operators for every choice of measurable
A C X of finite diameter. The Roe algebra of M is defined as the norm-closure

Clioe(M) = {t € B(L2(M)) | t of finite propagation, locally compact}.

For a discrete proper metric space X, Cf .(X) is defined analogously, but in
place of L2(M) one uses the space £?(X;H) of square-integrable functions with
values in the infinite rank separable Hilbert spaces H. More generally, one may
give a definition of Roe algebra for arbitrary proper metric spaces as algebras of
operators on geometric modules (see e.g. [8, 14] for modern references).

Considering algebras of operators of finite propagation can be viewed as a coars-
ening procedure (it is the noncommutative analogue of quotienting out uniformly
bounded sets [6, 12]). From this perspective, it is unsurprising that C} . (X) de-
pends solely on the coarse geometry of X. The C*-rigidity problem asks whether
the converse is true. Namely, if two metric spaces have isomorphic Roe algebras,
do they have to be coarsely equivalent?

Starting with [13], the last decade saw an impressive amount of progress on this
question (see e.g. [1, 2, 3, 4, 5] and references therein). I am pleased to report that
we now have a complete solution to the C*-rigidity problem:

Theorem 1. If X andY are proper metric spaces with Cf, (X) =2 C,.(Y) then
X and Y are coarsely equivalent.

This proves that there is a perfect correspondence between C*-algebraic prop-
erties of Roe algebras and coarse geometric properties of proper metric spaces,
with all the ensuing consequences. Moreover, a more refined result holds. Namely,
let CE(X) denote the space of equivalence classes of coarse equivalence of X with
itself, taken up to closeness. It is easy to see that CE(X) is a group. Examining
the proof of the coarse invariance of roe algebras up to coarse equivalences, it is
not hard to show that there is in fact a natural homomorphism from CE(X) to
the group of outer automorphisms Out(C},.(X)) (an outer automorphism is an
equivalence class of automorphisms up to conjugation by elements in the multiplier
algebra of Cf,.(X)). Our techniques then let us prove:

Theorem 2. For every proper metric space X, the natural homomorphism
CE(X) = Owt(CRo (X))
is an isomorphism.

A short proof of both theorems in the restricted setting of metric spaces of
bounded geometry is contained in [10]. This proof is not self contained, as it relies
on [5, 13]. A long but self-contained proof of the theorem for arbitrary proper
(extended) metric spaces is provided in [8, 9].
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In the latter works we developed a general framework for studying C*-rigidity

problems, which applies simultaneously to several classes of C*-algebras of geom-
etry origin (e.g. the C*-algebra of quasi-local operators), and shows that rigid-

ity

phenomena appears even under weaker assumptions, such as Morita equiva-

lence/stable x-isomorphism.
Very briefly, the proof plan for the solution to the C*-rigidity problem consists
of three main steps:

(1]

(2

=)

=

(1) (Spatial Implementation): realize that an isomorphism of Roe algebras
must be induced by conjugation by a unitary operator among the under-
lying Hilbert spaces.

(2) (Uniformization): prove that said unitary operator “uniformly almost pre-
serves propagation”, and use this to construct candidate maps between the
spaces.

(3) (Concentration Inequality): prove that said maps are indeed well defined
and give rise to a coarse equivalence.

Our main contribution is in the last step of this proof-plan.
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The handlebody group is a virtual duality group
RicHARD D. WADE
(joint work with Dan Petersen)

A (Bieri-Eckmann) duality group of dimension d is a group G which has a right
G-module D (called the dualising module) and an element C' € Hq(G; D) (called
the fundamental class) such that the cap product by C induces isomorphisms

H¥(G; A) = Hy_1(G; D ® A)

for all left G-modules A and integers k. A group is a virtual duality group if it has
a finite-index subgroup which is a duality group. Many discrete groups of interest
in geometry and topology are virtual duality groups, including arithmetic lattices
[4], mapping class groups of surfaces [6], and outer automorphism groups of free
groups [2].

One reason to care about a group being a virtual duality group is that it pro-
vides a powerful tool for studying its cohomology in high degrees (close to the
virtual cohomological dimension), provided one has a good understanding of the
dualising module. In the case of arithmetic lattices, the dualising module is the
Steinberg module, which is given by the homology of the associated rational Tits
building. In the case of mapping class groups, the dualising module corresponds
to the homology of the complex of curves of the surface. The dualising module of
Out(Fy) is much less well-understood: see [8] for an overview of the difficulties
involved.

A handlebody group is a mapping class group of a 3-dimensional handlebody V.
If S = 9V is the boundary surface of V then the handlebody group Mod (V') embeds
into the mapping class group Mod(S) of the boundary surface, via restriction of
the mapping class to S. The disc complex D(V) is the subcomplex of the curve
complex given by curves on S which bound discs in V. While one might initially
guess that the homology of the disc complex is the dualising module of Mod(V),
this is not the case as D(V') is a contractible subcomplex of the curve complex — its
homology vanishes. However, there is a subcomplex N'S(V') spanned by simplices
corresponding to non-simple disc systems (these are sometimes called non-filling
in the literature). These are the disc systems which do not cut V into a union of
balls (some genus is left behind). Our main result is as follows:

Theorem 1 (Petersen-W, [7]). Let g > 2 and V be a handlebody of genus g. The
handlebody group Mod(V') is a virtual duality group of dimension d = 4g—5. The
complex NS(V') is homology equivalent to a wedge of spheres of dimension 2g — 3,

and its homology Hag—3(NS(V)) is the dualising module of Mod (V).

The proof is obtained using the following theorem, which follows from combining
work of Bieri and Eckmann with Poincaré-Lefschetz duality:

Theorem 2 (Bieri-Eckmann, [3]). Let G be a virtually torsion-free group acting
properly and cocompactly on a contractible n-manifold M. Then G is a virtual
duality group if and only if OM is homology equivalent to a wedge of spheres of
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equal dimension q. When this holds, the dualising module is ﬁq(aM, Z) and the
ved of G isd=n—q— 1.

Our manifold M is obtained by intersecting a thick part of Teichmiiller space
with a handlebody horoball H.. These handlebody horoballs are subspaces of
Teichmiiller space introduced by Hainaut—Petersen [5], who showed that each H.
is contractible. Precisely one obtains M by choosing constants 0 < n < e which
are smaller than the Margulis constant, and defines M C T to be the subspace of
Teichmiiller space consisting of marked surfaces o such that

e Every essential curve on ¢ has length at least 7, and
e the set of geodesic curves of length < e on o bound a simple disc system
in V (the discs cut V into balls).

Surfaces in M don’t contain any n-short curves, but contain enough e-short
curves bounding discs to cut V' up into balls. Our main theorem is obtained from
the following results:

e M is a contractible 6g — 6-dimensional manifold on which Mod(V') acts
properly and cocompactly.

e The boundary of M is homotopy equivalent to the suspension of the com-
plex of non-simple disc systems N'S(V).

e The complex N'S(V) is homology equivalent to a wedge of spheres of
constant dimension 2g — 3.

These key tools/ingredients are:

e Methods from combinatorial algebraic topology, notably homotopy types
of geometric realizations of posets and the tools developed to study such
spaces (e.g. Quillen’s fiber lemma).

e Stratifications of M and OM by posets closely related to the disc complex
with contractible strata.

e An induction argument using relative methods (handlebodies with marked
discs/points).

A more detailed outline of the proof is provided in the introduction of [7].
Our methods do not give a description of a generating set of H,(NS(V)) as a
Mod(V')-module, which would be desirable for using the above theorem to study
the cohomology of Mod (V) close to the ved. For more details on this and other
problems on handlebody groups, see [1].
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On LP-cohomology of semisimple groups
ANTONIO LOPEZ NEUMANN

LP-cohomology is a rather fine quasi-isometry invariant first introduced in [4] and
popularized by Gromov in [5]. It can be defined in slightly different settings:
one can talk about simplicial /P-cohomology of a simplicial complex, de Rham
LP-cohomology of a Riemannian manifold or continuous group LP-cohomology
of a locally compact second countable (Icsc) group. These different versions are
continuously isomorphic under natural assumptions (e.g. a geometric action of a
lesc group on a contractible simplicial complex or manifold).

Here we deal with continuous group LP-cohomology of lesc groups for 1 < p <
00, which for a lcsc group G it can be defined as continuous cohomology with
coefficients in the right regular representation in LP(G) := LP(G, m¢g) (where mg
is a left Haar measure) and we denote by H, (G, LP(Q)).

Computing LP-cohomology can be useful in problems around the quasi-isometric
classification of solvable Lie groups [2]. Currently, the main drawback to use this
invariant for this purpose is the lack of more systematic methods to compute it.
Even in the classical situation of real semisimple groups we do not have a good
description of this cohomology. Gromov predicted that for these groups (and also
for their non-Archimedean counterparts), LP-cohomology should exhibit a classical
behaviour: vanishing below the rank and non-vanishing in degree equal to the rank.

Question 1. [5, p. 253] Let F' be a local field (Archimedean or not), let G be the
F-points of a semisimple algebraic group defined over F and let r = rkp(G).

(1) Do we have HE (G, LP(G)) = {0} for 1 <p < oo and k <r?

(2) Does there exist some 1 < p < oo such that HL (G, L?(Q)) # {0} ¢

In this talk we review results pointing towards affirmative answers to these
questions. We will mostly focus on advances towards question (1), as question (2)
has now a rather satisfactory answer.

Theorem 2. [1, Theorem A] [6, 1.2] Let F be a local field, let G be the F-points
of a semisimple algebraic group defined over F and let r = tkp(G).

o If F =R, then for p large enough we have HZ, (G, LP(G)) # {0}.

o If F' is non-Archimedean, then for all p > 1 we have HJ (G, LP(G)) # {0}.

Question (1) has an affirmative answer for degree 1 cohomology.

Theorem 3. [8, Théoreme 1] [3, Theorem 1] Let F be a local field, let G be the F'-
points of a semisimple algebraic group defined over F. Suppose that tkp(G) > 2.
Then HL(G,LP(G)) = {0} for all 1 < p < 0.
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We now list some results for higher degree LP-cohomology of semisimple groups.
In the non-Archimedean case, vanishing of L?-cohomology (and cohomology with
unitary coefficients) in degrees below the rank is implicit in the work of Gar-
land. Dymara-Januszkiewicz and Oppenheim use interpolation to extend this
result for values of p in certain closed intervals inside (1,+00) containing 2. For
real semisimple groups, vanishing of reduced L?-cohomology is first due to Borel.
Bourdon-Rémy and Stern showed vanishing of LP-cohomology for p in closed in-
tervals containing (1, 2] relying on curvature pinching arguments by Pansu.

In all the results mentioned above, methods seem to encounter problems when
dealing with large values of p > 1. The next result applies to a wider range of
values of p > 1, but only for LP-cohomology in degree 2.

Theorem 4. [7, Theorem 1] Let F be a local field and let G be one of the following
semisimple algebraic groups over F':
e SL(4, D) where D is any finite central division algebra over F,
o GG is simple over F', has rank > 4 and is not of type Dy or of exceptional type,
o GG is semisimple, non-simple over F of rank > 3.
Then
H (G, LP(G)) = {0}
for all p > 1 if F is non-Archimedean and for large values of p if F' = R.

The proof of this result mixes homological and dynamical arguments and is
closer in spirit to the proofs by Pansu and Cornulier-Tessera for vanishing in
degree 1 than other proofs for higher degree cohomology. We will now explain
some ideas of the proof in the case of G = SLy,41(F) where n > 3.

The first step consists on invoking quasi-isometric invariance of LP-cohomology
in order to pass to a maximal parabolic subgroup, use its Levi decomposition to
write it as a semi-direct product on which we apply the Hochschild-Serre spec-
tral sequence. This gives an identification between HZ (G, LP(G)) and a coho-
mology space of the form HY (R, LP(R,V)) where the group R is the group of
upper triangular matrices in SL,(F), V is some Banach space carrying an R-
representation of exponential growth and the R-action on LP(R,V) is given by:
(m(g)F)(h) = g.F(hg) for g,h € R and F' € LP(R,V).

We then look at operator norms of elements g € R, we have the equalities:

7)o rvy = llglllLocmlllglllv = Ar(g)~7lllglllv

where Apr denotes the modular function of the group R. The key point here is
that even though |||g|||v can grow exponentially fast in the length of g, if Ag(g) >
1 then n +— |[||g™]||zr(r) decays exponentially fast, so we may hope to produce
elements that contract the norm of  (i.e. [|[w(9)|||z»(r,v) < 1). The rest of the
proof consists in showing that such contracting elements do exist, and that there
are enough of them to run a version of Mautner’s phenomenon.
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The geometry of conjugation in Euclidean isometry groups
PETRA SCHWER
(joint work with Elizabeth Mili¢evi¢ and Anne Thomas)

Group theory has a long history of studying conjugacy classes and the conjuga-
tion problem. While studying non-emptiness of affine Deligne-Lusztig varieties we
encountered a question which had not been asked before:

Can one describe geometrically where in the Coxeter complex the
elements conjugate to a given x are located?

Can one also determine and geometrically describe the set of all
conjugating elements?

It turns out the conjugacy classes of elements in affine Coxeter groups, and more
generally those in the full isometry group G of n-dimensional Euclidean space E™,
as well as in all split subgroups H of G, have a simple and beautiful geometric
description. Their shape of is determined by the move-set of its linearization, while
the coconjugation set is described in terms of the fix-set of the linearization.

We give formal statements of our characterizations from [1, 2] in Section 2, and
illustrate them via examples in Section 3.

1. MOVE-SPACES AND MOD-SETS

Let us first introduce the main players. The group G splits as a semidirect product
G =T % O(n), where T' = R"™ is the translation subgroup of G and O(n) is the
group of orthogonal transformations. We consider subgroups H of G which respect
this splitting; that is, where H = Ty x Hp for Ty = T N H and Hy = H N O(n).
For any such H < G and for all h,h' € H, we write

[hlzr = {khk™* |k € H} for the conjugacy class of h € H and
Cu(h,h)={ke H|khk™' =h'} for the coconjugation set (from h to h').

In particular, C'y (h, h) is the centralizer of h in H, which we also denote by C (h).
For any A € R", we write t* for the translation of E® by the vector \. For any split
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H < G, we define Ly = {\ € R" | t* € Ty}, and observe that Ly is naturally a
Z-module. Then any h € H can be expressed uniquely as h = t hg, where A € Ly
and hg € Hy. We call t* the translation part and hgy the spherical part of h. For
any A € Ly and ho € Hy, we have hot*hg b = tho?.

Recall that the move-set and fiz-set of any isometry g € G are the affine sub-
spaces of R™ given by, respectively,

Mov(g) = {y € R" | gv =z +y for some x € R"} = Im(g — I)

and
Fix(g) = {x € R" | gz =} = Ker(g — I).

For example, if r € G is a reflection, then Mov(r) is the line through the origin
orthogonal to the affine hyperplane Fix(r). If go € O(n), then Mov(gg) and
Fix(go) are both linear subspaces, and R™ has orthogonal decomposition R" =
Mov(go) ® F1x(go). The mod-sets are H-adapted versions of the move spaces,
defined as follows. For any h € H, the mod-set (with respect to H) of h is defined
by:

MODH(h) = (h — I)LH

2. MAIN RESULTS

We address the first of the leading questions and provide a closed and geometric
description of conjugacy classes.

Theorem 1 (Closed form of conjugacy classes). Let H = Ty x Hy be a split group
of Euclidean isometries. Let h = t*ho € H, where A\ € Ly and ho € Hy. Then
the conjugacy class of h in H satisfies

(1) Wy = U w (tMODH(h,O)h) -

u€Hy

and also

(2) (h]g = U tu()\+1\'IODH(hO))uh0u*1 _ U tuMODH(h)uhOufl.
u€Hy ueHy

In words, the two equalities of Theorem 1 tell us that [h]y is obtained by, respec-
tively:
(1) first translating h by all elements of MOD g (ho), and then conjugating the
so-obtained collection tM°P#(h0) b, by all elements of Hy; or

(2) for each u € Hy, translating the u-conjugate of the spherical part hy of h
by the set t?L(A—Fl\'lODH(}LQ)) — tu]\’IODH(h)

Both descriptions give rise to algorithms to compute the conjugacy classes of
elements in these groups.

In general mod sets are not necessarily equal to the intersection of the Move-
sapce with the coroot-lattice and one only has Mopg(h) € Mov(h) N Ly. The
next definition is motivated by this.
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Definition 2 (Filling). Let H = Ty x Hy be a split group of Fuclidean isometries.
We say that h € H fills its move-set, or that filling occurs for h, if

Mobpg(h) = Mov(h) N Ly.

In [2], for certain split crystallographic groups we refine the relationships be-
tween mod-sets and move-sets observed above. We regard the lattice Ly as a
free Z-module of rank n, and prove in [2, Theorem 3.8] that for any split crys-
tallographic H = Ty x Hy which is contained in an affine Coxeter group, and all
ho € Hy:

(1) the rank of MoDg (ho) equals the dimension of the move-set Mov(hy);
(2) MobDg (hg) is a finite-index submodule of Mov(ho) N Lg; and
(3) hy fills its move-set if and only if Ly /MoDg(hg) is torsion-free.

Our proofs of (1)—(3) in [2] use properties of affine Coxeter groups beyond
their semidirect product structure, including their close relationship to finite Weyl
groups. We do not know if (1)—(3) hold for split crystallographic groups which are
not contained in affine Coxeter groups.

We now turn to the second question: which k& € H conjugate a given h € H to
some h’ in its conjugacy class? We refer to this question as the coconjugation
problem. The solution to the coconjugation problem in H crucially involves the
fix-sets of elements of Hy.

For any h' € [h]u, the coconjugation set Cg(h,h’) is equal to kCg(h) for
any k € H such that khk™' = h’. One could hence say that it is enough to
consider centralizers to fully solve the coconjugation problem. However, in The-
orem 3 below, we provide an intrinsic description of the coconjugation set that
does not require prior knowledge of the centralizer, nor the determination of a
conjugating element k as used above. Instead, the disjoint union in Theorem 3
can be parametrized by an explicitly described subset of the coconjugation set
Cr,(ho, hy). The translation-compatible part of Cy, (ho, h{) is defined by:

(3) CyiY (ho, hy) = {u € Cay(ho, B) | N — u € Moby ()}

Theorem 3 (Coconjugation). Let H = Ty x Hy be a split group of Fuclidean
isometries. Let h = t*hg and b/ = t>‘lh6 be elements of H, where \,\' € Ly and
ho,h6 € Hy. Then

) Crr(h. 1) £ 0 = C (ho, h) # 0.
Moreover, if these sets are nonempty, then
(5) Cy(h,h') = |_| gut(FIx(ho)NLa),,

ueC?{’g,(ho,h{))
where for each u, the element n, € Ly is a particular solution to the equation

(6) N —uX = (I—h))n.
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In the special case that F1x(hg) = {0}, we have that
e = ([=hp) T (N = ud)
is the unique solution to (6), and Cg(h,h') is in bijection with C?{:‘ (ho, h{).

Geometrically, (5) means that the coconjugation set Cg (h, h') lies along translates
of the fix-set F1x(hy), and so is orthogonal to Mov(hy). The reason for this
appearance of the fix-set in our description of coconjugation sets is that we are
solving Equation (6), and Fix(h{) = Ker(I —hg). In the special case that h = A/,
Theorem 3 yields a new geometric description of the centralizer Cy(h).

When nonemptiness of the set C?‘{’;"(ho,hg) can be determined, the equiva-
lence (4) in Theorem 3 provides an algorithm to solve the conjugation problem in
H. If, in addition, all elements of C?I’g‘,(ho, hy) and all solutions to Equation (6)
can be computed, we obtain an algorithm which lists all elements of the coconju-
gation set.

3. EXAMPLES

3.1. The wallpaper group cmm. Let H be the wallpaper group crmm, denoted
2*22 in orbifold notation. Then H is split, Hy is the Klein four group generated by
two commuting reflections, say s; and s3, and H is generated by s1, s2, and a 180°
rotation, say p, about a point not on any reflection axis. The group H induces
the tesselation of E? by triangles depicted in Figure 1, and Ly is the lattice of
heavy dots in these figures. There is a natural bijection between the elements of
H and the tiles in these tesselations, and we identify each element of H with its
corresponding tile. A few tiles are labeled in Figure 1.

n o % n 1 'y 1 1 % % %
S - 11 § J <
=
N RN N { RN RN RN RN RN P RN,
A DR A DR A AR aun i aun i T T T T

Figure 1. Conjugacy classes [t’\sl}H in the wallpaper group cmm.

The conjugacy classes in H are as follows. In Figure 1, each set of tiles of
the same color is a conjugacy class [t*sl]H. The mod-set MoDg(s1) C Ly is
the set of large gray dots along the horizontal axis, and the move-set Mov(sy) is
this horizontal axis. The horizontal lines in the figure are the sets Mov(t}s;). If
A € Mov(s;) then Mov(t*s;) = Mov(s) is Hy-invariant, and the conjugacy class
[t s1]m is the set of gray triangles along the horizontal axis. For A ¢ Mov(s;), the
line ssMOV(t1s1) = sa51MoV(ts;) is distinet from Mov(t}s;), and so [t s1]m
is a pair of horizontal “lines” of triangles (of the same color). The description of
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the conjugacy classes [t}so]y is similar, just involving vertical “lines” of triangles
instead. Note that s; and s2 both fill their move-sets.

3.2. The full isometry group of E1%2. Let H = G = Isom(E?) be the full
isometry group of the Euclidean plane. Let A € R? be nonzero, let r € O(2) be
the unique linear reflection which fixes A, and let g be the glide-reflection g = t*r.
Then the conjugacy class [g]¢ is the disjoint union of all lines which are tangent
to the circle of radius ||A||, as depicted in Figure 2.

More precisely, if £ is a line tangent to this
circle, then the point p of ¢ corresponds to the
element tPry of [g]e, where rp € O(2) is the
unique linear reflection preserving £. Note that
each same-color pair of “lines” of tiles in Fig-
ure 1 can be viewed as a “discrete shadow” of
a pair of actual lines in Figure 2.

Now take any A € R? and let gg = — L. Then
g = t*go is the rotation by 180° about the
point %)\, and all such rotations are conjugate
in G.

For translations, given any A € R? we can
identify the conjugacy class [t)]g = {t** 1 u €
0O(2)} with the circle of radius ||A||. Thus the finitely many conjugates of any
translation in cmm are again just a discrete glimpse of its full conjugacy class in

G.

Figure 2. The conjugacy class of a
glide-reflection in Isom(E?).

4. AFFINE COXETER GROUP OF TYPE As

Let W be the affine Coxeter group of type As. Then W = T x W, where Wy =
(s1,s2) is the Weyl group of type Az, and the affine Weyl group is W = (sq, s1, s2).
There is a natural bijection between the elements of W and the triangular tiles
in the tessellation depicted in Figure 3. The coroot lattice R is the set of heavy
dots. On the left of Figure 3, each set of triangles shaded in the same color is a
conjugacy class [t*w], where w € {s1,s2,wg}. For each such reflection w € Wy,
the move-set Mov(w) is the heavy gray line orthogonal to its fixed hyperplane,
and the mod-set MoDw (w) is the set of coroot lattice elements on this gray line.
In other words, each reflection w € Wy fills its move-set. The other, colored lines
on the left of Figure 3 are move-sets Mov(t*w) for certain A ¢ Moby (w). Each
conjugacy class is thus a triple of “lines” of triangles of the same color.

The right of Figure 3 depicts the coconjugation set Cyy (z, '), where z = t*s;
and 2’ = t)‘/wo. To describe Cyy (z,2'), we first determine the u € Wy such that
usiu™! = wp and N — u\ € MoDy (wp); this gives u € {s2,s251}. Then for
each such u, we translate the horizontal gray line Fix(wg) by a particular solution
Ny € RY to the equation N — u\ = (I —wp)n. The elements of Cy (z,2’) are the
triangles t*u along these translates, as depicted in teal and aqua.
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Figure 3. On the left, some conjugacy classes [t’\w] in type Ag, where w is a
reflection. On the right, the coconjugation set C zz’.

4.1. Affine Coxeter group of type Cs. To end this report we provide an ex-
ample which illustrates the filling property. Let W = T x W, be of type Cs, so
that Wy = (s1, s2) is of type Cs. In Figure 4, which depicts some of the conjugacy
classes [t*w)] for w € Wy a reflection, we again see “lines” of conjugates. On the
left of this figure, the reflections s; and sasise fill their move-sets. However, on
the right, the conjugacy classes leave “gaps” along the colored lines which are
the move-sets. This is due to the fact that the reflections so and sisas; do not
fill their move-sets; rather, the mod-set MODy (w) is an index 2 submodule of
Mov(w) N RY.

A4 [IRNVSIRNY

T . Kl e et

KX

ANTAN

Figure 4. The conjugacy classes [t>"w] in type Cs forw € {s1, s2s182} fill their
move-sets (on the left), but do not fill their move-sets for w € {s2,s1s2s1}
(on the right).
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On and around Anosov representations
ANNA WIENHARD

Anosov representations have been introduced by Franpis Labourie [8]. They give
rise to interesting classes of discrete subgroups of Lie groups, and their study
has become a very active area in mathematics. In the talk a gave a selective
introduction to Anosov representations, highlighting some recent results of younger
mathematicians.

1. CONVEX COCOMPACT SUBGROUPS

A finitely generated discrete subgroup I' of the isometry group of a symmetric space
of non-compact type X is said to be convex cocompact if there exists a closed
D-invariant convex set C' C X such that C/I' is compact. Convex cocompact
subgroups of symmetric spaces of rank one form an important class of discrete
subgroups. Two of their key properties are

(1) Convex cocompact subgroups are quasi-isometrically embedded,
i.e. there exist constants K,C' > 0 such that for all v € I" we have

1
FM - C <dx(zo,v0) < K|v|+C,

where || is the length function with respect to a finite generating set of T'.
In fact, also the converse holds, any quasi-isometrically embedded finitely
generated group is convex cocompact.

(2) Structural stability A small deformation of a convex cocompact sub-
group is still convex cocompact (this is made more precise later)

In higher rank, convex cocompactness is a very rigid notion. Independently,
Kleiner-Leeb and Quint proved that any Zariski-dense convex cocompact dis-
crete subgroup of a higher rank Lie group is already a cocompact lattice. On
the other hand, being a quasi-isometric embedding is less rigid. In higher rank,
quasi-isometric embeddings are not necessarily structurally stable. Anosov rep-
resentations provide the right generalizations of convex cocompact subgroups in
the higher rank setting. They satisfy the two key properties (and many others),
and as we see in the definition below can be thought of as a strengthening of
quasi-isometric embeddings.
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2. ANOSOV REPRESENTATIONS

We will now change the point of view a bit and consider a finitely generated group I'
and consider homomorphisms of I into a semisimple Lie group G. Labourie’s origi-
nal definition of Anosov representations involved dynamics, here we present a char-
acterization which is due to Kapovich-Leeb-Porti [9] and Bochi-Potrie-Sambarino

[1].

2.1. A strengthening of quasi-isometric embeddings. In a higher rank sym-
metric space, there is a Weyl chamber valued distance function dq : X x X — a™.
A simple root « is a special linear form on a. These are the ingredients we need
to introduce Anosov representations

Definition 1. Let T' be a finitely generated group, G a semisimple Lie group with
finite center and no compact factors and X its symmetric space. A homomorphism
p: ' = G is an a-Anosov representation for a simple root « if there exists
constants K,C > 0 such that for all v € T we have

1
711 = € = alda(zo, p(7)20) < K7| +C,
where |7y| is the length function with respect to a finite generating set of T'.

A consequence of the definition is that the finitely generated group I' is hyper-
bolic [9, 1].

2.2. Properties of Anosov representations. Anosov representations satisfy
many interesting properties

(1) Anosov representations are virtually faithful with discrete image.

(2) Anosov representations are quasi-isometrically embedded, in particular in
rank one we have: Anosov = convex cocompact.

(3) Anosov representations are structurally stable, they form open subsets in
the space of homomorphism Hom(T', G).

2.3. Examples of Anosov representations. There are many important exam-
ples of Anosov representations, which are established in [8, 7]

(1) Let H be a simple Lie group of rank one, I' < H a convex cocompact
subgroup, and H — G an embedding into a semisimple Lie groups of
higher rank. Then the composition ¢ : I' — G is an Anosov representations
for some (explicitely computable) simple roots.

(2) For a surface group I, representations p : I' — SL(n,R) in the Hitchin
component are Anosov with respect to any simple root.

For some Lie groups G and special roots o having an a-Anosov representation
p : I' = G places strong constraints on the groups I'. Such constraints have first
been established by Canary znc Tsouvalas [2], Tsouvalas [11], Dey [3]. When
G = Sp(2n, R) there is a nice recent theorem of Dey, Greenberg, and Riestenberg
[4], and independently Pozzetti and Tsouvalas [10]. Note that the set of simple
roots for the symplectic group is {aq, -, an}.
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Theorem 2. If a representation p : T — Sp(2n,R) is ag-Anosov for some k odd,
then T is virtually a surface group or a free group.

On the other hand, there are finitely generated hyperbolic groups that admit
Anosov representations into SL(n,R), but do not admit any discrete embedding
into any product of Lie groups of rank 1 [6]. In a recent theorem Douba, Flechelles,
Weisman, and Zhu DoubaFlechellesWeismanZhu showed that there are many hy-
perbolic groups that admit Anosov representations.

Theorem 3. Any finitely generated hyperbolic group T' that acts properly and con-
vex cocompactly on a CAT(0)-cube complex admits an a1-Anosov representation
into SL(n,R) for some n.

3. BEYOND ANOSOV REPRESENTATIONS

One key property of Anosov representations is that they provide a structurally
stable class of quasi-isometric embeddings into higher rank. Recently, Tsouvalas
[12] constructed structurally stable quasi-isometric embeddings of a finitely gener-
ated hyperbolic group, which are not contained in the closure of the set of Anosov
representations. Thus there is a whole world beyond Anosov representations still
to be discovered.
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Computing certain invariants of topological spaces of dimension three
ANDREAS THOM
(joint work with Lukas Gohla)

For d > 4 and p a sufficiently large prime, we construct a lattice I' < PSp,;(Q,),
such that its universal central extension cannot be sofic if I' satisfies some weak
form of stability in permutations. In the proof, we make use of high-dimensional
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expansion phenomena and, extending results of Lubotzky, we construct new ex-
amples of cosystolic expanders over arbitrary finite abelian groups. These results
appeared in [7].

Ever since the influential paper of Gromov [8] and subsequent work of Weiss
[11], the quest for a non-sofic group has inspired mathematicians. In order to show
that a group is sofic, one has to provide sufficiently rich almost representations of
the group in permutations. The competing notion of stability requires that every
sufficiently accurate almost representation in permutations is close to an actual
permutation representation. Thus, it is easy to see that any group which is both
sofic and stable must be residually finite and, at least theoretically, this opens a
route to the construction of non-sofic groups, see [6]. Unfortunately, stability is a
rare phenomenon, even though there is some indication that lattices in algebraic
groups of rank at least 3 share the right kind of rigidity in order to ensure at
least some form of stability. This was first discovered in [3] and related to high-
dimensional expansion, see also [10], but the techniques are currently not able
to produce stability results for almost representations in permutations, see the
discussion in [2].

In this talk we discuss particular torsion free lattices I' in the algebraic group
PSpy;(Qp) for d > 4 and p large. These groups are residually finite and hence
sofic, but admit finite central extensions I' which are not residually finite anymore.
This phenomenon was first discovered by Deligne [4] in work on the congruence
subgroup problem. Our main result says that these central extensions ' cannot
be sofic if the group I is stable in a certain sense.

On a more conceptual level, which might be interesting in its own right, we
introduce cohomological invariants that obstruct containment of p.m.p. actions of
groups. These obstructions can be enhanced in the presence of cosystolic inequal-
ities to obstruct also weak containment. This is exactly the route our proof takes:
we show that for any sofic approximation of the finite central extension T', the
induced sofic approximation of the lattice I' admits a limit action which is not
weakly contained in finite actions of the lattice. This contradicts a very weak form
of stability that we introduce and discuss in [7]. We call a group stable in finite
actions if any partition of a suffiently good sofic approximation can be modelled
(in the spirit of Kechris’ notion of weak containment) in a finite action. This seems
much weaker than any other notion of stability that has been studied so far.

All this is formulated in our main result. We prove the following theorem:

Theorem 1. Let d > 4 and p a large prime. There exists a torsionfree lattice T’
in PSp(Qp) such that T' admits a finite and non-residually finite central extension
. IfT is stable in finite actions, then I' is not sofic.

The result should be compared with a result of Dogon in the hyperlinear setting,
see [5], and also with results of Bowen—Burton [1]. Note however that the strength
of our result lies in the fact that the notion of stability in finite actions is much
weaker then any other previously introduced notion of stability. Currently, there
is no residually finite group which is known not to be stable in finite actions.
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On the structure of varieties over free associative algebras
ZLIL SELA

Sets of solutions to systems of equations (varieties) over free associative (non-
commutative) algebras were studied from the 1960’s by ring theorists (P.M. Cohn,
G. Bergman, and others). Because of the strict failure of unique factorization over
these free algebras, not much is known about these varieties, and no conjectures
were ever made.

We presented our work in progress (partly joint with Agatha Atkarskaya) on the
structure of some of these varieties. The structure that we found is based on our
previous work on varieties over free groups and semigroups, and involves concepts
from low dimensional topology with other concepts from commutative algebra.

We started by studying homogeneous solutions to homogeneous monomial sys-
tems of equations. For these we introduced a canonical Makanin-Razborov di-
agram, similar to the one that we constructed previously for varieties over free
semigroups [1] that encodes all the homogeneous solutions to such system of equa-
tions.

The diagram enables us to filter general monomial systems of equations. First,
we described all the solutions to monomial systems of equations with a single
variable [2]. Then we studied monomial systems of equations with more than
one variable that contains no quadratic parts. For these we introduced a non-
commutative analogue of Hensel’s lemma that enables to describe the solutions
for these monomial systems.
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Finally, we described sets of solutions to quadratic monomial systems of equa-
tions. For these we also have an analogue of Hensel’s lemma that enables us to
describe the top ¢ homogeneous parts of the solutions for any given positive integer
c.

Having understood all these type of monomial systems of equations, we use the
Makanin-Razborov diagram that is associated with the top homogeneous part of
the monomial system to analyze the solutions of a general monomial system of
equations.

At this stage we are starting to apply our techniques and results on monomial
systems of equations to analyze general (polynomial) systems of equations.
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A 4-dimensional pseudo-Anosov map
BRUNO MARTELLI

A celebrated theorem of Thurston says that a 3-manifold M that fibers over the
circle is hyperbolic if and only if the fiber S is a (finite type) surface with x(S) < 0
and the monodromy is pseudo-Anosov. It is natural to ask whether this result is
confined to dimension 3, or if some version of it may holds in higher dimension.

We show that this theorem extends nicely in dimension 5, at least for the unique
source of examples of fibering hyperbolic 5-manifolds that we have, recently built
in [1]. As in dimension 3, the fiber of the hyperbolic 5-manifold built in [1] is a
4-manifold with a Fuclidean cone manifold structure, with singular locus consist-
ing of a codimension 2 geodesic surface with cone angle 37, and the monodromy
is pseudo-Anosov in the sense that it preserves the leaves of two orthogonal hor-
1zontal and vertical singular foliations. The leaves of the foliations are planes
(that intersect the singular locus in lines), and the map stretches (contracts) the
leaves of the horizontal (vertical) foliation by a factor A (respectively, 1/)) where
A = (14++/5)/2. This is completely analogous to the more familiar two-dimensional
picture.
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Classifying group actions on hyperbolic spaces
DENIs OsIN
(joint work with Koichi Oyakawa)

For a given group G, it is natural to ask whether one can classify all isometric G-
actions on Gromov hyperbolic spaces. We propose a formalization of this problem
utilizing the complexity theory of Borel equivalence relations. In this paper [1], we
focus on actions of general type, i.e., non-elementary actions without fixed points
at infinity.

Our main result is the following dichotomy: for every countable group G, ei-
ther all general type actions of G on hyperbolic spaces can be classified by an
explicit invariant ranging in RIP* or they are unclassifiable in a very strong sense.
Special linear groups SLs(F'), where F' is a countable field of characteristic 0, sat-
isfy the former alternative, while non-elementary hyperbolic (and, more generally,
acylindrically hyperbolic) groups satisfy the latter.

In terms of Borel complexity theory, we show that, for any countable weakly
hyperbolic group G, the restriction of ~ to Hyps(G) is either smooth or Borel
bi-reducible to the orbit equivalence relation of the action of £°° on R*°.

In the course of proving our main theorem, we also obtain results of independent
interest that offer new insights into algebraic and geometric properties of groups
admitting general type actions on hyperbolic spaces.
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Profinite rigidity of Kahler groups
CLAUDIO LLOSA ISENRICH
(joint work with Sam Hughes, Pierre Py, Matthew Stover, Stefano Vidussi)

A smooth complex projective variety is a manifold which is biholomorphic to a com-
pact complex submanifold of some complex projective space. A classical problem
in complex algebraic geometry is understanding the topology of smooth complex
projective varieties. An important invariant of a smooth complex projective vari-
ety X is its algebraic fundamental group willg (X). This raises the questions:

Question 1. Let X be a smooth complex projective variety:

(1) Can we recover X up to homeomorphism from w?lg (X)?
(2) Can we recover m(X) up to isomorphism from =9 (X)?

These fundamental questions arise naturally in the context of the seminal work

of Grothendieck [7] in the 1970s and Question 1(2) has been a key motivation for
much research in group theory, see e.g. [13]. This is because 7%9(X) is naturally

—

isomorphic to the profinite completion 71 (X)) of the topological fundamental group
m1(X) of X. Here the profinite completion G of a group G is the topological
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group defined as the closure of the image of the natural homomorphism ¢ : G —
11 NG G/N in the direct product of its discrete finite quotient groups, with
respect to the product topology. We call a group G residually finite if the morphism
¢ is injective, or, equivalently, if for every non-trivial element g € G\ {1}, there is
a homomorphism ¢ : G — @ to some finite group @ with ¢(g) # 1.

Residual finiteness is a prerequisite for being able to recover G completely from
its profinite completion. By work of Nikolov—Segal [12], two finitely generated
groups have the same set of finite quotients if and only if their profinite completions
are isomorphic as abstract groups. The problem of understanding a group from
its set of finite quotients can thus be rephrased in terms of the profinite genus

G(G) = {H finitely generated residually finite | H=~ é} .

For a class of groups C, the C-profinite genus of G € C is then G¢(G) := G(G) NC.
We say that a residually finite group G is profinitely rigid (resp. C-profinitely rigid)
if G(G) = {G} (resp. Gc(G) = {G}). Question 1(2) then becomes the question
if groups in P are P-profinitely rigid, where P denotes the class of fundamental
groups of smooth complex projective varieties (projective groups). Since all of our
results hold for the class I of fundamental groups of compact Kéhler manifolds
(Kdhler groups), we state them in this more general context.

In 1993 Toledo constructed non-residually finite projective groups [16]. Thus,
a restriction of the KC-profinite rigidity problem to residually finite groups is re-
quired. Moreover, in 1964 Serre proved that in general projective groups are not
‘P-profinitely rigid [14], using Galois conjugation. Since then many further exam-
ples of non-P-profinitely rigid groups have been constructed, see e.g. [1, 2, 15]. In
constrast, in [9], we prove the following profinite rigidity result for direct products
of closed Riemann surfaces and a complex torus.

Theorem 2 ([9, Theorem Al). Let G = m1(Sy,) X ... x m1(S,,) x 71 (T?) be
a direct product of fundamental groups of closed Riemann surfaces Sy, of genus
gi > 2 and a (real) 2k-torus. Then G is K-profinitely rigid. If, moreover, X is an

aspherical compact Kdihler manifold with 1 (X) = @, then X is homeomorphic to
Sgy X ... x Sy x T2,

The examples in [1] are finite extensions of a direct product of two surface
groups, while the examples in [2] are finite index subgroups of a direct product
of two surface groups. This shows that Theorem 2 is sharp. Note also that
Theorem 2 solves a special case of the longstanding open problem, attributed to
Remeslennikov, if free groups and surface groups are profinitely rigid.

Theorem 2 is a consequence of our more general result that the universal homo-
morphism of a Kéhler group is a profinite invariant [9]. The universal homomor-
phism was introduced in [10] to rephrase results of Corlette-Simpson and Delzant
[4, 5] in terms of a morphism to a direct product of orbisurface groups (orbifold
fundamental groups of closed Riemann surfaces equipped with an orbifold struc-
ture with finitely many cone points):
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Theorem 3 ([4, 5], see also [10, Theorem 9.1]). Let G be a Kdhler group. Then
there is a universal homomorphism ¢ = (¢1, - ,¢,) : G > T1 X ... x T, to a
direct product of hyperbolic orbisurface groups T'; such that the ¢; are surjective
with finitely generated kernel and every other morphism from G onto a hyperbolic
orbisurface factors through a unique ¢;.

The universal homomorphism is then a profinite invariant of Kahler groups in
the following sense.

Theorem 4 ([9, Theorem D]). Let G and H be Kdhler groups and let ¢ =
(P1,-+ ,¢r): G =T x...xTyandp = (1, ,0s) : H — Ay X ... X Ag be their
universal homomorphisms. Assume that there is an isomorphism © : G H of
their profinite completions. Then, after reordering, r = s, I'; &2 A;, and there are
isomorphisms «; : fz — K7 such that there is a commutative diagram

G2 T, x...xT,
:l@ ﬁl(ahmﬂr)
L N

H—>A1><...></A\T,

where qAS and 1Z denote the induced homomorphisms on profinite completions.

Key ingredients in our proof of Theorem 4 include the semicontinuity of the
first Betti and £2-Betti number with respect to profinite completions, a factor-
ization result for Kéahler groups by Napier and Ramachandran [11], and Bridson,
Conder and Reid’s result that Fuchsian groups are distinguished by their profinite
completions [3].

As a further consequence of Theorem 4 we prove the profinite invariance of the
BNS-invariant X'(G) € H'(G,R) \ {0} of a Kihler group.

Theorem 5 ([9, Theorem E|). Let G and H be Kdhler groups with isomor-
phic profinite completions. Then there is a linear isomorphism f : H'(G,R) —
HY(H,R) defined over Q such that f(X'(G)) = S (H).

Our proof of Theorem 5 relies on Delzant’s characterisation of the BNS-invariant
of a Kéhler group in terms of its morphisms to surface groups [6], and results of
Hughes and Kielak, relating the non-vanishing of twisted Alexander polynomials
to virtual algebraic fibring of groups [8].

We end with the following related questions that to our knowledge remain open:

Question 6. Is the K-profinite genus of every residually finite Kdhler group finite?
Question 7. Is there a simple Kdhler group?

Question 7 is a well-known variation of Serre’s question whether there is a
non-residually finite Kéhler group; the latter was answered positively by Toledo
[16].
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Profinite rigidity: Finitely presented versus finitely generated
ALAN W. REID
(joint work with Martin R. Bridson, Ryan Spitler)

The quest to understand the extent to which finitely generated groups are de-
termined by their finite images has been greatly invigorated in recent years with
input from low-dimensional geometry and topology. In our papers [4] and [5] with
D. B. McReynolds, we provided the first examples of finitely generated, residually
finite groups I' (which are lattices in PSL(2,R) and PSL(2, C)) that are profinitely
rigid: for finitely generated, residually finite groups A, if A =T then A = T", where
A denotes the profinite completion of A.

This talk discussed ideas in the proof of the following theorem which provides
the first examples of finitely presented groups that are profinitely rigid among
finitely presented groups but not among finitely generated groups.
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Theorem 1. There exist finitely presented, residually finite groups I' with the
following properties:

(1) T x T is profinitely rigid among all finitely presented, residually finite
groups.

(2) There exist infinitely many non-isomorphic finitely generated groups A
such that A =T x T.

(3) If A is as in (2), then there is an embedding A — T x T that induces the
isomorphism AxTxT (in other words, A — T x T' is a Grothendieck
pair).

If M is any Seifert fibred space with base orbifold S(3,3,4) or S?(3,3,6) or
S2(2,5,5), then T = m M has these properties.

Underlying the proof of Theorem 1 are some of the ideas of [4] and [5], in
particular the use of Galois rigidity in the context of I' = 71 (M) with M as in the
statement of Theorem 1. Although Galois rigidity does not hold in the strict sense
when applied to I' x T", enough control is gained to execute an endgame similar to
that in [4] and [5].

The key structural parts of the proof are as follows:

Step 1: Prove that if M is as in the statement of Theorem 1, then m (M) is
profinitely rigid. This uses Galois rigidity to reduce to the “relative setting”:
namely if A is a finitely generated, residually finite group with = f, then A =
71 (N) where N is a Seifert fibred space. One can now use a result of Wilkes [8]
to show that A = T.

Step 2: We show that if A is a finitely generated, residually finite group with
= I‘/ﬁ‘, then there is an embedding A — I" X I' inducing the isomorphism at
the level of profinite completion.

A crucial part of the proof, and where Galois rigidity is used, is in proving the
following.

Proposition 2. Let I' be the fundamental group of a Seifert fibred space whose
base orbifold S%(p,q,r) is one of those in Theorem 1 and let A = A(p,q,r) be the
orbifold fundamental group of this base. Let A be a finitely generated group with
A= fl X fg, where 'y 2 Ty 2 T'. If A; is the projection of A to fi, then there
exist epimorphisms g; : A; — A and hence a homomorphism

g A Ay x Ay I A A
with image a full subdirect product.

With this in hand, and with some additional argument, we can show that the
epimorphsims g; : A; — A fit into a short exact sequence: 1 - Z — A; > A — 1
with Z central and infinite cyclic. As above, A; can then be shown to be the
fundamental group of a Seifert fibred space, and indeed A; = Ay =T

Step 3: We prove that there are no finitely presented A as in the statement of
Theorem 1. To do this we prove the following result (that builds on arguments of

3])
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Theorem 3. Let M be a Seifert fibred space with hyperbolic base orbifold, let
I'=m M, let D be the direct product of finitely many copies of I', and let A < D be

a subgroup such that the inclusion induces an isomorphism of profinite completions.
If A is finitely presented, then A = D.

Step 4: Finally we construct Grothendieck pairs (I' x I'; A) with A finitely gener-
ated. This is achieved using the following result (but we will not discuss in detail
how it is implemented).

Theorem 4. Let A be a non-elementary hyperbolic group and let I' be a group
with Ho(T',Z) = 0 that maps onto A. Let G be a finitely generated group that
maps onto a subgroup of finite index in [U',T]. Then,

(1) there exists an infinite sequence of distinct finitely generated subgroups
P, < G x G such that each inclusion u, : P, — G x G induces an
isomorphism of profinite completions.

(2) If G is a central extension of a hyperbolic group and centralizers of ele-
ments in that hyperbolic group are virtually cyclic, then P, is not abstractly
isomorphic to P, when n # m.

The subgroups P; will not be finitely presented in general, even if G is finitely
presented (cf. [1]).

In our setting we would like to apply Theorem 4 to the fundamental groups of
the Seifert fibre spaces over the base orbifolds S2(p, g, 7) listed in Theorem 1. More
specifically, in the notation of Theorem 4, we would like to take A = A(p,q,)
and G =T = m M. But we cannot do this because Hy(M,Z), although finite, is
not trivial. Instead, we construct an auxiliary group B with finite abelianisation
and with Hy(B,Z) = 0 so that B maps onto a non-elementary hyperbolic group
and 71 M maps onto a subgroup of finite index in [B, BJ.

Theorem 4 fits into a well-established train of ideas for constructing Grothen-
dieck pairs which we now briefly explain. Grothendieck [6] asked if there exist
Grothendieck pairs of finitely presented groups. This problem was eventually
solved by Bridson and Grunewald [2]. Their proof builds on an earlier argument
of Platonov and Tavgen [7] who constructed the first Grothendieck pair of finitely
generated groups. They did this by appealing to a special case of the following
proposition, taking G to be a free group and @ to be Higman’s famous example
of a 4-generator, 4-relator group with @ =1 and Hy(Q,Z) = 0.

Proposition 5. Let f : G — Q be an epimorphism of groups, with G finitely
generated and Q finitely presented. Consider the fibre product

P={(g.h) | f(g) = f(h)} <G xG.
Then,
(1) P is finitely generated;
(2) if @ =1 and H2(Q,Z) = 0, then P — G X G induces an isomorphism
PSGxG.
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Toward Profinite Rigidity of Free and Surface Groups
ANDREI JAIKIN-ZAPIRAIN
(joint work with Ismael Morales)

Let T" be a finitely generated residually finite group. We say that I" is profinitely
rigid if for every finitely generated residually finite group A having the same profi-
nite completion as I', we have that A = T'.

Already among virtually cyclic groups, there exist groups that are not profinitely
rigid. Grunewald, Pickel and Segal [8] proved that virtually polycyclic groups I'
are almost profinitely rigid, i.e., there are only finitely many isomorphism classes of
finitely generated residually finite groups A having the same profinite completion
as I'. The first examples of profinitely rigid groups containing free groups were
found among Fuchsian and Kleinian groups [3, 4].

The main open problem in the area is to decide whether free and surface groups
are profinitely rigid. Let F' denote a finitely generated free group and S a hyper-
bolic surface group, and let A be a finitely generated residually finite group such
that A 2 T where I = F or I = S. The strategy to prove that A = I" can be
divided into two steps:

(a) Show that A is hyperbolic and virtually compact special.
(b) Assuming that A is hyperbolic and virtually compact special, prove that
A=T.

The groups that are hyperbolic and virtually compact special play an important
role in recent advances in geometric group theory. The most notable example is
Agol’s solution [2] to the virtually fibering conjecture for hyperbolic 3-manifolds.
However, we want to note that in his proof [1], Agol used the property RFRS,
which is weaker than being hyperbolic and compact special. A finitely generated
group is RFRS (residually finite rationally solvable) if it is residually (virtually
abelian and locally indicable). There is another example where one can substitute
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the condition of being hyperbolic and virtually compact special with virtually
RFRS. Kielak and Linton [9] showed that a hyperbolic and virtually compact
special group A with cdg(A) = 2 and ng)(A) = 0 is virtually free-by-cyclic. This
implies, in particular, the solution of Baumslag’s conjecture: one-relator groups
with torsion are virtually free-by-cyclic. Fisher [5] showed that in the mentioned
result of Kielak and Linton, one may substitute the condition of being hyperbolic
and virtually compact special with the condition of being RFRS and obtain the
same conclusion. These examples show the relevance of the next result in relation
to Step (a).

Theorem 1 ([6]). Let A be a finitely generated residually finite group such that
AT whereT' = F or ' =S5. Then A is RFRS.

Now, if we are in the conditions of Step (b), i.e., we assume that A is hyperbolic
and virtually compact special, we can use the hierarchy on these groups. The key
step would be understanding when A = F} %y F5 is an amalgamated product or
A = Fyxp is an HNN extension of free groups. Wilton proved that A = T' if H is
cyclic. The case when H is an arbitrary free group remains open.

A good test for our strategy would be to consider the case when A is a one-
relator group. By a result of Linton [10], if AT whereI'=For ' = S, then A
is hyperbolic and virtually special. However, at this moment, we can prove that
A =T only in the case of I' = S.

Theorem 2 ([7]). Let A be a finitely generated residually finite group with cd(A) =
2 and b (A) = 0 such that A= 5. Then A= S.
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The contraction space and its applications
STEFANIE ZBINDEN

For almost 10 years, it has been known that if a group contains a strongly con-
tracting element, then it is acylindrically hyperbolic. In fact, one can use the
Projection Complex of Bestvina, Bromberg and Fujiwara [1] to construct a hyper-
bolic space where said element acts WPD. However, until recently, the following
question remained unanswered: if Morse is equivalent to strongly contracting, does
there exist a universal WPD action, that is, does there exists a space where all
generalized loxodromics act WPD?

Both the contraction space [3] and [2] answer the above question positively by
outlining procedures on how to associate hyperbolic spaces to a given starting
space. The contraction space does so by coning off all geodesics which are not
strongly-contracting “enough”.

In work in progress with Cornelia Drutu and Davide Spriano, we generalize the
construction of the contraction space to get the following application. If a group
acts geometrically on a geodesic metric space which is injective or median, then it
is either acylindrically hyperbolic or has linear divergence.
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Virtual homological torsion in graphs of free groups with cyclic edges
JONATHAN FRUCHTER
(joint work with Dario Ascari)

In geometric group theory, it is common for insights from the study of 3-manifolds
to find natural analogues in more combinatorial settings. One phenomenon in the
theory of 3-manifolds is the following;:

Theorem 1 ([5], ¢f. [1]). Let M be a closed, hyperbolic 3-manifold. For any finite
abelian group A, M admits a finite-sheeted cover N — M such that A is a direct
factor of Hi(M;Z).

Recently, we proved that the same holds for hyperbolic graphs of free groups
with Z edges:

Theorem 2. Let G be a hyperbolic group which splits as a graph of free groups
amalgamated along cyclic subgroups. Suppose that G is not isomorphic to a free
product of free and surface groups. Then for every finite abelian group A, G admits
a finite-index subgroup G' < G such that A is a direct factor of (G).
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While the proofs of Sun and Chu-Groves rely on constructing immersed sur-
faces whose boundaries wrap geodesic loops multiple times (yielding homological
torsion), our proof utilizes branched surfaces, namely, compact and orientable sur-
faces with boundary glued along their boundary components. As the following
example illustrates, given such a branched surface B (which is not a surface), and
a finite abelian group A, one can always construct a (pre-) cover B4 of B such that
the “branching loops” of B generate a subgroup isomorphic to A in (7 (B))*.

Example 3. Let B be the branched surface which consists of three tori, each
with a single boundary component, glued along their boundaries. Let A = 7Z/2.
Then Ba is a 4-fold cover of B with “branching loops” x1,x2,x3 and x4. In the
abelianization, we have that x; + x; = 0 for every 1 < 4,5 < 4, which implies
r1 = X9 = x3 = x4 and 2z = 0.

Wilton proved that if G is a non-free hyperbolic group which splits as a graph
of free groups with Z edges, then G has a surface subgroup [6]. The assumption
that G is not free can be translated into an assumption on the complexity of links
in the geometric realization of a graph of spaces X¢ with 71 (Xg) = G (a graph of
graphs whose edge spaces are cylinders). The links corresponding to a group G as
in Theorem 2 are even more complicated, which allows us to construct maps from
more complicated 2-complexes into Xg. In particular, we construct a branched
surface B and a homomorphism f : 71 (B) — G such that for every finite abelian
group A, the map f, : (71(Ba))®® = A® A’ — G is injective on A. Using virtual
retractions, we obtain a finite-index subgroup G’ < G such that A is a direct factor

of (G")*.

Theorem 2 above has applications to the study of profinite rigidity. Since the
abelianizations of all finite-index subgroups of a given group are a profinite in-
variant of that group, the theorem implies that free products of free and surface
groups are profinitely rigid among hyperbolic graphs of free groups with cyclic
edges. This solves additional cases of the following long-standing conjecture:

Conjecture 4. Let F be a non-abelian free group of rank n and let w € F. For
every finite group G, w induces a word map w : G — G and a word measure

given by P,(A C G) = %. If two words w,w' € F induce the same word

measure on every finite group, then there exists f € Aut(F) such that f(w) = w'.
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This conjecture is known to hold only when w is a primitive element [4], [6]
and [2], a commutator of non-primitive elements [3] or a (possibly non-orientable)
surface word [7]. In addition, it is worth noting that:

(1) If the conjecture holds for some w € F' then it also holds for every power
w? € F [3, Theorem 1.7].

(2) A priori, if (the Aut(F)-orbit of) w is determined by its word measures
when viewed as a word in F, it does not necessarily follow that w is
determined by its word measures when viewed as a word in a larger free
group F * F’.

(3) Hanany, Meiri and Puder [3, Theorem 2.2] showed that w is determined by
its word measures if and only if the following holds: every w’ which lies in
the Aut(F)-orbit of w, must lie in the Aut(F)-orbit of w. This implies, in
particular, that if the double F x,, F' is profinitely rigid among all doubles
of F, then w is determined by its word measures.

Since doubles of free groups along (non-power) words are hyperbolic, we obtain
the following corollary of Theorem 2:

Corollary 5. Let F' be a free group on x1,...,x,. Then Conjecture 4 holds for
partial surface words in F' (namely words of the form [x1,z2] - [xg—_1, zk] for even
k <n or words of the form x% ---x% for k <n).
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Stable cylinders for hyperbolic groups
HARRY PETYT
(joint work with Davide Spriano, Abdul Zalloum)

Solving systems of equations over a group G is equivalent to the natural problem
of finding homomorphisms to G [10]. The equation problem asks if it is decidable
whether a given system of equations can be solved. This has been resolved in
relatively few cases. When G is free, solution sets were completely described by
Makanin and Razborov [5, 10]. More generally, Rips—Sela proved the following.

Theorem 1 ([11]). Torsionfree hyperbolic groups have soluble equation problem.
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The “torsionfree” hypothesis has since been removed by Dahmani—Guirardel
[2]. The principal geometric notion introduced by Rips—Sela in order to prove
Theorem 1 is that of stable cylinders.

Definition 2. Let G be a hyperbolic group. A O—cylinder for g,h € G is a neigh-
bourhood C(g,h) of a geodesic v from g to h with dgaus(y, C(x,y)) < 6. A collec-
tion {C(a,a’) : a,a’ € A} of eylinders is (k, R)-stable for A C G if
(1) C(a,a’) = C(d',a) for all a,a’ € A, and
(2) for all ai,a2,a3 € A, there are R-balls By,...,By in G such that, for
any © € G with d(a1,x) < (az,a3)q,, if v € C(a1,a2), then either x €

C(a1,as), or x € B; for some i.

A few comments on (2). Since G is hyperbolic, every ge-
odesic triangle between ai,as,a3 has a coarse centre m,
whose distance from a; is roughly the Gromov product
(a2,a3)q,. Imagine ay as being very far away from aq, and Condition (2)
as as being a small perturbation of as at the same distance
from a;. The arm of C(aq, ag) that joins a; to m will make up almost the entirety
of C(ai,as3), but (2) says that it is equal to the corresponding arm of C(aq,asz),
except for in a uniform number of small balls. If G is a surface group and we keep
perturbing a; € A to a;4+1 € A along the perimeter of a circle centred on aq, then
we see that the positions of those small balls must be changing along the a; arm.
The main technical result of [11] is the following.

Theorem 3 ([11]). Let G be a torsionfree hyperbolic group. For each n there
exists R such that for any A C G with |A| < n, there exist cylinders that are
(1, R)-stable for A.

Using the cylinders of Theorem 3, Rips—Sela construct
“canonical representatives” for the elements of A. These
satisfy a stability condition analogous to (2), and a triangle

of them looks like the one depicted on the right.

Given a finite system F of equations over a torsionfree hyperbolic group G,
canonical representatives enable one to lift E to a finite set of systems E; of
equations over a free group F. A solution in F' of any E; projects to a solution of
E in G, and if E can be solved in G then at least one £; must be soluble in F. In
order to prove Theorem 1 from here, one simply applies the Makanin—Razborov
algorithm to each of the finitely many F;.

The dependence on A in Theorem 3 introduces various difficulties in the above

argument, which led Rips—Sela to ask the following.

Question 4 ([11]). Do torsionfree hyperbolic groups admit globally stable cylinders
(i.e. cylinders that are stable for A= G)?

Globally stable cylinders yield globally defined canonical representatives. This
can be thought of as strengthening Mineyev’s rational bicombing [6].

The above comments on (2) show that if G is one-ended then any globally stable
collection of cylinders for G must have stability constant k > 2. Rips—Sela showed
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that C’() groups admit globally (2, R)-stable cylinders, but no further examples
were found till recent work of Lazarovich-Sageev [4].

Theorem 5 ([4]). If a hyperbolic group G acts properly and cocompactly on a
CAT(0) cube complex, then G admits globally stable cylinders.

The arguments of Lazarovich—Sageev work entirely by using the combinatorics
of the hyperplanes of the CAT(0) cube complex, and finite-dimensionality plays
an essential role. Our main result is the following.

Theorem 6 ([8]). Residually finite hyperbolic groups admit globally stable cylin-
ders.

The key technical feature of our argument is the construction of a model space X
that is sufficiently similar to a CAT(0) cube complex to be able to make hyperplane
arguments. It cannot be too similar to a CAT(0) cube complex, though, because
of groups with property (T). In particular, the hyperplane arguments involved will
necessarily be different to those of [4].

In a sense, the model space X can be thought of as a kind of “acylindrical”
version of a CAT(0) cube complex. In a proper group action, point-stabilisers
must be finite. Acylindrical actions relax this by allowing infinite point-stabilisers
but requiring that stabilisers of pairs of distant points are finite: the action is not
proper, but if you move far enough then it starts to look proper. Analogously, the
model space X is neither finite-dimensional nor a cell complex, but when you move
far enough it starts to behave like a finite-dimensional CAT(0) cube complex.

Very briefly, X is built using a generalisation of Sageev’s construction developed
in [9]. The input is a collection W of walls on G (i.e. bipartitions G = h~ LU A™T),
and a family D of subsets of 2 satisfying a couple of simple conditions that make
D a dualisable system in the sense of [9]. The case D = 2" is precisely Sageev’s
construction. The thing to have in mind for D is the family of all chains of walls
(sequences hy, ..., h, such that h; separates h;_; from h;; for all 7), though in
the present case it is actually a refined family of chains.

To build the walls on G, we use a remarkable embedding result due to Bestvina—
Bromberg—Fujiwara [1]. The additional quasimedian property, established in [3, 7],
means that the embedding is not some kind of log-spiral with lots of backtracking.

Theorem 7 ([1, 3, 7]). Every residually finite hyperbolic group admits an ac-
tion on a finite product of quasitrees such that orbit maps are quasimedian quasi-
isometric embeddings. That is, the image of every quasigeodesic projects to an
unparametrised quasigeodesic in each factor of the product.

We first make walls on the quasitree factors. Those induce walls on the product
of quasitrees, and intersecting with a G—orbit yields walls on G. The quasimedian
property implies that they have quasiconvex halfspaces in G.

The choice of the dualisable system D is more subtle, but from there we feed
W and D into the machinery of [9], and it spits out the desired model space X.
Some of the properties of X are summarised below.
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Theorem 8. Let G be a residually finite hyperbolic group. There is a hyperbolic
space X with the following properties.

o G acts properly and coboundedly on X .

e X has the structure of a median algebra.

e Metric balls in X are convex with respect to the median.

o X is determined by walls that come in finitely many colours.

o The walls of a given colour satisfy a strong separation property.

These properties make it possible to construct globally
stable cylinders in X using the combinatorics of walls, and _/\/fu
to prove Theorem 6 one pulls these cylinders back to G.
In fact, the construction works for any hyperbolic space FJ
satisfying the conclusions of Theorem 7. For instance, with r/ (
some work one can use results of [1] and [7] for mapping W
class groups to show that they are satisfied by curve graphs [\ /|
of surfaces [8], and it follows that curve graphs also admit
globally stable cylinders.

As a final comment, the stability constant k in Theorem 6 is equal to 2m + 1,
where m is the number of quasitrees in Theorem 7. By comparison, the value of
k given by the proof of Theorem 5 is a tower of exponentials of height depending
on the hyperbolicity constant of G.
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Profinite properties of Coxeter groups
OLGA VARGHESE
(joint work with Samuel M. Corson, Sam Hughes and Philip Méller)

As the main protagonists here are Coxeter groups, we start with a definition of
these objects. Given a finite simplicial graph I with the vertex set V(I"), the edge
set E(I') and an edge-labeling m: E(I') — N>3 U {oc0}, the associated Cozeter
group Wr is given by the presentation

v? for all v € V(T), (vw)? if {v,w} ¢ E(T), > .

Wr = <V(F) (vw)™ (0w if {o,w} € E(T) and m({v,w}) < oo

Since the edge-label 3 appears very often in the study of Coxeter groups it is
convenient to omit this label in the graph I'. Coxeter groups are a family of groups
that generalize reflection groups and can be studied from various perspectives.
Here, we focus on profinite properties of Coxeter groups.

Let G be a group and A be the set of all finite index normal subgroups of G.
We equip each G/N, N € N with the discrete topology and endow [] ¢ G/N
with the product topology. We define a map

t: G— H G/N by g — (gN)nen-
NeN

The map ¢ is injective if and only if G is residually finite. The profinite completion
of G, denoted by G, is defined as G := t(G). For a group G we denote by F(G)
the set of isomorphism classes of finite quotients of G. We note that the set F(G)
of a finitely generated residually finite group G encodes the same information as
the profinite group G, see [4].

Let C be a class of finitely generated residually finite groups. A group G is
called C-profinitely rigid if G € C and for any group H in the class C whenever
G~H , then G = H. By definition, a finitely generated residually finite group G
is called profinitely rigid (in the absolute sense) if G is profinitely rigid relative to
the class consisting of all finitely generated residually finite groups.

Let W be the class consisting of all Coxeter groups. We raise the following
question:

Question 1. Are Coxeter groups W-profinitely rigid?

Before we give some partial results to the above question, we want to point
out how W-profinite rigidity is connected to the isomorphism problem of Coxeter
groups. In 1911, Max Dehn formulated three decision problems for finitely pre-
sented groups: the word, conjugacy, and isomorphism problem. Whilst all three
problems are unsolvable in full generality, for Coxeter groups, both the word and
conjugacy problems have been solved. Despite much effort, the isomorphism prob-
lem amongst Coxeter groups remains open. The relevance of profinite rigidity to
the isomorphism problem is the following well known fact which has appeared in
[1] and [5, Proposition 8].
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Lemma. Let C be a class of finitely presented residually finite groups. If G is
C-profinitely rigid, then the isomorphism problem for G is solvable in C.

Virtually abelian Coxeter groups are characterized by their Coxeter graphs. A
Coxeter group Wt is virtually abelian if and only if for every connected component
Q of T, the special parabolic subgroup Wy, is finite or 2 is isomorphic to one of
the graphs in Figure 1.

A, A E; b—o—o—I—o—o—q
B, o % o o_- < Es b—o—I—o—o—o—o—Q
4 4

Cn o —o--0o—o Fp e—o—o—o—o

Figure 1. Coxeter graphs of irreducible affine type.

The Coxeter groups defined by the graphs in Figure 1 are precisely the irre-
ducible affine Coxeter groups. In [3] we proved:

Theorem 2. Finite products of irreducible affine Cozeter groups are profinitely
rigid in the absolute sense.

There are several interesting subclasses of Coxeter groups depending on the
edge-labeling. For example, if E(I') = 0 or m(E(T')) = {oo}, then Wr is called
right-angled. In [2] we showed:

Theorem 3. Right-angled Cozeter groups are WW-profinitely rigid.

Further, in [2] we showed that there exist right-angled Coxeter groups which
are not profinitely rigid in the absolute sense. We denote by W,, the Coxeter group
whose Coxeter graph I is a complete graph with n vertices and all edge-labels are
00.

Theorem 4. If n > 4, then the Cozeter group W, x W, is not profinitely rigid
in the absolute sense.
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Using the recent result that all Higman-Thompson groups V,, can be generated
by 3 involutions [7] one can upgrade the above result to:

Proposition 5. The Cozxeter group W, x W, is profinitely rigid in the absolute
sense if and only if n < 2.

Cohomological goodness in the sense of Serre is a crucial group property with
many implications in the direction of profinite rigidity. By definition, a finitely
generated residually finite group G is called cohomologically good if for every finite
G-module M and every ¢ > 0, the induced map on cohomology Hq(é; M) —
H1(G; M) is an isomorphism. In [6] we proved:

Theorem 6. Cozeter groups are cohomologically good.

The fact that Coxeter groups are cohomologically good makes them particularly
well-suited to profinite methods. In particular, we have control about torsion
elements in the profinite completion of a Coxeter group.

We showed that many properties of Coxeter groups that are characterized in
terms of graphs are W-profinite invariants. A property P is called W-profinite
invariant if it takes the same value on Coxeter groups whose profinite completions
are isomorphic. In [6] we proved:

Theorem 7. Let Wr and Wy be Coxeter groups and suppose Wp = W\A. Then,
(1) Wr has Serre’s fized point property FA if and only if Wx has FA;
(2) Wr is a hyperbolic group if and only if W is a hyperbolic group;
(3) Wr is virtually free if and only if W is virtually free;
(4) Wr is virtually surface if and only if W is virtually surface;
(5) The Euler characteristics are equal: x(Wr) = x(Wa);
(6) M(Wr) = M(Wy), where M(—) denotes the Schur multiplier;
(7) Wr does not have non-trivial finite normal subgroups if and only if W
does mot have non-trivial finite normal subgroups.

A generalisation of the class of irreducible affine Coxeter groups is the class
of minimal non-spherical Coxeter groups. Let Wt be an infinite Coxeter group.
The group Wr is said to be minimal non-spherical if every proper special par-
abolic subgroup is finite. Using cohomological goodness of Coxeter groups and
W-profinite invariants we proved in [6]:

Theorem 8. Minimal non-spherical Coxeter groups are W-profinitely rigid.

At the end we want to give a proof idea, that Coxeter groups where the defining
graph is a triangle are W-profinitely rigid.

Proposition 9. Let p,q,r € N>3 and let A(p,q,r) denote a triangle graph with
edge labels p,q,7. Then Wa(p q.r) 18 W-profinitely rigid.

Proof. Let Wq be a Coxeter group such that /W\A(p,q,r) = /W\Q The Coxeter group
WA(p,q,r) does not have non-trivial finite normal subgroups. Since this property is
a W-profinite invariant, it follows that Wq does not have non-trivial finite normal
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subgroups. Further, Wa(, ¢, is virtually a surface group and this property is a
W-profinite invariant, thus Wgq, is also virtually surface.

For a group G we denote by CF(G) the poset of conjugacy classes of finite
subgroups in G. Let W be a virtually surface Coxeter group, then CF(W) is a
W-profinite invariant, see [6].

Now, we know that Wgq is a virtually surface group without non-trivial finite
normal subgroups and has 3 maximal finite subgroups D,, D, and D,. By a
characterisation of virtually surface Coxeter groups in terms of graphs, see [6] it
follows that € is a cycle of length 3 with edge labels p, g, 7. Hence Q = A(p,q,7)
and therefore W, 4.r) = Wa. O
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Waist inequalities and the Kazhdan property
ROMAN SAUER
(joint work with Uri Bader)

A family F of d-dimensional Riemannian manifolds of finite volume has a uniform
n-waist if there is € > 0 such that for every M € F and every smooth (or analytic)
map f: M — R" there is a point p € R™ such that

vold_n(f_l({p})) > ¢ volg(M).

Let M be a closed Riemannian manifold with a Kazhdan fundamental group.
Let Fjs be the family of finite covers of M. It is an immediate consequence of
the Buser-Cheeger inequality and the fact that the first positive eigenvalue of the
Laplacian of any M € Fj; is bounded away from zero that Fj; has a uniform
1-waist. We prove the following theorem [2] that provides an extra dimension.

Theorem 1. The family of finite covers of a closed Riemannian manifold with
Kazhdan fundamental group has a uniform 2-waist.
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Recall that the vanishing of the first cohomology with arbitrary unitary coef-
ficients characterizes the Kazhdan property for finitely generated groups. This
characterization was extended in [1] from unitary coefficients to L!-spaces. The
new group-theoretic input that makes the theorem above possible is the following.

Theorem 2. The second group cohomology of a finitely presented Kazhdan group
with coefficients in every L'-space is Hausdorff.

This group-theoretic input leads to a uniform isoperimetric inequality in the
real cellular cochain complex of M € Fjs in low degrees. By Poincare duality this
corresponds to a uniform isoperimetric inequality in the real cellular chain complex
of M € Fy; in low codegrees. Using tools from integer linear programming this
can be improved to linear isoperimetric inequalities in the integer cellular chain
complex. Finally, the Federer-Fleming deformation theorem and a general method
by Gromov lead to a proof the first theorem.
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Drilling hyperbolic groups
DANIEL GROVES

(joint work with Peter Haissinsky, Jason Manning, Damian Osajda,
Alessandro Sisto, Genevieve Walsh)

The Cannon Conjecture predicts that a word-hyperbolic group whose boundary
at infinity is a two-sphere has a finite-index subgroup which is the fundamental
group of a closed hyperbolic 3-manifold.

Motivated by this question, we introduce the concept of group-theoretic drilling:

Definition 1 (Drilling). Suppose that G is a hyperbolic group, and that g is an
element so that (g) is a maximal cyclic subgroup. A drilling of G along g is a
relatively hyperbolic pair (@,P) along with a normal subgroup N < P with an
identification P/N = (g) so that @/((N)} = @, with the quotient map inducing the
identification of P/N with {g).

Drillings of hyperbolic groups exist in all dimensions, but we are motivated by
three-dimensional topology. An example of drilling occurs in the following context:
Let M be a closed hyperbolic 3—manifold, and let v+ C M be a simple geodesic.
Then M — ~ admits a complete hyperbolic metric of finite-volume. On the level
of w1, we obtain a drilling in the sense of Definition 1. Our main result is a coarse
analog of this phenomenon.
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Theorem 2. If G is a residually finite hyperbolic group with 0G = S2, then a
finite-index subgroup Gy of G admits a drilling (G, P) where the Bowditch bound-
ary of (G, P) is a two-sphere.

Theorem 2 allows us to reduce the Cannon Conjecture (in the residually finite
case) to a relatively hyperbolic version. This relatively hyperbolic version should

be more approachable, because the hypothesized 3—manifold should have non-
empty boundary, and hence be Haken.
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