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Abstract. Over the last decade, deep generative modelling has emerged as
a powerful probabilistic tool in machine learning. The idea behind genera-
tive modelling is simple: transform noise to create new data that matches
a given training data set. Such transformations must adapt to the infor-
mation contained in the training data, which is high-dimensional in typical
machine learning applications. Generative models, which have demonstrated
outstanding empirical generation capabilities for images, videos, text, and
many others, have in common that they train deep neural networks to ei-
ther approximate the transformation directly (e.g., Generative Adversarial
Networks) or to approximate the characteristics of a stochastic process that
dynamically evolves noise into data (e.g., diffusion models). To explain this
empirical success mathematically, we face the statistical task of identifying
scenarios in which the distance between the target and generated distributions
converges with minimax optimal rate in terms of the sample size as well as
the intrinsic dimension and smoothness of the data distribution. While there
has been significant progress on this question in rather idealised settings, ex-
isting statistical theory is still far from providing a convincing mathematical
explanation for why deep generative models perform so well for very differ-
ent tasks. Due to the complex nature of the field, answering such questions
requires a concerted effort from a diverse group of researchers working in
probability, nonparametric statistics, functional analysis and optimisation.
The aim of this Mini-Workshop was therefore to bring these experts together
to foster intensive interactions and to address the statistical challenges posed
by generative modelling.

Mathematics Subject Classification (2020): 62G05, 62G07, 62E17, 65C05.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

https://creativecommons.org/licenses/by-sa/4.0/deed.en


376 Oberwolfach Report 8/2025

Introduction by the Organizers

The Mini-Workshop Statistical Challenges for Deep Generative Models, organized
by Sören Christensen (Kiel), Alain Oliviero-Durmus (Palaiseau), Claudia Strauch
(Heidelberg) and Lukas Trottner (Birmingham), brought together 18 researchers
from across Europe, America and Asia, reflecting a wide geographical and mathe-
matical diversity. The workshop was held in a hybrid format, with two participants
joining online and the rest coming to Oberwolfach in person. Over the course of
the week, 16 talks covered a broad spectrum of topics related to generative mod-
els, with a particular focus on their statistical analysis and sampling guarantees
as well as novel probabilistic modelling approaches.

Deep generative models (DGMs) is an umbrella term for a wide variety of model
classes following a common underlying generative principle: training deep neural
networks to learn a data-driven transformation of easy-to-sample-from noise to
generate synthetic data samples for a target distribution that is typically not ana-
lytically available but can only be accessed indirectly via a given training sample.
Driven by their natural applicability in machine learning, the last decade has pro-
duced a huge surge of interest in such models, resulting in a still ongoing process
of developing new approaches and refining existing models for specific tasks.

The development of mathematical theory to help explain the empirical success
of DGMs has been a comparatively much slower process. Even for the most funda-
mental classes, such as deep Generative Adversarial Networks (GANs), we lack a
definitive mathematical understanding that goes beyond rather idealised settings
and that can provide a unified perspective on statistical, probabilistic, and numer-
ical issues arising from such models. A distinctive feature of this workshop was
the novel combination of researchers from different but overlapping mathemat-
ical disciplines, fostering cross-disciplinary discussions that had not taken place
in this form before. This unique constellation provided a fertile ground for ex-
ploring state-of-the-art methods and laying the groundwork for future research
collaborations. The open and flexible structure of the mini-workshop, which al-
lowed ample time for discussion, proved to be an ideal format for this emerging
area of research, where there is not yet a well-established community. As a result,
the workshop may well serve as a first step towards the formation of a dedicated
research network in this area. Participants, including a significant number of early
career researchers at PhD and postdoctoral level, actively engaged in discussions,
contributing to the inclusive and dynamic atmosphere of the workshop. The pos-
itive feedback from participants repeatedly underlined the enlightening value of
the event and its effectiveness in stimulating new knowledge and collaborations.
In addition, the MFO’s exceptional facilities provided the perfect environment for
in-depth discussions and focused research efforts, further enhancing the impact of
the workshop.

The central workshop topics can be broadly summarised as follows:

Statistical convergence rates of deep generative models: Minimax optimality of
deep generative models under mild assumptions on the data density is a central
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statistical question that has been the subject of intense research efforts over the last
couple of years. In particular, the statistical implications of the so-called manifold
hypothesis – which imposes lower-dimensional support assumptions on the data
distribution and, at a heuristic level, commonly serves to explain the empirical
performance of generative models – has been of great interest. In this context,
Judith Rousseau presented recent results on almost minimax optimal convergence
rates for score-based diffusion generative models in Wasserstein-1 distance and
Kullback–Leibler divergence, in particular improving previous work in this direc-
tion by establishing convergence bounds that are independent of the ambient di-
mension. Eddie Aamari presented related work explaining how Wasserstein GANs
can overcome the curse of dimensionality by adapting to the intrinsic dimension
of the target data. Mathias Trabs showed how such results for Wasserstein GANs
can be extended to Vanilla GANs by establishing compatibility results between
the Vanilla GAN and the Wasserstein-1 distance. Lea Kunkel described in her
talk how Wasserstein-1 convergence rates for Flow Matching that do not rely on
imposing early stopping assumptions on the generative process can be obtained.
Claudia Strauch and Lukas Trottner presented first statistical results on reflected
generative diffusion models, a class of score-based generative models that allows
to incorporate domain constraints by exploiting boundary reflections for both the
noising as well as the denoising process.

Sampling guarantees for score-based diffusion generative models: A primary objec-
tive of the workshop was to create synergies between researchers working mainly
in statistics and experts in sampling methods and their iteration complexities. Re-
garding the latter, Alain Oliviero-Durmus showed how, given an L2-approximation
error (which is one of the primary concerns of the statistical analysis alluded to
above), only assuming finite relative Fisher information of the data distribution
with respect to a Gaussian is sufficient to obtain sharp sampling guarantees in
Kullback–Leibler divergence in both overdamped and kinetic settings, while also
avoiding early stopping restrictions. Yuting Wei discussed discrete-time conver-
gence rates of (deterministic) probability flow ODE and (stochastic) Denoising
DDPM type samplers, as well as their accelerated variants. Her results rely on a
given control of the ℓ2-score approximation error and on the Jacobian of the score
estimator, but not on additional smoothness assumptions on the absolutely contin-
uous data density. Iskander Azangulov complemented Judith Rousseau’s talk on
statistical aspects of diffusion generative models under the submanifold hypothesis
by showing that their iteration complexity in Kullback–Leibler divergence scales
linearly in the intrinsic dimension d up to logarithmic factors.

Optimal transport and Schrödinger bridge problems: Several talks were devoted to
(entropic) optimal transport problems, especially the Schrödinger Bridge problem
(SBP), and their role in generative modelling. Stefano Peluchetti presented his
work on Bridge Matching and showed that an iterative bridge matching procedure
converges to a solution of the SBP. Denis Belomestny proposed a numerical so-
lution to the SBP for general reference processes based on nonparametric kernel
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regression techniques. Giovanni Conforti presented fundamental results on ex-
ponential convergence of the Sinkhorn algorithm to the solution of an empirical
optimal transport problem. Arthur Stéphanovitch discussed higher order regu-
larity of Langevin transport maps and statistical implications of his results for
density estimation with Wasserstein GANs and diffusion generative models.

New directions in denoising generative models: The final main pillar of the work-
shop was concerned with more fundamental ideas for the design of generative al-
gorithms that build on the concept of time reversal. Sören Christensen presented
a novel generative model that preserves the time-homogeneous nature of the for-
ward model and is thus able to dynamically adapt to the noise level present in the
generation step. This is achieved via an application of Doob’s h-transform to some
reference process, which allows conditioning the forward process to be terminated
in a suitably chosen sampling distribution at a random time. Christian A. Naesseth
extended the basic ideas behind diffusion generative modelling in a different direc-
tion by introducing Neural Flow Diffusion Models and SDE Matching as a general
framework that does not treat the forward process as fixed but as a learnable
object. Dario Shariatian discussed in his talk the benefits of using heavy-tailed
α-stable noise instead of the usual Gaussian noise in the Denoising Probabilis-
tic Model setup, thus establishing the novel class of Denoising Lévy Probabilistic
Models. Focusing on diffusion guidance, Yazid Janati discussed the limitations of
existing methods that use diffusion generative models for inverse problems, and
proposed instead a new sampling procedure that runs through weighted mixture
approximations of intermediate posteriors.
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Abstracts

KL convergence guarantees for score diffusion models under minimal
data assumptions

Alain Oliviero-Durmus

(joint work with Giovanni Conforti and Marta Gentiloni Silveri)

In recent years, deep generative models (DGMs) have emerged as a key area of
research in artificial intelligence due to their impressive capabilities. These models
aim to learn mappings that generate realistic new data points from a simple prior
distribution, typically a standard Gaussian. Well-trained DGMs can approximate
complex, high-dimensional probability distributions and serve as proxies for data
likelihood estimation.

Among generative models, score-based diffusion generative models (SGMs) have
become one of the most influential approaches. SGMs leverage the time-reversal
of a diffusion process to transform noise into structured data samples. The first
step involves estimating the score function of an ergodic forward diffusion process
over a fixed time window [0, T ]. Once the score function is learned, the second
step consists of simulating the time-reversal of the diffusion process to generate
samples. To make this step computationally feasible, a time-discretization scheme
is introduced, and the backward process is initialized at the invariant distribution
of the forward process. Since this distribution is easier to sample from than inter-
mediate steps of the forward process, it facilitates efficient approximation of the
target data distribution.

The empirical success of SGMs has fueled significant research efforts to an-
alyze how various sources of error-score approximation, time-discretization, and
initialization-impact the quality of generated samples. This has led to a growing
body of work aimed at providing theoretical guarantees for SGMs. In particular,
there is increasing interest in understanding the sampling phase, which corresponds
to the second step of the process, and in deriving rigorous bounds on its effective-
ness. Despite recent progress in developing a mathematical theory for diffusion
models, there is still no comprehensive quantitative result that provides a priori
error bounds on the discrepancy between generated and true data distributions
without assuming smoothness conditions (e.g., Lipschitz continuity of the score
function or its estimator).

One way to circumvent this limitation is to introduce an early stopping rule,
where the backward process is only run until time T − δ. Some recent studies
have shown that under minimal assumptions on the data, this approach allows for
a quantitative analysis of the gap between the generated samples and the law of
the forward process at time δ. This can be seen as a noised (smoothed) version of
the target distribution. In this talk, we present a new analysis of the performance
of two widely used families of score-based diffusion models, where the forward
process is either the Ornstein–Uhlenbeck (OU) diffusion or its kinetic counterpart
(kOU), under various assumptions on the data distribution. To approximate the
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time-reversed diffusion, we employ the exponential integrator Euler–Maruyama
discretization with a constant step size, a widely adopted scheme in prior research
on the subject.

Our main result establishes explicit, simple, and sharp bounds on the Kullback–
Leibler (KL) divergence between the data distribution and the law of the score-
based generative model (SGM) in both overdamped and kinetic settings. These
bounds hold under minimal assumptions: (i) an L2 score approximation error and
(ii) the finite relative Fisher information of the data distribution with respect to a
standard Gaussian. Unlike previous works that avoid early stopping or exponen-
tially decreasing step sizes [2, 3, 1], our results do not require the data distribution
to be supported on a bounded manifold or assume the Lipschitz continuity of the
score (or its approximation) over the sampling interval [0, T ]. Instead, requiring
finite Fisher information imposes only a mild integrability condition on the score
function.

Moreover, our bounds are sharp: when the data distribution is a standard
Gaussian, the only remaining term corresponds to the approximation error of the
score function. Additionally, our results match or surpass the accuracy of previ-
ously established bounds, providing a significant improvement in the theoretical
understanding of score-based diffusion models.
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Statistical guarantees for reflecting denoising diffusion models

Claudia Strauch and Lukas Trottner

(joint work with Asbjørn Holk)

In the past two years, much progress has been made in the statistics literature
in explaining the generative ability of unconstrained denoising diffusion models
that use an Ornstein–Uhlenbeck forward process [1, 4, 5]. In practice, however,
implementations introduce thresholding procedures for the generative process to
overcome performance issues arising from the unbounded state space of such mod-
els. To overcome this mismatch between theoretical design and implementation of
diffusion models, reflected diffusion processes as the driver of noise have instead
been suggested and empirically tested in the literature [2, 3].

In this talk, we have presented a first statistical analysis of such reflected diffu-
sion models, focusing explicitly on a forward model governed by the SDE
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dXt = ∇f(Xt) dt+
√
2f(Xt) dWt + ν(Xt) dℓ

D
t ,

where W is a d-dimensional Brownian motion, f : Rd → [fmin,∞) ⊂ (0,∞) is
a smooth potential, D is an open and bounded domain with smooth boundary,
ν is the inward-pointing normal vector field on ∂D, and ℓD· is the local time at
the boundary. This process is constrained to D through normal reflections at
the boundary and is analytically characterised by the divergence form generator
A = ∇ · f∇ subject to Neumann boundary conditions. If is f is constant, this is
nothing else but a reflected scaled Brownian motion in D.

The specific form of the generator implies time-reversibility of the process w.r.t.
its uniform stationary distribution and the spectral gap of A yields an exponen-
tial convergence rate. This combination of a fast speed of convergence and an
easy-to-sample-from limiting distribution makes this class of processes particu-
larly suitable for generative modelling purposes. Indeed, as with unconstrained
SDEs, such reflected SDEs are stable under time reversal in the sense that for
some forward running time T , the process (XT−t)t∈[0,T ) is a normally reflected

diffusion as well. The backward drift is entirely characterised by the potential
f and the score s◦(x, t) = ∇ log pt(x), where for the forward transition densities
qt(x, y) and the underlying data distribution p0, the forward density pt(x) is given

by pt(x) =
∫ t

0
qt(y, x) p0(dy).

Since the data distribution p0 is generally unknown, we don’t have direct access
to the score and therefore need to estimate this space-time function based on the
data (X0,i)

n
i=1, which can then be used to simulate the backward generative process

initialised in the uniform distribution on D. As for unconstrained models, training
is based on empirical risk minimisation of the denoising score matching loss over a
suitable class of sparse deep neural networks. The central mathematical challenge
is then of an analytical nature and requires an efficient construction of a neural
network approximation of the score s◦(x, t), which is particularly demanding in our
reflected diffusion setting due to the absence of explicit formulae for the transition
densities qt(x, y). For this reason, we discussed how the spectral decomposition
of the generator, which for an orthonormal eigensystem (λj , ej)

∞
j=0 of A and an

absolutely continuous data density yields the score representation

s◦(x, t) =

∑∞
j=1 e

−λjt〈ej , p0〉L2∇ej(x)∑∞
j=0 e

−λjt〈ej , p0〉L2ej(x)
,

can be exploited in the approximation analysis to obtain a neural network class
with optimised size constraints that allow to balance the score approximation
bias and the stochastic error of the optimisation procedure, encoded in the met-
ric entropy of the neural network class. As our main result, we showed that the
combination of a strictly positive lower bound and a Sobolev smoothness assump-
tion on the data density leads to minimax optimal convergence rates up to small
log-factors in terms of the expected deviation in total variation of the true and
generated data distributions.



384 Oberwolfach Report 8/2025

References

[1] I. Azangulov, G. Deligiannidis, and J. Rousseau, Convergence of Diffusion Models Under
the Manifold Hypothesis in High-Dimensions, arXiv preprint arXiv:2409.18804, 2024.

[2] N. Fishman, L. Klarner, V. De Bortoli, E. Mathieu, and M. Hutchinson, Diffusion Models
for Constrained Domains, Transactions on Machine Learning Research, PMLR, 2023.

[3] A. Lou, and S. Ermon, Reflected Diffusion Models, International Conference on Machine
Learning, pp. 22675–22701, PMLR, 2023.

[4] K. Oko, S. Akiyama, and T. Suzuki, Diffusion Models are Minimax Optimal Distribution
Estimators, International Conference on Machine Learning, pp. 26517–26582, PMLR, 2023.

[5] R. Tang, and Y. Yang, Adaptivity of Diffusion Models to Manifold Structures, International
Conference on Artificial Intelligence and Statistics, pp. 1648–1656, PMLR, 2024.

Against the Flow – Time-Reversed Stochastic Processes and Their
Role in Generative Models

Sören Christensen

(joint work with Claudia Strauch and Lukas Trottner)

The stochastic theory of time-reversed Markov processes is a well-established area
within classical probability theory. While it is well known that a time-reversed
Markov process inherits the Markov property, the resulting process is typically
time-inhomogeneous when a fixed time horizon is considered. In this talk, we
emphasize the advantages of employing random time horizons instead of fixed
ones to circumvent this.

A key feature of this framework is its connection to Doob’s h-transform, which
facilitates process termination based on a suitable sampling distribution at a poten-
tially random time. Although the general theory has been developed for Markov
processes in broad terms, as demonstrated in [2], we argue that there is a lack
of references applying this theory to specific classes of processes. This talk aims
to address this gap by focusing on diffusion processes. Specifically, we conduct
an h-transform with respect to a function h, which is an r-potential of the form
h(x) =

∫
Gr(x, y)κ(dy), where Gr(x, y) is the r-Green kernel and r is a fixed

constant. This approach leads to natural results that generalize the well-known
formulas for fixed time horizons in a meaningful way.

In particular, we show that the h-transformation of a symmetric diffusion pro-
cess Z results in another diffusion process Zh of the form

dZh
t = bh(Zh

t ) dt+ σ(Zh
t ) dWt, b

h(y) = b(y) + σ(y)σ(y)⊤∇ log h(y),

killed at a finite lifetime ζ. When considering the time-reversed process from
the random lifetime ζ, for Z starting from the distribution α, this becomes an

h̃-transformation with h̃(x) =
∫ Gr(x,y)

h(y) α(dy). From a mathematical standpoint,

this implies that there are no structural advantages in using fixed time horizons
over random ones.
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Building on these theoretical insights, we introduce a novel approach to diffusion
models by proposing a new class of generative diffusion models. Unlike conven-
tional denoising diffusion models, our model preserves time-homogeneity in both
the noising and denoising processes. This time-homogeneous structure allows for
adaptive adjustment of the number of steps based on the noise level, leading to a
more efficient sampling procedure. Moreover, our model is particularly well-suited
for data with lower intrinsic dimensionality, as the termination criterion simplifies
to a first-hitting rule. This finding provides a fresh perspective on the manifold
hypothesis.

A crucial feature of our model is its adaptability to target data, enabling a
variety of downstream tasks with a pre-trained unconditional generative model.
These tasks include natural conditioning through the appropriate initialization of
the denoising process and classification of noisy data. Our findings have significant
potential to impact applications in machine learning and statistics, particularly in
scenarios that require efficient and adaptable generative models.
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Kernel Forward Reverse Regression for Schrödinger bridge problem

Denis Belomestny

(joint work with John Schoenmakers)

This work deals with the Schrödinger Bridge Problem (SBP), which seeks to con-
struct a Markov process that evolves a given initial distribution into a given ter-
minal distribution in a way that minimizes the relative entropy with respect to
some “reference” (or prior) Markov process. The SBP has classical connections to
optimal transport, stochastic control, and entropy-regularized probability match-
ing. A key point in SBP is to identify Markov processes that fit the prescribed
begin-end distributions. In general, bridging those distributions with minimal rel-
ative entropy leads to entropic optimal transport ideas. For a reference Markov
process X with transition density q(0, x;T, z), the SBP solution requires finding
two “potentials” ν0 and νT such that

ρ0(x) = ν0(x)

∫
q(0, x;T, z) νT (z) dz, ρT (z) = νT (z)

∫
q(0, x;T, z) ν0(x) dx.

From these potentials, one builds a Markov measure on paths that achieves the
desired boundary conditions and solves the SBP. Existence and uniqueness (up to a
scalar factor) of these potentials are well-known from the 1930s (Fortet, Beurling)
and by modern fixed-point arguments (e.g., via the Hilbert metric). A popular
way to solve the Schrödinger system is to alternate between updating ν0 and νT
in a Picard iteration (analogous to the “Sinkhorn algorithm” in discrete entropic
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OT). In discrete spaces, this is known as Iterative Proportional Fitting consisting
of two steps

• Forward step: updates ν0 using the current guess of νT .
• Reverse step: updates νT using the new ν0.

This iteration is a contraction in the Hilbert projective metric, ensuring con-
vergence. The main innovation of our work is a nonparametric way to solve
the SBP numerically in higher dimensions and general reference process X . It
is only assumed that one can sample from a reverse process to compute in-
tegrals in a backward-time manner (e.g., to evaluate functionals of the form∫
g(x) q(0, x;T, ·) dx).
(1) Monte Carlo Samples: simulate from the reference forward process (to

gather (X0, XT ) pairs) and from a suitably chosen “reverse” process (to
gather analogous backward-time data).

(2) Kernel Regression: approximate the integrals E[ρT (XT )νT (XT ) | X0 =
x] and similar expressions by kernel smoothing. Essentially, one uses
Nadaraya–Watson estimators to learn the maps

x 7→
∫
q(0, x;T, z) ρT (z) νT (z) dz

from samples.
(3) Iterative Updates: after each forward regression, update ν0. Then perform

a reverse regression to update νT . Repeat until convergence.

We derive (under regularity assumptions, such as Hölder continuity and bounded-
ness) Nonparametric Convergence Rate in terms of sample size N and bandwidth

δ. Specifically, we show an O
(
N− 1+α

2(1+α)+d

)
type rate (where α is a Hölder ex-

ponent, d the dimension), matching standard kernel regression theory. We also
show that these rates are essentially unimprovable under standard nonparametric
assumptions.

Semiconcavity of entropic potentials and exponential convergence of
Sinkhorn algorithm

Giovanni Conforti

(joint work with Alberto Chiarini, Giacomo Greco, Luca Tamanini)

Given two Polish spaces X ,Y, marginal probability distributions ρ ∈ P(X ), ν ∈
P(Y), and a cost function c : X ×Y → R, the entropic optimal transport problem
(EOT) reads as

(EOT) inf
π∈Π(ρ,ν)

∫

X×Y

c dπ + εH(π|ρ⊗ ν),

where Π(µ, ν) is the set of couplings of µ and ν, H denotes the Kullback–Leibler
divergence (also known as relative entropy), and ε > 0 is a regularization parame-
ter. The study of EOT has greatly intensified since the observation [2] that adding
an entropic penalty in the objective function of the Monge–Kantorovich problem
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(corresponding to ε = 0 in (EOT)) leads to a more convex, more regular, and
numerically more tractable optimization task, thus opening new perspectives for
the computation of transport distances in machine learning and beyond, see [1].
Much of the success of entropic regularization techniques in applications can be
attributed to the fact that EOT can be solved by means of an exponentially-fast
matrix scaling algorithm, Sinkhorn’s algorithm, and to the fact that EOT is more
stable than the Monge–Kantorovich problem with respect to variations in the cost
or marginals. Because of this, considerable efforts have been made over the last
decade to turn these intuitions into sound mathematical statements. This has pro-
duced many important contributions. Nonetheless, several open questions remain.
For example, exponential convergence of Sinkhorn algorithm is not well under-
stood when both the marginals’ support and the ground cost are unbounded, as it
is the case in the landmark example of the quadratic cost with Gaussian marginals.
In this talk we present the results of [3], where it is shown that if one is able to
show semiconcavity of Sinkhorn potentials, then Sinkhorn’s algorithm converges
exponentially fast. To introduce Sinkhorn algorithm, we recall that under mild
integrability conditions on the cost c, there exist two functions ϕν , ψν , called en-
tropic potentials, such that the unique optimal plan πν for (EOT) admits the
Radon–Nikodým density

(1)
dπν

d(ρ⊗ ν)
(x, y) = exp

(
−c(x, y) + ϕν(x) + ψν(y)

ε

)
, ρ⊗ ν a.e.

Defining for any ϕ : X → R and ψ : Y → R the maps

Φρ
0(ϕ)(y) := −ε log

∫

X

exp

(
−c(x, y) + ϕ(x)

ε

)
ρ(dx) ,

Ψν
0(ψ)(x) := −ε log

∫

Y

exp

(
−c(x, y) + ψ(y)

ε

)
ν(dy) .

and imposing that a probability measure of the form (1) belongs to Π(ρ, ν) yields
the Schrödinger system:

(2)

{
ϕν = −Ψν

0(ψ
ν) ,

ψν = −Φρ
0(ϕ

ν) .

Sinkhorn’s algorithm solves (2) as a fixed point problem. That is, it constructs
two sequences of potentials (ϕn

ε , ψ
n
ε ) defined through the iterations

{
ϕn+1
ε = −Ψν

0(ψ
n
ε ) ,

ψn+1
ε = −Φρ

0(ϕ
n+1
ε ) .

Typically, the initialization is ϕ0
ε = 0, but other choices are possible. We can also

associate to Sinkhorn’s potentials a sequence of plans πn,n as follows

dπν

d(ρ⊗ ν)
(x, y) = exp

(
−c(x, y) + ϕn(x) + ψn(y)

ε

)
, ρ⊗ ν a.e.



388 Oberwolfach Report 8/2025

We establish exponential convergence of the algorithm in the form

(3) H(πν |πn,n) ≤ exp(−λn)H(πν |π0,0)

for some λ > 0, provided Sinkhorn potentials ψn and the cost are uniformly semi-
concave, and ν satisfies a Talagrand inequality, also known as transport-entropy
inequality. Our exponential convergence results are deduced from the following
stability results for optimal plans, which is of independent interest.

Theorem (KL stability of optimal plans). Let πν , πµ denote the unique op-
timizers in (EOT) for the set of marginals (ρ, ν) and (ρ, µ). If there exists Λ > 0
such that

y 7→ c(x, y) + ψν(y)

is Λ-semiconcave uniformly in x in the support of ρ, then

H(πµ|πν) ≤ H(µ|ν) + Λ

2ε
W 2

2 (µ, ν) .

For example, if ν is a standard Gaussian distribution and ρ a strongly log-
concave probability measure, the convergence rate in (3) can be taken to be

λ =
ε

ε+ α
−1/2
ρ

.

Moreover, it can be shown that such rate has optimal dependence on ε.
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Convergence rate of diffusion generative models under the manifold
hypothesis: the impact of the ambiant dimension

Judith Rousseau

(joint work with Iskander Azangulov, G. Deligliannidis)

Denoising Diffusion Probabilistic Models (DDPM) are powerful state-of-the-art
methods used to generate synthetic data from high-dimensional data distribu-
tions and are widely used for image, audio, and video generation as well as many
more applications in science and beyond. The manifold hypothesis states that
high-dimensional data often lie on lower-dimensional manifolds within the am-
bient space, and is widely believed to hold in provided examples. While recent
results have provided invaluable insight into how diffusion models adapt to the
manifold hypothesis, they do not capture the great empirical success of these
models, making this a very fruitful research direction.
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In this work, we study DDPMs under the manifold hypothesis and prove that
they achieve rates independent of the ambient dimension in terms of score learn-
ing. More precisely assuming that the true generative process µ lives on a smooth
manifoldM of dimension d, which is unknown. Consider observations X1, · · · , Xn

according to µ, which is assumed to have a density with respect to the volume mea-
sure of the supporting manifoldM , which is α holder. Let X(t), t ≤ T̄ be a realisa-
tion of an Ornstein–Uhlenbeck process with initial distribution µ and Y (t), t ≤ T̄
be the backward process. We also denote the score so(x, t) = ∇ log p(x, t) where
p(x, t) is the marginal density of X(t). We show that for well chosen architecture
of the deep neural network used to approximate the score, for d ≥ 3

E

(∫ T̄

T

σ2
t ‖ŝ(X(t), t)− so(X(t), t)‖2dt

)
= O(nγαn−2 (α+1)

2α+d ), T = nγ− 2(α+1)
2α+d

independently of the ambient dimension D, as long as D ≤ nH for some H > 0.
As a consequence, we can control the Kullback–Leibler divergence between the
generated density of Ŷ (T ) and the perturbed density of X(T ) with a rate of order

KL(X(T ), Y (T )) = O(nγαn− 2α
2α+d )

while the Wasserstein distance between the distribution of Ŷ (T ) and the true
generative process is bounded by

W1(µ, Y (T )) = O(
√
Dnγαn−2 (α+1)

2α+d ).

We do this by developing a new framework connecting diffusion models to the
well-studied theory of extrema of Gaussian Processes.

It is still unclear if the term
√
D in the bound on the Wasserstein distance is

sharp.

The role of probability distances in generative models: A Vanilla
GAN case study

Mathias Trabs

(joint work with Lea Kunkel)

The empirical success of Generative Adversarial Networks (GANs) caused an in-
creasing interest in theoretical research. The statistical literature is mainly focused
on Wasserstein GANs and generalizations thereof, see e.g. [3]. Statistical results
for Vanilla GANs, the original optimization problem, are still rather limited and
require assumptions such as smooth activation functions and equal dimensions of
the latent space and the ambient space, see [2]. A main reason is that Vanilla
GANs are by construction linked to the Jensen–Shannon distance which is not
compatible with dimension reduction settings and the manifold hypothesis. To
bridge this gap, we draw a connection from Vanilla GANs to the Wasserstein dis-
tance in [1]. By doing so, existing results for Wasserstein GANs can be extended
to Vanilla GANs.
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Let X1, . . . , Xn ∼ P∗ be an i.i.d. sample of training data in [0, 1]d with unknown
distribution P∗ and empirical measure Pn. The Vanilla GAN estimator for P∗ can
be defined as the empirical risk minimizer

Ĝn ∈ argmin
G∈G

VW (Pn,P
G(Z))

where Z ∈ [0, 1]d
∗

is a latent easy to sample random variable, G is the class of
generators G : [0, 1]d

∗ → [0, 1]d and the risk is given by

VW
(
P,Q

)
:= sup

W∈W
EX∼P,Y∼Q

[
− log

(1 + e−W (X)

2

)
− log

(1 + eW (Y )

2

)]

for the class of discriminatorsD = { 1
1+e−W (·) : W ∈ W} for some setW of functions

W : Rd → Rd.
By proving compatibility of VW

(
P,Q

)
with the Wasserstein distance for appro-

priate choices ofW , we obtain an oracle inequality for Vanilla GANs in Wasserstein
distance. Choosing W = Lip(L) as the set of all Lipschitz functions with Lipschitz
constant L > 2, d∗ > 2 and G be compact. The empirical risk minimizer satisfies

E[W1(P
∗,PĜn(Z))]

= O
(

inf
G∗∈Lip(M)

{
W1(P

G∗(Z),P∗)1/2 + inf
G∈G

‖G∗ −G‖1/2∞

}
+ n− 1

2d∗

)
.

This oracle inequality can be generalized to allow for neural network classes W .
The assumptions of this oracle inequality are designed to be satisfied by network
architectures commonly used in practice, such as feedforward ReLU networks and
d∗ can be chosen independently of d. By providing a quantitative result for the ap-
proximation of a Lipschitz function by a feedforward ReLU network with bounded
Hölder norm, we conclude a rate of convergence for Vanilla GANs as well as
Wasserstein GANs as estimators of the unknown probability distribution.

At the end of the talk we discuss with all mini-workshop participants possible
alternatives to measure the quality of generative models beyond standard choices
like the total-variation distance, Kullback–Leibler or more general f -divergence,
Jensen–Shannon distance, or Wasserstein distances. Suggestions are the following:

• Proper scoring rules, e.g. energy scores,
• Maximum Mean Discrepancies,
• different cost functions in optimal transport,
• Fréchet inception distance.

Finally, it was noticed that the generated distribution should not be too close the
empirical measure as discussed in [4].
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Regularity of (non-optimal) transport maps and applications to SGMs

Arthur Stéphanovitch

In this work, we explore the regularity of transport maps constructed via diffu-
sion processes, extending the classical theory beyond Lipschitz continuity. While
Caffarelli’s seminal regularity results for Monge–Ampère equations have provided
foundational insights into optimal transport maps, obtaining regularity in un-
bounded settings remains a significant challenge. Here, we address this gap by
demonstrating that transport maps generated through diffusions can indeed ex-
hibit higher-order regularity, leading to the construction of the first smooth trans-
port map within this framework. These results open new avenues for understand-
ing the structure and properties of transport maps in broader settings. We develop
the framework in full generality, where we emphasize the following key contribu-
tions:

1. Higher order regularity of transport maps. Mirroring the classical regularity
theory of optimal transport (Theorem 12.50 in [1]), we prove that the Langevin
transport map between the d-dimensional Gaussian distribution and a log β-Hölder
perturbation, is of Hölder regularity β + 1. Futhermore, we obtain a Lusin-type
result for the transport of the Gaussian to a class of measures supported on the
ball. It is shown that a set of mass 1 − ǫ is transported by a (β + 1)-Hölder map
having a norm controlled by a logarithmic power of ǫ.

2. Applications. The existence of smooth transport maps enables a range of ap-
plications, which we present in the subsequent sections.

Transfer of functional inequalities The regularity result allows to transfer
the functional inequalities involving higher order derivatives from the Gaussian
measure to the transported one. As applications we extend the class of measures
satisfying the generalized Sobolev inequality [2].

Applications to generative models We provide applications of our regular-
ity result to the estimation of densities by Wasserstein Generative Adversarial
Networks (WGAN) and score-based generative models. Firstly, the existence of
smooth transports maps allows to show the optimality of the WGAN estimator
within the (widely used) Gaussian setting. Secondly, given the strong correlation
between the score function in diffusion models and the transport map’s velocity
field, we show that higher regularity of the target distribution transfers to higher
regularity of the score function.
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A mixture-based framework for guiding diffusion models

Yazid Janati

(joint work with Badr Moufad, Mehdi Abou El Qassime, Alain Durmus, Eric
Moulines and Jimmy Olsson)

Inverse problems–such as reconstructing images from partial or noisy measure-
ments, or separating individual sources from mixed signals–are inherently challeng-
ing due to their ill-posed nature. In such settings, Bayesian inference, when com-
bined with generative modeling, provides a systematic and principled approach.
By using generative models trained on representative data distributions, these
methods incorporate meaningful prior knowledge, which can then be integrated
with the likelihood function describing the observed data. This leads to a posterior
distribution, whose samples represent plausible solutions that harmonize both the
observed data and prior assumptions.

In recent developments, diffusion models have emerged as state-of-the-art gen-
erative models, demonstrating exceptional capabilities in image and audio gener-
ation tasks. Diffusion models function by first progressively adding noise to data
samples through a forward diffusion process, ultimately converting them into pure
Gaussian noise. The generative model is then trained to reverse this noising pro-
cess, effectively learning to reconstruct original data from noise. While diffusion
models provide powerful priors, directly using them for inverse problems typically
requires constructing a posterior denoiser that blends this learned prior with the
gradient of the log-likelihood function derived from the observations. However,
existing posterior sampling methods for diffusion models often rely on crude ap-
proximations of the likelihood gradient and require significant heuristic tuning and
adjustments specific to each task.

In this talk, I will introduce a novel principled approach specifically designed to
overcome these limitations. The core contribution of this approach is the construc-
tion of a mixture approximation of intermediate posterior distributions defined by
the diffusion model. The sampling is carried out sequentially via Gibbs sampling,
a Markov Chain Monte Carlo method, using a careful data augmentation scheme.
Gibbs sampling is employed here due to its simplicity and theoretical guarantees,
allowing for exact conditional updates at each iteration, thus ensuring stability
and efficiency.

One key advantage of the presented algorithm is its flexibility: it adapts to
varying levels of computational resources by adjusting the number of Gibbs itera-
tions. Consequently, substantial performance gains can be achieved by increasing
inference-time computational effort. I will present extensive experimental results
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demonstrating strong empirical performance across ten diverse image restoration
tasks, involving both pixel-space and latent-space diffusion models, and showcase
its successful application in musical source separation.

Neural Flow Diffusion Models and SDE Matching

Christian A. Naesseth

(joint work with Grigory Bartosh and Dmitry Vetrov)

In this talk I introduced Neural Flow Diffusion Models (NFDMs) [1, 2] and SDE
Matching [3]. These frameworks rely on a variational perspective of Diffusion
Models, Schrödinger Bridges, and Latent Stochastic Differential Equations (SDEs)
that lets us directly derive objective functions as standard variational evidence
lower bounds (ELBOs).

From the variational perspective, Diffusion Models relies on a fixed forward
process for inference. This can often complicate the reverse process’ task in learn-
ing generative trajectories, and results in costly inference for diffusion models.
To address this limitation, NFDM introduces a learnable forward process with a
corresponding variational bound that can be estimated simulation-free.

The NFDM posterior process, also known as the forward process, is construc-
tively defined by following a three-step procedure:

(1) Define the sequence of marginal distributions through a normalizing flow;
(2) Construct an ODE with random initial condition with matched marginals;
(3) Extend the ODE to an SDE that preserves the marginal distributions.

First, the sequence of marginal distributions qt(zt|x) for latent variable zt and
data-point x is defined by a normalizing flow

zt = F (ε, t, x), ε ∼ N (0, I),(1)

where F is a diffeomorphism parameterized by a neural network. This induces a
sequence of distributions with density that can be evaluated through the standard
change-of-variables formula.

Then, an ordinary differential equation (ODE) with random initial condition
that matches the marginals of (1) is given by

dzt = ∂tF (ε, t, x)
∣∣∣
ε=F−1(zt,t,x)

dt, z0 ∼ q0(z0|x).(2)

Finally, the conditionally deterministic ODE trajectories are extended to a dis-
tribution over stochastic trajectories (zt)t that preserves the marginal distributions

dzt =

[
∂tF (ε, t, x)

∣∣∣
ε=F−1(zt,t,x)

+
1

2
g(t)g(t)⊤∇zt log qt(zt|x)

]
dt+ g(t)dwt.(3)

Using (3) as a posterior process approximation lets the user estimate the corre-
sponding ELBO, which only depends on the marginal distributions, in a simulation-
free manner by directly sampling as in (1).
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In the talk I illustrated how NFDM and SDE Matching improves on previous
state-of-the-art for image generation, molecular generation, straightening genera-
tive flows, bridge matching, and time series applications.
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Bridge Matching Schrödinger Bridges

Stefano Peluchetti

This talk presents a review of the Bridge Matching framework and illustrates its
application in approximating Schrödinger Bridges and Entropic Optimal Transport
plans.

Bridge Matching (BM, [1]) establishes an exact transport in finite time be-
tween two distributions Ψ0,Ψ1. This stands in contrast to Denoising Diffusion
models (DDM, [2]), where an exact transport is achieved only asymptotically as
the integration time approaches infinity. In its simplest implementation, the BM
transport is characterized by the solution to the following d-dimensional stochastic
differential equation (SDE):

(1) X0 ∼ Ψ0, dXt =
EΠ[X1|Xt]−Xt

1− t
dt+ dWt, t ∈ [0, 1],

where the expectation is taken under the measure Π corresponding to (X0, X1) ∼
Ψ0,1, for some coupling Ψ0,1 of Ψ0,Ψ1, and Xt|X0, X1 ∼ BB, representing the
transition law of the standard Brownian Bridge from X0 to X1.

A crucial property of the BM transport is that the marginal distribution of
Xt from the solution to (1) matches the marginal distribution of Xt from Π.
Consequently, (1) defines a transport from Ψ0 to Ψ1. Analogous to DDM, BM
can be learned through a straightforward regression objective:

EΠ[X1|Xt] = argmin
α(x,t)

EΠ[‖α(Xt, t)−X1‖2],

where α(x, t) is implemented via a neural network and optimization is carried out
by stochastic gradient descent (SGD).

Originally introduced as an alternative to DDM for generative applications,
in this context BM considers Ψ1 as the data distribution (from which samples
are available), Ψ0 as a simple distribution (typically N (0, Id)), and employs the
independent coupling Ψ0×Ψ1.

While the BM transport (1) preserves the marginal distributions of Π, it does
not preserve the coupling Ψ0,1. Indeed, the findings of [3] demonstrates that
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iterative computation of the BM transport (1), using the coupling produced by
(X0, X1) from the previous iteration as input, converges to the Schrödinger Bridge
with law S, where:

S = argmin
P

KL(P | W) s.t. P0 = Ψ0,P1 = Ψ1,

and W represents the Brownian law. Schrödinger Bridges play a fundamental role
in measure transport theory, providing solutions to Entropic Optimal Transport
and Stochastic Optimal Control problems [4].

The iterated BM procedure of [3] and the Diffusion Iterative Proportional Fit-
ting procedure [5] share a common limitation: they require solving multiple op-
timization problems, one per iteration. To address this limitation, [6] proposes
a forward-backward SDE approach, where forward and backward SDEs perform
BM based on couplings produced by their counterparts. This approach yields a
loss function optimizable in a single SGD loop. Initial theoretical results from [6]
indicate that this method successfully recovers the Schrödinger Bridge S at con-
vergence.
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Denoising Lévy Probabilistic Models: A Heavy-Tailed Diffusion
Approach for Generative Modeling

Dario Shariatian

(joint work with Alain Durmus, Umut Simsekli)

In this talk, I introduce Denoising Lévy Probabilistic Models (DLPM), a novel
class of generative models that extend the diffusion framework by replacing the
standard Gaussian noise with heavy-tailed α-stable noise. While classical diffu-
sion models–such as DDPM [1] and its score-based SDE reformulation [2] have
achieved impressive results in image or audio synthesis, they face challenges when
dealing with heavy-tailed or imbalanced datasets. In contrast, DLPM leverages
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the stability property of α-stable distributions to define a discrete-time noising
process

(1) Xt = γtXt−1 + σtǫ
(α)
t , X0 ∼ p0 ,

where p0 is the data distribution, (γt, σt)
T
t=1 is the noising schedule, and (ǫ

(α)
t )Tt=1

are distributed as the centered, unit-scale, symmetric α-stable distribution SαS.
This recovers DDPM when α = 2 and introduces heavy tails for α < 2. A key
technical contribution is a transformation that decomposes the α-stable noise into
a product of a one-dimensional random variable and a Gaussian vector:

(2) ǫ
(α)
t ∼ A

1/2
t Gt ,

where At is distributed as a totally skewed to the right α/2 -stable distribution
of scale cos2/α(πα/4), which we denote by Sskewed

α/2 , and Gt ∼ N (0, Id). By condi-

tioning on the sequence A1:T , we recover Gaussian transitions and thus re-employ
the classical DDPM machinery. We introduce the following probabilistic model:

(3) pθ(x0, · · · , xt, a1:T ) = pθT (xT )︸ ︷︷ ︸
noise

·
T∏

t=1

pθt−1|t,a(xt−1|xt, a1:t)︸ ︷︷ ︸
Gaussian transitions

Ψ⊗T (a1:T ) ,

where Ψ is the density of Sskewed
α/2 , and

(4) pθt−1|t,a(·|xt, a1:t) = N (· ; mθ
t (xt, a1:t),Σ

θ
t (a1:t)) .

Analogous to DDPM, we fit our parametric family of distribution with a variational
inference scheme, based on the classical ELBO trick applied to

(5) L(θ) 7→ E

[
KL(p0(·)‖pθ0|a(·|A1:T ))

1/2
]
.

Ultimately, this yields a modified denoising loss – a non-squared ℓ2 loss, that en-
sures finite expectations despite the infinite variance of the heavy-tailed noise.
I further demonstrate that DLPM is not only mathematically simpler than its
continuous-time counterpart, the Lévy-Itô Model (LIM) ([3]), but also more flexi-
ble. In particular, DLPM:

• Maintains compatibility with standard DDPM implementations, requiring
only minimal changes to existing codebase

• Admits a deterministic sampler, dubbed Denoising Lévy Implicit Models
(DLIM)

• Enables more design choices, as compared to its continuous counterpart
LIM, thanks to the use of elementary mathematics instead of fractional
calculus (e.g., use alternative noising schedule, learn the optimal variance
of the Gaussian transitions in the generative process, etc.)

• Provides improved tail coverage and better performance on unbalanced
datasets, while offering faster computation times.

I concluded the talk with a discussion on experimental results.
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Minimax Optimality of Wasserstein GAN Estimators

Eddie Aamari

(joint work with Arthur Stéphanovitch and Clément Levrard)

I have presented an analysis of the minimax optimality of the Wasserstein Gener-
ative Adversarial Networks (WGAN) estimator for generative modeling. Given a
probability measure µ supported in Rp, the goal is to approximate µ and sample
from a distribution close to it.

I reviewed the theoretical foundations of Vanilla GANs and Wasserstein GANs,
formulating the generative adversarial problem as minimizing an Integral Proba-
bility Metric (IPM) over a suitable class of generator functions G and discriminator
functions D

ĝ ∈ argming∈G sup
D∈D

1

n

n∑

i=1

D(Xi)−D(g(Ui))

To address the curse of dimensionality, it is assumed that some mapping g⋆ from
a lower-dimensional torus Td to Rp is such that µ can be expressed as the pushfor-
ward measure g⋆#U of a uniform distribution U on [0, 1]d. Unlike classical nonpara-
metric density estimators relying on discrepancy measures such as the Kullback–
Leibler divergence, this high-dimensional setting makes conventional density-based
approaches ineffective.

In this context, I presented a general oracle inequality, together with the two
main ingredient leading the construction of tractable classes of neural networks G
and D, such that

sup
g⋆∈Hβ+1

EXi∼g⋆
#U

[dHγ (g⋆#U , ĝ#U)] ≤ C(log n)C
′

(
n− β+γ

2β+d ∨ n− 1
2

)
,

Namely, we insisted on:

• How wavelets allow to understand finely the bias of the method ;
• How functional interpolation inequalities à-la Gagliardo-Nirenberg allow
to only analyze the case of large γ values, and then transfer the optimal
rates to stronger norms with smaller γ.
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Towards Faster Non-asymptotic Convergence for Diffusion-based
Generative Models

Yuting Wei

(joint work with Gen Li, Yu Huang, Timofey Efimov, Yuxin Chen, Yuejie Chi)

Diffusion models, which convert noise into new data instances by learning to re-
verse a Markov diffusion process, have become a cornerstone in contemporary
generative artificial intelligence. While their practical power has now been widely
recognized, the theoretical underpinnings remain far from mature. Given the
complexity of developing a full-fledged end-to-end theory, a divide-and-conquer
approach has been advertised, decoupling the score learning phase (i.e., how to es-
timate score functions from training data) and the generative sampling phase (i.e.,
how to generate new data given the score estimates). In particular, the past two
years have witnessed growing interest and remarkable progress from the theoreti-
cal community towards understanding the sampling phase. Our works described
in this talk contribute to this growing list of theoretical endeavors by developing
a new suite of non-asymptotic theory for several score-based generative modeling
algorithms.

In the first part of the talk, we concentrate on two types of samplers in discrete
time: (i) a deterministic sampler based on a sort of ordinary differential equations
(ODEs) called probability flow ODEs (which is closely related to the DDIM); and
(ii) a DDPM-type stochastic sampler motivated by reverse-time SDEs. For the
deterministic sampler [2], we establish a convergence rate proportional to 1/T
(with T the total number of steps). As far as we know, this is the first result
for this deterministic sampler that accounts for score estimation errors in discrete
time. In comparison, other theoretical results that accommodate score errors for
the probability flow ODE approach either study certain stochastic variations of
this deterministic sampler or fall short of accommodating discretization errors.
For the DDPM-type sampler [1], we derive a convergence rate proportional to

1/
√
T , matching the state-of-the-art theory. Imposing only minimal assumptions

on the target data distribution (e.g., no smoothness assumption is imposed), our
results characterize how ℓ2 score estimation errors affect the quality of the data
generation processes.

In the second part, we design accelerated variants for both the deterministic
and the stochastic samplers [3]. In the deterministic setting, we demonstrate how
to speed up the ODE-based sampler by exploiting some sort of momentum term to
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adjust the update rule, leverages insights from higher-order ODE approximation
in discrete time with an improved convergence rate 1/T 2. In the stochastic setting,
we propose a novel sampling procedure to accelarate the SDE-based sampler and
establish a rate of 1/T , thus unveiling the superiority of the proposed sampler
compared to the original DDPM sampler. A series of numerical experiments have
also been conducted to illustrate the effectiveness of the accelerated samplers.
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Flow Matching from a KDE perspective

Lea Kunkel

(joint work with Mathias Trabs)

Flow Matching, a generative model introduced by [1], has recently attained signif-
icant interest due to its considerably more straightforward simulation process in
comparison to diffusions, which have been regarded as the state-of-the-art gener-
ative method.

Let U be a distribution on Rd, p : [0, 1] × Rd → R>0 be a time dependent
probability density path and v : [0, 1]×Rd → Rd be a time dependent vector field.
If ψ : [0, 1]× Rd → Rd solves the ODE

d

dt
ψt(x) = vt(ψt(x)), ψ0(x) = x

and
pt = [ψt]#p0

then we say that vt generates pt. Approximating a vector field that generates a
certain density pt using a function ṽ out of a class of neural networks leads to the
Flow Matching Objective ([1])

(1) Et∼U [0,1]
Xt∼pt

[
‖vt(Xt)− ṽt(Xt)‖2

]
.

[1] have constructed for t ∈ [0, 1] the function pt in terms of the marginal proba-
bility path pt(·|y) : Rd → R as

pt(x) =

∫
pt(x|y)p∗(y) dy,

and vt in terms of the marginal vector fields as

(2) vt(x) =

∫
vt(x|y)

pt(x|y)p∗(y)
pt(x)

dy,
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where vt(·|y) : Rd → Rd is a vector field that generates pt(·|y) : Rd → R. [1] show
that in this case, vt generates pt and that the minimizing arguments of (1) and

(3) E t∼U [0,1],
Y∼p∗,

Xt∼pt(·|Y )

[
‖ṽt(Xt)− vt (Xt | Y )‖2

]
,

are the same.
The statistical properties have only recently been studied by [2] and [3] in the

Wasserstein 2 distance. Both do not use the exact setting of [1], but rather use
stopping times that are adaptive to the number of samples.

The talk aimed to shorten this gap between practice and theory. First, we
showed that the motivation of Flow Matching also applies to its empirical coun-
terparts. We then built on the connection between flow matching and kernel
density estimation by extending our analysis to latent distributions, which are
often used as kernels in nonparametric statistics. In doing so, we proposed mo-
ment conditions for a proper choice of the latent distribution. We then showed
convergence rates in Wasserstein 1 distance in the case of perfect approximation
of the empirical counterpart of the vector field (2), as well as in the case where
neural networks are used for the vector field. For the latter, we exploited the
approximations properties of ReQU networks, which have been studied by [4].

References

[1] Y. Lipman, R. Chen, H. Ben-Hamu, M. Nickel, and M. Le, Flow Matching for Generative
Modeling, International Conference on Learning Representations, 2023.

[2] K. Fukumizu, T. Suzuki, N. Isobem, K. Oko, and M. Koyama, Flow matching achieves
minimax optimal convergence, arXiv preprint arXiv:2405.20879, 2024.

[3] Y. Gao, J. Huang, Y. Jiao, and S. Zheng, Convergence of Continuous Normalizing Flows
for Learning Probability Distributions, arXiv preprint arXiv:2404.00551, 2024.

[4] D. Belomestny, A. Naumov, N. Puchkin, and S. Samsonov, Simultaneous approximation of
a smooth function and its derivatives by deep neural networks with piecewise-polynomial
activations, Neural Networks 161, pp. 242–253, 2023.

Iteration Complexity of Diffusion Models under the Manifold
Assumption

Iskander Azangulov

(joint work with Peter Potaptchik, George Deligiannidis, Judith Rousseau)

Score-matching generative models, also known as diffusion models, have proven
highly effective at sampling from complex, high-dimensional unknown distribu-
tions. The core idea behind these models is to consider a forward process, Xt,
that progressively adds Gaussian noise to the original complex distribution over
the interval [0, T ]. This forward process can be modeled using a standard Ornstein-
Uhlenbeck (OU) process.

The backward process, denoted as YT−t = Xt, is a diffusion process where the
drift function is adjusted by the score function st(x), which is proportional to the
conditional expectation of the noise at a given point. Diffusion models exploit this
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framework by learning the score function st(x), and then discretizing it to model
the backward process effectively.

In their work, Benton et al. [1] studied the relationship between iteration com-
plexity (the number of discretization steps) and the quality of the generated sam-
ples. They demonstrated that for a distribution µ in RD, assuming a finite second
moment, the number of steps required scales at most as O(D). Importantly, this
bound is tight unless additional assumptions are made.

However, in many real-world applications, it is believed that the distribution of
interest concentrates on a much lower-dimensional manifold embedded within the
D-dimensional space. This phenomenon is referred to as the manifold hypothesis.

In this talk, we demonstrate that the number of steps required by diffusion
models to converge in Kullback–Leibler (KL) divergence is linear–up to logarithmic
factors–in the intrinsic dimension d of the underlying manifold. Moreover, we show
that this linear dependency is tight, meaning the scaling with d is optimal.

This result helps explain why diffusion models excel in tasks such as synthetic
image generation. While the extrinsic dimensionality of image datasets is large
(e.g., approximately 1.5× 105 for ImageNet), research by Pope et al. [2] suggests
that the true intrinsic dimension is much lower, on the order of around 50 for
ImageNet. Our findings imply that the number of diffusion steps needed to gener-
ate high-quality samples scales with this intrinsic dimension rather than the much
larger extrinsic dimension. This explains why diffusion models can generate sharp
image samples in fewer than 1000 iterations, despite the large dimensionality of
the input data.
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