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Introduction by the Organizers

The MFO-RIMS Tandem Workshop “Optimization, Theoretical Computer Science
and Algebraic Geometry: Convexity and Beyond”, jointly organized by Yoshio
Okamoto (Tokyo), Cordian Riener (Tromsø), Markus Schweighofer (Konstanz),
and Yoshiyuki Sekiguchi (Kyoto), took place from February 16–21, 2025. The
event was held in a hybrid format, with parallel in-person meetings at the Math-
ematisches Forschungsinstitut Oberwolfach (MFO) and the Research Institute for
Mathematical Sciences (RIMS) in Kyoto, connected via a shared digital infras-
tructure.

The main goal of the workshop was to explore the rich interplay between con-
vexity and its generalizations in optimization, algebraic geometry, and theoretical

https://creativecommons.org/licenses/by-sa/4.0/deed.en


406 Oberwolfach Report 9/2025

computer science. Convexity has long served as a unifying concept in these disci-
plines, and recent developments have extended its scope to more general geometric
and algebraic settings. The workshop brought together researchers from Europe
the US and Asia working on these intersections, with the aim of facilitating new
collaborations and strengthening existing links between mathematical communi-
ties across continents.

The scientific program featured a diverse collection of talks, spanning both foun-
dational theory and recent advances. A prominent theme was optimization over
non-classical domains, including polyhedral norms, non-Euclidean spaces, and sin-
gular semidefinite programs. Other key topics included the structure and complex-
ity of symmetric and nonnegative polynomials, tensor methods in high-dimensional
computation, algorithmic aspects of sum-of-squares proofs, and applications of al-
gebraic and combinatorial methods in graph theory and discrete geometry.

Several talks focused on the algebraic geometry underlying matroid varieties,
semistability in quiver representations, and D-module approaches to singularities.
The workshop also highlighted holonomic and combinatorial techniques that bridge
continuous and discrete models in optimization and complexity theory.

A central element of the workshop was a dedicated problem session held mid-
week, during which participants from both sites contributed open problems and
research challenges. This structured interaction proved highly fruitful and led to
several follow-up discussions. The time zone difference required careful sched-
uling, with some talks given live and others recorded for asynchronous viewing.
Despite these logistical challenges, the hybrid format enabled broad participation
and dynamic exchange between the Oberwolfach and Kyoto communities.

We believe the workshop was highly successful in creating an arena for scientific
exchange. It provided both in-depth technical presentations and a platform for
interdisciplinary engagement and contributed to building a stronger global network
of researchers at the interface of optimization, algebra, and geometry. We thank
the staff of MFO and RIMS for their excellent support in making this collaboration
possible.

Acknowledgement: MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Ober-
wolfach Foundation for supporting the participation of junior researchers by the
Oberwolfach Foundation Fellowship.
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Abstracts

Matroid varieties, their defining equations, and their irreducibility

Fatemeh Mohammadi

(joint work with Emiliano Liwski)

The theory of point-line configurations can be seen as a geometric counterpart of
matroids of rank 3. They arise in various areas of research, including the study of
the connectivity of moduli spaces of hyperplane arrangements and the cohomology
of their complement manifolds [1, 8], as well as the study of singularities and
smoothness of their varieties [2]. They also arise in the study of determinantal
varieties, as well as conditional independence models [3]. Of particular interest
are (vr, bk) configurations, which contain Steiner systems [4, 5].

Definition 1. A point-line configuration M consists of a set of points P and a set
of lines L such that each line contains at least three distinct points, and any pair
of points lies on at most one common line. A (vr , bk) configuration is a point-line
configuration such that:

• There are v points and b lines.
• Each line contains k points, and each point lies on r lines.

When v = b, and r = k, the configuration is called symmetric, denoted by vk.

In this note, we focus on the associated varieties of point-line configurations M .
Our primary goal is to determine the irreducible decomposition of these varieties.
We describe a decomposition strategy from [11], based on identifying the set of
minimally dependent matroids of M . We apply this method to the MacLane
configuration, which cannot be handled using existing computer algebra systems.

We define two families of point-line configurations that play a key role in this note;
see [9, 10]. In the following, we let Lp denote the set of lines containing p for any
point p ∈ P . The degree of p is defined as the size of Lp, i.e., deg(p) = |Lp|.
Definition 2. For a point-line configuration M , we define SM = {p ∈ P : |Lp| ≥
2}. We then consider the following chain of submatroids of M :

M0 = M, M1 = SM , and Mj+1 = SMj
for all j ≥ 1.

We say that M is nilpotent if Mj = ∅ for some j.

Definition 3. For a point-line configuration M , we define QM = {p ∈ P : |Lp| ≥
3}. We then consider the following chain of submatroids of M :

M0 = M, M1 = QM , and M j+1 = QMj for all j ≥ 1.

We say that M is solvable if M j = ∅ for some j.

Definition 4. Let M be a matroid of rank n on the ground set [d]. A realization
of M is a collection of vectors γ = {γ1, . . . , γd} ⊂ Cn such that

{γi1 , . . . , γip} is linearly dependent ⇐⇒ {i1, . . . , ip} is a dependent set of M .
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The realization space of M is defined as ΓM = {γ ⊂ Cn : γ is a realization of M}.
A matroid is called realizable if its realization space is non-empty. The matroid
variety VM of M is defined as the Zariski closure in Cnd of ΓM . See [6, 7].

Similarly, we introduce the circuit variety of M as follows:

VC(M) = V (IC(M)) = {γ ⊂ Cn : γ includes the dependencies of M}.
We recall the following result on the varieties of nilpotent and solvable matroids.

Theorem 5 ([10, 9]). Let M be a point-line configuration on [d].

(i) Assume M has no points of degree above two. If M is nilpotent, then
VC(M) = VM . If every proper submatroid of M is nilpotent, then VC(M) =
VM ∪ VU2,d

, where U2,d is the uniform matroid of rank 2 with d elements.
(ii) If M is solvable, then VM is either irreducible or empty.

Decomposition strategy. We begin by identifying the minimal matroids
min(M). Next, the circuit variety is decomposed using Proposition 4.1 in [11].
In the recursive decomposition step, this process is applied to each circuit variety
that appears in the decomposition. The decomposition continues iteratively for
any new circuit varieties encountered, until each circuit variety falls into one of the
following cases: if a circuit variety VC(N) corresponds to a nilpotent configuration
with no points of degree greater than two, it is replaced by VN ; if it corresponds
to a configuration where all points have degree at most two, and all proper sub-
matroids are nilpotent, it is replaced by VN ∪ VU2,d

. After this step, we obtain a
decomposition of VC(M) as a union of matroid varieties. The irreducibility of each
matroid variety is then verified by identifying the solvable matroids involved and
applying Theorem 5.

We illustrate our algorithm from [11] for identifying minimal matroids of point-line
configurations and computing their circuit varieties’ irreducible decomposition.

Example 6. Let M be the MacLane configuration M , which is the unique 83
configuration. Then, min(M) consists of the following matroids; see Figure 1:

• The uniform matroid U2,8.
• The matroids M(i) for i ∈ [8].
• A line of M with the other 5 points coinciding at a single point outside it.
• A line with four points, three as double points, and a free point x outside.

The double points form pairs on a common line with x.

There are 8 matroids of the third type, each associated with a line of M , and 8
matroids of the fourth type, each determined by the choice of a free point. We label
these matroids as Aj , Bk, for j, k ∈ [8]. This leads to the following decomposition:

(1) VC(M) = VM ∪ VC(U2,8)

8⋃

i=1

VC(M(i))

8⋃

j=1

VC(Aj)

8⋃

k=1

VC(Bk).

Moreover, we have
⋃8

i=1 VC(M(i)) =
⋃8

i=1 VM(i)

⋃4
i=1 VDi

∪⋃8
i=1 VCi

, where
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• The matroid Ci is obtained by making one point of M a loop, with the
remaining points forming the uniform matroid U2,7.

• The matroid Di is obtained from M by making loops of two points that are
not connected. The pairs of non-connected points are {1, 3}, {2, 4}, {5, 7},
{6, 8}.

The matroid VM has two irreducible components, denoted V +
M and V −

M . The ma-
troids U2,8, Aj , Bk are nilpotent, hence their circuit and matroid varieties coincide.
Moreover, VAj

⊂ VM and VCi
⊂ VU2,9

, hence (1) equals:

(2) VC(M) = V +
M ∪ V −

M ∪ VU2,8

8⋃

i=1

VMM (i)

4⋃

i=1

VDi

8⋃

k=1

VBk
.

All the matroids in (2) are solvable, hence their varieties are irreducible. The
decomposition is non-redundant, providing the irreducible decomposition of VC(M).

Figure 1. MacLane configuration M and its minimal matroids
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Lamination hulls and solving linear inequalities over convex sets

Saugata Basu

(joint work with Hamidreza A. Khorasgani, Hemanta K. Maji, Hai H. Nguyen)

Definition 1 (Λ-hull). Let Λ ⊂ Rd be some fixed subset. For any subset S ⊂ Rd

we denote

(1) GΛ(S) = {αx+ (1 − α)y | x, y ∈ S, x− y ∈ Λ, 0 < α < 1},

and for each i ∈ N, we denote G
(i)
Λ (S) = GΛ ◦ · · · ◦GΛ

︸ ︷︷ ︸

i

(S).

We call the subset S(Λ,∞) =
⋃

i≥0G
(i)
Λ (S) the Λ-hull of S.

Remark 2. If 0 ∈ Λ, then taking x = y ∈ S in (1), we get that S ⊂ GΛ(S).

Remark 3. If Λ = Rd, then it follows from Carathéodory’s theorem that for any

subset S ⊂ Rd, S(Λ,∞) = G
(⌈log

2
(d+1)⌉)

Λ (S) = conv(S), where conv(S) denotes the
convex hull of S.

Characterizing the Λ-hull of subsets of Rd is an important problem arising in
several unrelated areas of mathematics (such as in the study of certain partial
differetial equations [4]) as well as in theoretical computer science (secure compu-
tation in cryptography [1]).

We prove the following theorem.

Theorem 4. [3] Let a, b, c ≥ 0, d = a+ b+ c. Let Λ ⊂ Rd be defined by

(2) Λ = {0} × Rb × Rc ∪ Ra × {0} × Rc.

Then, for each finite subset S ⊂ Rd, S(Λ,∞) is a semi-algebraic subset of Rd. More-
over, there exists an algorithm that, given S as input, produces a semi-algebraic
description of S(Λ,∞) as its output.

Remark 5. The sequence (G
(i)
Λ )i≥0 need not stabilize. Let

S = {(3/4, 1/4, 0), (1/4, 1/2, 0), (1/2, 1, 0), (1, 3/4, 0), (3/4, 1/2, 1)}.
With this choice of S, a = b = c = 1, and Λ ⊂ R3 in (2), it is not difficult to see

that the sequence G
(i)
Λ (S) does not stabilize (this example is sometimes referred

to as the “Tartar square” in the literature, see [2]).

Remark 6. Another interesting example also in R3 is the following one, which
shows that even for finite sets S, S(Λ,∞) need not always be a semi-linear set
(though still semi-algebraic by Theorem 4). Take Λ ⊂ R3 as defined in (2) with
a = b = c = 1 and let S = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. It is easy to verify
that with these choices,

S(Λ,∞) = G
(2)
Λ (S) = {(x, y, z) | z = xy, 0 ≤ x, y ≤ 1}.
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As an intermediate step in our proof of Theorem 4 we prove a result about
convex subsets of Rd which might be of independent interest. Let Ω be a finite set
and denote by CL(Ω) (CL for “Convex Linear”) the set of all formal convex linear
combinations of elements of Ω, i.e.

CL(Ω) = {
∑

ω∈Ω

aω · ω | aω ≥ 0,
∑

ω

aω = 1}.

We also denote

MΩ = {L1
o

⋆ · · · o

⋆ Lk | k ≥ 1, Li ∈ CL(Ω), 1 ≤ i ≤ k},
and

PΩ = {M1 ⊕ · · · ⊕Mm | m > 0,Mj ∈MΩ, 1 ≤ j ≤ m}.
It might be useful to think of MΩ as a set of “monomials” and PΩ as a set of
polynomials “polynomials” on CL(Ω). There exists a evaluation map evalΩ, that
given, φ ∈ Pω, and a tuple S = (Sω)ω∈Ω of subsets of Rd, produces a subset
evalΩ(φ)(S) ⊂ Rd, defined by the formula obtained from φ, by replacing ω by Sω

and interpreting c ·X as dilation of X by c, + as Minkowski sum, ⊕ as union, and
o

⋆ as the “positive geometric join” operator defined by

X
o

⋆ Y = {αx+ (1 − α)y | x ∈ X, y ∈ Y, 0 < α < 1}.
For subsets X,Y ⊂ Rd, we denote X ≥ Y iff X contains the convex hull of Y .

Theorem 7. [3] For any finite set Ω = Ω1 ∪ Ω2, with Ω1 = {X1, . . . , Xn}, Ω2 =
{P1, . . . , Pm}, and a system of inequalities

(3) (Xi ≥ φi)1≤i≤n,

where φi ∈ PΩ, 1 ≤ i ≤ n, there exists a tuple (ψi)1≤i≤n, with ψi ∈ PΩ2
, such that

for any tuple of sets S = (Si)1≤i≤m, the tuple (Yi = conv(evalΩ2
(ψi)(S)))1≤i≤n , is

the smallest (with respect to inclusion) tuple of convex subsets of Rd, which satisfy
the inequalities (Yi ≥ evalΩ(φi)(S ′))1≤i≤n, where S ′ = (Y1, . . . , Yn, S1, . . . , Sm).

If S1, . . . , Sm are semi-algebraic subsets of Rd, then so are Y1, . . . , Yn. Moreover,
if S1, . . . , Sm are finite subsets, then each Yi is convex and is a union of the relative
interiors of a finite set of polytopes in Rd (we call such sets hemihedras).

Example 8. We give an illustration of Theorem 7. Consider the following system
of inequalities with two variables with Ω1 = {X1, X2},Ω2 = {P1, P2, P3, P4}.

X1 ≥ P1 ⊕
(

1

2
·X1 +

1

4
·X2 +

1

4
· P3

)

,

X2 ≥ P2 ⊕
(

1

4
·X1 +

1

2
·X2 +

1

4
· P4

)

.

Then the convex hulls of the following pair of sets

P1 ⊕ P1
o

⋆

(
1

2
· P2 +

1

2
· P3

)

⊕ P1
o

⋆

(
1

2
· P2 +

1

2
· P3

)
o

⋆

(
2

3
· P3 +

1

3
· P4

)

,

P2 ⊕ P2
o

⋆

(
1

2
· P1 +

1

2
· P4

)

⊕ P2
o

⋆

(
1

2
· P1 +

1

2
· P4

)
o

⋆

(
1

3
· P3 +

2

3
· P4

)
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is the smallest convex solution to the given system of inequalities.

The connection between Theorems 4 and 7 is the following. We show that for
S a finite subset of Rd and Λ as defined in (2), the set S(Λ,∞) can be recovered
(using a semi-algebraic procedure i.e. defined using a first-order formula in the
theory of the reals) from a finite set of fibers S(Λ,∞) ∩ π−1(x, y), (x, y) ∈ Ra ×Rb,
where π : Ra × Rb × Rc → Ra × Rb denotes the projection map. Moreover, we
prove that each fiber S(Λ,∞) ∩ π−1(x, y), (x, y) ∈ Ra × Rb can be characterized
as the smallest convex solution to a system of inequalities (3), with P1, . . . , Pm

specialized to points in Rd. Theorem 7 in conjunction with the semi-algebraic
procedure mentioned above and the Tarski-Seidenberg theorem allows us to obtain
effectively a semi-algebraic description of S(Λ,∞). Note that while we only prove
that S(Λ,∞) is a semi-algebraic set, Theorem 7 implies that each of the fibers
S(Λ,∞) ∩π−1(x, y), (x, y) ∈ Ra×Rb are hemihedral. However, as illustrated in the
example given in Remark 6, S(Λ,∞) itself need not be hemihedral.

Theorem 4 is a key step in proving a result in cryptography. Suppose X,Y, Z
are finite subsets. A randomized function f : X×Y ×Z → R, is a function that for
each (x, y) ∈ X×Y , induces a probability distribution function f(x, y, ·) : Z → R.
In a recent work [1], the authors proved the decidability of the problem: given
f and r > 0, does there exist a r-bit secure randomized two-party protocol that
computes f . The decision procedure reduced to testing whether a certain point

qf ∈ Rd belonged to G
(r)
Λ (Sf ) for a certain explicitly constructed finite subset

Sf ⊂ Rd (where a = card(X), b = card(Y ), c = card(Z) and d = a + b + c). It
was left open whether the problem of deciding whether there exists a secure r-bit
protocol for f for some r > 0 is decidable. Using the result in [1] mentioned above,
this last decision problem reduces to testing whether the point qf belongs to the

S(Λ,∞). Theorem 4 implies that the problem is decidable.
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Distance Optimisation in Polyhedral Norms

Nidhi Kaihnsa

(joint work with E. Duarte, J. Lindberg, A. Torres, M. Weinstein)

Given a subset X in a metric space, a Voronoi diagram partitions the metric space
by identifying the points closest to a given point p on X . The region corresponding
to the point p is called the Voronoi cell of p. When the metric space is Rn

endowed with Euclidean norm and X is a real algebraic variety, the geometry
of this decomposition was studied in [4]. It was shown that the Voronoi cell a
point p ∈ X is a convex semialgebraic set contained in the normal sapce of the
variety at p. The authors also studied the algebraic boundary of the Voronoi cells
by computing the locus of points that are closest to at least two points on X . This
locus is called the medial axis.

We study this geometric problem for the case when X is a co-dimension one
variety in Rn endowed with the metric induced by a polyhedral norm. For a poly-
hedral norms the unit ball is given by a centrally symmetric (full-dimenstional)
polytope. The main motivation to study this problem arises from algebraic statis-
tics. Given a metric on a finite set of states, Ω, it induces a Wasserstein distance
on the space of probability distributions on the set Ω, with a convex polytope as a
unit ball. On the probability simplex, the problem of minimizing Wassertein dis-
tance between a probability distribution and an algebraic variety has been studied
in great detail (cf. [2, 3]).

In [1] the authors compute the dimension of a Voronoi cell of a point on an
algebraic variety for polyhedral norms. They also estimate the number of points
on X with full dimensional Voronoi cells. In the joint work with Duarte, Lindberg,
Torres, and Weinstein, we are considering this problem for algebraic varieties with
codimension one. Given a point p ∈ X , the Voronoi cell of p and its dimension can
be determined by the relative position of the normal space of the point and the
normal fan of the unit ball. The dimension of Vornoi cell of each point decomposes
the algebraic variety. We show that this decomposition infact gives a stratification
of the variety. We also study the decomposition of the ambient space Rn by finding
upper bounds on the degrees of medial axis.
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A Universal Sequence of Tensors for the Asymptotic Rank Conjecture

Petteri Kaski

(joint work with Mateusz Micha lek)

We present an explicit sequence of zero-one-valued three-tensors whose sequence of
tensor ranks captures the worst-case tensor exponent of tensors of shape d×d×d.
Joint work with Mateusz Micha lek (Konstanz). Cf. ITCS 2025 Article No. 64 [1].
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On the degree automatability of SoS proofs

Luis Felipe Vargas

(joint work with Alex Bortolotti, Monaldo Mastrolilli)

Semidefinite programming (SDP) relaxations have been a powerful technique for
approximation algorithm design ever since the celebrated result of Goemans and
Williamson. With the aim to construct stronger and stronger SDP relaxations,
the Sum-of-Squares (SoS) hierarchy has emerged as a systematic and versatile
method for approximating many combinatorial optimization problems. However,
fundamental questions remain unanswered. For instance, it is still unknown under
what conditions SoS can be automated, meaning whether one can find a degree-d
SoS proof in time nO(d), provided it exists. O’Donnell (2017) observed that the
prevailing belief regarding the automatability of SoS using ellipsoid algorithms is
not entirely accurate. Issues may arise when the only degree-d proofs contain ex-
ceedingly large coefficients, thereby hindering the ellipsoid method from operating
within polynomial time. In this talk we address this problem and provide sufficient
conditions that guarantee polynomial time computability of SoS proofs.

Polynomial optimization. Polynomial optimization asks for minimizing a poly-
nomial over a given set of polynomial constraints. That is, given polynomials
r, p1, . . . , pm ∈ R[x1, . . . , xn], the task is to find (or approximate) the infimum of
the following problem:

inf
x∈S

r(x), where S = {x ∈ Rn | p1(x) = · · · = pm(x) = 0}.(1)

Typically, S is defined by a set of equality constraints, in this case P =
{p1, . . . , pm}, as well as a set of inequality constraints, Q. For the purpose of
this talk we restrict to the case where Q = ∅ and S is finite. Nonetheless, we em-
phasize that our results readily extend to the semialgebraic setting, where Q 6= ∅.

A common approach for solving (or approximating) a polynomial optimization
problem is by means of sums of squares of polynomials, as we now explain. Let
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q ∈ R[x1, . . . , xn] be a polyomial. An SoS proof of “q ≥ 0” (over S) from P is an
identity of the form

q =

t0∑

i=1

s2i +

m∑

i=1

hipi,

where si, hi ∈ R[x1, . . . , xn]. Moreover, we say that the above SoS proof has degree
at most d if deg(s2i ) ≤ d, for all i ∈ [t0], and deg(hipi) ≤ d for all i ∈ [s]. An SoS
refutation of P is an SoS proof of “ − 1 ≥ 0” from P .

The SoS hierarchy is based on the following observation: if there exists an SoS
proof of “r − θ ≥ 0” from P , then we have that minx∈S r(x) ≥ θ. Moreover, the
supremum of the values θ such that there is an SoS proof of “r− θ ≥ 0” from P of
degree d, is called d-th SoS relaxation, also known as the d-th Lasserre relaxation
of problem (1). It turns out that the d-th SoS relaxation can be formulated as an
SDP of size nO(d).

SoS relaxations have gained increasing popularity and success; yet, they remain
a relatively recent development. Fundamental questions about their properties and
capabilities remain open. For example, we do not even know when SoS relaxations
can be computed in polynomial time. Indeed, O’Donnell provided an example of a
polynomial system P and a polynomial r such that for all ε > 0 there is a degree-2
SoS proof of “r + ε ≥ 0”, but every proof has coefficients of magnitud 22

n

. This
shows that the often repeated claim that, for any fixed degree d, the d-th SoS
relaxation can be found (or approximated) in polynomial time is far from true.

O’Donnell (2017) posed the open problem of identifying meaningful conditions
that ensure that “small” SoS proofs can be found. We will consider systems
P = {p1 = 0, . . . , pm = 0} of polynomials and an “input” polynomial r of degree
at most d, with the (mild) assumption that the bit complexity needed to represent
P and r is polynomial in n. Moreover, we assume that P is explicitly Archimedean,

i.e. there is N < 2poly(n
d) such that there exists a “small” SoS proof of “N−x2i ≥ 0”

from P for any variable xi. We restate O’Donnell’s question as follows: Under what
conditions on P does the following property hold?

(P) Assume there exists an SoS proof of “r ≥ 0” from P of degree 2d. Then,
for every ε > 0, there also exists an SoS proof of “r+ ε ≥ 0” from P with

degree O(d) and coefficients bounded by 2poly(n
d,lg 1

ε
).

Since O’Donnell raised his question in 2017, very few papers have been published
that address this issue. An initial elegant solution to this question is provided by
Raghavendra and Weitz, which is based on the Nullstellensatz proof system. This
criterion is applicable to various optimization problems, including Max-Clique,
Matching, and Max-CSP. However, the criterion is subject to significant limita-
tions. First, the criterion is sufficient but not necessary. Second, it is important to
observe how the their criterion in is influenced by the complexity of a well-known
problem known as the Ideal Membership Problem (IMP). This problem involves
determining whether an input polynomial r belongs to the ideal generated by
{p1, . . . , pm}.
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In this talk, we present new criteria that guarantee property (P) holds, thus en-
abling the automation of Sum of Squares (SoS) methods. Specifically, we outline
the main contributions and techniques:

(1) SoSε criterion. We start by presenting a general criterion, called the
SoSε criterion, which guarantees that Property (P) is satisfied, and thus
that SoS can be automated. This criterion, which is a generalization of the
criterion by Raghavendra and Weitz, serves as tool for presenting our main
contributions. The key distinction lies in the notion of completeness used
in the criterion. Specifically, one of the conditions for applying citerior is
the so-called SoSε-completeness. We say, roughly, that the system P is
SoSε-complete if every degree-d polynomial q that vanishes on S admits a
“small approximate” SoS proof of “q ≥ 0”.

(2) SoS approximability of polynomial systems. A main difficulty for
applying our new criterion is to prove that a system is SoSε-complete.
For this, we present the notion of SoS-approximation between polynomial
systems, which turns out to be a powerful tool for showing SoSε complete-
ness, and applying the sosε criterion.

(3) SoS simulates PC and PC criterion Polynomial Calculus (PC) is a
dynamic proof system that permits to prove that an input polynomial be-
longs to an ideal. In general, PC and SoS are incomparable. However,
in the presence of domain restrictions, this is not necessarily true. In a
surprising result, Berkholz showed that over Boolean variables, SoS simu-
lates PC for refutations, while for the converse there is a strict separation.
In this talk we present an extension of Berkholz’s result to general poly-
nomial derivations in which the variable domains are finite rational sets.
This result permits us to state a new criterion, called the PC-criterion for
guaranteeing that property (P) holds, and thus SoS can be automated.

As a main application of the PC criterion, we examine constraint languages (and
polynomial equations) that are closed under the semilattice and dual discrimina-
tor polymorphisms. Propositional formulas from HORN-SAT or 2-SAT can be
easily translated into system of polynomial equations that are semilatice or dual
discriminator closed, respectively. Moreover, these two classes extend HORN-
SAT and 2-SAT formulas, respectively, to general finite domain cases and have
held a significant role in the theory of Constraint Satisfaction Problems of the
form CSP(Γ);

Theorem 1. For a system P of polynomial equations over n variables that is
closed under the semilattice (or dual discriminator) polymorphism, then the PC
criterion applies.
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Tensor networks, tensor cumulants, tensor PCA

Dmitriy (Tim) Kunisky

(joint work with Maximilian Jerdee, Cristopher Moore, Alexander S. Wein)

This work concerns hypothesis testing between probability distributions over ten-
sors. It is easiest to think of such problems by analogy with a matrix-valued
problem, which is often used as a model of principal component analysis (PCA)
in the statistics literature.

In the general matrix-valued setting, we are given an observation Y from one
of two probability measures Qn or Pn over n × n symmetric matrices, and must
compute some test t(Y ) ∈ {0, 1} that attempts to output 0 if Y ∼ Qn and 1 if
Y ∼ Pn with as little error probability as possible. A specific widely studied model
involves “noise” drawn from the so-called Gaussian orthogonal ensemble (GOE), a
random matrix W with Wij = Wji ∼ N (0, 1 + δij) independently. Under Qn one
observes Y = W , while under Pn one further draws a unit vector x ∼ Unif(Sn−1)
and observes Y = W + βxx⊤ for some β > 0.

A natural idea to perform hypothesis testing in such a model is to consider
only spectral statistics : to first compute the eigenvalues λ1(Y ) ≥ · · · ≥ λn(Y ), and
compute a test t(Y ) = t(λ(Y )). Indeed, it is known [1, 4] that in the above setting
a simple such strategy is information-theoretically optimal :

Theorem 1. The following hold in the above model:

(1) If β > 1, then:
(a) If Y ∼ Qn, then λ1(Y )/

√
n→ 2 almost surely.

(b) If Y ∼ Pn, then λ1(Y )/
√
n→ β + β−1 almost surely.

In particular, there is a t(Y ) that distinguishes Y ∼ Qn from Y ∼ Pn with
high probability by computing and thresholding λ1(Y ).

(2) If 0 < β < 1, then there is no sequence of tests t : Rn×n
sym → {0, 1} such

that limn→∞ Qn[t(Y ) = 0] = limn→∞ Pn[t(Y ) = 1] = 1.

Our work [2] is motivated by the analogous problem over tensors. Let p ≥ 3.
There is a certain natural Gaussian random tensor W ∈ Symp(Rn) analogous to
the GOE, and the model problem of tensor PCA [5] asks when it is possible to
distinguish Y ∼ Qn drawn as Y = W from Y ∼ Pn drawn as Y = W+βx⊗p. While
this problem has many interesting properties, we do not focus on this application
in this talk, and instead describe some of the algebraic tools developed to try to
understand analogous algorithms to the above over tensors.

At first, the task seems ill-posed: there are various different notions of tensor
eigenvalues, but they are typically intractable to compute and are not generically
associated to any analog of the spectral decomposition. We propose a different
analogy by which the notion of “spectral algorithm” may be understood for tensors.
In the matrix case, the orthogonal group O(n) acts on Rn×n

sym by Q · Y = QY Q⊤.
The symmetric functions of the eigenvalues f(λ1(Y ), . . . , λn(Y )) are then precisely
the functions f(Y ) that are invariant under this action, having f(Q · Y ) = f(Y )
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for all Q ∈ O(n). Polynomial such f are generated by the special polynomials

mk(Y ) = Tr(Y k) =

n∑

i=1

λi(Y )k.

There is an analogous action of O(n) on symmetric p-tensors, where Q acts
on a tensor Y by acting linearly on each “axis” of the tensor simultaneously. We
propose that the natural spectral algorithms over tensors are invariant functions
under this action. A generalization of the above fact about invariant polynomials
is known (due to Weyl in the 1940’s) in the tensor case: the tensor invariants are
generated by the polynomials, for p-regular graphs G,

mG(Y ) =
∑

i:E(G)→[n]

∏

v∈V (G)

Yi(∂v),

where ∂v is the set of edges incident to a vertex v. The matrix polynomials mk

coincide with taking G = Ck the k-cycle. Because of the graphical interpretation,
in the general tensor case, these polynomials are often called tensor networks.

We thus arrive at the natural question: how well can tensor networks solve
statistical problems like tensor PCA? (It turns out that our above descriptions of
matrix and tensor PCA makes the distributions Qn and Pn themselves invariant
under the orthogonal action, in which case an optimal hypothesis testing algorithm
may be taken to be an invariant function without loss of generality.) In particu-
lar, we follow a recently popular paradigm in theoretical computer science [3] of
measuring whether low-degree polynomials (a proxy for efficient algorithms) can
solve such a problem. Specifically, we consider whether a low-degree polynomial
f(Y ) can separate the distributions Qn and Pn by having

EY ∼Pn
[f(Y )] − EY∼Qn

[f(Y )] ≫ max {VarY∼Pn
[f(Y )],VarY ∼Qn

[f(Y )]} .
As this is an “L2 notion” of separation, to understand it, it is useful to seek out

an approximately orthogonal basis for the invariant polynomials under the inner
product 〈f, g〉 = EY ∼Qn

f(Y )g(Y ). One of our main results obtains such a basis,
and shows that it has a surprising further property.

Theorem 2 (Informal). For D = D(n) not too large, there exist polynomials
κG(Y ) indexed by p-regular graphs G with |V (G)| ≤ D (variants of the mG(Y )
above) that satisfy the following:

(1) The κG(Y ) for |V (G)| ≤ D form a basis for the invariant polynomials of
a p-tensor Y of degree at most D.

(2) This basis is approximately orthogonal: the matrix (〈κG, κH〉)G,H is well-
conditioned.

(3) If G is connected, then for Q a uniformly random orthogonal matrix,

EQκG(A+Q · B) = κG(A) + κG(B).

A similar but slightly more complicated identity holds for general G.

The surprising part of this result is that the third property is satisfied along with
the first two, which merely state the properties of an approximately orthogonal
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basis. This third property is both intrinsically interesting and useful for under-
standing problems like tensor PCA, since a random Y ∼ Pn in tensor PCA has
precisely the form Y = A+Q ·B.

Because of this third property, we call the κG the finite free cumulants of a
tensor. This is by analogy with the theory of free probability. In classical prob-
ability, the cumulants are statistics of a probability measure that are additive
under summation of independent random variables. In free probability, there is a
notion of free independence which, roughly speaking, asks that a matrix B has its
frame of eigenvectors rotated randomly relative to that of a matrix A. There is
a corresponding notion of free cumulant that behaves like the classical cumulant
but with respect to free independence over growing sequences of random matrices.
More recently, a notion of finite free cumulant was developed that again behaves
similarly, but is just a polynomial of a fixed finite-dimensional matrix. Finally,
our notion generalizes this last one to tensors.

Based on this surprising result, we propose an intriguing direction for future
research. We ask: in general, what do approximately orthogonal bases for invariant
polynomials under various group actions look like? Can such general bases be
chosen to also satisfy the additivity property above? And, what implications do
these objects have in algorithmic statistics beyond the special case of tensor PCA?
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Totally nonnegative matrices, chain enumeration and zeros of
polynomials

Petter Brändén

(joint work with Leonardo Saud Maia Leite)

In this talk we provide a new view on, and new tools for, problems in algebraic
combinatorics related to face numbers of complexes and zeros of polynomials. The
key theorem relates totally nonnegative matrices to chain enumeration in partially
ordered sets, and f -vectors of simplicial complexes and posets. It is used to develop
a general theory for chain enumeration in posets and zeros of chain polynomials.
The results obtained extend and unify results of the speaker, Brenti, Welker and
Athanasiadis. In the process we define a notion of h-vectors for a large class of
posets which generalize the notions of h-vectors associated to simplicial and cubical
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complexes. We also use the methods developed to answer an open problem posed
by Forgács and Tran on the real-rootedness of polynomials arising from certain
bivariate rational functions. The talk is based on the preprint [1].

Recall that a matrix is totally nonnegative (TN) if all of its minors are non-
negative. Let R = (rn,k)Nn,k=0, N ∈ N ∪ {∞}, be a lower triangular matrix whose

diagonal entries are all equal to one. Associate to R a sequence {pn(t)}Nn=0 of
polynomials defined recursively by p0(t) = 1, and

(1) pn(t) = t

n−1∑

k=0

rn,k · pk(t), 0 < n ≤ N.

We call these polynomials the chain polynomials associated to R. Our main the-
orem is

Theorem 1. If R is totally nonnegative, then all zeros of pn(t) are real and located
in the interval [−1, 0].

Example 2. The matrix R =
((

n
k

))∞

n,k=0
is TN. The chain polynomials associated

to R are

pn(t) =

n∑

k=0

k!S(n, k)tk,

where S(n, k) is a Stirling number of the second kind. These polynomials are chain
polynomials for intervals in boolean algebras.

We prove that in many cases the polynomials pn(t) are chain polynomials of
posets, and use Theorem 1 as a tool to prove real-rootedness of chain polynomials
of posets. The results obtained extend and unify results of the speaker, Brenti,
Welker and Athanasiadis.

Recall that a sequence {ai}∞i=0 of real numbers is a Pólya frequency sequence
if the Toeplitz matrix (ai−j)

∞
i,j=0 is TN, where ak = 0 if k < 0. Pólya frequency

sequences were characterized by Aissen, Schoenberg, Whitney and Edrei as follows.

Theorem 3. A sequence {ai}∞i=0 of real numbers is a Pólya frequency sequence if
and only if its generating function is of the form

(2)
∞∑

n=0

anx
n = CxNeγx

∞∏

i=1

1 + αix

1 − βix
,

where C, γ, αi, βi are nonnegative real numbers, N ∈ N, and
∑∞

i=1(αi + βi) <∞.

The special case of Theorem 1 when R is a Toeplitz matrix translates as follows.

Theorem 4. Let f(x) be as in (2), and consider the formal power series

(3)
1

1 − t(f(x) − f(0))
=

∞∑

n=0

rn(t)xn ∈ R[t][[x]].

Then rn(t) is a real-rooted polynomial for each n ∈ N.

Theorem 3 solves an open problem of Forgács and Tran, namely the case of
Theorem 3 when f(x) = xr/

∏m
i=1(1 − βix), where βi ≥ 0 for each i.
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Symmetric nonnegative functions and the Vandermonde map

Sebastian Debus

(joint work with Jose Acevedo, Grigoriy Blekherman, Cordian Riener)

The image of the Vandermonde map (p1, p2, . . . , pd) : Rn → Rd, where pi(x) =
∑n

j=1 x
i
j denotes the i-th power sum polynomial, shows fascinating geometric

properties. Let Πn,d denote the projection of the image of ∆n−1 = {x ∈ Rn
≥0 :

∑n
i=1 xi = 1} onto its last d − 1 coordinates. We call Πn,d a Vandermonde cell.

In [2], we prove that for n ≥ d the set Πn,d has the combinatorial structure of the
cyclic polytope C(n, d−1) which is the convex hull of n points on the real moment
curve (t, t2, . . . , td−1). This was previously experimentally observed in [7].

Moreover, the Vandermonde cells Πn,d ⊂ Πn+1,d form an increasing nested
sequence in Rd−1 and we prove that the Vandermonde cell at infinity Πd =
cl
⋃

n∈N Πn,d has the combinatorial structure of an infinite cyclic polytope, i.e.,
of a convex body with infinitely many facets which are characterized by Gale’s
evenness condition. The methods used to prove the theorem rely on a description
of the preimage of the boundary of Πn,d via multiplicity vectors of elements in
∆n−1 and are an adaptation of the work of Kostov [5] who studied the geometry
of (p1, p2, . . . , pd)(Sn−1).

For a real symmetric matrix A, all its eigenvalues are real. The trace of Ai is
given by evaluating pi in the eigenvalues of A. Thus, we have a natural relationship
between inequalities in symmetric functions in several groups of variables and
inequalities in traces of real symmetric matrices of all sizes. We prove that the
problem of deciding nonnegativity of such inequalities is undecidable. This result
is in sharp contrast to the case of bounded matrix sizes where the problem is
decidable. It remains an open problem whether the problem is decidable in the
setting of a single group of variables or, respectively, in the case of a single matrix.

Naturally, the study of the image of the Vandermonde map relates to the study
of nonnegative symmetric functions. Normalized symmetric function inequalities
have been previously investigated in [1, 4]. In [3], we investigate the relationship
between the cones of homogeneous symmetric functions that are sums of squares
and those that are nonnegative in all numbers of variables. Building on the study
of Kostov [6] of the image of (p1, p2, p3, p4) at infinity, we find that the symmetric
function

4p41 − 5p2p
2
1 −

139

20
p3p1 + 4p22 + 4p4

is nonnegative in all numbers of variables and already not a sum of squares in
the smallest possible case of 4 variables. In any larger degree, the cones are also
distinct. This can be seen by the fact that the cones of sums of squares are semial-
gebraic while the cones of nonnegative symmetric functions are not semialgebraic
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sets. We further investigate the differences between the cones in the even sym-
metric setting using tropicalization. Moreover, we find that the superdominance
order on partitions encodes all inequalities of the form

pλ1
· · · pλl

≥ pµ1
· · · pµm

valid on the nonnegative orthant independently of the numbers of variables.
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Hard Graphs for Colour Refinement and Beyond

Sandra Kiefer

(joint work with Brendan D. McKay, Devini de Mel)

Colour Refinement is a combinatorial procedure that iteratively computes a color-
ing of its input graph, with the purpose of detecting (a)symmetries in the graph.
The central complexity parameter of the algorithm is its number of iterations un-
til termination, i.e., the number of colourings that it computes until the induced
partition does not become finer anymore. The trivial upper bound on this number
is n− 1, where n is the number of vertices in the graph.

In my talk, I presented the construction and compact representation that Bren-
dan D. McKay and I came up with to show that there are infinitely many long-
refinement graphs, that is, infinitely many graphs with n− 1 iterations until ter-
mination. I also reported on recent progress with Devini de Mel concerning the
uniqueness of the construction: with a single exception, the presented families
are the only long-refinement graphs with minimal degrees.Via reverse-engineering
partitions, we extend the classification to maximum degree 4.

I also spoke about generalizations of the algorithm and bounds on their ex-
pressive power concerning graph distinguishability. I leave as an open problem
the systematic construction of long-refinement graphs (or non-existence proofs)
for such generalizations.
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Graph Homomorphisms and Polynomials

Grigoriy Blekherman

Given two simple graphs G,H a homomorphism ϕ : G → H is a map from the
vertex set V (G) of G to the vertex set V (H) of H such that ϕ preserves adjacency
of vertices. The homomorphism density t(H,G) is defined by

t(H,G) =
#homomorphismsG→ H

total # of mapsV (G) → V (H)
.

One can ask for complexity of deciding whether a polynomial expression in
t(Gi, H) is nonnegative for all target graphs H , and it was shown by Hatami
and Norin that this problem is undecidable [3]. We now describe an alternative
proof of this result (also giving more general information) using the geometry of
polynomial maps.

For a graph H let AH denote the adjacency matrix of H . For any n×n matrix
A recall that tr(Ad) = λd1 + · · · + λdn, where λi are the eigenvalues of A. Let pd to
denote the d-th power sum polynomial: pd(x) = xd1 + · · · + xdn. It is well known
that for an even cycle C2k we have

t(C2k, H) =
trA2k

H

|V (H)|2k =
p2k(λ1, . . . , λn)

|V (H)|2k ,

where λ1, . . . , λn are eigenvalues of AH .
Therefore we have

(1)
t(C6, H)

t(C2, H)3
=

trA6
H

(trA2
H)3

=
p6(λ1, . . . , λn)

p32(λ1, . . . , λn)
, and

t(C4, H)

t(C2, H)2
=
p4(λ1, . . . , λn)

p42(λ1, . . . , λn)
.

Define the d-th Vandermonde map νn,d by sending a point in Rn to its image
under the first d power sums:

νn,d(x) = (p1(x), . . . , pd(x)).

Let ∆n−1 be the probability simplex in Rn: ∆n−1 consists of all vectors with non-
negative coordinates with the sum of coordinates equal to 1. The image νn,d(∆n−1)
is called the the (n, d)-Vandermonde cell and is denoted by Πn,d. Observe that
the first coordinate of Πn,d is identically 1, and so we may project it out, and see
Πn,d as the subset of Rd−1, which is the image of ∆n−1 under (p2, . . . , pd).

The image of Πn,3 looks as follows:
The Vandermonde cell Πn,3 has n special points of the form (1/k, 1/k2) for

k = 1, . . . , n. The lower boundary of the image consists of concave curves joining
the special points (1/k, 1/k2). As n goes to infinity we get infinitely many isolated
points on the curve y = x2. The upper boundary of the limit cell Π∞,3 is given
by the curve y2 = x3 for 0 ≤ x ≤ 1.
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Figure 1. The sets Πn,3 for n = 3, 4, 5

If we do not restrict to adjacency matrices of graphs, then the image of the map

(λ1, . . . , λn) 7→
(
p6(λ1, . . . , λn)

p32(λ1, . . . , λn)
,
p4(λ1, . . . , λn)

p42(λ1, . . . , λn)

)

is simply the the Vandermonde cell Π∞,3. However, one can show that as we go
over all graphs H with any number of vertices, we actually get the full Vander-
monde cell Π∞,3 in 1 [1].

For undecidability we need a product of independent copies of Π∞,3. We can
obtain these independent copies by considering necklace graphs. The even cycles
are 2k copies of complete graph K2 glued together in a circular fashion. One can
similarly take 2k copies of the triangle K3 and glue them together in circular fash-
ion, producing a necklace graph on 4k vertices. One can show that using necklace
graphs for larger complete graphs Km we can obtain independent copies of Π∞,3

and use the same undecidability reduction [2][1]. Moreover, this reduction can be
used to show undecidability for weighted homomorphism density inequalities, even
with negative weights.
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Combinatorial Shorest Paths on Combinatorial Polytopes

Yoshio Okamoto

This talk is a biased overview of recent results and open problems on combinatorial
shortest paths on combinatorial polytopes. In this talk, combinatorial polytopes
mean bounded polyhedra that arise from combinatorics and discrete mathematics.
We are mainly interested in two questions on the graphs (i.e., the 1-skeleta) of
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such polytopes. The first question is to determine the graph distance between two
vertices in a polytope. The second question is to determine the graph diameter of
a polytope, where the graph diameter is defined as the maximum graph distance
over all pairs of vertices.

In a perfect matching polytope of an undirected graph G, the vertices corre-
spond to perfect matchings of G and two vertices are joined by an edge if and only
if the symmetric difference of the corresponding perfect matchings is composed of
a single cycle. Then, the distance between two perfect matchings of G is defined
as the graph distance on the graph of the perfect matching polytope of G.

Aichholzer et al. [1] and Ito et al. [3] independently proved that the distance
between two perfect matchings is NP-hard to compute. Moreover, Cardinal and
Steiner [2] proved that the constant-factor approximation is also NP-hard. For the
diameter computation, Nöbel and Steiner [5] recently prove that it is also NP-hard.

In a d-dimensional associahedron, the vertices correspond to binary tree with
d + 2 leaves, and two vertices are joined by an edge if and only if one of the
corresponding binary trees can be obtained by a single rotation from the other.
This is equivalently stated as the vertices correspond to triangulations of a convex
polygon with d+ 3 vertices, and two vertices are joined by an edge if and only if
one of the corresponding triangulations can be obtained by a single diagonal flip
from the other.

The diameter of associahedra is well studied. Sleator et al. [7] proved that the
diameter is at most 2d− 4 when d ≥ 10, and this is tight for infinitely many d’s.
Pournin [6] later proved that the bound of 2d − 4 is indeed tight for all d ≥ 10.
On the other hand, the distance computation in associahedra is a long-standing
open problem.

A graph associahedron is a generalization of an associahedron. In a graph asso-
ciahedron of an undirected graph G, the vertices correspond to elimination trees
of G, and two vertices are joined by an edge if and only if one of the corresponding
elimination trees can be obtained by a single flip from the other. When G is a
path, a graph associhedron of G is identical to an associahedron.

Ito et al. [4] proved that the distance computation is NP-hard for graph asso-
ciahedra. On the other hand, while several authors found the exact diameters for
restricted classes of graphs and upper/lower bounds for diameters, less is known
for the diameter computation of graph associahedra. In particular, we do not
know whether the diameter computation can be done in polynomial time or it is
NP-hard.
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Identifying Generic Points from Non-generic Measurements

Shin-ichi Tanigawa

A d-dimensional framework is a pair (G, p) of a graph G = (V,E) and a vertex
configuration p : V → Rd in d-space. The framework (G, p) is called globally rigid
if, for any framework (G, q) with the same underlying graph G,

(1) ‖p(i) − p(j)‖ = ‖q(i) − q(j)‖ ∀ij ∈ E

implies that q is the image of p by a Euclidean isometry, where ‖ · ‖ denotes the
Euclidean norm in Rd. A classical observation by Saxe shows that checking the
global rigidity of a given framework is NP-hard even in one-dimensional space,
implying that a concise characterization of globally rigid frameworks is unlikely to
exist. However, Gortler-Healy-Thurston [4] proved the following surprising result.

Theorem 1. For a graph G = (V,E) and an integer d, let

GR(G, d) := {p ∈ (Rd)V : (G, p) is globally rigid}.
Then, GR(G, d) or its complement has measure zero. Moreover, there is a ran-
domized polynomial time algorithm to decide which of the two cases holds for a
given G.

The theorem implies that, as long as we are concerned with generic p, global
rigidity is determined by the underlying graph G.

In this project, we are interested in generalizing this result to a broader class
of polynomial systems. In [3], we introduce the following generalized rigidity
model: Let g : (Rd)k → R be a homogeneous polynomial map. For a k-uniform
hypergraph G and a vertex configuration p, the corresponding framework (G, p) is
globally g-rigid if for any framework (G, q) with the same underlying hypergraph
G,

(2) f(p(v1), . . . , p(vk)) = f(q(v1), . . . , q(vk)) ∀(v1, . . . , vk) ∈ E

implies that q is the image of p by an action of a stabilizer of g.
We relate the concept of global g-rigidity with the identifiability of secant va-

rieties. In particular, we show how to extend the rank condition of Connelly–
Gortler–Healy–Thurston [2, 4] for the Euclidean case to the general setting of
global g-rigidity, using the tangential weak defectiveness of secant varieties due to
Chiantini and Ottaviani [1]. As applications, we consider the following two special
cases:
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(i) When k = 2 and g(x1, x2) = ‖x1 − x2‖qq for x1, x2 ∈ Rd, where ‖ · ‖q
denotes the ℓq-norm: In this case (when q is even), the corresponding
global g-rigidity problem has been well studied as the graph rigidity in
ℓq-normed space. In [6], we showed that the ℓq-analogue of Theorem 1 is
true if d = 2. It remains an open problem to extend this result to higher
dimensions.

(ii) When g(x1, x2, . . . , xk) = (x1 ⊙ x2 ⊙ · · · ⊙ xk) · 1, where ⊙ denotes the
Hadamard product, · denotes the dot product, and 1 denotes the all-one
vector. In this case, the corresponding g-rigidity characterizes the unique
identifiability of low-rank tensors from partial entries.

We show that global g-rigidity is not a generic property, i.e., there is a
graph G for which (G, p1) is globally g-rigid and (G, p2) is not globally g-
rigid for some generic p1, p2. On the other hand, global g-rigidity remains
a generic property if G is an Erdös–Rényi random hypergraph. Concretely,
in [5], we proved the following: Let Gn,t be the random k-uniform hyper-
graph on n vertices obtained by inserting each hyperedge of size k with
probability t, and let p be a generic d-dimensional vertex configuration.

If t > (1+ε) logn
nk−1 , then a.a.s. (Gn,t, p) is globally g-rigid. If t < (1+ε) logn

nk−1 ,
then a.a.s. (Gn,t, p) is not globally g-rigid. We believe that this phenom-
enon holds for other polynomial maps g as well, which remains an open
problem.
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Gradient descent for unbounded convex functions on Hadamard
manifolds and its applications to scaling problems

Keiya Sakabe

(joint work with Hiroshi Hirai)

We study the gradient descent for a lower-unbounded (geodesically-)convex func-
tion f on a Hadamard manifold M , especially in infx∈M ‖∇f(x)‖ > 0 case. A
key mathematical tool for the analysis is M∞: the boundary of M , which is ob-
tained by the visual compactification M ⊔M∞ of M , and the resulting topology
on M ⊔M∞ is called the cone topology. The recession function [2] (also known as
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asymptotic slope [4]) f∞ : M∞ → R ⊔ {∞} represents the asymptotic increasing
ratio of f at the infinity of M in each direction. We show a duality theorem that
the infimum of the gradient norm equals the supremum of minus the recession
function, and that these infimum and supremum are attained at the limit of the
gradient descent:

Theorem 1 ([3, Theorem III.7]). Let M be a Hadamard manifold and f : M → R

be an L-smooth convex function. If infx∈M ‖∇f(x)‖ > 0, then for the gradient
descent sequence (xi)i∈N defined by xi+1 := expxi

(−∇f (xi) /L), the following
equation holds:

lim
i→∞

‖∇f(xi)‖ = inf
x∈M

‖∇f(x)‖ = sup
ξ∈M∞

−f∞ (ξ) = −f∞
(

lim
i→∞

xi

)

,

where the last limit exists in the sense of the cone topology.

One motive for studying unbounded convex functions on Hadamard manifolds
is non-commutative optimization [1], which minimizes the logarithm of the vector
norm over an orbit of a rational representation of a reductive algebraic group acting
on V ∼= CN . Its objective function f is unbounded and infx∈M ‖∇f(x)‖ > 0 iff
the closure of the orbit has the origin 0 ∈ V ; this case is called unstable in terms
of geometric invariant theory. The (un)stability determination via the gradient
descent is proposed in [1], and our result provides a theoretical foundation for the
behavior of the gradient descent in the unstable case. Especially, limi→∞ xi ∈M∞

corresponds to the maximum destabilizing 1-parameter subgroup in this case, and
one open problem is to construct an algorithm to compute it with some complexity
bounds.
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Algorithmic Aspects of Semistability of Quiver Representations

Tasuku Soma

(joint work with Yuni Iwamasa, Taihei Oki)

Let V be a representation of an acyclic quiver Q = (Q0, Q1) with dimension vector
α. Consider a natural action of GL(Q,α) =

∏

i∈Q0
GL(α(i)) given by (g ·V )(a) =

ghaV (a)g−1
ta for each arc a. For a weight σ ∈ ZQ0 , a representation V is said to

be σ-semistable if the orbit closure of (V, 1) does not contain the origin, where
the action on C is given by the multiplicative character χσ(g) =

∏

i∈Q0
det(gi)

σ(i).

King [8] characterized the σ-semistability of V with a finite linear system: V is σ-
semistable if and only if σ(dim V ) = 0 and σ(dimW ) ≤ 0 for any subrepresentation
W ≤ V , where σ(dim V ) =

∑

i∈Q0
σ(i) dim V (i). The σ-semistability of quiver

representations captures operator scaling [7, 6, 4, 1], membership problem in the
Brascamp–Lieb polytope [5], which have attracted much interest in theoretical
computer science and combinatorial optimization in the last decade.

In this talk, we present efficient algorithms for several fundamental compu-
tational problems on the semistability of quiver representations: deciding the
semistability and σ-semistability, finding the maximizers of King’s criterion, and
computing the Harder–Narasimhan filtration. We also investigate a class of poly-
hedral cones defined by the linear system in King’s criterion, which we refer to
as King cones. For rank-one representations, we demonstrate that these King
cones can be encoded by submodular flow polytopes, enabling us to decide the σ-
semistability in strongly polynomial time. Our approach employs submodularity
in quiver representations, which may be of independent interest.

More broadly, quiver representations form a rich subclass of geometric invari-
ant theory (GIT). [2] devised deterministic algorithms for the general setting of
GIT, but they are not always polynomial-time algorithms. Our results show that
the semistability of quiver representations forms a tractable class of general GIT
problems due to the underlying submodular structure.

The full version of the paper is available at https://arxiv.org/abs/2407.

06493.
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Ehrhart theory on periodic graphs

Yusuke Nakamura

An n-dimensional periodic graph (Γ, L) is a pair of a directed graph Γ (that may
have loops and multiple edges) and a free abelian group L of rank n such that L
freely acts on Γ and its quotient graph Γ/L is finite. For a vertex x0 of Γ, the growth
sequence (sΓ,x0,i)i≥0 (resp. cumulative growth sequence (bΓ,x0,i)i≥0) is defined as
the number of vertices of Γ whose distance from x0 is i (resp. at most i). Periodic
graphs naturally appear in crystallography, as periodic tilings in combinatorics,
and as Cayley graphs of virtually abelian groups in geometric group theory.

In [3], Grosse-Kunstleve, Brunner and Sloane conjectured that the growth se-
quences of periodic graphs are of quasi-polynomial type, i.e., there exist an integer
M and a quasi-polynomial fs : Z → Z such that sΓ,x0,i = fs(i) holds for any
i ≥M . In [7], the author, Sakamoto, Mase, and Nakagawa prove that this conjec-
ture is true for any periodic graphs.

Theorem 1 ([7]). The growth sequences of periodic graphs are of quasi-polynomial
type.

Although it was proved to be of quasi-polynomial type, determining the ex-
plicit formulae of growth sequences is still difficult. In [5], Takuya Inoue and the
author give an algorithm to compute the explicit formulae of growth sequences.
Theoretically, our algorithm can be applied to arbitrary periodic graphs of any
dimension. In the two-dimensional case, it is relatively simple to implement our
algorithm into a computer program, and using the computer program, the growth
sequences of some new examples can be computed. In higher dimensions, although
it is possible to implement the algorithm in a computer program, it is sometimes
not practical. Finding a better algorithm is one of the future work.

In [1], Benson proves that the growth sequences of virtually abelian groups are
quasi-polynomial type. Theorem 1 can be seen as a generalization of Benson’s
theorem, since the Cayley graphs of virtually abelian groups are periodic graphs.
In the proof of Theorem 1, we use the commutative monoid theory, and the proof
is essentially different from Benson’s original proof, where he uses his theory of
“polyhedral sets”. In [6], the author proves the rationality of the multivariate
relative growth series for algebraic sets of virtually abelian groups. This result is
a variant of Benson’s theorem, and it had been conjectured by Evetts and Levine
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[2]. We believe that the studies on periodic graphs still have the potential for
further applications to similar studies of virtually abelian groups.

In Ehrhart theory, for a rational polytope Q ⊂ RN , it is proved that the function

hQ : Z≥0 → Z≥0; i 7→ #
(
iQ ∩ ZN

)

is a quasi-polynomial on i ≥ 0. In [4], for a rational polytope Q ⊂ RN with 0 ∈ Q,
we construct a periodic graph (ΓQ,Z

N ) such that its cumulative growth sequence
bΓQ,0,i coincides with hQ(i). Therefore, we can say that the study of the growth
sequences of periodic graphs essentially contains the Ehrhart theory of rational
polytopes Q satisfying 0 ∈ Q. Since the cumulative growth sequence (bΓQ,0,i)i is
a quasi-polynomial on i ≥ 0, the following natural question arises.

Question 1. Find a reasonable class P of pairs (Γ, x0) that consist of a periodic
graph Γ and one of its vertices x0 such that

• P contains the class {(ΓQ, 0) | Q is a rational polytope with 0 ∈ Q}, and
• for any (Γ, x0) ∈ P , the sequence (bΓ,x0,i)i is an honest quasi-polynomial

(i.e. a quasi-polynomial on i ≥ 0).

Note that, unlike the case of Ehrhart theory, the growth sequences of periodic
graphs in general are not necessarily quasi-polynomials, and they may have finite
exceptional terms. However, it has been observed that for some highly symmetric
periodic graphs, they are often honest quasi-polynomials. The intention of this
question is to describe the properties of such good periodic graphs.

Another important topic of Ehrhart theory is the reciprocity law. When we
think of the function hQ as a quasi-polynomial and substitute a negative value
for it, we have hQ(−i) = (−1)dimQ#

(
i · relint(Q) ∩ ZN

)
for i > 0. In the growth

sequences of some n-dimensional periodic graphs, it has been observed that they
sometimes satisfy the equations

(♦) fb(−i) = (−1)nfb(i− 1), fs(−i) = (−1)n+1fs(i),

where fb and fs are the corresponding quasi-polynomials to the sequences (bΓ,x0,i)i
and (sΓ,x0,i)i. These equations in (♦) are consistent with the reciprocity laws of
reflexive polytopes. Thus, the following natural question arises.

Question 2. Find a reasonable class P ′ of pairs (Γ, x0) such that

• P ′ contains the class {(ΓQ, 0) | Q is a reflexive polytope}, and
• for any (Γ, x0) ∈ P ′, its growth sequence satisfies the reciprocity laws (♦).

In [4], Takuya Inoue and the author give answers to Questions 1 and 2.
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Discrete Integrable Systems:A Matrix Decomposition Approach

Satoshi Tsujimoto

We will provide an overview of discrete integrable systems and their analysis based
on matrix decomposition. In particular, the aim is to clarity the structure of dis-
crete integrable systems through matrix decomposition using spectral-preserving
deformations.

Discrete integrable systems include specific examples such as the KdV lattice
and Lotka-Volterra lattice, which are nonlinear yet possess exact solutions with a
large degree of freedom[1, 2]. These systems are closely related to the theory of
orthogonal polynomials using Jacobi matrices, and they can be analyzed through
spectral transformations and matrix decomposition[3, 4].

Furthermore, by performing ultra-discretization, one can obtain the box-ball
system (a cellular automaton) as a limiting case of integrable systems, allowing for
a simplified description of soliton dynamics[5, 6]. Such discretization is also ben-
eficial for numerical computations, where subtraction-free computation schemes
contribute to improved numerical stability.

This study utilizes matrix decomposition to analyze integrable systems and
develops numerical computation methods that preserve their structure. In partic-
ular, d-qd and dlv algorithms for singular value computation have been shown to
be effective in the analysis of integrable systems.

As highlighted above, research on discrete integrable systems enables the devel-
opment of new analytical methods through orthogonal polynomials, matrix decom-
position, and ultra-discretization, further contributing to applications in numerical
computation and mathematical modeling[7, 8, 9].
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A hypergeometric view on Landau singularity

Saiei-Jaeyeong Matsubara-Heo

Let Z be a smooth affine complex variety, f : (C∗)n×Z → C be a regular function,
and let s, ν1, . . . , νn ∈ C be generic parameters. In perturbative quantum field
theory (pQFT), one often considers an integral of the following kind:

(1) IΓ(z; s, ν) :=

∫

Γ

f(x; z)−sxν11 · · ·xνnn
dx1 ∧ · · · ∧ dxn

x1 · · ·xn
,

known as the Lee-Pomeransky representation of a Feynman integral ([6]). Here,
we do not specify the integration contour Γ. In pQFT, one considers a graph
called a Feynman diagram and associate to it a graph polynomial f called Lee-
Pomeransky polynomial ([9]). A simple example of f in physics could be the
following one: consider the so-called bubble graph

p –p

m1

m2

where m1,m2 are scalar parameters and p ∈ RD is a D-dimensional vector Let
M := p2 be the Lorenzian self inner product of p. The associated Lee-Pomeransky
integral is f(x1, x2;m1,m2,M) := (1−m1x1 −m2x2)(x−1

1 + x−1
2 ) +M . Thus, we

take Z as C3 = SpecC[m1,m2,M ] in this example.

Problem. Describe the locus where the integral (1) develops singularity.

Such a locus is called Landau variety since it dates back to the work [5]. In
the case of bubble graph example, the following process captures a large part of
singularity: consider a subvariety of (C∗)2 × C3 defined by

(2) D := {(x, z) ∈ (C∗)2 × Z | f(x, z) = 0, dxf(x, z) = 0}.
Let π : (C∗)2 × Z → Z be a projection. The Zariski closure ∇f of the projection
π(D) is an irreducible hypersurface defined by an identity {λ(m1,m2,M) = 0},
where λ(m1,m2,M) = m2

1+m2
2+M2−2m1m2−2m1M−2m2M . In fact, the locus

where the integral (1) diverges is precisely given by {m1m2Mλ(m1,m2,M) = 0}.
For a general f : (C∗)n × Z → C, one can still define D by (2) and discuss ∇f .

If f is suitably non-degenerate with respect to its Newton polytope, ∇f is known
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as the principal A-determinant ([3]). However in physics, most of the examples
are degenerate and quite often, the equality ∇f = Z holds, which does not give
rise to any component of Landau variety.

In order to treat such degenerate examples, an analytic point of view offers
a new perspective. Namely, we consider a system of differential equations that
annihilates (1) and extract Landau variety out of it. Let DZ be the ring of linear
differential operators on Z. We define a left ideal ofDZ by I :=

⋂

Γ

AnnDZ
IΓ(z; s, ν)

and call it a hypergeometric system. The definition of the hypergeometric system
looks abstract at a glance. However, if we enlarge the ring, it turns out that we
obtain a complete description. To do so, we regard s, νi as symbols, rather than
numbers. Let ν0 := s and let Rpol denote the non-commutative ring generated by
elements νj , σ

±1
j (j = 0, . . . , n) with relations

(3) [σi, νj] = δijσj , [σ−1
i , νj ] = −δijσj , [σi, σj ] = 0, [νi, νj ] = 0,

where δij denotes Kronecker’s delta. Each σνi corresponds to the forward shift
νi 7→ νi + 1. Let K be the field of rational functions in νi’s. We set R :=
K ⊗C[ν0,...,νn] R

pol, which also has a natural ring structure induced by that of

Rpol. Finally, we set DD := DZ ⊗C R, which is again a ring. Now we set J :=
⋂

Γ

AnnDDIΓ(z; s, ν). A special case of the following theorem when Z is a point is

obtained in [8]. For simplicity, let us assume Z = CN = SpecC[z1, . . . , zN ] below.

Theorem 1. J is generated by the following operators:

(4) 1 − σsf(σν ; z), νi − sσsσνi
∂f

∂xi
(σν ; z), ∂zj + sσs

∂f

∂zj
(σν ; z).

Therefore, I is obtained as a non-commutative elimination I = J ∩ DZ . A
crucial point is that these generators give rise to a commutative elimination picture
of Landau variety. The connection to commutative algebra tells us properties of
Landau variety. For a fixed z ∈ Z, let us consider likelihood equations:

(5)

{

(y, x) ∈ Cn+1 | 1 − yf(x; z) = νi − syxi
∂f

∂xi
(x; z) = 0 (i = 1, . . . , n)

}

.

Note that the defining equations of (5) is a commutative version of the first n+ 1
operators of (4). Namely, the former is obtained from the latter by by a re-
placement σs → y, σνi → xi. The cardinality of the set (5) is independent of a
choice of generic s, νi and it coincides with the Euler characteristic of the van-
ishing locus V (f(·, z)) ⊂ (C∗)n of f for a fixed z ([4]). A locally constant func-
tion χ : Z ∋ z 7→ |χ(V (f(·, z)))| ∈ Z≥0 defines the Euler discriminant (locus).
∇χ(Z) := {z ∈ Z | χz < maxχz}. Euler discriminant is a generalization of the
principal A-determinant ([1]) and re-discovered in a study of Landau variety as
a candidate for Landau variety ([2]). The following result proves that the Euler
discriminant is indeed the Landau variety ([7]):

Theorem 2. ∇χ(Z) is purely one-codimensional in Z unless it is empty and
coincides with Landau variety.
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To state the actual elimination formula of Landau variety, we realize that we
should work on a cotangent bundle T ∗Z = CN × CN whose ring of regular func-
tions is OT∗Z = C[z1, . . . , zN , ξ1, . . . , ξN ], where ξi is the cotangent coordinates.
Consider an ideal J0 ⊂ C[y, x] ⊗C OT∗Z generated by

1 − yf(x; z), νi − syxi
∂f

∂xi
(x), ξj + sy

∂f

∂zj
(x; z).

The generators of J0 are obtained from (4) by a replacement σs → y, σνi →
xi, ∂j → ξj . Now we set I0 := J0 ∩ OT∗Z . It is a technical part that one has to
take the associated graded gr(I0) ⊂ OT∗Z of I0 with respect to the grading so
that zi has degree 0 and ξi has degree one. We set CN × {0} =: T ∗

ZZ ⊂ T ∗Z. Let
̟ : T ∗Z = CN × CN → CN = Z be the projection to the first N coordinates.

Theorem 3. The set ̟ (V (gr(I0)) \ T ∗
ZZ) is a closed algebraic subvariety of Z

and coincides with Landau variety.

The following diagram is called a sunrise/sunset diagram.

p –p

m1

m2

m3

The landau variety is given by {(m1,m2,m3,M) ∈ C4 | m1m2m3M∆(m1,m2,
m3,M) = 0}, where ∆(m1,m2,m3,M) is given by

∆(m1,m2, m3,M)(6)

=m
4
1 − 4m3

1m2 + 6m2
1m

2
2 − 4m1m

3
2 +m

4
2 − 4m3

1m3 + 4m2
1m2m3

+ 4m1m
2
2m3 − 4m3

2m3 + 6m2
1m

2
3 + 4m1m2m

2
3 + 6m2

2m
2
3 − 4m1m

3
3

− 4m2m
3
3 +m

4
3 − 4m3

1M + 4m2
1m2M + 4m1m

2
2M − 4m3

2M + 4m2
1m3M

− 40m1m2m3M + 4m2
2m3M + 4m1m

2
3M + 4m2m

2
3M − 4m3

3M + 6m2
1M

2

+ 4m1m2M
2 + 6m2

2M
2 + 4m1m3M

2 + 4m2m3M
2 + 6m2

3M
2
− 4m1M

3

− 4m2M
3
− 4m3M

3 +M
4
.

It is still open how to encode the combinatorics of a Feynman diagram to Landau
variety. Does it contributes to the irreducible decomposition of the Landau variety
as suggested by the method [2]?
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Holonomic methods in optimization, statistics, and machine learning

Nobuki Takayama

Definition 1. (I.N.Bernstein=J.Bernstein, 1972) Let I be a left ideal of the Weyl
algebra Dn = C〈x1, . . . , xn, ∂1, . . . , ∂n〉. Put Fk =

⊕

α1+···+αn+β1+···+βn≤k Cx
α∂β

and H(k) = dimC
Fk

Fk∩I . If the degree of the polynomial H(k) is n, we call I a

holonomic ideal.

Any holonomic ideal I contains ordinary differential operators for all directions
of the form

(1)

ri∑

k=0

sik(x)∂ki , sik(x) ∈ C[x], i = 1, . . . , n.

The opposite is not necessarily true, but we have the following theorem.

Theorem 2. (see, e.g., [7, Appendix]) Let Rn = C(x)〈∂1, . . . , ∂n〉 be the ring of
differential operators with rational function coefficients and J 6= Rn, 〈0〉 a left ideal
generated by operators of the form (1) of Rn. Then, J ∩Dn is a holonomic ideal
of Dn.

A classical function that is annihilated by a holonomic ideal is called a holonomic
function. It follows from the Theorem above that a classical function annihilated
by ordinary differential operators for all directions is a holonomic function. A
distribution that is annihilated by a holonomic ideal is called a holonomic distri-
bution.

Theorem 3. [1]

(1) The degree of the Hilbert polynomial of a left ideal I ( Dn of Dn is equal
to n or more than n.

(2) If I is a holonomic ideal in Dn, then (I+xnDn)∩Dn−1 (restriction ideal)
and (I + ∂nDn) ∩Dn−1 (integration ideal) are holonomic ideals in Dn−1.

We have the following fact from the theorem; if a rapidly descreasing function
f is annihilated by a holonomic ideal I ⊂ Dn, then the n − 1 variables x′ func-
tion g(x′) :=

∫∞

−∞ f(x)dxn is annihilated by the integration ideal. Algorithms to

construct integration ideals have been studied by several people (see, e.g., [3], [2],
[5] and references therein). A lot of normalizing constants in statistics are ex-
pressed as definite integrals with parameters. Thus, we can apply Theorem 3 and
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these algorithms to evaluate normalizing constants by solving numerically ordinary
differential equations in integration ideals. This method is called the holonomic
gradient method (HGM) (see, e.g., a list of papers on HGM for optimization,
statistics, physics, and machine learning at [6]).

Now, we discuss on a statitical model with parameters. Let m be the number
of parameters θ and n be the size of the data vector x. We consider a holonomic
function u(θ, x) on Rm+n or a product u(θ, x) of a holonomic function and a delta
function whose support is a real algebrac manifold or a Heaviside function whose
support is a semi-algebraic set. We suppose that the holonomic function is smooth
and non-negative on the support of the associated delta function or Heaviside func-
tion. We also suppose that the normalizing constant

∫

Rn u(θ, x)dx is annihilated by
the integration ideal. We call such distribution u(θ, x) an unnormalized holonomic
distribution.

Theorem 4. For an unnormalized holonomic distribution u(θ, x), the maximal
likelihood estimation with respect to u(θ, x) and data in the x space can be described
by a dynamical system.

Example 5. The unnormalized Von-Mises distribution on S1 ∋ x (which is the
angle that represents a coordinate of S1 ⊂ R2) is

u(θ, x) = exp(θ1 cosx+ θ2 sinx) = exp(θ1x1 + θ2x2)δ(x21 + x22 − 1)

where (x1, x2) is the coordinate of R2. The normalizing constant is

Z(θ) =

∫ 2π

0

exp(θ1 cosx+ θ2 sinx)dx.

Put F = (Z, ∂1Z)T , ∂i = ∂/∂θi. It satisfies

∂F

∂θ1
=

(
0 1
θ2

1

θ2

1
+θ2

2

θ2

2
−θ2

1

θ1(θ2

1
+θ2

2
)

)

F =: P1F

∂F

∂θ2
=

(

0 θ2/θ1
θ1θ2
θ2

1
+θ2

2

−2θ2
θ2

1
+θ2

2

)

F =: P2F

Let Xi, i = 1, . . . , N be observed data. The maximal likelihood estimation (MLE)
is to find θ which maximizes the log likelihood

f = log ℓ(θ;X) = log

N∏

i=1

u(θ,Xi)

Z(θ)
.
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Figure 1. Vector field on (θ1, θ2) space

It follows from [4, Prop 3.7] and our holonomic approach that the MLE is a point

such that θ̇1 = 0, θ̇2 = 0 of the following system of ordinary differential equations

θ̇1 = =

N∑

i=1

cos(Xi) −N
(P1F )1
F1

θ̇2 = =

N∑

i=1

sin(Xi) −N
(P2F )1
F1

Ḟi =

(
N∑

i=1

cos(Xi) −N
(P1F )1
F1

)

(P1F )i +

(
N∑

i=1

sin(Xi) −N
(P2F )1
F1

)

(P2F )i

where the subscript i denotes the i-th element of a vector. Figure 1 is a vector
field for a wind direction dataset.

Open questions are

(1) When the target function f is convex, develop an algorithm to find an
orbit that converges to a point standing for the optimal point of the target
function.

(2) Describe a global structure of the dynamical system of Theorem 4.

Note that the first question is not trivial when there is no closed form of the nor-
malizing constant, because numerical errors of evaluating the normalizing constant
may produce a wrong orbit.
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Alternating Projections in Low Dimensions

Yoshiyuki Sekiguchi

(joint work with Hiroyuki Ochiai, Hayato Waki)

Alternating projections is an algorithm for finding a point in the intersection of
two sets by projection a point onto each set alternatingly. We consider an affine
subspace of the space of symmetric matrices and the cone Sn+ of positive semidef-
inite matrices. It is known that if the intersection of these two sets is transversal,
the convergence rate is linear. If the intersection is non-transversal, then the rate
is sublinear. [2] provided an upper bound on the rate using the singularity degree
of an affine subspace and Sn+.

The singularity degree is an integer defined as the smallest number of steps
in the facial reduction process, required to construct an exposing vector for the
minimal face of Sn+ that contains the intersection of an affine subspace and Sn+. In
addition to the convergence rate of alternating projections, singularity degree can
be used to express the exponent for a separation inequality for an affine subspace
and Sn+. A similar separation inequality holds for complex algebraic sets, where the
exponent is determined by the degrees of the algebraic sets [1, 3]. This suggests a
connection between singularity degree and algebraic geometry. Motivated by this
observation, I propose the following problem.

Problem. Is there a quantity in algebraic geometry that can provide a dimension-
free exponent for the separation inequality for an affine subspace and Sn+?

The exponent of the separation inequality is used to express the convergence
rate of the alternating projections. Beyond the intrinsic importance of convergence
analysis, we examine the tightness of the convergence rate given by singularity de-
gree to obtain some insights on singularity degree. To this end, we analyze alter-
nating projections in low dimensions, and aim to develop a deeper understanding
of the algorithm. The following results are extracted from our papers [4, 5].

First, we derive a formula that expresses the new parameters in terms of the
old parameters and eigenvalues of a parametric matrix that corresponds to the
sequence generated by alternating projections. Applying this eigenvalue formula,
we show that if alternating projections are applied to a 1-dimensional affine sub-
space and Sn+ whose intersection is a singleton, the convergence rate of alternating

projections is bounded above by O(k−1/2), independently of the singularity degree
of the intersection. Furthermore, we use the eigenvalue formula to construct an
example of 2-dimensional affine subspace where the singularity degree is 1, but the
convergence rate remains linear.

https://www.math.kobe-u.ac.jp/OpenXM/Math/ref-hgm.html
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Under additional assumptions, we derive a formula for alternating projections
that allows us to construct the slowest curve for alternating projections. Applying
the formula to a specific affine subspace and we explicitly construct the corre-
sponding slowest curve. To extend this result to a general affine subspace, we
parameterize a family of 3-planes whose intersection with S3+ is a singleton. This
parametrization provides geometric insights into the structure of such planes and
their singularity degrees. Then we obtain a rational formula for the slowest curve
for a subfamily of these planes. This rational formula also determines the exact
image of one step of alternating projections up to degree 7. Moreover, if the inter-
section of a 3-plane and S3+ is a singleton with singularity degree 2, we show that
the convergence rate predicted by singularity degree is tight using this rational
formula.
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Closing nonzero duality gap of singular SDP by perturbation

Takashi Tsuchiya

(joint work with Bruno F. Lourenço, Masakazu Muramatsu, Takayuki Okuno)

Consider the standard form dual pair of semidefinite programs:

min
X

C •X s.t. Ai •X = bi, i = 1, . . . ,m, X � 0(P)

max
y,S

bT y s.t. C −
m∑

i=1

Aiyi = S, S � 0,(D)

where C, Ai, i = 1, . . . ,m, X , and S are real symmetric n×n matrices and y ∈ ℜm.
We denote the optimal values of P and D by v(P) and v(D), respectively.

Suppose that P and D have a nonzero finite duality gap. This implies that P
and D are weakly feasible. It is hard to solve such SDP problems because the
exsiting algorithms for SDP only work under the condition that both P and D are
strongly feasible, i.e., Slater’s condition is satisfied.

A simple practical idea to solve P and D under such a circumstance is to perturb
the problems so that both perturbed primal and dual are strongly feasible. The
perturbed pair are primal-dual strongly feasible and therefore share common a
optimal value. Since the original unperturbed problems have different optimal
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values, it is interesting to analyze the behavior of the common optimal value of
the perturbed problems when perturbation is reduced to zero.

To implement this idea, we consider the following perturbed problems

Regularized Primal-Dual Standard Form SDP (RPD-SDP)

(1) P(ε, η) : min
X

(C + εI) •X s.t. Ai •X = bi + ηAi • I, i = 1, . . . ,m, X � 0

and

(2) D(ε, η) : max
y,S

m∑

i=1

(bi + ηAi • I)yi s.t. C −
m∑

i=1

Aiyi + εI = S, S � 0,

where I denotes the n × n identity matrix. We call the pair (1) and (2) the
Regularized Primal-Dual Standard Form SDP or RPD-SDP for short. P(ε, η) and
D(ε, η) reduce to P and D when ε and η are set to zero. RPD-SDP is obtained
by relaxing the semidefinite constraints X � 0 of P and S � 0 of D to X � −ηI
and S � −εI, respectively, and by redefining X := X + ηI and S := S + εI.

Under the assumption that P and D are weakly feasible, the perturbed problems
admit interior feasible solutions for any ε > 0 and η > 0, so, in this sense, the lack
of interior solutions of P and D is fixed. However, this is only useful if something
can be said about how the optimal values of D(ǫ, η) and P(ǫ, η) relate to the
optimal values of the original P and D.

For ε > 0 and η > 0, both (1) and (2) are strongly feasible, so they have optimal
solutions and a common optimal value, which we denote by v(ε, η). v is referred
to as pd-regularized optimal value function. We note that v(ε, 0) and v(0, η) are
also well-defined for any ε > 0 and η > 0, since P(ε, 0) and D(0, η) have interior
feasible solution for any ε > 0 and η > 0 and there is no duality gap in these cases
according to the standard duality theory for convex programming.

But v(0, 0) is different since it is not well-defined when there exists a finite
nonzero duality gap, and ironically, the value of v(0, 0) is what we really wish to
compute.

We have recently analyzed the behavior of the pd-regularized optimal value
function v(ε, η) in the neighbourhood of (ε, η) = (0, 0) and demonstrated that
v(ε, η) have a directional limit when approaching to (0, 0). Let us define the
directional limit

(3) va(θ) := lim
t↓0

v(t cos θ, t sin θ)

as a function of the direction of approach. The function va is referred to as limiting
pd-regularized optimal value function. Then, the following theorem holds.

Theorem 1. [1] If P and D are feasible, the limiting pd-regularized optimal value
function va(θ) has the following properties.

(1) va(0) = v(P), va(π/2) = v(D).
(2) va(θ) is monotone decreasing in [0, π/2] and is continuous on (0, π/2).

Theorem 1 shows that va(θ) is a monotone decreasing function whose value is
between v(P) and v(D) and it is continuous in the open interval (0, π/2) but may
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be discontinuous at θ = 0 and/or θ = π/2. The following theorem in [2] shows
that continuity holds at the both θ = 0 and θ = π/2 when the singularity degree
of the both problems P and D is one.

Theorem 2. [2] Suppose that P and D have a finite nonzero duality gap. If
the singularity degree of both P and D is one, then va(θ) is continuous at θ = 0
and θ = π/2. Furthermore, va is a monotonically decreasing continuous bijective
function from [0, π/2] to [v(D), v(P)].

In [2] an instance is given for which va is discontinuous at θ = π/2. The
singularity degree of the instance is 2.

In the talk, we introduced these results together with further open problems
including extensions to general convex programs and possible variable transforma-
tions to recover continuity of va for SDPs with higher singularity degree.

References

[1] Takashi Tsuchiya, Bruno F. Lourenço, Masakazu Muramatsu and Takayuki Okuno: A limit-
ing analysis on regularization of singular SDP and its implication to infeasible interior-point
algorithms. Mathematical Programming, Vol. 200 (2023), pp. 531–568.

[2] Takashi Tsuchiya, Bruno F. Lourenço, Masakazu Muramatsu and Takayuki Okuno: Clos-
ing duality gaps of SDPs completely through perturbation when singularity degree is one.
Optimization Methods and Software, Vol. 39 (2024), pp. 1040–1067.

Open Problems

Unsatisfiable Boolean formulas and the Komlós conjecture
Contributed by Dmitriy (Tim) Kunisky

The startlingly simple-looking Komlós conjecture is one of the main open problems
in the field of discrepancy theory and has remained open for at least 30 years. The
conjecture states that there exists an absolute constant K > 0 such that, for any
u1, . . . , um ∈ Rn, there exist x1, . . . , xm ∈ {±1} having ‖∑m

i=1 xiui‖∞ ≤ K. The
conjecture proposes a dimension-free bound, while the best known bound due to
Banaszczyk (1998) scales, in the case m = n, as

√
logn. In the recent work [1],

the author showed the lower bound K ≥ 1 +
√

2, which remains the best known.
This comes from a construction of “bad” vectors u1, . . . , um based on unsatisfi-
able Boolean formulas: roughly, each vector ui corresponds to a variable, each
index j ∈ {1, . . . , n} to a clause, and the unsatisfiability of the formula trans-
lates to stating that, for all x1, . . . , xm ∈ {±1}, at least one entry of

∑m
i=1 xiui is

large. The unsatisfiable formulas that would give the best lower bound on K are
those that are, in a certain quantitative sense, as close as possible to “regular,”
with each clause having roughly the same number of variables and each variable
occurring in roughly the same number of clauses. Can such constructions of dis-
crepancy instances ever exceed the lower bound 1 +

√
2? More generally, how can

we understand the extremal combinatorics of unsatisfiable Boolean formulas?
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Zeros of Low-Degree, Low-Influence Polynomials on the Boolean
Hypercube

Contributed by Per Austrin

For a degree-d multilinear polynomial

f(x) =
∑

S⊆[n]
|S|≤d

fS
∏

i∈S

xi

in n variables x1, . . . , xn with real-valued coefficients {fS}, the (relative) influence
of xi on f is the squared ℓ2 mass of coefficients fS of terms containing xi, relative
to the total squared ℓ2 mass, i.e.,

RelInfi(f) =
∑

S⊆[n]
i∈S

f2
S

/
∑

S⊆[n]

f2
S .

Problem. Let f and g be two degree-d multilinear polynomials such that

max
i

(RelInfi(f),RelInfi(g)) ≤ δ.

How small does δ need to be in order to guarantee that there is an x ∈ {−1, 1}n
where both f(x) 6= 0 and g(x) 6= 0?

The condition of bounded influences can be viewed as a kind of smoothness
condition on f and g, saying that no individual variable plays a large role. The
condition of f(x) 6= 0 and g(x) 6= 0 is equivalent with saying that the union of the
roots of f and g does not cover the entire Boolean hypercube.

It is known that it is sufficient to take δ ≤ 2−d/d, and that there are examples
which shows that we need to take δ ≤ 1/d2. The main question is whether δ can
be taken to be some polynomial in d. Further reading, including these known
bounds, can be found in [1].
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Number of connected components of the set of real zeros of two
multi-affine polynomials?

Contributed by Saugata Basu (joint work with Daniel Perruccii)

It is a classical result originally due to Olĕınik and I. G. Petrovskĭı [1] that the
number of connected components of a real algebraic set in Rn defined by any
finite set of real polynomials of degrees at most d is bounded by d(2d−1)n−1. This
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bound grows exponentially with n and this exponential dependence is unavoidable.
In [2] it is proved that if P ∈ R[X1, . . . , Xn] is a multi-affine polynomial (i.e.
degXi

(P ) ≤ 1 for 1 ≤ i ≤ n), then the number of connected components of

the real zeros of P is bounded by 2d−1. This bound is independent of n and is
tight. It is also shown in the same paper that there exist for each n, k, k ≤ n,
three multi-affine polynomials of degrees bounded by 4, such that the number of
connected components of their common real zeros is equal to

(
n
k

)
. Thus, it is not

possible to obtain a bound on the number of connected components of the real
zeros of a system of three real multi-affine polynomials in terms of their degrees
only, independent of n.

Problem. Does there exist a bound on the number of connected components of
the real zeros of a system of two multi-affine polynomials in terms of a bound on
their degrees, independent of n ?
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Sum-of-Squares certificates for non-negativity of Quadratics
Contributed by Grigoriy Blekherman

Let A1 and A2 be two n × n symmetric real matrices, and let Q1 and Q2 be
the corresponding quadratic forms Qi(x) = xtAix. It is well known that Q1 is
nonnegative on the variety defined V defined by vanishing of Q2 if and only if
there exists a scalar λ such that the matrix A1 +λA2 is positive semidefinite. This
was rediscovered several times, and sometimes goes under the name of S-lemma.
What happens if we instead ask for certificate of nonnegativity of Q1 on the variety
defined by two quadratics Q2 and Q3? If there exist two scalar λ2, λ3 such that
A1+λ2A2+λ3A3 is positive semidefinite, then this will certify nonnegativity of Q1,
but existence of λi is no longer guaranteed. Instead we can look for higher degree
certificates: find a sum of squares homogeneous polynomial P and homogeneous
polynomials R2 and R3 all of degree 2d such that PQ1 +R2Q2 +R3Q3 is a sum of
squares. The previously considered certificate had degree 2d equal to 0, and now
we ask in what degree 2d is this certificate guaranteed to exist? Is the degree 2d
of the certificate independent of the number of variables n?

Separations of affine sets and psd matrices
Contributed by Yoshiyuki Sekiguchi

Problem. Is there any quantity in algebraic geometry that can be used to express
a dimension-free exponent for separation of an affine set and the set of positive
semidefinite matrices? Is there a symbolic or a randomized algorithm to give such
an exponent?
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A separation inequality is an inequality in the following form:

dist(z,X) + dist(z, Y ) ≥ c ·
(

dist(z,X ∩ Y )

1 + |z|2
)γ

, for all z ∈ Kn.

For complex algebraic sets X,Y ⊂ Cn, Cygan [2] showed that this inequality holds
with γ = degX · deg Y for all z ∈ Cn. Let n be the dimension of the ambient
space, d be the singularity degree of E ∩ Sn+, D be the maximum degree of the

defining polynomials, and β(s) =
(

s
⌊s/2⌋

)
. Variations of the separation inequality

have been shown with the exponents in the table below.

Complex Algebraic sets [2] degX · deg Y
Real Algebraic sets [5] D(6D − 3)n−1

Convex semialgebraic sets [1] min
{

(2D−1)n+1
2 , β(n− 1)Dn

}

Affine subsp. and Sn+ [6, 3] 2d

Polyhedra [4] 1
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Structure of Euler discriminants
Contributed by Saiei-Jaeyeong Matsubara-Heo

Discriminants is a classical yet developing notion. We consider a family of complex
varieties π : X → Z. For a given z ∈ Z, the symbol χz denotes the absolute
value of the topological Euler characteristic of the fiber of π over z. The function
Z ∋ z 7→ χz ∈ Z takes a constant value at a generic point of Z. This value is
denoted by χ∗. The Euler descriminant locus ∇π

χ(Z) is the Zariski closure of the
following set:

{z ∈ Z | χz < χ∗}.
Since the Euler characteristic of a finite set is its cardinality, this notion generalizes
classical discriminant of a single polynomial. The definition of Euler discriminant
is quite topological, but it turns out it admits an algebraic description as in [4]. It
is also proved in [1] that Euler discriminant generalizes principal A-determinant
of Gelfand-Kapranov-Zelevinsky [2].

Compared to principal A-determinant, the description of Euler discriminant
is still cumbersome. In fact, principal A-determinant factorizes into a product
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of principal A-discriminants, which admits an elimination picture, i.e., one con-
structs an incident variety I and a projection pI : I → Z so that (the closure of)
the image pI(I) is the principal A-determinant. Can we find the same picture
for Euler discriminant? This is partially achieved in [4] for a family of very
affine hypersurfaces with the aid of likelihood equation [3]. However, it relies on a
certain compactification of the family and it is not intrinsic.
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Boite courrier 169
bureau 321
4 place Jussieu
75252 Paris Cedex 05
FRANCE

Prof. Dr. Markus Schweighofer

Fachbereich für Mathematik und
Statistik
Universität Konstanz
78457 Konstanz
GERMANY

Prof. Dr. Yoshiyuki Sekiguchi

Graduate School of Marine Science and
Technology,
Tokyo University of Marine Science and
Technology
2-1-6 Etchujima Koto
Tokyo 135-8533
JAPAN

Dr. Ettore Teixeira Turatti

Department of Mathematics and
Statistics
Faculty of Science
UiT The Arctic University of Norway
Forskningsparken 1 B425
9037 Tromsø
NORWAY

Dr. Luis Felipe Vargas

IDSIA
Via Santa 1
6962 Lugano
SWITZERLAND


