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Introduction by the Organizers

A polytope is alcoved if all its facet normals are all in the direction of (type A)
roots. In other words, alcoved polytopes are given by inequalities of the form
xi − xj ≤ aij where aij are real numbers. They appear in different fields under
different names. For example, they are also known as polytropes which are tropical
polytopes that are convex in the usual sense, and they are the Lipschitz polytopes
of non-symmetric finite metric spaces. The aim of this mini-workshop was to
connect experts working on different aspects of these polyhedra, including their
applications in physics and optimization, and collaborate on open problems.

There were 16 participants, including the four organizers. The workshop sched-
ule was structured to include dissemnation of new results as well as time for col-
laborative work. Generally we had two or three 45 minute talks in the morning,
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followed by an open problem session and working groups in the afternoons. The
focus of the presented talks included these topics:

The structure of the type fan of alcoved polytopes: The type fan of
alcoved polytopes is the space of alcoved polytopes organized by normal
equivalence. This fan is connected to theoretical particle physics and the
study of positroids. Further applications to physics were discussed in talks
on the amplituhedron and positroidal subdivisions of hypersimplices.

Discrete Convex Analysis: Applications to optimization and economics
were another cornerstone of this mini-workshop. Specifically, we would
like to mention two talks on L-convex quotients and finding minimal rep-
resentations of piecewise linear functions which is relevant for applications
in machine learning.

Ehrhart theory: Another cluster of talks centered around lattice counting
questions of alcoved polytopes such as order polytopes and the symmetric
edge polytopes. Connecting with the first block of talks there were also
two talks on recent developments concerning the Ehrhart theory of cosmo-
logical polytopes. These are lattice polytopes arising in physics that are
closely related to symmetric edge polytopes.

Among the questions proposed during the problem sessions the following four
were discussed the most:

• Analyze the structure of the type fan of alcoved polytopes further: Which
positroid polytopes or order polytopes belong to the same cone of the type
fan?
• Study the Ehrhart theory of a subclass of alcoved polytopes which are
polar dual to symmetric edge polytopes. In particular, are their h∗ vectors
γ-positive?
• Alcoved polytopes could be described by flows on a directed graph in
two ways: by support numbers or by facet volumes via the Minkowski
existence-uniqueness theorem. What is the correspondence between these
two presentations?
• How can we define quotients of L-convex sets and L-convex functions?

We formed four working groups that studied these questions during the mini-
workshop. Each of these four groups decided to continue working on these ques-
tions remotely so we hope this will eventually lead to articles that were initiated
at this mini-workshop.
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Abstracts

When alcoved polytopes add

Leonid Monin

(joint work with Nick Early, Lukas Kühne)

A polytope in Hn = {x1 + · · · + xn = 0} ⊂ Rn is alcoved if all its facet normals
are parallel to the roots ei − ej for some i 6= j ∈ [n]. Equivalently, a polytope
is alcoved if it is determined by the parameters ai,j ∈ R for 1 ≤ i, j,≤ n via the
equation x1 + · · ·+ xn = 0 and the inequalities

(1) xi − xj ≤ ai,j for all i, j ∈ [n], i 6= j.

Alcoved polytopes were introduced by Lam and Postnikov [4] and appeared
in different fields under different names. They are known in the literature as
polytropes as they are tropical polytopes which are convex in the usual sense [3].
Moreover, they are Lipschitz polytopes (for non-symmetric finite metric spaces) [2].
The class of alcoved polytopes includes order polytopes, hypersimplices, and the
associahedron.

Unlike other families of polytopes, the class alcoved polytopes is not closed
under Minkowski sums in general. This naturally raises the question when alcoved
polytopes add.

Problem 1. Let P,Q ⊆ Hn be alcoved polytopes. When is the Minkowski sum
P +Q alcoved?

We call the alcoved polytopes P and Q compatible if their sum P +Q is alcoved.

In this talk we present two results from [1] on the classification of compatible
alcoved polytopes. First we show that the compatibility of alcoved polytopes can
be checked on pairs:

Theorem 2. Let P1, . . . , Pk be alcoved polytopes in Hn. Suppose Pi and Pj are
pairwise compatible for all i 6= j ∈ [n]. Then the entire collection is compatible,
i.e., P1 + · · ·+ Pk is alcoved.

Theorem 2 can be interpreted as a statement about the type fan of alcoved poly-
topes. It claims that the he combinatorial structure of the type fan is completely
determined by its 2-dimensional cones.

As the second result, we give a characterization for the compatibility of al-
coved simplices. Up to translation and scaling, every alcoved simplex in Hn is
characterized by an ordered set partition of [n].

Theorem 3. Let S and T be two ordered set partitions of [n] corresponding to the
alcoved simplices ∆S and ∆T in Hn. The simplices ∆S and ∆T are compatible if
and only if the simplices corresponding to the restricted partitions S|I and T |I are
compatible for all I ⊂ [n] with |I| ≤ 6.
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In the case when simplices ∆S and ∆T are full-dimensional, the pair of set
partitions (S, T ) defines a cyclic permutation πS,T . In this case, Theorem 3 claims
that two full-dimensional alcoved simplices are compatible ∆S and ∆T if and only
if πS,T avoid three patterns, one of length four and two of length six:

1432, 125634 145236.
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Adventures in Configuration Space

Nick Early

The positive moduli spaceM+
0,n of n ordered points on P1 lies at the core of the

Cachazo-He-Yuan (CHY) [1] scattering equations formalism for scattering ampli-
tudes. The space M+

0,n is an associahedron, and varying over all orderings leads
to a tiling of M0,n with associahedra. Each associahedron comes equipped with
a canonical form, which has a logarithmic singularity on each face ofM0,n; such
canonical forms satisfy many interesting identities.

The CHY formula was extended by Cachazo, Early, Guevara and Mizera [2] to
the moduli space X+(3, n) of polygons in P2. Tiling the full moduli space of points
in P2 requires the theory of oriented matroids, which is known to be arbitrarily
complicated.

On the other hand, the positive configuration space X+(k, n) and its tropi-
calization are relatively well-behaved; faces of X+(k, n) are in bijection with cer-
tain regular subdivisions of the hypersimplex ∆k,n into positroid polytopes. In
particular, such faces can be represented using matroidal blade arrangements [4]
βJ1

, . . . , βJd
on the vertices eJ1

, . . . , eJd
of the hypersimplex ∆k,n.

Theorem 1. [4] We have the following:

• The blade βJ1
is a tropical hypersurface. Set theoretically, it is, up to

translation, the codimension one part of the normal fan to the alcoved
simplex x1 ≥ x2 ≥ · · · ≥ xn ≥ x1 − 1.
• The blade βJ induces a matroid subdivision of ∆k,n into ℓ Schubert matroid
polytopes, where ℓ is the number of cyclic intervals in J .
• The blade arrangement βJ1

, . . . , βJd
induces a matroid subdivision of ∆k,n

if and only if eJa
−eJb

alternates sign twice with respect to the cyclic order
(1, 2, . . . , n).
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In recent joint work with Kühne and Monin [5], we considered the problem of
a collection of blades labeled by arbitrary ordered set partitions, translated to a
vertex eJ of ∆k,n.

Theorem 2 ([5]). Suppose that S1, . . . ,Sd ∈ OSP(n) is a pairwise compatible
collection of ordered set partitions. Then the blade arrangement (S1)v, . . . (Sd)v
induces a matroid subdivision of ∆k,n, and a cone in the Dressian Dr(k, n).

An interesting further question concerns tropical realizability.

Question 1. When are the induced subdivisions realizable, i.e., when are they
induced by a realizable tropical Plücker vector?

Clearly, any single blade induces a regular matroid subdivision. But this is not
the case in general.

For an example of a blade arrangement which induces a non-realizable tropical
Plücker vector, recall that the Fano matroid polytope is a maximal face of a
matroid subdivision that is induced by a non-realizable tropical Plücker vector in
the Dressian Dr(3, 7). It is induced by the arrangement of seven affine hyperplanes.
In this case simply a collection of seven compatible two-splits of ∆3,7, induced by
(the sum of) the seven tropical Plücker vectors

e123, e145, e167, e246, e257, e347, e356 ∈ R(
7

3),

where eijk is the standard basis for R(
n

3).
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Ehrhart theory of alcoved polytopes and kinematic space

Elisabeth Bullock, Yuhan Jiang

(joint work with Nick Early)

We first describe a general method for computing the Ehrhart series of any alcoved
polytope via a particular shelling order of its alcoves. In particular:

Theorem 1. Fix an irreducible crystallographic root system Φ ⊂ V , where dim(V )
= n. Let P be an alcoved polytope and let ΓP = (V,E) be the dual graph to the
alcove triangulation of P . Pick some v0 ∈ V and orient the edges of ΓP so that for
all {u,w} ∈ E, u→ w if and only if u appears before w in the breadth-first-search
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algorithm starting at v0. There exists a weighting of the edges E and parameters
ℓ1, · · · , ℓn depending only on Φ such that the Ehrhart series of P is equal to

Ehr(P, z) =

∑
w∈V zwt(w)

∏n
i=0(1− zℓi)

where wt(w) =
∑

u→w wt((u,w)) is the sum of the weights of the ingoing edges to
w.

A family of polytopes whose h∗-polynomial has received much attention is the
hypersimplex ∆k,n. In [1], Nick Early conjectured that h∗

d is equal to the number
of decorated ordered set partitions of type ∆(k,n) with winding number d.

Definition 1 ([1]). A decorated ordered set partition ((S1, . . . , Sd), (r1, . . . , rd))
of type ∆(k,n) consists of an ordered set partition (S1, . . . , Sd) of [n] and a tu-

ple of integers (r1, . . . , rd) such that
∑d

i=1 ri = k and 1 ≤ ri ≤ |Si| − 1. We
regard them up to cyclic rotation, so ((S1)r1 , (S2)r2 , . . . , (Sd)rd) is the same as
((S2)r2 , . . . , (Sd)rd , (S1)r1).

We place each Si on a circle in clockwise fashion then think of ri as the clockwise
distance between adjacent Si and Si+1. The winding vector of a decorated ordered
set partition is an n-tuple of integers (l1, . . . , ln) such that li is the distance of the
path starting from the block containing i to the block containing (i + 1) moving
clockwise. If i and (i+ 1) are in the same block then li = 0. If l1 + · · ·+ ln = kw,
then we define the winding number to be w.

This conjecture was proved by [3] using enumerative methods. A natural ques-
tion is whether there exists a nice bijection between alcoves in the hypersimplex
and dOSPs, as well as a shelling order of the alcoves of the hypersimplex, so that
the winding number of the dOSP in a given alcove is equal to number of adjacent
alcoves occurring earlier in the shelling order. We present a conjectural answer
to this question for the hypersimplex ∆2,n using the breadth-first-search shelling
order.

Decorated ordered set partitions also correspond with certain linear functions
X(S,r) on the kinematic space Kk,n, defined as follows:

Kk,n =




(sJ) ∈ R(
n

k) :
∑

J:J∋j

sJ = 0 for all j ∈ [n]






It turns out that the set of X(S,r) where (S, r) has winding number one forms
a basis of linear functions on Kk,n [2]. We present a “straightening” formula from
our ongoing work with Early which can be used to expand a large class of the
X(S,r) into this basis. As a corollary, one can show that the size of the support of
these X(S,r) in this basis is roughly polynomial in the winding number of (S, r).
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Positroidal tilings of the hypersimplex and m = 2 amplituhedron

Melissa Sherman-Bennett

(joint work with Matteo Parisi, Ran Tessler, Lauren Williams)

In this talk, I discussed work connecting the hypersimplex and the m = 2 ampli-
tuhedron. The hypersimplex ∆k+1,n is the image of the positive Grassmannian

Gr≥0
k+1,n under the moment map. It is a polytope of dimension n−1 in Rn. Mean-

while, the amplituhedron An,k,2(Z) is the projection of the positive Grassmannian

Gr≥0
k,n into the Grassmannian Grk,k+2 under a map Z̃ induced by a positive ma-

trix Z ∈Mat>0
n,k+2. Introduced in the context of scattering amplitudes, it is not a

polytope, and has full dimension 2k inside Grk,k+2. Nevertheless, there seem to
be remarkable connections between these two objects via T-duality, as conjectured
in [2]. In [4], joint with Parisi and Williams, we use ideas from oriented matroid
theory, total positivity, and the geometry of the hypersimplex and positroid poly-
topes to obtain a deeper understanding of the amplituhedron. We show that the

inequalities cutting out positroid polytopes—images of positroid cells of Gr≥0
k+1,n

under the moment map—translate into sign conditions characterizing the T-dual

Grasstopes—images of positroid cells of Gr≥0
k,n under Z̃. Moreover, we subdivide

the amplituhedron into chambers, just as the hypersimplex can be subdivided into
simplices, with both chambers and simplices enumerated by the Eulerian num-
bers. We use these properties to prove the main conjecture of [2]: a collection of
positroid polytopes is a tiling of the hypersimplex if and only if the collection of
T-dual Grasstopes is a tiling of the amplituhedron An,k,2(Z) for all Z.

In [3], joint with Parisi, Tessler and Williams, we utilize this correspondence to
show that all tilings of An,k,2(Z) consist of the same number of tiles. This proves
the “Magic Number Conjecture” of [1] in the case of m = 2. Along the way to this
result, we also provide formulas for volumes of tree poisitroid polytopes in terms
of circular extensions of certain cyclic partial orders.
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Taking the amplituhedron to the limit

Rainer Sinn

(joint work with Joris Koefler)

Similar to the talk given by Melissa Sherman-Bennett, we consider amplituhedra

for m = 2. They are the image of the nonnegative Grassmannian by a map Z̃
defined by a real n× (k + 2) matrix Z whose maximal minors are positive (here,
the 2 is m: in general, Z is a n×(k+m) matrix) . The nonnegative Grassmannian
Gr(k, n)≥0 is the set of all k-dimensional subspaces of Rn that can be written as
the rowspan [A] of a k × n matrix A of rank k with the property that all its
maximal minors pI(A) are nonnegative (which are the Plücker coordinates of the
subspace). In symbols, we get

Gr(k, n)≥0 = {[A] ∈ Gr(k, n) : pI(A) ≥ 0 for all I ⊂ [n], |I| = k} .

A n × (k + 2) matrix Z defines the rational map Z̃ : Gr(k, n) 99K Gr(k, k + 2)
by sending a the rowspan of A to the rowspan of AZ ⊂ Rk+2. By our positivity
assumption on Z and the Cauchy-Binet formula, the matrix AZ has rank k for

all A representing a point in the nonnegative Grassmannian so that Z̃ is well-
defined on Gr(k, n)≥0. The amplituhedron An,k,2(Z) is the semi-algebraic set

Z̃ (Gr(k, n)≥0) ⊂ Gr(k, k + 2).
To take the limit of these objects for n → ∞, we pick special matrices Z,

namely those whose rows are vectors on the rational normal curve Ck+1 ⊂ Pk+1

parametrized by γk+1 : R → Pk+1, t 7→ (1 : t : t2 : . . . : tk+1). We pick n values
0 = t1 < t2 < . . . < tn = 1 in the interval [0, 1] and call this a partition of [0, 1]. We
define the limit amplituhedron A∞ as the union over all amplituhedra An,k,2(Z)

for any n and all Z with Zij = tj−1
i for any partition of [0, 1] as above. This makes

sense as subsets of Gr(k, k + 2) and A∞ is therefore a subset of Gr(k, k + 2).
The main result discussed in the presentation is the following from [1].

Theorem 1 (Koefler, Sinn). The limit amplituhedron A∞ is a simplex-like positive
geometry in Gr(k, k + 2) for any k ≥ 1.

The article [2] gives an introduction to the notion of a positive geometry, which
is recursively defined via a differential form and its residues along the (algebraic)
boundary of the set. So to check this definition, we have to describe the Euclidean
boundary ∂A∞ of the set A∞ ⊂ Gr(k, k + 2) and the Zariski closure ∂aA∞ =

∂A∞ usually called the algebraic boundary of A∞. This algebraic boundary has
codimension 1 in Gr(k, k + 2) and is the union of two Chow varieties. The Chow
variety CH(X) of a curve X ⊂ Pk+1 is the set of all subspaces Λ ⊂ Pk+1 of
codimension 2 that intersect X . It is a subset of Gr(k, k + 2) of codimension 1.

https://doi.org/10.1090/cams/23
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Theorem 2 (Koefler, Sinn). The algebraic boundary of A∞ is the union of the
Chow variety CH(Ck+1) of the rational normal curve Ck+1 ⊂ Pk+1 and the Chow
variety of the line S01 spanned by the two points γk+1(0) = (1 : 0 : 0 : . . . : 0) and
γk+1(1) = (1 : 1 : 1 : . . . : 1) in Pk+1.

The Chow variety CH(S01) has a simple description in terms of linear algebra:
it is the set of all k × (k + 2) matrices A such that the (k + 2)× (k + 2) matrix




A

γk+1(0)
γk+1(1)





has determinant 0. The expansion of this determinant is linear in the k×k minors
of A. In other words, this is a linear condition on the Plücker coordinates of A; so
geometrically, it is the intersection of Gr(k, k+2) with a hyperplane in P(ΛkCk+2).
This is an example of a Schubert variety.
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Accordion lattices and the permutoassociahedron

Daria Poliakova

(joint work with Spencer Backman, Vincent Pilaud)

In this talk we described the orientation on the graph of Kapranov’s permutoasso-
ciahedron, whose subgraphs corresponding to associahedral facets are Hasse dia-
grams of accordion lattices for all the reference n-gon triangulations. This oriented
graph is conjecturally a Hasse diagram of a bigger lattice itself.

The Stasheff associahedron K(n) is the polytope whose faces correspond to sets
of non-crossing diagonals in an n-gon (alternatively, to bracketings of n−1 letters),
with face lattice given by reverse inclusions. The edge graph of K(n) is well-known
to be the Hasse diagram of the Tamari lattice T (n). A diagonal ij can be flipped
positively to a diagonal i′j′ if i + j < i′ + j′; in the language of bracketings this
corresponds to directing associators as (AB)C → A(BC).

Accordion lattices T (D) of [6], [4], [1] have alternative orientations of associa-
hedra’s edge graphs as Hasse diagrams, depending on a reference triangulation D.
We draw D on a slightly rotated copy of our n-gon in blue, and the triangulations
of interest in red. We say that a blue angle ∠ijk is closed by a given red diagonal,
if this diagonal is the last red diagonal intersecting ij and jk, counting from j.
Now for a given red diagonal, draw arrows pointing to the blue angles closed by
it (there are necessarily two such angles on different sides of the given diagonal).
This diagonal can be flipped positively, if these arrows rotate it clockwise.
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Figure 1. The same bold red diagonal can be positively flipped
with respect to the reference triangulation on the left and can be
negatively flipped with respect to reference triangulation on the
right.
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Figure 2. The
graph of PA(3)

The permutoassociahedron PA(n), a mixture
of the permutahedron and the associahedron,
was introduced as a combinatorial polytope in
[5] with motivation in MacLane’s categorical
coherence and realized as convex polytope in
several ways [7], [3], [2]. Its graph has bina-
rily bracketed permutations as vertices, with
edges given either by transpositions in mini-
mal brackets (permutahedral edges) or by ap-
plications of the associativity low (associahe-
dral edges). If one orients permutahedral edges
as in the weak order and associahedral edges as
in the Tamari order, the resulting graph fails
to have a single source and single sink, thus it
cannot be a Hasse diagram of a lattice. We
therefore propose a different orientation for as-
sociahedral edges.

Definition 1. Consider an edge corresponding to the associator of (A1A2)A3 and
A1(A2A3), where Ai are some consecutive subwords of the permutatation σ ∈ Sn.
Call the subword Ai erasable if there exists an index l such that Ai ∩ [l, n] = ∅ but
Aj ∩ [l, n] 6= ∅ for j 6= i. If the erasable subword is A1 or A3, orient the edge in the
Tamari direction, (A1A2)A3 → A1(A2A3). If the erasable subword is A2, orient
the edge in the anti-Tamari direction, (A1A2)A3 ← A1(A2A3).
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For example, PA(6) has an anti-Tamari edge ((15)((64)2))3 ← (((15)(64))2)3,
because with A1 = 15, A2 = 64 and A3 = 2, the erasable subword is A2 for l = 4.
Figure 2 shows permutahedral, Tamari and anti-Tamari edges in PA(3) colored
black, green and red respectively.

With orientations as above, fix σ and let T (σ) denote the poset whose Hasse
diagram is the corresponding subgraph.

Theorem 1. T (σ) is isomorphic to the accordion lattice T (minT (σ)); in partic-
ular, T (σ) is always a lattice.

Theorem 2. Every bracketing appears as min T (σ) for some σ; therefore, accor-
dion lattices for all reference triangulations are realized this way.

The following was verified in Sage for low dimensions.

Expectation 1. The graph of PA(n) with orientations as above is a Hasse dia-
gram of a lattice.
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Flowtroids

Alexander Postnikov

A diagram G = (V,E, {lv}) is a directed graph on vertex set V = V obs ⊔ V hidden

with two types of vertices: observable vertices u ∈ V obs and hidden vertices v ∈
V hidden, and certain integers, called levels, lv assigned to hidden vertices v ∈
V hidden. We assume that all observable vertices are sources.

For every diagram G, we define several geometrical objects:

• Flow polytope PG ⊂ RE .

• Flowtroid polytope QG ⊂ RV obs

• Flowtroid FG := QG ∩ ZV obs

• Flowtroid variety XG ⊂ CP
|FG|−1

• Positive flowtroid variety X≥0
G ⊂ RP

|FG|−1

• Tropical positive flowtroid variety TropX≥0
G ⊂ RFG/(1, . . . , 1)R
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Flow polytope and flowtroid polytope are certain convex polytopes. Flowtroid is
a polymatroid. Flowtroid variety is a complex projective variety. Positive flowtroid
variety is a certain semi-algebraic set. Tropical positive flowtroid variety is a
polyhedral fan.

We view elements (f(e))e∈E ∈ RE as flows on the graph G, where f(e) is the
flow through edge e. The flow polytope PG ⊂ R

E is defined by requiring that
f(e) ≥ 0, for any edge e ∈ E, and fixing the net flow inflow(v)− outflow(v) to be
the level lv, for any hidden vertex v ∈ V hidden (but allowing arbitrary net flows
for observable vertices).

Let π : RE → R
V obs

be the projection that assigns to a flow (f(e))e∈E ∈ R
E

the vector of net flows for all observable vertices u ∈ V obs.
The flowtroid polytope is defined as the projection QG = π(PG) of the flow

polytope, and the flowtroid FG is the set of integer lattice points of the flowtroid
polytope QG.

Moreover, we define the boundary measurement map MG : RE
≥0 → RP

|FG|−1.

The positive flowtroid variety X≥0
G ⊂ RP

|FG|−1 is defined as the image of this

map. The flowtroid variety XG ⊂ CP
|FG|−1 is the Zariski closure of X≥0

G , and the
tropical positive flowtroid variety is its tropicalization.

We define the notion of a reduced diagram G. We show that, for a reduced
diagram, the tropical positive flowtroid variety is piecewise-linearly isomorphic to

the normal fan of the fiber polytope Fiber(PG
π
→QG).

This setup generalizes and unifies several other constructions studied earlier.
We say that a diagram G is a plabic graph if G is a planar graph embedded into

a disk such that all observable vertices are on the boundary of the disk and have
degree 1, all internal vertices are either sources of sinks, and all levels le ∈ {1,−1}.

In case of plabic graphs, the above general setup specializes to the construc-
tion of the positive Grassmannian given in [P06]. In this case, flowtroids are
positroids. Elements of flowtroids correspond to Plücker coordinates. Flowtroid
varieties are positroid varieties. Positive flowtroid varieties are the positroid cells
in the Grassmannian. The boundary measurement map MG is exactly the bound-
ary measurement map from [P06]. The flow polytope PG is exactly the matching
polytope from [PSW09]. Tropical positive flowtroid varieties are tropical positroid
varieties, and, in particular, the tropical positive Grassmannian.

More generally, if diagrams G are arbitrary planar graphs embedded into a disk
with observable vertices arranged on the boundary of the disk, then flowtroids FG

are exactly polypositroids studied in [LP24].
In case when G are arbitrary bipartite graphs (not necessarily planar) such

that observable vertices consist of all vertices in one part of G, then the class of
flowtroid polytopes QG is exactly the class of generalized permutohedra obtained
as Minkowski sum of the coordinate simplices ∆I := conv(ei, i ∈ I), I ⊂ [n]. This
class of polytopes was studied in [P09]. It includes the usual permutohedron, the
associahedron, graph-associahedra, and many other interesting polytopes. In this
case, the construction is closely related to the study of triangulations of products
of simplices ∆m−1 ×∆n−1 (when G = Km,n) and root polytopes, see [P09].
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The class of flowtroids FG which are matroids is exactly the class of gammoids,
studied in the matroid literature.

In general, the class of flowtroids FG is closed under the following operations
on polymatroids:

• Minkowski sums
• direct products
• projections (x1, . . . , xn)→ (x1 + x2, . . . , xn)
• intersections with hyperplanes {xi = Const}
• Sn-action
• parallel translation

Moreover, the class of flowtroids is the minimal class of polymatroids that contains
uniform matroids of rank 1 and is closed under these operations.

We also discuss the dual construction. In the dual setting, instead of flow
polytopes, we use alcoved polytopes, and instead of flowtroid polytopes we use
projections of alcoved polytopes. The dual story is completely parallel to the above
discussion. All results and constructions mentioned above have dual analogues.
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On cosmological polytopes

Martina Juhnke

(joint work with Torben Donzelmann, Benedikt Rednoß, Liam Solus,
Christoph Thäle, Lorenzo Venturello)

The cosmological polytope of a graph G was recently introduced to give a geomet-
ric approach to the computation of wavefunctions for cosmological models with
associated Feynman diagram G [1]. Basic results in the theory of positive ge-
ometries dictate that this wavefunction may be computed as a sum of rational
functions associated to the facets in a triangulation of the cosmological polytope.
Given a graph G = (V,E), the cosmological polytope of G is

CG = conv(ei + ej − ef , ei − ej + ef ,−ei + ej + ef : f = ij ∈ E) ⊂ R
V ∪E .

We describe basic properties of cosmological polytopes and, in particular, we are
interested in triangulations of these polytopes. One of the main results from [2]
computes a Gröbner basis of the toric ideal for this purpose:
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Theorem 1. Given a graph G = (V,E) the toric ideal has a squarefree Gröbner
basis. The elements of this Gröbner basis can be completely described in terms of
the graph.

In particular, it is shown that there are certain generators, forced to be in the
Gröbner basis, for every single edge of the graph (referred to as fundamental bi-
nomials) and other generators that can be constructed from (directed) paths and
cycles in the graph. As a consequence, the cosmological polytope has a regu-
lar unimodular triangulation. We explicitly describe such a triangulation if the
underlying graph is a tree or cycle and compute the normalized volume of the
cosmological polytope in these cases.

In the second part of this talk, we consider cosmological polytopes for Erdős-
Rényi graphs G(n, p). In this model, given n vertices each edge (of the complete
graph) is drawn independently with probability p. We are interested in the number
of edges of the cosmological poytopes in this case. The main result, which is
unpublished joint work with Torben Donzelmann, Benedikt Rednoß and Christoph
Thäle is the following:

Theorem 2. Let G ∼ G(n, p) with p = n−α for α < 1. Let f1 denote the number
of edges of CG. Then f1 obeys a central limit theorem, i.e.,

dK

(
f1 − E(f1)

V(f1)
, N

)
→ 0,

as n goes to ∞, where N ∼ N (0, 1).

In the previous theorem dK denotes the Kolmogorov distance and N follows
a standard normal distribution. It is further shown that an analogous statement
holds for the number of edges in a regular unimodular triangulation of the cosmo-
logical polytope.
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New Results on h
∗-polynomials of Cosmological Polytopes

Benjamin Schröter

(joint work with Aenne Benjes, Kamillo Ferry)

There are various polyhedral objects one may associate with a graph G, e.g., al-
coved polytopes or their duals which include (symmetric) edge polytopes, but also
the matroid base polytope, the independence complex or broken circuit complex of
the graphical matroid of G. Yet another of these objects is the cosmological poly-
tope CG of the graph G. Simplified this is the convex hull of the vectors eu+ev−ef ,
eu− ev + ef and −eu + ev + ef for all edges f = {u, v} of the graph G. They have
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been introduced in [1] by Arkani-Hamed, Benincasa and Postnikov as a geometric
tool to study the physics of cosmological time evolution and the wavefunction of
the universe in a model whose Feynman diagram is given by the graph G. A
central role in this theory is played by positive geometries and canonical forms
that a cosmological polytope defines, and hence a better understanding of their
facet structure and triangulations is required. Therefore, Benincasa [2] as well
as Kühne and Monin [6] investigated the face structure of cosmological polytopes
combinatorially, while Juhnke, Solus and Venturello showed in [5] that these poly-
topes pose a unimodular triangulation by applying methods from toric geometry
and Gröbner bases to construct so-called good triangulations. Using these results
Bruckamp, Gotermann, Juhnke, Ladin and Solus [4] shifted the focus towards the
Ehrhart theory and in particular the h∗-polynomials of cosmological polytopes.
They found explicit formulas for these polynomials whenever the graph belongs to
the families of multitrees or multicycles.

In [3] Benjes, Ferry and I completed this story on which I reported in my
presentation. We found a way to enumerate all maximal simplices in a good
triangulations of any cosmological polytope as they are in bijection to certain
decorations of the graph G. Furthermore, we provide a method to turn such a
triangulation into a half-open decomposition from which we deduce that the h∗-
polynomial of a cosmological polytope agrees with the following specialization of
the Tutte polynomial TG(x, y) ∈ Z[x, y] of the graph G

h∗(CG; z) = (1 + z)m−r (2z)r TG

(
1 + 3z

2z
, 1

)

where m denotes the number of edges and loops of G and r its rank. From this
result we derive further equivalent formulas, reprove results of Bruckamp et al.
and solve several open problems and conjectures.
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[3] A. Benjes, K. Ferry and B. Schröter, Good triangulations of cosmological polytopes, preprint
(2025) arXiv: 2503.13393

[4] J. Bruckamp, L. Goltermann, M. Juhnke, E. Landin and L. Solus, Ehrhart theory of cos-

mological polytopes, preprint (2024) arXiv: 2412.01602
[5] M. Juhnke-Kubitzke, L. Solus and L. Venturello, Triangulations of cosmological polytopes,

preprint (2023) arXiv: 2303.05876
[6] L. Kühne and Leonid Monin, Faces of cosmological polytopes, Annales de l’Institut Henri
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Quotients in Discrete Convex Analysis

Georg Loho

(joint work with Marie Brandenburg, Ben Smith)

Given a vector space V and a collection (Li)i∈E of subspaces of V indexed by a
finite set E, the function

f : 2E → R, f(S) = dim

(
∑

i∈S

Li

)
∀S ⊆ E

turns out to be a submodular function [2]. More generally a set function is sub-
modular if

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for all A,B ⊆ E .

Let φ : V →W be a linear map. This gives rise to another submodular function
derived from the images of the subspaces (Li)i∈E ,

g : 2E → R, g(S) = dim

(
∑

i∈S

φ(Li)

)
∀S ⊆ E .

It turns out that f and g are in an intriguing relation, namely

f(X)− g(X) ≤ f(Y )− g(Y ) ∀X ⊆ Y ⊆ E .

If two submodular functions f, g : 2E → R fulfill this property, they are said to
form a quotient. To a submodular function f taking only integral values, one can
associate an M-convex set [3], that is, the set P ∩ ZE with

P :=
{
x ∈ R

E | x(S) ≤ f(S)∀S ⊆ E, x(E) = f(E)
}

;

this is the set of integer points in the (integral) generalized permutahedron P
associated with f . An M-convex set is a matroid if and only if it is a subset of
the unit cube in RE , and then the integer points are the characteristic vectors of
bases of the matroid. The notion of a matroid quotient is well-studied and several
equivalent definitions are known for this. It turns out that one can generalize many
of them also to the level of submodular functions and M-convex sets, respectively.
Given submodular functions f, g with corresponding M-convex sets M,N ⊆ ZE ,
one obtains the following equivalent conditions (among others) [1]:

(A) For all X ⊆ Y ⊆ E holds

g(Y )− g(X) ≤ f(Y )− f(X).

(B) For all x ∈ N, y ∈ M, i ∈ E with xi − yi > 0 there is a j ∈ E with
yi − xi > 0 such that

x− ei + ej ∈ N, y + ei − ej ∈M.

(C) There is an M-convex set R ⊆ ZE∪e and numbers s < t ∈ Z such that

R ∩ {xe = s} = N × {s} and R ∩ {xe = t} = M × {t}.
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Another equivalent characterization is based on the generalization of linking sys-
tems or bimatroids which originated in the construction of matroids by induction
through a bipartite graph. For disjoint sets V and U , an M-convex set Γ ⊆ ZV ×ZU

is called a linking set from V to U . Then for an M-convex set T ⊆ ZU , the induc-
tion of T through Γ is the M-convex set

indΓ(T ) =
{
x ∈ Z

V | ∃y ∈ T such that (x,−y) ∈ Γ
}

.

This is in general a versatile tool to construct M-convex sets in various specific
contexts.

While the story of quotients allows for many different equivalent characteri-
zations, it becomes more subtle when one considers the more general M-convex
functions. These are functions generalizing valuated matroids to more general
M-convex domains beyond the set of bases of a matroid. Writing analogous ex-
pressions to define quotients of M-convex functions does not necessarily result in
a set of equivalent characterizations. Indeed, considering definitions inspired by
questions from optimization or tropical flag varieties yields different notions. The
exact status of the equivalence of these notion is still subject to ongoing work.
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Support cones of alcoved polytopes and simple games

Raman Sanyal

(joint work with Aenne Benjes and Benjamin Schröter)

Let A = (aρ)ρ∈E be a finite collection of distinct unit vectors that positively span
R

d. Any b = (bρ)ρ∈E ∈ R
E defines a (possibly empty) polytope

PA(b) := {x ∈ R
d : 〈aρ, x〉 ≤ bρ for ρ ∈ E} ,

called an A-polytope. If PA(b) 6= ∅, then b is called a support vector if the
intersection of PA(b) with every hyperplane Hρ(b) := {x ∈ Rd : 〈aρ, x〉 = bρ} for
ρ ∈ E is non-empty. The support cone SA ⊆ RE is the set of all support vectors.
The support cone is a full-dimensional polyhedral cone with lineality space im(A).
Most importantly for any b, b′ ∈ SA

PA(b) = PA(b
′) ⇐⇒ b = b′ .

Support vectors were introduced by Aleksandrov [1]. McMullen [4] studied A-
polytopes modulo translation and called SA/im(A) the closed inner region. Sup-
port cones as well as their subdivisions given by type and discriminental fans are
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ubiquitous objects in discrete and convex geometry, algebraic geometry, and op-
timization that are notoriously complicated. In this talk we focus on the class of
alcoved polytopes, for which the notions above can be interpreted and treated in
terms of graph. For the case of double cycles, the subdivisions can be related to
simple games.

Type fans and discriminental fans. The normal fan of a polytope P ⊂
Rd with vertex set V is the pure d-dimensional complex generated by the cones
Nv(P ) = {c ∈ Rd : 〈c, v〉 ≥ 〈c, u〉 for all u ∈ V } . Two polytopes are strongly

isomorphic1 if they have the same normal fan. The classes of strongly isomorphic
A-polytopes partition SA into relatively open cones. Taking closures yields a fan
structure on SA called the type fan TA. The maximal cones of TA are precisely
the equivalence classes of simple A-polytopes for which all aρ are facet-defining.

The collection of hyperplanes Hρ(b) for b ∈ RE defines an affine hyperplane
arrangement HA(b) with affine oriented matroid OA(b). The decomposition of RE

with respect to b 7→ OA(b) is induced by an arrangement of linear hyperplanes,
called the discriminental arrangement DA by Manin and Shekhtman [3]. The
connected components RE \

⋃
DA are in bijection to the uniform matroids among

{OA(b) : b ∈ RE}. The interior of the support cone SA is the union of connected
components whose closure induce the discriminental fan DA. If OA(b) is uni-
form, then the closure of every region of Rd \ HA(b) is a simple polytope. This
implies that DA refines the type fan TA and the refinement is proper in general.

Alcoved polytopes. Let D be a loop-less directed graph D on nodes [d] =
{1, . . . , d} and edges E ⊆ [d] × [d]. We assume that D is strongly connected. For
AD = (ei−ej)ij∈E and edge weights b ∈ RE , PA(b) is a polytope in Rd/(1, . . . , 1)R.
We call PAD

(b) an alcoved polytope [2] and write PD(b).
A circuit of D is a subset C = C+ ⊎ C− ⊆ E such that C+ together with the

reorientation −C− = {vu : uv ∈ C−} is a directed cycle. The hyperplanes of the
discriminental arrangement for AD are precisely the circuit hyperplanes

∑

uv∈C+

buv =
∑

uv∈C
−

buv .

The support cone of AD is bounded by the hyperplanes of almost positive cir-
cuits, that is, circuits C with |C−| ≤ 1.

Double cycles and simple games. for |u − v| ≤ 1 as well as 1d and d1. In
addition to pairs of anti-parallel edges, the circuits of size > 2 can be naturally
identified with the subsets of [d]. For double cycles, the type and discriminental
fans coincide and the maximal cones can be interpreted as weighted simple games.

Simple games model basic voting scenarios [5]. Consider [d] as a set of voters and
I ⊆ [d] as a coalition. A simple game is partition of 2[d] into the set of loosing
coalitions L and winning coalitions W = 2[d] \ L such that J ∈ L and I ⊆ J
implies I ∈ L. We also require {i} ∈ L and [d] \ {i} 6∈ L for all i. A simple game
is weighted if there are weights ω ∈ Rd

≥0 and a quota Q ≥ 0 such that I ∈ L

1also called normally equivalent, analogous, or locally similar.
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if and only if
∑

I ωi > Q. Simple games are also known as Boolean functions
and weighted simple games correspond to threshold functions. The fundamental
question is to combinatorially characterize weighted simple games among all simple
games.

Theorem 1. Weighted simple games on d voters are in bijection to the maximal
cones of the type fan of the double cycle of length d.
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Decomposition Polyhedra of Piecewise Linear Functions

Marie-Charlotte Brandenburg

(joint work with Moritz Grillo and Christoph Hertrich)

Continuous piecewise linear (CPWL) functions play a crucial role many fields of
mathematics and its applications. While they have traditionally been used to de-
scribe problems in geometry, discrete and submodular optimization, or statistical
regression, they recently gained significant interest as functions represented by
neural networks with rectified linear unit (ReLU) activations. Extensive research
in this context has been put into understanding complexity questions, where a
major source of complexity in all the aforementioned fields is nonconvexity. On
the other hand, it is a well-known folklore fact that every (potentially nonconvex)
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Figure 1. A piecewise linear function f (left), a non-minimal
decomposition g−h (middle) and a minimal decomposition g′−h′

(right) according to [3].
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CWPL function f : Rn → R can be written as the difference f = g − h of two
convex CPWL functions [2, 4]. Consequently, a natural idea to circumvent the
challenges induced by nonconvexity is to use such a decomposition f = g − h and
solve the desired problem separately for g and h. However, the crucial question
arising from this strategy is: how much more complex are g and h compared to f?
A well-established measure for the complexity of a CPWL function is the number
of its linear pieces. Therefore, the main question we study is the following.

Problem 1. How to decompose a CPWL function f into a difference f = g − h
of two convex CPWL functions with as few pieces as possible?

There exist many ways in the literature to obtain such a decomposition, but
none of them guarantees minimality or at least a useful bound on the number of
pieces of g and h depending on those of f . In fact, no finite procedure is known
that guarantees to find a minimal decomposition, with the exception of a recent
solution for special cases in dimension 2 [3].

We propose a novel perspective on Problem 1 making use of polyhedral geome-
try. Instead of aiming for a globally optimal decomposition, we restrict to solutions
that are compatible with a given regular polyhedral complex P . In short, this means
fixing where the functions g and h may have breakpoints, that is, points where
they are not locally linear.

Theorem 2 ([1, Theorem 3.5]). The set of decompositions of f which are com-
patible with P is a polyhedron DP(f) that arises as the intersection of two shifted
polyhedral cones,

DP(f) = V
+
P ∩ (f + V+

P ).

We call this polyhedron the decomposition polyhedron of f with respect to P.

When P is a polyhedral fan, then the polyhedral cone V+
P is known as the

deformation cone or type cone of the polyhedral fan. Given a decomposition
polyhedron, we can characterize its faces as follows.

Theorem 3 ([1, Section 3]). Let (g, h) ∈ DP(f) be a decomposition f = g − h
which is compatible with P. Then

• (g, h) is contained in a bounded face of DP(f) if and only if (g, h) is
reduced, i.e., there exists no nonzero convex function φ such that g − φ
and h− φ are convex,

• (g, h) is a vertex of DP(f) if and only if there is no nontrivial coarsen-
ing of the polyhedral complexes underlying g and h among the underlying
complexes of any (g′, h′) ∈ DP(f) \ {(g, h)},

• any minimal decomposition that is compatible with P is a vertex of DP(f).

The last statement implies a finite procedure to find a minimal decomposition
among those decompositions that are compatible with P , by simply enumerating
the (potentially many) vertices of DP(f). However, the solution provided by this
procedure is not guaranteed to be minimal over all possible compatible polyhedral
complexes. It remains an open question to construct a minimal decomposition in
general dimensions, or to describe a finite procedure to compute it.
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Finite metric spaces and fundamental polytopes

Lukas Kühne

(joint work with Emanuele Delucchi, Leonie Mühlherr)

This talk was centered around the study of finite metric spaces through the lens
of polytopes and hyperplane arrangements. Finite metric spaces arise in several
applied contexts. Let us mention for instance mathematical biology, where finite
metrics model genetic dissimilarities between different species [3]. In this setting,
a main research direction is to identify suitable classes of metric spaces and study
the combinatorics and geometry of the associated subset of the metric cone, e.g.,
for geometric statistics. A combinatorial invariant of metric spaces that is widely
used in applications as well as for theoretical considerations is their injective hull,
introduced by Isbell and rediscovered by Dress under the name tight span.

Motivated by the theory of optimal transport, Vershik described a correspon-
dence between finite metric spaces and a class of symmetric convex polytopes,
the so-called Kantorovich-Rubinstein-Wasserstein (KRW) polytopes or fundamen-
tal polytopes [5]. The KRW polytope of an n-metric ρ is a polytope in Rn defined
as the convex hull:

KRW (ρ) = conv

{
ei − ej
ρij

∣∣∣∣ 1 ≤ i, j ≤ n

}
,

where ei is the i-th standard basis vector of Rn. The metric is called generic if it
is strict and the KRW polytope is simplicial.

If ρ is the n-metric with ρij = 1 for all i 6= j, then KRW (ρ) is the type An root
polytope. If ρ is a graph-metric (i.e., there is a graph G with vertex set [n] such
that ρij is the number of edges of a shortest path from i to j in G), then KRW (ρ)
is the symmetric edge polytope of G.

The dual of a KRW polytope is the so-called Lipschitz polytope. This is a
symmetric alcoved polytope.

The problem of understanding the combinatorial structure (e.g., computing face
numbers) of KRW and Lipschitz polytopes is open and significant for applications.
The focus of the talk was to study and classify finite metric spaces according to
the combinatorial properties of their KRW polytopes.

https://openreview.net/forum?id=vVCHWVBsLH
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The first progress on this question was achieved by Gordon and Petrov who
gave a description of the face poset of KRW polytopes via linear inequalities on
the values of the metric [2]. This is the starting point for an in-depth study of
KRW polytopes using the theory of hyperplane arrangements.

In this talk we introduced the so-called Wasserstein arrangement whose cells
correspond to the combinatorial types of KRW polytopes. This arrangement builds
upon the Gordon–Petrov description of the faces of KRW polytopes and could be
of independent interest. Moreover, via the above connection to alcoved polytopes,
intersecting this arrangement with the metric cone naturally yields the type-fan
of symmetric alcoved polytopes.

Using the computer algebra system OSCAR together with the Julia package
CountingChambers.jl [1] and the software TOPCOM [4] we obtain an enumera-
tion of the combinatorial types of KRW polytopes of generic metrics on n = 4, 5, 6
points. These numbers already demonstrate that the subdivision of the metric
cone by combinatorial types of KRW polytopes is much finer than the subdivision
by tight spans.

Lastly, we clarified the relation between KRW polytopes and tight spans by
providing examples of five-point metrics with isomorphic tight spans and combi-
natorially different KRW polytopes and vice versa. Hence, the two fan structures
of the metric fan induced by the tight spans or the KRW polytopes are not refine-
ments of each other.
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Preservation of Inequalities under Hadamard Products

Katharina Jochemko

(joint work with Petter Brändén and Luis Ferroni)

The Hadamard product of two formal power series a(x) =
∑

n≥0 anx
n and b(x) =∑

n≥0 bnx
n is defined by

(a ⋆ b)(x) =
∑

n≥0

anbnx
n .

https://www.wm.uni-bayreuth.de/de/team/rambau_joerg/TOPCOM/SymLexSubsetRS-2.pdf
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In many instances, in combinatorics and otherwise, the coefficients agree with
evaluations of a polynomial function, i.e., there is a polynomial p such that an =
p(n) for all n ≥ 0. It is a well-known fact that this is the case if and only if

∑

n≥0

anx
n =

W(p)

(1− t)deg p+1
,

where W(p) is a polydnomial of degree at most deg p. An example is the Ehrhart
series of a lattice polytope whose coefficients are given by the number of lattice
points in the n-th dilate of the polytope; in this case p is the Ehrhart polynomial
of the polytope [2] and W(p) plays the role of the h∗-polynomial.

We study the preservation of combinatorially relevant properties ofW(p) under
the Hadamard product, i.e., we consider questions of the form Given that W(p)
and W(q) have a certain property, does also W(pq) have that property? In this di-
rection, a theorem by Wagner [3] asserts that having only nonpositive, real zeros is
a property that is preserved by the Hadamard product. This property furthermore
implies inequalities of particular interest in combinatorics (see, e.g., [4]): Given a

polynomial a(x) =
∑d

j=0 ajx
j with nonnegative coefficients and only real zeros,

then a(x) is

• unimodal, i.e. a0 ≤ a1 ≤ · · · ≤ ak ≥ · · · ≥ ad for some 0 ≤ k ≤ d.
• log-concave, i.e. a2j ≥ aj−1aj+1 for 0 ≤ j ≤ d.

• ultra log-concave of order d, i.e. {aj/
(
d
j

)
}dj=0 is log-concave.

Furthermore, a(x) has no internal zeros, i.e. if i < j and ai, aj 6= 0 then also ak 6= 0
for all i < k < j. Given a polynomial with no internal zeros, ultra log-concavity
implies log-concavity implies unimodality. It can be seen that the weakest property
in this hierarchy, unimodality, is generally not preserved under the Hadamard
product [5, 6]. We prove that if W(p) and W(q) are ultra log-concave with no
internal zeros, then so is W(pq) [1, Theorem 1.2]. For the proof we use the theory
of Lorentzian polynomials developed in [7]. Whether the Hadamard products
preserves log-concavity remains an open question at this point [1, Question 6.1].

A polynomial a(x) is symmetric (or palindromic) with center of symmetry d/2 if
a(x) = tda(1/x). A property of symmetric polynomials that is intensively studied
in geometric combinatorics is γ-positivity. A symmetric polynomial a(x) is γ-

positive if a(x) =
∑⌊d/2⌋

i=0 γix
i(1 + x)d−2i for γi ≥ 0. The polynomial

∑⌊d/2⌋
i=0 γix

i

is called the γ-polynomial.
Observe, that γ-positivity implies unimodality. We show that γ-positivity is

preserved under the Hadamard product [1, Theorem 1.3]. Further, we show that
if the γ-polynomial of a γ-positive polynomial is ultra log-concave then so is the
polynomial itself [1, Theorem 3.3].

We also study symmetric decompositions of polynomials. Given a polynomial
h of degree at most d, by basic linear algebra considerations, there exist uniquely
determined symmetric polynomials a(x) = tda(1/x) and b(x) = xd−1b(1/x) such
that h = a+ xb. The pair (a, b) is called the symmetric decomposition of h. This
decomposition is called γ-positive if both a and b are γ-positive. We show that
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the property of having a γ-positive symmetric decomposition is preserved under
the Hadamard product [1, Theorem 1.4].

Further, we prove the preservation of having an interlacing decomposition, a
property that implies both real-rootedness and unimodality. We also disprove a
conjecture by Fischer and Kubitze [8] regarding the real-rootedness of polynomials
under Hadamard powers.

For further details, we refer to the full article this talk was based on [1].
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