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ABSTRACT. The workshop “Mathematical Imaging and Surface Processing”
is designed to foster exchange and collaboration between applied mathemati-
cians and applied computer scientists on problems arising in computer graph-
ics, geometry processing and image analysis. The participants are also inter-
ested in computational and theoretical issues of data science, and theory and
methods of machine learning were featured in many of the talks. About 40
participants, with many younger post-docs or PhD students, could exchange
and work on these themes, while coming from quite different backgrounds
(academic and industrial). Several talks emphasized the strength of funda-
mental theoretical concepts, such as symmetries of Lie groups or curvature
in Riemannian geometry, for important applications in graphics, vision, con-
struction and architecture.

This volume collects the abstracts of all the presentations covering this
wide spectrum of tools and application domains.
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Introduction by the Organizers

The workshop Mathematical Imaging and Surface Processing followed two pre-
vious events on similar topics, in January 2016 (workshop # 1604) and August
2022 (workshop # 2234). It gathered more than 40 participants. Participants
were applied computer scientists and applied mathematicians (from the US, Israel,
Germany, France, etc.), interested in computational geometry and mathematical
imaging (graphics, analysis, machine learning). There was a strong participation
of younger researchers, with four talks by PhD students and several by young
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post-docs on cutting edge research in geometry processing, geometric control and
generative modeling in imaging. There was strong and interesting exchange be-
tween participants from quite different backgrounds, all sharing common concerns
and a common mathematical culture.

During the first day, the talks addressed the geometry of diffeomorphisms,
motion optimization, the design of inflatable surfaces, improvements to the “Al-
phaFold” protein generative model, optimal transportation and generative Als.
We also had a talk on new geometric measure theoretic tools for geometry pro-
cessing and on analytical and computational tools for computing signed distances.
On Tuesday, impressive methods for surface matching were presented, mixing non-
linear analysis and machine learning techniques, talks about the use of harmonic
functions and conformal maps in computational geometry, and about the dis-
cretization of geometric quantities. Before the walk to Sankt Roman on Wednes-
day, the presentations focussed on applied and theoretical machine learning while
the last talk presented impressive applications of theoretical geometry to archi-
tectural design. Machine learning and neural network techniques were also an
important topic on Thursday, together with an impressive computer graphics talk
on the simulation of wrinkles and their fascinating motion. The main topic for
Friday was the computation of Wasserstein barycenters, and we could admire the
impressive Gromov—Wasserstein “average” of computer graphics shapes such as
a bear and a cow. Two other talks addressed neural network based image pro-
cessing, showing in particular how one could derive “frugal” and efficient learned
denoisers.

The workshop was a great success. The atmosphere was both professional and
informal, and all the talks were highly appreciated. The mixture of theoretically
oriented talks and very applied ones was interesting to all. The strong presence of
younger researchers allowed them to feel fully part of the group and led to fruitful
exchange between the participants. It was very advantageous to mix participants
from various fields, all interested in data science, image and geometry processing,
some relying on machine learning based tools, other on more “classical” mathe-
matical (geometric) analysis, and yet others on both, as they could benefit from
exchange with colleagues of quite different backgrounds, yet sharing many com-
mon interests and a common language. We hope that it will still be possible to
organise such a conference in the future, on similar topics and most importantly,
mixing again applied mathematicians and computer scientists and featuring a high
participation of younger colleagues.
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Abstracts

Inverse problems with experiment-guided AlphaFold
ALEX BRONSTEIN

(joint work with Advaith Maddipatla, Nadav Sellam, Meital Bojan,
Sanketh Vedula, Paul Schanda, and Ailie Marx)

Proteins are inherently dynamic entities, sampling a continuum of conformational
states to fulfill their biological roles. Experimental techniques such as X-ray crys-
tallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron
microscopy (cryo-EM) inherently report on ensemble-averaged data rather than
singular static snapshots. In X-ray crystallography, the resolved electron density
map represents a spatial and temporal average over all molecules in the crystal
lattice, with regions of flexibility manifesting as diffuse or poorly resolved density.
NMR spectroscopy measures the interaction between nuclear spins (e.g., magne-
tization transfer due to nuclear Overhauser effect, NOE) and spins and electrons
(e.g., chemical shifts) arising from dynamic conformational ensembles in solution,
with these experimental restraints used computationally to resolve compatible
structural states. Cryo-EM similarly resolves multiple conformational states, as
individual particles frozen in vitreous ice adopt distinct orientations and confor-
mations, which are computationally classified into discrete or continuous flexibility
ranges.

On the computational front, ab initio protein structure determination based
on modeling the molecule’s free energy and its subsequent minimization (e.g.,
Rosetta and many of its variants [3,4]) have been only partially successful and
computationally expensive. A giant leap in protein structure prediction resulted
from the fundamental discovery of the coevolution of contacting residues [7, 8],
underlying deep learning-based models such as AlphaFold [1,10], which had a
groundbreaking impact on structural biology and was awarded the recent 2024
Nobel Prize in Chemistry.

Protein structure predictors are trained exclusively on X-ray crystallographic
models, which are themselves fitted to electron density maps averaged over tril-
lions of molecule instances. While it has been recognised several decades ago
that the conformations of proteins in crystals are heterogeneous [6,16], early crys-
tallographic refinements prioritized single-conformer models. Advances in res-
olution, the more widespread application of room-temperature crystallographic
experiments (as opposed to those performed at 100 K), and progress in refine-
ment tools now permit explicit modeling of alternative conformations (“altlocs”)
within overlapping density regions [6,17,18]. Recent studies analyzing the PDB
reveal that such multi-conformer annotations are widespread, reflecting inherent
structural variability captured in crystallography [14]. In NMR spectroscopy, the
experimental observables, such as inter-atomic distances or bond-vector orienta-
tions reflect the time- and ensemble average, and NMR structures are always
reported as bundles of conformations. However, AlphaFold’s training objective
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— to predict a single “most probable” structure — biases its output toward static
snapshots, effectively marginalizing conformational heterogeneity encoded in its
training data. Over the past year, multiple sequence-conditioned protein struc-
ture generative models like AlphaFlow [9], and the recent AlphaFold3 [1] have
been proposed to move beyond the one-sequence-one-structure paradigm. How-
ever, since these approaches remain trained on unimodally-modeled PDB entries
derived predominantly from crystallographic data, the generated ensembles fail to
capture the full heterogeneity implied by experimental measurements, thus limit-
ing their practical utility [15]. This emphasizes the need for new models that can
explicitly model protein ensembles that are faithful to experimental measurements.
Developing such models is the focus of the present work.

In this work, we introduce experiment-guided AlphaFold3, a computational
framework that integrates experimental data with deep learning priors to generate
structural ensembles consistent with experimental observables. Our key insight
is that AlphaFold3 can be viewed as a strong sequence-conditioned protein struc-
ture prior that may be further leveraged to solve inverse problems in the space of
protein structures. By solving these inverse problems under the prior imposed by
AlphaFold3, we bridge the gap between data-driven predictions and experimental
evidence, yielding ensembles that are both physically plausible and experimentally
consistent.

Experiment-guided AlphaFold3. Our primary technical contribution is a three-
stage ensemble-fitting pipeline. First, we present Guided AlphaFold3, where we
adapt the diffusion-based structure module of AlphaFold3 to incorporate exper-
imental measurements during sampling. To properly handle ensemble measure-
ments, we introduce a non-i.i.d. sampling scheme that jointly samples the en-
semble, directing conformational exploration toward regions compatible with the
experimental constraints. We show that this approach effectively captures multi-
modal ensemble measurements, where standard i.i.d. sampling methods fail. To
our knowledge, this represents the first application of guided sampling within
AlphaFold3 for experimental structural resolution. Second, we address artifacts in-
troduced during guided sampling by using AlphaFold2’s computationally efficient
force-field relaxation step, effectively projecting candidate structures onto physi-
cally realistic conformations. Finally, we develop a matching-pursuit ensemble se-
lection algorithm to iteratively refine the ensemble by maximizing agreement with
experimental data while preserving structural diversity. We validate our frame-
work through case studies on two foundational challenges in structural biology:
(1) X-ray crystallographic structure modeling, where we recover conformational
heterogeneity obscured in static electron density maps, and (2) NMR structure
determination, where we resolve ensembles that obey NOE-derived distance re-
straints.

Improved crystal density modeling. X-ray crystallography is one of the most
accurate techniques for protein structure determination. A typical pipeline in-
volves the crystallization of protein samples and the subsequent fitting of atomic
structures to electron density maps generated from X-ray diffraction patterns.



Mathematical Imaging and Surface Processing 217

However, this procedure is expensive, time-consuming, and often requires manual
intervention by crystallographers [5]. As a result, several structures deposited in
the PDB exhibit human-induced biases that can degrade structural accuracy. An-
other limitation of crystallographic pipelines is the misleading notion of “single
crystal and single structure”. However, the PDB exhibits multimodality in the
density that cannot be fully captured by models like AlphaFold3 that predict sin-
gle structures. This limitation, recognized early on in protein crystallography [16],
is particularly evident in altloc regions [15], where multiple conformations coexist
in the same lattice [6,17]. This inadequacy presents a compelling case for protein
generative models to improve crystallographic structural modeling.

Hence, we introduce Density-guided AlphaFold3, which guides AlphaFold3 gen-
erated structural ensembles to be faithful to experimental electron density maps.
Density-guided AlphaFold3 renders structures that are consistently more faithful
to the observed electron density maps than unguided AIphaFoIdSin some cases,
the guided structure outperforms PDB-deposited structure’s faithfulness to the
density. Additionally, guided structures capture structural heterogeneity more ac-
curately than AlphaFold3. In some cases, guided structures capture the structural
heterogeneity that PDB-deposited structures fail to model. Lastly, we are able
to leverage the strong prior learned by AlphaFold3 to generate density-faithful en-
sembles in a fraction of the time required by conventional X-ray crystallography
pipelines [2]. In our opinion, this advancement not only improves the accuracy of
computational structural modeling but also has the potential to automate work-
flows for crystallographers.

Accelerated NMR ensemble structure determination. Solution-state NMR,
enables the study of proteins in near-physiological aqueous environments, captur-
ing conformational heterogeneity through nuclear interaction restraints such as nu-
clear Overhauser effects (NOEs) and scalar couplings (J-couplings). NMR-based
structure determination typically employs restrained molecular dynamics (MD)
simulations, requiring hundreds of independent trajectories to adequately sample
conformational spaces consistent with experimental data—a computationally in-
tensive process that struggles to balance accuracy, efficiency, and ensemble diver-
sity [11,13]. Here, we propose NOE-guided AlphaFold3, which refines AlphaFold-
generated structural ensembles to satisfy NOE-derived distance restraints. The
resulting ensembles adhere to experimental NOE data more faithfully than Al-
phaFold3 predictions and, in some cases, even surpass the accuracy of existing
PDB-deposited NMR ensembles. In particular, we demonstrate that the ensembles
produced by NOE-guided AlphaFold3 on ubiquitin, a benchmark system for NMR
structure and dynamics, accurately capture experimentally observed conforma-
tional flexibility, as independently validated against experimentally-measured N-H
S? order parameters; [12]). In contrast, standard AlphaFold3 predictions generate
overly rigid ensembles inconsistent with ubiquitin’s dynamic behavior. Finally,
we note that our method dramatically improves the NMR structure determination
process from many hours to a few minutes, while retaining the accuracy obtained
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through MD. We believe this will enable new experimental workflows for NMR,
structural biologists.
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Computational Homogenization for Inverse Design of
Surface-based Inflatables

YINGYING REN (SAMARA)

Surface-based inflatables are thin-shell structures whose inflated shape emerges
from a spatially varying in-plane contraction induced by strategically placed fus-
ing curves. We present a computational framework for the inverse design of such
structures, formulating the problem within the broader context of geometric and
topological optimization. We first develop numerical homogenization techniques
to characterize and optimize geometric and mechanical behavior of periodic inflat-
able patches with arbitrary fusing patterns, enabling systematic exploration of the
design space of surface-based inflatables.

Our inverse design pipeline consists of two stages. Given a target surface, we
first perform a coarse optimization step that utilizes the data generated from ho-
mogenization to compute an optimal flattening of the target surface and rapidly
explore fusing curve topologies. This steps involves a local-global parametrization
algorithm and a custom nonlinear parametrization scheme. We then further re-
fine the fusing curves using a PDE-constrained nested optimization scheme that
directly minimizes the distance of the inflated structure to the target surface. We
validate our results by fabricating a set of physical prototypes and demonstrate
that our approach is able to produce inflated surfaces that accurately approxi-
mate a wide range of 3D geometries and achieve superior structural performance
compared to previous methods.
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Importance Corrected Neural JKO Sampling
JOHANNES HERTRICH
(joint work with Robert Gruhlke)

In order to sample from an unnormalized probability density function, we propose
in [1] to combine continuous normalizing flows (CNFs) with rejection-resampling
steps based on importance weights. We relate the iterative training of CNF's
with regularized velocity fields to a JKO scheme and prove convergence of the
involved velocity fields to the velocity field of the Wasserstein gradient flow (WGF).
The alternation of local flow steps and non-local rejection-resampling steps allows
us to overcome local minima or slow convergence of the WGF for multimodal
distributions. Since the proposal of the rejection step is generated by the model
itself, they do not suffer from common drawbacks of classical rejection schemes.
The arising model can be trained iteratively, reduces the reverse Kulback-Leibler
(KL) loss function in each step, allows to generate iid samples and moreover allows
for evaluations of the generated underlying density. Numerical examples show that
our method yields accurate results on various test distributions including high-
dimensional multimodal targets and outperforms the state of the art in almost all
cases significantly.

In an additional project [2], we use the proposed importance-based rejection steps
for iterative fine-tuning of diffusion models. More precisely, we assume that we are
given a diffusion model and aim to sample from a related posterior distribution.
To this end, we add an additional guidance term to the drift of the backward
SDE, which is called the h-transform from [3]. Then, we iteratively sample from
our current estimation of the h-transform, adapt the dataset by the importance-
based rejection steps and retrain the h-transform using the supervised loss from [3].
We prove that this procedure minimizes a certain loss function and demonstrate
the effectiveness of this framework on class-conditional sampling and reward fine-
tuning for text-to-image diffusion models.
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Discrete Fluid Dynamics with Sub-Riemannian Geometry
ALBERT CHERN

(joint work with Mohammad Sina Nabizadeh, Ritoban Roy-Chowdhury,
Hang Yin, and Ravi Ramamoorthi)

The incompressible Euler equations or Navier—Stokes equations exhibit rich phe-
nomena such as intricate vortex interaction at different scales. We aim at re-
producing these structures in a discrete framework to facilitate faithful numerical
simulation. In order to design such framework we dive into geometric formulations
for these fluid equations, which reveal the mathematical structures responsible for
vortex conservation. Specifically, vortex conservation (circulation conservation)
is equivalent to that the fluid state lies in the same coadjoint orbit arising from
the Lie—Poisson structure in the dual space of the Lie algebra of velocity fields, a
formulation known in the Hamiltonian fluid dynamics. Our goal is to recover such
property in the discrete setting, in contrast to the classical weak formulations in
finite elements. This leads to new finite-dimensional dynamical systems mimick-
ing the Euler fluid with close relation to Carnot—Caratheodory sub-Riemannian
geometry on a Lie group. The majority of the talk and background material is
presented in [1].

1. PRELIMINARY

Let M be a Riemannian manifold representing the fluid domain. Let G :=
SDiff (M) be the infinite dimensional Lie group of volume-preserving diffeomor-
phisms on M. The Lie algebra g := s0iff(M) is the space of divergence-free tangent
vector fields on M with the no-through boundary condition at 0M. Each vector
field u € g represents a velocity field of the fluid. Each tangent vector (b € TG at
any flow map ¢ € G can be expressed by (b = uo ¢ for some u € g = TigG, which
is the velocity field corresponding to an infinitesimal motion qb of the flow map.
Define a Riemannian metric for G' by (twice) the kinetic energy 4|2 := §,, [u|? of
the velocity field.

Definition 1 (Euler flow). The time-dependent flow maps for Euler fluid flows
are geodesics on G.

Note that the Riemannian metric on G is (right-)translation-invariant since it
depends only on ¢’s translation u to g. This allows for the Euler equation be
described only by the variable u € g:

u+ Vyu=—gradp diva=0.

Equivalently, in terms of circulation data n = [u"] € g* = Q'(M)/dQ°(M) (i.e., n
are 1-form only to be evaluated on closed curve), circulation 7 is governed by the
Hamiltonian flow under the Hamiltonian H(n) := |7*|?. This latter Hamiltonian
formulation is given in the sense of the first two items of the following preliminaries:
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e Hamiltonian system can be described only using a function H, called
Hamiltonian, defined on a Poisson manifold (P,{,-}), which is a mani-
fold P together with a Lie algebra {-, -} for functions C®(P) with an extra
condition that {f,-}: C*(P) —» C*(P) is a derivation. The Hamiltonian
flow is given by the vector field as the derivation —{H, -}.

e The dual vector space of any Lie algebra is automatically a Poisson man-
ifold. This Poisson manifold is foliated into coadjoint orbits. Any Hamil-
tonian flow stay in the coadjoint orbit containing the initial condition.

e A Poisson preserving action on a Poisson manifold P by a Lie group G
induces (locally) a momentum map J: P — g*, where g is the Lie algebra
of G. This momentum map is always a Poisson map.

The last item is a key property we will use later.

2. DISCRETE EULER EQUATION

Our discrete Euler equation starts with a finite dimensional subspace I: B «— g,
where B can be understood as a velocity data sitting on a grid, and I can be
thought of as a mimetic (div-free preserving) interpolation operator. The subspace
B8 has an induced inner product structure from g. The discrete Euler flow is
then formulated as an evolution of a velocity vector u constrained to 8. Right-
translation of B < g to everywhere on G defines a sub-Riemannian structure.

Definition 2 (I-discrete Euler flow). Given a subspace I: B — g which defines
a sub-Riemannian structure on G, the discrete Euler flow is a sub-Riemannian
geodesic on G.

Previous methods, pioneered by [2], derived this geodesic variational problem
with the primary variable being the velocity u € 9B, which yields a weak formu-
lation of Euler equation on B and 6*. However, the Poisson structure g* is lost
when it is replaced by the finite dimensional space B*. Note that 9B is generally
not a Lie subalgebra, and thus B* is not a Poisson space.

We argue that the proper sub-Riemannian geodesic equation should be formu-
lated for the circulation data n € g* in the Hamiltonian formulation. Note that
the adjoint IT: g* — 9B* allows us to pullback the kinetic energy Hyx defined on
the finite dimensional space B* to the Poisson space g*.

Proposition 1. The I-discrete Euler flow is governed by the Hamiltonian flow
with Hamiltonian H = Hgyx o IT on the Poisson space g*. Any solution to I-
discrete Euler flow stays on a coadjoint orbit.

The property about coadjoint orbit conservation ensures that I-discrete Euler
flows preserve circulation and vorticity like for the continuous Euler flows.

Finally, to numerically simulate I-discrete Euler flow, we consider an auxiliary
Poisson space. In our work we take a symplectic space (¥, 0), which is a special
case of Poisson space. We also let the volume-preserving diffeomorphism group
G act on X symplectomorphically. Then there is a momentum map J: ¥ — g*,
which is in particular a Poisson map. By the Poisson structure preservation of J,
the Hamiltonian system on g* can be pulled back to X.



Mathematical Imaging and Surface Processing 223

Theorem 1. Let s(t) € ¥ be the solution to the Hamiltonian system on the sym-
plectic space (X,0) with Hamiltonian Hy, = H o J. Then J(s(t)) € g* is the
solution to the discrete Euler equation.

In [1] we set ¥ as the phase space for a particle system. The resulting dynam-
ical system becomes an improved version of the Fluid Implicit Particles (FLIP)
method. In addition to energy conservation, it has the non-trivial property of
coadjoint orbit conservation. In constrast to previous particle-in-grid methods that
involve multiple separately introduced interpolation methods and discretized op-
erators, in our method, everything is derived from one single interpolation scheme
I. In particular, a high order interpolation scheme I ensures the global order of
accuracy for the method. Numerical comparisons demonstrate exact energy and
Casimir conservation, and outstanding visuals of energetic vortex interactions.
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Optimal motion from shape change
FLORINE HARTWIG
(joint work with Oliver Gross, Martin Rumpf, Peter Schroder)

Exploiting geometric principles of shape change induced motion, we formulate
a variational approach to compute optimal motion paths in world coordinates
induced by shape changes in the shape space of deforming bodies. This applies
in particular to the motion of snakes. Our continuous model consists of an inner
dissipation energy measuring the energy necessary for the shape deformation of the
body, e.g. due to metabolism, and an outer dissipation associated with friction
measuring the energy dissipated through the motion in the environment. We
illustrate how the computation of optimal motion paths can be formulated as the
problem of finding sub-Riemannian geodesic paths between two positioned shapes
in world coordinates or constraint to period deformations in shape space enabling
us to find optimal deformation gaits.

The model is discretized in a consistent way allowing us to compute these geo-
desic paths numerically. Using this framework, we can simulate motion trajectories
of snakes as well as low-dimensional systems such as the Purcell swimmer.

Riemannian metric on the space of positioned shapes. We consider a Rie-
mannian metric on the space of positioned shapes M. We regard M as the total
space of a principal SE(3)-bundle 7: M — S over the space of shapes S. The
projection m maps each element of M to its underlying shape in &, identifying
configurations that differ only by a rigid body transformation.



224 Oberwolfach Report 5/2025

For velocities v € T, M the inner dissipation is measured as

(v, )4 = f 1 Hess W, [1d] (v, v) d,
¥
where W, is an elastic deformation energy which measures bending and membrane
distortion of the shape v undergoing a deformation [2]. This energy is invariant
under rigid body motions. Hence, it is invariant under repositioning of the shapes
and constant on the SE(3)-fibers. The Hessian is symmetric semi positive-definite
with a six-dimensional kernel reflecting the infinitesimal rigid body motions.
To account for the outer dissipation due to friction we additionally introduce

{v,v)p = f $(Byv, vy dy,
v

where (-, -» denotes the standard Euclidean metric and B, accounts for local fric-
tional anisotropies as described in [1]. Specifically, we consider the case where
movement in tangential direction causes less dissipation than movement in normal
direction.

For 8 € R~ the total dissipation metric is then given by

W, 0)p = (v, )4+ B{v,V)5.

This gives a well-defined Riemannian metric on M. For a motion path ~(t):ef0,1]
in M we define the corresponding path energy

E(Y(t)ie[o,11) = L G (t),5(t))p dt.

Optimal motion paths as sub-Riemannian geodesics. To compute optimal
motion paths we have to account for the fact that physical motion is inherently
constrained and is restricted to admissible directions dictated by the shape dy-
namics. The moving organism can only control its shape deformation.

We can decompose the tangent space T, M =V, @ H.,, where V, = ker(dr)
T, M is the vertical space corresponding to infinitesimal rigid body motions and
H, = V,Yl is the horizontal space.

A consequence of Helmholtz’s principle of least dissipation [3] is that the mo-
tion induced by infinitesimal shape change should be orthogonal-with respect to
the dissipation metric-to the shape-change orbits i.e. the SE(3)-fibers V,. This
condition introduces a horizontal constraint on the motion, restricting it to the sub-
bundle H., of the tangent space. This formulation transforms the problem of com-
puting optimal motion paths into the computation of sub-Riemannian geodesics.
It ensures that the resulting motion path «(¢) follows energy-minimizing trajecto-
ries within the admissible directions ., for all ¢ € [0, 1]. For a detailed overview
of this concept, see for example [4].

Since the inner dissipation remains invariant under SE(3) variations, the hori-
zontal constraint is defined solely based on the outer dissipation.
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F1GURE 1. The columns show solutions of the three different in-
verse problems (1), (2), and (3) (from left to right). The red line
shows a tracking of the center of mass along the computed path.
The red crosses indicate the target displacement that should be
achieved in case (2) and (3).

To compute an optimal motion path between two positioned shapes vg,v1 € M
we therefor have to solve the following minimization problem

(1) argmin E(v(t)tef0,1])-

YeHy,v(0)=70,7(1)="1,
Alternatively, we consider a fixed start shape vy and optimize over end shapes
Y1 € Mg, where M, is given by all shapes in M with a fixed rigid body motion
component g relative to 7y, i.e.

(2) argmin E(v()tefo,11)-

YEH~,v(0)="0,7(1)eM,
Moreover, we compute optimal periodic motions that result in a specified displace-
ment g € SE(3). For this we solve the following problem

(3) argmin E(Y(t)tefo,17)-
YeH~,m(v(0))=m(v(1)),7(1)=g(7(0))

Those periodic paths project onto a closed loop in shape space S, which may be

traversed multiple times. Figure 1 shows exemplary results for all three inverse

problems.
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Generalized Signed Distance
NicoLE FENG
(joint work with Ioannis Gkioulekas and Keenan Crane)

1. THE SIGNED HEAT METHOD FOR GENERALIZED SIGNED DISTANCE

Signed distance functions (SDFs) are essential for many problems. But while it is
straightforward to compute the SDF of a closed shape free of defects, it is difficult
to robustly compute the SDF of “broken” shapes that have been corrupted by
holes, noise, or self-intersections. The core problem is that ordinary signed distance
depends on a well-defined notion of inside and outside, which is not well-defined
for broken shapes. Our goal is to directly compute signed distance to the true,
uncorrupted shape underlying a corrupted observation of the shape.

The signed heat method (SHM) achieves this goal [6]. The algorithm takes as
input some (possibly broken) oriented curves on a surface domain, or surfaces in
R3. The algorithm returns an approximation of the signed distance to the unknown
uncorrupted geometry. A significant advantage of the method is that it computes
distance to a reconstruction of the shape, without needing to explicitly perform a
costly reconstruction and contouring procedure.

The SHM relies on the fact that on Riemannian manifolds, short-time vector
diffusion yields parallel transport along shortest geodesics asymptotically as the
diffusion time ¢ — 0 [3, Theorem 2.30]. We infer that diffusing the normal vectors
to some source geometry €) for a small time yields vectors obtained by parallel-
transporting normals along a minimal geodesics, and hence conclude that diffused
normals will be parallel with the gradient of signed distance. Thus, we simply
normalize the diffused normal vectors to obtain a unit-magnitude vector field Y;
that approximates the gradient of a signed distance function, which we obtain by
integrating Y;. Concretely, the algorithm is:

(1) Solve a vector diffusion equation %Xt = AV X,, with initial conditions X
representing the normal vectors to the source geometry Q0 < M. In the
discrete setting, we use a fixed diffusion time ¢ determined by theoretical
[16] and empirical [18] findings.

(2) Evaluate the vector field Y; := X;/|| X¢|.
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(3) Solve a Poisson equation A¢ = V - Y; on M, with boundary conditions

gi:n-Yton(?M.

The algorithm ends up amounting to solving two sparse linear systems. In addition
to its simplicity, the SHM offers the following advantages:

e The method is based purely on intrinsic PDEs, and hence can be applied to
virtually any discretization of geometry in both two and three dimensions.
For example, we apply our method to triangle meshes, polygon meshes,
point clouds, voxelized surfaces, tet meshes, and regular grids.

e Further, a careful discretization on triangle meshes using Crouzeiz-Raviart
elements enables a purely intrinsic discretization that enables further ro-
bustness to poor triangle quality using intrinsic triangulations [7].

e The method robust across a wide variety of errors in both the source and
domain geometry.

e The method applies out-of-the-box on non-manifold and/or self-inter-
secting surface meshes.

e The method can compute unsigned distance simply by changing the direc-
tion of the normal vectors diffused in the first step. One can even combine
both signed and unsigned distance in a single distance field.

e Because the method is variational, it easily admits additional constraints,
such as level set constraints.

e The method yields good surface reconstruction compared to the classic
reconstruction algorithms of winding numbers [10] and Poisson Surface
Reconstruction [12].

2. CAN WE IMPROVE UPON THE SIGNED HEAT METHOD?

Given how well the SHM works, a natural question is how to extend the method
even further. For example, the method has currently been formulated to solve a
global system that amortizes performance over many queries dense in the domain.
But we might also aim to develop an output-sensitive version that optimizes for
individual pointwise queries — for instance, vision and robotics tasks like path
planning and collision detection typically only require signed distance at a single
query point at a time.

When the domain M = R", one might try to turn the PDE formulation of the
SHM into an equivalent integral formulation. Unfortunately, distance functions do
not decay at infinity, preventing well-posed integral formulations. Using an integral
equation on a finite domain also results in an intractable formulation (because of
a recursive term, and an intractable source term.)

On the other hand, there exist “convolutional” methods for surface reconstruc-
tion, which estimate an underlying surface by convolving the source geometry
against a particular kernel. It turns out that one can also derive convolutional
methods for distance, but none can provide generalized signed distance like the
SHM. In particular, all such convolutional methods are special cases of one of the
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following formulas:
(1)

N(a:) = —i log [fﬂ ha(2) exp (—(x)) dz] » Or J(a:) ot So, expexp 2(z )g d)z)' =

with Q ¢ R", ¢, (z) = |x — 2||3, A — o0. The formulas can be derived either:

e using wiscosity solutions of the signed eikonal equation, and applying an
exponential change of variables, namely a variant of the Hopf-Cole trans-
formation (a.k.a. Cole-Hopf) [2,4,5,9,13];

e asymptotic analysis of Laplace-type integrals as A — oo using Laplace’s
method [1,19], which generalizes the former.

Instances of these formulas are found widely across mathematics, computer science,
and engineering, for example:

e Similar asymptotic analysis was used to obtain Varadhan’s formulas for
unsigned geodesic distance [20].

e The “LogSumExp” function (a.k.a. Kreisselmeier-Steinhauser function)
used as a smooth maximum/minimum operator. Its gradient yields the
“softmax” function (a.k.a. Boltzmann distribution) which is often used
as an activation function in neural networks, is the core of the “atten-
tion” mechanism in machine learning, and underlies many kernel regres-
sion methods.

While these formulas are perfectly fine in theory, unfortunately they fail for discrete
geometry, for example when 2 is sampled as a point cloud. In particular, we
always obtain a distance function whose level sets are to the sampled geometry,
rather than to the underlying surface from which the discrete geometry is sampled.
Worse, any additional regularization scheme we might try proves futile.

The reason is that as A — o0, the approximations in Equation (1) are completely
determined by the behavior of either ¢ or h around the global minimizer of the
exponential argument ¢, and the global minimizer will be some point in the discrete
sampling of €2, rather than a point on a approximation of the underlying surface.
This means that coming up with a robust convolutional distance algorithm is
just as difficult as our original problem of computing pointwise distance to some
nicely completed surface: if we knew a good ¢, we would already have solved
our problem (or vice versa). Any scheme we might try for regularizing either
the point cloud or exponential kernel amounts to altering the h function which
has no effect asymptotically, so we always get the same non-robust behavior. So
while we need high \ to get good distance properties, the asymptotic properties of
the exponential function rapidly negates the effect of any regularization we might
choose. (Note that we can’t simply change the function ¢ inside the exponential,
because this would change the metric according to which distance is measured.)

There have been several variants of the general convolutional formulas presented
here, and none of them are robust [8,11,15,17]; at best, they sacrifice distance
properties by using small A, to only focus on reconstruction [10,12,14]. This is in
contrast to the SHM, which because it includes an intermediate step of normalizing
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gradient vectors, does obtain good distance accuracy to a good reconstruction of
the zero level set.

Ultimately, the non-robust behavior of convolutional distance methods is essen-
tially based on scalar diffusion, in contrast to the more robust vector diffusion of
the SHM, which makes full use of the higher-order information available. The as-
ymptotic behavior of the exponential function also underlies the behavior of many
other regression methods, including those used for clustering (in which case they
are good) and diffusion models (in which case they are bad). It is still unclear
how one might extend the SHM to different computational paradigms, or improve
upon the SHM, but I think there are still yet-to-be explored connections between
distance computation and problems of regression, both “old” or “new”.
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Geometric Algorithms, Stochasticity and the Fokker-Planck Equation
LETICIA MATTOS DA SILVA
(joint work with Silvia Selldn, Oded Stein, Justin Solomon)

The Fokker-Planck equation is a second-order parabolic partial differential equa-
tion (PDE) that describes the time evolution of the probability density function of
a process driven by a stochastic differential equation (SDE). My talk describes algo-
rithms that solve different formulations of the Fokker-Planck equation appearing in
low-dimensional geometry processing and high-dimensional probabilistic methods
and machine learning. Our methods draw from different corners of mathematics,
including the theory of viscosity solutions and information geometry, leading to
tools with wide-ranging applications, from optimal transport tasks and geometric
modeling to image resampling.

Let M c R3 be a compact surface embedded in R?, possibly with boundary
0M; take V to be the gradient operator and A to be the Laplacian operator, with
the convention that A is negative semidefinite. We first examine the Fokker-Planck
equation as an example of second-order parabolic PDE of the following form:

(1) (2—:: + H(x,Vu,u) = eAu,

where ¢ > 0 and u(z,t): M x [0,00) — R is an unknown variable function. The
function H(x, Vu,u): T*M x R — R is the Hamiltonian on T*M of

(2) % + H(x,Vu,u) =0,
which is known as the Hamilton-Jacobi equation.

We focus on the Cauchy problem for (1), that is, with a prescribed initial con-
dition u(z,0) = ug(z), where up: M — R is some scalar function, and boundary
conditions determining the behavior of u(z,t) at x € dM. Our strategy exploits
the fact that, under mild assumptions imposed on H, nonlinear systems appear-
ing in implicit time integration for (2) can be understood as the minimizer for
a carefully-designed optimization problem. We leverage this fact with a splitting
technique and appropriate spatial discretization to propose a convex relaxation for
solving parabolic PDE on curved triangle meshes.

Next, we consider the class of self-maps obtained by entropy-regularized trans-
port from a measure to itself. Formally, we define a mirror Schrédinger bridge to
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be the minimizer of the KL divergence Dk, (P | PY) over path measures P with
both initial and final marginal distributions equal to a probability measure m on
R", where PV is an Ornstein-Uhlenbeck process with noise o > 0. In this setting,
we examine the Fokker-Planck equation as the following SDE:

dXt = ft(Xt)dt + Uth,

where f; denotes the drift function and W, denotes the Wiener process.

We give an efficient algorithm leveraging time-symmetry to estimate the solu-
tion to mirror Schrodinger bridges with applications to resampling in generative
modeling. In more detail, we propose the following iterative scheme:

P?%+1 — argmin Dkr, P P%) (direct Dxki, projection)
PeD(m,-)
(3) P#*+2 = argmin Dgy, (P?**! | P), (reverse Dgj, projection)
PeS

where D(r, -) denotes the space of path measures with initial marginal fixed to be
m and S is the set of time-symmetric path measures with no marginal constraints.
We show that, up to a first-order approximation, the reverse Dky, projection in (3)
admits an analytical solution, allowing for shorter runtime for convergence, and
we propose a bound for the difference between the exact solution to the mirror
Schrédinger bridge and our estimate.

Please refer to [1,2] for more comprehensive discussions, further results and
applications of the works presented in my talk.
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Flag spaces for Geometric statistics
XAVIER PENNEC
(joint work with Tom Szwagier, Dimbihery Rabenoro)

Generalizing PCA to manifolds: Barycentric Subspaces Analysis. Sta-
tistically reduction of the dimension is a key issue in numerous problems. When
data belong to a manifold, we first need to define families of parametric subspace
in manifolds which could play the role of principal subspaces. Geodesic shooting
along the main eigenvectors of the covariance matrix at the Fréchet mean point
generates a Geodesic Subspace (GS) in tangent PCA. The point and tangent vec-
tors defining that GS that can also be optimized to best fit the data such as
proposed in Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA). To
restore the full symmetry between the parameters, we proposed in [1] to use the
Ezponential Barycentric subspace (EBS) defined as the locus of weighted means
of k + 1 reference points (with positive or negative weights). The EBS is locally
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a stratified spaces of maximal dimension k comprised of critical points of the
weighted variance satisfying the barycentric equation }}; Ajlog, (x;) = 0. Its met-
ric completion is called the affine span Aff(xzo,...x). Such spaces generalise the
notion of Geodesic Subspaces which can be shown to be the limit when reference
points coalesce towards a local 1-jet.

Barycentric subspaces and affine spans can naturally be nested by defining
an ordering of the reference points. This allows the construction of forward or
backward nested sequence of subspaces. However, these methods optimized for
one subspace at a time and cannot optimize the explained (or unexplained) vari-
ance simultaneously for all the subspaces of the flag. In order to obtain a global
criterion, PCA in Euclidean spaces was rephrased in [1] as an optimization on
the flags of linear subspaces of the accumulated unexplained variance criterion.
This generalizes nicely to flags of affine spans in Riemannian manifolds and gives
a particularly appealing generalization of PCA on manifolds, called Barycentric
Subspaces Analysis (BSA).

The curse of isotropy: From PCA to Principal Subspaces analysis. Con-
sidering PCA as an optimization of flags spaces gives an interesting geometric point
of view, even in Euclidean spaces. Indeed, one usually consider the succession of
unidimensional eigenmodes for the interpretation of the data in PCA, but more
general flags with higher dimensional subspaces naturally arise with the geometric
point of view. They correspond to covariance matrix with repeated eigenvalues,
in which case eigenspaces are stable but eigenvectors may be freely rotated within
each eigenspace. This raises an an important issue about the interpretation of PCA
modes, called the curse of isotropy [2]: principal components associated with equal
eigenvalues show large intersample variability and are arbitrary combinations of
potentially more interpretable components.

Most users overlook the problem because empirical eigenvalues are almost surely
distinct in practice due to sampling errors with a finite number of samples. In [2],
we propose to identify datasets that are likely to suffer from the curse of isotropy by
introducing a generative Gaussian model with repeated eigenvalues and comparing
it to traditional models via the principle of parsimony. This yields an explicit
criterion to detect the curse of isotropy in practice. We notably argue that in
a dataset with 1000 samples, all the eigenvalue pairs with a relative eigengap
lower than 21% should be assumed equal. This demonstrates that the curse of
isotropy cannot be overlooked. In this context, we propose to transition from
fuzzy principal components to more interpretable principal subspaces. The final
methodology, coined principal subspace analysis is extremely simple and shows
promising results on a variety of datasets from different fields.

A geometric formulation of CLT for flags. Estimating principal subspaces
rather than eigenvectors raises the question of the uncertainty of the estimated flag:
with a statistical point of view, one thus looks for confidence regions for principal
subspaces. The previous works of Anderson and Tyler were limited to confidence
regions on individual eigenvectors or on one single eigenspace at a time. In [3],
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we develop an asymptotic method to infer the collection of all principal subspaces
together, i.e. the full flag of eigenspaces of this covariance matrix. Our approach
is based on the Riemannian homogeneous geometry of the flag manifold. However,
even if flags generalize Grassmmann and Steifel manifolds, they are generally not
symmetric, and the Riemannian logarithm is not known in closed form. To get
around this problem, we develop and approach based on the embedding of the
flag manifold in the product of Grassmannians, where we can show a central limit
theorem and a y? distribution of the Mahalanobis distance.
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Learning geometry — a perspective on reconstruction, isometry,
partiality and topology

RoN KIMMEL
(joint work with Amir Bracha, Thomas Dages, Yaniv Wolf)

Geometry reconstruction is a pivotal aspect of computer vision, focusing on the
extraction of accurate geometric structures in 3D from various 2D visual data
representations. Recent advancements have introduced innovative methodologies
to enhance the precision and applicability of geometric reconstructions.

The discussion begins with an exploration of stereo vision, particularly ad-
dressing the challenge of computational shape reconstruction from random dot
stereogram images. In this context, the significance of prior information is em-
phasized as crucial for achieving accurate reconstructions [1]. This foundational
understanding sets the stage for more advanced techniques.

One such technique involves the utilization of Gaussian Splatting (3DGS) for
surface reconstruction. This method optimizes a cloud of Gaussian elements to
render realistic images from novel viewpoints. However, directly deriving geome-
tries from these Gaussians presents challenges due to potential inconsistencies.
To address this, a novel approach employs pre-trained stereo-matching models to
extract depth information, leading to smoother and more accurate 3D mesh rep-
resentations. This process entails rendering stereo-aligned image pairs from the
3DGS model, obtaining depth profiles through stereo analysis, and subsequently
fusing these profiles into a cohesive mesh [2]. This strategy has demonstrated
superior reconstruction capabilities, particularly in real-world scenarios captured
via standard devices.

Complementing this, advancements in partial shape matching have been
achieved through the development of the Wormhole Loss criterion [3]. This method
addresses the complexities of matching partial and complete surfaces by treating
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them as manifolds equipped with geodesic distances. The Wormhole Loss metic-
ulously identifies consistent point correspondences by analyzing intrinsic geodesic
distances, distances to surface boundaries, and extrinsic distances in the embed-
ding space. This comprehensive approach enhances the accuracy of partial shape
matching, facilitating improved alignment and comparison of geometric structures.

Collectively, these advancements signify substantial progress in the field of ge-
ometry reconstruction, offering refined tools and methodologies for both complete
and partial shape analysis.
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A Phase-field Approach to Optimal Reinforcing Networks
JOSUA SASSEN
(joint work with Patrick Dondl, Martin Rumpf)

We introduce a phase-field approach to compute optimal reinforcing networks for
elastic membranes based on a sharp-interface model introduced by Alberti et al. [1].
Formally, this sharp interface model reads as follows: The goal is to reinforce a
two-dimensional membrane described as a bounded Lipschitz domain < R? by
adding a one-dimensional reinforcement S < €2 in the most efficient way. To this
end, for a given exterior load f € L%(f), we consider the vertical displacement u
of the elastic membrane. The corresponding effect of S on this displacement is
described by the energy

(1) E¢(S) = inf L

,
— | [Vul?dz + = | |Vul?d 1—f dz.
uecﬁc(ﬂ)QL| Y x+2Js| uf”dn qu g

It has to be maximized to find the optimal reinforcement as it is the negative
compliance. Hence, the optimization problem of Alberti et al. [1] consists in finding
the best reinforcement S among all networks with total length bounded by a
prescribed L, i.e.

imize E:(S
magximize +(9),

with
Ay = {8 closed connected subset of Q with #'(S) < L}.


https://www.cs.technion.ac.il/~ron/PAPERS/autostereograms2002.pdf
https://doi.org/10.1007/978-3-031-73024-5_13
https://arxiv.org/abs/2410.22899

Mathematical Imaging and Surface Processing 235

Alberti et al. [1] provide additional considerations on a relaxation of this prob-
lem to prove the existence of solutions. Our goal is to introduce a phase-field
approximation of this problem as well as its numerical implementation.

To this end, we employ an Ambrosio—Tortorelli-type phase-field model with
the elastic membrane problem (1) entering as a PDE-constraint. For the diffuse
perimeter, we consider the functional

1
— 2, 2
P.(v) : J e|Voul* + =Y dz.

In the membrane problem, the reinforcement is achieved via a diffuse indicator
function leading to the energy

Er(v) = irl}fJQ % (1 + gp(v)) |Vu|* dz — JQ fudzx

(-2
with reinforcement factor r € R>o and weighting function p(v) = e »*  with

bump width 1. The weighting function ensures that the phase-field only has a rein-
forcing effect if it is close to one and, thus, prevents smearing out of the phase-field
for larger £ (and lower resolutions in the numerical computations). Furthermore,
to ensure connectedness of the computed structures and well-posedness of the
problem, we use an adapted version of the connectedness constraint introduced by
Dondl et al. [2]. This functional becomes

C(v) = . QH(v(:r))H(v(y))distF(”)(x,y) dz dy

for our Ambrosio—Tortorelli-like phase-fields with weighted distance

dist™ (z,y) == inf {fF M | c: [0,1] = Q, ¢(0) =z, ¢(1) = y}

and appropriate helper functions such that F' = 0 inside the phase, F' > 0 outside
the phase, H = 1 inside the phase, and H = 0 outside the phase and smooth
interpolations in between. With all these ingredients in place, our overall phase-
field model becomes

minimize AP (v) + ——C(v) — 687 (v)
veH (Q) gx

with a = 2 + 2y + B for some > 0 and parameter v stemming from the helper

functions in the connectedness constraint.

We discretize the problem on triangle meshes in a straight-forward fashion by
using affine finite elements. For the numerical optimization, we employ the L-
BFGS method where we compute the derivative of £¢(v) using the adjoint method.
We explored multiple ways to discretize the connectedness constraint and landed
on using the so-called heat method [3] for distance computations, mitigating grid-
dependent solutions, especially for lower resolution meshes. In Figure 1, we show
an experiment reproducing a result from Alberti et al. [1] under refinement of the
interface parameter £ and the spatial resolution.
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FIGURE 1. Parameter study with respect to the interface width
€.
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Ray Tracing Harmonic Functions
MARK GILLESPIE
(joint work with Denise Yang, Mario Botsch, and Keenan Crane)

Sphere tracing is a fast and effective algorithm for visualizing surfaces encoded by
signed distance functions (SDFs), which have become a centerpiece in a wide range
of visual computing algorithms. This talk discusses an analogous algorithm for a
completely different class of functions, harmonic functions, opening up a whole
new set of possibilities. For instance, our new algorithm can be used to directly
visualize smooth surfaces reconstructed from point clouds (via Poisson surface
reconstruction) or polygon soup (via generalized winding numbers) without per-
forming linear solves or mesh extraction. It can also be used to render nonplanar
polygons (including those with holes), and to visualize key mathematical objects,
including knots, links, spherical harmonics, and Riemann surfaces (Figure 1).

Sphere Tracing. The sphere tracing algorithm [2] ray traces level sets of a
function f with a known Lipschitz bound, i.e., a value C' > 0 such that, for all points
z,y we have |f(z) — f(y)| < C|z —y||. At any time ¢, no point of the isosurface
of value f* is contained within a ball of radius R = (f(r(t)) — f*)/C—providing
a conservative step size for ray tracing. An important special case are signed
distance functions, with Lipschitz constant C' = 1. Similarly, we will truncate a
ray by a “safe” sphere—the key difference is that this safe radius is determined by
reasoning about harmonic functions, rather than Lipschitz functions.
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SURFACE RECONSTRUCTION ARCHITECTURAL GEOMETRY
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FIGURE 1. Level sets of harmonic functions arise in applications
such as surface reconstruction or architectural geometry (top),
as well as in the visualization of mathematical objects such as
Riemann surfaces or Seifert surfaces (bottom).
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Harnack Tracing. Let f : Br(zg) — R>o be a positive harmonic function on
the ball Br(xo) of radius R > 0 centered at xy € R™. The Harnack inequality,
provides a conservative upper and lower bound on the value of f for every point

x € Br(zo) in terms of the distance p := ||x — zo| < R and the value f(zg):
(R—p)R" (R+p)R"
1/ f(x) S —5——f
(R+p)"! (@) < F(z) (R—p)"! (@o)

We first rewrite the Harnack inequality in a form that makes it more directly
useful for our algorithms. Suppose we are standing at a point zg € R? and want
to know the maximum step size piower We can take in any direction v such that
f(zo + pv) is no smaller than a given lower bound f_ € (0, f(zp)). In 3D, we have

Plower := g <—(2 +a_)+ \/m> ,  where a_ := f(x0)/f-.

Likewise, if we want to avoid exceeding an upper bound f* € (f(xg), ), then we
have a maximum step size

R
Pupper := 3 <a+ +2— 1/&3 + 8a+> ,  where ay = f(x0)/f+.

Hence, if our goal is to intersect a level set with value f*, we take the step size
R

1 == ‘
(1) pi=5

a+2—+/a®+8a|l, wherea:= f(zo)/f*.




238 Oberwolfach Report 5/2025

This bound provides a conservative step size, whether f(x¢) is above or below f*.

Now, let f : R® — R be harmonic, and let 7(t) be the ray r(t) := ro+t v starting
at 7o € R? and moving in direction v € R3. For a target value f*, the Harnack
tracing algorithm computes the smallest time ¢* > 0 such that f(r(t*)) = f*, i.e.,
the time where the ray first pierces the surface

S:=fTHf") = {z e R | f(z) = f*}.

To do so, we use Equation (1) to find the largest step size p for which the ray is
guaranteed not to pass through S. Since the Harnack inequality applies only to
positive functions, we first “shift” f within a local ball to get a safe step size.

Explicitly, suppose that for any point € R3, we have a radius R > 0 and value
¢ € R such that f(y) > ¢ for all points y € Bg(z). To find a step size p at some
time ¢, we evaluate Equation (1), but using the shifted function value f(r(t)) — ¢
and shifted target value f* —c. We then increment ¢ by p and repeat this process
until f(r(t)) is sufficiently close to f*, or ¢ exceeds some maximum time pax.
This simple subroutine can then be incorporated into any rendering algorithm to
visualize level sets of harmonic functions, as shown in Figure 1.
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Conformal Maps and Directional Fields: Can two walk together,
except they be agreed?

AMIR VAXMAN

(joint work with Mirela Ben-Chen, Shir Rorberg, Kaibo Hu, Christian Miiller,
Ofir Weber, and Brad Wang)

The purpose of this talk is to draw ties between notions of discrete conformality
and directional fields on triangles meshes, and demonstrate how properties and
structure from the continuum are preserved under the discretization. Rather than
give concrete answers, this talk hinted at connections between such discretizations
as interesting topics of research into a greater unified discrete conformal theory.

Discrete conformal equivalence. Two triangle meshes M = {Vp, &, F} and
N = {Vn, &, F} of the same connectivity are discrete conformally-equivalent [7]
when there existing a vertex-based (log)-conformal factor uy such that

uituj

Vee&, I =1Ne

l{\j" (resp. l{}f) is the length of edge e;; in M (resp. N). Discrete conformality
preserves continuous conformal structure by being Md&bius invariant, for instance,
but does not define a continuous transformation of the triangle mesh.
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Piecewise-Md&bius maps (PCM). As an attempt to parameterize entire-triangle
transformations, Vaxman et al. [8] defined per-face Mobius maps My, Vt € T, that
had to conform on mutual edges:

Veije fng, frgeF, Mp(i) = My(i), My(j) = My(3)

In this representation, discrete conformality was characterized by further having
|M§(i)| = [Mg(i)| = exp(u;) (resp. j), for a local complex parameterization of the
flap (f,g) with variable z. This setup allowed for a per-face definition, but still
didn’t define a continuous interpolator, since the agreement on the vertices of the
edge did not extend to the entire edge (otherwise we would have had My = M,).

Blended piecewise M6bius maps (BPM). Rorberg et al. [6] offered to blend
the PCM maps inside every triangle, to obtain a continuous Mobius invariant
transformation. Consider a single triangle ¢ = ijk, with M&bius map M;, and
maps on the neighboring triangles neighbors Mj, My, M3 on corresponding edges
ij, jk, kl. For each edge we compute the log Mébius error 16,1 = log(M;M; '), and
similarly for ld;2 and d;3. Then, we blend the log-error inside the triangle:

Bij (Z)l(sij + Bjk (Z)Z(Sjk + B (Z)l(ski

I0t(z €t) = B;j(2) + Bji(z) + Bi(2) 7

Where B;;(z) = d(z,e;;)!, and similarly for jk and ki. We then compute:

M(2) = exp <%l6t(z)) M,

The log-exp blending is very common in rotation interpolation [1], and here used
to blend matrices in log space, where the underlying assumption is that the error
is close enough to the identity to avoid double-cover issues. This method finally
provided an interpolant. However, this interpolant did not create continuous con-
formal maps from discrete conformal maps, but rather just approximately; this
might be an impossible task to achieve within one triangle in general, since it is
akin to interpolating harmonic maps locally. BPMs are generalizable to curved
triangle meshes by a local parameterization of each triangle and its four neighbors;
by virtue of the Mobius equivariance of the scheme, the computed maps connect
together seamlessly.

Discrete conformal maps and cross fields. In a different perspective on PCM
and DC maps, we look at the (complex) derivative of a M&bius map, where M (z) =
Zzzig, ad—bc=1= M'(z) = (cz +d)~!. Derivative of holomorphic functions, by
way of the Cauchy-Riemann equations, define a field of crosses (a cross-field) on
the surface of the triangle. In case a PCM transformation is discrete conformal, for
two neighboring triangles f and g on an edge e;; we have [cz;); +d| = |czy ;; +d|.
The means that Re(log(My(i|j))) = Re(log(My(i]j))) = u,;, which is analogous
to tangent-continuous discrete 1-forms in H (curl) in discrete exterior calculus [4].
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Differential polar representations. It is possible to represent cross-fields (and
vector fields in general) by looking at their rotation angles (or: phases), which are
the imaginary parts of these logarithms. Such algorithms (e.g., [3,5]) represented
vector fields by single vectors per faces, with (dual) edge-based “connection angles”
O¢g, so that for two vectors vy and v, on adjacent edges, we have:

Vg = eray f-
To counter the discrete Gaussian curvature (=angle defect), one must have:
d?;@ =27l — Kpm,

kam is the discrete Gaussian curvature of the mesh M, and I the (vertex-based)
index of v. dp is the discrete differential operator, where di essentially sums
dual-edge quantities into vertices as cycles around them. Using the polar Hodge
decomposition, we have that:

A0 = ddi s + db w1 dyby + d3h
d09 = Ad}v = Ky — KM

where 1; is the coxact (face-based) potential, 1, is the exact (vertex-based) po-
tential, and h a possible harmonic component. This is directly analogous to the
Yamabe equation, used in the discrete conformal literature [2].

The discrete Hilbert transform. As another relation between fields in the
polar representation and discrete conformal maps, we consider ¥ and 6 = #1dy,
in a flat domain in C. In this case, ¥, is just a vertex-based harmonic function:
Ao, = 0. Next consider the resulting face-based cross-field, parameterized by a
single phase 1y, where we have that:

ding =0=
Agny = dy =1 di = didotp, = 0.

And thus, the face-based phase 7y is a face-based harmonic function. This is
analogous to phase and log-conformal factor being conjugate harmonic functions
for a holomorphic function. Thus, ¢, — 7y (the computation of a cross-field from
a curvature potential in polar form) is a discrete Hilbert transform.
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Poisson Manifold Reconstruction (beyond co-dimension one)
MICHAEL KAZHDAN
(joint work with Max Kohlbrenner, Sing-Chun Lee, Marc Alexa)

A central task in geometry processing is the reconstruction of a surface from point
samples. Most of the work in this area considers two-dimensional surfaces embed-
ded in 3D. Among different ways to define a surface from point samples, level-set
techniques and, in particular, (screened) Poisson Surface Reconstruction [1,2] have
proven to be particularly resilient to common sampling artifacts such as noise,
outliers, and missing data. The reason for this robustness is that they treat the
reconstruction problem globally.

The aim of this work is to generalize the class of Poisson Surface Reconstruc-
tion methods to oriented d-dimensional manifolds embedded in an n-dimensional
space with co-dimension d = n —d > 1. The input is a sampling S of the mani-
fold, consisting of locations of the samples and (oriented) frames spanning the d-
dimensional normal space. The output is a vector valued function F : R® — R?~¢
that represents the manifold as a level-set, i.e.

Ms ={xeR": F(x) = 0}.

As in screened Poisson Surface Reconstruction, we solve for the coordinate func-
tions of F' whose gradients span the normal frames prescribed at the sample points.
This poses several challenges.

When d > 1, there is a continuum of frames that can be used to represent
the same oriented d-dimensional normal space at a point. As the reconstructed
manifold should only depend on the oriented normal space at the samples, we
require a representation that is agnostic to the particular choice of frame.

For a similar reason, there can be a continuum of solutions F' whose gradients
span the normal space at the sample points. Often, this reflects the fact that the
underlying optimization is non-convex making it hard to find solutions that avoid
getting trapped in unwanted local minima.

Our main contributions are choices in representation and optimization that
lead to a practical extension of screened Poisson Surface Reconstruction to higher
co-dimension, overcoming the mentioned challenges:

e We argue that the right mathematical tool to deal with the multiplicity
of frames is exterior algebra: we encode the local normal space of the
manifold as an exterior product — making the representation independent
of the particular choice of frame.
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e We show that using the exterior product, the problem of solving for the
coordinate functions of F' reduces to minimizing a multi-quadratic energy.
The continuous approach can be discretized using a finite basis, and we
specifically develop a discretization for the case d = 2.

e We propose a hierarchical approach for minimizing the energy that smooths
out the energy landscape at coarser resolutions, keeping the optimization
from getting trapped in local minima and consistently returning the same
solution, regardless of initial guess.

We demonstrate the efficacy of our approach in reconstructing curves in 3D and
surfaces in 4D, analyzing run-time performance, convergence, and stability in the
presence of noise. We conclude by offering some discussion and proposing direc-
tions for future work.

REFERENCES

[1] M. Kazhdan, M. Bolitho, and H. Hoppe Poisson Surface Reconstruction, Proceedings of the
Fourth Eurographics Symposium on Geometry Processing (2006), 61-70.

[2] M. Kazhdan, and H. Hoppe Screened Poisson Surface Reconstruction, ACM Transactions
on Graphics 32 (2013), 29:1-29:13.

Consistent Image Editing — Manipulating Images Only Where
Change is Needed

NoaM ROTSTEIN

In this work we explore a novel framework for high-fidelity, text-guided image edit-
ing that deliberately confines modifications to only those regions where change is
necessary, thereby preserving the overall integrity of the original image. Con-
ventional diffusion-based editing techniques often result in global alterations that
inadvertently disrupt areas that should remain untouched, leading to inconsis-
tencies and loss of context. To address this challenge, our approach introduces
two complementary methods that together redefine image editing as a process of
controlled, minimal intervention.

Our first method, Paint by Inpaint, is founded on the insight that object re-
moval through inpainting is a relatively well-understood task compared to the
more challenging process of object insertion. By leveraging extensive segmen-
tation datasets and state-of-the-art inpainting models, we construct a large-scale
dataset of natural images paired with their corresponding object-removed versions.
This inversion of the inpainting process enables us to train a diffusion model to
“paint” objects back into an image using solely textual instructions. As a re-
sult, the model learns to accurately reintroduce objects into their correct spatial
contexts, ensuring that the inserted elements blend seamlessly with the existing
background. This technique effectively mitigates issues such as residual artifacts
and inconsistent texture transitions that typically arise in direct object addition,
yielding edited images with remarkable fidelity and contextual coherence.

Complementing this is our second method, Pathways on the Image Manifold,
which reconceptualizes image editing as a continuous transformation rather than
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a one-shot modification. Recognizing that abrupt edits can undermine the natural
appearance of an image, we employ a video-generation framework to produce a se-
ries of intermediate frames that trace a smooth trajectory from the source image to
the desired edited state. In this paradigm, the desired change is first distilled into
a temporal editing caption—a concise narrative describing how the image should
evolve over time. A video diffusion model then synthesizes a sequence of plausible
frames along this continuous path, and an automated frame selection mechanism,
guided by a vision-language model, identifies the optimal frame that best captures
the intended edit. This gradual approach not only ensures that modifications occur
in small, controlled increments but also leverages the inherent temporal coherence
of video data to produce a final output that faithfully retains the original image’s
structural and aesthetic qualities.

The synergy between Paint by Inpaint and Pathways on the Image Manifold
lies in their shared emphasis on targeted modification. By focusing on altering
only the regions that require change, our combined approach achieves a level of
editing consistency that is particularly well-suited for applications in augmented
reality, interior design, social media, and data augmentation for computer vision.
Our extensive evaluations, conducted on both natural and synthetic benchmarks,
demonstrate that our methods not only improve objective metrics such as L1/L2
distances and CLIP-based similarity scores but also receive high marks in subjec-
tive human assessments. Furthermore, the continuous editing paradigm introduced
by the manifold pathway method opens promising avenues for future research in
video-based image transformation, enabling the generation of smooth animations
and dynamic visualizations that preserve source fidelity.
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Diffusion Models for Gaussian Distributions: Exact Solutions and
Wasserstein Errors

EMILE PIERRET
(joint work with Bruno Galerne)

Diffusion models have emerged as a powerful framework for generative model-
ing, particularly in high-dimensional data applications such as image and speech
synthesis. These models are based on a progressive transformation of a data distri-
bution into a Gaussian distribution using a forward stochastic differential equation
(SDE). The generative process is then performed by reversing this transformation
through a backward SDE or an equivalent probability flow ordinary differential
equation (ODE) [1]. While these models have demonstrated impressive empirical
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performance, their theoretical convergence properties remain an active area of re-
search [4-6]. One of the key challenges in understanding diffusion models lies in
analyzing the various sources of errors that arise during the generative process, in-
cluding initialization, discretization, truncation, and score approximation errors.
In this talk, we restrict our study to Gaussian data distributions, which allow
for exact analytical solutions of the backward SDE and probability flow ODE.
By leveraging the fact that the score function in this setting is a linear opera-
tor, we derive closed-form expressions for the evolution of the generated samples
and establish that all solutions, including their numerical discretizations, remain
Gaussian. This property enables us to compute exact Wasserstein errors induced
by different sources of approximation and rigorously compare the performance of
various sampling schemes.

Analysis of the error types in diffusion models. A major component of our
study focuses on the quantification of errors that impact the generative process.
We identify four primary sources of errors:

e The initialization error: approximating the terminal distribution of the
forward process with a standard Gaussian introduces an initialization dis-
crepancy that propagates through the backward integration.

e The discretization error: The numerical integration of the SDE or ODE
requires discretization, leading to errors that depend on the choice of nu-
merical scheme.

e The truncation error: Due to numerical instabilities, the backward process
is often truncated at a small positive time, affecting the final generated
distribution.

e The score approximation error: In practical applications, the score func-
tion is estimated using a neural network rather than being known exactly,
introducing an additional source of discrepancy.

By studying these errors in the Gaussian setting, we derive explicit Wasserstein
distances between the true distribution and its sampled approximation under var-
ious numerical schemes.

Observation of the exact Wasserstein errors without score approxima-
tion. To validate our theoretical findings, we conduct experiments comparing
different discretization schemes, including Euler-Maruyama, Exponential Integra-
tor for the backward SDE and Euler and Heun’s methods for the probability flow
ODE in terms of exact Wasserstein errors, not considering the score approxima-
tion error. Our analysis confirms that Heun’s method offers the most accurate
sampling, as empirically observed [2], closely following the theoretical probability
flow ODE while maintaining numerical stability. A key contribution of our study
is providing an analytical benchmark for evaluating the impact of numerical ap-
proximations in diffusion models. The impact of truncation error is minimal for
sufficiently small truncation time step, reinforcing the viability of standard prac-
tice in diffusion models. This is particularly useful for improving the reliability of
diffusion-based generative modeling.
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Experimental study of the score approximation. We train a neural network
to approximate the score function for a Gaussian distribution of microtextures,
named the ADSN model [3]. We observe that stochastic methods, such as Euler-
Maruyama, demonstrate resilience to score approximation errors, making them
more robust in practical settings.

Implications and Future Work. Our study highlights the importance of pre-
cise numerical methods in diffusion models, providing a theoretical framework to
guide the selection of sampling schemes. While our analysis is restricted to Gauss-
ian distributions, an important next step is to extend this work to more complex
data distributions, such as Gaussian mixture models or real-world datasets. Un-
derstanding how these numerical errors behave in non-Gaussian settings will be
crucial for further advancements in the field. Additionally, future research should
focus on refining neural network architectures for score function estimation to
minimize approximation errors. A promising direction is to develop adaptive sam-
pling techniques that dynamically adjust integration steps based on local error
estimates, further improving generative accuracy. By bridging the gap between
theoretical analysis and practical implementation, our work contributes to the de-
velopment of more robust and efficient diffusion models. The insights provided in
this study offer a strong foundation for optimizing hyperparameters and improving
the fidelity of generated samples.
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Intrinsic approaches to learning and computing on curved surfaces
RUBEN WIERSMA
(joint work with Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt)

In this talk, we consider intrinsic approaches to learning and computing on curved
surfaces for the following tasks: analyzing 3D shapes using convolutional neural
networks (CNNs) and solving linear systems on curved surfaces. We propose more
efficient and better performing algorithms for these tasks with intrinsic geometry.
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The first two parts consider CNNs on curved surfaces. We would like to find
patterns with meaningful directional information, such as edges or corners. On
images, it is straightforward to define a convolution operator that encodes direc-
tional information, as the pixel grid provides a global reference for directions. Such
a global coordinate system is not available for curved surfaces. With Harmonic
Surface Networks [1], we apply a 2D kernel to the surface using local coordinate
systems. The rotation of these coordinate systems around the normal is ambigu-
ous, which is a problem for pattern recognition. We overcome this ambiguity by
computing complex-valued, rotation-equivariant features and transport these fea-
tures between coordinate systems with parallel transport along shortest geodesics.

Part two introduces DeltaConv [2]. DeltaConv is a convolution operator based
on geometric operators from vector calculus, such as the Laplacian. A benefit of
the Laplacian is that it is invariant to local coordinate systems. This solves the
problem of a missing global coordinate system. However, the Laplacian operator
is also isotropic. That means it cannot pick up on directional information. Delta-
Conv constructs anisotropic operators by splitting the Laplacian into gradient
and divergence and applying a non-linearity in between. The resulting convolu-
tion operators are demonstrated on learning tasks for point clouds and achieve
state-of-the-art results with a relatively simple architecture.

Part three involves solving linear systems on curved surfaces. This is relevant
for many applications in geometry processing: smoothing data, simulating or ani-
mating 3D shapes, or machine learning on surfaces. A common way to solve large
systems on grid-based data is a multigrid method. Multigrid methods require a
hierarchy of grids and the operators that map between the levels in the hierarchy.
We show that these components can be defined for curved surfaces with irregu-
larly spaced samples using a hierarchy of graph Voronoi diagrams. The resulting
approach, Gravo Multigrid [3], achieves solving times comparable to the state-
of-the-art, while taking an order of magnitude less time for pre-processing: from
minutes to seconds for meshes with over a million vertices.
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Isoperimetric inequalities: Gaussian, on Gaussian and applications
AGNES DESOLNEUX

(joint work with Hermine Biermé, Valentin de Bortoli, Julie Delon,
Antoine Salmona)

In the first part of the talk I presented a joint work with Antoine Salmona, Valentin
de Bortoli and Julie Delon, in which we use the Gaussian isoperimetric formula
( [1]) to quantify the expressivity of push-forward generative models of the form
X = g(Z) where Z follows p, the Gaussian standard distribution on R? and
g :RP — R9 is a Lipschitz function (typically a neural network). The law of X is
then the push-forward measure g .

To be more precise, the Gaussian isoperimetric formula states that if A ¢ RP
is a Borel set, then

o p(Al) —pp(A _
1y (A) = hergéglf% > (27 (1p(A)),
where ¢ is the density of the 1d standard Gaussian distribution, ® is its cumulative
distribution and A, = {z € R”; d(z, A) < €}. A consequence of this formula is
that if g is a Lipschitz function, then for all Borel sets A < R% we have

Lip(g) (gip) T (0A) = 0 (97 (g4pp(A))) -

This formula can then be used to give bounds on the minimal Lipschitz constant
that the function g needs to have in order to generate a Gaussian mixture. The
formula also shows that the push-forward distribution gxp, cannot have a dis-
connected support. More precisely, we can quantify this thanks to the Gaussian
isoperimetric inequality and get the following bound: Let v be a measure on R? on
two disconnected manifolds M; and My such that v(M;) = X and v(My) =1 — ),
with A € [1/2,1), and let g : R? — R? be a Lipschitz function. Then,

d(M1,M5)/2Lip(g)+®~*())

dry (gsiipsv) > f o(t)dt
B-1())

where d(My, Ms) = inf{|mi — ma| ; m1 € M1, ms € Ms}.

In the second part of the talk, I described how to compute the Lipschitz-Killing
(LK) curvatures of the excursion sets of a stationnary Gaussian random field. The
expected values of these LK curvatures have explicit formulas that are functions
what we called geometrical spectral moments (that are explicit functions of the
eigenvalues of the Hessian of the covariance matrix). These geometrical spectral
moments are ordered and this ordering induces inequalities between the mean LK
curvatures, which can be seen as generalized isoperimetric inequalities on Gaussian
excursion sets. Indeed in 2D for instance, the formula becomes the following: Let
X be a C? stationary Gaussian standard random field with covariance function p.
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Then for a.e. t, denoting the excursion set Ex(t) = {x € R?%; X (x) > t}, we have

1 1 t2
C¥(X,t):= —FE f kx(x) H (dx = ———te T
o ( ) o ( DB (0,12 x(z)H( )) pixe (27)3/2
CHX,b) = ~E J Hidr)| = A e
2 OEx (1)~ (0,1)2 4
C3(X, 1) :=E(|Ex(t) n (0,1)’]) = 1—a(t),

where @ is the cumulative of the 1d standard Gaussian distribution, and where
denoting y; and 7 the two eigenvalues of I' = —D?p(0), we have
2

I )
vie =y < (52 [ \/neost0) + msn0)a0) = v
™ Jo

Notice that this implies the following isoperimetric inequality:

4
O x (@71 (1= C3)) < —(CF)* x 27 (1 = C3).

In 2D, the interpretation of the LK curvatures is the following: C¥ is the volume
of the excursion set in U = (0,1)2, C§ is half its perimeter and C is its total
curvature (divided by 27), that is related to the Euler characteristic thanks to the

Gauss-Bonnet Theorem.

We used these results to estimate the anisotropy of a Gaussian random field being
only given one observed excursion set. We also extended these results to 3D
Gaussian field. This is part of a joint work with Hermine Biermé.
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Convergent Plug and Play methods for image restoration
NIcOLAS PAPADAKIS

(joint work with Antonin Chambolle, Samuel Hurault, Arthur Leclaire,
Jean Prost, Marien Renaud)

In this talk, we present a class of convergent algorithms to solve inverse problems in
imaging using explicit and non-convex regularizations learned through deep neural
networks. We consider a general observation model of the form y = Ax™ + & where
y € R™ is the observed degraded image, z* € R™ is the true image we want to
approximate, A : R” — R™ is a linear degradation operator, and & ~ N(0, v%id) is
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an additive Gaussian noise representing measurement uncertainty. This problem
is classically addressed by solving an optimization problem of the following form:
(1) ¥ € argmin Af(x) + g(x),
xeR™

where f is a term that attaches to the degraded observation, g is a regularization
term, and A > 0 is a regularization parameter that weights the importance of the
two terms. The regularization term allows for the inclusion of prior information
about the regularity of the desired solution. A long-standing problem is to de-
sign functions g that reflect relevant regularity on z. Recent deep neural network
models have produced remarkable results in various imaging applications. It re-
mains a challenge to determine how to best incorporate deep learning models into
a regularization function g that has the necessary properties to allow the use of
established optimization techniques.

Plug-and-Play Regularization. The minimization of (1) is generally performed
using first-order optimization algorithms, known as proximal algorithms. These
algorithms operate individually on the two terms via two operators: the gradi-
ent descent operator id — 7V f and the proximal operator Prox,;. For example,
the proximal gradient descent (PGD) algorithm alternates between a proximal
operation and a gradient descent step on either of the functions f and g:

(PGD) xp41 = Proxygo(id = 7AVf)(zr) or zpq1 = Proxyapo(id —7Vyg)(xk).

Plug-and-Play (PnP) methods [8,10] establish a connection between these op-
timization algorithms and deep neural network models through the introduction
of an image denoiser D,. Their derivation is based on the theoretical analysis of
optimal MAP and MMSE denoisers. Given a generic denoiser D,,, for example, a
deep neural network pre-trained to denoise a Gaussian noise-degraded image with
standard deviation o, these methods use D, in place of a descent operator on the
regularization term g. In RED algorithms [8], the denoiser replaces the gradient
descent operator: D, = id — Vg. In PnP algorithms [10], the denoiser replaces
the proximal operator: D, = Prox,4. The PGD algorithm thus becomes

(PnP-PGD) xp41 = Dy o (id — 7AV f)(xx)
(RED-PGD) k41 = Prox,afo(id — 7(id — Ds)).(zx)

State-of-the-art results for various inverse problems have been obtained with
these processes, that consider a simple Gaussian denoiser to restore a variety of
inverse problems. However, in PnP and RED frameworks, the denoiser is used with
few theoretical guarantees of convergence. Indeed, since a generic denoiser does not
generally express itself exactly as a proximal operator or a gradient, convergence
results do not easily follow. Most convergence results limit their analysis to non-
expansive denoisers, which implies a significant drop in performance. Moreover, as
regularization is only implicitly included via the denoising operation, (PnP-PGD)
and (RED-PGD) algorithms do not minimize an explicit functional. This strongly
limits the interpretability of the result and the numerical control of the algorithm.
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Gradient step denoiser. We introduce a Gradient-Step denoiser [2] that is ex-
pressed exactly as a gradient descent step on a differentiable potential g, : R — R:

(2) D, =id— Vg,

We choose g, in the form g,(z) = 3|z — Ny(z)|?, with N, : R® — R" being
a C! class neural network. With this formulation, we can parameterize N, with
any differentiable neural network architecture that has proven effective for image
denoising, such as a UNet. Despite being constrained to be a gradient field, D,
performs as well as the same unconstrained UNet denoising network.

With the gradient step denoiser (2), the (RED-PGD) algorithm takes the form
of an optimization algorithms to optimize A\f + g,. Since the function g, is non-
convex, the proof of convergence of the algorithm relies on known results of in non-
convex optimization [1] showing convergence of iterates to critical points of (1).
Experiments in deblurring and super-resolution confirm the theoretical conver-
gence results and show that the algorithm achieve state-of-the-art performance.

Proximal Denoiser for Convergence. To prove the convergence of PnP meth-
ods, we propose a second denoiser trained to take exactly the form of a proximal
operator [3]. To do this, we demonstrate that, for g, with L-Lipschitz gradient
and L < 1, the Gradient-Step denoiser (2) is a proximal operator, that is,

D, =1d —-Vg, = Proxg,

for an explicit M = LLH—weakly convex function ¢, : R® — R U {+0o0}.

With this proximal denoiser, the (PnP-PGD) algorithm takes the form of a
true proximal gradient descent algorithm to optimize Af + ¢,. Note that D, is
expressed as Proxg, and not as Prox,4, (with a time step 7 > 0) as used in the
(PGD) algorithm. This involves a fixed time step 7 = 1 and constrains the choice
of the regularization parameter \ to ensure the convergence of the algorithm. We
then propose an « relaxation of the PGD algorithm [4]. When the convergence
constraint of the PGD algorithm restricts the sum of the Lipschitz constant of
AV f and the weak convexity constant M of ¢, the «PGD algorithm, on the other
hand, limits the product of these two terms. This gives freedom for the choice of
A when M approaches 0. Experiments demonstrate the effectiveness of these PnP
algorithms. In particular, PnP-aPGD remedies the notable performance loss of
PnP-PGD attributable to the restriction on the value of the parameter A.

Stochastic Denoising regularization. PnP and RED approaches rely on a non-
standard use of a denoiser D, trained on noisy images but applied on images that
are less and less noisy along the iterations. This contrasts with recent algorithms
based on diffusion models [5], where the denoiser is applied only on re-noised
images. Generalizing the gradient descent version of the RED method [8], we
introduce the Stochastic deNOising REgularization (SNORE) algorithm [6], which
applies the denoiser only on images with noise of the adequate level:

— Dg(xk + Jfk))

o2

(SNORE) xp4+1 =z — Tk (/\Vf(xk) + k
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for a random realization & = N(0,Id). This is a stochastic gradient descent
algorithm targeting a critical point of the non-convex function Af + g, for the
explicit stochastic regularization defined as

1
Jo(x) = §E§~N(O,Id)ga(x + 0§).

A convergence analysis of this algorithm and its annealing extension are pre-
sented. The method is competitive with respect to state-of-the-art methods, while
presenting improved performance in terms of visual quality thanks to the noise
injection inspired by diffusion models.

We finally introduce an equivariant regularization [7] encompassing stochastic
versions of RED algorithms such as SNORE and the equivariant scheme of [9)].

REFERENCES

(1] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward-backward splitting, and reqularized gauss-
seidel methods. Math. Programming, 137 (2013), 91-129.
S. Hurault, A. Leclaire, N. Papadakis, Gradient step denoiser for convergent plug-and-play,
International Conference on Learning Representations (2022).
[3] S. Hurault, A. Leclaire, N. Papadakis, Prozimal denoiser for convergent plug-and-play
optimization with monconvex regularization, International Conference on Machine Learn-
ing (2022).
S. Hurault, A. Chambolle, A. Leclaire, N. Papadakis, Convergent plug-and-play with proxi-
mal denoiser and unconstrained regularization parameter, Journal of Mathematical Imaging
and Vision 66 (2024), 616-638.
(5] J.,Ho, 1. Jain, P. Abbeel, Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33 (2020), 6840-6851.
[6] M. Renaud, J. Prost, A. Leclaire, N. Papadakis, Plug-and-Play image restoration with Sto-
chastic deNOising REgularization, International Conference on Machine Learning (2024).
[7] M. Renaud, A Leclaire, N Papadakis. Equivariant Denoisers for Image Restoration. Inter-
national Conference on Scale Space and Variational Methods (2025).
[8] Y. Romano, M. Elad, P. Milanfar, The little engine that could: Regularization by denoising
(RED). SIAM Journal on Imaging Sciences, 10 (2017), 1804-1844.
[9] M Terris, T Moreau, N Pustelnik, J Tachella, Equivariant plug-and-play image reconstruc-
tion, Conference on Computer Vision and Pattern Recognition (2024).
[10] S. V. Venkatakrishnan, C. A. Bouman, B. Wohlberg, Plug-and-play priors for model based
reconstruction. In IEEE Global Conference on Signal and Information Processing (2013).
[11] P. Vincent, A connection between score matching and denoising autoencoders. Neural com-
putation, 23 (2011), 1661-1674.

2

[4



252 Oberwolfach Report 5/2025

Geometry and computational design of strip structures
HELMUT POTTMANN

(joint work with Yu-Chou Chiang, Martin Kilian, Daoming Liu, Christian
Miiller, Davide Pellis, Florian Rist, Eike Schling, Johannes Wallner, Bolun Wang,
Hui Wang)

The fabrication of gridshells from straight or circular flat strips of bendable mate-
rial leads to remarkable geometric structures. With further practical restrictions,
such as structures whose strips are tangential or normal to an underlying ref-
erence surface, we obtain multiple relations to classical and discrete differential
geometry. The design space includes surfaces with a constant ratio of principal
curvatures, principal symmetric nets and linear Weingarten surfaces [3]. The lat-
ter occur as kinetic structures that can be deployed from a collapsed straight or
circular state [1]. The arrangement of strips in form of 3-webs or 4-webs leads to
various challenging and largely unsolved geometric problems concerning webs of
asymptotic and geodesic curves on surfaces [2,4, 5].
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Geometric Optimization for Plasma Fusion
ZORAH LAHNER

Due to reach of scientific break-even of a plasma fusion reactor recently, which
means more energy was produced during the fusion than was necessary to start
it and keep running, the hope for efficient, clean energy through plasma fusion is
again rising. There exist several conceptually different designs for plasma fusion
reactors, one of which is the stellarator. One of the defining properties of stel-
larators, in comparison to the more advanced tokamaks, is their complex plasma
flow. The complexity allows for configuration that are very efficient and stable but
at the same makes the simulation of its properties and the optimization harder.
The plasma flow is guided and kept in a vacuum by a collection of magnetic
coils {C;}; which define a magnetic field M along which the plasma flows in a toric
shape. While the plasma flow happens on the entire inside of this shape, all its
properties and whether the flow leads to an equilibrium is defined by its boundary
T'. In theory the dependency of the flow is completely on C;, however, the existing



Mathematical Imaging and Surface Processing 253

simulations can only compute the plasma flow and magnetic field M from T and
through a second simulation the magnetic coils C; can be optimized from M.
The exact shape of T' is normally described in toroidal coordi-
nates (¢, 7, ¢) which describes the deformation along each angle
along the primary and secondary torus axes with the following
formula (see inset figure):

sinh( sinn

cosh( — cosn’ ~ cosh¢ — cosn’

The advantage of this representation is its separability under the toroidal har-
monics which means the deformation can be easily written in a set of coefficients
a € R* using the k lowest frequency toroidal harmonics. A low number for k is
required for simulations to convergence systematically, however, this introduces
several symmetries in the solution and it is unknown whether these are beneficial.

There are several torus configurations known which lead to high reaction effi-
ciency and have a very stable plasma flow, however, another crucial aspect comes
from the engineering constraints of the coils and the rest of the reactor, like the
complexity of the coils themselves, the sensitivity of the plasma flow stability to
inaccuracies from manufacturing, and the manufacturing costs in general. Only
very few configurations which do well on all evaluation metrics exists and none of
them are extraordinary. The question whether a highly efficient and stable but at
the same buildable plasma flow for stellarators exist remains completely open.

Apart from several open questions on the engineering side, there are aspects in
which machine learning might make important contributions in the exploration of
the huge plasma flow configuration space:

e Make simulations more stable through machine learning prediction which
can detect problems in convergence.

e Learn a meaningful space of deformations for T which excludes unnatural
solutions, for example with self-intersections or very uneven slice areas
which are known to not lead to an equilibrium.

e Learn to make meaningful predictions of new deformations T" which are
likely to show interesting behaviour.

e Generate a differentiable surrogate model for the flow simulation which
would allow a more direct exploration of the configuration space.

Rethinking Geometry Processing via Neural Surfaces
NiLoy J. MITRA
(joint work with Romy Williamson)

Neural surfaces (e.g., neural map encoding [1], deep implicits, and neural radiance
fields) have recently gained popularity because of their generic structure (e.g.,
multi-layer perception) and easy integration with modern learning-based setups.
Traditionally, we have a rich toolbox of geometry processing algorithms designed
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for polygonal meshes to analyze and operate on surface geometry. However, neural
representations are typically discretized and converted into a mesh before apply-
ing any geometry processing algorithm. This is unsatisfactory and, as we show,
unnecessary. This talk will describe our recent work [2] on developing geometry
processing tools that act directly on neural representations without unnecessary
discretization or meshing. I will also list open questions and discuss how we may
approach them.

REFERENCES

[1] L. Morreale, N. Aiggeman, V. Kim, N. J. Mitra, Neural Surfaces Maps, IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.

[2] R. Williamson, N. J. Mitra, Neural Geometry Processing via Spherical Neural Surfaces,
Computer Graphics Forum (Proc. Eurographics), 2025.

Representations of Surface Meshes for Optimization, Inverse
Problems, and Learning

NICHOLAS SHARP
(joint work with Tianchang Shen)

Surface meshes are widely used in geometric computing to represent surfaces em-
bedded in 3 dimensional space (or equivalently objects, as the boundary of a sub-
volume of space). Many formulations and algorithms are available for the forward
analysis of such surfaces, but it is much less clear how to optimize for a surface,
or equivalently solve inverse problems where the surface is unknown—the same
setting arises in geometric machine learning. Put differently, it is straightforward
to describe problems where a surface is the input, but much less straightforward to
describe problems where a surface is the output. This work considers two classes
of strategies for such problems.

The first class is isosurfacing-based methods. The main idea of isosurfacing is
to represent a surface mesh as the 0 levelset of a scalar function over space: by
evolving this scalar function, we implicitly evolve the corresponding surface. Im-
portantly, we are interested in not just the continuous surface, but its discretiza-
tion, and the particular choice of discretization has significant impact for numerics
and modeling in downstream tasks. Most commonly, the Marching Cubes algo-
rithm implies a particular discretization, by evaluating the scalar function at a
regular lattice, and extracting a triangle mesh whose vertices lie along the lattice
edges. In [1], this approach is generalized to allow the lattice grid and extracted
vertex locations to warp and deform via a carefully constructed parameterization;
this additionally flexibility allows for significant improvements in the quality of
the extracted discrete mesh. However, the image of potential meshes that can
be extracted by this method is still greatly limited, to a narrow family of lattice-
like meshes; it certainly does not parameterize the full space of surface meshes as
possible outputs.
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halfedge

FIGURE 1. A halfedge mesh represents discrete mesh connectivity
via a set of halfedges, or equivalently face-sides. Each halfedge is
related to two others: a next and a twin; these relationships can
be viewed as permutations following a few simple properties.

The second class of approaches are graph-based, treating mesh representation
akin to graph representation. The work of [2] begins with a standard graph-
representation approach, embedding the vertices of a mesh in high-dimensional
space, and connecting with an edge only those vertices which are sufficiently close
according to some distance metric. To represent face connectivity, an approach in-
spired by so-called halfedge mesh representation is developed, observing that after
some manipulations, representing the connectivity of a halfedge mesh is equiva-
lent to representing an ordering of the neighbors of each vertex. This ordering is
parameterized, and used as a continuous representation for surface mesh connec-
tivity, particularly in the context of machine learning. A strength of this approach
is that it can represent meshes of general connectivity, without restriction to a
narrow family of structures, and it even guarantees manifold connectivity. How-
ever conversely, there is the potential to generate nonsensical geometrically tangled
meshes, and the representation is not differentiable in the continuous geometric
sense.

It remains to see what approaches for representing surfaces will prove most
effective in applications such as inverse problems and machine learning, which
have surprisingly similar needs.
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Smoothed LO Optimization
Ror PORANNE

The Lo norm counts the number of non-zero elements in a vector and naturally
produces sparse solutions. However, the inherent discontinuous nature of the Lg
norm leads to combinatorial optimization problems that are notoriously difficult.
The key insight across our works is that many problems in geometry can be nat-
urally formulated as an Ly optimization problem. We furthe rely on a common
pattern, which is to replace the Ly norm with a smooth approximation that is grad-
ually sharpened during the optimization process, thereby transforming a highly
non-convex problem into a sequence of more tractable ones. In has been applied
for multiple applications in geometry processing for finding optimal cuts for UV
mapping [4], generating panel layouts for architectural design [2], and for robotic
motion planning [3].

The approach, also known more generally as homotopy optimization or the
continuation method [1], enables employing traditional smooth optimization tech-
niques. The demonstrate, consider the problem of UV mapping. Simplistically, the
problem is to find a mapping of a triangle mesh to the plane that minimizes distor-
tion. The mapping does not have to be continuous; edges cut be cut to introduce
a discontinuity, which enables finding lower distortion mappings. However, the
number of cut edges should be minimized as well. The problem then boils down
to striking a balance between minimizing distortion and minimizing the number
of cuts. While the former is a continuous function, the latter is discrete. In [4]
we address this by treating the mesh as a polygon soup, and attemping to find a
mapping that minimizes distortion, but also attempts to minimize the difference
between cut edge pairs in the Ly sense. We define this edge separation measure
with a smooth approximation of the Ly penalty:

t é
ti + 5

The optimization is performed using Newton’s method, and is visualized in
a user interface. During optimization, the user can observe the progress of the
optimization, and adapt several optimization parameters as they see fit. Most
importantly is the ¢ parameter, which dictates the shape of the approximation,
and how similar it is to the true Lo norm. This formulation relaxes the classical
binary notion of seams: instead of tagging each edge as either a seam or a regular
edge, we allow it to be something in-between during the optimization. As the
algorithm converges, the edges come closer to either becoming seams or regular
edges, until they are close enough to be ”snapped” to one of the two binary choices.

In another work on architectural panelization [2], we approximate surfaces with
planar, spherical, or cylindrical panels through continuous deformation. The chal-
lenge is to encourage the formation of panels while minimizing distortion. We
formulate this through minimizing the difference between the normals of adjacent
faces in the Lo sense, and rely on a similar approximation. Again, as ¢ decreases,
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this function approaches the Ly norm, encouraging sparsity in the differences be-
tween normals of adjacent faces, resulting in well-defined panels.

Finally, in [3], we developed a toolpath generation technique that for hot-wire
cutting material with a bendable wire. There, we quantify the efficiency of a cut
using a metric based on robust partial surface matching. Parts of a cut that are
not sufficiently close to the target shape receive zero reward, which is naturally
expressed through an Ly-like norm again.

A critical aspect of these approaches is determining when and how to decrease
the smoothing parameter. In our interactive applications, we allow users to control
this parameter, enabling them to explore the solution space and make design deci-
sions. Alternatively, we can employ adaptive strategies that decrease the param-
eter based on optimization progress, tightening the approximation as the solution
converges. For example, in our work on robotic hot-wire cutting, we gradually
decrease ¢ whenever progress—as measured by the difference in objective values
between subsequent iterations—falls below a given threshold.

The interactive nature of our approach allows users to guide the optimization
through additional constraints or objectives. For UV mapping, users can interac-
tively move vertices, cut mesh parts, join seams, or control the placement of the
parameterization patches. In panelization, users can pin vertices and encourage
the merging and splitting of panels. This interactivity addresses a common chal-
lenge in design workflows, where not all objectives can be explicitly formulated,
and user judgment plays a crucial role.

The methodology presented here represents a powerful framework for addressing
discrete optimization problems in geometry processing and robotics, particularly
when interactivity and user control are essential. Future directions include ex-
ploring acceleration techniques for larger problems, incorporating additional con-
straints such as global overlap prevention for UV mapping, and extending the
approach to new application domains.
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Failures and Successes Simulating Wrinkles on Surfaces
ETIENNE VOUGA
(joint work with Zhen Chen, Melina Skouras, Danny Kaufman)

Fine wrinkles on surfaces are ubiquitous in nature, with everyday examples includ-
ing the wrinkling of cloth, skin, and mylar balloons, or patterns of dunes in the
desert. These wrinkle patterns change over time, but notice that the coupling be-
tween the dynamics of the wrinkles and the substrate is largely one-way: changes
to the substrate geometry change the wrinkle patterns, but the macroscale behav-
ior of thin objects only depends on averaged statistical properties of the wrinkle
pattern (the wrinkle orientation, frequency, and amplitude; adding corrugations
to a thin shell increases its bending resistance, for instance) but does not depend
on the precise wrinkle geometry or location.

This observation motivates a two-scale representation of a wrinkled surface as
a wrinkle-free base surface ry :  — R3, for Q < R2, on top of which wrinkles are
added as a displacement field parameterized by amplitude a : 2 — R and phase
¢ : Q0 — S'. In this talk we consider simple, sinusoidal wrinkle profiles, with the
final wrinkled surface given by

Tm = Tp + acos(P)ny,

where 1, is the surface normal to r; but note that in practice wrinkles also in-
duce a tangential displacement that depends on phase. The base surface r, can
be discretized as a coarse triangle mesh 7, i.e. a piecewise-linear function inter-
polating the mesh vertex positions. That leaves the question of how to represent
the wrinkle field variables. Some desiderata include:

e it must be possible to represent fine wrinkles on the surface, with mul-
tiple wrinkle periods per triangle. This requirement precludes a direct
piecewise-linear discretization of ¢ as a phase prescribed on the vertices of
T:

e it must be possible to represent singularities in the wrinkle field: points
at which @ — 0, ||d¢| — o, and phase is undefined.

e since our goal is to simulate dynamics, there must exist a well-defined and
differentiable map from the discrete degrees of freedom g to continuous
functions a, ¢.

1. FREQUENCY REPRESENTATION

Wrinkle variables can be loosely taxonomized as fast or slow. Fast variables change
significantly within one wrinkle period, whereas slow variables can be considered
constant within one wrinkle period (away from singularities). Example of fast
variables include: the wrinkle displacement a cos ¢ itself and the wrinkle phase ¢.
Slow variables include the wrinkle amplitude a as well as the frequence w = d¢.
The above observations motivate a discretization of the wrinkle field as an
amplitude and frequency one-form w, both of which are slow variables and can
thus be discretized as piecewise-linear functions on 7 without aliasing. The main
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challenge of this frequency representation is that phase must be integrated from
frequency, by solving a Poisson-like problem of the form ming ||d¢ — w|>. Sophis-
ticated algorithms for recovering phase from frequency exist which automatically
place appropriate singularities [1].

Unfortunately, the frequency representation posseses several downsides that
make it unsuitable for simulating dynamics. Most frequency one-forms are not
locally or globally integrable, and the closest-possible phase given by the above
Poisson problem is not a continuous function of w. Of course, the recovered phase
is only determined up to a global constant phase shift; but even removing this
symmetry (by prescribing the phase at a single point, for instance) does not help.
Consider, as a thought experiment, a cylinder parameterized on the square [0, 1] x
[0, 1] with the left and right boundaries identified; and consider the time-varying
frequency w(z,y;t) = (¢,0). The corresponding wrinkle field must have an integer
number of waves, with that integer jumping discontinuously at half-integer values
of t.

2. CoMPLEX WRINKLE FIELDS

In recent work [2], we proposed a complex wrinkle field (CWF) representation of
the wrinkle pattern as:

e a complex number z; per vertex ¢ of 7, which represents the wrinkle am-
plitude |z;| and phase arg z; at the vertex;

e a real frequency w;; per oriented edge ij of the mesh (with w;; = —wj;),
representing the frequency of the wrinkles in the edge direction.

We do not impose a hard compatibility constraint between the z and w; these are
independent variables.

For a point P inside a triangle with vertices 1, 2,3, the following interpolant
gives the amplitude and phase at P:

3
2(P) = Y ajzyexp (i [aj11wi(41) + @j2wi(+2)])
J=1

where a1, a9, a3 are the barycentric coordinates of P. Note that this interpolant
is only C? at the edges of T; though in the paper we describe a subdivision scheme
for CWF's that empirically yields smooth wrinkle fields.

3. SIMULATING DYNAMICS WITH COMPLEX WRINKLE FIELDS

In theory, simulating dynamics with CWF's is simply a matter of applying La-
grangian mechanics to a formulation of kinetic and potential energy expressed in
the CWF variables. Some early experiments in this direction yielded partial suc-
cesses on simple test cases such a mylar cylinder twisting over time. However,
several unsolved challenges remain:

e since the curvature of the base surface 7, is a slow variable, we would

ideally like 7, to remain wrinkle-free during dynamics, with the wrinkle
field variables absorbing normal displacement of the surface. We do not
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see this behavior in practice: instead, over time 7}, displaces to yield an
aliased, noisy approximation of the wrinkled surface. Perhaps there is a
better discrete surface representation (such as by a tensor-product spline
or subdivision surface?) that forces the base mesh to remain wrinkle-free;

e all of the above problem setup assumed that locally the surface exhibits
only one wrinkle frequency. In practice, wrinkles-on-wrinkes do occur,
especially on boundary layers near clamped boundaries (such as around
the “equator” of an inflated mylar balloon, near where the two disks of
mylar have been sewn together);

e a gauge symmetry remains in the CWF parameterization of wrinkle fields:
mapping w — —w and ¢ — 271 — ¢ yields a second CWF that represents
the same displaced surface r,,. This remaining symmetry is an obstacle
to effective simulation: we observe in experiments that when wrinkles
form on a surface, several wrinkled regions nucleate on the surface with
opposite frequency orientation, separated by wrinkle-free regions where
a = 0. As the wrinkled regions grow and eventually meet, they become
glassy domains of locally-consistent frequency orientation, separated by a
thin stripe of zero amplitude that does not go away due to the frequency
discontinuity across the stripe. A reduced representation of CWFs without
the gauge symmetry (where direction fields are used instead of a one-form
for frequency?) is needed.
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(In-)consistency of the cotan Laplacian and convergence
of the heat method

SIMON SCHWARZ
(joint work with Anja Sturm and Max Wardetzky)

The heat method introduced in [3] is a popular algorithm in graphics for computing
the geodesic distance on polyhedral surfaces. Originally motivated by Varadhan’s
asymptotic

(1) —2tlog py(x,y) > d2(x,y)

for the heat kernel p; on a Riemannian manifold (M, g) with geodesic distance d,
(see [8]), the heat method consists of three steps: In a first step, the heat kernel
is approximated by solving a single backward Euler step in time:

(2) Up — tAh’U,h = 6’)’ )

where t > 0 is some small time, v a subset of the domain and A some discrete
Laplace operator on a given triangulation 7j. Instead of using the function up
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directly for computing the geodetic distance as in Equation (1), numerical experi-
ments show that it is more advantageous to first consider its normalized gradients

V’U,h

X; = — 2
" Vg

and recover an approximation dy, of the geodesic distance dg(7y, ) 1= minge, dg(y, )
by solving the Poisson equation

Apdp, =V - X, with dh|7:0.

This three-step approach can also be applied to other related problems, e.g., effi-
cient computation of parallel transport, see [7], and the signed distance function,
see [4]. Although the heat method is — along with fast marching, see in par-
ticular [6] — the standard tool for distance computation in graphics, a proof of
convergence under mesh refinement has been lacking so far. We can prove the
following;:

Theorem 1. Let (T})n>0 be a family of shape reqular Delaunay triangulations of
a two-dimensional, compact manifold M < R3. Suppose that the mazimum edge
length of Ty, is bounded from above by h and let Ay be the cotan Laplace operator.
Consider the solution uy, of the linear system in Equation (2) with t = h®® for any
0<pB<1. Then,

—hP logup () 20, dg(7y, ) := min dy(y, x)
yey
uniformly in x, where d, denotes the geodesic distance on M.

The main problem in the convergence proof is that the cotan Laplacian is not
consistent, i.e., that for a function f: M — R

T [|Anf = Agfll # 0

in general. We show, however, that a local averaging property holds for the cotan
Laplacian on any shape regular Delaunay triangulation:

Theorem 2. Let f: M — R be a smooth function and (Ty)n>0 a family of shape
regular Delaunay triangulations of (M, g) with edge lengths bounded from above by
h. For any v, > 0 such that rp, > 0 but rp,/h — © as h — 0, we have

3) sup (A, f(w) = Y A Auf(v)| 220,

ueVi, |Br,. (u)] veBy, (u) A Vi,

where A, is the dual area of a vertex v € Vi, B,.(u) the r-ball on M with respect
to the geodesic distance dg, and

|Br (U)| = Z Ay
vEB,(u) NV},

for any we Vi and r > 0.
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This averaging property is closely related to the construction of non-local, but
consistent discrete Laplace operators on triangulations and point clouds in [1,5].

Using this averaging property and the homogenization methods from [2], we
can prove Theorem 1. We expect that the combination of (3) and homogenization
methods can also be applied to the convergence analysis of other algorithms in
geometry processing relying on the cotan Laplacian.
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Neural Geometry Processing via Spherical Neural Surfaces
RoMYy WILLIAMSON
(joint work with Niloy Mitra)

Neural surfaces (e.g., neural map encoding, deep implicits and neural radiance
fields) have recently gained popularity because of their generic structure (e.g.,
multi-layer perceptron) and easy integration with modern learning-based setups.
Traditionally, we have a rich toolbox of geometry processing algorithms designed
for polygonal meshes to analyze and operate on surface geometry. In the absence
of an analogous toolbox, neural representations are typically discretized and con-
verted into a mesh, before applying any geometry processing algorithm. This is
unsatisfactory and, as we demonstrate, unnecessary. In this work, we propose a
spherical neural surface representation for genus-0 surfaces and demonstrate how
to compute core geometric operators directly on this representation. Namely, we
estimate surface normals and first and second fundamental forms of the surface,
as well as compute surface gradient, surface divergence and Laplace Beltrami op-
erator on scalar/vector fields defined on the surface. Our representation is fully
seamless, overcoming a key limitation of similar explicit representations such as
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Neural Surface Maps [1]. These operators, in turn, enable geometry processing di-
rectly on the neural representations without any unnecessary meshing. We demon-
strate illustrative applications in (neural) spectral analysis, heat flow and mean
curvature flow, and evaluate robustness to isometric shape variations. We propose
theoretical formulations and validate their numerical estimates, against analyti-
cal estimates, mesh-based baselines, and neural alternatives, where available. By
systematically linking neural surface representations with classical geometry pro-
cessing algorithms, we believe that this work can become a key ingredient in en-
abling neural geometry processing. Code will be released on the project webpage.
If interested, please read the full paper: Neural Geometry Processing via Spherical
Neural Surfaces [2].
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A geometric optimal transport framework for 3d shape interpolation
ROBERT BEINERT
(joint work with Florian Beier, Gabriele Steidl)

The Gromov-Wasserstein (GW) framework [9,12] is a non-linear generalization of
the classical, linear optimal transport problem, which seeks a relaxed correspon-
dence between two gauged measure spaces while preserving their internal geom-
etry. From a mathematical perspective, a gauged measure space (gm-space) is a
triple X = (X, g,£) consisting of a Polish space X, a Borel probability measure
£ e P(X), and a gauge function g € Lgym (X x X, £ ®E), i.e. a symmetric, square-
integrable function with respect to the product measure £ ® £. For two gm-spaces
X; = (X4, 9i, &), the quadratic GW transport [9] itself is based on the so-called
GW distance:

GW(Xq,Xy) := inf ( ff(gl(xl,xll) — go(xa, x’z))z dm(x1, z2) dﬂ(xll,xlz))

WEH(Xl,XQ)
(X1 XX2)2

W=

Here, T1(X1, X5) denotes the set of transport plans m € P(X; x X3) with marginals
(Px,)yy = mo P);il = &;, where Px, is the projection onto the component Xj;.
Since the measures can live on different Polish spaces, the GW distance serves as
a valuable tool for the analysis of objects that do not possess a natural Euclidean
embedding or should be studied independently of it. Crucial applications can be
found in shape and coherent structure matching [1,6,9], classification [2,4], and
interpolation [3,5,7,11].

To tackle the latter, we consider GW barycenters, which are generalized Fréchet
means with respect to the GW distance. Since GW is not a metric, we combine
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FIGURE 1. One iteration of the Fréchet mean method to approx-
imate the GW barycenter: 1. Lifting of the input spaces X; and
X2 to the tangent space Ty at ) via the logarithmic map (Logm).
2. Computation of the barycenter in the tangent space. 3. Projec-
tion of the tangential barycenter back to &9 via the exponential

map (Expy).

the indefinite gm-spaces into equivalence classes X = [X] = {Y | GW(X,Y) = 0}.
Equipping the space &9t of these equivalence classes with the GW distance, we
obtain a complete, geodesic metric space [12]. For gm-classes X;, ¢ = 1,..., N,
and for weights p; > 0 with Zszl p; = 1, any GW barycenter is a solution of

N

(1) argminz pi GW?(%,9).

PedM
Notice that there are no restriction on the gm-space 2); so we have to determine
the underlying Polish space, the Borel probability measure, and the gauge func-
tion. Problems of this kind are also called free barycenter problems. To show the
existence and to characterize the solutions of (1), we rely on the multi-marginal
transport problem

N
. 1
@ argmin 3 [[ 3 piosloitan,al) - gy(ay,0))P dee) dn(at)
WEH(Xl,...,XN) 7/.]:1
xz "
with the Cartesian product Xy := xf\il X; as well as xx = (x1,...,2N8) € X«

and the multi-marginal plans II(Xy,...,Xy) = {mr € P(Xx) | (Px,)7 = &}. The
barycenter problem (1) and the multi-marginal problem (2) are equivalent, and
any barycenter has the form

N
{[[(Xx,glpi,w)]] ‘ 7 solves (2), X; = (X;,9:,&) € Z{i} #* ,

see [3,5]. On the basis of the GW framework for Gaussians [8], the GW barycenter
can here be computed analytically [3]. In general, solving (2) is, however, numerical
intractable for N > 2.
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FIGURE 2. Interpolation between the left and right shape us-
ing the proposed relaxed fixpoint iteration. Note that any GW
barycenter is only given up to isometries. In this example, the
intermediate shapes are mirrored in comparison with the input
shapes.

Motivated by obtaining a tractable algorithm, we study the geometry and tan-
gential structure [12] of the induced GW space &M1. To approximate GW barycen-
ters, we lift a known fixpoint iteration for the computation of Fréchet means in
Riemannian manifolds [10] to the GW setting. The basic idea behind the pro-
cedure is outlined in Figure 1. The core step is hereby the computation of the
tangential barycenter, whose existence is guaranteed, and which can be partially
characterized, see [3]. Relaxing the calculation of the tangential barycenter, we
propose the following fixpoint iteration: 2© e &M and P+ e TB,(P™),
where

)= [ (e, S0 (P 0)] | 1 € PO, B e 20 )
i=1

and where II, denotes the set of optimal GW plans. This iteration is simple to
implement in practice, since it merely requires the gluing of bi-marginal GW plans,
and monotonically improves the quality of the barycenter [3]:

N N

D pi GWA(X, D) = Y pi GW2 (%, 90 HY).

i=1 i=1
Moreover, every subsequence of the computed iteration contains a further subse-
quence converging to a fixpoint, i.e. 2 € TB(Y)). Finally, we provide numerical
evidence of the potential of this method, including multi-3d-shape interpolations
as outlined in Figure 2.
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DEALing with Image Reconstruction: Deep Attentive Least Squares
SEBASTIAN NEUMAYER
(joint work with Mehrsa Pourya, Erich Kobler, Michael Unser)

State-of-the-art image reconstruction methods frequently depend on deep learning
models with highly complex architectures and extensive parameterization. While
these methods achieve impressive results, they often lack interpretability, robust-
ness, and theoretical convergence guarantees. In this talk, we discuss an alterna-
tive: a data-driven reconstruction approach inspired by classical Tikhonov regu-
larization. Our method iteratively refines intermediate reconstructions by solving
a sequence of quadratic problems, offering a principled framework that bridges
traditional regularization techniques with deep learning.

Each iteration of the proposed method consists of two key components: (i)
learned filters that extract salient image features and (ii) an attention mechanism
that locally adjusts the penalty applied to these features. This allows the regu-
larization process to adapt dynamically to the structure of the image, leading to
improved reconstructions with enhanced interpretability and stability. During the
process, each quadratic update can be efficiently computed using the conjugate
gradient method. to this end, we can use the previous results for a warm start.

On the theory side, we establish the uniqueness of each update, the existence
of fixed points, and conditions for convergence of the process. Furthermore, we
prove a stability result for the resulting reconstruction operator, demonstrating
robustness against variations in the input data. This makes our approach partic-
ularly well-suited for ill-posed inverse problems, where classical methods struggle
to provide competitive performance and deep learning models often lack stability
and insight into the reconstruction process.

We validate our approach through extensive experimental evaluations on vari-
ous inverse problems, including denoising, deblurring, and inpainting. Our method
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FIGURE 1. Reconstruction path and convergence plots.

achieves performance on par with leading plug-and-play and learned regularizer ap-
proaches, while offering a significantly more interpretable and theoretically
grounded reconstruction process. Additionally, we visualize the learned atten-
tion mechanism to highlight its role in adaptively refining the reconstruction, see
Figure 1 for an example path. More visualizations can be found in the associated
preprint [1].

Overall, our work presents a novel synthesis of classical inverse problem regular-
ization and modern data-driven techniques. By combining the strengths of both
paradigms, we provide a robust, efficient, and interpretable alternative to purely
deep learning-based reconstruction methods.
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Graph Neural Networks on Large Random Graphs
SAMUEL VAITER
(joint work with Alberto Bietti, Nicolas Keriven)

We consider graphs where each node represents a latent variable in a compact
space X, drawn i.i.d. from a distribution P. Bernoulli edges are formed accord-
ing to a similarity kernel W(-,-), scaled by a factor «, that controls the graph
sparsity. As n (the number of nodes) grows, such latent position random graphs
approximate continuous structures on X. We proved the following results [1, 3]
on the convergence, stability, and expressivity of Graph Neural Networks (GNNs)
on such random graphs. These results heavily rely on chaining arguments and
concentration properties of graph shift operators [2,4].

Convergence of GNNs. A first result is that a Graph Neural Network (GNN)
can be regarded as an operator (a “continuous GNN”, ¢cGNN) in the latent space.
Under mild conditions, the discrete GNN converges to its continuous counterpart
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in the relatively sparse regime (a,, ~ logn/n): as n — oo, the outputs of the
(discrete) GNN become close to sampling the latent-space function of the ¢cGNN.

Stability of cGNNs. If two random graphs are drawn from different latent
distributions or kernels, we proved that the corresponding GNN outputs remain
close. This mirrors the idea of spatial stability in convolutional neural networks
on Euclidean domains [5], here interpreted on random graph topologies.

Ezpressivity of GNNs. For node-level tasks, one can think of GNNs as approxi-
mating functions over X. A basic set of “base functions” can be expanded by GNN
operations (convolution with the graph operator, linear combinations, and non-
linear activations). Under sufficient hypothesis on the features, these expanded
sets can approximate broader classes of functions over X.

Improving expressivity with Positional Encodings. When nodes lack natural
features, positional encodings help break undesirable symmetries of the GNNs.
For instance, Eigenvector-based encodings feed the first few eigenvectors of the
adjacency or Laplacian (with sign invariance), approximating the principal spec-
tral modes of the underlying continuous operator. Distance-based encodings use
powers of the graph operator to summarize node “distances.” Under suitable as-
sumptions, such PEs converge to well-defined latent-space functions, improving
GNNSs’ expressive range.
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Beyond Wasserstein: a general fixed-point approach for computing
barycentres of measures
JULIE DELON
(joint work with Eloi Tanguy, Nathaél Gozlan)

1. INTRODUCTION

Wasserstein barycentres are a fundamental concept in Optimal Transport theory,
providing a way to compute average distributions between multiple probability
measures. These barycentres preserve the geometric structure of the underlying
distributions, making them particularly well-suited for machine learning applica-
tions.
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Consider two probability measures p and v defined on metric spaces (X, dx)
and (Y,dy), along with a cost function ¢ : X x Y — R,. The optimal transport
cost between p and v with respect to the ground cost ¢ is given by

Te(p,v) = inf j edm,
XxYy

Tell(p,v)

where TI(u, v) denotes the set of probability measures on X x ) whose marginals
are u and v. Given K different cost functions ¢, and K probability measures
vy defined on different spaces ), the barycentre problem in this context can be
formulated as

K
(1) [i € argmin Z e Te,, (1 Vi)
B k=1

When the metric space (X, dx) coincides with (), dy) and is Polish, and when the
cost function is given by ¢ = d% with p > 1, the quantity W, (u, v) := (Tar (1, 1/))%
defines a distance between probability measures with finite moments of order p,
known as the p-Wasserstein distance. In this case, the barycentre i defined above
is referred to as a Wasserstein barycentre.

The theoretical study of Wasserstein barycentres originates from the seminal
work of Carlier and Ekeland [2], who investigated the existence, uniqueness, and
dual formulations of barycentre problems with general continuous cost functions.
Subsequent research refined and extended these results, particularly for the Wy
distance in Euclidean spaces [1], as well as for Wy [4] and W,, [3].

2. COMPUTING BARYCENTRES FOR GENERIC TRANSPORT COSTS

From a computational standpoint, computing Wasserstein barycentres is known
to be a particularly difficult problem, classified as NP-hard [5]. This complexity
arises because exact algorithms have an exponential computational cost, either in
terms of the space’s dimension or the number of marginal distributions.

A practical approach, introduced in [7], is based on a fixed-point algorithm
inspired by the computation of Fréchet means on manifolds. At each iteration,

the current barycentre p is replaced by its push-forward (25:1 )\ka) #, where

the T} are optimal transport maps between p and vy, provided these maps ex-
ist. The authors of [8] were the first to rigorously prove the convergence of this
fixed-point method in the case where the measures vy are absolutely continuous.
Specifically, they demonstrated that a subsequence of iterates converges to a fixed
point and that, if this fixed point is unique, it corresponds to a barycentre. Their
study focuses on Wy barycentres. Although their proof is restricted to absolutely
continuous measures, this fixed-point approach is widely used in practice for dis-
crete measures and serves as the foundation for free-support methods in numerical
optimal transport libraries [6].

In this work, we extend this fixed-point approach to compute barycentres of
probability measures for general transport costs, i.e., solutions to the optimisa-
tion problem (1). Our assumptions are minimal: we consider compact spaces
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and assume that the ground costs ¢ are continuous and satisfy the property that
argmin,, Zi;l Aick(x, zr) is uniquely defined. We do not require the existence of
optimal transport maps between p and the vy, nor do we impose specific condi-
tions on the probability measures p and vi. We propose an iterative fixed-point
algorithm that generalises the approach of [8] in this more general setting. We
establish that the sequences generated by our algorithm have convergent subse-
quences, that their limits must be fixed points of a certain mapping G, and that
any barycentre of (1) is necessarily a fixed point of G. Furthermore, we prove that
these results hold even when using entropic regularised transport costs.

From a numerical perspective, our approach makes it possible to extend the
recent definition of generalised Wasserstein barycentres introduced in [9], partic-
ularly by allowing for nonlinear mappings between the ambient space and the
subspaces associated with the measures v,. Additionally, our method facilitates
the efficient computation of barycentres for the mixture Wasserstein metric [10].
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