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Introduction by the Organizers

Loop spaces have been a constant source of deep and interesting mathematical
problems since the 1980’s, both as a tool that provides new insights in existing
theories, or as an independent object that leads to new results and that serves as
a guiding example for abstract (analytic) theories of infinite dimensional spaces.
The workshop mainly focused on the following three subtopics:

I: Localization Formulae on Loop Spaces, and the Atiyah-Singer Index

Theorem. Being considered to be one of the most important mathematical re-
sults of the 20th century, the Atiyah-Singer Index Theorem (A-S-I) states that the
index of a possibly twisted Dirac operator (a geometric object) on a closed even
dimensional Riemannian spin manifold M can be calculated topologically. While
classic proofs of this result use either cobordism theory or heat kernel methods, it
was noticed by Atiyah [1] and Witten [22] in the 1980’s, that one can derive the
A-S-I also as follows: firstly, one assumes that one can integrate differential forms
on the loop space LM (which, although the spin structure on M determines an
orientation on LM , is analytically not possible in any strict sense). Then, one
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formally calculates the index of the Dirac operator as the integral of a differential
form on LM . Finally, as LM carries a natural S1-action, a formal application of
the Duistermaat-Hackman localization formula reduces the latter integral on LM
to an integral on M , and this number miraculously [1] turns out to be the right
hand side of the A-S-I. These considerations have been extended to the setting of
the twisted A-S-I by Bismut [3], who also noticed that there is an intimate con-
nection between these formal loop space calculations to the hypoelliptic Laplacian
[4]. Ultimately, it took over 35 years to implement Atiyah’s and Witten’s ideas in
a mathematically well-defined way. This was achieved in [8] (see also [18, 5, 2]),
using techniques from noncommutative geometry, specifically cyclic homology. In
this context, methods from supergeometry that have been originally developed by
physicist have traditionally played a decisive role. Particularly concrete results
can be obtained in the situation where M = G is a compact Lie group.

II: Dirac Operators on Loop Spaces. The study of loop spaces as an indepen-
dent object has most prominently lead to the discovery of what is nowadays called
the Witten genus - which plays the role of an universal elliptic genus. Here, the
starting point is that on a closed Riemannian spin manifold M which carries an
action of a compact Lie group G, there is a natural way to twist the Dirac operator
on M by an element g ∈ G. The index of this twisted operator again admits a
topological representation, and this equivariant A-S-I (also called the Character
Valued A-S-I ) is intimately connected to Weyl-type character formulae. Now, it
turns out that if M admits a higher spin structure - a so called string structure,
then the loop space LM admits a spin structure. While the mathematically rig-
orous construction of the actual spin bundle over LM as well as a Hilbert space
of spinors is not obvious at all, one can nevertheless formally calculate the index
of an S1-twisted Dirac operator on LM , which leads to the Witten genus of M
[23]. While a complete mathematical realization of a Dirac operator on LM has
remained open until today, a recent breakthrough has been made in [16, 17], where
the spin bundle on LM has been constructed rigorously for the first time.

III: Curvature and Quasi-Regular Dirichlet Forms on Loop Spaces. Let
X be a Polish space with a Borel measure µ defined on it. A Dirichlet form
in L2(X,µ) is a densely defined, closed and symmetric bilinear form E ≥ 0 in
L2(X,µ), which is assumed to be stable under normal contractions. It follows from
Kato’s classical theory that E canonically induces a self-adjoint operator H ≥ 0 in
L2(X,µ), and the semigroup Pt := exp(−tH) induces a contraction semigroup in
Lq(X,µ), q ∈ [1,∞]. Under an additional topological/analytic assumption on E ,
its so called quasi-regularity, it turns out that there exists a Markov process on X
whose transition probabilities are given by Pt. Now if M is a closed Riemannian
manifold and µ is the Brownian loop measure on the space of continuous loops
LcM , then [7] there exists a canonically given quasi-regular Dirichlet form on
L2(LcM,µ). While this examples serves as one of the most important genuinely
infinite dimensional examples of the theory of regular Dirichlet forms, recent re-
sults [10, 13, 6, 9] suggest a very surprising new connection: the conjunction of
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upper and lower bounds on the Ricci curvature of M is equivalent to a functional
inequality on LcM , namely a gradient estimate for the semigroup of this infinite
dimensional space. Current research focuses on the case where X is a singular
space, such as e.g. an Alexandrov surface.

The mini-workshop has brought together 14 scientists from the following countries:

• Canada
• France
• Germany
• Iran
• Italy
• Luxembourg
• United States of America
• United Kingdom

A total of 11 talks has been given and each talk has lead to a fruitful discussion
among the participants, which we believe has lead to new insights in deep open
problems in the context of the three topics above.

Concerning topic I:

I.1. Generalization of the localization formula to the setting of the equivariant
index theorem.

I.2. Examination of possible rigorous connections between the constructions
from [8, 18, 5, 2], which rely on cyclic homology, and the hypoelliptic
Laplacian (see also [12]).

Concerning topic II:

II.1. Comparison of the C∗-algebraic approach to spinors on loop space from
[16, 17] to the approach from [14] on loop groups, which relies on deep
results from representation theory.

II.2. First steps in the construction of an Hilbert space of sections of the spinor
bundle over a loop space.

Concerning topic III:

III.1. Generalization of the characterization of curvature bounds by functional
inequalities on path/loop spaces to singular spaces, such as e.g. metric
measure spaces satisfying synthetic curvature bounds in the spirit of Sturm
and Lott/Villani [20, 21, 15], see also [19].

III.2. Examination of the possibility of defining a spin structure on a singular
(metric measure) space N through an orientation on the space of con-
tinuous loops LcN (e.g. by a proper infinite dimensional variant of the
machinery from [11]).

We thank the MFO for creating a very stimulating and inspiring atmosphere.

Sergio Cacciatori, Batu Güneysu, and Eva Kopfer
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(eds), Geometry and Physics: Volume I: A Festschrift in honour of Nigel Hitchin (Oxford,
2018; online edn, Oxford Academic, 20 Dec. 2018).

[13] Kopfer, E. & Streets, J.: Bochner formulas, functional inequalities and generalized Ricci
flow. J. Funct. Anal. 284, No. 10, Article ID 109901, 42 p. (2023).

[14] Landweber, G.: Dirac operators on loop space PhD thesis, Harvard 1999.
[15] Lott, J. & Villani, C.: Ricci curvature for metric-measure spaces via optimal transport.

Ann. Math. (2) 169, No. 3, 903–991 (2009).
[16] Ludewig, M: The Clifford algebra bundle on loop space. SIGMA, Symmetry Integrability

Geom. Methods Appl. 20, Paper 020, 27 p. (2024).
[17] Ludewig, M.: The spinor bundle on loop space. arXiv:2305.12521.
[18] Miehe, J.: The Chern character of ϑ-summable Cq-Fredholm modules over locally convex

differential graded algebras. ArXiv:2312.01106.
[19] Naber, A.: Characterizations of Bounded Ricci Curvature on Smooth and NonSmooth

Spaces. ArXiv:1306.6512.
[20] Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, No. 1, 65-131

(2006); corrigendum ibid. 231, No. 2, 387–390 (2023).
[21] Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, No. 1, 133–

177 (2006).
[22] Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982).
[23] Witten, E: The Index Of The Dirac Operator In Loop Space Elliptic Curves and Modular

Forms in Algebraic Topology, Lecture Notes in Mathematics 1326, Springer (1988) 161–181.



Mini-Workshop: Recent Results on Loop Spaces 563

Mini-Workshop: Recent Results on Loop Spaces

Table of Contents

Simone Noja
Forms on families of supermanifolds: cohomology and duality . . . . . . . . . 565

Jonas Miehe (joint with Batu Güneysu)
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Abstracts

Forms on families of supermanifolds: cohomology and duality

Simone Noja

In this talk, I explore the geometry of differential and integral forms on families
of supermanifolds. I begin by introducing the concepts of differential and integral
forms, along with their associated cohomology, on a fixed supermanifold. I then
extend this framework to families of supermanifolds, understood as submersive
maps between supermanifolds, highlighting the subtleties and new structures that
arise in this setting. After defining an appropriate version of de Rham and Spencer
cohomology for families of supermanifolds, I discuss a supergeometric analog of
Poincaré-Verdier duality.
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Fermionic Dyson expansions and stochastic Duistermaat-Heckman

localization on loop spaces

Jonas Miehe

(joint work with Batu Güneysu)

Given a self-adjoint operator H ≥ 0 and (appropriate) densely defined and closed
operators P1, . . . , Pn in a Hilbert space H , we provide a systematic study of
bounded operators given by iterated integrals

ˆ

{0≤s1≤···≤sn≤t}

e−s1HP1e
−(s2−s1)HP2 · · · e

−(sn−sn−1)HPne
−(t−sn)H ds1 . . . dsn.

(1)

for t > 0. These operators arise naturally in noncommutative geometry and the ge-
ometry of loop spaces. Using Fermionic calculus, we give a natural construction of

an enlarged Hilbert space H (n) and an analytic semigroup e−t(H(n)+P (n)) thereon,

such that e−t(H(n)+P (n)) composed from the left with (essentially) a Fermionic in-
tegration gives precisely the iterated operator integral (1). This formula allows
to establish important regularity results for the latter, and to derive a stochastic
representation for it, in case H is a covariant Laplacian and the Pj ’s are first-order
differential operators. Finally, with H given as the square of the Dirac operator on
a spin manifold, this representation is used to derive a stochastic refinement of the
Duistermaat-Heckman localization formula on the loop space of a spin manifold.
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Real loci and the based loop group

Lisa Jeffrey

Let ΩG denote the based loop group for a compact simply connected Lie group G
with maximal torus T . It is an infinite-dimensional symplectic manifold equipped
with a Hamiltonian action of T×S1 (studied by Atiyah and Pressley [1]). The space
ΩG is also equipped with an antisymplectic involution τ which is associated to an
involutive automorphism σ of G, and which is compatible with the Hamiltonian
action of T × S1.

Duistermaat [2] studied this situation for a symplectic manifold M equipped
with a Hamiltonian group action and an antisymplectic involution τ , and showed
that the image of the moment map of M is the same as the image of the moment
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map of the fixed point set of the involution. Hausmann, Holm and Puppe [3]
also exhibited a degree-halving isomorphism between the cohomology groups of
M and M τ . We show (in joint work with Augustin-Liviu Mare [4]) that both
Duistermaat’s result and the result of Hausmann, Holm and Puppe extend to ΩG.
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The stringor bundle and the spinor bundle on loop space

Matthias Ludewig

(joint work with Peter Kristel and Konrad Waldorf)

Motivated by Witten’s construction of the index of the Dirac operator on loop
space [1] and Stolz’ conjecture that a compact string manifold of dimension at
least 5 with ric > 0 should have vanishing Witten genus [6], it has been a long-
standing open problem to characterize string manifolds via geometric structures on
their loop space. It was conjectured by Stolz and Teichner (2005) that a compact
spin manifold M of dimension n ≥ 5 is string if and only if the loop space LM
is spin, with the loop space spinor bundle admitting a certain geometric structure
called the fusion product.

In the talk, we gave an overview of the ingredients going into the proof. To
arrive at a reasonable formulation of the conjecture, one has to work in the setting
of von Neumann algebra bundles, and the fusion product must be formulated
in terms of the corresponding tensor product of bimodule bundles (the Connes
fusion product). Such a framework was recently developed in joint work with
Konrad Waldorf and Peter Kristel.

Recently, Kristel and Waldorf [4] showed that a fusive loop space spin structure
on LM (which is equivalent to a string structure on M by earlier work of Waldorf
[3]) gives rise to a spinor bundle on loop space together with a fusion product.
On the other hand, the author showed in [7] that the fusion product’s existence is
then obstructed by a certain bundle 2-gerbe, the fusion 2-gerbe. It turns out that
the characteristic 4-class of this gerbe is precisely 1

2p1(M)), which characterizes
the existence of a string structure; this solves the conjecture.

Using the fusion product, one may construct a 2-Hilbert bundle on M , which
we call the stringer bundle [2]. This uses a newly developed theory of 2-Hilbert
bundles, which are higher vector bundles locally modeled on the bicategory of von
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Neumann algebras, bimodules and intertwiners. In the finite-dimensional setting,
this was carried out in [5].
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Homotopy theory of Polyhedral Products

Jelena Grbic

Having a family of objects with rich and complex structures that contain non-
trivial features, yet are still amenable to study or computation, is a goal for many
mathematicians. To construct such topological spaces with intrinsic symmetries –
spaces that allow for the identification of various topological invariants in combina-
torial and algebraic terms, while simultaneously addressing problems in tangential
areas of mathematics and mathematical physics - polyhedral products are intro-
duced. For a simplicial complex K on [m] vertices and m pointed CW pairs
(X,A) = {(Xi, Ai)}, the polyhedral product (X,A)K is constructed as the colimit
over the face category of a simplicial complex K

(X,A)K = colimσ∈K(X,A)σ

where (X,A)σ = {(x1, . . . , xm) ∈
∏

i Xi | xi ∈ Aii 6∈ σ}.
In this talk, we focus on the homotopy theory of moment-angle complexes

ZK = (D2, S1)K and Davis-Januszkiewicz spaces DJK = (CP∞, ∗)K . These
spaces can be seen as topological analogues of smooth projective toric varieties
and to them associated spaces. To highlight the significance of these spaces in
mathematics, we demonstrate they are related to various concepts, including the
complement of coordinate subspace arrangements, quasi-toric manifolds, complex
cobordisms and intersections of quadrics in complex geometry.

First, we identify the homology of the loop space ΩDJK as H ∗ (ΩDJK , k) ∼=
Tork[K](k, k), the homology of the Stanley-Reisner ring k[K] associated with the
simplicial complex K. This identification allows us to approach the Kaplansky-
Serre conjecture in the case of k[K]. The conjecture suggests that the Poincaré
series of Tork[K](k, k) is a rational function. It turns out that this series is a
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particular rational function when k[K] is a Golod ring, or equivalently, when all cup
products and higher Massey products in H∗(ZK ; k) vanish for every field k. This
motivates the study of Golod rings in homotopy theoretical terms. We establish
new methods for calculating Massey products in terms of the combinatorics of K.

Second, we briefly summarise the study of the loop space ΩZK by modelling
it in terms of configuration spaces with labels in (D1, S0)K . The results of this
approach are applied to describe a new family of simplicial complexes K for which
k[K] are Golod rings.
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The Chern-Simons functional integral, Kauffman’s bracket

polynomial, and deformation quantization

Jonathan Weitsman

We study Chern-Simons Gauge Theory in axial gauge on R3. This theory has a
quadratic Lagrangian and therefore expectations can be computed nonperturba-
tively by explicit formulas, giving an (unbounded) linear functional on a space of
polynomial functions in the gauge fields, as a mathematically well-defined avatar
of the formal functional integral. We use differential-geometric methods to ex-
tend the definition of this linear functional to expectations of products of Wilson
loops corresponding to oriented links in R3, and derive skein relations for them.
In the case G = SU(2) we show that these skein relations are closely related to
those of the Kauffman bracket polynomial, which is closely related to the Jones
polynomial. We also study the case of groups of higher rank. We note that in
the absence of a cubic term in the action, there is no quantization condition on
the coupling λ, which can be any complex number. This is in line with the fact
that the Jones polynomial, in contrast to the manifold invariants of Witten and
Reshetikhin-Turaev, is defined for any value of the coupling. The appearance of

the parameter e
1
2λ in the expectations and skein relations is also natural. Likewise,

the extension of the theory to noncompact groups presents no difficulties. Finally
we show how computations similar to ours, but for gauge fields in two dimensions,
yield the Goldman bracket.
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A Chern-Simons transgression formula for supersymmetric path

integrals on spin manifolds

Sebastian Boldt

(joint work with Sergio Cacciatori, Batu Güneysu)

Earlier results show that the N = 1/2 supersymmetric path integral Jg on a
closed even dimensional Riemannian spin manifold (X, g) can be constructed in
a mathematically rigorous way via Chen differential forms and techniques from
noncommutative geometry, if one considers Jg as a current on the loop space LX ,
that is, as a linear form on differential forms on LX . This construction admits a
Duistermaat-Heckman localization formula. In this note, fixing a topological spin
structure on X , we prove that any smooth family g• = (gt)t∈[0,1] of Riemannian
metrics on X canonically induces a Chern-Simons current Cg• which fits into a
transgression formula for the supersymmetric path integral. In particular, this re-
sult entails that the supersymmetric path integral induces a differential topological
invariant on X , which essentially stems from the Â-genus of X .
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Analytic torsion and Anosov flow

Shu Shen

(joint work with Jean-Michel Bismut)

Let X be a closed manifold, and let F be a flat vector bundle on X . Denote by
H (X,F ) the cohomology of F .

Given metrics gTX and gF on TX and F , one can define the analytic torsion TF ,
a positive real number, using the regularized determinant of the associated Hodge
Laplacian. Under certain assumptions, such as gF being flat and H (X,F ) = 0,
the analytic torsion TF is independent of gTX and of the flat gF , becoming a
topological invariant of F .

On the other hand, given a dynamical flow (φt)t∈R
onX , one can define formally

a dynamical zeta function RF (σ), using the closed orbits of the flow. Under
suitable condition, such as (φt)t∈R

being Anosov without 0-resonance, the value
RF (0) is a well-defined non zero complex number.

Conjecture 1 (Fried [4]). Under certain conditions, we have

TF = |RF (0)| .

It is classical that for general flat vector bundle F , the Ray-Singer metric ‖·‖
RS

on detH (X,F ) is a natural generalization of the analytic torsion TF . This leads
to the following questions:

(1) What is the dynamical counterpart of the Ray-Singer metric ?
(2) How can one formulate a generalized version of Fried’s conjecture ?
(3) How can the generalized Fried conjecture be established ?

The main result of [1] provides answers to the first two questions.

Theorem 1. If (φt)t∈R
is Anosov, there exists a canonical non zero element

τ ∈ detH (X,F ) such that

(1) τ generalises the (RF (0))−1 for Anosov flow without 0-resonance,
(2) τ is compatible with the Poincaré duality,
(3) In a family setting, τ is flat with respect to the Gauss-Manin connection.

This result extends the previous works of Dang–Guillarmou–Rivière–Shen [3]
and Chaubet–Dang [2]. With the element τ in hand, we can formulate a general-
ized version of Fried’s conjecture.

Conjecture 2 (Generalized Fried). If (φt)t∈R
is Anosov and if F is unimodular,

then
‖τ‖RS = 1.
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Brownian loops and Riemann’s zeta function

Anton Thalmaier

We discuss various probabilistic representations of the Riemann ξ-function where
ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s) for s ∈ C. Here ζ(s) denotes the meromorphic
extension of the classical Riemann ζ-function

ζ(s) =
∞
∑

n=1

1

ns
=

∏

p prime

(1− p−s)−1, Re s > 1.

The ξ-function is analytic in the whole complex plane. In this talk we explain
how to represent ξ(s) as an expectation in terms of the maximal diameter R of
Brownian loops in R3. Itô’s excursion theory of Brownian motion on the real line
then gives an equivalent representation in terms of the variable T = T1+T2 where
Ti are the first hitting times of height 1 of two independent BES(3) processes,
starting at 0 at time 0. It is shown that the functional equation ξ(s) = ξ(1 − s)
is a direct consequence of Itô’s excursion theory. The Ray-Knight theorem for the
BES(3) process allows to represent the variable T = T1 +T2 in law as a quadratic
form of an independent sequence of standard N(0, 1) Gaussians variables (Gi)i∈N.
Connections to ferromagnetic spin systems are noted.
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Heat kernel analysis on Alexandrov-Dynkin surfaces

Maxime Marot

(joint work with Batu Güneysu)

We say that (S, d) is anAlexandrov surface (with locally bounded integral curvature)
if S is a 2-dimensional smooth manifold, d in an intrinsic finite distance and for
any compact K there exists a constant C ∈ R, depending only on K, such that
the sum of angle excesses of any family of non-overlapping triangles contained in
K is bounded above by C. Let h be a Riemannian metric on S. We define V(S, h)
the set of functions u ∈ L1

loc(S) such that ∆hu is a signed Radon measure. Due to
the theorem of Reshetnyak-Huber it is possible to see d as a subharmonic distance,
that is to say, there exists h a Riemannian metric and u ∈ V(S, h) such that

d(x, y) = dh,u(x, y) = inf
γ

ˆ 1

0

eu(γ(t))|γ′(t)|h dt.

From now on we set (S, d, µ) to be an Alexandrov surface equipped with the
2-dimensional Hausdorff measure µ. The Sobolev spaces are to be understood in
the sens of Ambrosio-Gigli-Savaré’s theory. We also write E the Cheeger form and
−∆ for the non-negative self-adjoint operator associated. Our first result is this
theorem:

Theorem 1. The following statements hold:

(i) The intrinsic distance associated to E coincide with d, i.e. dE = d where

dE(x, y) := sup{f(y)− f(x) | f ∈ W 1,2
loc (S, d, µ) ∩ C(S) s.t. |Df |2 ≤ 1 µ-a.e.}.

Let ε, λ be two positive constants.

(ii) E supports a local weak (1, 2)-Poincaré inequality i.e. for any compact K
there exist C,RP , k > 0, depending only on K, ε and λ such that

ˆ

B(z,r)

|u− uB|
2 dµ ≤ Cr2

ˆ

B(z,kr)

|Du|2 dµ

holds for any u ∈ W 1,2(S, d, µ), z ∈ K, r < RP and with uB :=
ffl

B(z,r) u dµ.

(iii) µ is locally doubling i.e. for any compact K there exists D,RD > 0,
depending only on K, ε and λ, such that

µ(B(z, 2r)) ≤ Dµ(B(z, r))

for any z ∈ K, 0 < r < RD.

Thus with these three ingredients there exists a parabolic Harnack inequality
and so then there exists a pointwise uniquely defined heat kernel. This heat
kernel satisfies the usual properties of symmetry, semigroup identity and is Hölder
continuous. It is also positive. Directly from the existence of the heat kernel
we can deduce the existence of a family of Wiener measures on C([0,∞), S) [2,
Lemma 3.5].
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The Dynkin class Dyn(S) is defined to be the space of Radon measures m ≥ 0
with m(N) = 0 for all Borel N ⊂ S with CapE(N) = 0, such that for all λ > 0
one has

sup

{
∣

∣

∣

∣

ˆ

(∆ + λ)−1f dm

∣

∣

∣

∣

: f ∈ C∞
c (S),

ˆ

|f | dµ ≤ 1

}

< ∞.

Moreover, an Alexandrov surface (S, d) is called an Alexandrov-Dynkin surface
if the curvature measure ω admits a decomposition ω = ω1 − ω2, ωi ≥ 0, with
ω2 ∈ Dyn(S). By deforming conformally an Alexandrov-Dynkin surface we can
obtain a new one with curvature bounded below.

Theorem 2. Assume that (S, d) is an Alexandrov-Dynkin surface. Pick a Rie-
mannian metric h on S and u ∈ V(S, h) with d = dh,u. Then there exists a
non-negative function Φ ∈ L∞(S) ∩ V(S, h), such that (S, dh,u+Φ) has curvature
measure bounded below by a constant κ ∈ R i.e. ω ≥ κµ.

It is well known that any CBB(κ) surface is CD(2, κ), so from the bilipschitz
equivalence we obtain Gaussian bounds for the heat kernel.
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Smooth Unitary Representation of every Pre-Representation Zn

2
-Lie

Supergroup

Fatemeh Nikzad Pasikhani

(joint work with Mohammad Mohammadi and Saad Varsaie)

In this talk, we show that any pre-representation of a Zn
2 -Lie Supergroup can

be uniquely extended to a smooth unitary representation. By a Zn
2 -Lie Super-

group, we refer to a Harish-Chandra pair (G0, gC) where G0 is a common finite-
dimensional Lie Group and gC is a Zn

2 -graded Lie superalgebra such that there ex-
ists an action Ad : G0×gC → gC preserves the Zn

2 -grading and Ad|g0 : G0×g0 → g0
is the adjoint action of G0 on g0 ∼= Lie(G0).
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