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Abstract. This tandem workshop with MATRIX in Creswick, Australia,
brought together leading experts from the fields of geometric partial differen-
tial equations and geometric analysis in general. The focus of the workshop
was on recent developments and directions in non-linear geometric diffusion
equations. The main flows considered were mean curvature flow, inverse
mean curvature flow, Ricci flow, Willmore flow, as well as related flows. A
number of the results and methods were in the setting of general relativity,
where flows have been very successful in helping solve major problems (for
example the resolution of the Penrose conjecture by Huisken/Ilmanen using
the inverse mean curvature flow). For four days of the workshop there were
combined (with MATRIX) morning talks and extensive discussions.
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Introduction by the Organizers

This tandem workshop jointly organised with MATRIX in Creswick, Australia,
brought together leading experts on geometric partial differential equations and
on geometric analysis in general. Two full conferences were held, one at MFO
and one at MATRIX, accompanied by joint online streamed sessions on four of
the days. The joint sessions consisted of a talk (50 min.) followed by an extended
Q&A session (45 min.) and further in depth discussion. The joint online talks and
conversations were particularly well received by the participants of MATRIX and
Oberwolfach. One could follow the talks well online and one saw not only the talk
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but had the chance to see/interact with colleagues as well as the speaker at the
other end during the conversation time. This lead to further interaction outside the
talks, which one hopes will have lead to progress in current joint projects, or helped
defining and working on new projects. The slight prior uncertainty of whether the
online interaction would be engaging enough quickly proved unjustified and we
had a very inspiring time across the hemispheres. In particular, the time plan was
very much appreciated and praised by the participants. There were enough online
talks, to spark interaction and exchange between the continents, but not too much,
so that direct interaction did not suffer and enough time was kept free for working
directly with one another on projects. A general feeling among participants seems
to be that it was a good decision not to record the offline lectures. The danger of
recording talks is that participants at the other end would feel obliged to try and
watch the online talks, thus detracting from the time needed to work with others
on projects: It would have been an overload. Thematically, the scientific part of
the MFO talks can roughly be grouped into a few themes.

• Inverse mean curvature flow, flows related to mathematical relativity, ca-
pacity (Cabezas-Rivas, Fogagnolo, Pluda, Wolff)

• Intrinsic flows, like Ricci- and Yamabe flow (Chen, Reiris, Wang)
• Mean curvature flow (Buzano, Klingenberg, Litzinger, Lynch, Mramor,
Stolarski, Vogiatzi)

• Higher-order problems (Lamm, Mäder-Baumdicker, Rupp).

The theme complex around inverse mean curvature flow (IMCF) provided a
good overview over very recent exciting developments in this field. Esther Cabezas-
Rivas spoke about her work on how to define a suitable notion of weak IMCF of
crystalline structures related to Wulff shapes with respect to a norm in a quite
weak regularity regime. The talks by Mattia Fogagnolo and Alessandra Pluda
focused on a recent series of groundbreaking results by various groups/researchers
on level set approximations of IMCF by p-harmonic functions. The idea is, very
roughly, that the p-parameter family of p-harmonic functions somewhat interpolate
between the case p = 1, which resembles IMCF, and p = ∞, which resembles the
equidistance flow. This relatively new development has the potential to deepen the
ties between geometric evolution problems and pure PDEs even more firmly. The
talk by Markus Wolff focused on a whole new family of flows of mean curvature
type, which live in degenerate ambient spaces, i.e. null hypersurfaces. Exciting
relations to the Yamabe flows were discussed.

In the intrinsic flow section, we saw two Ricci flow talks. Eric Chen talked on
recent work with Richard Bamler, where a degree theory for solutions to Ricci flows
coming out of cones is developed. This theory is used to show existence of a Ricci
flow coming out of cones with non-negative scalar curvature, thus generalising
results of Deruelle, Schulze, Simon on flows coming out of non-negatively curved
cones. An interesting insight was provided by Mart́ın Reiris, who explained how
the entropy quantity of Perelman can be obtained as a limit of Colding’s reduced
volume. Guofang Wang showed us that an isoperimetric inequality between the
total Q-curvature and the total scalar curvature holds, and then explained how



Nonlinear Geometric Diffusion Equations 487

this leads to a new type of optimal Sobolev inequality. His tools were based on an
intrinsic fully nonlinear Yamabe-type flow.

In the higher order section, we saw in a talk by Tobias Lamm, that earlier
results by Simon, Koch/Lamm on flowing out of weak initial C0 (or almost C0

data) can be generalised to data with small BMO norms, and systems with small
BMO norms. Elena Mäder-Baumdicker explained how one can obtain a mono-
tonicity quantity for fourth order flows, analogous to the one found by Struwe for
the harmonic meap heat flow. Fabian Rupp introduced us to a conformal class
preserving gradient flow for the Willmore functional and showed us how it can be
used to find new examples of conformally constrained Willmore tori. An interest-
ing connection to an elastic energy gradient flow in hyperbolic space was involved
in his arguments.

The mean curvature flow section focused on many aspects of the field. Maxwell
Stolarski showed us that singularities of mean curvature flows with bounded cur-
vature have some structure, thus complimenting his results, that in high dimen-
sions, such singularities do occur. Alexander Mramor looked at mean curvature
flow in three dimensions, and showed how new results and insights can be used
to understand possible singularity formulation, and construct minimal surfaces.
Stephen Lynch introduced a new generalisation of CMC hypersurfaces to higher
co-dimensions and used it to give a simple, globally defined, canonical description
of bubblesheet regions. Staying in higher co-dimension, Florian Litzinger showed
us that the curve shortening flow of a curve becomes planar, and round (after
scaling) if one assumes a bound on a suitably defined entropy of the initial curve.
In the talk of Reto Buzano the existence of mean curvature flow non-compact
self-shrinkers was shown using mini-max methods, and we saw that these have one
asymptotically conical end in the case of large genus. Wilhelm Klingenberg showed
us that space-like graphical rotationally symmetric line congruence evolving under
mean curvature flow with respect to the neutral Kähler metric in the space of
oriented lines of the Euclidean 3-space, namely in TS2, subject to suitable Dirich-
let and Neumann boundary conditions, converges to a holomorphic disc. Artemis
Vogiatzi considered mean curvature flow of sub-manifolds in spheres. She showed
that if a certain pinching condition depending on the dimension and co-dimension
is initially satisfied, that then the flow will converge to a totally geodesic limit.

Acknowledgements: We thank the participant Nikita Cernomazov for taking care of
the technical side, in particular for setting up the Zoom meetings. The organizers
would like to thank Florian Litzinger for his assistance in collecting the extended
abstracts and putting this report together.
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Abstracts

Noncompact self-shrinkers with arbitrary genus

Reto Buzano

(joint work with Huy The Nguyen, Mario Schulz)

A mean curvature flow starting from a closed embedded surface in Euclidean space
R3 must necessarily form a singularity in finite time. By work of Huisken, Ilmanen,
and White, such singularities are always modelled on surfaces that shrink self-
similarly along the flow, so called self-shrinkers. Noncompact self-shrinkers model
local singularities along the mean curvature flow, i. e. situations where the flow
does not become extinct at the singular time. Therefore, a very natural objective
in this setting is to understand and construct examples of complete embedded
(two-dimensional) self-shrinkers.

The simplest self-shrinkers are flat planes, the sphere of radius 2 and cylinders
of radius

√
2, all centred at the origin. In fact, Brendle [1] proved that there are no

other embedded self-shrinkers of genus zero. Angenent constructed a rotationally
symmetric, closed self-shrinker of genus one. Based on numerical simulations,
Ilmanen [3] conjectured the existence of noncompact embedded self-shrinkers with
dihedral symmetry and arbitrary genus. For high genus, these surfaces resemble
the union of a sphere and a plane desingularised along the line of intersection.
Kapouleas, Kleene and Møller [4] as well as X. Nguyen [7] were able to formalise
the desingularisation procedure and prove the existence of such self-shrinkers if the
genus is sufficiently large. However, the nature of the desingularisation method
does not allow the construction of low genus examples. Our main result establishes
the existence of self-shrinkers with arbitrary genus, resolving Ilmanen’s conjecture.

Theorem 1 (Theorem 1.2 of [2]). For each g ∈ N there exists a complete, embed-
ded, noncompact self-shrinker Θg ⊂ R3 for mean curvature flow which has genus
g and is invariant under the action of the dihedral group Dg+1.

This theorem provides the first example of a noncompact self-shrinker of genus
one as well as the very first example of a self-shrinker of genus two.

A self-shrinker Σ is a critical point for the Gaußian area functional

(1) F (Σ) =
1

4π

ˆ

Σ

e−
1
4 |x|

2

dH2(x)

where H2 denotes the 2-dimensional Hausdorff measure in R3. As such, Σ is a

minimal surface in the (conformally flat) Riemannian manifold
(

R3, e−
1
4 |x|

2

gR3

)

called Gaußian space. Since all self-shrinkers are unstable, a promising approach
to prove our theorem is via min-max constructions in Gaußian space. Such a min-
max theory was developed by Ketover and Zhou [6] based on the pioneering work
by Almgren and Pitts, and later refinements by Simon–Smith and Colding–De
Lellis. The equivariant version of min-max theory was introduced by Ketover [5].

In this talk, we explain how we pick an effective sweepout with the right sym-
metry and topology as well as good control on the Gaußian area (in fact, we can
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Figure 1. Numerical simulations of the self-shrinkers Θg for
genus 2, 3, and 5.

show that the Gaußian area along our model sweepout always stays below 2.5).
We also explain why every sweepout in the equivariant saturation obtained from
this model sweepout satisfies the necessary mountain pass condition to apply the
above mentioned min-max theory. A key difficulty is then that the convergence of
a min-max sequence is only obtained in the sense of varifolds and additional work
is required to control the topology of the limit surface. Using Brendle’s classifica-
tion result mentioned above, we can rule out that our limit self-shrinker has genus
zero. Indeed, the dihedral symmetry forces the multiplicity of the convergence to
be odd, and the Gaußian area bound of 2.5 rules out multiplicity m ≥ 3. On the
other hand, by the mountain pass condition, it is not possible to converge to a
multiplicity one plane. It is also known that the genus cannot increase in the min-
max limit, hence our self-shrinkers have genus between 1 and g. This is when the
symmetry group comes to save us. Indeed, we can prove a quite general structure
theorem for surfaces with dihedral symmetry group Dg+1 and genus between 1 and
g: they are either disjoint from the vertical symmetry axis or they must exactly
have genus g. As our self-shrinkers contain the origin by construction, we are in
the latter case.

In the second part of the talk, we are interested in the number of ends of
our self-shrinkers Θg. Conjecturally they all have precisely one end (clearly by
construction they have at least one asymptotically conical end), but again, the
convergence in the min-max procedure is too weak to give any useful control. By
analysing the behaviour for g → ∞ we are able to rule out any additional ends for
Θg if the genus g is sufficiently large. More precisely, we have the following result.

Theorem 2 (Theorem 1.3 of [2]). The sequence of self-shrinkers {Θg}g∈N con-
structed in Theorem 1 converges to the union of the horizontal plane and the self-
shrinking sphere in the sense of varifolds as g → ∞. The convergence is locally
smooth away from the intersection circle. In particular, if g is sufficiently large,
then Θg has exactly one asymptotically conical end.

Let us briefly sketch the main steps in the proof of this result. First, due to
the Gaußian area bound F (Θg) ≤ 2.5 we can apply Allard’s compactness theorem
to extract a subsequence converging in the varifold sense to a stationary integer
varifold Θ∞. It is easy to see that this varifold must contain the horizontal plane
P and be rotationally symmetric. By standard regularity theory, the convergence
is smooth unless the second fundamental form A blows up in a suitable sense. This



Nonlinear Geometric Diffusion Equations 493

last condition is equivalent to the genus going to infinity near points of non-smooth
convergence by Ilmanen’s localised Gauß-Bonnet estimate for self-shrinkers. All
of this lets us conclude that the convergence is smooth away from a set of circles
where the genus concentrates.

We then employ again our structure theorem for surfaces with dihedral symme-
try group mentioned above to conclude that there is in fact only one such circle
contained in the plane P where all the genus concentrates. Moreover, this circle
must have positive diameter and be the intersection of precisely two smooth self-
shrinkers that both have genus zero. One of them is the plane P , as previously
established. By Brendle’s classification of genus zero self-shrinkers, the other one
must be a sphere or a cylinder. But by our Gaußian area bound we can exclude
the cylinder, since

(2) F (P ) + F (S22) < 2.5 < F (P ) + F (R× S
1√
2
).

We finish the talk with open questions, conjectures, and numerical results.
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Inverse Mean Curvature Flow coming out of crystals

Esther Cabezas-Rivas

(joint work with Salvador Moll, Marcos Solera)

We manage to define weak solutions for the Inverse Mean Curvature Flow (IMCF)
to model crystal growth, and hence we give sense to the evolution equation both
in an anisotropic setting and with extremely mild regularity assumptions.

To put our results into context, we quickly recall the classical theory: given
M = ∂Ω a smooth hypersurface of Rn, we say that the family of immersions
X : M × [0, T ) → Rn is a solution of the IMCF if each point moves in the outward
normal direction with velocity given by the inverse of the mean curvature, that
is, ∂tX = − 1

H ν. Early results [4, 7] ensure that if ∂Ω is smooth, mean convex
(H > 0) and starshaped, then smooth solutions exist for all times and converge
(after suitable rescaling) to a round sphere.

For the anisotropic version, we need to consider a norm F on Rn and the
evolution becomes ∂tX = − 1

HF
νF with νF = ∇F (ν) the anisotropic normal, and
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HF its corresponding divergence. By assuming additionally that F ∈ C∞(Rn\{0})
joint with the ellipticity condition ∇2F > 0, Xia [8] achieved the anisotropic
counterpart of the aforementioned result.

Unfortunately, classical smooth solutions are very restrictive, as shown by the
example of a very thin torus, which would puff out until developing zero curvature
along the central inner ring, and hence a singularity forms because the flow speed
explodes. To preclude this behaviour, Huisken and Ilmanen [5] introduced a level
set version of the flow by considering the evolving hypersurfaces as the level sets of
a function v, that is, Mt = X(M, t) = {v = t}. In this way, the original parabolic
initial value problem transforms into the following elliptic boundary value one:

div

( ∇v

|∇v|

)

= |∇v| in Ωe = R
n \ Ω,

with v = 0 on ∂Ω and v → ∞ as |x| → ∞. In this setting, the singularities
are replaced by a jump mechanism allowing instantaneous replacement of the
solution by its outward minimising hull. In this setting, removing the geometric
constraints of mean convexity and starshapedness, one can still find a unique
solution v ∈ Liploc(Ω

e), as shown in [5]. The anisotropic version of this outcome,
with the same smoothness and ellipticity assumptions for F as before, can be found
in [3].

Again, this framework is too confining to let evolve a crystal shape (think about
the easiest one: a square). To start with, we can only assume that ∂Ω is Lipschitz
and no regularity requirements have to be imposed to F (as the actual growth
of a crystal in nature does not occur by rounding off the corners). By adapting
to this scenario an approximation technique by Moser [6], which obtains level set
solutions of IMCF as limits of p-harmonic functions after a change of variable, our
main result reads as follows:

Theorem 1. [2] Consider Ω ⊂ R
n a bounded domain with Lipschitz boundary.

Then there exists a unique function v ∈ BVloc(Ω
e) ∩ L∞

loc(Ω
e) which is a weak

solution of the crystalline IMCF, which formally means that it solves

(1)











div
(

∂F (Dv)
)

= F (Dv) in Ωe,

v = 0 on ∂Ω,

v → ∞ as |x| → ∞,

where Dv represents the distributional derivative of a BV -function, which makes
sense as a Radon measure. Moreover, the discontinuity or singular set of v has
measure zero with respect to the (n − 1)-dimensional Hausdorff measure, and v
lies between two explicit barriers. Additionally, if ∂Ω satisfies a uniform interior
ball condition (with a Wulff shape playing the role of a ball), v is continuous and
satisfies a Harnack inequality.

Let us give a brief sketch of the strategy of the proof.
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Step 1. For each p > 1 we look for minimizers u = up of the p-capacity, i.e.,

CapFp (Ω) := inf

{
ˆ

Ωe

F p(∇u) dx : u ∈ Ẇ 1,p(Ωe), u|∂Ω = 1

}

,

where Ẇ 1,p(Ωe) stands for the homogeneous Sobolev space, which for p∗ = np
n−p

can be identified with the following space:
{

u ∈ Lp∗

(Ωe) : ∇u ∈ Lp (Ωe;Rn)
}

.
With this aim, we consider the energy

F(u) :=







ˆ

Ωe

F p(∇u), if u ∈ Ẇ 1,p(Rn), with u|Ω = 1,

∞, otherwise.

Since F is a proper and convex functional, it is well-known that u is a minimizer
of F if and only if 0 ∈ ∂F(u), and it remains to characterize the latter. Indeed,

Theorem 2. [1] Let 1 < p < n, Ω ⊂ Rn an open bounded set with Lipschitz

boundary. If u ∈ Ẇ 1,p(Rn) with u|Ω = 1 and w ∈ L(p∗)′(Rn), then

w ∈ ∂F(u) ⇔
[ ∃ z ∈ L∞(Ωe;Rn),with z ∈ ∂F (∇u), such that

w = −div(pF p−1(∇u)z) in the weak sense.

]

Recall that, by 1-homogeneity of F , it holds z ∈ ∂F (∇u) if and only if F ◦(z) ≤ 1
and z ·∇u = F (∇u), where F ◦ denotes the polar norm. In particular, we conclude
that minimizers of the p-capacity are solutions to

(2)











div
(

F p−1(∇u)∂F (∇u)
)

= 0 in Ωe,

u = 1 on ∂Ω,

u → 0 as |x| → ∞.

Step 2. We derive a comparison principle which yields uniqueness of solutions of
(2), and explicit barriers for the solution up ∈ Ẇ 1,p(Ωe) for each p > 1.

Step 3. Set vp = (1 − p) logup, and derive estimates to find a sequence pk ց 1
and a function v ∈ BVloc(Ω

e) ∩ L∞
loc(Ω

e) such that vpk
→ v in Lq

loc(Ω
e) for every

1 ≤ q < n
n−1 , where the limit v is the unique weak solution of (1) (see [2, Definition

3.1] for technicalities).
Additionally, despite of our milder regularity hypotheses and our a priori dif-

ferent notion of solutions, we recover all the classical geometric properties of

the sublevel sets

Et = {x : v(x) < t} and Gt = {x : v(x) ≤ t},
that is, those features that one would expect from [5]. In fact, we have a variational
definition for the solution v, and its corresponding sublevel sets also minimize
a suitable functional; Et and Gt have finite perimeter for all t; the anisotropic
perimeter P

F
of Gt and Et coincide for all t > 0; e−tP

F
(Et) is constant for t > 0;

Et is outward F -minimizing for any t > 0, that is, it minimizes the anisotropic
perimeter when compared with all bounded subsets that contain it, while enclosing
Ω; Gt is strictly outward F -minimizing for any t ≥ 0. Moreover, among the
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anisotropic perimeter minimising envelopes of Ω, G0 is the one that maximises the
Lebesgue measure.

A further advantage of our approach is that it allows to construct some ex-
plicit examples of weak solutions, like the expected evolution of Wulff shapes, a
rectangle whose vertices do not grow linearly, as well as a concrete case of three
simultaneously growing squares where fattening occurs.

Finally, our work opens up new challenges and research directions within this
milder anisotropic framework:

◦ replace Rn by a suitable manifold;
◦ consider norms F depending on the point and not just on the direction;
◦ obtain monotonicity formulas under the flow leading to new geometric
inequalities in anisotropic settings, under weaker regularity assumptions;

◦ address polycrystalline growth;
◦ flows driven by other velocities, and Alexandrov-type theorems.
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Expanding Ricci solitons asymptotic to cones with non-negative

scalar curvature

Eric Chen

(joint work with Richard Bamler)

The Ricci flow starting from a compact Riemannian manifold (Mn, g0) consists of
a family of metrics g(t) on Mn which satisfies ∂

∂tg = −2Ricg and g(0) = g0, for
t ∈ [0, T ) and some maximal time T ∈ (0,∞]. When n = 2, after normalizing to
fix the volume, the flow always converges to a metric of constant Gauss curvature,
providing another proof of the uniformization theorem [4]. When n = 3, a complete
understanding of singularity formation as t → T makes possible Ricci flow with
surgery and its subsequent applications to three-manifold topology [7, 9, 8].
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To develop a theory of Ricci flow with surgery in higher dimensions for potential
new topological applications, especially in dimension n = 4, an understanding of
singularity formation would again be essential [2]. One family of singularities aris-
ing in higher dimensions are the conical singularities; in fact, any asymptotically
conical gradient shrinking soliton arises as a singularity model for some compact
Ricci flow [10]. Recent work of Bamler further indicates the importance of this
class—any four-dimensional compact Ricci flow with a finite-time singularity has a
blowup model which is either a smooth compact gradient shrinking soliton, S2×R2,
S3/Γ×R, or a cone (R+ ×N3, dr2 + r2h) with non-negative scalar curvature [1].

The appearance of such conical singularities along the flow might be resolved
by cutting and gluing in an expanding Ricci soliton, if one asymptotic to the
same cone exists. When restricting to cones with positive curvature operator, the
existence of such expanders is known [5], and using these it is indeed possible to
resolve such isolated conical singularities [6]. Relaxing to cones of non-negative
scalar curvature, with Richard Bamler we obtain the existence of expanding Ricci
solitons asymptotic to such cones over S3/Γ [3].

Theorem 1. For any cone metric dr2 + r2h on R+ × S3/Γ with non-negative
scalar curvature, there is a gradient expanding soliton metric g on R4/Γ with non-
negative scalar curvature that is asymptotic to it.

This result arises from a degree theory we establish for the natural projection
map from the space of asymptotically conical expanding solitons on a fixed smooth
orbifold with boundary X4 to the space of cone metrics with non-negative scalar
curvature. Let Mgrad,R≥0(X) denote the space of isometry classes [(g,∇f, γ)] of
expanding gradient solitons with non-negative scalar curvature on the interior of
X with metric g and potential field ∇f , asymptotic to the conical metric γ on
a tubular neighborhood of ∂X via a fixed set of coordinates at infinity. Also let
ConeR≥0(∂X) denote the space of conical metrics γ on R+ × ∂X . Then when
X has isolated singularities, a regular boundary, and satisfies certain additional
topological assumptions, we have (roughly):

Theorem 2. The projection map Π : Mgrad,R≥0(X) → ConeR≥0(∂X) is proper
in a suitable topology and has a well-defined, integer valued degree, degexp(X) ∈ Z.
This degree is an invariant of the smooth structure of X.

If the expander degree degexp(X) ∈ Z is nonzero, then Π is surjective, and
therefore any member of ConeR≥0(∂X) is indeed the asymptotic cone of some
expanding soliton on X . When X ≈ D4 or D4/Γ, an argument showing that the
Gaussian expander is the unique expander asymptotic to the flat cone over S3

implies that degexp(X) = 1, from which the existence result stated earlier follows.
One issue that arises during our construction is that Mgrad,R≥0(X) may not

have a local Banach manifold structure, due to analytical properties of the linear
operatorLf := △−∇∇f+2Rm associated with the expanding soliton equation. We
must therefore work with the space GenCone(∂X) of generalized cone metrics γ =
dr2+r(dr⊗β+β⊗dr)+r2h on R+×∂X together with the larger space of expanding
solitons M(X) asymptotic to these. This adds additional complications, but also
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yields deformations to infinitely many non-gradient expanding solitons near any
asymptotically conical gradient expander with non-negative scalar curvature; all
gradient expanders must be asymptotic to elements of Cone(∂X).

For possible applications to Ricci flow with surgery on four-manifolds, it would
be desirable to extend our existence result to cover all cones with non-negative
scalar curvature. The link of such a cone must be diffeomorphic to a connected
sum (S3/Γ1)# · · ·#(S3/Γk)#(#ℓS2 × S1), and therefore in light of our degree
theory it is natural to ask:

Question. Is there any relation between the degrees degexp(X1), degexp(X2), and

degexp(X1#∂X2)? What is degexp(D
3 × S1)?

Above, the connected sum involves cutting along half-balls intersecting the
boundaries ∂Xi to study expanders asymptotic to cones over ∂X1#∂X2. If these
degrees can be shown to be nonzero, this would yield natural candidates for resolv-
ing the conical singularities encountered along the Ricci flow in four dimensions.
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Penrose inequalities in low regularity regimes

Mattia Fogagnolo

(joint work with Luca Benatti, Lorenzo Mazzieri)

The Riemannian Penrose inequality (RPI) takes place in an asymptotically flat
Riemannian 3-manifold (M, g) with nonnegative scalar curvature R, and endowed
with a minimal, closed and outermost boundary ∂M . In this report, outermost just
means that no other closed minimal surface S encloses ∂M . These Riemannian
manifolds arise as spacelike slices of time-symmetric Lorentzian spacetimes obeying
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the dominant energy condition. Moreover, we say that (M, g) is Ck
τ -asymptotically

flat if M = R3 with a compact set set removed and

g = δ + η

with η decaying by
k
∑

|β|=0

|∂βη| ≤
C

|x||β|+τ
.

In C1
τ -asymptotically flat 3-manifolds with τ > 1/2, with nonnegative scalar cur-

vature, Bartnik and Chrusciél proved that the following quantity

(1) mADM = lim
r→+∞

1

16π

ˆ

{|x|=r}
gij(∂igjk − ∂kgij)ν

kdσ,

where {x1, x2, x3} are the classical coordinates of R3, is well-defined (and possibly
infinite), and thus not depending on the chosen chart. This quantity has been
conceived in [2] as a notion of relativistic total mass. The restriction to τ > 1/2 is
in fact fully sharp, since already for τ = 1/2 one can choose charts giving different
values of the quantity on the RHS of (1).

The RPI states that

(2)

√

|∂M |
16π

≤ mADM ,

and has been first conjectured by Penrose [8] as a test for the cosmic censorship
conjecture.

The geometric inequality (2) has been proved by Huisken-Ilmanen [5] for con-
nected boundaries in C1

1 -asymptotically flat manifolds also satisfying Ric ≥
−1/|x|2, and by Bray [4] for possibly disconnected boundaries in C2

τ -asymptotically
flat manifolds with τ > 1/2. In [3] we provide (2) in the sharp C1

τ -asymptotically
flat regime with τ > 1/2, for connected boundaries. The proof follows the general
strategy as Huisken-Ilmanen’s, relying on the monotonicity of the Hawking mass

(3) mH(Σt) =
|Σt| 12
16π

3
2

(

4π −
ˆ

Σt

H2

4
dσ

)

along the level sets Σt = ∂{w ≤ t} evolving by weak Inverse Mean Curvature Flow
(IMCF), that is a suitable weak notion for















div

( ∇w

|∇w|

)

= |∇w| on M \ ∂M ,

w = 0 on ∂M ,

w → +∞ as dist(x, o) → +∞.

In fact, if one can also show

(4) lim
t+∞

mH(Σt) ≤ mADM ,

then coupling it with the monotonicity of (3) yields (2). In the talk, I discuss how
in [3] we modify Huisken-Ilmanen’s strategy for this last step by first highlighting
the centrality of an priori nonsharp boundedness of mH(Σt) for any t, and then
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explaining how to obtain it via the following novel method. Let Σs
t be the level

sets {w2 = s} where w2 solves










div (∇w2) = |∇w2|2 on M \ ∂M ,

w2 = 0 on ∂M ,

w2 → +∞ as dist(x, o) → +∞.

Then, by [1] the quantity

m
(2)
H (Σs

t ) = Cap(Σs
t )

[

4π +

ˆ

Σs
t

|∇w2|2 −
ˆ

Σs
t

|∇w2|H
]

is monotone nondecreasing in s. Moreover, building on the fact that e−w2 is har-

monic, Green’s representation formula yields that lims→+∞ m
(2)
H (Σs

t ) ≤ mADM ,

and since by Hölder’s and Sobolev inequality mH(Σ) ≤ Cm
(2)
H (Σ) for any surface

Σ, we obtain the claimed uniform bound on the Hawking mass along the IMCF.
A question raised by M. Simon concerns the viability of the above scheme and
consequently the validity of (2) for metrics of C0 ∩W 1,3

τ -regularity with nonnega-
tive distributional scalar curvature, a setting where the positive mass theorem has
been proved by Lee-LeFloch [7].

I then pass to consider Huisken’s notion of isoperimetric mass, reading

miso = sup
(Ωj)j∈N

lim sup
j→+∞

2

|∂Ωj |

(

|Ωj | −
|∂Ωj | 32
6
√
π

)

.

I explain how in [3] we obtain (2) with miso in place of mADM without any
assumption of asymptotic flatness, but only requiring existence of the weak IMCF.
By recent work of Xu [9], this is granted e.g. if g merely satisfies a Euclidean-
like isoperimetric inequality. The proof of such Isoperimetric RPI stems from the
asymptotic comparison

lim
t→+∞

(Σt) ≤ lim sup
t→+∞

2

|∂Ωt|

(

|Ωt| −
|∂Ωt|

3
2

6
√
π

)

where Ωt = {w ≤ t}, that happens to be a simple application of De l’Hopital
theorem.

During the talk, I also point out that miso has been recently observed [6] to be
nonnegative in any asymptotically flat setting, regardless of any curvature assump-
tion. A natural question discussed with Huisken concerns then how to fine-tune the
definition of isoperimetric mass in order to make it more sensitive to nonnegative
scalar curvature and minimality of the boundary.

Finally, I mention some preparatory work with Gatti and Pluda towards an
Isoperimetric RPI for continuous metrics with nonnegative scalar curvature in an
approximated sense.
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Parabolic evolution to the Bishop family of holomorphic discs

Wilhelm Klingenberg

(joint work with Brendan Guilfoyle)

We prove that a space-like graphical rotationally symmetric line congruence evolv-
ing under mean curvature flow with respect to the neutral Kähler metric in the
space of oriented lines of the Euclidean 3-space, namely in TS2, see [1], subject to
suitable Dirichlet and Neumann boundary conditions, converges to a holomorphic
disc. This disc comes in a one parameter family which forms the Bishop family
of discs associated to the complex point in the Lagrangian boundary condition.
This result is a special case of independent interest of the results that appeared
in [2] and [3]. We ended the talk with an application to the Critical Catenoid, a
minimal surface of the type of the annulus. Namely we prove that the normal line
congruence of this surface bounds a holomorphic disc in TS2.
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Parabolic equations with rough data

Tobias Lamm

(joint work with Herbert Koch)

The study of parabolic equations with rough data is motivated by some geometric
problems such as defining lower bounds for the scalar curvature for irregular met-
rics. In this talk I showed how irregular initial data can be smoothed out with the
help of parabolic equations such as the harmonic map flow or the Ricci–DeTurck
flow.

Curve shortening flow in high codimension

Florian Litzinger

We consider the flow of closed curves immersed in Euclidean space of any dimension
by their curvature. More precisely, let γ : S1 × [0, ω) → Rn be a one-parameter
family of smooth immersions satisfying

∂γ

∂t
= κN,

γ(·, 0) = γ0

(CSF)

for some initial smooth closed curve γ0 : S1 → R, where κ(·, t) and N(·, t) denote
the curvature and normal vector of γt := γ(·, t), respectively. It is known that
solutions exist at least for a short time [4]. On the other hand, the final time of
existence ω of the curve shortening flow of a compact initial curve must be finite,
which prompts the study of the behaviour of the flow when approaching the final
time.

The case of evolving embedded curves in the plane, n = 2, is well studied. Most
prominently, Gage and Hamilton [4, 5] showed that convex curves shrink to a point,
becoming asymptotically circular in the process. The final time of existence of the
flow is characterised by the curvature tending to infinity. Meanwhile, Grayson [6, 7]
proved that any embedded curve continues to be embedded under the flow and
eventually becomes convex without developing singularities. Due to its impact on
the literature, the resulting Gage–Hamilton-Grayson theorem can, to some degree,
be considered a model result for the analysis of singularities of the flow.

The flow of curves in higher codimension exhibits some notable differences to the
planar case. In particular, embeddedness need not be preserved and the avoidance
principle, i. e., the fact that two initially disjoint planar curves will remain so
throughout the evolution, no longer holds. The main tool for the analysis of the
flow in high codimension is Huisken’s monotonicity formula [9], which holds in any
codimension.

For the flow of curves immersed in R3, Altschuler [2] carried out a careful
analysis of the blow-up limits of the flow, proving that singularity formation is
an essentially planar phenomenon. He showed that for any blow-up sequence of

a type-I singularity (that is, the curvature does not grow faster than (ω − t)
1
2 ),

there exists a subsequence such that a rescaling of the curve along it converges to
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a planar self-similarly shrinking solution, while for a type-II singularity (that is,
not of type-I) there exists a blow-up sequence such that a sequence of rescalings
along it converges to the translating Grim Reaper solution.

In the case of arbitrary codimension, we can show that Altschuler’s results
continue to hold. That is, the emergence of singularities is still governed by the
curvature becoming unbounded, and evolving curves in fact become asymptotically
planar in the vicinity of a singularity. We give a simple proof of the latter fact using
the monotonicity formula. Moreover, close to a type-I singularity, a sequence of
rescalings along a blow-up sequence converges to a planar self-similarly shrinking
solution, while for a type-II singularity, we show the existence of an essential
blow-up sequence converging to the Grim Reaper. Some of these results already
appeared in work of Yang–Jiao [12].

We then show, combined with a bound on a suitably defined entropy of the inital
curve, that such curves do become circular and thus shrink to a point. In order to
obtain such a result in the spirit of the Gage–Hamilton-Grayson theorem, inspired
by the general strategy employed in Huisken’s proof [10] of Grayson’s theorem,
we first seek to rule out the emergence of type-II singularities. In our case, this
is done by means of the aforementioned initial entropy bound. We then study
the possible type-I singularities using the classification of self-similarly shrinking
solutions in the plane [1], enabling us to exclude all but the circle.

The entropy functional, introduced by Colding–Minicozzi [3] and several other
works in the context of mean curvature flow, can be seen as a Gaussian-weighted
length functional and thus a measure of geometric complexity. For a curve γ, its
entropy λ(γ) is defined by

λ(γ) = sup
x0∈Rn, t0>0

(4πt0)
− 1

2

ˆ

γ

e
− |x−x0|2

4t0 dµ.

Among other favourable properties, the monotonicity formula implies that entropy
is monotone non-increasing under curve shortening flow, whereby an upper bound
for the initial curve propagates with the flow. Notably, Guang [8] showed that the
entropy of the Grim Reaper solution is equal to 2.

Then, combining these arguments, we obtain our main theorem [11]:

Theorem. Suppose that γ : S1 × [0, ω) → Rn is a smooth solution of (CSF) and
assume that the entropy of γ0 satisfies

λ(γ0) ≤ 2.

Then ω is finite, and the rescaled flow converges to the round circle.

Possible directions for future research include the study of the flow of non-
compact curves, or of closed curves in a Riemannian manifold with appropriate
conditions on the curvature, both with a bound on the entropy of the initial curve.
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Canonical foliation of bubblesheets

Stephen Lynch

(joint work with Jean Lagacé)

Foliations by constant mean curvature (CMC) hypersurfaces play an important
role in Riemannian geometry and general relativity [1]. In the context of the Ricci
flow, R. Hamilton constructed a canonical CMC foliation for necks. These are
Riemannian manifolds which, after scaling, locally resemble the standard cylinder
R × Sn−1 around each point. Hamilton employed his foliation as a technical tool
in the construction of a Ricci flow with surgeries on 4-manifolds with PIC [2]. It
has also been used in the proofs of classification results for ancient solutions [3].

Motivated by similar applications to geometric flows, we generalise Hamilton’s
construction to bubblesheets. These are Riemannian manifolds which, after scal-
ing, locally resemble the cylinder Rk × S

n−k. Bubblesheets occur much more fre-
quently than necks near singularities of both the Ricci and mean curvature flows
(in the absence of a dimension restriction or curvature condition which rules them
out). A key new difficulty arises in this more general setting: whereas Hamilton’s
foliation consisted of embedded spheres of codimension one, we must instead work
with spheres of codimension k.

The obvious generalisation of CMC to higher codimensions is to impose that
the mean curvature vector be parallel (with respect to the connection induced on
the normal bundle). It turns out that there are bubblesheets which do not admit a
foliation by leaves with parallel mean curvature—examples can be obtained from
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very collapsed Berger metrics on the 3-sphere after an arbitrarily small perturba-
tion. The issue seems to be that, in general, high-codimension submanifolds may
not support any nonzero parallel normal sections. This means that in a certain
sense submanifolds with parallel mean curvature are too scarce. Compare this
with the situation in codimension one: every compact 2-sided hypersurface has
parallelisable normal bundle, with a global parallel frame being given by any unit
normal.

To overcome these issues we introduce a new curvature condition for submani-
folds of higher codimension, which generalises both CMC and parallel mean cur-
vature vector. We call this condition quasi-parallel mean curvature (QPMC). To
see what we mean by QPMC, fix a Riemannian manifold (M, g) of dimension n
and consider a submanifold Σ ⊂ M of codimension k. The Levi-Civita connection
of (M, g) induces a connection ∇⊥ and hence a Laplacian ∆⊥ acting on sections of
the normal bundle NΣ. The operator −∆⊥ admits a complete set of eigensections
with nonnegative eigenvalues λm = λm(Σ, g), labelled in nondecreasing order, re-
peating according to multiplicity. We write Pλ for the L2-orthogonal projection
onto the eigenspace associated with λ ∈ spec(−∆⊥) and define

Q :=
∑

λ∈spec(−∆⊥)
λ<λk+1

Pλ.

A section of NΣ is called quasi-parallel if it lies in the image of Q, and so the
submanifold Σ is said to have QPMC if its mean curvature vector H satisfies

(1) (1−Q)(H) = 0.

We note that 1−Q is a nonlocal pseudodifferential operator acting on sections of
NΣ. Expressed as H = Q(H), (1) is a weakly elliptic quasilinear system for the
position of the submanifold, with nonlocal right-hand side.

On the cylinder Rk × Sn−k, for each of the slices {z}× Sn−k, the image of Q is
precisely the space of parallel vector fields obtained from restricting the coordinate
vectors on Rk. Moreover, since on any slice we have the spectral gap λk = 0 <
n − k = λk+1, for any nearby submanifold Q still has rank equal to k (even
though the kernel of ∆⊥ might now be {0}). Exploiting these facts, and using the
implicit function theorem, we are able to show that every bubblesheet admits a
canonical foliation by embedded copies of Sn−k with QPMC. After pulling back to
Rk × Sn−k by any map which is almost a homothety, the QPMC leaves are small
perturbations of the round slices {z} × Sn−k.

It remains to be seen whether the QPMC condition is also useful in other con-
texts. Since it appears to be a natural generalisation of the notion of parallel mean
curvature, one is also led to wonder which properties of that class of submanifolds
carry over. For example, what can be said about a QPMC sphere embedded in a
Euclidean space? Must it be round?
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A parabolic monotonicity formula for the biharmonic map heat flow

Elena Mäder-Baumdicker

(joint work with Casey Lynn Kelleher, Nils Neumann)

Parabolic monotonicity formulas such as Huisken’s monotonicity formula [2] for
the Mean Curvature Flow or Struwe’s monotonicity formula for the harmonic map
heat flow [6, 1] are an essential tool for second order geometric flows, even with
a global constraint such as the volume preserving Mean Curvature Flow [4]. In
order to look for a parabolic monotonicity formula, several properties should be
satisfied by the monotone object Ψ (which we call a pre-entropy): Positivity of
Ψ for general solutions of the geometric flow, scaling invariance under parabolic
rescaling, shrinking solitons should be critical points of Ψ and a monotonicity
property of Ψ should be satisfied that can have correction terms involving the
initial energy of the evolving object and constants independent of the flow.

In the talk we explained that a parabolic monotonicity formula in the sense
formulated above can also be proven for fourth order flows in some cases [5]. For
the linear case of the biheat equation ∂tu = −∆2u on R

n × [0,∞) we consider
(x0, t0) ∈ Rn × (0,∞) and horizontal layers

TR(t0) := {(x, t) ∈ R
n × R : t0 − 16R4 < t < t0 −R4}

and define

Ψ(u,R) :=
1

2

ˆ

TR(t0)

|∆u|2B − 1

2

ˆ

TR(t0)

|∇u|2∆B,

where B is the rotational symmetric backwards biheat kernel on Rn concentrating
around (x0, t0). Note that −∆B(·, t) < 0 only around x0 for all t > 0 so that
the second term is positive for u with support around x0. Due to the oscillating
nature of B one needs to overcome several difficulties in estimating the derivative
of Ψ. We do this by including an appropriate cut-off function which we find by
deriving novel properties of B. As a consequence, the monotonicity formula for
n ≤ 3 has the form (R1 < R2)

Ψ(u,R1, ϕ) ≤ Ψ(u,R2, ϕ) + C(R2 −R1)E0, where

E0 :=

ˆ

|∆u0|2 +
ˆ

|∇u0|2 +
ˆ

|∇∆u0|2.
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for a solution of the equation ∂tu = −∆2u on Rn and constants C that do not
depend on u nor on R1, R2.

We further explained that these results can be carried over to the extrinsic
biharmonic map heat flow for n ≤ 3, which is the gradient descent flow of the
functional

´

|∆u|2 for u : Rn → N →֒ Rk, where N is a smooth closed manifold

and ∆ is the extrinsic Laplacian (seeing u as a map to Rk). For these dimensions
and on a closed manifold M , it was shown by Lamm that no singularities develop
and the flow subconverges to a smooth biharmonic map [3]. His techniques and
results enable us to bound the terms similar to E0 appearing in the non-linear case
for n ≤ 3. For n = 4 we mentioned a weaker result which also needs the additional
assumption that an appropriate initial energy is small. We also emphasized the
structural differences of the second and fourth order case in general and how the
growth of the biheat kernel B at t0 is involved in the computations.
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On the long term limit of the mean curvature flow in 3-manifolds

Alexander Mramor

(joint work with Ao Sun)

Given the recent spectacular advances in the understanding of singularities the
mean curvature flow of closed embedded surfaces in R3, particularly advancements
on the generic mean curvature flow [6, 3, 4, 14, 15], the mean convex neighborhood
conjecture [5], and the multiplicity one conjecture [1], a natural question one may
ask is how these results may be applied to show interesting results in closed 3-
manifolds. Indeed, even in closed 3-manifolds the singularity analysis, done by
rescalings, reduces one roughly speaking to the study of flows in R3 and one can
check these results apply in this more general setting.

On the large scale though flows in R3 can behave quite differently from flows in a
given closed Riemannian manifold. Most relevant here is that in R3 compact flows
must go extinct in finite time by the comparison principle, which for topological
applications can be quite useful because as a consequence all regions of the initial
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data must eventually correspond to a high curvature region which in a fair number
of cases can be categorized up to diffeomorphism. On the other hand, a simple
closed curve in (S2, ground) which bisects the area will flow to a great circle. In
general, because the MCF is the gradient flow of the area functional, one expects
that a flow Mt which does not go extinct in finite time will converge to a minimal
surface as t → ∞. Our first result, from [12] (as are the following ones), sharpens
this basic principle in 3-manifolds:

Theorem 1. Let M be a 2-sided properly embedded surface in a closed Riemannian
3-manifold (N, g), and let Mt be an almost regular flow from M . Then either
Mt goes extinct in finite time or there exists a sequence ti → ∞ for which Mti

converges to m1Σ1 + · · · + mkΣk in the sense of varifolds, where each Σj is a
smoothly embedded minimal surface and each mj is a positive integer. Moreover,
all the Σj’s are disjoint.

To show the limit surfaces Σi are smooth we were heavily inspired by Ilmanen’s
analysis of singularities for surface flows [9] which uses a number of 2-dimensional
facts, such as Gauss–Bonnet. The notion of almost regular flows is taken from
[1], which are well behaved weak flows for which the multiplicity one conjecture is
resolved – of course given the ubiquity of singularities in the mean curvature flow
its preferable for any results of this flavor to allow for weak flows. As one may
expect one can also gain some control on the multiplicity and genus of the Σi in
terms of M as well as study the uniqueness of them as discussed further in [12].
It is interesting to note that conceivably some of the Σi may be one sided even
if M is not, considering for instance taking M to be the normal bundle over an
embedded RP 2 in an appropriate background space (N, g).

It’s a fact that for any such initial data above there is at least one almost regular
flow emanating from it, and one may also suppose it can be approximated by
generic flows (and hence surgery flows, by [7]) which will be useful in some of
the applications listed below. One first result is that we can prove via the flow a
classical result in minmax of Simon and Smith:

Corollary 1. Suppose N is diffeomorphic to S3. Then N contains a minimal
embedded S2.

The idea is itself inspired by the original proof; in short one may consider a
foliation ofN by embedded spheres and flow the leaves simultaneously and without
too much work show that the flow of one of the leaves must never go extinct. Of
course, as the gradient flow of the area functional in a generic sense the flow should
converge to only stable minimal surfaces. Indeed, in the toy case of simple closed
curves in S2 the flow of any slight upwards perturbation of a great circle will go
extinct in a round point. With this in mind we showed the following:

Theorem 2. Let M2 be a 2-sided properly embedded surface of a closed compact
Riemannian 3-manifold (N3, g). Then there exists a piecewise almost regular flow
emanating from it which either goes extinct in finite time, or there exist ti → ∞,
such that Mti converges possibly with multiplicity to a (potentially disconnected)
stable minimal surface.
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In the above the number of jumps one potentially takes is finite and can be
arranged as small as one wishes, so the flow is generic in the sense of Colding and
Minicozzi [6]. From a geometric perspective it would be preferable if one need only
to perturb the initial data and one can show this is the case if the multiplicities
mi for the unstable Σi were equal to one. In analogy to the multiplicity one
conjecture (replacing the MCF with RMCF and minimal surfaces with shrinkers,
which are all unstable minimal surfaces in the Gaussian metric) one may guess
this is the case but there are examples of flows which converge to stable minimal
surfaces with high multiplicity constructed in [2]. Still, the result above provides
a way to obtain stable minimal surfaces with the flow more or less and this can
conceivably be useful because stable minimal surfaces often enjoy special geometric
and topological properties, such as in PSC ambient manifolds N .

With some topological assumptions on M and N one can rule out a piecewise al-
most regular flow ofM from going extinct, so using the result above we continue on
to give some existence results which as in the application above are mainly novel
from the perspective that the flow is used to construct them. On the flip side
the flow method is roughly speaking quite explicit in comparison to compactness
methods; consider that Brakke’s surface evolver is used to create many of the pic-
tures of minimal surfaces one may find online. We highlight here two applications
from [12] here, the first can be compared to the classical results [13, 11]:

Corollary 2. Suppose π2(N) is nontrivial. Then N contains an embedded stable
minimal sphere or projective plane.

We point out that in the proof of this we invoke the 3D sphere theorem (of
topology) to give embedded initial data to flow: a deficiency of the mean curvature
flow compared to [11] in this context is that we cannot start with merely immersed
spheres and later on find a minimal embedded one. We also point out that the
result uses the approximating surgery flows discussed above to rule out the case
the flow involved in the proof does not go extinct. The next result, on the existence
of higher genus stable minimal surfaces, can be compared to [8]:

Corollary 3. Suppose ι : Σ → N is an orientable properly embedded surface of
N of genus g ≥ 1 for which ι∗π1(Σ) → π1(N) is injective, and that N has trivial
second homotopy group. Then either M = ι(Σ) is homotopic to an orientable
stable minimal surface or a double cover of a stable minimally embedded connect
sum of g + 1 projective planes, where g is the genus of Σ.

The condition here that π2(N) is trivial is of course implied by N being as-
pherical; its easy to see considering universal covers that hyperbolic 3-manifolds
are aspherical and these are generic in a sense by [10] – its use is to rule out the
case that the flow of Σ converges to a stable minimal sphere with multiplicity and
to deal with spherical components pinching off along the flow. Again the approx-
imating generic flows and subsequent surgery flows to Σt are useful, in this case
for instance showing that if the topology of Σt drops or splits into two nontrivial
pieces then Σ was not incompressible to begin with.



510 Oberwolfach Report 11/2025

References

[1] Richard Bamler and Bruce Kleiner. On the multiplicity one conjecture for mean curvature
flows of surfaces. Preprint, arXiv:2312.02106, 2023.

[2] Jingwen Chen and Ao Sun. Mean curvature flow with multiplicity 2 convergence in closed
manifolds. Preprint, arXiv:2402.04521.

[3] Otis Chodosh, Kyeongsu Choi, Christos Mantoulidis, and Felix Schulze. Mean curvature
flow with generic initial data. Invent. Math., 237(1):121–220, 2024.

[4] Otis Chodosh, Kyeongsu Choi, and Felix Schulze. Mean curvature flow with generic initial
data ii. arXiv preprint arXiv:2302.08409, 2023.

[5] Kyeongsu Choi, Robert Haslhofer, and Or Hershkovits. Ancient low-entropy flows, mean-
convex neighborhoods, and uniqueness. Acta Math., 228(2):217–301, 2022.

[6] Tobias Colding and William Minicozzi.Generic mean curvature flow i; generic singularities.
Ann. of Math, pages 755–833, 2012.

[7] Joshua Daniels-Holgate. Approximation of mean curvature flow with generic singularities
by smooth flows with surgery. Adv. Math., 410:Paper No. 108715, 42, 2022.

[8] Michael Freedman, Joel Hass, and Peter Scott. Least area incompressible surfaces in 3-
manifolds. Invent. Math., 71(3):609–642, 1983.

[9] Tom Ilmanen. Singularities of mean curvature flow of surfaces. preprint, 1995.
[10] Joseph Maher. Random Heegaard splittings. J. Topol., 3(4):997–1025, 2010.
[11] William Meeks and S.T. Yau. Topology of three-dimensional manifolds and the embedding

problems in minimal surface theory. Ann. of Math. (2), 112(3):441–484, 1980.
[12] Alexander Mramor and Ao Sun, On the long-time limit of the mean curvature flow in closed

manifolds. Preprint, arXiv:2412.03475.
[13] Jonathan Sacks and Karen Uhlenbeck. The existence of minimal immersions of 2-spheres.

Ann. of Math. (2), 113(1):1–24, 1981.
[14] Ao Sun and Jinxin Xue. Initial Perturbation of the Mean Curvature Flow for Asymptotical

Conical Limit Shrinker. To appear in Science China Math.
[15] Ao Sun and Jinxin Xue. Initial Perturbation of the Mean Curvature Flow for closed limit

shrinker. Preprint, arXiv: 2104.03101

Flows by curvature and nonlinear potentials. Monotonicity formulas

and functional inequalities.

Alessandra Pluda

(joint work with Luca Benatti, Marco Pozzetta)

Let (M, g) be a complete, noncompact Riemannian manifold without boundary of
dimension n ≥ 3 with nonnegative Ricci curvature Ric ≥ 0. For p ∈ [1, 2], given
Ω ⊆ M closed and bounded we define wp as the solution to

(1)











∆pwp = |∇wp|p on M \ Ω,
wp = 0 on ∂Ω,

wp → +∞ as d(x,Ω) → +∞,

where ∆pf = div(|∇f |p−2∇f). We denote Ωp
t = {wp ≤ t}, possibly omitting p.

If p = 1, w1 is a solution to the weak inverse mean curvature flow (IMCF) given
by the equation H = |∇w1| and for p > 1 the function up = exp(−wp/(p− 1)) is
p-harmonic. For every p ∈ [1, 2] there exists a unique solution wp to (1) and, as p
approaches 1+, wp → w1 locally uniformly.
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The literature contains numerous instances of monotonicity formulas related to
solutions to (1), starting from the ones in the seemingly distinct frameworks of
IMCF and linear potential theory by Huisken-Ilmanen and Colding-Minicozzi [6,
7, 9]. More often than not, such monotonicity formulas are used to prove geometric
inequalities [1, 2, 13].

In [5], we propose a comprehensive description of monotone geometric quanti-
ties along the weak inverse mean or the level sets flows of (1). Our result includes
the monotonicity of the Hawking mass and its nonlinear potential theoretic coun-
terparts in 3-manifolds with nonnegative scalar curvature. We show rigorously
that Geroch’s monotonicity along the Inverse Mean Curvature Flow is the limit
case of corresponding ones along the level sets of p-capacitary potentials. We also
recover Willmore and Minkowski-type inequalities on Riemannian manifolds with
nonnegative Ricci curvature.

Our unified perspective is based on a new “geometric” regularity result: we
prove that almost every level set ∂Ωp

t is a curvature varifold. Thus, the known
regularity of the level sets of the weak inverse mean curvature flow is shared with
the solutions wp for every p ∈ [1, 2] and it is not a peculiarity of IMCF due to its
geometric nature. Note that almost every level set ∂Ωp

t was known to be regular
around Hn−1-almost every point, but in general, there is no control on the critical
set {|∇wp| = 0}, that may have positive Hn-measure. This basic regularity alone
is not enough to globally define the notions of second fundamental form or mean
curvature of the level sets and to infer their topological properties (specifically
the Gauss-Bonnet theorem and the Euler characteristic). We can finally give a
(weak) geometric meaning to the mean curvature and the second fundamental
form of almost every ∂Ωp

t . Consequently, we present a weak version of the Gauss-
Bonnet theorem: let (M, g) be a complete, noncompact, 3-dimensional Riemannian
manifold, let p ∈ (1, 2), and wp be the solution to (1). Then, for almost every
t ∈ [0,+∞) it holds

ˆ

∂Ωpt

R⊤ dHn−1 ∈ 8πZ.

In a sense, in [5] we have shown that equation (1) for p > 1 is a more analytical
counterpart to the weak inverse mean curvature flow both at the level of the
convergence of solutions and of their gradients: ∂Ωp

t converges (up to subsequence)
to ∂Ω1

t as curvature varifolds for almost every t > 0 and ∇wp → ∇w1 in Lq
loc.

A clear example illustrating that the case p > 1 is the mirror image of the more
degenerate, yet geometrically rich, case p = 1 also at the level of monotonicity
formulas and their consequences is is the proof of the Ricci-pinching conjecture.

A Riemannian manifold (M, g) is said to be Ricci-pinched if Ric ≥ 0 and there
exists a constant ε > 0 such that Ric ≥ εRg, where Ric and R are the Ricci
and scalar curvature of (M, g), respectively. Hamilton conjectured that a com-
plete, connected, Ricci-pinched Riemannian 3-manifold is flat or compact. This
conjecture has been proven to be a theorem through the use of Ricci flow by
Lott [12], Deruelle-Schulze-Simon [8] (with certain curvature hypotheses), and by
Lee-Topping [11] (in full generality).
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If we additionally suppose that M has superquadratic volume growth, the result
can be shown with a simple proof based on the monotonicity of the Willmore
functional along the inverse mean curvature flow [10]. For simplicity, we stick
with the more restrictive case of (M, g) with strictly positive asymptotic volume
ratio

AVR(g) =
3

4π
lim

r→+∞
|Br(p)|

r3
> 0, with p ∈ M.

Note that this condition is independent of the point p ∈ M .
Let M be noncompact and suppose by contradiction that M is not flat. Then

there must exist a point o ∈ M with R(o) > 0 and a radius r ≪ 1 such that ∂Br(o)
is a smooth surface with

F1(Br(o)) =

ˆ

∂Br(o)

H2 dσ < 16π.

Let w1 be the weak inverse mean curvature flow starting from Ω = Br(o). Com-
bining Gauss equation with Gauss-Bonnet theorem one gets

2

ˆ

∂Ωt

Ric(ν, ν) dσ ≥ ε

(

16π −
ˆ

∂Ωt

H2 dσ

)

if genus(∂Ωt) = 0,

2

ˆ

∂Ωt

Ric(ν, ν) + |̊h|2 dσ ≥
ˆ

∂Ωt

H2 dσ if genus(∂Ωt) ≥ 1.

Then

F1
′(Ωt) ≤ −2

ˆ

∂Ωt

|̊h|2 +Ric(ν, ν) dσ ≤ max{ε (F1(Ωt)− 16π) ,−F1(Ωt)},

thus F1(Ωt) tends to zero as t → +∞, contradicting the Willmore inequality
ˆ

∂Ω

H2 dσ ≥ 4AVR(g)|S|2 for every Ω ⊂ M.

It is possible to prove the Ricci-pinching theorem along the level set flow of (1)
for every p ∈ [1, 2]. However, one must replace the Willmore functional with a
suitable quantity [3, 4]. Such a quantity Fp must be monotone along (1) and
coincide with F1 in the limit case p → 1+. To find it, one considers as a model
case M = R3, Ω = Br(o). Call wp and w1 the solutions to (1) for p > 1 and p = 1

respectively. Then, it holds wp = 3−p
2 w1. Hence |∇wp| =

(

3−p
2

)

|∇w1| =
(

3−p
2

)

H,

and we can interpret the term
(

H
2 − |∇wp|

3−p

)2

as a sort of deficit from the inverse

mean curvature flow in the model case.
It turns out that

Fp(Σ) =

ˆ

Σ

H2 − 4

(

H

2
− |∇wp|

3− p

)2

dσ.

is a good replacement for F1. In [3, 4] the contraction argument is slightly more
tricky and uses the p-iso-capacitary inequality. Worth noticing that, as in [10],
also in [3, 4] some topological arguments must enter into play, we cannot expect a
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purely analytical proof. Our weak version of the Gauss-Bonnet theorem presented
above turned out to be crucial.
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Deriving Perelman’s Entropy from Colding’s Monotonic Volume

Mart́ın Reiris

(joint work with Javier Peraza)

Monotonic quantities play a fundamental role in elliptic and parabolic PDEs, par-
ticularly in the study of singularities, regularity of solutions, and asymptotics [5].
For instance, Huisken’s monotonicity formula for the mean curvature flow [4] and
Struwe’s monotonicity formula for harmonic map heat flows [8] (see also Hamilton’s
generalization of both formulas to general manifolds [7]), are well-known examples
of monotonic quantities for parabolic equations, which have been widely applied
in geometric analysis. For the ‘elliptic counterparts’ of these parabolic cases, the
minimal surface equation and the harmonic map equation, there are analogous,
though distinct, quantities, such as Allard’s monotonicity for minimal surfaces [11]
and the well known monotonicity for harmonic maps [20], respectively. Additional
examples include Hamilton’s monotonic formula for the Yang-Mills heat flow [7]
and Price’s monotonic formula for the elliptic Yang-Mills equation [6], as well as
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Almgren’s frequency for harmonic functions [17] and Poon’s parabolic frequency
for the heat equation [18] (see also the recent generalization of the parabolic fre-
quency to manifolds by Colding and Minicozzi [19]).

Parabolic monotonic formulas are often intriguing and challenging to derive
and typically rely on a peculiar use of backward solutions to heat-type equations,
whereas elliptic quantities do not. Despite appearing unrelated, Davey [2] (see also
[1]) demonstrated that, at least in a handful of examples that include some of the
ones mentioned earlier, the parabolic monotonicity can be derived from a subtle
use of elliptic ones. This is achieved by applying elliptic monotonicity to associated
equations on suitably constructed N -dimensional spaces, and taking the limit as
N → ∞. These equations, which are equivalent to the parabolic equation (they
hold if and only if the parabolic does) are formally identical to the elliptic one up
to terms that vanish as N → ∞. Put differently, the parabolic equation can be
viewed as the elliptic one in an N -space plus negligible additional terms, allowing
the monotonic parabolic formula to be derived as a limit of an elliptic one (see the
related discussions by Tao [9] and Šverák [10]).

For the Ricci-flat equation,

(1) Ric = 0,

the best known monotonic quantity is the Bishop-Gromov relative volume, widely
applied across a variety of contexts in differential geometry. Another example,
which will be central to this article, was introduced by Colding in [12]. This new
quantity, which we will refer to as ‘monotonic volume’, is defined along the level
sets of positive Green functions and was used, for instance, to study asymptotic
cones on Ricci flat non-parabolic manifolds [12, 13]. Generalizations of Colding’s
monotonic volume were later given by Colding and Minicozzi in [16] and applica-
tions to General Relativity were explored by Agostiniani, Mazzieri and Oronzio in
[14].

For the Ricci flow equation,

(2) ∂tg = −2Ric,

the ‘parabolic counterpart’ of the Ricci flat equation, Perelman [3] introduced two
fundamental monotonic quantities: the reduced volume and the entropy. Ad-
ditionally, he demonstrated that the reduced volume can be derived from the
Bishop-Gromov relative volume on a carefully constructed N -space that becomes
Ricci-flat as the dimension N goes to infinity. However, no analogous justification
on the origin of the entropy was provided.

In this talk, we demonstrate that Perelman’s entropy arises as the limit as
N → ∞ of Colding’s monotonic volume when appropriately applied to Perelman’s
N -space. This proves that, as in the previously discussed parabolic examples,
both the reduced volume and the entropy can be understood as originating from
a unified framework using monotonic formulas from the ‘counterpart’ Ricci flat
equation.
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The Conformally Constrained Willmore Flow and Figure-8 Curves

Fabian Rupp

(joint work with Anna Dall’Acqua, Marius Müller, Manuel Schlierf)

The Willmore functional is a conformally invariant energy that measures the total
bending of an immersed closed surface f : Σ → R3 by

W(f) =
1

4

ˆ

Σ

|H |2dµ,

https://www-users.cse.umn.edu/~sverak/course-notes.pdf
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where H is the mean curvature vector and µ is the area measure of the induced
metric f∗gR3 . We are interested in minimizing W in a dynamic way among tori
with prescribed conformal class which we identify with some complex number
ω = x + iy ∈ C with 0 ≤ x ≤ 1

2 , y > 0, and |ω| ≥ 1, see [3] and [5] for the static
case. This constraint is analytically inconvenient to handle since the Teichmüller
projection degenerates at isothermic immersions, such as CMC surfaces and sur-
faces of revolution. Formally, the constrained gradient flow equation takes the
form

∂tf = −(∆H + |A0|2H − 〈q, A0〉),(1)

where A0 is the trace free part of the second fundamental form and q is a trans-
verse traceless symmetric 2-covariant tensor, however this equation is difficult to
implement directly due to the degeneracy of the Teichmüller projection.

For rotationally symmetric tori fγ : T
2 → R3, we can fully describe the flow

as a weighted gradient flow of the profile curves γ : S1 → (H2, gH2) in hyperbolic
geometry. Indeed, the Willmore energy and the conformal class of fγ can be
expressed in terms of the profile curves. We have

W(fγ) =
π

2
E(γ), ω = i ·max

{L(γ)
2π

,
2π

L(γ)
}

,

where E ,L denote the (hyperbolic) elastic energy and length, given by

E(γ) =
ˆ

γ

|κ|2ds, L(γ) =
ˆ

γ

ds,

with κ the curvature vector and ds the arc-length element of γ : S1 → (H2, gH2).
Viewing H2 = R × (0,∞), (1) may be equivalently expressed in terms of the
evolving profile curves by

∂tγ = − 1

4γ4
2

(

2∇2
sκ+ |κ|2κ− 2κ− λ(γ)κ

)

,(2)

where ∇s is the connection in the normal bundle along γ and λ(γ) is a suitable
critical Lagrange multiplier which is chosen such that ∂tL(γ) = 0 along a solution.
This can be seen as the constrained gradient flow of E fixing L with respect to a
metric that degenerates near the axis of rotation.

Our main result yields that singularities can only form if the total hyperbolic
curvature of the profile curve vanishes and provides a criterion to exclude this,
ensuring global existence and full convergence without the usual 8π-energy bound.

Theorem 1 ([2]). Let f0 : T
2 → R3 be a rotationally symmetric torus. Then

there exists a maximal solution f : [0, T )×T2 → R3 to the conformally constrained
Willmore flow (1) such that at least one of the following is true.

(i) There exists tj ր T along which the hyperbolic total curvature of the profile
curves converges to zero.

(ii) We have T = ∞ and, after conformal reparametrization, the flow smoothly
converges to a conformally constrained Willmore torus.
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Moreover, if W(f0) ≤ 8π or if the initial profile curve has hyperbolic length L and
turning number m ∈ Z such that L < 2π|m|, then case (ii) occurs.

We use our flow to find new examples of conformally constrained Willmore tori
with energy exceeding 8π. Case (i) in the theorem does not necessarily imply the
formation of a singularity. Indeed, there exist stationary solutions γ∗, the so-called
figure-8-elastica, which have vanishing hyperbolic total curvature. In fact, we even
conjecture the conformally constrained Willmore flow of tori of revolution cannot
develop any singularities, neither in finite or in infinite time, regardless of the
behavior of the hyperbolic total curvature.

The figure-8-elastica γ∗ also plays an important role in the classical (uncon-
strained) Willmore flow

∂⊥
t f = −(∆H + |A0|2H),(3)

along which it necessarily forms a singularity. As in the singular example for
spheres, it is not known if this occurs in finite or infinite time, although there is
some numerical evidence [1] for the latter. Assuming this and non-degenerating
area, we can show that the singular limit is a drop-shaped non-smooth torus of
revolution, the inverted catenoid. We construct a parametrization of this surface
as a C1,α-graph over a sphere and use a local well-posedness result in this low
regularity regime [4] to flow it to a round sphere.

Theorem 2 ([2]). There exists a parametrization f0 of an inverted catenoid with
f0 ∈ C1,α(S2,R3) for all α ∈ (0, 1) and a family of immersions f ∈ C∞((0,∞) ×
S2,R3) with

‖f(t)− f0‖C1,α(S2) → 0 for t ց 0, and

W(f(t)) < 8π for t > 0, W(f(t)) ր 8π for t ց 0,

satisfying (3) such that f(t) smoothly converges to a round sphere for t → ∞ up
to reparametrization.

Our result suggests that the singular flow of γ∗, if it exists globally and has
non-degenerating area, may be extended past its singularity in a way that changes
topology and does not cause jumps in the energy. We believe that this provides an
essential example to keep in mind for further investigations of singularities of the
Willmore flow, particularly in the context of developing surgery theory or concepts
of weak solutions.
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On the Structure of Singularities of Mean Curvature Flows with Mean

Curvature Bounds

Maxwell Stolarski

A family of hypersurfaces {Mn
t ⊂ Rn+1}t∈[0,T ) evolving by mean curvature flow

generally encounters singularities in finite time. At such singularities, the second
fundamental form of the hypersurface always blows up [3], but its trace, the mean
curvature, can remain bounded [7]. After reviewing examples of this pathological
singularity formation [1, 7, 9], we demonstrate how to incorporate the theory of
varifolds with bounded mean curvature to study the general structure of singular-
ities of mean curvature flows with uniform mean curvature bounds [8].

In particular, we can combine the compactness theorems and monotonicity
formulas for integer rectifiable n-varifolds with bounded first variation together
with the compactness theorems and monotonicity formula for mean curvature
flows [4] to study mean curvature flows with uniform mean curvature bounds. This
implies the existence and uniqueness of a final time slice of the flow, in a weak
sense. Spatial blow-ups of the final time-slice yield tangent cones. Analogously,
spacetime blow-ups of the flow yield tangent flows, which, for flows with bounded
mean curvature, are necessarily static flows of stationary cones. In fact, the tangent
cones occuring as spatial blow-ups of the final time-slice exactly correspond to the
cones arising as tangent flows. Consequently, the tangent flow is unique if and
only if the tangent cone of the final time-slice is unique.

Uniqueness of tangent flows is generally an open problem with major implica-
tions for the regularity of the flow. For mean curvature flows with bounded mean
curvature, we show that if the tangent flow based at a point (x0, T ) in the final
time-slice is given by the static flow of a multiplicity one stationary cone C such
that C \ {0} is smooth, then the tangent flow is unique. Here, uniqueness of the
tangent flow at (x0, T ) reduces to the uniqueness of the tangent cone at x0 in the
final time-slice. We show graphicality (over C) of a time-slice propagates outward
in space and backward in time. This propagation of graphicality combined with
interior regularity of the flow implies that time-slices satisfy an additional interior
regularity condition. With that, one can then apply Simon’s uniqueness result for
tangent cones of integer n-rectifiable varifolds with bounded first variation [6] to
prove this uniqueness of tangent flows result.

Because the compactness theorems and monotonicity formulas generalize to
varifolds and Brakke flows, all the results above generalize to Brakke flows of
arbitrary co-dimension with integral mean curvature bounds in an open subset
of Euclidean space. When the flow is smooth, if additionally the tangent flow is
given by the Simons cone in dimensions n ≥ 7, then we characterize the smooth
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minimal surfaces that pinch off at smaller scales around a singularity. These are
precisely given by the minimal surfaces constructed in [2] which are asymptotic to
the Simons cone.

The work discussed here prompts several questions and directions for future
research. Recall that for mean curvature flows with uniformly bounded mean
curvature, uniqueness of tangent flows at (x0, T ) is equivalent to uniqueness of
tangent cones of the t = T time-slice at x0. These time-slices are generally integer
n-rectifiable varifolds with bounded first variation. While there are many unique-
ness results for tangent cones of stationary integer n-rectifiable varifolds, there
very few such uniqueness results for tangent cones of integer n-rectifiable varifolds
with bounded first variation. Potential future work generalizing the uniqueness
results for stationary varifolds to varifolds with bounded first variation, perhaps
under some additional assumptions, would immediately imply uniqueness of tan-
gent flows for mean curvature flows with bounded mean curvature.

Furthermore, the examples of finite-time mean curvature flow singularities with
bounded mean curvature [7] are only known to exist dimensions n ≥ 7. [5] proved
that the mean curvature must blow-up at a finite-time singularity when n = 2.
However, it is unknown whether the mean curvature must blow-up at a finite-
time singularity when 2 < n < 7. [5] relies on the Gauss-Bonnet formula, and so
does not generalize to higher dimensions n > 2. On the other hand, [7] and the
foundational work [9] use stability of the Simons cone in dimensions n ≥ 7, and
so does not generalize to dimensions n < 7. It therefore remains an open question
whether the mean curvature always blows up at a finite-time mean curvature flow
singularity in dimensions 3 < n < 7.
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Quartically Pinched Submanifolds for the Mean Curvature Flow in

the Sphere

Artemis Aikaterini Vogiatzi

Mean curvature flow is a geometric evolution equation that describes how a sub-
manifold embedded in a higher-dimensional space evolves over time by deforming
in the direction of its mean curvature vector. In this work, we introduce a new
sharp curvature pinching condition for the mean curvature flow in the sphere, that
is of fourth order in the second fundamental form. More precisely, we consider

|A|2 ≤
√

( |H |2
n− 2

+ 4K

)2

+ (4n− 16)K2,

where K is the constant sectional curvature of Sn+m, n ≥ 8 is the dimension
of the submanifold Mn and m ≥ 1 is the codimension. Of course, this quartic
pinching condition is preserved by the flow. Using a blow up argument, we prove a
codimension and a cylindrical estimate, where in regions of high curvature, the sub-
manifold becomes approximately codimension one, quantitatively, and is weakly
convex and moves by translation or is a self shrinker. With a decay estimate, the
rescaling converges smoothly to a totally geodesic limit in infinite time, without
using Stampacchia iteration or integral analysis.

While the quadratic pinching condition plays a fundamental role in controlling
the singularity formation, we show that a more refined quartic pinching condi-
tion provides significantly stronger control over the geometry of the flow in the
sphere. The quartic pinching condition improves upon the quadratic one in sev-
eral ways. First, it incorporates the ambient curvature K, allowing for a more
precise treatment of mean curvature flow in spaces of nonzero sectional curvature.
This is particularly important in extending results beyond Euclidean space and
understanding the behavior of submanifolds in more general ambient geometries.
Secondly, this condition is sharp, for n ≥ 8 in a topological sense. By considering
the submanifold M = S2(r)× Sn−2(s) ⊂ Sn+1(1), with r2 + s2 = 1, we have

|A|4 −
( |H |2
n− 2

+ 4

)2

− (4n− 16) =
4((n− 2)2 − 1)

(n− 2)2
· s

4

r4
≥ 0,

for any n ≥ 3. Also, it satisfies

−|A|2 +
√

( |H |2
n− 2

+ 4K

)2

+ 4(n− 4)K2 > −|A|2 + |H |2
n− 2

+ 4K,

meaning that it improves the quadratic pinching condition in the sphere. This
quartic pinching condition also satisfies

|H |2
n− 2

+ 4K <

√

( |H |2
n− 2

+ 4K

)2

+ 4(n− 4)K2 <
|H |2
n− 2

+ 2
√
nK,

where the upper bound of the quartic pinching is not preserved by the flow, but
it simplifies our calculations down to second order.
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This result improves rigidity of singularity models and leads to sharper classifi-
cation results for possible singularity formations. This leads to stronger regularity
results and enables us to obtain refined long-time convergence theorems for the
mean curvature flow in the sphere. Overall, the introduction of the quartic pinch-
ing condition provides a substantial refinement of our analysis, leading to stronger
curvature control, a more precise classification of singularity models, and improved
long-time behaviour results for the flow.

Our approach fundamentally relies on the preservation of a curvature pinching
condition along the flow and pointwise gradient estimates that provides precise
control over the mean curvature in regions of high curvature. Specifically, the
pointwise gradient estimates for the mean curvature flow stem directly from a
quartic curvature bound, which in turn plays a key role in our analysis. The sig-
nificance of these gradient estimates lies in their ability to provide control over
the mean curvature and consequently the entire second fundamental form within
a fixed-size neighbourhood. Unlike general parabolic-type derivative estimates,
which depend on global curvature maxima, our estimates rely solely on pointwise
mean curvature. This distinction is critical, as it allows us to maintain curvature
control throughout the blow-up process leading to singularities. Using these gradi-
ent estimates, we obtain a codimension estimate that establishes that in regions of
high curvature, under a quadratic pinching assumption, singularity models must
always be codimension one, regardless of the original codimension of the evolving
submanifold. This insight leads to the conclusion that at a singular time, there
exists a rescaling of the flow that converges to a smooth codimension one lim-
iting flow in Euclidean space. Additionally, we establish a cylindrical estimate
that provides a refinement of the curvature pinching as the flow approaches a
singularity. These estimates demonstrate that under a cylindrical-type pinching
assumption, the limiting flow must be weakly convex and evolves by either trans-
lation or is self-shrinking. Our classification results show that singularity models
for this pinched flow can be described, up to homothety, as either shrinking round
spheres, shrinking round cylinders, or translating bowl solitons.

Lastly, due to the spherical background space, with a decay estimate, the rescal-
ing converges smoothly to a totally geodesic limit in infinite time. This result is
obtained without the use of Stampacchia iteration or integral analysis, as it was
vastly used in papers so far. Similar work has been done using the quadratic bound
in CPn, in [14].
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σk-Yamabe problem and optimal Sobolev inequalities

Guofang Wang

(joint work with Yuxin Ge, Wei Wei)

In this talk we are interested in two objects, the σk-Yamabe problem and various
optimal Sobolev inqualities on Sn.

1. σk-Yamabe problem, revisited

Let (M, g0) be a compact Riemannian manifold with metric g0 and [g0] the con-
formal class of g0. Let Sg be the Schouten tensor of the metric g defined by

Sg =
1

n− 2

(

Ricg −
Rg

2(n− 1)
· g
)

.

Here Ricg and Rg are the Ricci tensor and scalar curvature of g respectively. The
importance of the Schouten tensor in conformal geometry can be viewed in the
following decomposition of the Riemann curvature tensor

Riemg = Wg + Sg ∧ g,

where ∧ is the Kulkani-Nomizu product. Note that g−1 ·Wg is invariant in a given
conformal class.

Define σk(g) be the σk-scalar curvature or k-scalar curvature by

σk(g) := σk(g
−1 · Sg),

where g−1 · Sg is locally defined by (g−1 · Sg)
i
j =

∑

k g
ik(Sg)kj and σk is the

kth elementary symmetric function. Here for an n × n symmetric matrix A we
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define σk(A) = σk(Λ), where Λ = (λ1, · · · , λn) is the set of eigenvalues of A. It
is clear that σ1(g) is a constant multiple of the scalar curvature Rg. The k-scalar
curvature σk(g), which was first studied by Viaclovsky, is a natural generalization
of the scalar curvature.

We are interested in finding “good” metrics in a conformal class. A constant
σk-curvature metric is such a good one. When k = 1, the problem becomes to find
metrics with constant scalar. This is the well-known Yamabe problem and solved
finally by Schoen. When k ≥ 2, the “standard” σk-Yamabe problem asks, if there
is a conformal metric g in a class Ck([g0]) such that

(1) σk(g) = const.,

if

(2) Ck([g0]) 6= ∅.
Here Ck([g0]) = Γ+

k ∩ [g0] and

(3) Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ R

n |σj(Λ) > 0, ∀j ≤ k}
are Garding’s cones. Since for k ≥ 2, (1) is fully nonlinear equation, one needs to
require (2) to guarantee the ellipticity of (1). The problem was solved either (i)
when k = 2 or when (M, g0) is locally conformally flat, or (ii) k ≥ n/2.

Here we are interested in

Problem. Find a solution of (1), i.e. σk(g) = c, in the following larger cone

(4) Ck−1([g0]) 6= ∅.
The problem was asked by Jeffrey Case to us. We gave an affirmative answer

to this question.

2. Optimal Sobolev inequalities

The Sobolev inequality on Rn, n ≥ 3

(5)

ˆ

Rn

|∇u|2dx ≥ c(n)

{
ˆ

Rn

|u| 2n
n−2

}
n−2
n

plays an important role in analysis and differential geometry. Here c(n) or c(k, n)
and c(s, n) is optimal constant, depending only on n or/and k or s, such that
the inequality holds with that constant on the right side. There are higher order
generalizations of the Sobolev inequality

(6)

ˆ

Rn

|(−∆)s/2u|2 ≥ c(s, n)

{
ˆ

Rn

|u| 2n
n−2s

}

n−2s
2

,

for 0 < s < n/2. Here (−∆)s/2 is the fractional Laplacian. When s = k for some
natural number k, it is clear that

ˆ

Rn

|(−∆)s/2u|2 =

ˆ

Rn

|∇ku|2.
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Hence (6) in this case is the k-th order Sobolev inequality. Recall the GJMS
operator on Sn, defined by

(7) L2k := Πk
j=1

(

−∆+
(n− 2j)(n+ 2j − 2)

4

)

.

Therefore, in this case,i.e., s = k, inequality (6) is equivalent to

(8) E2k(u) :=
ˆ

Sn

uL2ku ≥ Γ(n/2 + k)

Γ(n/2− k)
ω

2k
n
n

(
ˆ

Sn

|u| 2n
n−2k

)

n−2k
n

,

with equality if and only if

(9) u(ξ) = a(1 + b · ξ)−n−2k
2 , for a ∈ R, b ∈ B

n+1.

If u is positive and let g = u
4

n−2k gSn , then E2k(g) := E2ku is the so-called total
k-th Q curvature, while the right hand side is a suitable power of the volume of g.
Hence (8) is an isoperimetric type inequality:

The total k-th Q curvature achieves its minimum at the round sphere metric
gSn among conformal metrics g with a volume constraint, i.e., vol(g) = vol(gSn).

It is therefore natural to ask

Is there an isoperimetric inequality between the total k-th Q curvature and the
total l-th Q curvature for 0 < l < k ≤ n/2?

We propose the following conjecture

Conjecture. Let 0 < l < k < n/2. The following inequality
(10)
ˆ

Sn

uL2ku ≥ Γ(n/2 + k)

Γ(n/2− k)

(

Γ(n/2 + l)

Γ(n/2− l)

)−n−2k
n−2l

ω
2(k−l)
n−2l

n

(
ˆ

Sn

u
n−2l
n−2kL2lu

n−2l
n−2k

)

n−2k
n−2l

,

holds for any smooth positive function u with a property that g = u
4

n−2k gSn has a
positive k-th Q curvature. Moreover, equality holds if and only if

(11) u(ξ) = a(1 + b · ξ)−n−2k
2 , for a ∈ R, b ∈ B

n+1.

We prove that the Conjecture is true for k = 2 and l = 1 under a weaker
condition.

Theorem. Let n ≥ 5. For any smooth positive function u with a property that

g = u
4

n−4 gSn has a positive scalar curvature, i.e., L2u
n−2
n−4 > 0, it holds

(12)

ˆ

Sn

uL4u ≥ (
n

2
− 2)(

n

2
+ 1){(n

2
)(
n

2
− 1)} 2

n−2ω
2

n−2
n

(
ˆ

Sn

u
n−2
n−4L2u

n−2
n−4

)
n−4
n−2

,

with equality if and only if

(13) u(ξ) = a(1 + b · ξ)−n−4
2 , for a ∈ R, b ∈ B

n+1.
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The proof follows from our previous results with collaborators, [3, 4, 1, 2].
The result leads to the study of the following new Yamabe problem: finding a

conformal metric with a constant quotient of two different total Q curvatures. For
example

Q2(g)

Q1(g)
= const.,

where Q1(g) = Rg the scalar curvature. We proved an Obata type theorem for
this problem. The existence will be carried out in our joint program.
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Area preserving null mean curvature flow along asymptotically

Schwarzschildean lightcones

Markus Wolff

(joint work with Klaus Kröncke)

A version of mean curvature flow along a null hypersurface N was first studied by
Roesch–Scheuer [5], and defined there as the projection of the codimension-2 flow
(tangentially) onto N . Recall that a null hypersurface N in an ambient spacetime
(M, g) is an oriented hypersurface with a degenerate induced metric. In particular,
there exists a null generator L ∈ Γ(TN ) such that L is orthogonal to all tangent
directions on N (including itself). Hence, L is orthogonal to any spacelike cross
section Σ ⊆ N , i.e., a spacelike submanifold Σ such that all integral curves of L
intersect Σ precisely once. In particular, for a fixed choice of L and spacelike cross
section S0, any spacelike cross section Σ can be written as a graph of a function
ω over S0.

In addition, L gives rise to a null frame {L,L} of the normal bundle Γ(T⊥Σ) of
Σ, where L ∈ Γ(T⊥Σ) is the unique null vector field such that g(L,L) = 2. With

respect to this null frame, the vector-valued mean second fundamental form ~II and

codimension-2 mean curvature vector ~H of Σ in the ambient spacetime decompose
as

~II = −1

2
χL− 1

2
χL,

~H = −1

2
θL − 1

2
θL,
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where χ, χ, and θ, θ denote the null second fundamental forms and null expansions

with respect to {L,L}, respectively. The spacetime mean curvature H2 of Σ is

defined as the Lorentzian length of ~H, cf. [1], i.e.,

H2 := g( ~H, ~H) = θθ.

Finally, we note that θ extends to a well-defined, smooth function along a null
hypersurface, i.e., θ ∈ C∞(N ), and so for any spacelike cross sections Σ1,Σ2 we
find that θ1(p) = θ2(p) if p ∈ Σ1 ∩ Σ2.

As in [5], a family of spacelike cross sections x : Σ× [0, T ) → N is said to evolve
under mean curvature flow along N if

d

dt
x =

1

2
g( ~H, L)L = −1

2
θL.(1)

We note that (1) is independent of the choice of L and (locally) equivalent to a
scalar parabolic equation for ω. If barriers exist and a suitable gauge condition is
satisfied, Roesch–Scheuer [5] have shown that the flow (smoothly) converges to a
marginally outer trapped surface (MOTS) with θ ≡ 0, which are the stationary
points of the flow. Note that if the null hypersurface N is a Null Cone, i.e., θ > 0
on N , we can rewrite (1) as

d

dt
x = − 1

2θ
H2L.

As θ determines the first variation of area, area preserving null mean curvature
flow is now given by

d

dt
x = − 1

2θ

(

H2 −
 

H2

)

L,(2)

which is mean curvature flow modified to preserve area. It is straightforward to
see that the stationary points of the flow are surfaces of constant spacetime mean
curvature (STCMC), cf. [1]. We have proven the following stability result:

Theorem 1 (Kröncke–W. ’24 [7]). Let N be an asymptotically Schwarzschildean
lightcone of mass m > 0. For B0

1 , B
0
2 , B

0
3 > 0 there exists positive constants

B1, B2, B3 and σ0(B1, B2, B3) such that the following holds for all σ ≥ σ0: If
Σ0 ∈ Bσ(B

0
1 , B

0
2 , B

0
3), then the solution of area preserving null mean curvature flow

starting from Σ0 remains in Bσ(B1, B2, B3), exists for all times and (smoothly)
converges (exponentially fast) to a surface of constant spacetime mean curvature.

Here, we say a null hypersurface N is asymptotically Schwarzschildean if it ad-
mits an asymptotically flat background foliation, cf. [4], that asymptotes to the
foliation by centered spheres of the standard Schwarzschild lightcone. In particu-
lar, we have θ > 0 in the asymptotic region, so (2) is well-defined. With respect
to this background foliation of N , we define the a-priori class Bσ(B1, B2, B3) of
spacelike cross sections by

Bσ(B1, B2, B3) :=

{

Σ ⊆ N : |σ − ω| ≤ B1, |
◦

A| ≤ B2

σ4
, |∇

◦

A| ≤ B3

σ5

}

,
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where
◦

A denotes the trace-free part of the scalar second fundamental form A := θχ.

We note that in the Minkowski lightcone,
◦

A ≡ 0 if and only if H2 is constant, cf.
[6]. As H2 = 2R in this case, where R denotes the scalar curvature of Σ, H2 is
constant if and only if Σ is an intrinsically round sphere. In particular, a-priori
estimates show that any Σ ∈ Bσ(B1, B2, B3) is C

2,α-close to such a round sphere.
While the C0-estimate within the a-priori class imposes a rather strong restriction
on the position of these round spheres, we note that it is trivially satisfied for
STCMC surfaces in the Schwarzschild lightcone, as ω = σ in this case, cf. [2].
This restriction is indeed crucial to establish the desired gradient estimate which
shows that the a-priori class remains preserved under the flow and that the solution
exists for all times. In addition, the a-priori estimates imply a suitably defined
stability of the surfaces and we find

d

dt

ˆ

(

H2 −
 

H2

)2

≤ −3m

σ3

ˆ

(

H2 −
 

H2

)2

,

leading to the exponential convergence.
Using a family of coordinate spheres as initial data, we show that the limiting

STCMC surfaces form a smooth foliation of N :

Theorem 2 (Kröncke–W. ’24 [7]). Let N be an asymptotically Schwarzschildean
lightcone of mass m > 0. Then there exists an asymptotic foliation of N by
surfaces of constant spacetime mean curvature. Moreover, the leaves are unique
within the a-priori class.

In analogy to the seminal work of Huisken–Yau [3] in the Riemannian setting,
we propose our result as a natural, geometric choice of background foliation near
null infinity and define a geometric notion of center of mass in the context of
general relativity.
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