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Introduction by the Organizers

The Mini-Workshop: Hardy Inequalities in Discrete and Continuum Settings
(02 March – 07 March 2025) was organized by E. Berchio (Torino), M. Keller
(Potsdam), Y. Pinchover (Haifa) and L. Roncal (Bilbao). It took place in a hy-
brid format, with a total of 14 invited researchers (including 3 who participated
online), 1 master’s student and 4 organizers, with a broad geographic and academic
age representation.

On the technical side, there were 12 onsite talks and 3 online talks broadcast via
Zoom. Onsite talks were approximately 75 minutes long, while online talks lasted
about 50 minutes, with ample time allotted for discussion in both formats. The
participants came from various mathematical backgrounds, spanning the theory
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of partial differential equations, mathematical physics, graph theory, harmonic
analysis and spectral theory. Despite their diverse expertise, they shared a common
interest: Hardy inequalities. Generally, the talks reported on recent advancements
in the field, by the researchers and their collaborators. In order to address the
different mathematical backgrounds, the participants made special effort to present
talks containing the latest results in the respective fields, in a manner accessible to
all participants. The talks were scheduled from Monday to Friday, with additional
discussion sessions held on Tuesday afternoon and Friday morning, following the
final presentations.

The topics discussed in the workshop can be summarized as follows.

• Optimal Hardy weights on manifolds and graphs. In the last decade, a new
focus came into play, which was set on optimality of the Hardy weight it-
self going back to a question posed by Agmon. Specifically, optimality
has both sharpness of the constant and non-existence of a minimizer as a
consequence. Revisiting the original discrete roots of the problem has led
to the surprising insight that, while the constant is optimal, the original
weight can be improved. In Zd, d ≥ 3, a precise form of an optimal Hardy
weight can be proven; however, the higher order terms seem to be non-
definite. Beyond p = 2, the optimality theory for graphs and general p
exists by now, but a specific inequality for Zd is still not known. Moreover,
generalizations to Riemannian manifolds have been intensively pursued
and analogous questions arise. During the workshop, these issues were
addressed. Asymptotic behaviour of the optimal constant as the dimen-
sion d → ∞ was discussed, via interesting connections between discrete
Hardy inequalities on lattices with continuous Hardy-type inequalities on
the torus. Additionally, new approaches to obtain optimal Poincaré–Hardy
inequalities on the hyperbolic spaces were presented, and generalizations
to certain classes of Riemannian manifolds were discussed, including trans-
ference methods to the discrete setting. Finally, it was shown how recent
improvements in optimality have contributed to progress on Landis’ con-
jecture for graphs.

• Fractional Laplacians. Hardy inequalities for the fractional Laplacian on
Rd have been investigated by several authors, and interest was later re-
gained with the seminal work using a non-local ground state representation
approach. Despite recent advances in more general settings, there are sev-
eral contexts in which fractional versions of the Hardy inequality are yet to
be fully understood. In particular, there is a probabilistic interpretation
of powers of the Laplacian in terms of an anomalous diffusion. From this
perspective, the powers (−∆)α in L2((0,∞)) with α ∈ N are subcritical
and there is no criticality transition in powers. It was discussed in the
workshop the surprising fact that the situation is very different in the dis-
crete setting, since it was shown that the integer powers of the discrete
Laplacian (−∆)α on ℓ2(N) are subcritical if and only if α = 1.
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• Sub-Riemannian analogues, magnetic Laplacians and Dirac operators. Be-
yond the Euclidean space, lattices, and Riemannian manifolds, the study
of Hardy and related inequalities has been extended to the framework of
sub-Riemannian geometry, particularly in the Heisenberg group. Another
vibrant branch of research concerns the study of Schrödinger-type opera-
tors in the presence of magnetic fields. Introducing non-trivial magnetic
perturbations of Hamiltonian operators induces repulsive effects in quan-
tum mechanics which have been quantified by Hardy-type inequalities.
Some of the talks in these directions addressed Hardy, Hardy–Rellich, and
Rellich identities and inequalities with sharp constants for Grushin vector
fields, quantitative Hardy-type inequalities for the magnetic Laplacian by
proving a similar inequality first for the Pauli operator.

The interaction between the different communities turned out to be very lively,
featuring broad discussions on the latest open problems in the field and an ex-
change of state-of-the-art tools. Among the topics that sparked significant ac-
tivity and exchange of knowledge were: extended Dirichlet spaces and criticality
theory for nonlinear Dirichlet forms; affirmative answers to the Landis conjecture
on R

d under a positivity assumption on the operator involved; connections of su-
perharmonic functions for Hardy-type inequalities for Sobolev-Bregman forms and
trade-offs in fractional Hardy inequalities. The mini-workshop was overall highly
productive and fostered stimulating discussions among researchers from diverse
backgrounds, which will, hopefully, lead to future scientific collaborations.
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Optimal Poincaré-Hardy Inequalities on Manifolds and Graphs . . . . . . . . 593

Rupert L. Frank (joint with Ari Laptev, Timo Weidl)
Some remarks on one-dimensional Hardy inequalities . . . . . . . . . . . . . . . . 595

Gabriele Grillo (joint with Elvise Berchio, Dario D. Monticelli, Matteo
Muratori, Fabio Punzo)
Fractional nonlinear diffusions on manifolds: well-posedness and
smoothing effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Shubham Gupta
Hardy inequalities on integer lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
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Abstracts

Hardy (in)equalities for semigroups

Krzysztof Bogdan

The purpose of the talk is to point out the connection of superharmonic functions
for Hardy-type inequalities for Sobolev-Bregman forms, or p-forms, where 1 <
p < ∞. The guiding principle is that for a Dirichlet form E on L2(X, dx) with
generator L and (nonnegative, superharmonic) function h > 0, Lh ≤ 0, we have

E(u, u) ≥
∫

X

−Lh
h

u2dx

for functions u in the domain of E , see [1]. More specifically, we consider a (sym-
metric) transition probability density

pt(x, y) = pt(y, x), x, y ∈ X, t > 0,

(nonnegative) increasing function f : [0,∞) → [0,∞), a measure µ on X , and
define

h(x) :=

∫ ∞

0

f(s)Psµ(x)ds, x ∈ X.

This function is superharmonic, in fact, excessive for the semigroup Ptu(x) :=
∫

X
pt(x, y)u(y)dy. If we denote

q(x) :=
1

h(x)

∫ ∞

0

f ′(s)Psµ(x)ds,

then, guided by the above principle, we get the Hardy inequality

E(u, u) ≥
∫

X

u(x)2q(x)dx,

We will use the function h to condition in a sense of Doob the following Sobolev-
Bregman form of the fractional Laplacian

Ep[u] :=
1

2

∫

Rd

∫

Rd

(u(y) − u(x))
(

u(y)〈p−1〉 − u(x)〈p−1〉
)

ν(x, y) dxdy,

where

ν(x, y) := 2αΓ
(

(d+ α)/2
)

π−d/2/|Γ(−α/2)||y − x|−d−α, x, y ∈ R
d,

In [4], we give a ground-state representation for Ep[u], which extends the Hardy
identities from [2] and [3, Proposition 4.1]. We then get the following optimal
Hardy inequality.

Theorem 1. Let 0 < α < d ∧ 2, 0 ≤ β ≤ d− α, and 1 < p <∞. Then,

Ep[u] ≥ κ(d−α)/p

∫

Rd

|u(x)|p
|x|α dx for all u ∈ Lp(Rd),

where

κβ :=
2αΓ

(

β+α
2

)

Γ
(

d−β
2

)

Γ
(

β
2

)

Γ
(

d−β−α
2

) .
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It is important to notice that this improves the Hardy inequality transferred
from L2, namely for p 6= 2, we have

κ(d−α)/p >
4(p− 1)

p2
2αΓ

(

d+α
4

)2

Γ
(

d−α
4

)2 .

We also give applications to contractivity of Schrödinger perturbations of the frac-
tional Laplacian. The above results are given in [4]. See also [5].
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On the Landis Conjecture

Ujjal Das

(joint work with Yehuda Pinchover)

In this workshop, I presented our partial affirmative answer to the Landis conjec-
ture. The conjecture concerns the fastest speed at which a solution of a Schrödinger
equation in RN can decay at infinity. More precisely, if a solution of the Schrödinger
equation

H[u] := (−∆ + V )[u] = 0 in R
N , ‖V ‖L∞(RN ) ≤ 1 ,

decays as fast as e−k|x| with k > 1, then Landis claimed that u ≡ 0 in RN . Under
a positivity assumption on the operator H, we provide a sharp decay criterion
that ensures when a solution of the above equation in RN is trivial. It turns out
that our decay criterion is in fact weaker than what Landis has proposed in the
conjecture.

We define that H := −∆ + V ≥ 0 in R
N if the H[ϕ] = 0 admits a positive

supersolution in RN . We assume the Schrödinger operator H ≥ 0 in RN , where
N ≥ 1, V ≤ 1, and V ∈ Lq

loc(R
N ), q > N/2. Then our precise result is as follows:

If u ∈W 1,2
loc (RN ) solves H[u] = 0 in RN satisfying

(1) |u(x)| =

{

O(1) N = 1,

O
(

x|(2−N)/2
)

N ≥ 2,
as |x| → ∞,
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(2) and lim inf
|x|→∞

|u(x)|
(

e−|x|

|x|(N−1)/2

) = 0 ,

then u ≡ 0.
Here we enlist some of the key highlights of our result.

• We only assume that the potential V is bounded from above.
• Our decay assumption on u is weaker than Landis’.
• We do not assume the exponential decay of u at infinity in RN ; it is enough

to have a sequence (xn) with |xn| → ∞ such that (u(xn)) decays faster

than e−|xn|/|xn|
N−1

2 .
• Our result is sharp i.e., there are potentials V s.t.

H[ϕ] = (−∆ + V )[ϕ] = 0 in R
N

admits a positive solution u which satisfies u(x) ≍ e−|x|/|x|N−1
2 .
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Sharp Hardy-Poincaré-Sobolev inequalities in the
Caffarelli-Kohn-Nirenberg hyperbolic space

Baptiste Devyver

(joint work with Louis Dupaigne, Pierre-Damien Thizy)

Consider the Sobolev inequality in the Eculidean space Rd with its best constant,
d ≥ 3:

(1) CSob(R
d)

(∫

Rd

|u| 2d
d−2 dx

)
d−2
d

≤
∫

Rd

|∇u|2 dx

The best constant is known and optimizers are classified: they are multiples,

dilations and translations of the celebrated Aubin-Talenti bubble
(

2
1+|x|2

)
d−2
2

.

Remembering that the hyperbolic space, seen as the unit ball in Rd endowed with

the hyperbolic metric
(

2
1−|x|2

)2

(dx21+· · ·+dx2d), is conformal to the unit ball of the

Euclidean space, and using the conformal invariance of Sobolev inequalities, the
inequality (1) can be equivalently reformulated as a Poincaré-Sobolev inequality
on the hyperbolic space Hd (with the same best constant!):
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(2) CSob(R
d)

(∫

Hd

|f | 2d
d−2 dx

)1− 2
d

≤
∫

Hd

|∇f |2 dx− d(d− 2)

4

∫

Hd

f2 dx

Since the Aubin-Talenti bubble is not compactly supported, the best constant
CSob(R

d) in inequality (2) is not achieved. On the other hand, it is well-known

that the bottom of the spectrum of −∆ on Hd is equal to (d−1)2

4 , and it is not
achieved.

A natural question arises: can one improve the constant d(d−2)
4 on the right

hand side of (2), and replace it by the bottom of the spectrum (d−1)2

4 , while keeping

the same constant CSob(R
d) on the left hand side? Equivalently, considering the

following Poincaré-Sobolev inequality with its best constant:

(3) Cd

(∫

Hd

|f | 2d
d−2 dx

)1− 2
d

≤
∫

Hd

|∇f |2 dx− (d− 1)2)

4

∫

Hd

f2 dx

then the question is: does one have Cd = CSob(R
d)? Let us mention at this

point another equivalent form of the Poincaré-Sobolev inequality (3), namely a
Hardy-Sobolev inequality in the upper-half space Rd = {(x1, · · · , xd) ; xd > 0}:

(4) Cd

(

∫

R
d
+

|f | 2d
d−2 dx

)1− 2
d

≤
∫

R
d
+

(

|∇f |2 − f2

4x2d

)

dx

The above question has been addressed in a series of paper; the answer depends
on the dimension in a delicate way:

(i) If d ≥ 4, then 0 < Cd < CSob(R
d) and there exists optimizers.

(ii) In dimension 3, C3 = CSob(R
3) and there is no optimizer.

Point (i) is due to V. Maz’ya [6] for the fact that Cd > 0, and A. Terktikas, K.
Tintarev [7] for the remaining part, while point (ii) appears independantly in the
work of R. Benguria, R. Frank, M. Loss [1] as well as G. Mancini, K. Sandeep [5].

In our work, we study a generalization of this result. Let us present the setting:
consider the Caffarelli-Kohn-Nirenberg inequality in dimension d ≥ 3; it writes:

(5) Ca,b

(∫

Rd

|f |p
|x|bp dx

)2/p

≤
∫

Rd

|∇f |2
|x|2a dx,

where a, b ∈ R are two parameters satisfying a < d−2
2 and 0 ≤ b − a ≤ 1. It

contains both the Hardy inequality and the Sobolev inequality as special cases.
This inequality can be recast as a standard Sobolev inequality on a weighted
manifold (E, gE, µE): indeed, define a space E = Rd \ {0}, a measure dµE(x) =
|x|−bp dx, a metric (gE)i,j = |x|−bp+2aδi,j , and a dimension n by p = 2n

n−2 , then

the Caffarelli-Kohn-Nirenberg inequality (5) writes equivalently:
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(6) Ca,b

(∫

E

|u| 2n
n−2 dµE

)
n−2
n

≤
∫

E

|∇u|2 dµE

In the range of parameters 0 < b − a < 1, optimizers are known to exists, but
according to F. Catrina and Z. Q. Wang [2], they are not always radially symmetric
nor explicit, and as a consequence, the best constant Ca,b is not known for all

possible values of the parameters a, b. Introduce α = 1 + a− bp
2 . Then, according

to a celebrated result by J. Dolbeault, M. Esteban and M. Loss [3], the optimal
range of parameters for which optimizers are radially symmetric, is characterized
in terms of the parameter α as:

α2 ≤ d− 1

n− 1
In any case, let us denote by Cn,α(E) = Ca,b the best constant and hence empha-
size its dependance upon the two parameters α and n. By conformally changing
the metric and restricting oneself to the unit ball, one can define a hyperbolic ver-

sion (H, gH, µH) of the weighted manifold (E, gE, µE): letting ψ(x) = 1−|x|2α

2 , one

defines H = B \ {0} (the punctured unit ball), gH = ψ−2gE, and µH = ψ−nµE.
This weighted Riemannian manifold has been introduced by L. Dupaigne, I. Gentil
and S. Zugmeyer [4]; it is a reasonnable to call it “hyperbolic”, since it was com-
puted in this paper that it has constant negative weighted scalar curvature. Using
the conformal invariance properties of Sobolev inequalities, one can rewrite equiv-
alently the Caffarelli-Kohn-Nirenberg inequality as a Poincaré-Sobolev inequality
in the weighted space (H, gH, µH):

(7) Cn,α(E)

(∫

H

|u| 2n
n−2 dµH

)
n−2
n

≤
∫

H

|∇u|2 dµH − n(n− 2)

4
α2

∫

H

u2 dµH

In a joint forthcoming work with L. Dupaigne and P-D.Thizy, we study the possi-
bility of extending the results of Benguria, Frank, Loss and Mancini, Sandeep to
this more general setting. More precisely, we consider the following:

Question: can we improve (7) by removing on the right-hand side a greater

constant than n(n−2)
4 – possibly even removing the bottom of the spectrum of the

weigthed Laplacian – while keeping the same constant Cn,α(E) on the left-hand
side?

In our work, we compute the bottom of the weighted Laplacian (it is equal to
(d−1)2

4 α2), and show among other results that:

(i) if n ≥ 4, then the constant n(n−2)
4 α2 in (7) is best and cannot be improved.

(ii) for d = 3 ≤ n < 4, one can always improve the constant n(n−2)
4 α2 in (7)

into n(n−2)
4 α2 + ε for some small 0 < ε = ε(n, α), while keeping the same

constant Cn,α(E) on the left-hand side. However, at least if n is close

enough to 4, one cannot replace n(n−2)
4 α2 by the bottom of the spectrum
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(d−1)2

4 α2. This is in sharp contrast with the unweighted situation studied
by Benguria, Frank, Loss and Mancini, Sandeep.
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Logarithmic Hardy inequality. Fractional Sobolev–Hardy–Maz’ya
inequality for 1 < p < 2

Bart lomiej Dyda

(joint work with Sven Jarohs, Firoj Sk; Micha l Kijaczko)

The talk consisted of two separate parts.
I. Let us consider the fractional p-Laplacian

(−∆p)su(x) = CN,s,p p.v.

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|N+sp
dy,

where p ∈ (1,∞), s ∈ (0, 1), p.v. stands for the Cauchy principal value, and u is
suitably regular at x ∈ RN and integrable at infinity with respect to the kernel
z 7→ |z|−N−sp. The constant CN,s,p here is chosen so that

lim
s→0+

(−∆p)su(x) = |u(x)|p−2u(x) and lim
s→1−

(−∆p)su(x) = −∆pu(x)

hold for smooth compactly supported functions. Then CN,s,p ≍ s as s → 0+ and
CN,s,p ≍ (1−s) as s→ 1−. The goal of our work [4] was to find a suitable operator
L∆p to improve the understanding at the limit s → 0+. To be precise, we define
an operator L∆p , which we call the logarithmic p-Laplace operator, such that the
expansion

(1) (−∆p)su(x) = |u(x)|p−2u(x) + sL∆pu(x) + o(s) for s→ 0+

holds for a suitable class of functions u. For p = 2, this problem was studied in [2].
In [4], we prove the following theorem



Mini-Workshop: Hardy Inequalities in Discrete and Continuum Settings 591

Theorem 1. Let 0 < s < 1 and 1 < p < ∞. Suppose u ∈ Cα
c (RN ) for some

α > 0. Then for x ∈ RN

L∆pu(x) :=
d

ds

∣

∣

∣

s=0
(−∆p)s u(x)

= CN,p

∫

B1(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|N dy

+ CN,p

∫

RN\B1(x)

|u(x) − u(y)|p−2(u(x) − u(y)) − |u(x)|p−2u(x)

|x− y|N dy

+ ρN |u(x)|p−2u(x)

(2)

where CN,p and ρN are some explicit constants. Moreover, for any 1 < q ≤ ∞,
the difference quotients are convergent in Lq(RN ), i.e.,

(−∆p)s u− |u|p−2u

s

s→0+−−−−→ L∆pu in Lq(RN ).

In the talk, we have shown the proof of (2).
In [4], we setup a variational framework for the operator L∆p . To this end

we needed some kind of Hardy inequality, more specifically, one described in the
following theorem.

Theorem 2. Suppose that Ω ⊂ RN , Ω 6= RN is open and locally plump (which
means that ∃κ ∈ (0, 1)∀x ∈ Ω ∃Bκr(z) ⊂ Ω, where Bκr(z) denotes a ball centred
at z with radius r). Then there exists a constant C < ∞ such that for every
u ∈ Lp(Ω) the following inequality holds,

∫

Ω

|u(x)|p ln+

(

1

δx

)

dx ≤ c





∫∫

Ω×Ω
|x−y|<1

|u(x) − u(y)|p
|x− y|N dy dx+

∫

Ω

|u(x)|p dx



 ,

where δx = dist(x,Ωc).

Another, but different form of Hardy inequality with a logarithm has appeared
in [1]. While the inequality itself is different, we could still use some of the ideas
of [1] in our proof.

In the talk, we have proven Theorem 2 in the special case of the half-space
Ω = RN−1× (0,∞) and briefly mentioned what has to be done in the general case.

II. Let us consider a half-space Ω = RN−1 × (0,∞). Let 1 < p < 2, 0 < s < 1
and 1 < sp < N . On the one hand, it is known [7] that the following Hardy
inequality holds

E [u] :=

∫

Ω

∫

Ω

|u(x) − u(y)|p
|x− y|N+sp

dy dx−DN,s,p

∫

Ω

|u(x)|
xspN

dx ≥ 0 ,

with the optimal (and explicitely given) constant DN,s,p. Here and later we con-
sider u ∈ C∞

c (Ω). On the other hand, the following Sobolev inequality holds with
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p∗ = pN/(N − sp) and some constant c > 0,
∫

Ω

∫

Ω

|u(x) − u(y)|p
|x− y|N+sp

dy dx ≥ c

(∫

Ω

|u(x)|p∗

dx

)p/p∗

.

As it turns out, also the following Hardy-Sobolev-Maz’ya inequality holds,

(3) E [u] ≥ c′
(
∫

Ω

|u(x)|p∗

dx

)p/p∗

,

which was proved in [3] in the case when p ≥ 2 (and in [8] in case p = 2). The
reason why the assumption p ≥ 2 was needed was the fact that in the ground state
representation of Frank and Seiringer [7], only in such a case the remainder term
was present. In [5], we proved that one can have a remainder (albeit in another,
weaker form) also for 1 < p < 2, and this weaker form still suffices to prove (3). We
note that a more complicated, but optimal form of a remainder was also obtained
by Fischer [6].
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Uncertainty Principles: from Hardy to Resolvent Inequalities

Luca Fanelli

In Classical Mechanics, an action is the area enclosed within a closed curve in the
phase-space, which describes the periodic motion of a particle. The Uncertainty
Principle, usually attributed to Max Planck, states that any action J need to be
an integer multiple of the elementary action ~, namely

J = n~, ~ ≤≃ 6.6 × 10−34j · s.

Passing from Classical to Quantum Mechanics, position and momentum are replace
by the following operators on L2

x 7→ multiplication operator by x p 7→ −i~∇
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and the well known formula for the Uncertainty Principle states the bound from
below

∆x∆p ≥ ~.

In order to see mathematical manifestations of the Uncertainty Principle, we set
the following functional framework:

S symmetric on Hilbert space 〈Sf, f〉 = 〈f,Sf〉
A skewsymmetric on Hilbert space 〈Af, f〉 = −〈f,Af〉

‖(S + A) f‖2 = ‖Sf‖2 + ‖Af‖2 + 〈(SA −AS)f, f〉

⇒ 〈(AS − SA)f, f〉 ≤ ‖Sf‖2 + ‖Af‖2.
Notice that

〈(AS − SA)f, f〉 = 2ℜ 〈Af,Sf〉

This gives the (stronger) inequality

|〈(AS − SA)f, f〉| ≤ 2‖Sf‖ · ‖Af‖ (⋆)

The main examples are the Harmonic Oscillator (Heisenberg Uncertainty Prin-
ciple), for which the choices are S = x, A = ∇, the Coulomb potential S =
x/|x|, A = ∇, the Hardy Inequality S = x/|x|2, A = ∇. Another important man-
ifestation of the uncertainty if the Virial Theorem, which states that if [H,A] is
strictly positive, then the point spectrum of H is empty. In this seminar, we show
the connection between the above mentioned examples and the dispersive feature
of the Schrödinger equation, which is related to the Kato-Smoothing phenomenon,
and we introduce some recent results concerned with the Kato-Yajima inequality.
Some interesting open problems concerning the best constant in an inequality by
Kato and Yajima will also be presented.

Optimal Poincaré-Hardy Inequalities on Manifolds and Graphs

Florian Fischer

(joint work with Christian Rose)

The talk is separated into two parts and is based on [4]. In the first part, we
review a method to obtain optimal Poincaré-Hardy inequalities on the hyperbolic
spaces, and discuss briefly generalisations to certain classes of Riemannian mani-
folds. Thereafter in the second part, we show how to transfer the method to the
discrete setting.

To be more specific, in the first part we recall the following result by Berchio,
Ganguly and Grillo [1]:
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Theorem 1 ([1]). On the hyperbolic space Hd, d ≥ 3, an optimal Poincaré-Hardy
weight is given by the radial function

W (r) := λ0(H) +
1

4r2
+

(d− 1)(d− 3)

4 sinh2(r)
, r > 0,

where r = d(x, o) for x ∈ So(r), d(·, o) is the distance to a fixed point o ∈ Hd, and
λ0(H) is the bottom of the spectrum of the Dirichlet Laplacian −∆.

The main idea in the proof is to consider the radial positive superharmonic
function

u(r) :=
r

sinhd−1(r)
, r > 0,

and to see that W is nothing but the Fitzsimmons ratio of the square root of u,
i.e.,

W =
−∆

√
u√

u
.

This basic idea has been adapted to find optimal Poincaré-Hardy inequalities on
other manifolds such as Damek-Ricci spaces [3]. Here the main observation is to

interpret the denominator of u, sinhd−1, as the volume density of Hd, and to do
the corresponding substitution for Damek-Ricci spaces.

In the second part, we show how to transfer the method to locally finite weighted
graphs over the discrete measure space (X,m). We overcome the main difficulties
by considering model graphs with respect to the combinatorial metric dc and taking
the area function as the new denominator, that is, the function that sums over all
edge weights between two spheres with respect to some fixed vertex o ∈ X . Let k−
and k+ be the radial inner and outer curvatures of the model graph with respect
to o, and define the curvature ratio function via κ = k+/k−. With this in hand,
we have the following.

Theorem 2 ([4]). On a model graph over X with respect to some fixed vertex
o ∈ X, assume that κ is bounded κ(1) ≥ 1, and κ(r) ≥ 1/r+ (1− 1/r)κ(r− 1) for
r := dc(x, o) ≥ 2, x ∈ So(r). Then an optimal Hardy weight is given by the radial
function

w(r) := k−(r)

(

(

√

κ(r) − 1
)2

+
√

κ(r)

(

2 −
√

1 +
1

r

)

−
√

κ(r − 1)

√

1 − 1

r

)

,

for r ≥ 1. Hence, for r ≥ 2,

w(r) ≥ k−(r)

(

(

√

κ(r) − 1
)2

+

√

κ(r)

4r2

)

.

Moreover, if k− and κ are constant, then λ0(X) ≥ k− (
√
κ− 1)

2
. Furthermore, if

κ is constant, then

w >
−∆

√
Go√

Go

, r ≥ 1,

where Go is the minimal positive Green’s function of the model graph at o.
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We explain the proof and observe that the general result about optimal Hardy
weight of Keller, Pinchover and Pogorzelski [7] cannot be applied. Moreover,
we note that the known optimal inequalities on the natural numbers [6] and on
homogeneous regular trees [2] are included, confer also with [5].
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Some remarks on one-dimensional Hardy inequalities

Rupert L. Frank

(joint work with Ari Laptev, Timo Weidl)

The talk discusses doubly-weighted Hardy inequalities on the halfline. The follow-
ing theorem is due to Tomaselli (1969).

Theorem 1. Let 1 < p <∞ and let V , W be nonnegative, a.e.-finite, measurable
functions on (0,∞) such that

∫ s

0

V (t)−
1

p−1 dt <∞ for all s ∈ (0,∞) .

Then for any locally absolutely continuous function u on (0,∞) satisfying
lim infr→0 |u(r)| = 0 we have

∫ ∞

0

W (r)|u(r)|p dr ≤ pp

(p− 1)p−1
B

∫ ∞

0

V (r)|u′(r)|p dr

and
∫ ∞

0

W (r)|u(r)|p dr ≤
(

p

p− 1

)p

B

∫ ∞

0

V (r)|u′(r)|p dr

with

B := sup
s>0

(∫ s

0

V (t)−
1

p−1 dt

)p−1(∫ ∞

s

W (t) dt

)

and

B := sup
s>0

(∫ s

0

V (t)−
1

p−1 dt

)−1 ∫ s

0

W (t)

(∫ t

0

V (t′)−
1

p−1 dt′
)p

dt .
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Here are some remarks:

• It is easy to see that if for some 1 < p <∞ there is a constant C such that
∫∞

0 W |u|p dr ≤ C
∫∞

0 V |u′|p dr for all u as in the theorem, then B ≤ cpC

and B ≤ cpC for (explicit) constants cp and cp. In particular, B is finite

if and only if B is finite, and this finiteness is equivalent to the validity of
the doubly-weighted Hardy inequality.

• The theorem contains two inequalities. For our application both of them
are needed. The first one seems to be much better known than the second.

• The first inequality is due to Kac and Krein (1958) in the special case
V ≡ 1 and p = 2. A simple and elegant proof of the first inequality was
given by Muckenhoupt (1972).

• There is a similar theorem for functions satisfying the vanishing condition
lim infr→∞ |u(r)| = 0 at infinity. This can be obtained from the above
theorem by the change of variables r 7→ r−1.

Tomaselli’s proof uses ODE theory. In [1, 2] we provide an alternative proof, which
is based on the following improved Hardy inequality.

Theorem 2. Let 1<p<∞. Then for any locally absolutely continuous function
u on (0,∞) satisfying lim infr→0|u(r)|=0 we have

∫ ∞

0

max

{

sup
0<s≤r

|u(s)|p
rp

, sup
r≤s<∞

|u(s)|p
sp

}

dr ≤
(

p

p− 1

)p ∫ ∞

0

|u′(r)|p dr .

Interestingly, this theorem can be deduced from the basic Hardy inequality

∫ ∞

0

|u(r)|p
rp

dr ≤
(

p

p− 1

)p ∫ ∞

0

|u′(r)|p dr ,

upon which it improves.

The doubly-weighted Hardy inequality with p = 2 can be used to give a sufficient
condition for Schrödinger operators in L2(Rd) to have only finitely many negative
eigenvalues; see [1, 2]. The constant in this condition is optimal.
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Fractional nonlinear diffusions on manifolds: well-posedness and
smoothing effects

Gabriele Grillo

(joint work with Elvise Berchio, Dario D. Monticelli, Matteo Muratori,
Fabio Punzo)

We consider an N -dimensional manifold M such that Ric(M) ≥ −(N − 1)k for
some k > 0 and that there ∃c > 0 s.t. the Faber-Krahn inequality holds:

(1) λ1(Ω) ≥ cm(Ω)−
2
N

for any Ω is open, relatively compact, where λ1(Ω) is the first eigenvalue of −∆M

with homogeneous Dirichlet b.c.. This is equivalent to assuming a Euclidean-type
Nash inequality or, if N ≥ 3, a Euclidean-type Sobolev inequality. We consider the
following Cauchy problem, that we refer to as fractional porous medium equation:

(2)

{

ut = −(−∆M )s (um) in M × (0,∞) ,

u = u0 on M × {0} ,

where s ∈ (0, 1),m > 1 . Here, M is a complete, connected, noncompact Rie-
mannian manifold, and ∆M the Laplace-Beltrami operator. Our goal is to prove
basic well–posedness results for solutions, in a suitable sense, provided M satisfies
appropriate geometric assumptions, and to prove smoothing effects for data in a
suitable class, larger than L1(M). When M = RN , equation (2) have been intro-
duced and thoroughly studied by Bonforte, de Pablo, Quiros, Rodriguez, Vázquez.
The fractional Laplacian in our setting will be defined by the spectral theorem.
This can be written explicitly e.g. through the semigroup: for the Laplacian on a
stochastically complete manifold, and for a suitable class of functions f :

(−∆M )sf(x) = c

∫ +∞

0

[Ttf(x) − f(x)]
dt

t1+s

= c

∫ +∞

0

(∫

M

kM (t, x, y) (f(y) − f(x)) dm(y)

)

dt

t1+s
,

where m is the Riemannian measure, Tt is the heat semigroup and kM the heat
kernel on M . Our definition of solution to (2) is the weak dual one, which can be
informally understood by applying (−∆)−s to both sides yielding, formally,

∂t
[

(−∆M )−su
]

+ um = 0 .

and can be made rigorous by testing the above equation appropriately. We intro-
duce a weighted L1 space, in which the weight is the fractional Green function Gs

M ,
which exists and tends to zero at infinity due to the running assumption. Such a
space is indicated by L1

Gs
M

(M), so that L1(M) ⊂ L1
Gs

M
(M), L1(M) 6= L1

Gs
M

(M).

We prove what follows (see [1] for details):
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• Existence of a WDS for data in L1
Gs

M
(M).

• Smoothing effects for solutions, namely quantitative bounds on the L∞

norm of the solution u(t) in terms of some norm of the initial datum u0.
For example:

‖u(t)‖∞ ≤ C

(

‖u(t)‖2sϑ1

1

tNϑ1
∨ ‖u0‖1

)

≤ C

(

‖u0‖2sϑ1

1

tNϑ1
∨ ‖u0‖1

)

∀t > 0 .

and, under additional assumption, similar long-time bounds, which take
into account the geometry of M .

Similar results, which depend crucially on the volume growth of balls in M , have
been proved in [2] on manifolds satisfying Ric≥ 0.

Uniqueness issues are not dealt with, and remain an open problem. Among
several other open problems, we mention the proof of existence of fundamental
solutions, i.e. solutions taking a Dirac delta as initial datum, as well as the proof
of pointwise bounds for general solutions.
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Hardy inequalities on integer lattices

Shubham Gupta

It turns out that Hardy-type inequalities on discrete spaces are much more compli-
cated and involved as compared to their continuous counterparts. Indeed, even for
several simple discrete models, many fundamental question remain unanswered.
In the talk, we review some recent developments that happened in the last few
years, mostly focusing on an important discrete model, namely, the integer lattices
Zd. The first discrete Hardy inequality proved in [2], states that

(1)
1

4

∞
∑

n=1

|u(n)|2
n2

≤
∞
∑

n=1

|u(n) − u(n− 1)|2,

for all finitely supported functions u : Z≥0 → R satisfying u(0) = 0. The constant
1/4 is the best possible. It is well known that the inverse square weight is crit-
ical (meaning, it cannot be improved pointwise) in the continuous setting. One
could ask if this happens to be the case in the discrete setting as well. This was
settled by Keller-Pinchover-Pogorzelski in the negative [4], by giving a pointwise
improvement of weight in (1):
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Theorem 1. Let u : Z≥0 → R be a finitely supported function with u(0) = 0.
Then

∞
∑

n=1

wKPP(n)|u(n)|2 ≤
∞
∑

n=1

|u(n) − u(n− 1)|2,

where

wKPP(n) := 2 −
√

1 − 1

n
−
√

1 +
1

n
=

1

4n2
+

5

64n4
+ · · · > 1

4n2
.

The weight wKPP is critical. This work led to the quest of finding “large”
Hardy weights in more general discrete settings: on integers [5], for higher order
operators [7], on infinite graphs [4]. Unlike dimension one, the situation in higher
dimensional lattices Zd, d ≥ 3 is much more different. Particularly, one cannot
deduce the classical analogue of (1) for d ≥ 3, from the critical Hardy weights
obtained in [4]. The case d ≥ 3 was first studied by Rozenblum and Solomyak [6],
and later by Kapitanski and Laptev [3]. However, the constants obtained in these
works are not optimal, and determining them remains an open question till date.
To that end, we proved the following result, concerning the asymptotic behaviour
of the optimal constant, as the dimension d→ ∞ [1]:

Theorem 2. Let u be a finitely supported function on Zd with u(0) = 0. Let
CH(d) be the optimal constant in the discrete Hardy inequality

CH(d)
∑

n∈Zd

|u(n)|2
|n|2 ≤

∑

n∈Zd

|Du(n)|2.

Then CH(d) ∼ d, as d→ ∞, that is, there exist positive constants c1, c2, N (inde-
pendent of d) such that c1d ≤ CH(d) ≤ c2d for all d ≥ N .

The result was obtained by connecting discrete Hardy inequalities on lattices
with continuous Hardy-type inequalities on the torus. This provides a fruitful
bridge between two areas.
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Quantitative Hardy inequalities for magnetic Hamiltonians

Hynek Kovař́ık

(joint work with Luca Fanelli)

The history of Hardy inequalities for magnetic Dirichlet forms goes back to the
pioneering works by Laptev and Weidl [2, 4, 5]. The latter show, roughly speaking,
that introducing a magnetic field B : R2 → R turns a critical operator, i.e. two-
dimensional Laplacian, into a subcritical operator, i.e. two-dimensional magnetic
Laplacian (i∇ + A)2, which can be understood as a mathematical manifestation
of the diamagnetic effect. Here A ∈ L2

loc(R
2;R2) is a vector potential such that

∇ × A = B in the sense of distributions. The fields A and B have the physi-
cal interpretation of the magnetic potential and magnetic field, respectively. For
magnetic fields with finite normalized flux

(1) α =
1

2π

∫

R2

B dx

the above phenomenon is expressed by a lower bound on the associated quadratic
form in the following way. If B 6= 0, then there exists a constant C(B) > 0 such
that

(2)

∫

R2

|(i∇ +A)u|2 dx ≥ C(B)























∫

R2

|u|2
1 + |x|2 dx if α 6∈ Z,

∫

R2

|u|2
1 + |x|2 log2 |x|

dx if α ∈ Z

for all u ∈ C∞
0 (R2). It is important to recall that no lower bound with a non-

negative and nonzero integral weight as above holds if B = 0.

In this talk I present the result obtained in [1] in which we adopt a new approach.
Namely, we prove a quantitative Hardy-type inequality for the magnetic Laplacian
by proving a similar inequality first for the Pauli operator

P (A) =

(

H+(A) 0
0 H−(A)

)

, H±(A) = (i∇ +A)2 ±B

in L2(R2;C2). Indeed, working directly with the Pauli operator allows us to de-
velop a new method of proof in which the problem is reduced to a family of one-
dimensional weighted inequalities. With the help of well-known results established
in the literature, [3], we then calculate the sharp constants in these inequalities.
The advantage of this approach is that it gives us much more information about the
constant in the resulting Hardy inequality. In particular, in the case of non-integer
flux we prove that

(3)

∫

R2

|(i∇ +A)u|2 dx ≥ µ2
α β(B; ρ)

∫

R2

|u(x)|2
ρ2 + |x|2 dx, u ∈ C∞

0 (R2),
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where ρ > 0 is arbitrary, β(B; ρ) is a constant, and where

µα := min
m∈Z

|m− α|

denotes the distance between α and the set of integers.
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Criticality transition for powers of the discrete Laplacian

David Krejčiř́ık

(joint work with Borbala Gerhat, Frantǐsek Štampach)

The uniqueness of the world we live in consists in that R3 is the lowest dimensional
Euclidean space for which the Brownian motion is transient. Indeed, it is well
known that the Brownian particle in Rd will escape from any bounded set after
some time forever if d ≥ 3, while the opposite holds true in low dimensions, i.e. the
Brownian motion is recurrent in R1 and R2 (see Figure 1). This is a well known
criticality transition in dimensions.

Figure 1. The Brownian motion in R2.

Since the Brownian motion is mathematically introduced via the heat equation,
it is not surprising that the transiency is closely related to spectral properties of
the Laplacian. Indeed, the self-adjoint realisation −∆ in L2(Rd) is subcritical if
and only if d ≥ 3, meaning that there exists a non-trivial non-negative function ρ
(Hardy weight) such that the Hardy-type inequality −∆ ≥ ρ holds in the sense of
quadratic forms. On the other hand, −∆ is critical if d = 1, 2 in the sense that
inf σ(−∆ + V ) < 0 for every non-trivial non-positive function V .
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The case of Brownian particles dying on massive subsets of Rd is less interesting
in the sense that the Dirichlet Laplacian −∆ in Rd \Ω with any Ω non-empty and
open is always subcritical. In particular, the Brownian motion in the half-space
Rd−1×(0,∞) is transient for every d ≥ 1, so no criticality transition in dimensions
occurs.

There is a probabilistic interpretation of powers of the Laplacian in terms of
an anomalous diffusion. From this perspective, the case of the half-line is equally
uninteresting because all the powers (−∆)α in L2((0,∞)) with α ∈ N are subcrit-
ical [1] (see also [2] for α ∈ (0, 1)). There is no criticality transition in powers.

The objective of our paper [5] is to disclose the surprising fact that the situation
is very different in the discrete setting. Indeed, we demonstrate that the integer
powers of the discrete Laplacian (−∆)α on ℓ2(N) are subcritical if and only if α = 1.
What is more curious in fine properties of this transition, we consider possibly non-
integer powers and reveal the following precise threshold in all positive powers.

Theorem 1 ([5]). Let α > 0. Then

(−∆)α on ℓ2(N) is subcritical ⇐⇒ α < 3/2.

Here the implication ⇐= for α = 1 was known since the classical work of
Hardy’s [7] (for the recently discovered optimal Hardy weight, see [9, 10] and
our related contributions [12, 11, 4]). The other values of α’s and the opposite
implication =⇒ are new. The proof of the theorem is based on the Birman–
Schwinger principle [6].

As for the case of the discrete Laplacian on the full line, let us mention the
following transition in powers:

(−∆)α on ℓ2(Z) is subcritical ⇐⇒ α < 1/2.

Here the implication ⇐= is due to [3] (see also [8] for optimal Hardy inequalities).
The opposite implication =⇒ follows by the method of proof of our paper [5].
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Discrete optimal Hardy type inequalities and lattices in H-type groups

Felix Pogorzelski

(joint work with Philipp Hake, Matthias Keller, Yehuda Pinchover)

The development of discrete Hardy inequalities has progressed significantly
throughout the past decade. The first part of the talk is devoted to a general cri-
terion for graph Laplacians to obtain optimal, i.e. null-critical Hardy type weights.
We then apply the proposed method to discrete Laplacians over lattices in certain
stratified Lie groups. This leads to the second part of the lecture, where we explain
the relevant connections for H-type groups. In particular, we present some new
optimal Hardy type weights with explicit first order term.

The results in the main part of the talk are based on the doctoral project [6] of
Philipp Hake supervised by Felix Pogorzelski within the research project “Hardy
inequalities on graphs and Dirichlet spaces” (joint with Matthias Keller, Yehuda
Pinchover) funded by the DFG. The support is gratefully acknowledged.

The setting. A graph is a pair (X, b), where X is a countably infinite set endowed
with the discrete topology, and b : X ×X → [0,∞) satisfies b(x, x) = 0, b(x, y) =
b(y, x) and

∑

z∈X b(x, z) < ∞ for all x, y ∈ X . The elements of X are called
vertices. Two vertices x, y ∈ X share an edge and we write x ∼ y if b(x, y) > 0.
We will always assume that graphs are connected, i.e. for every x, y ∈ X one finds
xi ∈ X , 1 ≤ i ≤ k such that x ∼ x1 ∼ · · · ∼ xk ∼ y. A graph (X, b) is locally finite
if for all x ∈ X , the number of y ∈ X sharing an edge with x is finite. We write
C(X) for the real vector space of all mappings f : X → R and denote by Cc(X)
all elements in C(X) with finite support. The formal domain for a graph (X, b) is
given as

F =
{

f ∈ C(X) :
∑

y∈X

b(x, y)|f(y)| <∞ for all x ∈ X
}

.

Then the graph Laplacian or just Laplacian is defined as

∆ : F → C(X), ∆u(x) =
∑

y∈X

b(x, y)
(

u(x) − u(y)
)

.

An element u ∈ F is callled superharmonic if ∆u ≥ 0 and harmonic if ∆u = 0. Via
the Green formula, the Laplacian is connected to the quadratic form associated

with (X, b), given by h(u) = 1
2

∑

x,y∈X b(x, y)
(

u(x) − u(y)
)2

, where u ∈ F . The
extended space is given as

D0 =
{

u ∈ F : h(u) <∞, ∃ (un) ∈ Cc(X) s.t. un
n→ u ptw., and h(un)

n→ h(u)
}

.
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Hardy (type) weights. A map w : X → R is called

• Hardy type weight if h(ϕ) ≥ w(ϕ) =
∑

x∈X w(x)ϕ(x)2 for all ϕ ∈ Cc(X),
• Hardy weight if w is a Hardy type weight, w ≥ 0 and w 6= 0,
• critical if there is no w̃ ≥ w, w̃ 6= w s.t. h(ϕ) ≥ w̃(ϕ) for all ϕ ∈ Cc(X).

A critical Hardy (type) weight is said to be null-critical if the ground state (i.e. the
up to multiplication by constants unique strictly positive harmonic function) for
the operator ∆ − w is not in ℓ2(X, |w|) = {f ∈ C(X) :

∑

x∈X f(x)2|w(x)| <∞}.
In [8], the authors used the supersolution construction developed in the contin-

uum in [2] to obtain null-critical Hardy weights.

Theorem 1 ([8]). Let (X, b) be locally finite and let u ∈ F , u > 0 be given.
Assume additionally that

• ∆u ≥ 0 and ∆u = 0 outside of a finite set,
• u is proper, i.e. u−1(K) is finite for every compact K ⊆ (0,∞),

• u is of bounded oscillation, i.e. supx∼y
u(x)
u(y) <∞.

Then w = ∆u1/2

u1/2 is a null-critical Hardy weight.

The theorem can be used to apply Hardy weights for concrete graphs.

Example. Consider the standard (Cayley) graph over Zd with b(x, y) ∈ {0, 1},
where d ≥ 3. Considering u = G(0, ·) as the Green function for the simple random
walk, one obtains the null critical Hardy weight

w(x) =
∆G(0, ·)1/2(x)

G(0, x)1/2
=

(d− 2)2

4

1

|x|2 + O
(

|x|−3
)

, x→ ∞.

The leading term corresponds to the weight obtained for the Laplacian on Rd,
but in contrast to the continuum setting, there are higher order terms appearing.
Moreover, it is known that the best constant for the global Hardy inequality for
Z
d lattice graphs grows linearly in dimension, cf. [7, 5]. Consequently, some higher

order terms in the above asymptotic expansion have to come with a negative sign.

We present a new criterion to obtain Hardy type weights which will be contained
in [6]. It complements the previous theorem from [8].

Theorem 2. Let (X, b) be a graph (not necessarily locally finite), and assume that
for u ∈ F , u > 0 we additionally have ∆u ∈ ℓ1(X) and u ∈ D0.

Then w = ∆u1/2

u1/2 is a critical Hardy type weight. If additionally
∑

x∈X ∆u(x) 6= 0,
then w is null-critical.

We make some remarks about the theorem. As always, take u ∈ F with u > 0.

• one can replace u ∈ D0 by u ∈ C0(X), i.e. u vanishes at infinity.
• if ∆u ≥ 0, one only has to assume ∆u ∈ ℓ1(X) and that u is a potential

(i.e. a convolution with the Green kernel) to obtain a null-critical weight.
• the condition ∆u ∈ ℓ1(X) is necessary for critical weights which are not

null-critical (positive critical). It does not seem to be necessary for null-
critical weights, as can be seen from the weights obtained for trees in [3].
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H-type groups. H-type groups are a subclass of homogeneous Lie groups that
come along with sub-Riemannian structures. Most results presented here can be
extended to the more general realm of stratified (homogeneous) Lie groups. As a
set, an H-type group is of the form G = Rm × Rn where m ∈ N and n ∈ N0. The
group law is given as

(v, t)(w, s) =

(

v + w, t1 + s1 +
1

2
vT Ω1w, . . . , tn + sn +

1

2
vTΩnw

)

,

where Ωi ∈ Rm×m are skew-symmetric and orthogonal matrices that anti-commute,
i.e. ΩiΩj = −ΩjΩi for 1 ≤ i < j ≤ n. The Cygan-Korányi gauge is given by

‖(v, t)‖CK =
(

|v|4 +16|t|2
)1/4

. We consider lattices in G, by which we mean a dis-

crete, cocompact subgroup X ≤ G. Given a symmetric set 0 /∈ S = S−1 ⊆ G
that generates X as a group, and a weight function θ : S → (0,∞) satisfy-
ing θ(s) = θ(s−1) and

∑

s∈S θ(s) < ∞, a graph (X, b) is obtained by setting
b(x, y) = θ(s) if y = xs and zero otherwise. Clearly this graph is locally fi-
nite if and only if S is finite. If S is such that

∑

s∈S θ(s)‖s‖2CK < ∞, we set

AS :=
∑

s∈S θ(s)vsv
T
s ∈ Rm×m, where s = (vs, ts). The sub-Laplacian LS is the

differential operator on C∞(G) acting as

LS =

m
∑

i,j=1

(AS)ijZiZj,

where Z = {Zi : 1 ≤ i ≤ m} are the invariant vector fields that correspond to the
first stratum in the Jacobian basis for the Lie algebra Lie(G). It is known that
any fundamental solution ΓS : G \ {0} → R to LS is of the form ΓS(x) = ‖x‖2−Q,
where Q = m+ 2n is the homogeneous dimension of G and ‖ · ‖ is a homogeneous
quasi norm (necessarily equivalent to ‖ · ‖CK).

We present the following theorem which will be contained in [6].

Theorem 3. Suppose that Q ≥ 3 and
∑

s∈S θ(s)‖s‖
Q+1
CK <∞ and that u = ‖·‖2−Q

is a fundamental solution for LS . Then w = ∆u1/2

u1/2 is a null-critial Hardy type
weight. Moreover,

w(x) =
(Q− 2)2

8

∣

∣

(

∇Z‖ · ‖
)

(x)A
1/2
S

∣

∣

2

‖x‖2 + O
(

‖x‖−3
CK

)

, x→ ∞, x ∈ X.

We make some remarks on the theorem.

• For analogous results in the continuum, see e.g. [4, 1].
• The proof is an application of the above criterion. To verify the as-

sumptions ∆u ∈ ℓ1(X) and
∑

x∈X ∆u(x) 6= 0, for certain homogeneous
functions f one can approximate the graph Laplacian ∆f|X by the sub-
Laplacian LSf . Here the moment condition on S is needed.

• To determine the sign of w is a delicate issue. In more special situations,
one can find criteria on S and θ to guarantee that w is negative in at most
finitely many points.
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Hardy and Rellich identities for Grushin operators

Prasun Roychowdhury

(joint work with Debdip Ganguly, Jotsaroop Kaur)

In this talk, I will present Hardy, Hardy-Rellich, and Rellich identities and in-
equalities with sharp constants for Grushin vector fields, inspired by the work of
Ghoussoub-Moradifam [2] in Euclidean space. Our explicit remainder terms pro-
vide significant improvements over existing results in the literature. The approach
builds on abstract Hardy-Rellich identities involving the Bessel pair and clever
uses of spherical harmonics techniques developed by Garofalo-Shen [4]. Addition-
ally, following the framework of Bez-Machihara-Ozawa [1], we construct spherical
vector fields corresponding to Grushin vector fields and establish optimal Rellich
identities by comparing the Grushin operator with its radial and spherical com-
ponents.

We will also see some alternative proofs of Hardy identities and inequalities
with improved Hardy constants in specific Sobolev subspaces. Furthermore, we
compute the deficit involving the L2-norm of the Laplacian and its radial com-
ponents for the Grushin operator by computing spherical vector fields that cor-
respond to the Grushin vector fields. As a consequence, some new second-order
Heisenberg-Pauli-Weyl and Hydrogen uncertainty principles, along with certain
symmetrization principles in the Grushin space, will be discussed.

If (V,W ) is a Bessel pair, then we can prove certain abstract Hardy-type or ab-
stract Hardy-Rellich-type inequalities (see [3, Corollary 3.1, Theorem 1.3]). How-
ever, we can ask the converse: if these types of inequalities hold, can we conclude
that (V,W ) is a Bessel pair? The equivalence of this result was established by
Ghoussoub and Moradifam in the Euclidean setting (see [2, Theorem 2.1, Theo-
rem 3.3]). In the same spirit, it would be interesting to study this problem in the
Grushin setting.
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The extended Dirichlet space and criticality theory for nonlinear
Dirichlet forms

Marcel Schmidt

(joint work with Ian Zimmermann)

Nonlinear Dirichlet forms were introduced by Cipriani and Grillo [3] as those lower
semicontinuous convex functionals E : L2(X,µ) → [0,∞] whose induced (in general
nonlinear) semigroup is order preserving and L∞(X,µ) - contractive. They show
that - as in the case of classical Dirichlet forms - these properties are related to
the compatibility of E with certain normal contractions. Recently, in [4, 2], this
characterization was extended to more general normal contractions and in [8] the
following very symmetric version of the compatibility with normal contractions was
obtained: E is a nonlinear Dirichlet form if and only if for all normal contractions
C : R → R and all f, g ∈ L2(X,µ) it satisfies

E(f + Cg) + E(f − Cg) ≤ E(f + g) + E(f − g).

Typical examples are energy functionals of p-Laplacians, where p need not be
a constant but can be a function. More precisely, for some open domain Ω and
measurable p : Ω → [1,∞) the functional (or rather its lower semicontinuous re-
laxation)

Dp : L2(Ω) → [0,∞], Dp(f) =

{

∫

Ω
1

p(x) |∇f(x)|p(x)dx if f ∈W 1,1
loc (Ω)

∞ else

is a nonlinear Dirichlet form (as are its restrictions to certain smaller effective
domains). Other examples are Cheeger energies on metric measure spaces, which
are not necessarily assumed to be infinitesimally Hilbertian. Many more examples
are described in [3, 4].

While nonlinear Dirichlet forms have been applied successfully, a lot of the basic
theory available for classical Dirichlet forms is missing in their context. Motivated
by this lack and by possible applications to optimal Hardy inequalities, we develop
criticality theory for a large class of nonlinear Dirichlet forms. A main tool for
these considerations is the extended Dirichlet space, whose existence we show along
the way.

To do so we need three standing assumptions. The least restrictive is the
symmetry of E , i.e., we assume E(f) = E(−f) for all f ∈ L2(X,µ). It is satisfied

https://doi.org/10.1007/s00209-022-03203-4
https://doi.org/10.1007/s00208-010-0510-x
https://doi.org/10.48550/arXiv.2404.05510
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by most examples. As a very weak form of linearity we assume the ∆2-condition
(this name is borrowed from the theory of Orlicz spaces), namely that there exists
K > 0 such that E(2f) ≤ KE(f) for all f ∈ L2(X,µ). Under this condition the
effective domain D(E) = {f ∈ L2(X,µ) | E(f) <∞} is a vector space. For stating
the next assumption we introduce the Luxemburg seminorm of E given by

‖·‖L : D(E) → [0,∞), ‖f‖L = inf{λ > 0 | E(λ−1f) ≤ 1}.
In order to transfer some of the Hilbert space arguments available for classi-
cal Dirichlet forms to the nonlinear situation our third standing assumption is
that (D(E), ‖·‖L) is reflexive in the sense that D(E) is norm dense in the bid-
ual of (D(E), ‖·‖L). For the functional Dp all three assumptions are satisfied if
infx∈Ω p(x) > 1 and supx∈Ω p(x) < ∞ (in which case it is lower semicontinuous
and hence equals its lower semicontinuous relaxation).

As for classical Dirichlet forms we define the extended Dirichlet space D(Ee)
as the set of those functions f ∈ L0(X,µ) for which there exists an E-Cauchy
sequence (fn) in D(E) with fn → f locally in measure. Such a sequence is called
approximating sequence for f . Our first main result is the following.

Theorem 1 (Existence of the extended Dirichlet form). Under our three standing
assumptions the functional Ee : L0(X,µ) → [0,∞]

Ee(f) =

{

lim
n→∞

E(fn) if (fn) is an approximating sequence for f

∞ if f has no approximating sequence

is well-defined and lower semicontinuous with respect to local convergence in mea-
sure.

This extends classical results by Silverstein [11] and Schmuland [10] to the non-
linear setting but the proof requires new ideas. Even the existence of limn→∞ E(fn)
for approximating sequences is non-trivial in the nonlinear situation.

The ∆2-condition extends to Ee and hence D(Ee) is a vector space and the
Luxemburg seminorm ‖·‖L,e of Ee is well-defined on D(Ee). Moreover, we denote
by Gα = (α+ ∂E)−1, α > 0, the resolvent induced by the subgradient ∂E of E .

Theorem 2 (Characterization subcriticality (transience)). Under our four stand-
ing assumptions the following assertions are equivalent.

(i) There exists g : X → (0,∞) such that Gg = limα→0+Gαg <∞ a.e.
(ii) There exists h : X → (0,∞) such that

∫

X

|f |hdµ ≤ ‖f‖L,e, f ∈ D(Ee).

(iii) ker Ee = {0}.
(iv) (D(Ee), ‖·‖L,e) is a reflexive Banach space.
(v) For one/all 1 ≤ p < ∞, one/all integrable w : X → (0,∞) there exists a

decreasing α : (0,∞) → (0,∞) such that
(
∫

X

|f |pwdµ
)1/p

≤ α(r)‖f‖L,e + r‖f‖∞, r > 0, f ∈ D(Ee) ∩ L∞(X,µ).
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Assertions (i) - (iv) appear in the textbook characterization of transience for
classical Dirichlet forms, cf. [6]. The main observation here is that the inequalities
in (ii) and (v) have to be formulated with respect to the Luxemburg seminorm
(instead of powers of Ee) and that other than in the classical situation Gg < ∞
need not hold for all g ∈ L1(X,µ)+. Assertion (v) is a weak Hardy inequality and
its relation to subcriticality was first observed in [9]. As a direct application of this
theorem we obtain the existence of equilibrium potentials and hence a potential
theory recovering recent results of [5, 1, 7]. For criticality (recurrence) the following
characterization is very similar to the one for classical Dirichlet forms.

Theorem 3 (Characterization criticality (recurrence)). Additionally to our stand-
ing assumptions assume that ∂E(0) = {0}. The following assertions are equivalent.

(i) Ee(1) = 0.
(ii) There exists (fn) in D(E) with fn → 1 locally in measure and E(fn) → 0.
(iii) For all g : X → [0,∞) and Gg = limα→0+Gαg we have

µ({g > 0} ∩ {Gg <∞}) = 0.

A measurable set A ⊆ X is called invariant if E(1Af) ≤ E(f) for all f ∈
L2(X,µ). Moreover, E is called irreducible if every invariant set is either null or
co-null. Irreducibility implies ker Ee ⊆ R · 1 and we obtain:

Theorem 4 (Dichotomy of criticality and subcriticality). Under our four standing
assumptions and ∂E(0) = {0} the nonlinear Dirichlet form E is either critical or
subcritical.

In summary, we obtain criticality theory for a relatively large class of nonlinear
Dirichlet forms that is quite similar to the one for classical Dirichlet forms. How-
ever, due to the lack of linearity and the lack of representation theorems there are
subtle differences in the statements and many proofs need different ideas compared
to the classical situation.
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Trade-off in Hardy inequalities

Antoni Szczukiewicz

(joint work with Krzysztof Bogdan and Bart lomiej Dyda)

We will talk about trade-off in Hardy inequalities on R. Our primary focus is on
the trade-off in fractional Hardy inequality, which extends and refines the classical
fractional Hardy inequality.

We will start by introducing the well-known one-dimensional fractional Hardy
inequality. For α ∈ (0, 2), p ∈ (−1, α), and any function u ∈ L2(|x|−αdx), the
following inequality holds:

1

2

∫

R

∫

R

(u(x) − u(y))2

|x− y|α+1
dx dy ≥ C(p)

∫

R

u2(x)

|x|α dx,

where C(p) is an explicit constant given by

C(p) = B(p+ 1, α− p)

(

sin
(

π
(

α
2 − p

))

sin
(

πα
2

) − 1

)

,

and this constant attains its optimal value for p = α−1
2 .

As a key result, we will derive the balanced fractional Hardy inequality:

1

2

∫

R

∫

R

(u(x) − u(y))2

|x− y|α+1
dx dy ≥ D+

α,s

∫ ∞

0

u2(x)

|x|α dx+D−
α,s

∫ 0

−∞

u2(x)

|x|α dx,

where the constants D+
α,s and D−

α,s are optimal and depend on the new parameter
s, which controls the trade-off between them. These constants satisfy

D+
α,s = B

(

α+ 1

2
,
α+ 1

2

)(

1

sin(πα2 )
− s

)

,

D−
α,s = B

(

α+ 1

2
,
α+ 1

2

)(

1

sin(πα2 )
− 1

s

)

.

Additionally, we will refine the fractional Hardy inequality by incorporating an
extra nonnegative term:

1

2

∫

R

∫

R

(u(x) − u(y))2

|x− y|α+1
dx dy ≥ D+

α

∫ ∞

0

u2(x)

|x|α dx+D−
α

∫ 0

−∞

u2(x)

|x|α dx+

B

(

α+ 1

2
,
α+ 1

2

)





√

∫ ∞

0

u2(x)

|x|α dx−
√

∫ 0

−∞

u2(x)

|x|α dx





2

.



Mini-Workshop: Hardy Inequalities in Discrete and Continuum Settings 611

In particular, for α = 1, we obtain the improved fractional Hardy inequality:

1

2

∫

R

∫

R

(u(x) − u(y))2

(x− y)2
dx dy ≥





√

∫ ∞

0

u2(x)

|x| dx−
√

∫ 0

−∞

u2(x)

|x| dx





2

.

Moreover, we will present similar results where the kernel |x−y|−α−1 is replaced
by a more general nonnegative, symmetric, and homogeneous kernel k(x, y).

Reporter: Florian Fischer
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