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ABSTRACT. Quantum chemistry focuses on modelling and simulating the be-
haviour of molecular systems using the fundamental principles of quantum
mechanics. However, the underlying equations, such as the Schrodinger equa-
tion for computing the ground state of N electrons, which is a partial dif-
ferential equation defined on R3N | suffer from the curse of dimensionality.
As a result, simulating even moderately sized molecules demands advanced
techniques in analysis, approximation and reduced-order modelling for over-
coming the naive computational complexity. In this workshop, the rapidly
growing mathematical community working in the field together with several
quantum chemists and physicists were gathered to discuss recent advances in
areas such as (1) the mathematical and numerical analysis of standard models
used in the field, including Density Functional Theory, Coupled Cluster, and
the Density Matrix Renormalization Group (2) the development of efficient
numerical methods, relying e.g. on the development of error bounds and (3)
the opportunities of recent data-driven methods towards the approximation
of wavefunctions or density matrices.
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Introduction by the Organizers

Quantum chemistry is concerned with the understanding and accurate prediction
of physical properties of atomistic systems at a scale where quantum effects cannot
be neglected. This leads to high-dimensional partial differential equations (PDEs),
starting with the Schrodinger equation, an eigenvalue PDE posed on R3*V for a
system with N electrons. The simulation of such systems is very expensive and
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requires many approximations to be feasible at all. This includes (1) the setup of
the equations modelling the physical system, (2) the discretization of the unknown
continuous solution as well as (3) the numerical algorithms employed to solve the
linear algebra part.

Solving key challenges of the 21st century, such as drug design, renewable energy
or quantum computing, is fundamentally linked to understanding such quantum
properties of matter. As a result a noteworthy fraction of the world’s supercomput-
ing time (> 50% of compute share on some machines) is currently spent on solving
these mathematically very challenging problems. Advances on the understanding
of the involved models and numerical methods are thus highly desired and provide
a unique opportunity for significant impact of the mathematical community.

Despite the need for an interdisciplinary viewpoint to tackle mathematical
challenges collaborations between mathematicians and application researchers in
chemistry, physics or materials science are relatively recent. We have been thus
delighted to bring together 48 researchers, experts in multiple mathematical dis-
ciplines (analysis, numerical analysis, statistics), but also experts from the appli-
cation domain — making this workshop from our point of view a full success to
seed further collaborations across traditional field boundaries.

The topics of our meeting covered the broad scope of mathematical research
in electronic structure theory. Considering density-functional theory (DFT) — a
mean-field-type model with considerable practical importance — Andre Laesta-
dius, Robert van Leeuwen, Mathieu Lewin and Markus Penz presented new results
on the analytical study of the DFT model, targeting fundamental questions on the
differentiability and invertability of this model, on the structure of Hohnberg-Kohn
theorems on lattices or the potential non-convexity of the energy.

On a related note Kieron Burke and Julien Toulouse presented on new routes
for constructing DFT models for practical calculations, either explicitly violating
electron count to improve approximations or incorporating effects from quantum
electrodynamics in relativistic formulations of DFT — for which obtaining a con-
sistent mathematical model is challenging.

A second workhorse of quantum chemistry is coupled cluster (CC) theory,
known for its accurate predictions. In this domain Fabian Faulstich, Laura Grazi-
oli and Simen Kvaal discussed new insights, such as a connection to algebraic
geometry, the challenges of treating magnetic fields within CC theory as well as a
new mathematical formulation of CC based on the bivariational principle, which
enables a new route to formulate a posteriori error estimates applicable to this
challenging model.

Beyond Kvaal’s contribution the development of a posteriori error bounds has
been a particular focus of this meeting with further presentations by Mi-Song
Dupuy, Muhammad Hassan and Gaspard Kemlin on the estimation of discreti-
sation errors in various settings as well as the contribution of Lin Lin on the
estimation of the finite-size error — that is the error resulting from modelling
an infinite periodic crystal using only a finite system size. While study of error
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estimation techniques for electronic structure methods has thus advanced consid-
erably compared to the last MFO workshop, it still remains far from the level of
maturity of other branches of applied mathematics.

Another aspect, which was considered with a number of contributions was the
combination of statistical and analytical techniques in electronic structure theory.
This included the use of statistical learning as a technique to correct for deficien-
cies in electronic structure models, e.g. in the talk of Katharine Fisher, or as a
technique to directly learn Kohn-Sham density matrices as in the presentation
of Liwei Zhang. An approach to employ neural networks for the generation of
optimised subspaces for eigenvalue computations has been presented by Xiaoying
Dai. James Kermode provided us with an overview of applications of atomistic
machine learning in materials modelling as well as recent methods to quantify
errors in machine learning models for practical settings. Other uses of stochastic
methods discussed during the meeting included Quantum Monte Carlo approaches
in the contribution by Dexuan Zhou and stochastic variants of DF'T for large-scale
computations by Michael Lindsey.

Ors Legeza presented large-scale HPC-implementations of highly accurate ten-
sor network state methods via DMRG-calculations. Additional theoretical insights
on this ansatz were complemented by Gero Friesecke. Continuing the exploration
of applications Frank Neese provided an overview of a state-of-the-art toolbox
in computational chemistry and the associated challenges in scaling this code to
high-performance computers.

The analytical study and simulation of 2D-incommensurate systems is of re-
cent interest due to particular properties. Huajie Chen presented recent advances
on the planewave approximation of such systems and Daniel Massat presented a
momentum space algorithm for computing observables of trilayer graphene.

The final set of contributions provides various insights into the richness and di-
versity of topics in this field. Eric Cances presented on the mathematical structure
of impurity models and embedding theories. Thomas Bondo Pedersen provided
insights on quantum dynamics beyond the usually applied Born-Oppenheimer ap-
proximation with Caroline Lasser providing complementary insights into the the-
oretical study of methods in quantum dynamics. Virginie Ehrlacher presented on
observability results in the setting of periodic crystals. Insights into the coupling
of perturbation theory and reduced basis methods for eigenvalue problems was
provided by Louis Garrigue.

This workshop has shown how the exchange of ideas, concepts, models and
methods can lead to very fruitful discussions of interdisciplinary nature, but where
mathematics plays the central role. The mathematical concepts that were ad-
dressed were very diverse with sometimes astonishing connections such as the con-
sideration of the CC-theory under the aspect of algebraic geometry or the frequent
use of concepts from (computational) Riemannian geometry to account for con-
straints in the quantum mechanical models. Overall it has been a very stimulating
week and the participants left with a plethora of ideas and inspirations.
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Abstracts

The ground state energy is not (always) convex in the
number of electrons

MATHIEU LEWIN
(joint work with Simone Di Marino and Luca Nenna)

We present here recent results from [1, 2].
Let us start by introducing the ground state energy of N electrons in a general
external potential V : R3 — R:

N
EIN,V]:=minc(Hy), Hy=)Y_ (-
j=1

The Hamiltonian H}; acts on the fermionic space /\fr L3*(R3 x {1,1},C). For a
molecule containing M nuclei of charges z1, ..., zp; placed at R, ..., Rys the external
potential equals

(%’)) + > : :

1<j<k<N |2 — @il

B

Experimental data show that, at least for atoms, the ground state energy is
convex in the number of electrons N. The interpretation is that the binding energy
decreases whenever N increases, which expresses the fact that the core electrons
are more tightly bound to the nuclei than the core electrons. It seems natural
to ask whether this experimental observation holds for the Born-Oppenheimer
Hamiltonian HY;, i.e. whether N +— E[N,V] is convex. The importance of the
convexity in N was first mentioned in the context of density functional theory
(DFT) by Perdew, Parr, Levy and Balduz [6] in 1982. It was later conjectured for
different classes of V’s in [3, 7, 5].

Although the convexity is still completely open for real atoms and molecules
that have integer charges z,,, € N, we provided in [1] the first counter-example, for
nuclei with small fractional charges.

Theorem 1 (Non-convexity for 6 nuclei of small nuclear charges [1]). There exist
Ri,...Re €R3, 21,..,26 >0 and es < ea < e1 < 0 such that, for
-y
|x — LRy’

we have for all N > 5

E[l,‘/}]:%—ko(%), E[2,w]:E[3,w]:%+oG)

EIN, Vi) = E[4,Vi] = 5 + o (%)
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and hence convexity fails at N = 3 in the limit £ — oo. The corresponding
Hamiltonian H{/V admits a ground state for N =1, N =2 or N = 4 electrons, but
not for N =3 or N > 5 electrons.

The statement is that for N = 3 one electron must escape to infinity, whereas
for N = 2 and N = 4 all the electrons can be bound by the 6 nuclei. In other
words, the third electron can only be bound to the system if there is a fourth
electron. This certainly goes against our intuition.

Since the nuclei have the tiny charge z,,/ V¢, they can bind at most one electron
each [4], resulting in the hydrogenic energy —z2, /(2¢). This is of the same order as
the interaction between the electrons, explaining our choice of scaling. To leading
order the energy behaves like a classical optimization problem where we place N
electrons at 6 sites Ry, ..., Rg where they have the energy —z2, /2. Theorem 1 thus
follows from a classical counter-example, whose exact statement is as follows.

Theorem 2 (Non-convexity for classical electrons hoping on 6 sites [1]). There
exist Ry,...,Rg € R3, 21,...,26 > 0 such that the corresponding energy

6
. nj ng
enN = min E nj + E
g €{0:1} j=1 1<]<k}<6 Rj — Ryl
2_1:1 nj=N
satisfies eq < eg < ez < es <e; <eg<O0.

Here the variable n; € {0,1} describes whether we put an electron at R; or
not. It is the fact that the classical energy strictly increases at N = 3,5,6 that
implies the non-existence of ground states in the quantum case. In the quantum
problem, the electrons can choose to escape to infinity instead of staying close to
the nuclei.

The classical counter-example of Theorem 2 was found numerically, based on a
previous counter-example that we had constructed in [2] in a seemingly completely
different setting. In [2] we studied a generalization of multi-marginal optimal
transport (MMOT) to the grand-canonical setting and found an example showing
that it can be strictly below the MMOT energy. This turned out to be dual to
the problem presented here, in the sense of Legendre transforms. This is how we
found the above counter-example.
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Some insights on quantum embedding methods
Eric CANCES

Quantum embedding methods offer scalable frameworks for studying large in-
teracting quantum systems, including lattice models, quantum chemistry prob-
lems, and correlated materials. They decompose the original complex system into
smaller, or simpler, more manageable “local” many-body problems coupled via
a “low-level” descriptor, which is refined through self-consistent iterations. The
resulting subproblems are then solved using accurate, computationally intensive
techniques (“high-level” methods).

Different quantum embedding techniques impose specific self-consistency condi-
tions to bridge the low-level and high-level descriptions. For example, dynamical
mean-field theory (DMFT) [4] aligns the diagonal blocks of the time-dependent
one-particle Green’s functions (or self-energies) between the two levels, while
density-matrix embedding theory (DMET) [3] ensures consistency in the diagonal
blocks of the one-particle reduced density matrices (1-RDM).

In the first part of my talk, I presented a unified framework encompassing DMFT
and DMET.

The second part of my talk was focused on DMET. I presented a recent mathemat-
ical result [1] showing that in the weakly interacting limit, conventional DMET is
exact up to second-order corrections in the coupling parameter. However, conven-
tional DMET is constrained by the requirement that the global 1-RDM (low-level
descriptor) be an orthogonal projector, limiting flexibility in bath construction and
potentially impeding accuracy in strongly correlated regimes. In the generalized
DMET framework we introduced [5], the low-level descriptor can be an arbitrary
1-RDM and the bath construction is based on optimizing a quantitative criterion
related to the maximal disentanglement between different fragments. This yields
an alternative yet controllable bath space construction for generic 1-RDMs, lifting
a key limitation of conventional DMET. We expect that this more flexible frame-
work, which leads to several new variants of DMET, can improve the robustness
and accuracy of DMET.

Lastly, I presented a mathematical analysis of DMFT in a specific framework [2].
After recalling the definition and properties of one-body time-ordered Green’s func-
tions and self-energies, and the mathematical structure of the Anderson impurity
model, I described a specific impurity solver, namely the Iterative Perturbation
Theory (IPT) solver, which can be conveniently formulated using Matsubara’s
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Green’s functions. Within this framework, it can be proved under certain as-
sumptions that the DMFT equations for the spin-unpolarized translation-invariant
Hubbard model admit a solution for any set of physical parameters.

These are joint works with a number of people credited in references [1, 2, 5] below.
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Mathematical structure of observable-functional theories
MARKUS PENZ

(joint work with Robert van Leeuwen)

Setting and general assumptions: To keep things (mostly) simple, we consider
a finite-dimensional complex Hilbert space H of dimension L = dim H. We take
the self-adjoint A as the universal part of a quantum system’s Hamiltonian and
B%, 1=1,...,m, as the observables coupling to a potential 3 € R™.

(1) H(B)=A+ Z BiB;

We assume that the set {By = I, By, ..., B,,} (including the identity operator I) is
linearly independent and all B; mutually commute. For dealing with normalized
states, we define the compact state manifold M := {¥ € H | ||¥| = 1}. The
ground-state problem has then the variational formulation

) B(B) := min (H(8))o.

The aim of the functional theory is to decrease the complexity of this optimization
problem by reducing the search space. To achieve this, we define the vector-valued
map from states in M to the expectation values of the general observables

(3) g9(¥) := ((B)w, ..., (Bn)y) € R™.

This allows to rewrite the expectation value of H(3) as (H(8))w = (A)g+3-g(¥).
The universal part can then be treated in a separate variational problem. We
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define the constraint set My := {¥ € M | g(¥) = b} = g~ (b) and the pure-state
constrained-search functional

N { min (A)y ifbeB
(4) F(b) :=< YeMs

00 else.

Here, the effective domain B C R™ of F (later shown to be compact) amounts to
the image of M under g. The ground-state problem Eq. (2) can now be refor-
mulated with the universal functional and a substantially reduced search space,
E(B) = minges{F(b) + B - b}. Since the energy functional E(f) is concave by its
definition in Eq. (2), the functional theory can be transformed into a fully convex
form. This is achieved via the Legendre-Fenchel transform of E(3) that defines
the convez universal functional [1]

(5) F(b):= sup {E(8) — B-b}.
BeER™

It can be shown that F(b) is the same as Eq. (4) if the constrained search is ex-
tended to ensemble states [1] and as such it is the convex hull of F(b) [2, Prop. 18].
Thus, F(b) has the same proper domain B and F(b) < F(b). The supremum above
is not necessarily a maximum since now the search space is not compact. We will
later give conditions when it is indeed a maximum and an optimizer 3 € R™
always exists.

Representability by pure states: The set B = g(M) can be constructed as
follows. Since the B; (including ¢ = 0) all commute, there is an orthonormal basis
{®} of H that simultaneously diagonalizes all the B;,

(6) Bi®) = Api®s,  g(®k) = (Ap1, .-, Akm),

and Ago = 1. This defines a real L x (m + 1) matrix Ag; of eigenvalues. Every
¥ € M can now be written ¥ = Zﬁzl cx Py, e € C, 25:1 |ck|? = 1. Substituting
i = |ck|? we then get

L L
(7) g(v) = Z)\kg((bk)a Ak >0, Z Ak = 1.
=1 =1

Thus, B is the convex hull of {g(®x)} and the g(®;) form the vertices of the
polyhedron B. This also shows that B is closed and consequently it is compact as
a subset of R™. Given any b € B, we can find a ¥ € Mj by determining a (in
general non-unique) set {\;} that solves Eq. (7) and then taking ¢, = /Ay (or
with any other phase choice).

Representability by ensemble ground states: From Eq. (4) it follows that
F(b) < F(b) < ||A]| < 0o on B and thus by some standard results from convex
analysis (see for example [3, Th. 2.14, Prop. 2.36, and Prop. 2.33]) it holds that
for every b from the interior of B there is a 3 € R™ such that E(3) = F(b)+3-b.
In other words, for all b € intB the supremum in Eq. (5) is a maximum where
an optimizer B € R™ can be found. But since the functional involved is given by
constrained search over ensemble states, the corresponding ground state of H (B)
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that maps to b might be an ensemble state itself. In exceptional situations linked
to degeneracies [4], the representability by ground states also holds for b on the
boundary of B. That one actually needs to rely on ensemble states is shown with
examples where a b € int B is not representable by pure ground states [2].

Unique representability (regular and critical values, Hohenberg—Kohn
(HK) theorem): Finally, we ask if, or when, the above form of ground-state
representability with a 8 € R™ is unique. In DFT this is the content of the HK
theorem. A ¥ € H is called regular point if all the B;U, i = 0,...,m, are linearly
independent, else it is called a critical point. The set of all critical points is denoted
C C H. The image of CNM under g gives the critical values B, C B. Ab e B\ B,
is then called a regular value. In other words, a b € B is called regular if for all
U € My all the Bi\I/, 1t =0,...,m, are linearly independent, else they are called
critical. This explains why the B; have been chosen linearly independent in the
first place, because else no b can ever be regular. An alternative characterization
of the critical points can be given with the help of the Gram matrix G(¥) defined
by Gij(¥) := (B;¥, B;¥), 4,5 = 0,...,m. Then the HK theorem in the current
setting is the following: If the pure ground states (degeneracy is possible) of H(3)
and H(B') yield the same regular b then 8 = 3’. Proof: For fixed b and 3, 8’ the
ground-state energies are E(3()) = mingea, (A)g 4+ 8" -b. Since the minimum is
independent of B(), we can take the same ¥ for both Hamiltonians. Subtracting
the two Schrédinger equations H(B!)W = E(B")¥ gives

m —Bo -8B M
(8) > (B - B)BY = (E(B) - E(B)¥ = > (8 — B))B:i¥ = 0.
=1 1=0

Since all B;¥ are linearly independent, it readily follows 8; = f; for all i =
0,1,...,m. This concludes the proof. The classical Sard’s theorem [5] applied to
g : M — B then tells us that the set of critical values B. has measure zero in R™,
so almost all b € B are regular and qualify for the HK property. It follows that
only for critical b counterexamples to the HK theorem can be found [2] and it is
known that those b € B, that produce counterexamples always correspond to the
intersection of so-called degeneracy regions in B [4].

For a regular value b € B\ B. we also know

that the constraint set My is a closed submani-
Q fold (constraint manifold) of M by the submer-
sion theorem [5]. Different possible situations

are depicted in the figure (multiple connected
components; with a critical point; connected).

Mo, Mo, Mo, A tangent vector ® to My at any W € My is
defined by the condition

9) Jim 2 (<Bi>@+e¢ - <Bi>¢) = 2Re(®, B;T) = 0.

e—0 €
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The lell are thus not normal vectors to My at ¥ € My in the usual Hilbert-space
sense, but they are orthogonal with respect to the Kdhler metric that is defined
by g(®,¥) = Re(®, ¥) [6]. A noteworthy recent paper discusses the geometry of
expectation values by [7] and employs very similar concepts and even features an
algebraic formulation of DFT. An obvious open research question is the general-
ization to infinite-dimensional ‘H, but maybe keeping the number of observables
B; finite.
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Finite-size error in quantum chemistry methods for periodic systems
LiNn LIN

In recent years, there has been a growing interest in employing quantum chem-
istry methods to compute ground-state and excited-state properties for periodic
systems [10, 8, 5, 7, 13, 3, 16, 11, 6, 21, 4, 17, 22, 15, 2, 1, 14]. Unlike molecular
systems, periodic systems, including solids and surfaces, require calculating prop-
erties in the thermodynamic limit (TDL), a theoretical state in which the system
size approaches infinity. However, directly tackling finite-size effects by enlarging
the supercell size is very demanding, even for relatively inexpensive DFT calcu-
lations with modern-day supercomputers. For more accurate theories, this task
is often computationally intractable. Understanding the finite-size scaling, i.e.,
the scaling of the finite-size error with respect to the system size, and employing
finite-size error correction schemes are, therefore, crucial for obtaining accurate
results using moderate-sized calculations.

There are two primary strategies to approximate the TDL. The first involves
expanding the computational supercells within real space. The second strategy
involves performing calculations using a fixed unit cell and refining discretization
of the Brillouin zone within reciprocal space using a k-point mesh, such as the
Monkhorst-Pack mesh [12]. We focus on the latter approach, where the number of
k points is denoted by Ny. If the Monkhorst-Pack mesh includes the Gamma point
of the Brillouin zone, this approach is equivalent to using a supercell comprised of
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Ny unit cells. The convergence toward the TDL can be studied by increasing this
single parameter Ny toward infinity.

An innovative theoretical observation provided in Ref. [18] is that the finite-
size error can be largely comprehended if assuming HF single-particle orbitals
can be acquired exactly at any given k point in the Monkhorst-Pack mesh. This
perspective helps to disentangle the contribution due to the relatively manageable
single-particle effects from the collective and more complex electron correlation
effects. Based on this assumption, the finite-size error can be rigorously examined
from a numerical quadrature perspective. Specifically, the value of a physical
observable at the TDL can often be written as a multidimensional integral over
the Brillouin zone. As the Monkhorst-Pack mesh forms a uniform grid discretizing
the Brillouin zone, the analysis simplifies to investigating the quadrature error of
certain trapezoidal rule in a periodic region, a topic widely discussed in numerical
analysis literature. The novelty here lies in the recognition that the associated
integrands possess a unique singularity structure that is asymptotically of a specific
fractional form. Reference [18], therefore, develops a new Euler-MacLaurin type
of analysis that facilitates the study of the finite-size error associated with HF and
MP2 methods, taking into account this fractional form singularity.

For a periodic system, let the unit cell and Bravais lattice be denoted by 2 and
L, and let the reciprocal lattice and reciprocal unit cell be denoted by LL* and %,

1 1 1
respectively. Let IC be a Monkhorst-Pack mesh of size N} x N2 x NZ in Q*.
Let the eigenvectors (orbitals) and eigenvalues (orbital energies) of Hartree-Fock
Hamiltonian on X be denoted by

{wnk(r) = \/LN_k

where u,x(r) is the periodic component u,x(r + R) = u,k(r), R € L. Then we
may define the pair product of orbitals and its Fourier transform

1 R iG-
€2 > bnie k(GG

Qn’k’,nk(r) - ﬂn’k’ (I‘)unk(r) = To1
GeL=

eik'"unk(r), enk} forke K

The two-electron repulsion integral (ERI), which plays a central role in the anal-
ysis, takes the form

1 ! 4
9 Me &

The primed summation over G means that the possible term with q + G = 0 is
excluded in the numerical calculation. The Fock Exchange energy takes the form

1 L
EX(Nk):—N—kZ > (iki, jk;lik;, ik:)
ij kikjeK

. . ks k
mgnlkhanS (G)ankz,mlkzl(Gki,k;L - G)

To the best of our knowledge, the first rigorous analysis of finite-size error in
Hartree-Fock (HF) theory (using a quadrature analysis) and second-order Mgller-
Plesset perturbation theory (MP2) for insulating systems has been conducted only
recently [18].
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Theorem 1 (Informal statement of [18, Theorem 3.1, 5.1]). For certain insulators,
in the absence of finite-size corrections,

| EEP — Bx (Ni)| = O (N, ).

Madelung constant correction evaluates ag up to h.o.t. then

‘ ETDL Corr | _

Beyond the Hartree-Fock level, the Nesbet’s theorem for correlation energy
states

(1)
1 , o
Eyk= N > Y 2k, jkjlaka, bky) — (ik;, jk;|bks, aka)) T} (ki, K, Ka),
kikjk, €L ijab

where T}jqp is called the 75 amplitude, and # indicates the level of theory.

Interestingly, for the coupled cluster doubles (CCD) theory, which is mathe-
matically the simplest and representative form of CC theory, earlier numerical
calculations did not provide conclusive evidence regarding its finite-size scaling,
with different studies suggesting either an inverse volume scaling [9, 3] or inverse
length scaling [11]. More recent calculations demonstrate that the electron cor-
relation energy in periodic coupled cluster calculations should follow an inverse
volume scaling, even in the absence of finite-size correction schemes. This obser-
vation points to a significant gap in the theoretical understanding of the finite-size
error: How can we reconcile the following seemingly paradoxical facts?

(1) Without finite-size corrections, the finite-size error in CCD exhibits inverse
volume scaling.

(2) Without finite-size corrections, the finite-size error in MP3 exhibits inverse
length scaling. This rate is sharp and cannot be improved.

(3) All MP3 diagrams are encompassed within the CCD formulation.

We elucidate the origin of the inverse volume scaling behavior [20]. Our analysis
consists of two steps. First, we show that the Madelung constant correction,
commonly used to reduce finite-size errors in Fock exchange energy and orbital
energies, can also be applied to reduce the finite-size error in ERI contractions
within the CCD amplitude equation. We prove that with the Madelung constant
correction, the finite-size errors in CCD(n) and converged CCD calculations satisfy
the desired inverse volume scaling. In the second step of our analysis, we observe
that upon convergence of the CCD amplitude equations, the Madelung constant
corrections to both orbital energies and ERI contractions perfectly cancel each
other out for any finite-sized system. Combining this result with the first step,
we conclude that the finite-size error of the correlation energy in converged CCD
calculations satisfies the desired inverse volume scaling without the need for any
additional correction schemes. However, prior to the convergence of the amplitude
equations, this perfect cancellation does not occur, and the finite-size error of

1
CCD(n) calculations remains O(N, *). A similar lack of cancellation occurs when
the orbital energies take their exact value at the TDL but the ERI contractions are
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not corrected, resulting in an O(N, %) finite-size error for both converged CCD
and CCD(n) calculations studied in Ref. [19]. The results are summarized in the
Table below.

Correction to Correction to  Finite-size

Theory orbital energies ERI scaling Reference

HF N/A X NCT [18, Thm 3.1]

HF N/A Nt [18, Thm 5.1]

MP2 N/A N* [18, Thm 4.1]

MP3 X N_¥ [19, Cor 2]

MP3 N [20, Thm 1]
CCD(n)/CCD X N/ NZF 19,2, Thm 1/ Cor 3]
CCD(n)/CCD Nt/ No' [20, Thm 1/ Thm 2]
CCD(n)/CCD X N7/ NZF o [20, Thm 1/ Thm 2]
CCD(n)/CCD X X N_F /NZ' o [20, Thm 3 / Cor 1]
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On the relation between Galerkin approximations and canonical
best-approximations of solutions to some non-linear
Schrodinger equations

MUHAMMAD HASSAN
(joint work with Yvon Maday and Yipeng Wang)

This talk was concerned with solutions to the following Gross-Pitaevskii type en-
ergy minimisation problems:

(1)

1 1
El.:= min{—/ |Vu(x)? dx + —/ V(x)|u(x)|? dx
2 Ja 2 Ja

u€X
1
1 /Q u(x)[* dx, —(f, “>X*XX}

kL : 1 2 1 2
g = min {2/Q|Vu(x)| dx—|—2/QV(x)|u(X)| dx

ueX
1
+7 [ ol ax},

under one of the following two settings:

||“HL2(Q):1
Setting One: Q = (—1,1)%, d € {1,2,3} and X = H} (). Moreover, the
source function f € H*(Q) for s > 0 while the effective potential V is
positive and V- € H™(Q) for r, > d/2;
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Setting Two: (2 is a d-dimensional torus with d € {1,2,3} and X = H'(Q).
Moreover, the source function f € H?*(Q) for s > 0 while the effective
potential V' is bounded below by Vipin >0 and V € H™(Q) for r, > d/2.

Under these hypotheses, it is well-known that there exists a unique minimiser u,,
to the unconstrained minimisation problem (1) and there exists a unique positive
minimiser ug, to the constrained minimisation problem (2). Additionally, elliptic
regularity theory together with a bootstrapping argument implies that

(3) U* c Htsrc+2(Q) and u:ig [ Hteig+2(ﬂ),

Src

with tge = min{s,r,,3 — €} and teig = min{r,,3 — €} for any € > 0 in the case of
Setting One and tgc = min{s,r,} and tejz = 7, in the case of Setting Two.

In order to approximate these minimisers numerically, one typically introduces
a sequence of finite-dimensional approximation spaces {Xs}s~o , Xs C X, such
that the standard approximation property is satisfied:
(4) Yue X: lim inf |lu—vs||x =0.

0—0t vs€Xs

We then seek, for a given approximation space X, the solutions to the following
discrete energy minimisation problems:

us€Xs

(5) - i/ﬂlua(x)l“ dx = (fus) g x |

1 1
Egrc ‘= min {—/ |Vus(x)|? dx + —/ V(x)|us (x)]? dx
2 Ja 2 Ja

(6) Egig ‘= min {%/Q|Vu(;(x)|2 dx—i—%/QV(x)|u(;(x)|2 dx

us€Xs
1 4
o Jus(x)| dx}.
4 Q

HUSHLQ(sz):l

The exact choice of the approximation spaces {Xs}s~o depends on the problem
setting. Finite element or spectral polynomial discretisations may be chosen for
Setting One in which case ¢ represents the maximal finite element diameter or
the reciprocal of the maximal polynomial degree. In the case of Setting Two,
a natural choice is a spectral Fourier discretisation in which case § represents the
reciprocal of the maximal wave-number (classically denoted by N). In either case,
it is well known that for any given § > 0, there exists a unique solution us oo € Xo
to the unconstrained discrete minimisation problem (5), and for all § small enough,
we have the error estimate
(7)

Hu:rc - u;,src||L2(Q) 5 5”“;0 - u;,srcHX S 6v{sig§(5|‘u:rc - v5||X 5 62||u:rcHH2(Q)

*

This estimate can be improved if the exact minimiser u},, possesses additional
Sobolev regularity (in the sense of Estimate (3)) and if the approximation spaces
{Xs}s>0 satisfy certain properties.
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Under Settings One and Two and with the same choice of discretisation
spaces, it has been proven! in [2] that there exists at least one solution U g € X5
to the constrained discrete minimisation problem (6). Additionally, for all § small
enough and any discrete minimiser ujg’eig that satisfies (ugyeig, uzig)LQ(Q) > 0, we
again have the error estimate

(8)

iy = b cigllizo) + Ollugiy — uheigllx 0 inf udiy —vsllx S 0% llugiglla o).

As before, this estimate can be improved if the exact constrained minimiser u};
possesses additional Sobolev regularity (in the sense of Estimate (3)) and if the
approximation spaces {Xs}s>0 satisfy certain properties.

The aim of this talk was to present results from a recent preprint [4] showing
that in contrast to the standard error estimates (7) and (8), improved convergence
rates can be obtained for the error between the discrete minimisers uj . and uj o,
and the (-,)x-best approximation in Xs of the exact minimisers ug,, and uf,.
Roughly speaking, denoting by Hgf , the (-, -) x-orthogonal projection operator onto
Xs, we will show that, under appropriate hypothesis, for each m € {0, 1}, each
pb € {src,eig}, and all § small enough it holds that

9) s ity = 103 w1 () < 67 [y, — T g L x,

where the exact rate ¢(m) depends on the choice of discretisation (finite element
or spectral) but is always larger than or equal to one and can even reach ¢(1) = 2.

While these results appear to be interesting, per se, independently of applica-
tions (for instance, as remarked in [1], the results for the eigenvalue problem belong
to the ‘Galerkin folklore’), they are motivated in the present case by our proposal,
based on a posteriori estimators, of near-optimal strategies for calculating the nu-
merical solution of a PDE to a precision fixed in advance. Non-linear periodic
eigenvalues problems such as Equation (2) with the plane-wave discretisation are
frequently encountered in quantum chemistry and electronic structure calculations,
and iterative algorithms to solve these problems — known as Self-Consistant Field
methods — are therefore particularly relevant. In this context, following and in con-
tinuation of what is proposed in [3], we propose in [5] new error-balance strategies
in order to achieve a given solution accuracy whilst minimising the computational
cost. Our strategy in [5] involves first performing a large number of iterations in
small-dimensional plane-wave bases (dealing with modes up to n with n <« N).
Subsequently, the dimension of the plane-wave approximation spaces is increased
in a controlled way to compute the higher modes of the eigenvector solution. The
fact that the numerical solution displays superconvergence to the projection of
the exact solution justifies this strategy. Indeed, performing a large number of
iterations on small discrete problems (thus with small cost) provides a numerical
solution whose low modes are very accurate. The additional iterations, in higher-
dimensional spaces, are then concentrated purely on the high modes (i.e. on the

1The spectral polynomial discretisation is not analysed in the cited reference but the argu-
ments are similar.
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orthogonal space to the first n modes). This results in a much smaller effective
spectral radius of the underlying iteration matrix which leads to very few itera-
tions being needed to attain the required accuracy. In [5], strategies are proposed
where only one iteration is required in the highest-dimensional space.
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Subspace Method based on Neural Networks for Eigenvalue Problems
XIAOYING Dar
(joint work with Yunying Fan, Zhiqiang Sheng)

Motivated by the work introduced in [1], we propose a subspace method based on
neural networks for eigenvalue problems with high accuracy and low cost. We first
construct a neural networks based orthogonal basis by some deep learning method
and dimensionality reduction technique, and then we use some classical method,
e.g., the Galerkin method, to discretize the eigenvalue problem in the subspace
spanned by the orthogonal basis, and then obtain the approximate solution.

We consider the following typical eigenvalue problem:

Lu= Au in Q,
u=0 on 01,
where the differential operator L := —V - (aV) + 8 and a = (ay;),; is symmetric
positive definite with a;; € Wh(Q)(i,j = 1,--- ,d), and 0 < 8 € L>(9).
The associate weak form of the eigenvalue problem above is as follows: Find
(A\,u) € R x HE(Q) such that b(u,u) = 1 and
(1) a(u,v) = Mb(u,v), Yv e Hy(Q),
where a(u,v) = (aVu, Vo) + (fu,v) and b(u,v) = (u,v).
Let V4, be a finite dimensional subspace of V. The finite dimensional discretiza-
tion of (1) is as follows: Find (A, up) € R x V3, such that b(up,up) =1 and

(2) a(uh,vh) = )\b(uh,vh), Yo € Vj,.
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We now set Vj to be the subspace spanned by some neural network based
functions ¢(x, 6):
p(x,0) = Ti1000 T, 0 000 Ti(x)
with
7Z(X) = ,Cthl(X) =W,-x+b,l=1,--- | L+1,

x € RL O = {Wy,-- ,Wri1,b1,-+- ,bri1}, Wy € RuX™-1 and b, € R™ are the
weights and bias of the [-th layer, n; is the number of neurons of the [-th layer
(ng =d,np+1 = M) and o(-) is the activation function.

M
We set unn(x;0,w) = > w(j)goj(x; ), w = (w, w® ... w®HT  Substi-
j=1
tuting uy n(x; 6, w) into (2) and choosing vy, (x) = ;(x;6), we get

M M
Y wWa(pj0) =AY wPb(ps, @), i =1, M.
j=1 j=1
We then obtain the following algebraic eigenvalue problem

A(0)w = AB(0)w,
where
A(0) = (alpi(x;0),05(x:0)))ij, B(O) = ((0i(x;0),0(x;0)))i; € RMM w e RM.

The problem is how to find the optimal 6. Following [1], we use some deep
learning method to find the optimal 6.

For this, we first define the loss function for computing the first k eigenpairs as
follows:

L(0,w) = Trace(Bl(uNNyl(x; 0,w1), - ,unnN,E(x;0,w))
A(U'NNl(X7 evwl)v o 7U'NN,k(X; 0) wk)))a

M
where unn i (x;6,w;) = > ng)gpj (x,0) is an approximation of the k-th eigenvec-
j=1

tor, and
A(unn 1y unng) = (a(unni, uny ;)i € RFF,
Bunn,is- - unnk) = (b(unni, unn,;))i; € RFE.
By fixing w = (w1,---,wy) to be w, we can then obtain the optimal 6* by

solving the following minimization problem

0" = argmin £(0, w).
0co

We now obtain the framework of our subspace method based on neural networks
for eigenvalue problems.
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e Initialize the neural network architecture, give and fix coefficients w.
e Obtain the parameters # by minimizing the loss function

0" = argmin L(0, w).
6co

e Construct an orthogonal basis from the trained neural networks based
functions by some dimensionality reduction technique.

e Find the Galerkin projection of the orginal eigenvalue problems in the sub-
space spanned by the orthogonal basis, and obtain the following algebraic
eigenvalue problem

Aw = A\Bw

with A and B the stiffmatrix and mass matrix, respectivley.

We have applied our method to solution of some typical eigenvalue problems in
2D, including the Laplace eigenvalue problem, the Harmonic oscillator problems,
and the Schrodinger equation for Hydrogen atom. For those examples, our method
can obtain approximate eigenpairs with the error of eigenvalues being below 107!
and the L2 norm and H'! norm error of eigenfunctions being nearly below 1077,
but with the required number of epochs ranging from 20 to 400.

Our method can in fact be viewed as a method combining the machine learning
with the classical methods. That is, first use the machine learning method and
model order reduction method to get some neural networks based orthogonal basis,
then calculate the Galerkin projection of the eigenvalue problem onto the subspace
spanned by the orthogonal basis and obtain an approximate solution, just like what
the classical methods do.

This talk is based on the work with Yunying Fan and Zhigiang Sheng[2].
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Error analysis for time-dependent variational approximation
CAROLINE LASSER

(joint work with Rémi Carles, Clotilde Fermanian-Kammerer, Marlis Hochbruck,
Christian Lubich)

We have considered the time-dependent Schrodinger equation

0 (t) = H(t)y(t), (0) = o
for a time-dependent, self-adjoint Hamiltonian operator H(t) and square integrable
initial data 9. We have explored the systematic construction of approximate
solutions in the context of the time-dependent variational principle. Choosing an
approximation manifold M, an approximate solution u(t) = ¥(t), u(t) € M, is
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sought by solving a linear least squares problem for the unknown time-derivative
8tu(t) (S 7;(,5)./\/1,

' — Hu(t)|| = min!
li0eu(t) = Hu(®)|| = min

The talk has focused on the following two guiding examples.

First example: Magnetic Schrodinger equation. The Hamiltonian operator
is of the form

H(t) = % (—ieVs — Alt,2))? + V(t,2))

with € > 0 a small semiclassical parameter. A(t,x) and V (¢, x) are smooth poten-
tials, which are of sublinear and subquadratic growth in x, respectively. The global
prefactor % in front of the whole Schriodinger operator accounts for the adequate
long semiclassical time scale. The initial data ¢ € L?(R?) are a semiclassically
scaled complex Gaussian wave packet. The variational approximation wu(t,x) is
a Gaussian wave packet of general covariance whose nonlinear parametrisation is
determined by the variational principle.

Second example: System-bath Hamiltonian. The Hamiltonian
H=H,+Hy+W(z,y)

acts on L?(R% xR%) with a smooth and subquadratic coupling potential W (z, y).
The variational approximation u(t, z,y) = u(®) (¢, z)u® (¢, y) is the time-dependent
Hartree approximation.

A posteriori norm analysis. Formulating the variational equation of motion in
terms of the orthogonal projector P,y onto the tangent space 7y ;) M as

i0u(t) = Py H(t)u(t),

a standard variation of constants argument provides the estimate

l[u(t) =¥ (@)l S/O 1P,y H (s)u(s)|| ds.

For a Gaussian wave packet with covariance of O(+/€), this estimate is O(y/€).
For the time-dependent Hartree approximation [2], it provides error bounds with
respect to first order derivatives of the coupling potential .

A posteriori observable analysis. For expectation values with respect to an
observable B, one has the error representation formula [3]

(B — By = /Ot < [U(s,t)BU(a s), Pj@H(S)RL(s)} >u(s) ds,

where U (t, s) denotes the unitary propagator for the Hamiltonian. The presence of
(a) averages and (b) commutators explains, that observable accuracy is typically
better than norm accuracy. For semiclassical Gaussian wave packets, observable
accuracy is spectacularly high [1], namely O(e?), which underpins the successes
of the approximation in real life molecular quantum dynamics simulations. For
the time-dependent Hartree approximation, the corresponding observable error
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estimate requires less Sobolev regularity of the approximate wave function than
the norm estimate.

Outlook. We have concluded the talk with the potential applicability of the pre-
sented error analysis to linear combinations of Gaussians, shallow neural networks
and general tensors.

Acknowledgment. This research has partially been funded by the Deutsche
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Quantum dynamics without the Born-Oppenheimer approximation
THOMAS BONDO PEDERSEN

(joint work with Ludwik Adamowicz, Hakon E. Kristiansen, Simen Kvaal,
Caroline Lasser, Simon E. Schrader, Aleksander P. WozZniak)

The development over the past 2-3 decades of experimental techniques to gen-
erate laser pulses with duration down to a few tens of attoseconds has opened
exciting new opportunities in materials science and atomic and molecular physics
and chemistry. The enormous potential for groundbreaking discoveries is reflected
in the 2023 Nobel Prize in Physics awarded to Agostini, Krausz, and L’Hullier
for their pioneering efforts in the experimental and theoretical developments un-
derpinning modern ultrafast science. Attosecond laser pulses not only allow us
to “see” the dynamics of electrons in real time, they may eventually allow us
to steer molecular dynamics and chemical transformations by controlling the force
field that drives nuclear motion. Achieving this goal, however, requires substantial
efforts aimed at reliable simulations of molecular quantum dynamics.

Computing the molecular quantum dynamics during and after interaction with
an attosecond laser pulse poses a range of challenges that go well beyond the cur-
rent state of the art in quantum chemistry, including breakdown of the adiabatic
Born-Oppenheimer approximation and the virtually unavoidable presence of ion-
ization and chemical bond-breaking fragmentation processes. This talk describes
our ongoing efforts to address these challenges [1, 2, 3, 4, 5, 6, 7].

Essentially all approaches to nonadiabatic molecular dynamics start from the
clamped-nuclei Born-Oppenheimer approximation and the associated potential-
energy surfaces. Such an approach is, however, not generally well-defined for



Mathematical Methods in Quantum Chemistry 641

charged particles interacting with a time-dependent external field and, conse-
quently, we decided to treat electronic and nuclear degrees of freedom on an equal
footing without invoking the Born-Oppenheimer approximation at any stage.

We thus consider the time-dependent Schrédinger equation for a molecular sys-
tem interacting with an electromagnetic field. To simplify the problem somewhat,
we invoke the electric-dipole appoximation to describe the interaction of the elec-
trons and nuclei with the field, which allows us to separate the center-of-mass
motion from the internal dynamics for an electrically neutral system (beyond the
electric-dipole approximation, the center-of-mass motion is coupled to the field,
complicating the treatment significantly). Choosing the internal coordinate sys-
tem to be parallel to the laboratory frame with origin at a reference particle
labelled 0, the nonrelativistic internal Hamiltonian becomes (using atomic units
throughout)

(1) H= Z(sz qoq®)+z<qlqj+pj\§;)+E qu,

1<g Y i=1

where F(t) is the laser field in the electric-dipole approximation.

Inspired by decades of work on solving the time-independent molecular Schro-
dinger equation with high accuracy without invoking the Born-Oppenheimer ap-
proxiation [8], we expand the n-body wavefunction in a basis of explicitly correlated
Gaussian wave packets,

(2) o(r;a(t) = exp (—(r—q)"C(r —q) +ip" (r — q)) ,

where the complex symmetric width matrix C = A +iB, A > 0, and the center
q and momentum p are considered time-dependent parameters collected in the
varable a(t). These functions form a complete basis of L?(R3") such that the
molecular wavefunction can be expressed as

3) U(r,t)="P Z ¢(r; i (t))ei(t),

where P implements the required permutational symmetries to obtain a definite
pre-defined spin state while obeying the Pauli principle. We have shown numeri-
cally that remarkably few Gaussians are required to accurately represent compli-
cated dynamics induced by violent laser pulses, at least for low-dimensional (1d
and 2d) systems [2, 4].

The parameters M (t), a;(t), and c¢(t) can in principle be determined from
the Dirac-Frenkel variation princple. This approach, however, is notorious for
its numerical instability (the Gramian of the tangent manifold quickly becomes
ill-conditioned, even for rather simple model simulations). To circumvent this
issue, we instead use Rothe’s method [9]. We first invoke the Crank-Nicolson dis-
cretization in time only, which provides us with an equation for the wavefunction
at time ¢;11 in terms of a known wavefunction at time ¢;:

(4) AWy =Alw, A =1+ i%H(ti + At/2).
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We then use the expansion 3 for ¥, and determine the parameters by variational
minimization.

The talk contains numerical examples taken from [5, 6, 7], highlighting both
pros and cons of the approach, including an unforeseen difficulty arising from
potential-energy operator singularities and the associated cusp conditions on the
wavefunction [5], which we bypass by regularization. Finally, the problem of deter-
mining molecular structure from non-Born-Oppenheimer calculations is discussed
on the basis of [3].
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Planewave approximations for quantum incommensurate systems
HuaJjie CHEN
(joint work with Daniel Massatt, Ting Wang, Aihui Zhou, Yuzhi Zhou)

Low dimensional materials have attracted extraordinary level of interest in the
materials science and physics communities due to the unique electronic, optical,
and mechanical properties. In particular, when two layers of 2D materials are
stacked on top of each other with a small misalignment (such as a twist), they
produce incommensurate moiré patterns. It is of great importance to study these
structures from a theoretical and computational point of view. The conventional
method for simulating the incommensurate systems is to construct a supercell
approximation with artificial strain, which then allows for the use of Bloch theory
and conventional band-structure methods. However, these approaches are usually
computationally expensive, as one may need extremely large supercells to achieve
the required accuracy.
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This work [3] studies the density of states (DoS) and local density of states
(LDoS) of a linear Schrodinger operator for incommensurate systems from the
mathematical perspective. We focus on the following Schrodinger operator for a
bi-layer incommensurate system

1
H:= —§A+vl + vg,

where v; : R? — R (j = 1,2) are smooth and periodic functions with respect to
two incommensurate lattices.

The first issue is that a quantitative characterization of the DoS of the Schro-
dinger operator for incommensurate systems is missing. In [1], the property of the
integrated DoS was studied for one-dimensional almost-periodic systems. In [2],
the DoS was introduced in the weak sense within the tight-binding models. These
works on DoS can not be directly generalized to continuous models with arbitrary
dimensions. The DoS and spatial LDoS of the Schrédinger operator H are written
as

D(E)=Tr(6(E—H)) and  D(E;z)= (z|6(E— H)|z)

for E € R and = € R? respectively. To make the objects numerically tractable,
we consider the problem in the weak sense [3], and provide rigorous justifications
of these objects. Although the linear Schrédinger operator has a simple form,
the lack of compactness, broken translation symmetry, and continuous nature of
the operator make it difficult to address the above objects of an incommensurate
system. To handle these problems, we use the spectral theory to study g(H):
While g(H) is not a trace class operator, it can be decomposed into a discrete
collection of trace class operators.

The second problem is how to efficiently evaluate the (well-defined) DoS and
LDoS of an incommensurate system. In [4], the Hamiltonian was discretized by
a planewave basis set with a brute cutoff, and the DoS was approximated by the
resulting eigenvalues. This type of approach essentially transfers the low dimen-
sional incommensurate problem into a high dimensional periodic problem, which
is expensive most of the time and converges slowly with respect to the planewave
cutoff. In this work, we propose an efficient numerical scheme [3] based on our for-
mulation of DoS in reciprocal space. In particular, we approximate the reciprocal
LDoS within a planewave framework and then evaluate the DoS via a trapezoidal
rule. We further improve the heuristic planewave method in [4] by introducing
a novel cutoff scheme. In particular, we split the cutoff of wave vectors in the
high dimensional reciprocal space into two directions: one increases the planewave
frequency while the other one traverses the reciprocal space. A key observation
is that the errors of the planewave approximations decay at completely different
speeds as the cutoff increases along the two directions. Therefore, we truncate the
wave vectors in the two different directions with different cutoffs, such that the
cutoff for high frequency direction can be much smaller. We provide a rigorous
numerical analysis [3], as well as numerical simulations of some typical incommen-
surate systems, to show the efficiency of our algorithms.
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Momentum Space Algorithm for Electronic Structure of
Double-Incommensurate Trilayer Graphene

DANIEL MASSATT
(joint work with Kenneth Beard)

Moiré 2D materials are highly tunable through variables including twist angle,
species of layers, and number of layers. Various configurations lead to useful phys-
ical phenomena and possible applications, including many-body physics such as
correlated insulators and superconductivity. To understand many-body models,
a careful single-particle model must first be constructed. For example in twisted
bilayer graphene, the Bistritzer-MacDonald model [1, 2, 3] is frequently used as a
starting point for modeling magic-angle physics, where exotic correlated physics is
observed such as correlated insulators, superconductivity, and the fractional quan-
tum hall effect. More complex geometries including double-incommensurate tri-
layers, however, become difficult to accurately quantify even in the single-particle
regime. Correlated physics including superconductivity is observed in double-
twisted trilayer graphene, making an efficient algorithm for computing electronic
behavior in the single-particle regime critical for understanding correlated physics
of trilayers.

In this work, which is in preparation, we present a momentum space algorithm
for computing observables for double-incommensurate trilayer graphene with rig-
orous error analysis compared to the real space tight-binding model including the
density of states and the momentum local density of states (LDoS). The momen-
tum LDoS of a Hamiltonian H with momentum basis |k) is given by

(1) De(k, E) = (k|o<(E — H)|k).

Here d.(-) is a normalized Gaussian with standard deviation €. € can be considered
a spectral resolution parameter. The smaller € is chosen, the higher the resolution
of the spectral information. Our proposed algorithm involves transforming into
momentum space as done in [4], where the Hamiltonian becomes a lattice model
describing cattering channels, we denote H (k). However, H (k) has a 4-dimensional
degree of freedom space, and when truncated by a parameter L, the computational
cost for computing momentum LDoS scales as O(L*) using sparsity of H(k) and
the Kernel Polynomial Method for computing (1). It is observed that convergence
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is poor. Our analysis indeed indicates it scales as p(e~1)e™*7" for some v > 0 and
a polynomial p(-). We introduce a two-truncation scheme where one truncation
focuses on k remaining close to the K-point of graphene, i.e. where graphene Dirac
cones are featured, and the second parameter controlling the number of scatterings
admitted. If the approximate momentum LDoS is called D7 (k, F), then we have
the following convergence for twisted trilayer graphene:

@ ID.(k, B) = DyE(k, B < ple)(eE 4+ 7).

We require the following assumptions for this result: interlayer coupling is suffi-
ciently weak, (k,E) are near the Dirac point of graphene, and the twist angles
are small. Further, if 6 is the largest twist angle, v/ = O(#~!), resulting in rapid
convergence in r. This allows computation costs to scale as O((L log L)?) instead
of O(L*) for the same accuracy results of the previous algorithm.

This algorithmic technique can be generalized to other observables including
density of states and conductivity for trilayers. A natural follow-on question is
whether an efficient single-particle basis can be constructed to develop many-
body models, as many-body models are significantly more expensive to use in
computations than single-particle models. Here the single-particle model still is
already computationally intensive unlike the twisted bilayer graphene momentum
space models.
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Using Moreau—Yosida Regularization in Density-Functional theory
ANDRE LAESTADIUS

(joint work with Markus Penz, Mihaly A. Csirik, Michael F. Herbst,
Vebjorn H. Bakkestuen)

Moreau-Yosida (MY) regularization was introduced to density-functional theory
(DFT) by Kvaal et al. in 2014 [1]. Let f: X — RU {400} be convex and lower
semicontinuous, then the MY regularization of f with parameter £ > 0 is given by

, 1
1) $e(o) = inf (1000 + gcllr =l ).
Here X is (at least) a reflexive, strictly convex Banach space. We let X* be the
potential space, dual to the density space X. We denote by J : X — X* the
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(normalized) duality mapping given by
J(p) ={v e X*||pllx = l[vl%- = (v, )}

The unique minimizer of Eq. (1), denoted p. and called the proximal point of p,
satisfies the stationarity condition

(2) af(pe) + %J(p6 —p)30.

In Eq. (2) we have used the fact that 9(||pl|%/2) = J(p) with @ denoting the
subdifferential, i.e., df(p) is the subdifferential of f at p given by

9f(p) = {ve X7 fo) = f(p) + {v,0 = p)}.

In Kohn—Sham (KS) DFT we use the particle density p to describe a system of
N electrons modeled by the Hamiltonian

HMv) =T + AW + V(v)
= Hp + V(v),

where ) is a nonnegative coupling constant, T = —% Z;V:1 Az, the kinetic energy
operator, W = %Z#k |z; — x|~" the electron—electron interaction term, and
Viv) = Z;V:lv(xj) the external potential operator specified by v : R® — R.
We let the interacting ground-state energy of a system described by the external
potential veys computed from H A(v) with A = 1 and v = veyxy be denoted by
E(v). Similarly, we denote by Fxs(vks) the non-interacting ground-state energy
computed from ﬁ)‘(v) with A = 0 and v = vkg. From this set-up we define
two convex and lower semicontinuous density functionals and their corresponding
energy minimization

F(p) = sup,ex- (E(v) — (v, p))
E(v) = nfpex (F(p) + (v, )

(
E

Fxs(p) = sup,ex- (Exs(v) — (v, p))
ks(v) = inf e x (Fks(p) + (v, p))

The idea of KS DFT is then to find an effective potential vkg such that E(vext)
and Exs(vks) share a minimizing density pgs, i.e., that pgs is both a ground-
state (gs) particle density of the physical system (A = 1) and the non-interacting
KS system (A = 0). In a typical forward KS calculation, both pgs and vks are
unknown and an iterative scheme is employed that relies on approximating the
exchange-correlation energy Fy.(p) = F(p) — Fks(p) — Eu(p), where Ex(p) is the
direct Coulomb energy (Hartree energy).

A potential useful practical application of MY regularization is that it provides
a framework for performing density-potential inversion within an exact mathemat-
ical structure. Obtaining the effective potential vkg from the interacting ground-
state density pgs is in the literature referred to as an inverse KS procedure. Now,
assume that we are given a pgs of an interacting system described by vext, which
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means that —vexy € OF(pgs). The main assumption in the KS approach is that
there exists an effective potential vkg such that

—VUKS € QFKS(pgs) # .

Combining this assumption with that stationary condition of the proximal point
of pgs, Eq. (2), we obtain [2]

1
(3) UKs = eh_{% gJ((PgS)s — Pgs)-

Equation (3) thus allows us to compute the effective KS potential using the simpler
functional Fkg (that neglects the difficult interaction part coming from W) given
that
(i) we have knowledge of pys,
(ii) pgs is indeed non-interacting v-representable, i.e., 9Fks(pgs) # 0, and
(ili) we have an efficient way of computing the proximal point (pgs)e and the
limit in Eq. (3) numerically.

Regarding the last point, (iii), we are currently working on an implementation in a
periodic setting (X = Hp_elr) such that we can evaluate vkg numerically employing
a plane wave basis [3]. In this particular setting J(p) = G* * p, where G*(z) =
(4r|x|)~te#=l is the Yukawa potential (with parameter p > 0). It is an open
question how well the above described MY inverse KS approach can be used to
determine vkg for physical systems.

This work has received funding from the ERC-STG-2021 under grant agreement
No. 101041487 REGAL.
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A geometrical formulation of the Hohenberg-Kohn theorem on lattices
ROBERT VAN LEEUWEN
(joint work with Markus Penz)

We give a geometrical perspective on spin-lattice density-functional theory (DFT)
based on references [1, 2, 3] in which we closely follow the notation of [3]. Our
main result will be an entirely geometrical formulation of the Hohenberg-Kohn
(HK) theorem on lattices.

We consider putting N spin—% particles on M > N/2 sites. The corresponding
one-particle Hilbert space is thus C** which gets promoted into the N-particle
Hilbert space H = (C*)"N by an N-fold antisymmetric tensor product. We
denote a lattice index by i € {1,..., M} and a spin index by « € {1, ]} and employ
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shorthand notation for index tuples, i = (i,«). We use the usual fermionic
creation and annihilation operators &Ia,&m of the spin-lattice basis and write
Pia = &Zadm for the number (density) operator and denote p; = pi+ + piy. We
then consider the general class of Hamiltonians

(1) IA{v = IA{O"’ZUvﬁz

where ﬁo is a fixed Hamiltonian and v = (vy,...,vp) represents an external
potential. We will take Hy to be of the general form

(2) Ho =" hiajp dlya8 + W,
ij,a8
where W is a general two-body interaction [1, 3] and h a Hermitian matrix. To
Hy we can associate a graph in which we we say that i and j3 are connected (or
adjacent), written i ~ j3, whenever hiq, ;g # 0.
The usual density, p; = (p;), as site occupancy naturally allows p; € [0, 2], due
to the antisymmetry of the wave function and the possibility of filling two different

spin channels. Additionally, we have the normalization to the number of particles
N,

(3) Z pi = N.

We thus define the density set
(4) D:{pERM|0§pi§2,Z‘pi:N}

for standard lattice DFT with spin—% particles. This results in a doubly scaled
(M, N/2)-hypersimplex for p; if N even. If N odd the density space for p; is
slightly more complex, but it is always described by a (M — 1)-dimensional convex
polytope. If the particles are assumed spinless instead, the restricting inequality
is 0 < p; < 1 and the resulting shape is a (M, N)-hypersimplex [1]. For each v € V
we now define the ground-state energy functional

(5) E(v) = igf(Hﬁq,,

where the variation extends over all ¥ € H normalized to 1. This functional is
concave in v because of linearity in v and the properties of the infimum. Another
immediate result is that this infimum is realized by some (or rather many) ¥ € H
since the variation domain is compact in the case of a finite lattice. One could thus
equally write ‘min’ instead of ‘inf’. The respective optimizer is then a ground-state
wave function for H,.

If for a given p € D there is further a potential v € V such that the density is
achieved by the corresponding (possibly ensemble) ground state of H, then one
calls this density v-representable. This is a subtle notion, but it can be proven
that all densities from the interior of D are v-representable, while only a certain
few densities on the boundary of D have this property [4, 1, 2]. Importantly, this
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notion depends on the choice of Hy that then also determines which boundary
densities can be reached.

The theoretical basis for DFT is the convex universal density functional that
can be defined on D as the density-matrix constrained-search functional [1]

(6) F(p) = inf TrH,TI.
T'—=p

Here, variation is over all density matrices that yield the given density p. The
ground-state energy for a given v € V is then

(7) B(v) = inf TeHLT = inf {F(p) + (v,p)}

In other words, E(v) is the Legendre—Fenchel transform (with non-standard sign
convention) of F(p) and concave as such. The back-transformation then gives
F(p) again,

(®) F(p) = sup{E(v) = {v. )}

The optimum in Egs. (7) and (8) is attained where the (concave or convex) func-
tionals allow a zero tangent functional. Here, a tangent functional to a convex
functional f at p € D is any v € V such that f(p') > f(p) + (v,p’ — p) for all
p' € D. For concave functionals the inequality is reversed. Further note that
if f is non-differentiable at p, i.e., it has a kink, the tangent functional is non-
unique. The set of all tangent functionals to a convex functional f is called the
subdifferential, written 9f(p). With f(p) = F(p) + (v, p) we have

(9) 0€df(p)=0F(p)+v <« —veIF(p)

as a condition for v € V being a maximizer in Eq. (8) and thus fulfilling F(p) =
E(v) — (v, p). But this conversely implies E(v) = F(p) 4+ (v, p) and so this p € D
is the minimizer in Eq. (7) and equivalently an element in the superdifferential of
the concave E(v),

(10) p € OE(v).

So the above relation tells us that p is a ground-state density for v. The ground-
state density can be non-unique if degeneracy occurs for the chosen v and this
phenomenon will lead us to the next, important definition.

We define a degeneracy region D(v) C D as the set of densities coming from
all (ensemble) ground states of the Hamiltonian H, with a v € V that facilitates
ground-state degeneracy. By what has been said above, it is equal to the superdif-

ferential of the concave ground-state energy functional E(v),
) Dw)={peD|T+ p, TtH,T = E(v)}
=0E(Ww)={peD|W eV: Ev)<EW) + @ —uv,p)}.

A density region consists of v-representable densities (by definition) and it is al-
ways convex and closed. When the density variable does not contain any spin



650 Oberwolfach Report 15/2025

information, degeneracy can be such that it only affects the internal spin degree-
of-freedom and is thus not expressed in the density alone. Then D(v) remains a
single point and we call the degeneracy ‘internal’.
Finally, we need to highlight that even though we presented these notions within
a specific spin-lattice DF'T setting, they hold quite generally, even for the infinite-
dimensional continuum setting. Details about the proof and the intricate shape of
density regions can be found in our study on the geometry of degeneracy [2]. We
here summarize the results of [2]:
(1) If two density regions D(v) and D(v’) intersect then D(v) N D(v’) is either
a single ground-state density point or a density region itself. In both cases
it results from all potentials that are a convex combination of v and v’.
(2) If a density region D(v) touches the boundary of D then this density point
results from all potentials that lie on a ray that extends from v to infinity.
(3) All densities that are not on the boundary of D are v-representable. Den-
sities on the boundary of D need to be part of a degeneracy region in order
to be v-representable. All v-representable densities that are not described
by (a) or (b) are even uniquely v-representable.

We are thus in the position to formulate a purely geometrical HK theorem: All
ground-state densities that are not on the boundary of the density domain and that
are not at the intersection of degeneracy regions are uniquely given by a potential.

Examples for all mentioned situations (a)-(c) can be found in our previous works
on the topic [1, 2, 3] and seemed to have been overlooked previously as counterex-
amples to the HK theorem.
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Approximate normalizations for approximate density functionals
KIERON BURKE
(joint work with Kimberly Daas)

It is a truth universally acknowledged that any density functional calculation
should yield a density that integrates to the number of electrons in the system.
No matter how little is known about the functionals involved, this truth is so
well fixed in the minds of practitioners that the normalization step passes almost
unnoticed [2]. In the sixty years since the foundational papers, it has never been
questioned that, even when minimizing an approximate energy functional, the best
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normalization constraint is to require that the density integrates to the number of
electrons in the system.
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FIGURE 1. Bottom: Red is the TF density, green the exact den-
sity, and blue the normalization-corrected density for N = 5. Top:
Percent errors for the corresponding energies, obtained by evalu-
ating the TF functional on the densities.

In our work, we question this assumption by showing that approximate normal-
izations, defined as,

(1) /drn(r):]V:N—i—AN

derived from asymptotic considerations, yields better energies for approximate
functionals. Let us start with a simple example: N non-interacting, spinless elec-
trons in one dimensional box with hard walls, i.e. the infamous particle(s)-in-a-box
with v = 0 and L = 1. Fig. 1 compares three approximations for the energy F(N).
The first is the standard Density Functional Theory (DFT) treatment, where n(z)
is found by self-consistently finding the minimum of an approximate density func-
tional, i.e. n(x) = N. In this case, we use the Thomas-Fermi energy [3, 4], which
only contains the leading-order term in the large N expansion. This energy is
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given by E (N), and visualized in red in the top panel, with its density in the bot-
tom panel. The TF functional evaluated on the exact density is shown in green
and is defined as Fq(N). The blue curves come from our normalization-corrected
functional,

(2) Ewe(N)=E(N), N=N+AN.

where AN = 1/2, outperforms the other two approximations for all N. Thus,
for this 1D case, ignoring the density oscillations yields a better energy than ac-
counting for them and has the advantage of staying within the family of densities
belonging to the TF functional, called the foliation of its graph space [5]. For a box
or cavity, the TF densities are constants, and our correction yields the constant
that best approximates the bulk, at the expense of the edge.

For one-dimensional systems, this normalization correction can be derived from
WKB theorem by carefully keeping track of the Maslov index. In higher dimen-
sions, we can use Weyl asymptotics [6, 7] to obtain exact information about the
energy levels for many Hamiltonians, e.g. cavities [8]. Weyl asymptotics state that

(3) E(N)=C N'*2/d L cuNFYd o

where C and C5 depend explicitly on the geometry of the cavity. In all of the
studied cavity problems, in both 2 and 3 dimensions, the normalization correction
improves massively on the TF energy and the density-corrected analogue. The
results for N = 100 and N = 1000 for the 2D and 3D cavity problems can be
found in Table 1.

N | E(N) E(N) Ene(N) = E(N)
100 | 11,408 | 10,000 (-12%) | 11,378 (-0.3%)
1000 | 1,042,850 | 1,000,000 (-4%) | 1,042,608 (-0.02%)
100 | 5141 3633 (—29%) 5039 (—2%)

1000 | 198838 | 168647 (—15%) | 197873 (—0.5%)
TABLE 1. Exact and approximate energy values for the 2D circu-
lar cavity of radius one and 3D box with incommensurate edges

1xV2x .

2D

3D

There exists no general recipe to find the normalization correction for general
3D cases, but for a few select systems the asymptotics are known. Indeed, for
these cases our normalization correction is given by

(4) E(N) = AN?, AN = BN".
1—d

A key feature is that g is just a simple function of the dimensions (d), ¢ = ~3°,
unlike p, A, or B. Moreover, the sign of B is related to the sign of the divergences
in the potential, intuitively correcting the error of the TF density in the bulk.
For the noble gas dimers, a correction of AN = —3(14co) ' N?/? with ¢y =
0.769745 . .. gives a percentage error of 1.5%, which is 10 times better than the
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TF functional. The same high accuracy is found for the Bohr atom [9, 10, 11],
which consists of non-interacting fermions (singly) occupying hydrogenic orbitals.
Two different normalization corrections were used, one mimicking the interacting

32

example (Z = N > 1 with AN = —1—1]\[%) and one mimicking the non-interacting
32

examples (Z =1 and N > 1 with AN = —%N%). The former is found to be

more accurate, even outperforming the Scott correction [12] by almost a factor of

10 for N = 55.

Lastly, we look at the LDA exchange energy, which can be understood as an
infinite box, analogously to the TF calculation of Fig. 1. We take an optimistic
leap and assume that similar forms as Eq. 4 apply, so that we can multiply the
density by 1 + AN/N, with AN = BN?/3. This yields

(5) EEPA(NC) = (1+ B/N'/3)V/3ELPA,

We have chosen B = 0.125 by eye, which gives PBE-like [13] accuracy for large
atoms, mirroring the improvements for the total energy of the previous examples.

In the future, there are many variations of our correction that could be applied
to approximate Exchange Correlation functionals, not just the LDA one we derived
here. The normalization-correction is also easy to implement for all the cases we
have discussed. In the future, we will derive the exact normalization correction to
any Exchange Correlation functionals and derive an exact machinery for general
3D Coulombic systems. Lastly, energy differences and density-dependent quanti-
ties should be studied as well, such as the ionization energies, electron affinities,
or dipole moments. These investigations will shed some light on whether these
corrections work only for the total energy or whether these are general corrections
for any important quantity.
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A New Algorithm for Large-Scale Self-Consistent Field Calculations
FRANK NEESE

The vast majority of computer time that is spent world-wide on quantum chem-
ical investigations undoubtedly goes into the solution of the self-consistent field
(SCF) equations. In form of the Hartree-Fock (HF) method, the SCF solution
forms the basis for subsequent electron correlation calculations. However, a far
more prominent use of the SCF method is the solution of the Kohn-Sham (KS)
equations in the framework of density functional theory (DFT). From a mathe-
matical point of view, the KS and HF equations are closely related. They both
have the identical one-electron part and Coulomb interaction. In the HF method,
there furthermore is the exact exchange term that in KS is either absent or added
in fractional form in hybrid functionals. Instead of the exchange term, KS features
an exchange correlation (XC) potential the precise form of which varies with the
specific approximation used. Since the precised form of the XC potential con-
tains complicated fractional powers of the electron density, it is usually handled
by numerical integration techniques.

In terms of scaling with systems size, the one-electron term scales cubically
(O(N?)) due to the presence of the electron nuclear attraction term which is a
long-range Coulomb interaction. With proper thresholding techniques, the com-
putational effort can be brought down to O(N?). The pre-factor for this term is
very small and in addition, these integrals only need to be calculated once in each
SCF while all other terms need to be recomputed in each SCF iteration given the
nature of the SCF equations. The exchange correlation potential is readily reduced
to O(N) scaling in numerical integration. Making use of the Gaussian product the-
orem (GPT) and Kohn’s conjecture, it is readily seen that the calculation of the
exact exchange term has an asymptotic O(N) scaling provided suitable thresh-
olding techniques are used. This leaves the Coulomb term as the most-expensive
contribution of the Fock (Kohn-Sham) matrix with a large pre-factor and O(N?)
scaling.

The Coulomb contribution to the KS matrix represents a quasi-classical interac-
tion between an electron in a basis function pair (pq) and the entire electron density
(p). The pre-factor of this term can be drastically reduced (up to two-orders of
magnitude) by the so-called “resolution of the identity” (RI) approximation. In
this approximation, products of basis functions are expanded in terms of a fixed,
atom centered auxiliary basis (AUX). The coefficients for the expansion are deter-
mined by minimizing the self-repulsion of the error made in the approximation.
This provides a lower bound to the true Coulomb energy and saves computer time
because expensive and numerous four-index repulsion integrals over basis function
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quadruplets are replaced by much cheaper and less numerous three-index repulsion
integrals of basis function pairs and one auxiliary function. The error of the RI ap-
proximation is typically significant (up to mEh in larger molecules) but extremely
smooth such that energy differences remain very accurate.

In order to reduce the scaling of the Coulomb term to O(N), it is customary
to employ multipole methods. Specifically, the fast multipole method (FMM)
has gained significant popularity. In this method, real space is divided into boxes.
Each box consist then of smaller and smaller sub-boxes up to a pre-defined “depth”.
The algorithm then proceeds by calculating the multipole moments of the electron
density inside each box and then a translation of these multipoles from each sub-
level box to the next higher-level box in the hierarchy. The interaction of a given
shell pair with the box multipoles then proceeds by the multipole approximation
to the integrals that is terminated at a pre-determined angular momentum LMAX
provided that a “well-separatedness” (WS) criterion is met. The totality of all
interactions handled by the multipole approximation is called “far field” (FF)
while the remaining interactions belong to the near-field (NF). Since the NF of
a given shell pair typically consists of only next neighbors of which there is an
asymptotically constant number for a given shell pair, the calculation of the NF
is linear scaling. The FF calculation is then readily shown to be linear scaling as
well since it involves a very small number of matrix multiplications to evaluate the
multipole interactions.

The FMM method is known to work very well and provide results of high
accuracy. However, the boxing algorithm is somewhat problematic since it will
arbitrarily cut through chemical bonds or atoms and the distribution of box content
might vary drastically over the volume of a molecule. In addition, the content of
the boxes will depend on the orientation of the molecule thus potentially leading
to slightly rotationally non-invariant results.

In our work, we have developed a variant of the FMM method that avoids
some of its pitfalls of the FMM method. In our method, called the “Bubblepole
approximation” (BUPO) instead of boxes, a hierarchy of spheres is introduced.
These spheres contain shell pairs or auxiliary functions in a way that the boundary
of the spheres fully encloses the shell pair or AUX function. The spheres are chosen
such that shell pairs with close lying centers are grouped together in one “bubble”.
This is accomplished by a Kmeans algorithm. This leads to a very even distribution
of shell pairs among bubbles and also to a very natural NF / FF division since no
leakage of probability amplitudes or electron density out of the bubbles can occur.
We demonstrate that this leads to a linear scaling approximation to the Coulomb
term that has a small pre-factor and outperforms traditional algorithms for large
molecules. Calculations with thousands of atoms and up to 50000 basis functions
have been performed on modest hardware with this algorithm.

The BUPO algorithm together with linear scaling approximations to the ex-
act exchange as well as linear scaling numerical integration algorithms for the
XC terms leads to fully linear scaling Fock matrix construction algorithms that
form the basis for highly efficient SCF calculations on large molecules such as
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whole solvated proteins, DNA fragments or solids (in conjunction with embedding
techniques).

The algorithms are implemented in the freely available large-scale quantum
chemistry program suite ORCA.

REFERENCES

[1] F. Neese, P. Colinet, B. DeSouza, B. Helmich-Paris, F. Wennmohs, U. Becker, The “Bub-
blepole” (BUPO) Method for Linear-Scaling Coulomb Matriz Construction with or without
Density Fitting, The Journal of Physical Chemistry A 129, 10:2618-2637

Toward optimal-scaling (stochastic) density functional theory
MICHAEL LINDSEY

Stochastic density functional theory aims to achieve linear computational scaling
with respect to the number of grid points or basis functions, independent of the
number of electrons. To achieve such optimal scaling, stochastic DFT constructs
the electron density using a stochastic estimator that avoids the explicit forma-
tion of orbitals. We advance the first mathematical theory of stochastic DFT
in the simplified setting of the Hartree approximation. By viewing the method
through the lens of mirror descent, we establish a convergence result validating
such near-optimal scaling at arbitrary temperature, in both the complete basis set
and thermodynamic limits. Implications for more general DFTs are discussed.
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A posteriori error estimates for LCAO basis
Mi-SoNG Dupuy
(joint work with Genevieve Dusson, Ioanna-Maria Lygatsika)

To compute properties of an electronic system using Kohn-Sham density functional
theory, it is customary to first solve a nonlinear eigenvalue problem for (v;)1<i<n €
HY(R?)

N

1 . .

(—§A + V[P[‘I/O]]KS> U =M, i=1,...,N, with pgo=2Y [¢].
i=1
The potential VS is the sum of
e an external potential Ve, = — Zle Lf—ﬁﬂ where (Ry)1<k<k are the po-
sitions of the nuclei and (Zj)1<k<x their charges.
e an exchange-correlation potential.
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Three types of errors can occur in numerically solving this equation:

e modelling error: the exact exchange-correlation potential is not known,
thus its choice induces an error;

e algorithmic error: the equation is nonlinear and is solved iteratively;

e discretisation error: the nonlinear eigenvalue problem is solved using a
Galerkin subspace yielding an error.

The main purpose of this work [1] is to investigate the a posteriori error estimates
for the discretisation error that are efficient to compute and suited to Gaussian
basis sets widely used in quantum chemistry.

We focus the analysis to linear Schrodinger type operators of the form

1 K
A:—§A+;Vk+o,

where Vj, are radial potentials centered at Ry and o is a constant such that A
is coercive. The Galerkin subspace formed by the Gaussian basis sets are of the
form {(Xa;e;m; (- — R1))s- -+, (Xast;m; (- — Ri))} where each xqem is the product
of a polynomial and a gaussian function. A priori analysis of the approximation
by Gaussian basis sets are scarce in the mathematical literature [2], which pushes
the need of an efficient adaptive scheme.

For a posteriori error computation for source or eigenvalue problems, dual norms
of the form (v, A=1v) have to be computed, which is costly. The main idea of our
work is to introduce a partition of unity (pg)i<rk<x+1 where the first K functions
have support on balls centered at Ry, to estimate the dual norm by

K+1
(v, A7) <C > {(Vprv, AL /prv),
k=1

with A = —%A + Vi with domain HZ() (except k = K + 1, V41 = o and
Ak 41 has domain H2(R?)).

The right-hand-side involves the inversion of radial operators which is cheap in
practice.
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FIGURE 1. Test of the a posteriori bounds for one-dimensional
(left) and three-dimensional (right) problems
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The error estimator has been tested on one-dimensional and three-dimensional
model showing promising results (see Figure 1).

The method can also be used to adaptively tune the basis set. Since the es-
timator is split between each nucleus (and an extra term), we can identify on
which atom it may be better to refine the basis. This has also been tested in
one-dimensional and three-dimensional models showing good results.

The next stages would be to design a practical error estimator for other elec-
tronic properties, like forces.
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Fully guaranteed and computable error bounds on the energy for
periodic Kohn—Sham equations with convex density functionals

GASPARD KEMLIN

(joint work with Andrea Bordignon, Genevieve Dusson, Eric Cances,
Rafael Antonio Lainez Reyes, Benjamin Stamm)

In this talk, we considered a DFT energy functional of the form

(1) E(y) = Tr(hy) + F(py),

where h is the core Hamiltonian and p, the electronic density. This is the proto-
typical form of energy in density functional theory, where

F(p) = %D(p, p) + Exc(p),
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with D the Coulomb interaction-energy while F\. is the exchange-correlation en-
ergy. For a molecular or material system with Vo electrons without spins, we
seek to minimize this energy over the manifold of all density matrices v such that
Tr(y) = Ne, that is to say the manifold of orthonormal projectors of rank Ng
with finite kinetic energy. Writing the first order condition yields the famous
Kohn—Sham equations

H, ¢:=Ndi, i=1,...,Na,
<¢l’¢]>:6l]7 iaj:]-a“'yNelv

Ne1
v = 1) (il-
=1

These equations take the form of a nonlinear eigenvector problem, where H,_ is
the effective Kohn—Sham Hamiltonian. They are typically solved through fixed-
point like iterative procedures known as SCF iterations. After discretization in an
appropriate finite dimensional subspace Vy of dimension N (such as planewaves,
finite element or localized atomic orbitals bases) the algorithm reads, in its simplest
form,

(2)

(HNHpW . HN) Gi,Nym+1 = N, Nm+19i,N,m+1, @ =1,..., Nel,

3) (i, Nm+1, Pj,Nm+1) = 045, 4,7 =1,...,N,
Nel

YN m+1 = Z |Bi, N m+1)(Bi, N m+1]
i=1

where Il is the projection onto Vy and m is the SCF iteration. We assume
here that the Aufbau principle holds, so that the eigenvalues correspond to the
Nei smallest ones, and that the spectral gap An,+1 — An,, is positive. Applying
the strategy developed in [2] for linear, bounded below, self-adjoint operators
with compact resolvent to the linear operators H P o WE Are able to compute
a guaranteed lower bound on the average of the eigenvalues at each iteration of
the SCF algorithm. This yields in turn a computable constant ule’m 41 such that,
for any N > 0 and m € N, we have the following guaranteed bound between the
energy of the ground-state 7, and the energy of vyn,,, the discrete solution at
iteration m of the SCF in Vy:

(4) E(yy.m) = B(y.) < exr¥y, + erri,
where
(5) err}j\}ffn = Tr((prN‘m - Mlzs,m-u)'VN,mH) 20

represents the contribution of the discretization error to the total error and

(6) erriﬁfn = Tr(H

PYN,m

INm) = Te(Hp, YN mt1) 20

stands for the algorithmic consistency error during the SCF iterations. Note that
such a splitting paves the way for adaptive refinement strategies.
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So far, this strategy is basis independent. The constants ulﬁ’m 41 depend on the
residuals pr,m @i, Nm+1 — Ni,N,m+19i,N,m+1 in different norms. Their evaluation
requires in particular the inversion of the full operator H, P This is of course
too expensive to be executed at each SCF iteration and we suggest an efficient, but
approximate, inversion scheme based on a frequency splitting. We take advantage
here of the specificity of periodic systems, where planewaves bases are commonly
used, since the Laplace operator is then diagonal and thus immediate to inverse.
We refer the interested reader to [1] and references therein for more details.

The talk was concluded by a series of 1D and 3D numerical examples to il-
lustrate the sharpness of the bound for the (convex) rHF model, even with an
approximate inversion. We also showed that these bounds are still accurate when
the functional F' is not convex anymore (such as for LDA and PBE exchange-
correlation functionals), see for instance Figure 1 where we track the total error
and display the two components of the bound in (4) along the SCF iterations.

—e— aror --@-- SCF
e dise(n) ~—#— Oth order bound

SCF iteration

F1GURE 1. Tracking of the discretization and algorithmic errors
along SCF iterations for a Silicon crystal with LDA exchange-
correlation functional. The green (triangle) curve is the total
error bound, written as the sum of the blue (square) and orange
(star) curves. The red (circle) is the true error, unknown in prac-
tice.
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Stochastic Reconfiguration with Warm-Started SVD
DEXUAN ZHOU
(joint work with Huajie Chen, Cheuk Hin Ho, Xin Liu, Christoph Ortner)

We propose an efficient optimization method for variational Monte Carlo (VMC):
the Warm-Started Stochastic Reconfiguration (WSSR) method. It enhances the
standard stochastic reconfiguration (SR) approach by incorporating warm-started
singular value decomposition (SVD), allowing low-rank approximations to be effi-
ciently updated across optimization steps.

OVERVIEW

Solving the ground state of the many-electron Schrainger equation remains chal-
lenging. Variational Monte Carlo (VMC) provides a flexible framework for accu-
rate wave function approximations, but optimization remains difficult due to the
rough energy landscape and high dimensionality.

Stochastic Reconfiguration (SR) [4], based on imaginary time evolution, pre-
conditions gradients using the Fubini-Study metric. However, computing and in-
verting the covariance matrix S € RM*M_ where M is the number of parameters,
is expensive:

(1) 5(8) = Fyrp(aug) [O(®:6) - O(@;0)T] € RM*M,
with
2)  O:0) = (ag 10g | Vo ()| — By p(up) [ag log }\I!o(m)|D e RM.

Recent works such as the Minimum-Step Stochastic Reconfiguration (MinSR)
method [1] and the Subsampled Projected-Increment Natural Gradient Descent
(SPRING) algorithm [2] have been proposed to improve the efficiency and stabil-
ity of SR~based optimization.

WARM-STARTED SR METHOD

Warm-Started Stochastic Reconfiguration method (WSSR) replaces the full inver-
sion of § with a low-rank approximation using truncated SVD. At each iteration,
we update:

e Low-rank covariance matrix: Efficiently approximates the matrix
O(z;0) by truncated SVD to construct a low-rank covariance matrix.

e Gradient: Computed with respect to the low-rank representation to en-
sure consistency and reduce computational cost.

Building on the previous iteration, we observe that the dominant singular value
decomposition (SVD) can be updated via simple subspace iteration (SSI) or re-
framed as an optimization problem [3]. By concurrently updating the singular
vectors during the solution process, we implement a warm-start strategy that cap-
italizes on the incremental changes between consecutive iterations to substantially
reduce computational costs.
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Recent advances in tensor network state methods via mode
optimization and AI accelerators: a journey from mathematical
aspects towards industrial perspectives

ORS LEGEZA

In the past three decades, tensor network state (TNS) methods, originating from
the seminal work of S. R. White on the density matrix renormalization group
(DMRG) method [1], have become vital alternative approaches to treat strongly
correlated, i.e., multireference problems in quantum chemistry [2, 3, 4, 5]. Despite
great successes in the past thirty years [6], TNS-based methods still witness signif-
icant algorithmic and I'T-technology-related developments broadening their scope
of application to a great extent by reducing computational time drastically.

In this contribution, we present an overview of tensor network state methods
and related optimization protocols based on concepts of quantum information
theory. We also highlight recent advances that have the potential to broaden their
scope of application radically for strongly correlated molecular systems.

We discuss global fermionic mode optimization, i.e., a general approach to find-
ing an optimal matrix product state (MPS) parametrization of a quantum many-
body wave function with the minimum number of parameters for a given error
margin [7, 8] that also has the potential to compress multireference character of
the underlying wave function. The combination of mode optimization and time-
dependent phenomena based on the time-dependent variational principle is also
addressed, together with Lindbladian evolution in dissipative quantum systems [9].

Various embedding approaches are introduced to capture both static and dy-
namic correlations, such as the externally corrected DMRG-TCC [10], the self-
consistent field DMRG-SCF, or restricted active space DMRG-RAS-X methods
[11]. For the latter one, detailed error analysis and a new extrapolation method
to recover the full-CI energy within chemical accuracy are also presented.

Finally, we demonstrate that altogether several orders of magnitude in compu-
tational time can be saved by performing calculations on an optimized basis and by
utilizing modern AI accelerator based hybrid CPU-multiGPU parallelization. A
scaling analysis for the SU(2) spin-adapted DMRG on NVIDIA DGXH100 hard-
ware [12] and DMRG-SCF-based orbital optimizations for unprecedented CAS
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sizes of up to 82 electrons in 82 orbitals [CAS(82,82)] in molecular systems com-
prising active spaces sizes of hundreds of electrons in thousands of orbitals [13]
closes our journey.

[1]
(2]
[3]

[4]

[6]

[7]

[9)

(10]

(11]

(12]

(13]
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Unitary Coupled-Cluster Theory in a Strong Magnetic Field
LAURA GRAZIOLI
(joint work with Stella Stopkowicz, Jiirgen Gauss)

The accurate and efficient description of the electron-correlation energy is one of
the main issues in theoretical quantum chemistry. For the so-called single-reference
problems, the Coupled-Cluster (CC) parameterization of the wave function is able
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to recover most of the correlation energy. In particular, the CCSD(T) approxima-
tion (which considers single and double excitations exactly, and perturbative triple
excitations) is known as the gold standard in quantum chemistry for its accuracy.

However, in specific chemical settings, for example near conical intersections
or in the presence of a strong magnetic field, CC theory can give complex energy
results, which cannot be given a physical meaning. In this work, we focus on
the effect of a strong external magnetic field. In the so-called mizing regime, the
external magnetic field is of the same order of the atomic unit (around 235 000 T).
In this setting, the magnetic field cannot be treated perturbatively: Coulomb and
Lorenz forces have to be treated on the same footing. The electronic Hamilton
operator in a magnetic field is

o ) 1
(1) Heo = Hoe + 5 Y B-Lio+) B-§+ g(BQT?o ~ (B -ri0)?).

where 1%791 is the field-free electronic Hamilton operator. The angular momentum
operator Lisa complex operator. This makes calculations in the presence of
a magnetic field only feasible with a code with implemented complex algebra.
Furthermore, the Hamilton operator depends on the choice of the gauge-origin O.
To avoid gauge-origin dependent results, calculations need to be performed with
gauge-including atomic orbitals (GIAOs). [1]

CC theory is characterized by an exponential parameterization of the wave
function

. . . 1 i

T ~ At boa 24
(2) [Wec) =€) T=) tdh =) ti{a'i}+ > ti{adlit+ ...

v ia ijab

where |Wg) is the reference Slater determinant, here chosen to be the Hartree-Fock
wave function, and the T operator (cluster operator) is given by a linear combi-
nation of excitation operators. From the time-independent Schrédinger equation
(3) He" |Wg) = Ecce” [Wo)
the energy is determined via projection on the reference determinant, giving
(4) Ecc = (Vo e T He" |Wy).

This expression is not Hermitian, thus not guaranteeing real energy values and
leading to the unphysical results previously mentioned.

The aim of this work is to explore a unitary parameterization of the wave
function, retaining the exponential form typical of standard CC theory. The ansatz
for the so-called Unitary Coupled-Cluster (UCC) theory is

(5)
5—&T ~ ~ At 1 AtTENN
|Wucc) =e |Wo) o= Z oyt = Zaf{cﬁz} +7 Z oi{atbTjiy + ...
v ia ijab
where the ¢ operator is the cluster excitation operator, analogous to the CC one.
In the UCC framework, the time-independent Schrédinger equation is formulated
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as
(6) He? =" [Wg) = Bycce®™" |Uy).

The UCC energy and amplitudes are found through projection on the reference
and the excited determinants, respectively

(7) Eycc = (Y| e (=D freoo [Wo)
8) 0= (Ughe| e~ =00 Feo=0" wg)

The energy expression is Hermitian and yields only real values. The presence
of both excitation and de-excitation operators in the exponential makes the ex-
pansion of the similarity-transformed Hamiltonian H = e~ (6= F1ev=5" more
involved than for CC, as the resulting series of nested commutators does not self-
truncate. One of the main issues debated in UCC theory is the choice of the
truncation scheme. In this work, we focus on a particular scheme, in which the ex-
citation space is restricted to single and double excitations (analogously to CCSD),
while the amplitude equations are truncated at third order in Mgller-Plesset per-
turbation theory. This approach has been denominated UCC3. [2]

The unitary parameterization can be extended to describe the excited states,
through the form

6—61 1 > ATh 1 abratitns
9)  |Wg) = e Ry [ W) Ry =10+ er{a*z} +3 > ri{alol it + .

ijab

where a linear excitation operator Ry, is applied to the reference determinant,
before applying the unitary transformation.

The UCC3 scheme is directly comparable to CCSD, as it is characterized by the
same excitation space (single and double excitations) and shares the same scaling
properties (~ N® with system size).

In this study, we have compared energy results obtained with CCSD and UCC3
theories, in order to understand whether the imaginary part in the CCSD energy
values can be related to properties of the wave function, or if it is just an artifact
arising from the non-Hermiticity of CC theory. [3]

CC theory also leads to unphysical results in the calculation of transition dipole
moments. In exact theory, the transition dipole moment from state W to state
U ; is the complex conjugate of the transition dipole moment from state ¥; to
state Wy, giving (U;| it |V ;) = (U] i |¥;)". However, due to the non-Hermiticity
of CC theory, this symmetry is no longer satisfied. Thus, when calculating the
transition probability as

(10) WSF PP = (W W) (T | W)

negative probabilities can be obtained, which clearly have no physical meaning.

We have developed a response-theory approach for the calculation of transition
dipole moments in the framework of UCC3 theory. We have formulated a Lagrange
functional which satisfies the symmetry (U;| W ) = (¥ |a|¥)", due to the
Hermiticity of UCC theory.
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Through this formulation, we were able to calculate spectra of molecules for
which CC theory fails, giving always strictly positive transition probabilities. [4]

The promising results of UCC3 theory, which showed to have an accuracy com-
parable to CCSD, encourage to investigate also other truncation schemes, for ex-
ample higher orders in perturbation theory or non-perturbative approaches.
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Numerical Algebraic Geometry and Correlated Electrons
FABIAN M. FAULSTICH
(joint work with Bernd Sturmfels and Svala Sverrisddttir)

Electronic structure theory is deeply intertwined with algebraic and combinatorial
structures. While this connection was historically underutilized due to limitations
in computational algebra, advances such as PHCpack [1], Bertini [2], HOM4PS [3,
4], NAG4M2 [5], and HomotopyContinuation.jl [6] have enabled the numerical
solubility of high-dimensional polynomial systems arising in quantum chemistry.
These developments open new avenues for integrating computational algebraic
geometry into electronic structure theory, particularly within the framework of
coupled cluster (CC) methods [7, 8, 9, 10, 11].

We develop a geometric framework for CC theory by approximating the elec-
tronic Schrodinger equation through hierarchies of polynomial systems that reflect
different levels of excitation truncation. The exponential ansatz for CC wavefunc-
tions gives rise to algebraic objects we term truncation varieties, which general-
ize Grassmannians in their Pliicker embeddings. We characterize these varieties,
compute their degrees, and investigate the structure of the associated polynomial
solution spaces.

Using monodromy and parametric homotopy continuation techniques, we com-
pute the full solution sets of the CC equations, with particular focus on CCD and
CCSD. Our analysis of the resulting root structures yields new insights into the
theoretical upper bounds on the number of solutions and their practical attainabil-
ity. We examine dissociation pathways for four-electron systems, including (Hz)y
in Doj, and D, symmetries, circularly distorted Hy, and lithium hydride, and ob-
serve that multiple CC roots can accurately approximate not only ground states
but also several low-lying excited states. In particular, we find that in systems like
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lithium hydride, single-reference CC solutions provide high-fidelity approximations
to both excited-state energies and wavefunctions.

This work highlights the promise of numerical algebraic geometry as a powerful
tool for advancing our understanding of coupled cluster theory and, more broadly,
electronic structure theory. These ideas will take center stage at the 2027 IPAM
long program, Numerical Algebraic Geometry and Correlated Electrons: General-
ized Grassmannians, Response Functions, and Excited States [12].
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(6

A new mathematical formulation of coupled-cluster theory
SIMEN KVAAL

(joint work with Snorre Bergan, Hakon R. Fredheim, Nadia S. Larsen,
Sergiy Neshveyev)

The coupled-cluster method and its variants form the most widely-used
wavefunction-based class of methods for solving the Schrodinger equation in chem-
istry. Its mathematical analysis in the form of a priori and a posteriori error es-
timation has been approached by several groups, including Rohwedder—Schneider
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[1, 2], Laestadius—Kvaal [3], Csirik—Laestadius [4], and Hassan-Maday—Wang [5, 6].
In this talk, I will outline work being carried out in an interdisciplinary project
between members of the Hylleraas Centre for Quantum Molecular Sciences, De-
partment of Chemistry, and the Operator Algebra group, Department of Mathe-
matics, UiO. We have done a complete reformulation of coupled-cluster methods
starting from the bivariational principle of Arponen [7], which gives a more “geo-
metric” view, i.e., an optimization problem over a smooth Hilbert manifold. We
have formulated general strategies for a posteriori and a priori error estimation
using a nonlinear inf-sup theorem, which is based on results by Caloz—Rappaz [8].
Several results and proofs are simplified compared to those found in the literature.
We are able to place all the analyses presently in the literature in this framework,
in particular the seminal works by Rohwedder—Schneider, Laestadius—Kvaal, and
Hassan—Maday—Wang.
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8

Scientific Machine Learning at the Electronic and Atomistic Scales
and Conformal Prediction for Uncertainty in Atomistic Simulation

JAMES KERMODE

Scientific machine learning (SciML) combines the positive features of mechanis-
tic and data-driven approaches. In my talk, I described recent work to leverage
its advantages to model materials failure processes such as fracture and plasticity
which simultaneously require large model systems and high accuracy by construct-
ing efficient surrogates at the electronic structure [1, 2] and interatomic potential
scales [3, 4, 5, 6, 7).
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The talk was illustrated with ongoing industrially relevant applications, e.g.
austenitic stainless steels subject to radiation damage [4] and point/extended de-
fects in BCC metals [5, 6]. Collaboration with numerical analysts has already
proved very valuable in this area, for example through the development of efficient
preconditioners for geometry optimisation [8] and transition state search [9].

Hierarchical and concurrent approaches to multiscale materials modelling have
both been employed with success, for example through machine learning inter-
atomic potentials (MLIPs) which extract an effective description of the electronic
behavior usable at the atomistic scale, and quantum mechanics/molecular me-
chanics (QM/MM) which combine a local QM treatment with a larger scale em-
bedding region to capture elastic relaxation, respectively. Concurrent approaches
are transferable to increased chemical complexities, but are still limited in the
timescale which can be addressed (tens of picoseconds). In the latter case, collab-
oration with mathematicians has led to improved algorithms to select the spatial
region to be modelled with QM precision [10].

Recently, there has been rapid progress in the development and application of
MLIPs for chemomechanical systems that combine the effects of local chemistry
and long-range stress fields. In particular, the Gaussian approximation potential
(GAP) and Atomic Cluster Expansion (ACE) approaches have been successfully
applied to a range of problems include the brittle fracture of silicon that previ-
ously could only be correctly modelled using concurrent QM /MM approaches [11].
Since MLIPs themselves remain relatively expensive in comparison to traditional
interatomic potentials, a promising route is to combine two (or more) potentials
with different accuracy/cost tradeoff choices in different parts of a large system:
for example to track a diffusing He impurity in a bulk W crystal [12]. There is
scope for the use of similar approaches to produce effective models for electronic
structure, e.g. using the ACEhamiltonians approach to learn the mapping from
local chemical environment to blocks of the Hamiltonian matrix [1, 2].

I focussed in detail on the importance of robust uncertainty estimates when
using MLIPs as surrogate models [3]. Bayesian approaches to uncertainty quan-
tification often fail to correctly account for mis-specification uncertainties that
arise from the incompleteness of the representation of local environments and
non-locality, instead attributing to aleatoric uncertainty (which is typically in fact
very low when training on QM data). Conformal prediction [13] provides a remedy
for this by providing a simple approach to rescale error estimates using a score
function such as
Hi — Yeal,i

g;

S; =

where p; and o; are the mean and standard deviation prediction and yca1,; is held-
back calibration data. Multiplicative scale factor for uncertainties can then be
obtained from a quantile of these scores to provide prediction sets C = [tpred —
G0 pred, tpred + §0pred] With any desired level of coverage via P(y € C) > 1 — ¢

(LEBIELIN

G = quantile <
n
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where n is the size of the calibration set and s = [s1, $2,. .. $p] collects the scores
s;. This approach has been applied to ACE models for silicon and titanum using
the Bayesian linear regression interpretation of the parameter estimation process,
and propagated through to quatities of interest including elastic constants, vacancy
formation energies, vacancy migration barriers and solid-solid phase boundaries [3].
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A symmetry-preserving and transferable representation for learning
the Kohn-Sham density matrix

LIWEI ZHANG

(joint work with Patrizia Mazzeo, Michele Nottoli, Edoardo Cignoni, Lorenzo
Cupellini and Benjamin Stamm)

The Kohn-Sham (KS) density matrix is one of the most essential properties in KS
density functional theory (DFT), from which many other physical properties of
interest can be derived. In this talk, a parameterized representation for learning
the mapping from a molecular configuration to its corresponding density matrix
using the equivariant Atomic Cluster Expansion (ACE) framework [1, 2, 3] is
presented, which preserves the physical symmetries of the mapping, including
isometric equivariance and Grassmannianity.

Specifically, given a molecular configuration R = {(Z,77)} = {o/}
consisting of N, atoms and N (valence) electron-pairs, where Z; € N and r; € R?
characterize the atomic number and the position of the I-th atom, and a set
of atomic orbitals {@ra}r,e with which the KS equation is discretized, then the
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elements of the (discretized) density matrix are given by

[DR]; ;05 = . G10(T)*D(r; R) b 15(r)dr
= g dao(r —7r1)*D(r; R)pg(r — ry)dr
= g qba(r—r;)*D(r;RU)QS@(r—rJ)dr,

where D(7;R) is the electronic density. In the last line, the whole configuration
R is shifted to be centred at a proper position depending on I and J. As a result,
the density matrix Dgr has a block structure illustrated in Figure 1.

(a) Block Structure of the Density Matrix (b) Block structure of D, , D, , D,. and D, (c) Block structure of D,,,; and p”
HO

ps ps ds SS'SS

Ss ps ps ds SS'SS

D, D Doy Dy, | 1 ps ps ds ss|ss
’ Spspsp  pp pp dp spsp

D, Dy, Do Spspsp  pp pp dp Spsp

sdsdsd pd pd dd sdsd

D,

FiGURE 1. Block structure of the density matrix of a C3H4O
molecule, where the atomic basis 6-31G(d) is used.

The subblocks in Figure 1(b) and (c¢) are independent of each other and are
themselves isometrically equivariant (i.e. equivariant under rotations, translations
and reflections of the configuration). For each subblock D, there exists a set of
ACE bases {B, }+ as functions of the local environments Ry s, which has the same
equivariance as D and asymptotically spans the function space to which D belongs
[4]. Hence, D can be approximated by a linear combination of {8, }+:

D=~ ZCUBU.

The coefficients {cy }+ are then obtained by solving a least squares problem that
minimizes the difference between the predicted and referenced density matrices.
After all the subblocks are predicted, a retraction operator is applied to the pre-
dicted density matrix (as a whole), to guarantee that the obtained density matrix
is Grassmannian without destroying the equivariance of the predictions.

Trained on several typical molecules, the proposed representation is shown to
be systematically improvable with the increase of the model parameters. In par-
ticular, it can accurately reproduce the Kohn-Sham density matrix across diverse
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systems, with excellent generalization to unseen molecules that are not part of the
training set and can even be more complex than those in the training set. Such an
approach can either accelerate the DFT calculations or provide approximations to
some properties of the molecules directly (¢f. Figure 2).
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FIGURE 2. Plot of the error for energy and forces obtained by
different density matrices (blue: Gaussian default guess, pink:
ML density matrices). The molecules with a superscript x and #x
are not (or barely) included in the training process.

The results also suggest that the performance of the models generated by the
proposed representation is mainly limited by the design of the training set rather
than the representation itself. It is therefore likely that a better selection of train-
ing points, obtained for example by active learning approaches, will give more
stable results (e.g. help to identify or remove the outliers in Figure 2). Another
observation in the experiments indicates that there is an empirical algebraic re-
lation between the commutator violation error (||FD — DF||p where D is the
predicted density matrix and F' is the Hamiltonian matrix induced by D) and the
relative error of energy, as shown in Figure 3.

This finding highlights the potential to utilize such indicators to refine active
learning approaches, enabling the learning procedure to prioritize data points that
align less well with the model’s current understanding and thereby improve both
efficiency and accuracy. This is one of our future works.

The scientific works reported in this talk can be found in [5].
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FIGURE 3. Plot of the commutator error versus the relative error
in energy using the predicted density matrix.
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Designing surrogate models with opportunistic training sets
KATHARINE FISHER

(joint work with Michael F. Herbst, Matthew Li, Timo Schorlepp,
Youssef Marzouk)

Data generation remains a bottleneck in training surrogate models to predict
molecular properties. Highly accurate CCSD(T) methods scale like N7 where
N is the number of electrons in a system. A plethora of less expensive electronic
structure methods are available, but often there is limited insight as to which
is optimal for a particular chemical system. This talk focuses on the design of
models that can effectively use multiple sources of information to learn to make
predictions. First, we discuss a multitask framework for Gaussian process regres-
sion which relates multiple training sets through a covariance structure, then we
describe tools for designing neural networks to learn from observation gradients.
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Multitask Gaussian process regression overcomes data generation cost by lever-
aging both expensive and cheap data sources [1, 2]. This learning framework
naturally accommodates more than two sources of training data without the need
to impose inaccurate assumptions on the accuracy hierarchy of the sources. We
show the results from models trained on heterogeneous data sets generated via
coupled-cluster (CC) and density functional theory with various exchange cor-
relation functionals. In particular, multitask surrogates can predict at CC-level
accuracy with a reduction in data generation cost by over an order of magnitude.
By constructing kernels functions that are robust to the outliers, we show that
incorporating foundation model predictions can further improve the performance
of multitask models for a given data generation cost. These results suggest that
using foundation models within the multitask framework could be a viable alterna-
tive to the obtuse process of finetuning foundation model networks with problem
specifc data. Future work will directly compare multitask models to the state of
the art in finetuning.

Other future directions involve adaptively constructing trainings sets. Given
an existing multitask model, we aim to select molecules to add to the training
set as well as to recommend an electronic structure method to compute the new
data point which optimally balances accuracy and efficiency. Gaussian process re-
gression provides probabilistic predictions, and the multitask models we describe
predict distributions for the difference between each data source and the primary
source of interest. These predictive distributions can likely be leveraged for rec-
ommendation of electronic structure methods.

In discussions spurred by this talk, seminar participants considered the open
question of how the multitask framework may be applied to Hamiltonian learning
from data generated with different levels of theory. It is not obvious how to build
such a surrogate since different electronic structure methods use different orbital
sets.

In the last part of this talk, we describe an approach for efficiently predicting
the performance of a neural network when gradients of the observation set are
available for training. This work is motivated by the common practice of training
machine learning interatomic potentials with both energy and force data. Ex-
tensively testing the performance of network models with different activations,
dimensions, and regularization would be prohibitively expensive, so we seek to
evaluate the error at the optimal network parameter setting without actually find-
ing the optimal network parameters. We borrow methods developed in statistical
physics for characterization of phase transitions in spin glasses and apply them
to predict phase transitions in neural network training [3, 4]. Following this ap-
proach, we can systematically investigate the impact of training set size, network
dimensions, regularization, and gradient observation noise on prediction error of
random features models. Carrying out this systematic investigation and extend-
ing the approach to more elaborate classes of network models is work for the near
future.
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Observability in periodic crystals via optimal transport
VIRGINIE EHRLACHER
(joint work with Thomas Borsoni)

Observability estimates are needed to address controllability questions. The aim
of the talk was to state recent results about new observability estimates obtained
in periodic crystals with an infinite number of electrons. The approach relies
heavily on the optimal transport approach introduced in [1] for systems with a
finite number of electrons. The approach uses pseudometrics between quantum
and classical densities, which can be generalized to treat periodic systems for an
infinite number of electrons by combining them with Bloch theory.

In this extended abstract, I will only give the precise expression of the periodic
version of the classical to quantum optimal transport metric used to obtain these
observability estimates for periodic crystals. Let us consider £ a periodic lattice
of R? with d € N*. Let I' be a unit cell of £ and I'* be its Brilouin zone. Let
us first recall some basic facts about Bloch theory. It then holds that for all
u€ H = L*R%C) and all k € I'*, the function uy, : R? — C defined by

Vr e RY  wu(z) = Z“(x + )¢t @t
el
belongs to Hper 1= L2,,(I';C). It also holds that

per
Vo € RY u(x) = ][ ug(z) dk.
For any self-adjoint operator A on H such that Ary, = 7,A for all £ € L, there
exists a unique family (Ag)rer- of self-adjoint operators on Hper such that
Ve HND(A), (Af)x = Arfr

Then, denoting by L£(#) the set of bounded linear operators on #, if an operator
A satisfying 0 < A* = A € L(H) is such that A = A7, for all £ € L, one can
define its periodic trace as

ﬂ A= Tr’;'[perAk dk.
1"*
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Then, for any pair (f, R) of classical/quantum states such that
o f € LIOC(]Rd x RY) with f > 0, f(-,£) I-periodic for all £ € R? and
Jr Jga f(2,8) Edx =1,
e Re{0L<T*=TeLH): T =T, Vel Tt T =1},
one can consider the set C(f, R) of classical to quantum couplings between f and
R defined as the set of mappings

Q:T xR > (2,8) — Q(z,8) € L(H)

such that for all (z,£) € T x R%, 0 < Q(z,8)* = Q(x,¢) € ( )7 TQ(x, &) =
Q(z, e VL € L, Tt Q(x,€) = f(x,§) and [|. [pa Q(x,§) dEdzx =

For a given A > 0 and all (z,£) € I' x R?, one can consider the parametric self-
adjoint operator C*(z, &) on H defined as

CH,€) = N minfa —y — £ + |§ + bV, [*.

The classical to quantum optimal transport metric between f and R is then
defined as

(R = ot [T (V20 )@ 6)' ) do e
QEC(f,R) Rd
Extensions of propagation and observability results proved in [1, 2] can thus
be proved in this periodic context. This preliminary work paves the way to the
treatment of more complex and realistic systems which will be the object of future
work.
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DMRG and refinements: Theoretical results and numerical
illustrations

GERO FRIESECKE

The density-matrix renormalization group method, or DMRG for short, is an
accurate computational method for tackling the N-electron Schrédinger equation
HY = EV for molecules. It was pioneered by White (1999), Chan and Head-
Gordon (2002), and Legeza et al (2003), following earlier work by White on spin
chains. It is much younger than coupled-cluster theory, but in the light of recent
advances it is rapidly becoming a competitive alternative.
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1. DMRG

Starting point is the N-electron Schrodiner equation HV = EW, which for the
ground state amounts to solving the Rayleigh-Ritz variational principle
. (U, HY)
Ey = ~—L

07 Gey (v, 1)
Here quantum wavefunctions ¥ belong to the Hilbert space Hy = L2, ,.((R? x
75)N), the Hamiltonian is

N

1 1
H:—§V2+ Z W+ZV(T7)7

1<i<j<N "t i=1

and v(r) = — Z(]yzl Za/|r— Ry| is the potential exerted by the atomic nuclei. One

wants to compute energy levels to chemical accuracy 1 kcal/mole = 0.0016 a.u.
DMRG simplifies the high-dimensional Schrodinger partial differential equation

by the following 4 steps, the first two being the standard reduction to Full CI.

1. Orbital space One approximates the single-electron Hilbert space by a finite-
dimensional subspace, typically spanned by the occupied and lowest unoccupied
Hartree-Fock orbitals, H; = L?(R? x Zs) ~ span{¢1, ..., oL}

2. Full CI space One approximates the N-electron space by the ensuing FCI
space, i.e., the IV-fold antisymmetric tensor product of the above finite-dimensonal
space with itself: Hy =~ span{|p;, - @iy) : 1 < i1 < ... <iny < L}. Mathemati-
cally this is a Galerkin approximation with a tensor product basis.

3. Passage from N-body space to Fock space, and to an occupation
number representation One re-encodes any Slater determinant built from the

orbitals in H; with the help of L Q-bits with the i-th Q-bit indicating whether
the orbital ¢; is present or absent, as in the following example for L = 8:

P2 03 06 5 ) ~ [0)@[1)@[1)®|0)®[0)®[1)®[0)®|1).

In the new representation any wavefunction has an expansion

1
U= Y Cup m)® - ® ur).

M1y pr=0

The tensor (C,. uy) Lupefo,1} 18 called the occupation tensor for V.

M1,

4. Matrix product state approximation of occupation tensor One now
approximates the occupation tensor as follows

M
C}l.l.../LL ~ Z Al(;ul)ozl AQ(/-‘LQ) a1 AB(,UB) a3 " AL(,LLL) ar_—1°
R e MxM MXxM Mx1

Here M is an important rank parameter (called bond dimension). The passage
N-body space — Fock space — space of node tensors § = (Ay, ..., A) corresponds
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to a dimension reduction

(ﬁ) —>2L=Z(§) - L-M?.2.

N=0
The node tensors are now used as variational parameters in the Rayleigh-Ritz
principle,
EDMRG _ iy (Wg, HVg)
0 <\I’9, \I’9>

where the minimization is subject to the constraint of fixed particle number, math-
ematically: N0 = NW where AV is the number operator. Within the DMRG algo-
rithm this is done by sucessive minimization over neighbouring pairs of node ten-
sors. Attractively, unlike coupled cluster the method is variational and structure-
preserving: the problem for pairs of node tensors is again a Rayleigh-Ritz problem
for a selfadjoint Hamiltonian).

2. TWO-ELECTRON WAVEFUNCTIONS HAVE BOND DIMENSION THREE
The following result was proved in joint work with Graswald [1].

Theorem: For any 2-electron state ¥ € Hp A Hp, there exists an orthonor-
mal basis of H such that ¥ can be written as an MPS with bond dimen-
sion 3. Moreover for L > 4, 3 is optimal and the sequence of bond dimen-
sions my,...,my, with minimal sum such that the A; are of size m;_1 X m; is
my,....,mr—1) = (2,2,3,2,3,...,2,3,2,2).

Note that a priori the number of coefficients for a two-electron wavefunction is
O(L?); in the DMRG format it can be brought down to O(L) while retaining the
exact wavefunction.

An important corollary is that DMRG combined with fermionic mode optimiza-
tion is exact for 2-particle systems.

3. DMRG WITH RESTRICTED ACTIVE SPACE

To extend DMRG to larger systems, Barca et al (2022) combined DMRG with the
familiar quantum chemistry idea of a restricted active space and called the ensuing
method DMRG-RAS. One partitions the orbitals into CAS orbitals ¢1, ..., ¢, and
RAS orbitals @g41, ..., o1, and introduces the following reduced many-body Hibert
space

H = Hoas(l) & Hras(L — L, k)
where the first space is spanned by all Slater det’s of CAS orbitals and the second
space by all Slater determinants with at least 1 and at most k¥ RAS orbitals.
The excitation level k is a parameter of the method. The RAS energy is given by
minimization of the Rayleigh quotient over the reduced Hilbert space, and satisfies

E { k)= min U HY) < FE l) = min W, HU).
ras(b,k) wedt, <w>:1< ) caslO) = g BB gy )
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When ¢ is minimal, i.e. N/2, one obtains k-fold excited CI. When k is maximal,
i.e. N, one recovers full CI. For N/2 < ¢ < N, DMRG-RAS is an embedding
method.
This method was analyzed, developed further, and applied to large-scale exam-
ples in joint work with Barcza and Legeza [2]. Our findings are the following.
(1) For a prototypical strongly correlated system, the Chromium dimer,
DMRG-RAS was found to be more accurate than coupled-cluster. Using
a cc — pVDZ orbital space with L = 136, a natural orbital basis, and a
CAS(12,68), we found

FEras(t =17,k =2) = —2086.877 < —2086,869 = Eccsprq-

(2) We investigated how the RAS error behaves
at fixed excitation level (k = 2) when the size ¢ of
the CAS space is increased. We found across all
investigated systems (for an example see the plot %
on the right) that the RAS error satisfies, to high @) /
accuracy, a power law scaling with respect to the p=3.6133 //
CAS error: a=061661

p
€RAS ™~ @ (fCAS) . 4

To verify the scaling law, as in in this example, we 10|

need to have access to the FCI energy. The true 4
power of the scaling law lies in yielding an accu- /
rate extrapolation method, termed DMRG-RAS- 14
X, if the FCI energy is not available: one simply /
minimizes the mean squared regression error of /
the RAS versus CAS error in a log-log plot not E
just over the parameters of the regression line but . ‘ ‘
also over the (unknown) FCI energy. In the ex- 1 o015 02 025 03
amples we investiated, the extrapolation yields an €(€)cas
important error reduction allowing one to reach

chemical accuracy. See the table below.

absolute error [a.u.], ground state energy

system ECAS ERAS |ERAS-X L/fmax EHAS—x/EnAs
F2 0.0941 | 0.0023 | 0.0011 1.20 0.48
CHa 0.0690 | 0.0009 |-0.0004 1.33 0.29
Na 0.1662 70.0030 | 0.0007 1.75 0.23
Ca 0.1159 | 0.0014 | 0.0001 3.22 0.07

We also found a power law scaling in large examples we investiated: the Chromium
dimer and the FeMoco enzyme (the latter being used by nature for nitrogen fixation
2N2 + 3 Hy — 2 NHj3), with 54 resolved electrons on 54 spatial orbitals as proposed
by Reiher and a Hilbert space dimension 2.5 x 103!
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An theoretical challenge is to understand the non-universal exponents p ob-
served in the scaling law. As a first step we designed a simplified model. Starting
point are states Wy, Uy, U3, ... where U, only contains 2(j —1)-fold excited deter-
minants with respect to Hcoas(€p). The Hamiltonian in the subspace of these
states then has bandwidth 3, on account of the Hamiltonian H being a two-body
operator. Assuming equi-spaced levels and a fixed interaction strength with next
level leads to a simple matrix model (shown here for 4 states),

h v 0 0

_|v h+a v 0

H= 0 v h+2a v
0 0 v h+ 3a

For this model, which we termed ladder model, we proved rigorously that the
scaling law holds asymptotically as the coupling strength v is decreased, with the
following non-universal exponents: p = 2 for 1d CAS and 1d RAS, p = 3 for 1d
CAS and 2d RAS, and p = 3/2 for 2d CAS and 1d RAS.

As regards the full problem, in [2] we also gave a rigorous error estimate on the
RAS error based on a partitioning of the Hamiltonian into a CAS Hamiltonian
Hy and a part which contains the RAS Hamiltonian and the CAS-RAS coupling.
Our error estimate is of the form |Egas — Frcr| < f(H' \i!o) for some explicit
f with f(0) = 0. Here ¥ is the dressed CAS ground state (i.e. the normalized
projection of the FCI ground state onto the CAS). In particular, the error goes
to zero when H’ becomes small on the dressed CAS GS, which is true in practice
for a moderate-sized CAS. By contrast, standard error estimates for Rayleigh-
Schrodinger perturbation theory and its variants only go to zero if H' becomes
small on the whole CAS, which is never true in practice. Applied to the ladder
model, the error estimate captures the correct scaling law of RAS versus CAS
error.

Summary. DMRG and its refinements are a viable alternative to coupled cluster
theory for highly accurate electronic structure computations. Large-scale compu-
tations and some rigorous theory are emerging.
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Relativistic electronic-structure methods based on effective quantum
electrodynamics

JULIEN TOULOUSE
(joint work with Timothée Audinet, Umberto Morellini, Antoine Levitt)

It is important to take into account the effects of special relativity in the quan-
tum description of electronic systems with heavy elements. Relativistic electronic-
structure computational methods based on the no-pair Dirac-Coulomb or Dirac-
Coulomb-Breit Hamiltonian have thus been developed and are now routinely ap-
plied to molecular systems (see, e.g., Refs. [1, 2, 3]. The next challenge for relativis-
tic quantum chemistry is to go beyond the no-pair approximation, i.e., including
the quantum-electrodynamics (QED) effect of virtual electron-positron pairs. This
is desirable not only for an increased accuracy but also in order to put relativistic
quantum chemistry on deeper theoretical grounds.

An attractive approach to performing ab initio relativistic calculations be-
yond the no-pair approximation is to use an effective QED Hamiltonian with the
Coulomb or Coulomb—Breit two-particle interaction (see, e.g., Refs. [2, 4, 5, 6, 7]).
This effective QED theory properly includes the effects of vacuum polarization
through the creation of electron-positron pairs but does not explicitly include the
photon degrees of freedom. It is, thus, a more tractable alternative to full QED
for electronic-structure calculations.

In this presentation, I have reviewed this effective QED theory, I have discussed
the possibility to formulate a relativistic density-functional theory based on it [7],
and I have shown results on a one-dimensional hydrogen-like model system for the
calculation of the vacuum-polarization density [8, 9].
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Coupling perturbation theory and reduced basis methods
Louis GARRIGUE
(joint work with Benjamin Stamm)

A standard issue in eigenvalue problems is to reduce the number of degrees of
freedom of the variational Hilbert space H. For instance it is legitimate to do so
for the many-body Schrédinger operator

(1) Z —Aj+ou(x;) + A Z T — xj),

1<i<j<N

where one can compute every quantity at A = 0 but not at A # 0. Reduced basis
method approximations aim at approximating H by a well-chosen low-dimensional
subset PH, created via an orthogonal projector P. In quantum physics, this pro-
cedure is also called the variational approximation. Reduced basis for eigenvalue
problems have been investigated in [2, 3] for instance, but mostly in an a posteriori
point of view.

Perturbation theory is also one of the most traditional concepts in quantum
mechanics. It consists in considering an operator H(\) = Z::(’) A"H"™ dependent
on a parameter A € R, considering (E()), ¢(A)) an eigenpair of H(\), computing
the series ¢(\) = ::6 A"¢" and truncating it to obtain an approximation of
6.

It is now natural to try to merge the two methods, that is the reduced basis
method (RBM) and perturbation theory (PT) to simultaneously use their benefits,
and we call RBM+PT the resulting method. To this purpose, we build the reduced
space by using the perturbative series ¢™ up to order ¢, that is we assume that

Span(¢, ..., ¢") C PH.

This idea was already previously stated in several works [4, 5, 1]. We present
an illustration of the situation on Figure 1, where we denote by (£(\), (X)) the

eigenpair of the reduced operator UDH(MP)WH%PH'

a(H(N)) o (PHNP)pyypay)
E(X), ¢(N) ><—\5(A)uw(x)
i X5 iy X5

FIGURE 1. Left : spectrum of the exact operator. Right : spec-
trum of the effective one.
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To quantify the error between the exact and approximate eigenvectors, we need
the following evaluation

B — () = (1 + ROVH ) P +0 (J6() — vWI)

where R()) is the pseudo-inverse of (PH(A\)P) at level £(A). Then one
can prove that

1600 = 9 < N[0+ ROE©) P+ +0 ().

One can then compare the asymptotic acceleration of RBM+PT with respect
to PT, which is given by the quantity

B e B oot I o
A=0 [o(A) =N (L + RO)H(0))PLgt | — [PLoftt]

We numerically observe that this quantity grows exponentially in ¢. One can
also compare RBM+PT with a more traditional way of using RBM, consisting in
adding excited states of H(0), which we call RBM+ES. With a simple Hamiltonian
H()\) = H° + AH', where H* = —A +vg and H' = vy, vp and v; being binding
potentials, we saw in simulations that using RBM+PT with vectors ¢',. .., ¢? is
equivalent, in precision to obtain ¢()), as using RBM+ES with 18 excited states,
indicating that RBM+PT is a more efficient way of building a reduced space.

lPrH—PH
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