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Abstract. Data assimilation, where predictions from a dynamical system
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creasingly finding applications in many areas of science and technology. This
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Introduction by the Organizers

The recent explosion of available data, driven by the increase in large-scale sci-
entific experiments and the development of sensor technology, means that there
is a pressing need to develop new algorithms for the seamless integration of ob-
served data with sophisticated mathematical models. We require tools to inform
decisions, assess risk, and formulate policies based on available evidence.

Problems of interest in applications mathematically often fall into the cate-
gory of inverse problems, where one is interested in learning parameters such as
physical quantities or initial conditions from noisy indirect observations, or data
assimilation, where forecasts from a dynamical system are updated sequentially
(and recursively) based on new partial observations. Whereas purely data-driven
approaches are suitable in application areas where little is known about the pro-
cesses generating the data, many application areas such as geological exploration,
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climate and weather predictions, and personalized medicine require the integra-
tion of complex mathematical models with the observed data to provide accurate
inferences.

While the term inverse problems usually refers to static settings, where the
unknown to be inferred is a fixed parameter, data assimilation is used to refer to
dynamic problems, where the unknown to be inferred is the time-evolving state
of a dynamical system. Yet the two areas are intricately linked, and share many
methodologies and challenges. In fact, inverse problems can be viewed as a special
case of data assimilation, where the latter crucially adds dynamical complexity
and often the need for online and recursive algorithms. Focusing on the common
challenges and opportunities, this workshop brought together researchers working
in areas crucial to advancements in data assimilation and inverse problems, in-
cluding Bayesian inference, Monte Carlo methods, non-linear filtering, dynamical
systems, reduced order modelling, and optimal transport.

The workshop was organized by organized by Jana de Wiljes (Ilmenau, Ger-
many), Youssef Marzouk (Cambridge MA, USA), and Aretha Teckentrup (Ed-
inburgh, UK). The meeting was attended by 22 participants, and represented a
broad range of mathematical subject areas as well as numerous application areas
from the natural sciences. The workshop is a highlight in the calendar of events in
this area and was enthusiastically endorsed by all participants. The field of data
assimilation has undergone major developments since the last MFO workshop on
this topic in 2022. We mention in particular an emerging strong interplay between
data assimilation and machine learning and mathematical statistics. A further cur-
rent hot topic has been optimal transport and its interactions with computational
statistics. The strong trend towards novel applications in, e.g., pharmacology,
cognitive science, space weather and biology continued. A total of 16 talks were
presented during the workshop. The talks were selected such as to cover the in-
terplay between data assimilation and machine learning (Marc Bouquet, Alberto
Carassi, Oana Lang, Sven Wang), novel mathematical developments on data as-
similation algorithms (Joaquin Miguez, Hans Reimann, Daniel Sanz-Alonso, Xin
Tong, Peter Jan van Leeuwen), theoretical and practical aspects of dynamical sys-
tems (Nisha Chandramoorthy, Olga Mula, Sahani Phatiraja, Elisabeth Ullmann),
computational methods for Bayesian inference and their theoretical analysis (Elliot
Addy, Aimee Maurais, Benjamin Zanger).

On Tuesday evening, there was a discussion group triggered by the many dif-
ferent facets of interactions between data assimilation and machine learning pre-
sented during the talks in the first days of the workshop. Participants discussed
how the two fields can best collaborate and benefit each other, which lead to a
more general discussion about the future of the field of data assimilation and ini-
tiatives that could help propel the field forward. In particular, it was discussed
that a shared website, sharing among others things code written by researchers
in the field, would benefit early career researchers and enable a more thorough
comparison between various methodologies.
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Abstracts

Lengthscale-informed sparse grids for high-dimensional Gaussian

process emulation

Elliot Addy

(joint work with Jonas Latz and Aretha Teckentrup)

Gaussian process emulation is a popular method of surrogate modeling, in which
the broad aim is to cheaply approximate outputs of computer models. Using data
in the form of model runs, the mean function of a posterior Gaussian process is
taken as an approximation for the parameter-to-output map, and the posterior
covariance a measure of the uncertainty in these predictions. By drawing connec-
tions to scattered data approximation, we are able to develop error bounds for
functions contained in the Native space of the chosen covariance kernel [1].

Figure 1. Level 4 isotropic sparse grid (left) versus level 4
lengthscale informed sparse grid (right). For functions of length-
scale λ = (2, 4) in the horizontal and vertical directions, respec-
tively, both designs are shown to have comparable error estimates
when used in conjunction with their associated Matern kernels.

Emulators, however, fall prey to the so called ‘curse of dimensionality’; as we
increase the dimension of parameter space, the number of model evaluations, in
general, needs to increase exponentially in order to maintain the same error guar-
antees. Consequently, much work is done to exploit functions with known struc-
ture to mitigate this dimension dependence on the error. For example, sparse
grid methods, when used in conjunction with product kernels, have been devel-
oped to efficiently approximate functions in Sobolev spaces with dominating mixed
smoothness, with error bounds depending only logarithmically on the dimension
[2]. Furthermore, due to an induced Kronecker structure, fast inversions of co-
variance matrices on sparse grid designs are possible [3]. Still, in practice, this
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dimension dependence becomes prohibitive beyond d ≈ 10, and as such, addi-
tional assumptions are required if we wish to consider higher dimensional settings.
For this purpose, anisotropic methods have been developed. By accounting for
structural anisotropy, dimension dependence in the rate of convergence can be
further reduced - or even eliminated entirely [4, 5]. These approaches often re-
quire demanding smoothness conditions on the underlying model, and as such
cannot be used in many circumstances in which anisotropy may be present.

In this work, we have developed a novel sparse grid construction, lengthscale-
informed sparse grids (LISG), in which the aim is to instead exploit anisotropy
in the lengthscale parameter of Matern kernel functions. By sampling on LISG
designs, and employing appropriately stretched covariance kernels, we are able
to emulate arbitrarily high dimensional functions when assuming the lengthscale
grows sufficiently quickly with the dimension, without having to assume further
regularity. In Figure 1, we see a comparison between standard isotropic and
lengthscale-informed sparse grids used in kernel interpolation.
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Are ensemble-based data assimilation methods really necessary for

accurate filtering?

Marc Bocquet

We investigate the ability to discover data assimilation (DA) schemes meant for
chaotic dynamics with deep learning. The focus is on learning the analysis step
of sequential DA, from state trajectories and their observations, using a simple
residual convolutional neural network, while assuming the dynamics to be known.
Experiments are performed with low-order dynamics which display spatiotemporal
chaos and for which solid benchmarks for DA performance exist. The accuracy of
the states obtained from the learned analysis approaches that of the best possibly
tuned ensemble Kalman filter, and is far better than that of variational DA alter-
natives. Critically, this can be achieved while propagating even just a single state
in the forecast step. We investigate the reason for achieving ensemble filtering
accuracy without an ensemble. We diagnose that the analysis scheme actually
identifies key dynamical perturbations, mildly aligned with the unstable subspace,
from the forecast state alone, without any ensemble-based covariances representa-
tion. This reveals that the analysis scheme has learned some multiplicative ergodic
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theorem associated to the DA process seen as a non-autonomous random dynami-
cal system. This also suggests building a new class of efficient deep learning-based
ensemble-free DA algorithms.

Merging DA and ML at various degree: examples from DA for Arctic

Sea ice and for ocean biogeochemistry

Alberto Carrassi

In recent years, data assimilation (DA), and more generally the climate science
modelling enterprise have been influenced by the rapid advent of artificial intel-
ligence, in particular machine learning (ML), opening the path to various form
of ML-based methodology. In this talk we will schematically show how ML can
be included in the prediction and DA workflow in different ways with various de-
grees of integration within each other. In a so-called “non-intrusive” ML, we will
show how ML can be used to supplement a chaotic system and help predicting
the local instabilities and/or abrupt regime’s changes. DA and ML can also be
placed side by side in an iterative approach alternating a DA step that assimilate
sparse and noisy data, and a ML step whereby the data-driven model is further
optimised against the analyses outputted from the DA. In a further level of fu-
sion ML can finally be used to within hybrid ML-DA methods in which ML is
used to cope with some limitations in DA approaches. In particular we shall show
an innovative formulation of the EnKF that embodies a variational autoencoder
enabling the EnKF to (i) handle non-Gaussian observations, and, (ii) respecting
physical balances. Using a set of idealised model and observational scenarios, we
will show numerical results for all of the above-mentioned possibilities. We will
focus on, and will be motivated by, problems originated in diverse areas of climate
science, namely chaotic systems such as the atmosphere and the highly nonlinear
and non-Gaussian DA for Arctic Sea ice and ocean biogeochemistry.

Learning ergodic dynamics from data

Nisha Chandramoorthy

(joint work with Jeongjin Park and Youssef Marzouk)

We are interested in surrogate modeling of a dynamical system in a way that pre-
serves an underlying physical measure. In certain chaotic systems, we prove that
when Jacobian information is added to the loss function, regression for short-term
dynamics leads to statistical accuracy, i.e., the surrogate models learned with first
order derivatives of the short-term dynamics can provably sample the physical
measure (long-term data distribution). In the second half of the talk, we study
the problem of sampling from an unknown probability density in the presence of its
score or gradient of log density. This method for sampling, called Score Operator
Newton, is based on writing down an infinite-dimensional Newton-Raphson itera-
tion for the zero of a score-residual operator. The method of derivation applies also
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to target measures that do not have densities with respect to Lebesgue but have ab-
solutely continuous conditionals on a lower-dimensional manifold. Such measures,
e.g., appear as physical measures in certain chaotic dynamical systems. With this
modified derivation, we thus connect the two halves of this talk, physical surrogate
modeling of dynamical systems and dynamical algorithms for sampling/Bayesian
inference together by discussing a notion of conditional score for these singular
measures. We propose a recursive algorithm to compute these conditional scores,
and then apply the abovementioned Newton-Raphson iteration on the unstable
manifold for sampling from Bayesian filtering distributions. Continuing with di-
mension reduction for sampling in the dynamical systems context, we next present
two preliminary ideas for dimension reduction of generative models. Overall, our
collection of results for sampling and generative modeling for dynamical systems
and using dynamical systems theory fall into the broad category of problems at
the intersection of dynamics with statistical learning.

We consider a chaotic map F that preserves a physical measure µ, and a learned
model Fnn = argminhEx∼µℓ(x). A neural model Fnn obtained with the square
loss, ℓ(x, h) = ‖h(x)− F (x)‖2 can produce unphysical orbits in the long term, as
illustrated on the Lorenz ’63 model in Figure 1 (center). However, we consider a
modified loss function to ℓ(x, h) = ‖h(x)−F (x)‖2 +λ‖dh(x)− dF (x)‖2, where df
represents the differential map (Jacobian) of f at x. Now the neural models that
generalize well under this loss, which we will refer to as the Jacobian loss, is able
to reproduce the attractor accurately (Figure 1, right). We numerically verify that
moments of various quantities, and the empirically computed Wasserstein distance
between the generated samples and the samples from the Lorenz equations match
accurately. Our main result is to explain this observation. Specifically, we prove
that for the class of uniformly hyperbolic maps F, C1 matching (training with
Jacobian loss) with high probability leads to statistical accuracy when shadowing
orbits are typical (that is, shadowing orbits distribute according to µ). On the
other hand, we do not have a shadowing orbit existence guarantee for the mean
squared loss. This result implies that we do not need to add more derivatives to
the loss function to get statistical accuracy of learned models. When shadowing
orbits are not typical, generalization error of the Jacobian loss being small also
does not imply statistical accuracy. The result provides a theoretical justification
for learning statistically accurate models with regression for the one-step function
F.

We remark, in light of other results discussed in this workshop by Sanz-Alonso
and Bocquet, that for DA applications, statistical accuracy of the surrogate mod-
els may not be needed. However, ensuring the ability of a learned model to sample
from the true underlying physical measure will improve the reliability of learned
climate models, and further, may lead to lesser effort in the analysis step of a
DA procedure. In practice, the Jacobian is difficult to obtain and train with in
high-dimensional models, and hence may be replaced with some partial Jacobian
information, e.g., Jacobian-random vector products. Although our theoretical re-
sults use the full Jacobian, we have found in practice that such partial information
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Figure 1. Here F is the time integration over one time step of
the Lorenz ’63 vector field at the standard choice of parameter
values that leads to chaotic orbits. Left: true orbit of a random
initial condition (‘+’ sign) simulated using RK4 time integration
of the Lorenz ’63 vector field. Center: an orbit of a neural model
trained to approximate F with low mean squared error on test
points. Right: an orbit generated by a neural network trained to
approximate F with low jacobian loss (mean squared error in F
and dF ).

when used in a seismic model results in good approximations of Lyapunov expo-
nents and other statistical measures. Overall, our results must be interpreted not
as a practical method for how to train a chaotic surrogate model, but rather as a
way to combine ergodic theory with statistical learning theory to obtain generaliza-
tion bounds for learning physically correct/statistically accurate chaotic systems
using only short-term dynamics during training.

Next, we discussed a new method, Score Operator Newton, for sampling from a
target density, say, ρν , corresponding a measure ν. We construct a transport map,
which is an invertible function that determines a coupling between two distribu-
tion. In this case, we construct a transport map, T, such that T♯µ = ν, where µ is
an easy-to-sample reference distribution with a corresponding density ρµ. In our
work, we derive a new construction of a transport map starting with the change
of variables formula for the densities, given by ρν = ρµ ◦ T−1/|det dT | ◦ T−1. By
taking the logarithm and differentiating, we can see that a transport map satisfies
a functional equation that matches the score of the target with the score of the
density on the left hand side. Without being explicit, we will write this equa-
tion as G(sµ, T ) = sν , where sπ is the score associated with a measure π. Thus,
the problem of finding a T that satisfies the score equation is equivalent to solv-
ing for the zero function of R(T ) = G(sµ, T )− sν . We derive a Newton-Raphson
method in infinite-dimensions (such infinite-dimensional Newton-Raphson meth-
ods appear in nonlinear elliptic PDE theory and in KAM theory in dynamical
systems). We show that each Newton-Raphson update involves solving a PDE,
∇ ◦ Lφ := ∇ ◦ (∇2φ + sν · ∇φ), for different right hand sides, to obtain an up-
date to T of the form T → (Id +∇φ) ◦ T . We suggest solving these PDEs with
Feynman-Kac formulae and draw connections of the solutions φ with nudging in-
troduced by Joaquin Miguez and Prashant Mehta at the workshop. Preliminary
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Figure 2. Left: parametric monotone transport maps from
Parno et al 2022. Center: Stein Variational Gradient Descent
from Liu and Wang 2016. Right: our transport map, based on
Score Operator Newton iterations; the computational cost of the
three methods per iteration is kept the same by suitable choice of
hyperparameters of each scheme.

numerical results (Figure 2) suggest that the T obtained after a few iterations of
this Score Operator Newton method approximates the target distribution more
accurately at the same computational cost, when compared to parameterizing
among transport maps and solving a regression problem (left) or when compared
to a Stein Variational gradient flow transport (nonparametric transport; Right).
SCONE transport may exhibit divergence however, like Newton methods in finite
dimensions.

The work on Score Operator Newton and surrogate modeling in chaotic systems
have been published respectively in

• Chandramoorthy, N., Schaefer, F. T., & Marzouk, Y. M. (2024, April).
Score Operator Newton transport. AISTATS 2024 (pp. 3349–3357). PMLR.

• Park, J., Yang, N., & Chandramoorthy, N. (2024). When are dynamical
systems learned from time series data statistically accurate?. NeuRIPS
2024

Data assimilation with generative models: Refining nonlinear signal

calibration with diffusion processes

Oana Lang

(joint work with Alexander Lobbe and Dan Crisan)

Data assimilation integrates real-world data into mathematical models to improve
their accuracy and predictive capabilities. It is widely used in fields like meteo-
rology, oceanography, and environmental science, where dynamic systems require
continuous updates. However, accurately calibrating these models remains chal-
lenging, particularly when dealing with sparse or noisy data.

In this work, we introduce a novel approach using diffusion generative models to
improve model calibration before data assimilation. By leveraging their ability to
generate statistically consistent synthetic data for high-dimensional phenomena,
we achieve a more accurate and robust initial calibration. This enhances the
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data assimilation process, leading to improved model performance and predictive
accuracy.

Generative models are a class of machine learning models designed to approx-
imate an unknown data distribution based on a given dataset of samples. An
important subclass refers to diffusion models, which iteratively map training data
to a well-defined distribution (such as a Gaussian) through a process analogous to
diffusion. In this work, we use a variant known as the Diffusion Schrödinger Bridge
(DSB), where both the forward and the backward dynamics are learnt via a neural
network. Once trained, the model generates samples from the target distribution
by simulating the backward diffusion process, starting from Gaussian-distributed
samples.

We adopt the framework of stochastic nonlinear filtering to describe the data
assimilation methodology in general and its specific application in our work. We
define two processes, X and Z, on the probability space (Ω,F ,P), where X rep-
resents the signal process or truth, and Z denotes the observation process. In this
study, X corresponds to the pathwise solution of a rotating shallow water sys-
tem (1), approximated using a high-resolution numerical method. The pair (X,Z)
forms the foundation of the nonlinear filtering problem, which seeks to approximate
the posterior distribution of the signal Xt given the observations Z1, Z2, . . . , Zt.
The posterior distribution at time t is denoted by πt.

Let dX and dZ denote the dimensions of the state and observation spaces,
respectively. In many real-world applications, such as weather prediction, dX
is extremely large, typically dX = O(109). Performing data assimilation (DA)
on such high-dimensional models requires supercomputing resources, which is why
some of the world’s most advanced supercomputers are employed in meteorological
centers. Here, we propose an alternative approach: instead of working with the
full signal Xt, we introduce an approximate model Xc

t computed on a coarser grid.

In our example, the signal is denoted by Xf
t to highlight that it evolves on a finer

grid than its proxy Xc
t , which is constructed on a coarser grid. Naturally, Xf

t and
Xc

t will exhibit different dynamics, as small-scale effects are lost in the coarser
representation. This is where generative modeling plays a crucial role. To account
for small-scale influences, we introduce a stochastic term in the equation governing

Xc
t . This term must be calibrated using data recorded from Xf

t prior to applying
data assimilation. The two diagrams in Figure 1 illustrate this process.

In some instances within the field, a generative model is used to approximate the
posterior distribution offline, which is computationally expensive when performed
iteratively. In contrast, we do not replace the forecast and assimilation steps with
generative models, but instead apply a diffusion model methodology to calibrate
the signal before data assimilation begins.

In the assimilation step, we use a particle filter with tempering and jittering.
Particle filters are well-suited for complex, multimodal distributions. Unlike tra-
ditional methods, such as the Kalman filter, which assume linearity and Gaussian
noise, particle filters represent the posterior distribution using random samples or
particles. Each particle is assigned a weight based on how well it fits the observed
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Figure 1. Data assimilation and model calibration. Top:

The predictive distribution evolves forward using a forecast model
and is subsequently updated through a nonlinear operation in-
corporating observed data. Bottom: Before time 0, the forecast
model undergoes calibration. The filtering process starts only af-
ter calibration is complete.

data. As new observations are incorporated, particles are propagated through the
model and their weights are updated according to the likelihood of the observed
data, with particles matching the observations receiving higher weights.

We base our analysis on a stochastic and non-dimensional version of the rotating
shallow water model given by:

(1)
dtu+R(u, η) = 0

dtη + P(η,u) = 0

where u(x, t) = (u(x, t), v(x, t)) is the horizontal fluid velocity vector field and
η(x, t) is the height of the fluid column. The operator R : C1(Ω,R2)×C1(Ω,R) →
C0(Ω,R2), where Ω is a spatial domain, governs the dynamics of the velocity vector
field:

R(u, η) := (u ·∇)u+
f

Ro
ẑ× u+

1

Fr2
∇(η − b)− ν∆u− F− B.

The operator P : C1(Ω,R) × C1(Ω,R2) → C0(Ω,R) governs the evolution of the
height of the fluid η

P(η,u) := ∇ · (ηu).

Here f ∈ R is the Coriolis parameter, f = 2Θ sinϕ where Θ is the rotation rate
of the Earth and ϕ is the latitude; f ẑ × u = (−fv, fu)T , where ẑ is a unit vector
pointing away from the centre of the Earth; Fr = U√

gH
is the Froude number

(dimensionless) which is connected to the stratification of the fluid flow. In this
case U is a typical scale for horizontal speed and H is the typical vertical scale,
while g is the gravitational acceleration; Ro = U

f0L
is the Rossby number (also

dimensionless) which describes the effects of rotation on the fluid flow: a small
Rossby number (Ro ≪ 1) suggests that the rotation term dominates over the
advective terms; b(x, t) is the bottom topography function and ν is the viscosity
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coefficient. For more exact details regarding the wind forcing F and the bottom
friction B, please see [3]. The full stochastic version that gives our signal is

(2)

du+R(u, η) dt+
∑

i

[
(ξi ·∇)u+∇ξi · u+

f

Ro
ẑ× ξi

]
◦dW i

t = 0

dη + P(η,u) dt+
∑

i

∇ · (ηξi) ◦dW i
t = 0

where ◦ denotes Stratonovich integration and W i are standard i.i.d. Brownian
motions.
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Figure 2. Results of the filtering experiment conducted over 400
timesteps. The assimilated variable is η, with an ensemble of 50
particles and an assimilation window of 20 forecast timesteps. At
the observed grid location, we present (A) the ensemble evolution
in comparison to the true deterministic fine-grid trajectory, (B)
the ensemble bias over time, and (C) the ensemble RMSE.

Results of the filtering experiment, using the calibrated stochastic signal and a
particle filtering methodology introduced above, are presented in Figure 2. The
particle filter yields good results, even though it operates on a coarser scale than
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the true signal. This is achieved by utilizing the filter’s robustness to misspecifi-
cations in the transition model and carefully calibrating the unresolved scales.
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Likelihood-driven dynamic measure transport: A natural fit for

data assimilation?

Aimee Maurais

(joint work with Youssef Marzouk)

In the Bayesian approach to inverse problems and data assimilation we seek the
posterior distribution of unknown parameters given noisy, often indirect measure-
ments. Fundamental to our ability to make use of a Bayesian posterior is our
ability to obtain samples from it, whether for estimating expectations via Monte
Carlo or for performing uncertainty quantification. And yet, for all but the most
simple distributions, sampling is a highly non-trivial computational task and con-
tinues to be the subject of extensive research. One powerful approach to sampling
is measure transport [1]: given a posterior distribution π1 on R

d and a prior dis-
tribution π0 on R

d from which we can sample, the idea is to find T : Rd → R
d

such that T♯π0 = π1, i.e., if X0 ∼ π0, then T (X0) ∼ π1. The attractiveness of the
transport framework is that obtaining samples from π1 is as simple as sampling
from π0 and applying T . The challenge of the transport framework lies in identi-
fying a suitable map T : such maps are not unique and can be difficult to learn in
high dimensions or when the target distribution has challenging features such as
multimodality.

An alternative to searching for a single, highly expressive “one-shot” transport
map between π0 and π1 is to use dynamics to define a transport incrementally,
e.g., via the flow map induced by trajectories of an ODE or the coupling induced
by sample paths of an SDE; see 1. In either case, the idea is to apply dynamics
which will transform some initial state X0 ∼ π0 to a stateXS ∼ πXS

≈ π1 for some
time S > 0. Dynamic approaches to transport are state-of-the-art in generative
modeling [2, 3, 4, 5, 6], wherein samples from both π0 and π1 are almost always
required for training. In Bayesian and other density-driven sampling settings,
where π1 is only known through its unnormalized density, there are a number
of dynamic sampling algorithms which have their grounding as gradient flows of
functionals on spaces of probability measures. Most well-known algorithms in
this vein (e.g., [7, 8, 9, 10]) use some form of the Wasserstein geometry to obtain
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particle dynamics which must, in principle, be run for infinite time in order to
ensure correct sampling from π1.

π0

{X
(j)
0 }Jj=1

π0(
π1

π0

)t1

{X
(j)
t1

}Jj=1

π0(
π1

π0

)tN−1

{X
(j)
tN−1

}Jj=1

π1

{X
(j)
1 }Jj=1

T1 T2, . . . , TN−1 TN

Figure 1. We employ a finite-time dynamic sampling scheme
in this work, deriving a mean-field ODE which approximately
transports a reference π0 to a target π1 in unit time along the
path πt ∝ π1−t

0 πt
1, t ∈ [0, 1]. In discrete time this approach can be

viewed as one of obtaining incremental transport maps T1, . . . , TN

along a discretization of the path (πt)t∈[0,1].

In this talk we introduce a dynamic sampling approach based on an ODE which
transports samples from π0 to π1 in unit time such that the time-dependent distri-
bution of the samples is the geometric mixture πt ∝ π1−t

0 πt
1 = π0(

π1

π0

)t, t ∈ [0, 1].

[11, 12]. Our method identifies gradient velocity fields, via solution of Poisson
equations, which will cause the distribution of the samples to follow this path.
The gradient structure of the velocity field has an optimal transport interpre-
tation, while this choice of path lends Fisher-Rao gradient flow structure to the
sampler. On a practical level, our approach of solving the weak form of the Poisson
equations in reproducing kernel Hilbert space yields tractable interacting particle
systems which are gradient-free and only require samples from the prior and ac-
cess to evaluations of the unnormalized likelihood for use, making them suitable
choices for ensemble data assimilation. Moreover, our approach suggests a general
framework for gradient-free ODE transport between prior and posterior which can
be employed for many different combinations of distribution paths and features
for representing the velocity field. This flexibility enables, for instance, the use of
random Fourier features in the place of explicit kernel functions, which can lead to
dramatic reductions in computational complexity, and is arguably essential in sit-
uations when the traditionally used path of distributions, the geometric mixture,
features “teleportation of mass” behavior. We conclude the talk by discussing
modifications to the framework which we view as essential for scaling the ODE
transport approach to high-dimensional problems, including exploitation of sparse
conditional dependence structure (localization) and the ability to automatically
pick paths of distributions which are suitable for transport and do not feature
teleportation behavior.
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Nudging state-space models for Bayesian filtering under

misspecified dynamics

Joaquin Miguez

(joint work with Fabian Gonzalez, O. Deniz Akyildiz and Dan Crisan)

State space models & Bayesian filtering. State-space models (SSMs) are
key building blocks in many applications in signal processing, machine learning,
weather forecasting, etc. In a typical SSM, the system state is a random sequence
that evolves over time according to a Markov transition kernel and the available
observations (data) are related to the system state by a likelihood function. The
main statistical goal in SSMs is to infer the state of the system given a sequence
of observations, a problem known as filtering [1].

We represent the state of the SSM by a random sequence {Xt}t≥0. The initial
state X0 is a random variable (r.v.) with probability law π0 and, at any time t ≥ 1,
the dynamics of the transition from Xt−1 to Xt is modelled by a Markov kernel
Kt(xt−1, dxt). The sequence of observations is denoted {Yt}t≥1 and the relation-
ship between the state Xt and the observation Yt is modelled by a conditional
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probability density function (pdf) pt(yt|Xt = xt). Since in practice the observa-
tions are given, Yt = yt for t ≥ 1, the latter relationship is usually given in terms
of a likelihood function gt(xt) ∝ pt(yt|Xt = xt). With these elements, the condi-
tional probability law of the state Xt given the data Y1:t = y1:t := {y1, . . . , yt} can
be constructed recursively via the Chapman-Kolmogorov equation and Bayes’ the-
orem and we denote it as πt. The conditional law πt is often termed the optimal,
or Bayesian, filter.

The optimal filter πt can only be computed exactly in a few specific cases.
The most relevant one is the scenario where both the Markov kernels Kt and
the likelihoods gt correspond to linear relationships and Gaussian noise. Under
such assumptions, πt is Gaussian and its mean and covariance matrix can be
computed recursively via the Kalman filter (KF) algorithm [2]. In most practical
applications, however, the optimal filter πt can only be approximated numerically
using nonlinear KFs, particle filters (PFs) or other approximation methods [3, 4].

Model misspecification. A major challenge in Bayesian filtering is model mis-
specification, which occurs when the chosen family of transition models, {Kt}t≥1,
likelihood functions, {gt}t≥1, or both, fail to represent the statistical properties of
the real-world system with sufficient accuracy. Model misspecification has been
studied from different viewpoints in the literature, including outlier detection, ro-
bust filtering, parameter estimation, and the so-called nudging techniques.

Outlier detection [5] is, perhaps, the simplest way to manage observations which
are in poor agreement with the assumed SSM. When an observation is collected, a
statistical test can be run to determine whether the observed data yt is compatible
with the predicted distribution generated by the SSM and the filtering algorithm.
If the test indicates that the observation is anomalous then the data can either be
discarded or be processed using a robust procedure that mitigates the effect of the
outlying data on the filter update. A fundamental problem with these approaches
is that anomalous data are handled as detrimental and uninformative, under the
assumption that they have not been generated by the system of interest. Very
often, however, a genuine observation from the system of interest may appear as
an outlier because of the misspecification of the SSM. By discarding or mitigating
this observation, relevant information is wasted and model errors are reinforced.

Another classical strategy to account for modelling uncertainty is to choose
not one SSM but a parametric family of SSMs indexed by a (possibly multidi-
mensional) parameter θ. When a sequence of observations becomes available, the
model is calibrated by tuning the parameter θ to the data according to some statis-
tical criterion. Maximum likelihood estimation methods have been proposed [6, 7],
as well as Bayesian estimation methods [8, 9, 10, 11]. While parameter estimation
methods are practically indispensable, they do not solve the model misspecifica-
tion problem –because the parametric family of SSMs may not be flexible enough
the represent the features of the system of interest, no matter the choice of θ.

In geophysics, filtering algorithms are often referred to as data assimilation

methods and a class of techniques collectively known as nudging have been de-
vised to mitigate the model misspecification problem [12]. Nudging methods are
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designed to steer (or nudge) a model towards the observed data over time by
adding a (small) corrective term to the model dynamics. The goal is to make the
model follow observed values more closely without breaking down its original dy-
namics. This ‘definition’ is vague enough to encompass a large and heterogeneous
family of methods [13, 14, 15, 16].

A nudging methodology for misspecified kernels. We adopt a viewpoint of
nudging as a data-informed modification of the kernels {Kt}t≥1 of the SSM, rather
than a tweak of the filtering algorithms. In particular, let M denote the original
SSM available for a given problem or application. We introduce a family of nudging
maps (αt)t≥1 which, given the available observations {yt}t≥1, yield a sequence of
modified (nudged) kernels {Kα

t }t≥1. These kernels, in turn, characterise a modified
SSM, denotedMα, which is therefore different from the originalM. We investigate
the relative agreement of the two models, M and Mα, with a given data set y1:T .
This agreement is quantified by means of the marginal likelihoods, or Bayesian
model evidence, of the two SSMs. Our key findings are outlined below:

• We introduce a class of “parametric nudging transformations” that satisfy
some regularity conditions and admit various different practical implemen-
tations.

• For a given set of observations y1:T , and under mild assumptions on the
original model M, we prove that the proposed nudging methodology can
yield a modified model Mα that attains a higher marginal likelihood than
the base model M. In particular, when the original model M is indexed
by a vector of parameters θ, i.e., M ≡ Mθ, we prove that the nudged
model Mα

θ can attain a marginal likelihood that (a) is higher than the
marginal likelihood of the model Mθ, with the same parameters θ, and
(b) lies in a neighbourhood of the marginal likelihood attained by model
Mθ∗ , where θ∗ is the maximum likelihood estimator of the parameters.

• We describe a specific class of nudging transformations that rely on the
ability to compute the gradient of the log-likelihood function log gt of the
original model M. We prove that the theoretical guarantees obtained
for the general parametric transformations also hold for the proposed
gradient-based nudging. This version of nudging is relatively easy to im-
plement, even when ∇ log gt is analytically intractable, using standard
numerical tools.

• We apply the proposed methodology, with gradient-based nudging trans-
formations, to the class of linear-Gaussian SSMs and explicitly obtain a
nudged version of the KF (i.e., a KF for the nudged model Mα).

We present a set of numerical results that illustrate the application of the
methodology for both linear and nonlinear dynamical models.
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Filtering of Hamiltonian dynamics with dynamical sensor placement

Olga Mula

Hamiltonian dynamics are challenging for filtering because solutions have often
low regularity, they are spatially localized, and the evolution preserves certain
quantities which one would like to discover and then preserve in a numerical re-
construction. In this talk, I will present a filtering algorithm formulated in con-
tinuous time, and which can be implemented after time discretization. Two main
ingredients of the algorithm are symplectic dynamical reduced order models, and
a dynamic strategy to position sensors.

On connections between sequential Bayesian inference and

evolutionary dynamics

Sahani Pathiraja

(joint work with Philipp Wacker)

It has long been posited that there is a connection between the dynamical equations
describing evolutionary processes in biology (namely, replicator-mutator dynam-
ics) and sequential Bayesian learning methods. This talk describes new research
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in which this precise connection is rigorously established and expanded in the con-
tinuous time setting. Here we focus on a class of interacting particle methods
for solving the sequential Bayesian inference problem which are characterised by
a McKean-Vlasov SDE. Of particular importance is a piecewise smooth approx-
imation of the observation path from which the discrete time filtering equations
are shown to converge to a Stratonovich interpretation of the Kushner equation.
This smooth formulation will then be used to draw precise connections between
nonlinear filtering and replicator-mutator dynamics. Additionally, gradient flow
formulations with respect to the Fisher-Rao metric will be investigated. We also
demonstrate that a particular form of replicator-mutator dynamics with collabo-
ration is beneficial for the misspecified model filtering problem, and highlight a
connection to inflation in data assimilation. It is hoped this work will spur further
research into exchanges between sequential learning and evolutionary biology and
to inspire new algorithms in filtering and sampling.
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Approaching observation noise misspecification via generalised

posteriors – robust Kalman filter variants and some of their properties

Hans Reimann

Almost four decades after Zellner’s notion of information optimality via Bayes’
theorem as an optimal way of processing information in [1], we still frequently
observe instances of approximate schemes seemingly outperforming the supposedly
optimal method in a variety of contexts including Bayesian data assimilation.

In their testimony for finding novel forms of posteriors, the authors in [2, 3]
break down this apparent contradiction into key factors for when this optimality
may no longer hold. Among these factors, misspecified observation likelihood mod-
els that do not describe reality and its true data generating mechanisms sufficiently
are pointed out as a major source of this discrepancy. Although a certain family of
observation likelihoods may account best for our knowledge of a dynamic as well
as suit our methods, when it is misaligned in crucial properties, Bayes’ theorem is
struggling to recover accurate representation. In data assimilation both, limited
knowledge and limited computational capabilities are established challenges.

One of these crucial effects on inference via Bayes’ theorem is tail decay of
the likelihood distribution. As Bayesian learning such as in Bayesian filtering is
rooted in Kullback-Leibler divergence and its information processing, mismatch in
tail weight between a true data generating process and an assumed probabilistic
model can deteriorate results significantly. In practice, this can be understood
as extreme observations appearing more frequent than suggested by the model or
simply frequent observation outliers.
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The corresponding branch of robust Bayesian statistics experienced a new in-
flux of methods with so called generalized (robust) posteriors based on the idea
of generalized Bayesian inference in works of [4, 5, 6] among others. The idea is
hereby similar to McAllester’s idea of PAC Bayesian learning and the correspond-
ing Gibbs posteriors [7] in that Kullback-Leibler divergence is replaced by some
other optimization criteria for matching observation likelihoods to a true data
generating process. Where PAC Bayes requires some arbitrary loss function be-
tween data and parameter, generalised Bayesian inference focuses on discrepancy
measures between distributions with support in observation space.

In a promising line of work in [8, 9, 10], the authors explore use of novel di-
vergence measures in the context of Bayesian online change point detection and
Gaussian process regression to obtain the described outlier robustness. Utilizing
diffusion score matching as an estimator for minimum diffusion Fisher divergence
as investigated in [11], akin to regular score matching as established in [12, 13]
with respect to Fisher divergence, it hereby provides the required generalization in
an extra degree of freedom to obtain this robustness of interest while maintaining
desired properties such as forms of conjugacy.

While the context of generalised Bayesian inference is yet to be fully utilized and
understood in the context of Bayesian data assimilation and Bayesian filtering,
initial investigations have resulted in curious first insights. Work in [14] was first
via formulating a generalized particle filter, however still fairly costly in their use of
β-divergences. Further exploring as well as exploiting the Gauss-Gauss conjugacy
properties derived in [10], the work in [15] utilized diffusion score matching to
derive a Kalman filter variant with the desired provable robustness property. The
work in [16] came to similar results based on what they coined weighted observation
likelihood - a form of weighted cross-entropy measure.

Both these novel Kalman filter variants are promising in that they again only
required computationally cheap parameter updates to obtain closed form, analytic
expressions of the Gaussian analysis, or posterior, distribution. Moreover, utilizing
results in [17] we can show stability in an asymptotic steady state of the covariance
matrix under usual, mild conditions as well as intuition on choice of introduced
tuning parameters via expanding on results in [18]. We are hereby generally subject
to the usual limitation to linear Gaussian state space system. However, as with the
regular Kalman filter variants via ensemble approximations akin to the ensemble
Kalman filter with perturbed observations and ensemble square root filters are
readily available. It is these ensemble variants to the novel Kalman filters that
are promising for filtering of non-linear signal processes. Additionally, for non-
linear observation, or forward, maps, the popular local linear approximation in
the celebrated local ensemble transform Kalman filter in [19] can be expanded in
consistent fashion to the novel Kalman filter variants based on generalized Bayesian
inference.

In summary, generalised posteriors can provide a novel and intuitive way to modify
classic results in Bayesian filtering and data assimilation. The diffusion score
matching based EnKF, ESRF and LETKF maintain crucial properties for ease of
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application while providing robustness to tail decay mismatch and thus help reduce
impact of when assumptions on the observation model do not hold. Moreover, they
provide first insights and can pave the way to a more semi-parametric intuition
of data assimilation when entering the much broader context of PAC Bayesian
learning, e.g. with Stein discrepancy based loss measures. The diffusion score
matching Kalman filter can then be understood as a special case of one such.
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Ensemble Kalman inversion for high dimensional problems

Xin Tong

Ensemble Kalman inversion (EKI) is an ensemble-based method to solve inverse
problems. Its gradient-free formulation makes it an attractive tool for problems
with involved formulation. However, EKI suffers from the ”subspace property”,
i.e., the EKI solutions are confined in the subspace spanned by the initial ensemble.
It implies that the ensemble size should be larger than the problem dimension
to ensure EKI’s convergence to the correct solution. Such scaling of ensemble
size is impractical and prevents the use of EKI in high dimensional problems.
To address this issue, we propose two novel approaches using localization and
dropout regularization to mitigate the subspace problem. We prove that these
methods converge in the small ensemble settings, and the computational cost of the
algorithm scales linearly with dimension. We also show that they reach the optimal
query complexity, up to a constant factor. Numerical examples demonstrate the
effectiveness of our approach.

Uncertainty quantification analysis of bifurcations of the Allen–Cahn

equation with random coefficients

Elisabeth Ullmann

(joint work with Chiara Piazzola, Christian Kuehn)

We consider the Allen–Cahn equation in a domain D ⊂ R
d, d = 1, 2, 3, together

with suitable boundary and initial conditions,

(1)

∂tu(x, t) = ∆u(x, t) + pu(x, t)− u(x, t)3, x ∈ D,

u(x, t) = 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x), x ∈ ∂D,

where u : D×R≥0 → R is a function, p ∈ R is a given parameter, and u0 : D → R is
a given function. (1) is a prototypical model problem in the dynamics of nonlinear
partial differential equations (PDEs) [1]. It is well known that the dynamics of (1)
changes qualitatively according to variations of the so-called bifurcation parameter

p, which induces supercritical pitchfork bifurcations [2, 3].
In our work [4] we go beyond the state-of-the-art by introducing a random coef-

ficient in the linear reaction part of the Allen–Cahn equation, thereby accounting
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for random, spatially-heterogeneous effects. That is, we consider

(2)

∂tu(x, t) = ∆u(x, t, ω) + q(x, ω)u(x, t, ω)− u(x, t, ω)3, x ∈ D,

u(x, t, ω) = 0, x ∈ ∂D, t > 0,

u(x, 0, ω) = u0(x), x ∈ ∂D, P-a.s.,

where (Ω,A,P) is a suitable probability space associated with the random coef-
ficient function q : D × Ω → R. Importantly, we assume a spatially constant,
deterministic mean value of the random coefficient, that is,

(3) q(x, ω) = p+ g(x,Y (ω)),

where p ∈ R is deterministic, Y : Ω → Γ ⊂ R
N , N ∈ N, is a random vector

with independent components Yi, i = 1, . . . , N (so called finite-dimensional noise),
g : D×Γ → R is uniformly bounded, that is, ∃ g ∈ R, s.t. P({ω ∈ Ω: |g(x,Y (ω))| ≤
g ∀x ∈ D}) = 1, and E[g(x,Y )] = 0 for all x ∈ D. We show that the mean
value p of q in (3) is in fact a bifurcation parameter in the Allen-Cahn equation
with random coefficients (2). Moreover, we show that the bifurcation points and
bifurcation curves become random objects. We consider two distinct modelling
situations: (i) for a spatially homogeneous coefficient q in (2) we derive analyt-
ical expressions for the distribution of the bifurcation points and show that the
bifurcation curves are random shifts of a fixed reference curve; (ii) for a spatially
heterogeneous coefficient q in (2) we employ a generalized polynomial chaos expan-
sion to approximate the statistical properties of the random bifurcation points and
bifurcation curves. We present numerical examples in 1D physical space (d = 1),
where we combine the popular software package Continuation Core and Toolboxes
(CoCo) [5] for numerical continuation and the Sparse Grids Matlab Kit [6] for the
polynomial chaos expansion. Our exposition addresses both, dynamical systems
and uncertainty quantification, highlighting how analytical and numerical tools
from both areas can be combined efficiently for the challenging uncertainty quan-
tification analysis of bifurcations in random differential equations. Moreover, we
systematically build a framework for the bifurcation analysis of nonlinear PDEs
with random coefficients, for example, the Allen–Cahn equation with a random
diffusion coefficient a and a random coefficient b in front of the cubic nonlinearity,

(4) ∂tu = ∇ · (a∇u) + qu− bu3.

Looking forward, we mention one open question at the intersection of PDE
analysis and uncertainty quantification: Which parameters in the PDE with ran-
dom coefficients are bifurcation parameters? While this question is reasonably well
studied for certain PDEs with deterministic coefficients, such as the Allen–Cahn
equation, it is quite open for PDEs with random coefficients. For example, in
our work [4] we consider a deterministic bifurcation parameter, namely the mean
value of q in (2). Other bifurcation parameters are possible, for example, the stan-
dard deviation of q, or the probability P(q > qmax), where qmax ∈ R is a given
exceedance level. Finally, it is also possible to consider the random field q in (2)
as bifurcation parameter, that is, we study a random bifurcation parameter.
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Combining nonlinear data assimilation and generative machine

learning methods for fast high-dimensional Bayesian inference

Peter Jan van Leeuwen

Recently, strong progress has been made towards the solution of fully nonlinear
Bayesian Inference, also called data assimilation, in high-dimensional geophysi-
cal systems, such as the atmosphere and ocean. Examples are the Particle Flow
Filter (Pulido and Van Leeuwen, 2019), a recently developed fully nonlinear and
efficient sequential Monte Carlo filter, and generative diffusion methods from ma-
chine learning. We explain these two methods and show that both have issues,
which can be largely solved by combining them in an optimal way.

The Particle Flow Filter. The PPF uses the idea of a particle flow that iteratively
pushes forward a set of interacting particles from the prior p(x) to samples from the
posterior p(x|y), in which y is the observation vector, without any reweighting or

resampling strategies. Specifically, a set of Np particles {xi}
Np

i=1 is moved through
state space via a gradient velocity field f : ℜnx → ℜnx over pseudo-time s as:

(1) dxi = f(xi)ds

where we suppressed the dependence of f on the other particles with index j 6= i.
This evolution can be viewed as Stein variational gradient descent. In practice, an
Euler discretization of Equation (1) can be used:
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(2) xi
s+1 = xi

s +∆sf(xi
s)

where ∆s is the pseudo-time step and xi
s is the ith particle at pseudo time s.

Given an intermediate pdf qs(x) formed by the particles at pseudo-time s, the
goal is to find an optimal velocity field f such that the distance between qs(x) and
the posterior pdf p(x|y) decrease with pseudo-time. Here, the distance between
qs(x) and p(x|y) is measured through Kullback-Leibler (KL) divergence:

(3) KL(qs(x)||p(x|y)) =

∫
qs(x) log

(
qs(x)

p(x|y)

)
dx

The velocity field f is chosen to optimally decrease the KL divergence of the
intermediate pdf and the posterior pdf by solving the following problem

(4) f∗ =argmax
f∈H

{
−

d

ds
KL(qs(x)||p(x|y))

}

where H is an infinite dimensional Hilbert space.
In practice, this optimization problem is still intractable because there is an

infinite number of velocity fields that solve this equation. By constraining the
functions within the unit ball of a reproducing kernel Hilbert space (RKHS) with
a kernel function K(·, ·) : ℜnx × ℜnx → ℜ, Hu and Van Leeuwen (2021) showed
that the optimal velocity field f is

(5) f(xi
s) =

1

Np

D

Np∑

j=1

[
K(xi

s,x
j
s)∇x

j
s
log p(xj

s|y) +∇
x
j
s
·K(xi

s,x
j
s)
]

where D is a positive-definite matrix that can be chosen to accelerate convergence.
The kernelK characterizes the distance between any two particles. Typically, a di-
agonal and isotropic scalar Gaussian kernel is adopted, K(xi

s,x
j
s) = K(xi

s,x
j
s)Inx

,
where Inx

is an identity matrix of size nx × nx,

(6) K(xi
s,x

j
s) = exp

(
−
1

2
(xi

s − xj
s)

TA(xi
s − xj

s)

)

and A is a symmetric matrix, often chosen similarly to D.
To implement the update in equation (5), the logarithm of the posterior gradient

must first be determined via Bayesx Theorem, as:

(7) ∇x log p(x|y) = ∇x log p(yx) +∇x log p(x)

with p(y|x) the likelihood, which is assumed to be known in closed form. For
instance, Gaussian observation errors lead to

(8) ∇x log p(y|x) = HTR−1(y −H(x))

where H is an observation operator that maps state space variables to the obser-
vational space, H its gradient, and R is the observation error covariance matrix.

For fully nonlinear data-assimilation methods the gradient of the prior is not
easily determined. The problem is that we only have a representation of the prior
in terms of a set of discrete particles, such that taking the log and a gradient is
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not well defined. Assuming a Gaussian or Gaussian mixture for the prior can work
well (e.g. Hu and Van Leeuwen, 2021), but is not exact and it is easy to envision
cases where this would be inaccurate.

An alternative: generative diffusion methods. An alternative way to solve the
Bayesian inference problem is to use generate diffusion methods from machine
learning. Diffusion sampling relies on an Ornstein-Uhlenbeck process to transform
samples from the prior into a standard Gaussian distribution pG(x) = N(0, I). For
this pdf we find that ∇x log pG(x) = −x, such that the evolution in pseudo time
for each sample xi becomes:

(9) dxi = −b(τ)xidτ + σ(τ)dWi

For suitably chosen b(τ) and σ(τ) this generates a set of samples fromN(0, I), from
our original samples from p(x). The key insight is that this process is reversible–
starting from samples drawn from N(0, I), we can reconstruct samples from the
original distribution p(x) by reversing the Ornstein-Uhlenbeck process.

To discretize the process in pseudo-time, we define a sequence [0, τ1, τ2, ..., 1].
The transition density between steps follows

(10) q(xt+1|x0) = N(γx0, β
2I)

where γ(τ) and β(τ) depend on the drift termb(τ) and noise function σ(τ) (Bao
et al., 2023). Rewriting the evolution equation, we obtain

(11) dxi = (−b(τ)xi +∇xi
log q(x)) dτ + σ(τ)dWi

Running this equation backward in time reconstructs samples from p(x). Since
the transition densities q(xt+1|x0) are Gaussian, all terms are computationally
tractable, making diffusion sampling an efficient method for high-dimensional
Bayesian inference.

So far, we have established a method to generate new samples from an existing
distribution p(x). However, Bayesian inference requires generating samples from
the posterior distribution p(x|y) where y represent new observations. To achieve
this, we need to incorporate the likelihood term into our sampling procedure.
Since the posterior distribution is related to the prior through Bayes’ theorem,
its gradient can be decomposed as ∇x log p(x|y) = ∇x log p(x) + ∇x log p(y|x).
Bao et al. (2023) propose incorporating this additional likelihood term into the
backward evolution equation by adding a new forcing term:

(12) dxi = [−b(τ)xi +∇xi
log q(x) + h(τ)∇xi

log p(y|x)] dτ + σ(τ)dWi

Here, h(τ) is a function that smoothly transitions from 0 at the start of the back-
ward integration to 1 at the end. This ensures that the likelihood term is gradually
incorporated into the sampling process, preventing abrupt adjustments and allow-
ing for a more stable convergence to the posterior distribution. While this method
has proven effective for certain monotonic nonlinear observation operators (Bao et
al., 2023), it faces challenges when the observation operator is highly nonlinear.
Furthermore, results can be sensitive to the choice of h(τ), leading to stability
issues.



478 Oberwolfach Report 10/2025

A new solution: merging the two As we have seen, both the Particle Flow Filter
and generative diffusion methods have issues solving high-dimensional nonlinear
Bayesian inference problems. The new idea is to combine the two - use the gen-
erative diffusion method to generate an analytical (!) expression of the gradient
of the log of the prior pdf, which is then used in the Particle Flow Filter. Initial
results are encouraging, but a few outstanding issues remain: 1) How to ensure
that the gradient of the log of the prior pdf from the diffusion method leads to
physically realistic samples, 2) is it possible to properly include the likelihood in
the diffusion method, in which case we do not need the Particle Flow method, and
finally 3) how can we accelerate the convergence rate of these methods?
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Likelihood-based methods for low frequency diffusion data &

Statistical learning theory for neural operators

Sven Wang

We consider the problem of nonparametric inference in multi-dimensional diffusion
models from low-frequency data. Due to the computational intractability of the
likelihood, implementation of likelihood-based procedures in such settings is a
notoriously difficult task. Exploiting the underlying (parabolic) PDE structure of
the transition densities, we derive computable formulas for the likelihood function
and its gradients. We then construct a Metropolis-Hastings Crank-Nicolson-type
algorithm for Bayesian inference with Gaussian priors, as well as gradient-based
methods for computing the MLE and Langevin-type MCMC. The performance of
the algorithms is illustrated via numerical experiments.

We present statistical convergence results for the learning of mappings in infinite-
dimensional spaces. Given a possibly nonlinear map between two separable Hilbert
spaces, we analyze the problem of recovering the map from noisy input-output pairs
corrupted by i.i.d. white noise processes or subgaussian random variables. We pro-
vide a general convergence results for least-squares-type empirical risk minimizers
over compact regression classes, in terms of their approximation properties and
metric entropy bounds, proved using empirical process theory. This extends classi-
cal results in finite-dimensional nonparametric regression to an infinite-dimensional
setting. As a concrete application, we study an encoder-decoder based neural op-
erator architecture. Assuming holomorphy of the operator, we prove algebraic (in
the sample size) convergence rates in this setting, thereby overcoming the curse
of dimensionality. To illustrate the wide applicability of our results, we discuss a
parametric Darcy-flow problem on the torus.
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Sequential measure transport for density estimation

and its applications

Benjamin Zanger

(joint work with Tiangang Cui, Martin Schreiber, Olivier Zahm)

Transport-based methods are receiving growing interest because of their ability to
sample easily from the approximated density. These methods aim at building a
deterministic diffeomorphism T , also called a transport map, which pushes forward
an arbitrary reference probability density ρref to a given target probability density
π to be approximated. Typically, the transport map T is parameterized e.g. by
invertible neural networks [1] and fitted using variational methods of the form

(1) min
T ∈M

D(π||T♯ρref)

with a statistical divergence D(· ||·), typically the (reversed) KL-divergence. An
emerging strategy for this problem is to first estimate π by π̃ and then to compute
a map T which exactly pushes forward ρref to π̃, known as the Knothe-Rosenblatt
(KR) map, see [2, 3]. Among the infinitely many maps T which satisfy T♯ρref = π̃,
the KR map is rather simple to evaluate since it requires only computing the cumu-
lative distribution functions (CDFs) of the conditional marginals of π̃. In general,

ρref (T1)♯ ρref (T2)♯ ρref (T3)♯ ρref �Q1 Q2 Q3

Figure 1. Visualization of the approximation of a bimodal den-
sity π (right) using L = 3 intermediate tempered densities esti-
mated using SoS (4) and a Gaussian reference density ρref .

problem (1) is difficult to solve when π is multimodal or when it concentrates on
a low-dimensional manifold. A known solution to this problem is at the core of
sequential Monte Carlo methods and has also been adopted e.g. in [3]. The idea
is to introduce an arbitrary sequence of bridging densities

(2) π(1), π(2), . . . , π(L) = π,

with increasing complexity. The sequential strategy consists in building L trans-
port maps Q1, . . . ,QL one after the other. In general, there are two possible ways
of combining these, in forward or reverse order,

forward: TL = QL ◦ QL−1 ◦ · · · ◦ Q1 or reverse: TL = Q1 ◦ Q2 ◦ · · · ◦ QL.

For our implementation, we choose the reverse order, since this allows us to build
every map Qℓ by solving a variational problem of the type

(3) min
Qℓ∈M

D(T ♯
ℓ−1π

(ℓ)||(Qℓ)♯ρref), where Tℓ−1 = Q1 ◦ . . . ◦ Qℓ−1
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for statistical distances with the property that D(π||T♯ρ) = D(T ♯π||ρ). These

problems are equivalent to estimating the pullback density (Tℓ−1)
♯π(ℓ) with an

intermediate approximation ρ(ℓ) = (Qℓ)♯ρref .
In the presented work, we do the following contribution to the framework of

sequential measure transport.
First, we employ Sum-of-Squares (SoS) densities to approximate the interme-

diate densities ρ(ℓ) using α-divergences Dα(·||·). We sequentially solve the varia-
tional density approximation problem as in Equation (3) with Dα as the statistical
divergence and where

(4) ρ(ℓ)(x) =
(
Φ(x)⊤AℓΦ(x)

)
ρref(x),

for some arbitrary orthonormal basis function Φ in L2(ρref). Here, the positivity of
the matrix Aℓ � 0 ensures the density ρ(ℓ) to be positive. Since the α-divergence is
defined for general unnormalized densities, it is not necessary to know the normal-
izing constant of π beforehand. α-divergences Dα(·||·) with parameter α ∈ R in-
clude the Hellinger distance and KL-divergence, which have been used in previous
works. The proposed SoS densities permit to efficiently normalize the estimated
unnormalized density and to compute the KR map Qℓ such that (Qℓ)♯ρref = ρ(ℓ).
This combined use of α-divergence for performing SoS density estimation results in
a convex optimization problems which can be efficiently solved using off-the-shelf
toolboxes.

Second, we extend the methodology to the scenario where only samples

X(1), . . . ,X(N) from π are available, as opposed to point-evaluations of the target
density π. In this scenario, we propose to use diffusion-based bridging densities
π(ℓ)(x) where the distribution follows a time–inversed diffusion process such as the
Ornstein-Uhlenbeck process with time parameters tℓ−1 ≤ tℓ and tL = 0. This idea
is at the root of diffusion models [4].

Third, we present a novel convergence analysis using the geometric properties
of α-divergences. The analysis is valid both for forward and reverse sequential
methods and unifies and extends previous analyses proposed in [5, 3]. More inter-
estingly, it guides the choice of bridging densities. In particular, we show that a
smart choice of βℓ for tempered densities or of tℓ for diffusion-based densities yield
a convergence rate of O(1/L2) with respect to the number of layer L. While our
convergence analysis is valid for any tool to build diffeomorphic maps Q, it makes
the assumption that these maps satisfy that

Dα

(
π(ℓ)||(Tℓ)♯ρref

)
≤ ωDα

(
π(ℓ)||(Tℓ−1)♯ρref

)

with ω < 1. It is known that this is in practice hard to achieve. Combining
our result, which is mainly focused on the design of schedulers of bridging densi-
ties so that Dα

(
π(ℓ)||π(ℓ−1)

)
is minimized, with a class of bridging densities and

parametrization of T which has guarantees to achieve ω < 1 for the given bridging
density, is an open problem.
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Last, we give an outlook for using sequential measure transport to solve optimal
transport problems, where we mitigate the difficulty of estimating the optimal
coupling by a sequence of entropic regularized problems.

We demonstrate the capability of sequential measure transport methods with
our proposed method in unsupervised learning and Bayesian inverse problems in
moderate dimension.
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