
Mathematisches Forschungsinstitut Oberwolfach

Report No. 17/2025

DOI: 10.4171/OWR/2025/17

Frontiers of Statistics and Machine Learning

Organized by
Marc Hoffmann, Paris

Richard J. Samworth, Cambridge UK
Johannes Schmidt-Hieber, Enschede

Claudia Strauch, Heidelberg

23 March – 28 March 2025

Abstract. AI is currently the central theme in science. Whereas the un-
derlying algorithms rely on rather simple mathematical operations such as
matrix-vector multiplications and applying non-linearities componentwise,
deriving a theoretical understanding proves to be extremely challenging. To
identify synergies between the fields of mathematical statistics and theoreti-
cal machine learning, the workshop brought together leading researchers and
rising stars who are tackling core challenges at the intersection of these fields.
We have identified the topics of robustness and model misspecification, statis-
tical theory for neural networks and statistics for stochastic processes as three
key themes that underpin increasingly many current developments. These
topics were the focus of the talks and research that was carried out during
the Oberwolfach week.
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Introduction by the Organizers

The workshop Frontiers of Statistics and Machine Learning was attended by 47
participants (46 on site and one online). The workshop brought together re-
searchers with diverse backgrounds. The participants came from universities in
the US, Japan, and Europe. The event featured around 22 talks and we orga-
nized an evening session with short presentations by junior participants (their
abstracts are also included in this report). The talks sparked numerous questions
and (follow-up) discussions.
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Until recently, statistics and machine learning were developed by nearly dis-
joint communities. Due to these independent developments, data science/machine
learning and statistics differ in their approaches to data problems. This distinc-
tion is highlighted in Leo Breiman’s “Two cultures” [1]. While data science starts
with specific benchmark data sets and data competitions, statistics begins with
the modelling of the sampling process. The more pragmatic, engineering-oriented
approach of data scientists has a particular advantage in dealing with complex
data structures where statistical modelling is unclear, often leading to better pro-
cedures. Conversely, statistics can squeeze out more information if the data dis-
tribution can be modelled. In this case one can often say more about uncertainty
quantification, whether Bayesian or frequentist, which remains one of the chal-
lenging problems in data science.

Unifying these fields with the goal to combine the different strengths is an ongo-
ing and very active branch within statistics and machine learning. The workshop
aimed to summarize the current state-of-the-art and push the frontiers of both
statistics and machine learning.

Within this field, we have identified three highly relevant subjects that are cur-
rently experiencing tremendous developments. These selected subjects are robust-
ness, theory for neural networks and statistical theory for stochastic processes. All
of them are intricately interconnected. While robustness to outliers is a classical
topic within statistics with a well-developed mathematical theory, new ideas and
concepts are currently developed to deal with very different forms of robustness,
such as robustness of machine learning methods to a new distribution of the co-
variates during test time (covariate shift) or robustifying neural networks against
adversarial attacks. Theory for neural networks has become a very active subject
in the past years and combines elements from various areas in mathematics. Sta-
tistical theory for stochastic processes has a long tradition within mathematical
statistics and the challenge is to extend the theory to machine learning applica-
tions, such as mean-field limits of neural networks [2] and the recently-developed
stable diffusion sampling procedures for generative AI [3].

Below we provide a more detailed description of these three key subjects for the
workshop.

Robustness and model misspecification
For contemporary AI applications, simple statistical models that underpin the way
we typically think of small data sets having been generated may no longer be fit for
purpose. Large-scale data are usually messy: data may be collected under different
conditions, data may be missing and data may be corrupted. Basic model checks
that are effective in traditional, low-dimensional settings, may become completely
infeasible when there are so many possible departures from an assumed model.

A classical approach to modeling robustness assumes that a fraction of the data
are outliers. Chao Gao demonstrated in his talk that if an ǫ-fraction of the sample
is arbitrarily perturbed and ǫ is unknown then it provably becomes much harder
to construct confidence intervals. Tengyao Wang explored testing of regression
coefficients in highdimensional settings with heavy-tailed noise. Working also in
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the linear regression model, Min Xu showed optimality statements for a data-
driven convex loss function.

Rajen Shah introduced some new methods linking robustness and efficiency in
semiparametric models. Missing data were discussed in the talk by Kabir Verc-
hand. Transfer learning refers to statistical problems in which we wish to make
inference about a target data population, but where some (typically, the large
majority) of our training data come from a related but distinct distribution. In
his talk, Martin Wainwright explored the specific case of covariate shift.

Data privacy can be considered as a strong notion of robustness concerning
the values of individual data points. Yi Yu considered in her talk privacy for
functional data and Tom Berrett developed a theoretical framework addressing
scenarios where an individual might be associated with multiple data points in
a dataset. Chiara Amorino worked out the minimax rate for multivariate data
under privacy constraints.

Statistical theory for neural networks and theory of machine learning
Artificial neural networks (ANNs) are at the core of the AI revolution. In the past
years, enormous efforts have been made to unravel their mathematical properties,
leading to fundamental insights and mathematical guarantees on when and why
deep learning works well.

Regarding the energy landscape, Andrea Montanari derived bounds on the
expected number of local minima via the Kac-Rice formula. In his talk, Pe-
ter Bartlett revealed the existence of different regimes when training a logistic
regression model with a fixed learning rate. Optimisation was also addressed by
Alexandra Carpentier in her talk, where she proposed and analyzed a zeroth-order
optimization method in the strongly convex regime.

Classification is a crucial learning task in modern machine learning and was ad-
dressed in the talks by Henry Reeve and Holger Dette. In classification tasks, neu-
ral networks often output probabilities that tend to be overconfident. To address
this issue, Francis Bach proposed a method and developed theoretical foundations
to calibrate these outputs.

Nicolai Meinshausen proposed a neural network-based distributional regression
methodology called ‘engression’. Nicole Mücke’s talk explored the interface be-
tween robustness and theory of machine learning, treating ridge regression with
heavy-tailed noise.

Mathias Trabs gave a talk on confidence bands for random forests.
Regarding generative AI, Yuting Wei summarized her recent contributions to

the theory for diffusion models.

Statistics for stochastic processes
Understanding the statistical properties of stochastic processes is crucial for ana-
lyzing machine learning procedures because many real-world phenomena, including
data generation and model dynamics, can be modeled as stochastic processes. It
is, however, challenging to develop statistical procedures and statements that are
sufficiently general and robust to be relevant for investigations in the ML context.
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In his talk, Sven Wang explored likelihood-based methods for low-frequency
diffusion data. Mark Podolskij’s presentation covered interacting particle sys-
tems, focusing on the statistical estimation of McKean-Vlasov stochastic differen-
tial equations. Additionally, Arnak Dalalyan discussed a parallelizable sampling
scheme for Langevin Monte Carlo.

The workshop also featured talks on adaptive density estimation under low-rank
constraints (Olga Klopp), bandits and online learning (Alexandre Tsybakov) and
the emerging topic of e-values (Wouter Koolen).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.

References

[1] L. Breiman, Statistical modeling: The two cultures., Statistical Science, 16 (2001), 199–215.
[2] S. Mei, A. Montanari, P-M. Nguyen, A mean field view of the landscape of two-layer neural

networks., Proc. Natl. Acad. Sci. U.S.A., 115 (2018), E7665–E7671.
[3] K. Oko, S. Akiyama, T. Suzuki, Diffusion models are minimax optimal distribution estima-

tors., Proceedings of the 40th International Conference on Machine Learning (ICML’23),
202 (2023), 26517–26582.



Frontiers of Statistics and Machine Learning 757

Workshop: Frontiers of Statistics and Machine Learning

Table of Contents

Taiji Suzuki (joint with Juno Kim, Jason D. Lee, Naoki Nishikawa, Yujin
Song, Kazusato Oko, and Denny Wu)
Statistical and Computational Scaling Low in Test Time Inference . . . . . 761

Chao Gao (joint with Yuetian Luo)
Are Robust Confidence Intervals Possible? . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Rajen Shah (joint with Elliot Young)
On Robustness in Semiparametric Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 764
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Abstracts

Statistical and Computational Scaling Low in Test Time Inference

Taiji Suzuki

(joint work with Juno Kim, Jason D. Lee, Naoki Nishikawa, Yujin Song,
Kazusato Oko, and Denny Wu)

In this talk, I introduce recent theoretical developments that elucidate the learning
capabilities of Transformers, where we analyze statistical and computational com-
plexities in test-time inference methods such as chain-of-thought and in-context
learning.

(1) Analysis of chain-of-thought. In the first half, I discuss theoretical guaran-
tees of chain-of-thought (CoT) that recursively generates intermediate states to
solve complex problems. We consider training a one-layer transformer to solve the
fundamental k-parity problem, extending the work on RNNs by [7]. We estab-
lish three key results: (i) any finite-precision gradient-based algorithm, without
intermediate supervision, requires substantial iterations to solve parity with finite
samples. (ii) In contrast, when intermediate parities are incorporated into the
loss function, our model can learn parity in one gradient update when aided by
teacher forcing, where ground-truth labels of the reasoning chain are provided at
each generation step. (iii) Even without teacher forcing, where the model must
generate CoT chains end-to-end, parity can be learned efficiently if augmented
data is employed to internally verify the soundness of intermediate steps. Our
findings, supported by numerical experiments, show that task decomposition and
stepwise reasoning naturally arise from optimizing transformers with CoT; more-
over, self-consistency checking can improve multi-step reasoning ability, aligning
with empirical studies of CoT. This part is mainly based on [3].

(2) Analysis of in-context learning. In the second half, I discuss in-context (IC)
learning. Transformers can efficiently learn in-context from a few numbers of
example demonstrations. Most existing theoretical analyses studied the ICL ability
of transformers for linear function classes, where it is typically shown that the
minimizer of the pretraining loss implements one gradient descent step on the
least squares objective. However, this simplified linear setting arguably does not
demonstrate the statistical efficiency of ICL, since the pretrained transformer does
not outperform directly solving linear regression on the test prompt. In this work,
we study ICL of a nonlinear function class via transformer with nonlinear MLP
layer: given a class of single-index target functions

f∗(x) = σ∗(〈x,β〉),
where the index features β ∈ Rd are drawn from a r-dimensional subspace and
x follows i.i.d. standard normal distribution N(0, Id). We show that a nonlin-
ear transformer optimized by gradient descent learns f∗ in-context with a prompt
length that only depends on the dimension of the distribution of target functions r;
in contrast, any algorithm that directly learns f∗ on test prompt yields a statistical
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complexity that scales with the ambient dimension d. Interestingly, the pretrain-
ing sample complexity is characterized by the information exponent of the link
functions σ∗ instead of the maximum degree of it. Our result highlights the adap-
tivity of the pretrained transformer to low-dimensional structures of the function
class, which enables sample-efficient ICL that outperforms estimators that only
have access to the in-context data. This part is based on [6].

In addition to that, we investigate how transformers learn features in-context
– a key mechanism underlying their inference-time adaptivity. We again consider
the single-index models but assume the soft-max attention is employed in the
transformer architecture here. We prove that transformers with soft-max atten-
tion pretrained by gradient-based optimization can perform inference-time feature
learning, i.e., extract information of β solely from test prompts (despite β vary-
ing across different prompts), hence achieving inference-time statistical efficiency
that surpasses any non-adaptive (fixed-basis) algorithms such as kernel methods.
Moreover, we show that the inference-time sample complexity surpasses the Cor-
relational Statistical Query (CSQ) lower bound, owing to nonlinear label transfor-
mations naturally induced by the self-attention mechanism. This part is based on
[5].

This result arises from the fact the nonlinear transformation achieved by the
soft-max attention lower the information exponent of the target function to the
generative exponent. More precisely, the information exponent and the generative
exponent are defined as follows. Considering the Hermite expansion of a function
f , i.e., f(z) =

∑
i≥0

ci
i!Hei(z) where Hei is the degree-i (probablists’) Hermite

polynomia, we define H(f, i) := ci as its degree-i coefficient.

• The information exponent [1] of σ∗, denoted by ie(σ∗), is defined as

ie(σ∗) := min{i | H(σ∗, i) 6= 0}.
• The generative exponent [2] of σ∗, written as ge(σ∗), is defined as

ge(σ∗) := min
h∈L2

min{i | H(h ◦ σ∗, i) 6= 0},

where L2 denotes the set of all L2(PY )-measurable transformations from
R to R for PY = σ∗#N(0, 1) where σ∗# is the push-forward by σ∗.

Then, [4] showed in their Proposition 6 that a polynomial σ∗ satisfies

ge(σ∗) =

{
1 (if σ∗ is not even),

2 (if σ∗ is even).

The key lemma to show effectiveness of the soft-max attention is the following one:

Lemma (Informal [5]) The information exponent of exp(σ̄∗) and σ̄∗ exp(σ̄∗) is
equal to ge(σ∗), where σ̄∗ is a clipped version of σ∗.

This lemma enables us to show that the transformers with soft-max attention
can perform a inference-time feature learning with lower inference-time sample
complexity.
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Are Robust Confidence Intervals Possible?

Chao Gao

(joint work with Yuetian Luo)

We study the construction of confidence intervals under Huber’s contamination
model. When the contamination proportion is unknown, we characterize the nec-
essary adaptation cost of the problem. For Gaussian location model, the optimal
length of an adaptive confidence interval is proved to be exponentially wider than
that of a non-adaptive one. In particular, with data X1, · · · , Xn independently
generated from (1−ǫ)N(θ, 1)+ǫQ, we show that the optimal length of an adaptive
confidence interval scales as

1√
logn

+
1√

log(1/ǫ)
.

An explicit optimal construction is given by

ĈI =

[
max

t∈[1,logn]

(
F−1
n (2 (1− Φ(t))) + t− 2

t

)
,

min
t∈[1,logn]

(
F−1
n (1− 2 (1− Φ(t)))− t+

2

t

)]
.

Results for general location models will be discussed. In addition, we also consider
the same problem in a network setting for an Erdos-Renyi graph with node con-
tamination. It will be shown that the hardness of the adaptive confidence interval
construction is implied by the detection threshold between Erdos-Renyi model and
stochastic block model.
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On Robustness in Semiparametric Statistics

Rajen Shah

(joint work with Elliot Young)

Given that all models are wrong, it is important to understand the performance of
methods when the settings for which they have been designed are not met, and to
modify them where possible so they are robust to these sorts of departures from
the ideal. We present two examples with this broad goal in mind.

We first look at a classical case of model misspecification in (linear) mixed
effect models for grouped data. Existing approaches estimate linear model pa-
rameters through weighted least squares, with optimal weights (given by the in-
verse covariance of the response, conditional on the covariates) typically estimated
by maximising a (restricted) likelihood from random effects modelling or by us-
ing generalised estimating equations. We introduce a new ‘sandwich loss’ whose
population minimiser coincides with the weights of these approaches when the
parametric forms for the conditional covariance are well-specified, but can yield
arbitrarily large improvements when they are not.

The starting point of our second vignette is the recognition that semiparametric
efficient estimation can be hard to achieve in practice: estimators that are in theory
efficient may require unattainable levels of accuracy for the estimation of complex
nuisance functions. As a consequence, estimators deployed on real datasets are
often chosen in a somewhat ad hoc fashion, and may suffer high variance. We
study this gap between theory and practice in the context of a broad collection
of semiparametric regression models that includes the generalised partially linear
model. We advocate using estimators that are robust in the sense that they enjoy√
n-consistent estimation uniformly over a sufficiently rich class of distributions

characterised by certain conditional expectations being estimable by user-chosen
machine learning methods. We show that even asking for locally uniform estima-
tion within such a class narrows down possible estimators to those parametrised by
certain weight functions. Conversely, we show that such estimators do provide the
desired uniform consistency and introduce a novel random forest-based procedure
for estimating the optimal weights. We prove that the resulting estimator recovers
a notion of robust semiparametric efficiency (ROSE) and provides a practical al-
ternative to semiparametric efficient estimators. We demonstrate the effectiveness
of our ROSE random forest estimator in a variety of semiparametric settings on
simulated and real-world data.
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Regularized Empirical risk Minimization under Heavy Tailed Noise

Nicole Mücke

(joint work with Mattes Mollenhauer, Dimitri Meunier, Arthur Gretton)

Given two random variables X and Y , we seek to empirically minimize the ex-
pected squared error

(1) R(f) := E
[
(Y − f(X))2

]

over functions f in a reproducing kernel Hilbert space H consisting of functions
from a topological space X to R.

We consider the standard L2(P )-orthogonal decomposition of Y with respect
to the closed subspace L2(P, σ(X)) ⊂ L2(P ) of σ(X)-measurable functions, given
by

(2) Y = f⋆(X) + ε

with the regression function f⋆(X) = E[Y | X ] ∈ L2(P ) and noise ε ∈ L2(P )
satisfying E[ε | X ] = 0.

Given n independent sample pairs (Xi, Yi) from the joint distribution of X and
Y , we investigate the classical ridge regression estimate

(3) f̂α := argmin
f∈H

{
1

n

n∑

i=1

‖Yi − f(Xi)‖2 + α‖f‖2H

}

with regularization parameter α > 0.
We adopt the well-known perspective going back to pathbreaking work by [1, 2,

3], which characterizes f̂α as the solution of a linear inverse problem in H obtained
by performing Tikhonov regularization on a stochastic discretization of the integral
operator induced by H.

Since its inception, this setting has been refined and generalized in a vast variety
of ways ranging from additive models and spectral regularization to kernel PCA
and stochastic approximation methods. A common theme in this line of work is
the derivation of confidence bounds for the excess risk

(4) R(f̂α)−R(f⋆) = E

[
(f̂α(X)− f⋆(X))2

]

under appropriate regularity assumptions about the smoothness of f⋆ and prop-
erties of the noise ε over the draw of the sample pairs.

Heavy-tailed noise. In this work, we assume that the real-valued random vari-
able ε has only a finite number of higher conditional absolute moments, i.e., there
exists some q ≥ 3 such that

(5) E[|ε|q | X ] < Q <∞ almost surely.

In such a setting, the family of Fuk–Nagaev inequalities [4] gives sharp non-
trivial tail bounds beyond Markov’s inequality for sums of heavy-tailed real ran-
dom variables. In particular, these results show that the tail is dominated by a
subgaussian term in a small deviation regime (reflecting the central limit theorem)
and a polynomial term in a large deviation regime.
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Just as in the light-tailed setting, we show that the optimal excess risk is
achieved by balancing the contributions of the approximation error (e.g., the model
bias) and the sample error (e.g., the model variance) by choosing a suitable regu-
larization parameter α depending on n and δ.

The key difference to the known results for bounded or subexponential noise
is a Fuk–Nagaev term appearing in the sample error, which introduces a regime
with an additional polynomial dependence on δ and n.

In the low confidence regime, we can recover excess risk bounds similar to
the setting with bounded or subexponential noise, i.e., they exhibit a logarithmic
dependence on the confidence parameter δ and a sample size dependence up to
n−1/3.

The high confidence regime will require significantly stronger regularization
than the low confidence setting. The resulting bound exhibits a polynomial worst-
case dependence on δ, which is compensated by a better dependence on the sample
size in terms of n−(q−1)/q, before transitioning to a similar behavior as in the low
confidence regime.
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Gradient optimization methods: large step-sizes and implicit bias

Peter Bartlett

(joint work with Yuhang Cai, Michael Lindsey, Song Mei, Matus Telgarsky,
Jingfeng Wu, Bin Yu and Kangjie Zhou)

Optimization in deep learning relies on simple gradient descent algorithms. Al-
though these methods are traditionally viewed as a time discretization of gradient
flow, in practice, large step sizes - large enough to cause oscillation of the loss -
exhibit performance advantages. We first consider gradient descent (GD) with a
constant stepsize applied to logistic regression with linearly separable data, where
the constant stepsize η is so large that the loss initially oscillates. We show that
GD exits this initial oscillatory phase rapidly – in O(η) steps – and subsequently
achieves an O(1/(ηt)) convergence rate after t additional steps. Our results imply
that, given a budget of T steps, GD can achieve an accelerated loss of O(1/T 2)
with an aggressive stepsize η = Θ(T ), without any use of momentum or vari-
able stepsize schedulers. Our proof technique also handles general classification
loss functions (where exponential tails are needed for the O(1/T 2) acceleration),
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nonlinear predictors in the neural tangent kernel regime, and online stochastic gra-
dient descent (SGD) with a large stepsize, under suitable separability conditions.
Second, we consider this phenomenon in two-layer networks. The typical training
of neural networks using large stepsize GD under the logistic loss often also ex-
hibits two distinct phases, where the empirical risk oscillates in the first phase but
decreases monotonically in the second phase. We investigate this phenomenon in
two-layer networks that satisfy a near-homogeneity condition. We show that the
second phase begins once the empirical risk falls below a certain threshold, de-
pendent on the stepsize. Additionally, we show that the normalized margin grows
nearly monotonically in the second phase, demonstrating an implicit bias of GD
in training non-homogeneous predictors. If the dataset is linearly separable and
the derivative of the activation function is bounded away from zero, we show that
the average empirical risk decreases, implying that the first phase must stop in fi-
nite steps. Finally, we demonstrate that by choosing a suitably large stepsize, GD
that undergoes this phase transition is more efficient than GD that monotonically
decreases the risk. This analysis applies to networks of any width, beyond the
well-known neural tangent kernel and mean-field regimes. Third, we establish the
asymptotic implicit bias of GD for generic non-homogeneous deep networks under
exponential loss. Specifically, we characterize three key properties of GD iterates
starting from a sufficiently small empirical risk, where the threshold is determined
by a measure of the network’s non-homogeneity. First, we show that a normal-
ized margin induced by the GD iterates increases nearly monotonically. Second,
we prove that while the norm of the GD iterates diverges to infinity, the iterates
themselves converge in direction. Finally, we establish that this directional limit
satisfies the Karush-Kuhn-Tucker conditions of a margin maximization problem.
Prior works on implicit bias have focused on homogeneous networks, where scaling
inputs by a positive constant factor leads to a polynomial scaling of outputs in
that factor. In contrast, our results apply to a broad class of non-homogeneous
networks satisfying a mild near-homogeneity condition. In particular, our results
apply to networks with many of the typical features of modern machine learn-
ing architectures, including residual connections and non-homogeneous activation
functions.

To Intrinsic Dimension and Beyond: Efficient Sampling in
Diffusion Models

Yuting Wei

(joint work with Zhihan Huang, Gen Li, Yuxin Chen, Yuejie Chi)

Diffusion models have garnered significant attention for their remarkable genera-
tive capabilities, producing high-quality samples with enhanced stability. Com-
pared to methods like Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs), which generate samples in a single forward pass, diffusion
models are designed to iteratively denoise samples over hundreds or thousands of
steps. A prominent example is the widely used Denoising Diffusion Probabilistic
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Models (DDPM) sampler. The current theory suggests the number of denoising
steps required for accurate sample generation should scale at least linearly with
the data dimension in order to learn the distribution accurately. While various
acceleration schemes have been proposed in literature, in practical applications
such as high-resolution image synthesis, where the dimensionality of the data can
be extremely large, DDPM often requires far fewer steps than predicted by theory
while maintaining excellent sample quality.

This gap between theoretical complexity bounds and empirical performance
has inspired a strand of recent research, investigating whether diffusion models
have implicitly exploited structural properties of real-world data to circumvent
worst-case complexity bounds. This talk explores two key scenarios: (1) For a
broad class of data distributions with intrinsic dimension k, we prove that the
iteration complexity of the DDPM scales nearly linearly with k, which is optimal
under the KL divergence metric; (2) For mixtures of Gaussian distributions with k
components, we show that DDPM learns the distribution with iteration complexity
that grows only logarithmically in k. These results provide theoretical justification
for the practical efficiency of diffusion models.
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Optimal Convex M-Estimation via Score Matching

Min Xu

(joint work with Oliver Feng, Yu-Chun Kao, Richard Samworth)

In the context of linear regression, we construct a data-driven convex loss function
with respect to which empirical risk minimisation yields optimal asymptotic vari-
ance in the downstream estimation of the regression coefficients. More precisely,
given independent observations {(Xi, Yi)}ni=1 with Yi = X⊤

i β0+εi, Xi taking value
on Rd, and εi being independent of Xi and having a distribution P0, we consider
estimators of the form

β̂ℓ = argmin
β∈Rd

n∑

i=1

ℓ(Yi −X⊤
i β)
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where ℓ : R → R is a convex loss function. Writing ψ = −ℓ′ and β̂ψ ≡ β̂ℓ, it is
known that under regularity conditions, if Eψ(ε1) = 0, then

√
n(β̂ψ − β0)

d→ N

(
0,

Eψ2(ε1)

{Eψ′(ε1)}2
E(XX⊤)−1

)
.

Noting that only the term VP0(ψ) :=
Eψ2(ε1)

{Eψ′(ε1)}2 depends on ψ, we study the min-

imization of VP0(ψ) over the set of all square integrable non-increasing functions.
When P0 has a uniformly continuous density p0, we prove that the minimizer ψ∗

0 is
the best decreasing approximation of the derivative of the log-density of the noise
distribution in L2(P0) and give an explicit characterization

ψ∗
0 = LCM(p0 ◦ F−1

0 )(R) ◦ F0

where F0 is the distribution function of p0, F
−1
0 is the quantile function, f 7→

LCM(f)(R) is the right-derivative of the least concave majorant of a function f .
Our construction is based on a nonparametric extension of score matching, corre-
sponding to a log-concave projection of the noise distribution with respect to the
Fisher divergence.

We develop a finite sample procedure to estimate the optimal ψ∗
0 and then to

estimate the regression coefficients using the induced convex loss. Our procedure
is computationally efficient, and we prove that it attains the minimal asymptotic
covariance among all convex M -estimators. As an example of a non-log-concave
setting, for Cauchy errors, the optimal convex loss function is Huber-like, and our
procedure yields an asymptotic efficiency greater than 0.87 relative to the oracle
maximum likelihood estimator of the regression coefficients that uses knowledge
of this error distribution; in this sense, we obtain robustness without sacrificing
much efficiency. Numerical experiments using our accompanying R package asm

confirm the practical merits of our proposal.

Parallelized Midpoint Randomization for Langevin Monte Carlo

Arnak Dalalyan

(joint work with Lu Yu)

Let the function f : Rp → R, referred to as the potential, be such that
∫
Rp e

−f(θ) dθ
is finite. We call target distribution the probability distribution having the prob-
ability density function

π(θ) ∝ exp{−f(θ)}, θ ∈ R
p.(1)

The goal of sampling is to devise an algorithm that generates a random vector in
Rp from a distribution which is close to the target one. Throughout the paper,
we assume that the potential function f is M -smooth and m-strongly convex for
some constants m,M ∈ (0,∞) such that m ≤M .

Traditional sampling methods often involve sequential processes, which may be-
come computationally burdensome for large datasets or complex models. Parallel
computing addresses this challenge by distributing the workload across multiple
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processors, enabling the concurrent execution of sampling tasks and enhancing
computational efficiency, thus accelerating the generation of samples in statistical
applications. Building upon the foundations laid by [1], we explore parallel com-
puting for the midpoint randomization method in Langevin Monte Carlo [2, 3].
Our contributions can be summarized as follows.

• We introduce a parallel computing scheme for the randomized midpoint
method applied to Langevin Monte Carlo and derive the corresponding
convergence guarantees in Wasserstein distance, providing explicit con-
stants and dependence on the initialization and choice of the parameters.

• We also present a comprehensive analysis of the parallel computing for the
randomized midpoint method applied to kinetic Langevin Monte Carlo.
Compared to previous work, our results offer a) small constants and the
explicit dependence on the initialization, b) does not require the initializa-
tion to be at minimizer of the potential, c) removes the linear dependence
on the sample size, which serves as a crucial step towards extending the
method to non-convex potentials.
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Statistical Algorithms for Low-Frequency Diffusion Data:
A PDE Approach

Sven Wang

(joint work with Matteo Giordano)

This extended abstract summarises the main contributions of our work [1], which
develops new computational techniques for statistical inference from low-frequency
diffusion data. We consider the problem of statistical inference for multi-dimen-
sional diffusion processes from low-frequency observations. In this setting, tradi-
tional likelihood-based methods are notoriously difficult to implement due to the
intractability of the transition densities and their gradients. Motivated by these
challenges, we develop a novel computational approach that builds on the theory
of partial differential equations (PDEs) and leverages spectral techniques for el-
liptic operators. Our approach is based on the characterisation of the transition
densities of the underlying reflected diffusion process as solutions of the associated
Fokker–Planck equation with Neumann boundary conditions. Using regularity
results from parabolic PDE theory [5], we derive a new representation for the
gradient of the likelihood with respect to the unknown diffusivity function. This
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representation expresses the derivative through a variation-of-constants formula,
see also [3], and allows us to avoid the need for costly data augmentation schemes
often employed in the analysis of low-frequency diffusion data. Crucially, both
the transition densities and their gradients can be approximated via the spectral
decomposition of the elliptic generator of the diffusion, a self-adjoint operator in
divergence form. This reduces the problem to the numerical solution of standard
elliptic eigenvalue problems, for which efficient finite element solvers are available.
Our approach thus enables the use of a wide range of statistical algorithms, in-
cluding gradient-based optimisation methods and gradient-informed Markov chain
Monte Carlo (MCMC) samplers. We demonstrate these developments in a non-
parametric Bayesian framework using Gaussian process priors [4]. The resulting
algorithms allow for the computation of maximum likelihood and maximum a pos-
teriori estimates, posterior means, and quantiles, all without resorting to trajectory
simulation or latent variable augmentation. In extensive simulation studies on a
two-dimensional domain, our methods show excellent empirical performance, pro-
viding accurate reconstruction of the diffusivity function and competitive runtimes
even at high sample sizes. Our work opens up several avenues for future research.
These include extensions to diffusions with non-divergence form structure, mod-
els with noisy observations, and sampling on unbounded domains. Moreover, the
PDE-based gradient characterisation may pave the way for a theoretical analysis
of the computational complexity of the employed statistical algorithms, such as
proving stability bounds and polynomial-time computability [2].
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Rate optimality and phase transition for user-level local
differential privacy

Thomas B. Berrett

(joint work with Alexander Kent and Yi Yu)

Most of the existing literature on differential privacy considers the item-level set-
ting where each individual in a survey contributes a single data point to a dataset.
Here, privacy mechanisms are developed so that, based only on the output of the
mechanism, input datasets differing in only a single data point cannot be reliably
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distinguished. More precisely, writing dH(x, x
′) for the Hamming distance between

datasets x, x′ ∈ Xn, a privacy mechanism Q(·|x) must satisfy

sup
A

sup
x,x′∈Xn

dH(x,x′)≤1

Q(A|x)
Q(A|x′) ≤ eα

to be called α-differentially private, where the first supremum is taken over all
measurable sets in the output space. However, in many leading implementations
of differentially private methodology, such as in mobile devices, each individual
holds multiple data points. The naive application of privacy mechanisms satisfying
standard, item-level privacy constraints is insufficient to protect the privacy of
individuals in these settings, where repeated measurements may lead to privacy
leakage.

In this work we study the user-level variant of differential privacy, where each
of n individuals holds a dataset of size T . Writing dTH(y, y

′) for the Hamming
distance between datasets y, y′ ∈ Yn, where Y = X T , privacy mechanisms here
must satisfy the stronger constraint that

sup
A

sup
y,y′∈Yn

dTH(y,y′)≤1

Q(A|y)
Q(A|y′) ≤ eα,

so that a user’s entire dataset can be perturbed without significantly affecting the
output of the mechanism. We work under local privacy constraints, meaning that
we do not assume the existence of a trusted central data handler.

We derive a general minimax lower bound, which shows that, for locally private
user-level estimation problems, the risk cannot, in general, be made to vanish when
n is fixed even when each T grows arbitrarily large. We then derive matching, up to
logarithmic factors, lower and upper bounds for univariate and multidimensional
mean estimation, sparse mean estimation and non-parametric density estimation.
In particular, with other model parameters held fixed, we observe phase transition
phenomena in the minimax rates as T varies.

In the case of (non-sparse) mean estimation and density estimation, we see that,
for T below a phase transition boundary, the rate is the same as having nT users
in the item-level setting. Different behaviour is however observed in the case of s-
sparse d-dimensional mean estimation, wherein consistent estimation is impossible
when d exceeds the number of observations in the item-level setting, but is possible
in the user-level setting when T ≫ s log(d), up to logarithmic factors. This may
be of independent interest for applications as an example of a high-dimensional
problem that is feasible under local privacy constraints.
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Optimal estimation in private distributed functional data analysis

Yi Yu

(joint work with Gengyu Xue and Zhenhua Lin)

We systematically investigate the preservation of differential privacy in functional
data analysis, beginning with functional mean estimation and extending to varying
coefficient model estimation. Our work introduces a distributed learning frame-
work involving multiple servers, each responsible for collecting several sparsely
observed functions. This hierarchical setup introduces a mixed notion of privacy.
Within each function, user-level differential privacy is applied to m discrete obser-
vations. At the server level, central differential privacy is deployed to account for
the centralised nature of data collection. Across servers, only private information
is exchanged, adhering to federated differential privacy constraints. To address
this complex hierarchy, we employ minimax theory to reveal several fundamental
phenomena: from sparse to dense functional data analysis, from user-level to cen-
tral and federated differential privacy costs, and the intricate interplay between
different regimes of functional data analysis and privacy preservation.

To the best of our knowledge, this is the first study to rigorously examine
functional data estimation under multiple privacy constraints. Our theoretical
findings are complemented by efficient private algorithms and extensive numerical
evidence, providing a comprehensive exploration of this challenging problem.

A simple and improved algorithm for noisy, convex,
zeroth-order optimisation

Alexandra Carpentier

We consider the setting of convex noisy zeroth-order optimisation. For d ≥ 1,
consider a bounded convex set X̄ ⊂ Rd with non-zero volume, and consider a
convex function f : X̄ → [0, 1].

We consider a sequential setting with fixed horizon n ∈ N \ {0}. At each
time t ≤ n, the learner chooses a point xt ∈ X̄ and observes a noisy observation
yt ∈ [0, 1] that is such that E[yt|xt = x] = f(x), and such that yt knowing xt is
independent of the past observations.

We study the problem of optimising the function f in the sequential game
described above, namely after the budget n has been fully used by the learner, she
has to predict a point x̂ - based on all her observations (xt, yt)t≤n - and her aim
will be to estimate the minimum for the function f . Her performance for this task
will be measured through the following (simple) regret

f(x̂)− inf
x∈X̄

f(x),

namely the difference between the true infimum of f , and f evaluated at x̂.
This setting is known as convex noisy zeroth-order optimisation [3, 2]. In this

talk, we discussed the literature in that topic - starting from dimension d = 1 -
and then considering the challenges in the higher dimensional setting. We then
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presented shortly the simple algorithm from [1], based on the centre of gravity

method, which has a worst-case upper bound on the simple regret of order d2√
n
,

up to logarithmic terms. While this is not anymore state of the art - see [2] where
d1.5√
n

is achieved, which has to be compared with the best known lower bound of

order d√
n
- the main interest of this method is its relative simplicity - also that of

its analysis.

References

[1] A. Carpentier, A simple and improved algorithm for noisy, convex, zeroth-order optimisa-
tion, arXiv:2406.18672, 2024.

[2] T. Lattimore, Bandit Convex Optimisation, arXiv:2402.06535, 2024.
[3] A. Nemirovskij and D. Yudin, Problem complexity and method efficiency in optimization,

Wiley-Interscience, 1983.

Sampling Binary Data by Denoising through Score Functions

Francis Bach

(joint work with Saeed Saremi)

Gaussian smoothing combined with a probabilistic framework for denoising via
the empirical Bayes formalism, i.e., the Tweedie-Miyasawa formula (TMF), are
the two key ingredients in the success of score-based generative models in Eu-
clidean spaces. Smoothing holds the key for easing the problem of learning and
sampling in high dimensions, denoising is needed for recovering the original signal,
and TMF ties these together via the score function of noisy data. In this work,
we extend this paradigm to the problem of learning and sampling the distribution
of binary data on the Boolean hypercube by adopting Bernoulli noise, instead of
Gaussian noise, as a smoothing device. We first derive a TMF-like expression for
the optimal denoiser for the Hamming loss, where a score function naturally ap-
pears. Sampling noisy binary data is then achieved using a Langevin-like sampler
which we theoretically analyze for different noise levels. At high Bernoulli noise
levels sampling becomes easy, akin to log-concave sampling in Euclidean spaces.
In addition, we extend the sequential multi-measurement sampling of Saremi et
al. (2024) to the binary setting where we can bring the “effective noise” down by
sampling multiple noisy measurements at a fixed noise level, without the need for
continuous-time stochastic processes. We validate our formalism and theoretical
findings by experiments on synthetic data and binarized images.
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Estimation beyond missing (completely) at random

Kabir Aladin Verchand

(joint work with Tianyi Ma, Thomas B. Berrett, Tengyao Wang,
and Richard J. Samworth)

We study the effects of missingness on the estimation of population parameters.
Moving beyond restrictive missing completely at random (MCAR) assumptions,
we formulate two models of departures from missing completely at random. First,
we consider a missing data analogue of Huber’s ǫ contamination model. For mean
estimation with respect to squared error, we show that the minimax quantiles de-
compose as a sum of the corresponding minimax quantiles under a heterogeneous,
MCAR assumption, and a robust error term, depending on ǫ, that reflects the
additional error incurred by departure from MCAR:

inf
θ̂∈Θ̂

sup
θ∈Rd

sup
Pθ∈PHuber

θ

Quantile(1− δ;Pθ, ‖θ̂ − θ‖22)

≍ Tr(ΣIPW)

n
+

‖ΣIPW‖op log(1/δ)
n︸ ︷︷ ︸

MCAR term

+ ‖ΣIPW‖opǫ︸ ︷︷ ︸
MCAR departure

.

In order to achieve this rate, we develop an iterative imputation algorithm which
can be layered on top of existing (complete-case) robust mean estimation algo-
rithms.

Unfortunately, Huber’s contamination model contains corruptions which may be
overly pessimistic, and the estimation rate suffers accordingly. Motivated by this,
we next introduce natural classes of realizable ǫ-contamination models, where an
MCAR version of a base distribution P is contaminated by an arbitrary missing not
at random (MNAR) version of P . These classes are rich enough to capture various
notions of biased sampling and sensitivity conditions, yet we show that they enjoy
improved minimax performance relative to our earlier arbitrary contamination
classes for both parametric and nonparametric classes of base distributions. For
instance, with a univariate Gaussian base distribution, consistent mean estimation
over realizable ǫ-contamination classes is possible even when ǫ and the proportion
of missingness converge (slowly) to 1. In particular, we have:

inf
θ̂∈Θ̂

sup
θ∈Rd

sup
Pθ∈PRealizable

θ

Quantile(1− δ;Pθ,|θ̂ − θ|2)

≍ σ2 log(1/δ)

n︸ ︷︷ ︸
MCAR term

+
σ2 log2

(
1 + ǫ

q(1−ǫ
)

log
(
nq(1− ǫ)

)
︸ ︷︷ ︸
Realizable departure

,

except for ǫ contained in an interval of size on(1).
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Multi-resolution subsampling for linear classification with massive data

Holger Dette

(joint work with Haolin Chen and Jun Yu)

Classification is one of the main tasks in data analysis and numerous classification
algorithms have been developed in statistics and machine learning. Often training
a classifier on a massive dataset is challenging due large computational costs, even
for linear classifiers. Moreover, as pointet out in [Schwartz et al., 2020], the ever-
increasing demand for high computing power has negative environmental impacts
such as carbon emissions suffer from heavy computer usage.

To tackle the challenges of limiting computing resources, data scientists have
to balance statistical accuracy and computational costs and one of the ubiq-
uitous solutions is subsampling. Several authors have demonstrated that sub-
sampling can achieve this goal in many real-world applications. For example,
[Wang et al., 2021a] analyze the click-through rate for ByteDance Apps via nonuni-
form negative subsampling techniques and [Wang et al., 2022] use subsampling to
predict customer churn for a security company in China.

We consider subsampling techniques exploiting model information to identify
data points in the sample that yield most precise parameter estimates, see for
instance, [Ma et al., 2022, Wang et al., 2021b, Wang et al., 2018, Ai et al., 2021]
and [Zhang et al., 2024] among many others. We demonstrate that a multi-reso-
lution optimal subsampling method combining summary measures and selected
subdata points yields a statistically and computationally efficient linear classifiers
which improves the current state of the art in the general linear classification
problem substantially. This improvement comes from two aspects. One the one
hand, we use the information from the selected subdata and the summary measures
to collect the information from the unselected data points. On the other hand,
we carefully extricate ourselves from the common point of view that subsampling
should reflect the information of the entire data. More specifically, we propose to
use sampling techniques for the region we focus on and to use summary measures
to collect the information for the rest. As a consequence, we can prove that the
resulting estimators become (asymptotically) more efficient and stable compared
to other approaches.
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A conversion theorem and minimax optimality for continuum
contextual bandits

Alexandre B. Tsybakov

(joint work with Arya Akhavan, Karim Lounici, Massimiliano Pontil)

The contextual bandit problem has been extensively studied in finite action spaces,
where algorithms leveraging side information or context have achieved strong per-
formance guarantees, see, e.g., [3]. However, many real-world applications, such
as personalized recommendations, control systems, and experimental design, nat-
urally involve continuous action spaces, giving rise to the more general setting
of contextual continuum bandits. Extending contextual bandits to continuous do-
mains raises new challenges [5], as the learner must explore an infinite action space
and infer the structure of the loss function from limited feedback, often relying on
convexity or smoothness assumptions to ensure tractability.

Contextual continuum bandits. Let Θ ⊆ Rd be a convex body, and let f :
Rd× [0, 1]p → R be an unknown function. At each round t, a context ct ∈ [0, 1]p is

revealed by the adversary. Then, based on ct and the past values (yk, zk, ck)
t−1
k=1

the learner chooses a query point zt ∈ Θ and receives a noisy evaluation:

yt = f(zt, ct) + ξt,(1)

where ξt is a scalar noise variable. The learner’s objective is to achieve the smallest
possible contextual regret defined as

Rcntx
T (f) := E

[ T∑

t=1

f(zt, ct)−
T∑

t=1

min
z∈Θ

f(z, ct)
]
.(2)

Meta-algorithm. We propose a meta-algorithm (Algorithm 1) for the continuum
contextual bandit problem.

Let F be a class of functions f : Rd × [0, 1]p → R. Assume that there exists a
possibly randomized online policy π = (πt)

∞
t=1 (the input algorithm), for which we

can control its static regret over T runs for any sequence of functions {f(·, ct)}Tt=1,

where f ∈ F and {ct}Tt=1 ⊆ [0, 1]p. Namely, if {zinput
t }Tt=1 are updates of (πt)

T
t=1,



778 Oberwolfach Report 17/2025

Algorithm 1:

Input: Randomized policy π = (πt)∞t=1, parameter K ∈ N, partition {Bi}K
p

i=1 of [0, 1]p

Initialization: Ni(0) = 0, H(i) = {0} for all i = 1, . . . , Kp, z0 = 0

for t = 1, . . . , T do

if ct ∈ Bi then

Ni(t) = Ni(t− 1) + 1 // Increment count

Use πNi(t)
with {yk ,zk, ck}k∈H(i) to choose zt ∈ Θ // Select query

yt = f(zt, ct) + ξt // Query

H(i)← H(i) ∪ {t} // Update index set

end

end

then there exist F : [0,∞) → [0,∞), F1 : [0,∞) → [0,∞) such that F is concave,
F1 is non-decreasing, and for all {ct}Tt=1 ⊆ [0, 1]p the static regret satisfies:

sup
f∈F

E
[ T∑

t=1

f(zinput
t , ct)−min

z∈Θ

T∑

t=1

f(z, ct)
]
≤ F (T )F1(T ).(3)

Let {Bi}K
p

i=1 be the partition of [0, 1]p into Kp equal cubes with edge length 1/K.
We assume that f is Hölder continuous w.r.t. c. For (L, γ) ∈ [0,∞) × (0, 1] we
denote by Fγ(L) the class of all functions f : Rd × [0, 1]p → R such that

|f(x, c)− f(x, c′)| ≤ L ‖c− c′‖γ , for all x ∈ Θ, c, c′ ∈ [0, 1]p,(4)

where ‖·‖ is the Euclidean norm.

Theorem 1 (Static-to-contextual regret conversion). Let (L, γ) ∈ [0,∞)× (0, 1].
Let π be a randomized policy such that (3) holds with a concave function F and a
non-decreasing function F1, and let zt’s be the updates of Algorithm 1. Then,

sup
f∈F∩Fγ(L)

Rcntx
T (f) ≤ KpF

(
T

Kp

)
F1(T ) + 2LT

(√
p

K

)γ
.(5)

Theorem 1 allows us to control the contextual regret of the output algorithm in
terms of the static regret of the input algorithm π. As a corollary, we derive the
minimax optimal rates and algorithms in the following three settings.
(a) Lipschitz contextual bandits. Lipschitz non-contextual bandits have been

extensively studied in the literature, see [4] and the references therein. In [4], the

authors propose an algorithm that attains a static regret of order d
1
2T

d+1
d+2 log5(T )

for Θ = [0, 1]d and for noise-free observations ξt = 0 for all t over the class F
of functions such that |f(x, c) − f(x′, c)| ≤ L′ ‖x− x′‖ for all x,x′ ∈ [0, 1]d,
c ∈ [0, 1]p, where L′ > 0 is a constant. Taking their method as the input π of
Algorithm 1, applying Theorem 1 with optimal choice of K, and assuming for
simplicity that γ = 1, we obtain the following bound on the contextual regret of
our output procedure:

sup
f∈F∩F1(L)

Rcntx
T (f) ≤ C

√
pd T

p+d+1
p+d+2 log5(T ),(6)
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where C > 0 is a numerical constant. A minimax lower bound on the contextual

regret of the order T
p+d+1
p+d+2 valid on the same class of functions is proved in [5].

Together with (6), it implies that, up to a logarithmic factor, the rate T
p+d+1
p+d+2 is

minimax optimal as function of T and our algorithm attains the minimax rate.
(b) Convex contextual bandits. Let F be the class of functions f such that

f(·, c) is convex for all c ∈ [0, 1]p, and let ξt’s be i.i.d. sub-Gaussian for all t. We
use the state of the art result on non-contextual convex bandit optimization from
[1]. It proposes a polynomial-time algorithm achieving, up to a poly-logarithmic

factor, the static regret d3.5
√
T . Taking this algorithm as the input policy π of

Algorithm 1 and applying Theorem 1 with optimal choice of K we derive the
following bound for the contextual regret of our output procedure:

sup
f∈F∩Fγ(L)

Rcntx
T (f) ≤ Cp1/2d7/3T

p+γ
p+2γ ,(7)

where C > 0 is a factor that depends polynomially on log(T ) and log(d) and does
not depend on p.
(c) Strongly convex contextual bandits. Consider the class F = Fα,β(M)

of objective functions f such that, for any c ∈ [0, 1]p, the map x 7→ f(x, c) is β-
smooth, α-strongly convex and satisfies maxx∈Θ |f(x, c)| ≤M for some β, α,M >
0. Under noisy observations with σ-sub-Gaussian noise, we first propose a non-
contextual policy π close to the BCO algorithm of [2] and we prove that it satisfies
a static regret bound of the form (3). Combining this policy with Algorithm 1,
we obtain for T ≥ d the following bound on the contextual regret of the resulting
procedure:

sup
f∈Fα,β(M)∩Fγ(L)

Rcntx
T (f) ≤ Cp1/2d T

p+γ
p+2γ log(T ),(8)

where C > 0 depends only on M,σ, β/α.

Minimax lower bound. Along with the classes Fγ(L), γ ∈ (0, 1], we consider
the class F0(L), which includes discontinuous functions and is defined as the set
of all functions such that |f(x, c)− f(x, c′)| ≤ L for all x ∈ Θ, c, c′ ∈ [0, 1]p.

Theorem 2. Let (α, β,M, γ, L) ∈ (0,∞)× [3α,∞)× [α+ 1,∞)× [0, 1]× [0,∞).
Let Θ be the unit Euclidean ball, let {ct}Tt=1 be independently distributed according
to a suitably defined distribution on [0, 1]p, and {ξt}Tt=1 be i.i.d. standard Gaussian
random variables. If {zt}Tt=1 are outputs of any randomized policy then

sup
f∈Fα,β(M)∩Fγ(L)

Rcntx
T (f) ≥ A

(
min

(
1, L

2(p+γ)
p+2γ

)
T

p+γ
p+2γ +min

(
T, d

√
T
))

,

where A > 0 is a numerical constant.

From (7), (8) and Theorem 2 we deduce that the minimax optimal rate in T for

both settings (b) and (c) above is of the order T
p+γ
p+2γ up to a logarithmic factor.

The bound of Theorem 2 with L > 0 and γ = 0 shows that no randomized policy
can achieve sub-linear contextual regret on the corresponding class of functions.
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Thus, controlling the increments of f with any L > 0 in the absence of continuity
with respect to c is not sufficient to get a sub-linear contextual regret.
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Distributional Regression and Instrumental Variables

Nicolai Meinshausen

(joint work with Xinwei Shen, Anastasiia Holovchak, Sorawit Saengkyongam)

Distributional regression aims to estimate the full conditional distribution of a
target variable, given covariates. Popular methods include linear and tree ensem-
ble based quantile regression. We propose a neural network-based distributional
regression methodology called ‘engression’. An engression model is generative in
the sense that we can sample from the fitted conditional distribution and is also
suitable for high-dimensional outcomes. Furthermore, we find that modelling the
conditional distribution on training data can constrain the fitted function outside
of the training support, which offers a new perspective to the challenging ex-
trapolation problem in nonlinear regression. In particular, for ‘pre-additive noise’
models, where noise is added to the covariates before applying a nonlinear trans-
formation, we show that engression can successfully perform extrapolation under
some assumptions such as monotonicity, whereas traditional regression approaches
such as least-squares or quantile regression fall short under the same assumptions.
Our empirical results, from both simulated and real data, validate the effectiveness
of the engression method. In addition to these regression results in [3], we can also
show that distributional reconstruction can be useful for dimensionality reduction
[2] and instrumental variable regression [1]. The instrumental variable (IV) ap-
proach is commonly used to infer causal effects in the presence of unmeasured
confounding. Conventional IV models commonly make the additive noise assump-
tion, which is hard to ensure in practice, but also typically lack flexibility if the
causal effects are complex. Further, the vast majority of the existing methods aims
to estimate the mean causal effects only, a few other methods focus on the quantile
effects. Here we aim for estimation of the entire interventional distribution. We
propose a novel method called distributional instrumental variables (DIV) We es-
tablish identifiability of the interventional distribution under general assumptions
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and demonstrate an ‘under-identified’ case where DIV can identify the causal ef-
fects while two-step least squares fails to. Our empirical results show that the DIV
method performs well for a broad range of simulated data, exhibiting advantages
over existing IV approaches in terms of the identifiability and estimation error of
the mean or quantile treatment effects.
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Minimax rate for multivariate data under componentwise local
differential privacy constraints

Chiara Amorino

(joint work with Arnaud Gloter)

Our research analyses the balance between maintaining privacy and preserving
statistical accuracy when dealing with multivariate data that is subject to compo-
nentwise local differential privacy (CLDP). With CLDP, each component of the
private data is made public through a separate privacy channel. This allows for
varying levels of privacy protection for different components or for the privatiza-
tion of each component by different entities, each with their own distinct privacy
policies. It also covers the practical situations where it is impossible to privatize
jointly all the components of the raw data. We develop general techniques for
establishing minimax bounds that shed light on the statistical cost of privacy in
this context, as a function of the privacy levels α1, . . . , αd of the d components.
We demonstrate the versatility and efficiency of these techniques by presenting
various statistical applications. Specifically, we examine nonparametric density
and joint moments estimation under CLDP, providing upper and lower bounds
that match up to constant factors, as well as an associated data-driven adaptive
procedure. Additionally, we conduct a detailed analysis of the effective privacy
level, exploring how information about a private characteristic of an individual
may be inferred from the publicly visible characteristics of the same individual.
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On nonparametric estimation of the interaction function in particle
system models

Mark Podolskij

(joint work with Denis Belomestny, Shi-Yuan Zhou)

This talk is dedicated to the study of N -dimensional Rd-valued interacting particle
systems described by the equation

dX i,N
t = (ϕ ⋆ µNt )(X i,N

t ) dt+ dW i
t , i = 1, . . . , N,

where t ∈ [0, T ], ϕ : Rd → Rd is the interaction potential and (W i)Ni=1 are indepen-
dent d-dimensional Brownian motions. Here, µNt stands for the empirical measure
of the particle system at time t, given by

µNt :=
1

N

N∑

i=1

δXi,N
t
,

and ϕ⋆µ(x) :=
∫
ϕ(x−y)µ(dy) ∈ Rd. We make the assumption that we observe N

paths (X i,N
t , t ∈ [0, T ], i = 1, . . . , N) and aim to estimate the unknown interaction

function ϕ as N → ∞ with T > 0 being fixed.
We assume the following condition: The interaction function ϕ : Rd → Rd is

globally Lipschitz continuous and bounded:

‖ϕ(x) − ϕ(y)‖ ≤ Lϕ‖x− y‖, ‖ϕ(x)‖ ≤ Kϕ, x, y ∈ R
d

for some finite Lϕ,Kϕ > 0. This condition guarantees the validity of propagation
of chaos in the sense that, for all t ∈ [0, T ], µNt converges weakly to µt (see, e.g.,
[2, Theorem 3.1]).

We initiate our exposition by describing the fundamental principles of our es-
timation methodology. To begin, we consider a sequence of spaces (Sm)m≥1 of
functions valued in Rd, compact with respect to ‖ · ‖∞. The crucial idea of our
approach lies in the following minimization strategy:

min
f∈SN

1

NT

N∑

i=1

∫ T

0

∥∥∥f ⋆ µNt (X i,N
t )− ϕ ⋆ µNt (X i,N

t )
∥∥∥
2

dt.

Unfortunately, the above risk function cannot be directly computed from the data
since the interaction function ϕ is unknown. We derive an empirical (noisy) version

of the minimization problem by omitting the irrelevant term ‖ϕ ⋆ µNt (X i,N
t )‖2 in

the integrand and minimizing the resulting quantity:

γN (f) :=
1

NT

N∑

i=1

( ∫ T

0

‖f ⋆ µNt (X i,N
t )‖2 dt− 2

∫ T

0

〈
f ⋆ µNt (X i,N

t ) , dX i,N
t

〉)
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over SN . For further analysis, we introduce the following bilinear forms:

〈f, g〉N :=
1

NT

N∑

i=1

∫ T

0

〈
(f ⋆ µNt )(X i,N

t ), (g ⋆ µNt )(X i,N
t )

〉
dt,

〈f, g〉⋆ :=
1

T

∫ T

0

∫

Rd

〈
(f ⋆ µt)(x), (g ⋆ µt)(x)

〉
µt(x) dx dt.

We set ‖f‖2N := 〈f, f〉N and ‖f‖2⋆ := 〈f, f〉⋆. Finally, our estimator ϕN is defined
as follows:

ϕN := argminf∈SN
γN (f).

The main result of the talk is the following theorem.

Theorem. Let DN denote the dimension of the functional space SN satisfying
D2
NN

−1/2 → 0 as N → ∞. Then, for any q ≥ 2 there exists a constant Cq > 0,
such that

{
E

[
‖ϕN − ϕ‖q⋆

]}1/q

≤ inf
f∈SN

‖f − ϕ‖⋆ + Cq

√
DN

N
.

Due to the contractive properties of the norm ‖·‖⋆, the approximation error in the
above theorem typically decays at an exponential rate. As a result, the convergence
is often of parametric order, up to logarithmic factors. In contrast, the situation
is more nuanced when considering convergence in the L2-norm. Depending on the
properties of the interaction function ϕ, the marginal distributions µt, and their
characteristic functions, one may observe logarithmic or even polynomial L2-rates
of convergence. For a detailed analysis, we refer the reader to [1].
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Adaptive density estimation under low-rank constraints

Olga Klopp

(joint work with Julien Chhor and Alexandre B. Tsybakov)

In many applications, one needs to explore relations between two objects that may
have a complex structure, yet are linked via a low-dimensional latent space. This
situation can be often described by mixture models and low-rank matrix models.
For the problem with discrete distributions, one of the important examples is
given by the probabilistic Latent Semantic Indexing framework for topic models.
It assumes that co-occurrences of words and documents are independent given
one of K latent topic classes. Then the joint probability matrix of words and
documents is a mixture of at most K matrices and its rank does not exceed K,
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which is typically a small number. Another example of low-rank probability matrix
estimation is provided by the Stochastic Block Model. In this case, the problem
is to estimate the matrix of connection probabilities of a random graph under the
assumption that its nodes fall intoK groups with constant connection probabilities
within and between each two groups. Such a probability matrix is of rank at most
K. Low-rank probability matrix estimation problems also arise in the context of
collaborative filtering and matrix completion.

For the problems characterized by continuous probability densities, multi-view
models provide a nonparametric analog of classical mixture models. In contrast
to these classical models, they do not assume that the components of the mixture
depend on finite number of parameters but rather consider them as functions satis-
fying some general constraints, such as smoothness or just integrability. Densities
f : Rm → R satisfying the multi-view model are the form

(1) f(x) =

K∑

i=1

wi

m∏

j=1

fij(x
T ej) with

K∑

i=1

wi = 1, wi ≥ 0,

where ej ’s are the canonical basis vectors in Rm and fij ’s are one-dimensional prob-
ability densities. Weights wi and fij ’s are unknown. In model (1), the resulting
function f is the probability density of a random vectorX = (x1, . . . , xm) ∈ [0, 1]m

with entries x1, . . . , xm that are independent conditional on a latent variable that
can take K distinct values. In this work, we focus on the setting, where the aim
is to explore relations between two variables (m = 2) and we explicitly construct
polynomial-time estimators achieving the optimal rates for such models.

A relevant question is to check whether the multi-view model holds for a given
particular problem in practice. We address this issue by providing estimators that
are adaptive to the unknown number of components K varying on a wide scale of
values. Very large values ofK correspond to the absence of low-rank structure. For
such K, our estimator achieves the same rate as the usual nonparametric density
estimator of a smooth density (with no additional structure), and we show that this
is optimal. In other words, our adaptive estimator achieves the minimax optimal
rate regardless of whether the multi-view model holds or not. Thus, adaptation
guarantees that checking the low-rank assumption is not necessary in practice.

We prove minimax lower bounds in the total variation distance for general
discrete distributions on a set of cardinality D. We generalize [1, 2] in the sense
that we derive lower bounds not only in expectation but also in probability and, in

contrast to those works, we obtain the lower rate
√

D
n ∧ 1 for all D,n ≥ 1 with no

restriction. Next, under the low-rank matrix structure, we prove lower bounds of

the order of ψ(K, d, n) =
√

Kd
n ∧1 both in expectation and in probability, with no

restriction on K, d, n, where d = d1 ∨d2. Moreover, we propose a computationally
efficient algorithm to estimate a low-rank probability matrix P and show that it
attains the same rate ψ(K, d, n) up to a logarithmic factor. Thus, we prove the
minimax optimality of this rate and of our algorithm, up to a logarithmic factor.
We also propose a method of estimating β-Hölder densities for β ∈ (0, 1] under
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the generalized multi-view model. Our algorithm achieves the rate of convergence

(K/n)
β/(2β+1)∧n−β/(2β+2) up to a logarithmic factor on the class of densities that

are (i) β-Hölder over an unknown sub-rectangle of [0, 1]2 and (ii) represented as a
sum of K separable components.
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Residual permutation test for regression coefficient testing

Tengyao Wang

(joint work with Kaiyue Wen and Yuhao Wang)

We consider the problem of testing whether a single coefficient is equal to zero in
linear models when the dimension of covariates p can be up to a constant fraction
of sample size n. In this regime, an important topic is to propose tests with finite-
sample valid size control without requiring the noise to follow strong distributional
assumptions. In this work, we propose a new method, called residual permutation
test (RPT), which is constructed by projecting the regression residuals onto the
space orthogonal to the union of the column spaces of the original and permuted
design matrices. RPT can be proved to achieve finite-sample size validity under
fixed design with just exchangeable noises, whenever p < n/2. Moreover, RPT is
shown to be asymptotically powerful for heavy tailed noises with bounded (1+t)-th
order moment when the true coefficient is at least of order n−t/(1+t) for t ∈ [0, 1].
We further proved that this signal size requirement is essentially rate-optimal in
the minimax sense. Numerical studies confirm that RPT performs well in a wide
range of simulation settings.

The t-test is a supermartingale after all

Wouter M. Koolen

(joint work with Peter Grünwald)

The t-statistic is a widely-used scale-invariant statistic for testing the null hypoth-
esis that the mean is zero. Martingale methods enable sequential testing with the
t-statistic at every sample size, while controlling the probability of falsely rejecting
the null. For one-sided sequential tests, which reject when the t-statistic is too
positive, a natural question is whether they also control false rejection when the
true mean is negative. We prove that this is the case using monotone likelihood
ratios and sufficient statistics. We develop applications to the scale-invariant t-
test, the location-invariant χ2-test and sequential linear regression with nuisance
covariates.
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Let us explain here the main question being studied. Consider a data stream
X1, X2, . . .. We assume throughout that Xi are i.i.d. N (δσ, σ2) for some effect size
δ and variance σ2. Our aim is to disqualify the composite null of no effect

H0 = {δ = 0, σ2 > 0}
with the help of the composite alternative that the effect size is a given δ+ > 0

H+ = {δ = δ+, σ
2 > 0}.

In both hypotheses, the variance/scale σ2 is a nuisance parameter. In this partic-
ular case, the nuisance is a group. This means we can quotient it out, for example
by coarsening the data to Zi = Xi/|X1|. Upon doing that, we end up with a
point-vs-point hypothesis test at the coarsened Zn level, as all elements in either
hypothesis agree with each other. So we can look at the likelihood ratio process
(Mn)n≥0

Mn :=
pδ+(Z

n)

p0(Zn)

Several expressions for this process can be obtained. Let Sn =
∑n
i=1Xi and

Vn =
∑n
i=1X

2
i and Rn = Sn√

Vn
. We have the Hypergeometric form

Mn =
Γ
(
n
2

)
1F1

(
n
2 ;

1
2 ;

δ2+R
2
n

2

)
+
√
2δ+RnΓ

(
n+1
2

)
1F1

(
n+1
2 ; 32 ;

δ2+R
2
n

2

)

Γ
(
n
2

)
e

n
2 δ

2
+

the Pochhammer form

Mn =
1

Γ
(
n
2

)
e

n
2 δ

2
+

∞∑

k=0

Γ
(
k+n
2

)

k!

(√
2δ+Rn

)k

the Haar forms

Mn =

∫
pN (δ+σ,σ2)(X

n) 1σdσ∫
pN (0,σ2)(Xn) 1σdσ

=
2

Γ
(
n
2

)
e

n
2 δ

2
+

∫ ∞

0

ew
√
2δ+Rn−w2

wn−1dw

the non-central Student-t form

Mn =
P (Tn;n− 1, δ+

√
n)

P (Tn;n− 1, 0)
where Tn = Rn

√
n− 1

n−R2
n

Several things are known about Mn.

• Mn is a martingale against the null hypothesis of zero effect H0.
• Mn is an e-variable against the null hypothesis of negative effect H≤0 :=
{δ ≤ 0, σ2 > 0}

Yet is it true thatMn is a super-martingale against H≤0? The main technical con-
tent of the talk is to show that it indeed is. For this we use the monotone likelihood
ratio property, which we show does not hold for the original data Zn+1|Zn, but it
does hold if we replace Zn+1 by a sufficient statistic. We show that in general the
following:



Frontiers of Statistics and Machine Learning 787

Theorem 1. Fix δ0 ≤ δ+. Let (Tn)n∈N be a sequence of sufficient statistics
satisfying the monotone likelihood ratio property. Then the process

(
n∏

i=1

pTi

δ+
(Ti | U i−1)

pTi

δ0
(Ti | U i−1)

)

n∈N

is identical to the likelihood ratio process
(
pδ+ (Un)

pδ0 (U
n)

)
n∈N

and both are “test” (posi-

tive, starting at 1) supermartingales relative to the one-sided null H≤0.

We conclude the talk with an application of this general theorem to linear
regression with nuisance covariates.

Semi-supervised classification with non-stationary data

Henry W. J. Reeve

We consider a semi-supervised classification problem with non-stationary label
shift. In this scenario, the practitioner observes a labelled dataset followed by a
sequence of unlabelled covariate vectors, in which the marginal probabilities of
the class labels may change over time. Our objective is to sequentially predict
the corresponding class label for each covariate vector without ever observing
the ground-truth labels beyond the initial labelled dataset. Previous work has
demonstrated the potential of sophisticated variants of online gradient descent
to perform competitively with the optimal dynamic strategy [2]. We explore an
alternative approach which employ’s a varient of Lepski’s method. We demonstrate
the merits of this alternative methodology by establishing a high-probability regret
bound on the test error at a single test time, which adapts automatically to the
unknown dynamics of the label probabilities. Furthermore, we give bounds on the
average dynamic regret, which match those of the online learning perspective for
any given time interval. Our adaptive methodology leverages confidence intervals,
whose construction builds upon a recent localised Dvoretzky–Kiefer–Wolfowitz–
Massart inequality [3]. This work contains a succinct proof of a conjecture of [1]
which holds without any constraints on the failure probability.

For more details, we refer the reader [4].
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Uniform confidence bands for centered purely random forests

Mathias Trabs

(joint work with Natalie Neumeyer, Jan Rabe)

We aim for statistical inference for random forests in a classical non-parametric
regression setting. To this end, we focus on the theoretically simpler to analyse
centered purely random forests where the partition is independent of the observa-
tions and the splits are always centered in a randomly chosen direction. Taking
into account that each tree in the forests is constructed only based on a subsample,
we exploit U-process theory and a Gaussian approximation of the supremum of
empirical processes. As a main result we construct uniform confidence bands for
centered purely random forests.

Let the observations be given by an i.i.d. sample (Xi, Yi) ∈ [0, 1]p × R, i =
1, . . . , n with Xi ∼ U([0, 1]p) and regression function m(x) = E[Y |X = x]. For
a random partition and a point x0 ∈ [0, 1]p we denote the cell which contains x0
by An(x0, ω) where ω is a random variable encoding the random mechanism in
the construction of the partition. The number of Xi’s that fall into An(x0, ω) is
denoted by #An(x0, ω). By construction of a centred purely random forest, the
volume of all cells An(x0, ω) after k splits is 2k. A key quantity in the analysis of
the random forest is the kernel function Kk(x0, x) = 2kPω(x ∈ An(x0, ω)).

If each regression tree is calculated on a random subsample of size rn, Peng et al.
[2] have noticed that the random forest estimator can be written as a generalized
(incomplete) U-statistic:

U
(RF)
n,rn,N,ω

(x0) :=
1

N̂

∑

I∈Bn,rn

ρI
∑

i∈I
Yi

I{Xi ∈ An(x0;ωI)}
#An(x0;ωI)

,

where Bn,rn denotes the set of all subsets of {1, . . . , n} of size rn, ρI are i.i.d.

Ber(N/
(
n
rn

)
) random variables and N̂ =

∑
I ρI is the number of trees in the forest

satisfying E[N̂ ] = N for some sufficiently large N ∈ N.
Our confidence band relies on the approximation

U
(RF)
n,rn,N,ω

(x0)−m(x0) ≈
√
σ2Ψk(x0)

n
Gnfx0,k +OP(2

−αk/p),

where Ψk(x0) := E[Kk(x0, X1)
2] and Gn denotes the empirical process applied to

fx0,k(Xi, εi) = σ−1Ψk(x0)
−1/2εiK(x0, Xi). Together with the Gaussian approxi-

mation of suprema of empirical processes by Chernozhukov et al. [1], we achieve
a uniform asymptotic error bound. To this end, let Bk be a sequence of Gaussian
processes with covariance structure

Cov(Bkfx1,k, Bkfx2,k) = E[fx1,k(X1, ε1)fx2,k(X1, ε1)]

=
(
Ψk(x1)Ψk(x2)

)−1/2
E[Kk(x1, X1)Kk(x2, X1)].
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Theorem. For k ∈ N let Sk be a sequence of random variables such that Sk
d
=

supx0∈[0,1]p |Bkfx0,k|. For ck(β) = F−1
Sk

(1 − β) and an estimator σ̂ of E[ε21] define

Cn,N(x) =
[
U

(RF)
n,rn,N,ω

(x) − σ̂ck(β)

√
Ψk(x)

n
, U

(RF)
n,rn,N,ω

(x) + σ̂ck(β)

√
Ψk(x)

n

]
.

Under appropriate assumptions we have

lim inf
n→∞

inf
m∈H(α,Γ)

P
(
m(x) ∈ Cn(x), ∀x ∈ [0, 1]p

)
≥ 1− β,

where the infimum is taken over all Hölder regular functions of regularity α ∈ (0, 1]
and Hölder norm bounded by Γ > 0.
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Training Diagonal Linear Networks with Stochastic Sharpness-Aware
Minimization

Gabriel Clara

(joint work with Sophie Langer, Johannes Schmidt-Hieber)

We analyze the landscape and training dynamics of diagonal linear networks in
a linear regression task, with the network parameters being perturbed by small
isotropic normal noise. The addition of such noise may be interpreted as a sto-
chastic form of sharpness-aware minimization (SAM) and we prove several results
that relate its action on the underlying landscape and training dynamics to the
sharpness of the loss. In particular, the noise changes the expected gradient to
force balancing of the weight matrices at a fast rate along the descent trajectory.
In the diagonal linear model, we show that this equates to minimizing the average
sharpness, as well as the trace of the Hessian matrix, among all possible factoriza-
tions of the same matrix. Further, the noise forces the gradient descent iterates
towards a shrinkage-thresholding of the underlying true parameter, with the noise
level explicitly regulating both the shrinkage factor and the threshold. For more
details, we refer to [1].
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Isotonic subgroup selection

Manuel M. Müller

(joint work with Henry W. J. Reeve, Timothy I. Cannings, Richard J. Samworth)

Given a sample of covariate-response pairs, we consider the subgroup selection
problem of identifying a subset of the covariate domain where the regression func-
tion exceeds a pre-determined threshold. We introduce a computationally-feasible
approach for subgroup selection in the context of multivariate isotonic regression
based on martingale tests and multiple testing procedures for logically-structured
hypotheses. Our proposed procedure satisfies a non-asymptotic, uniform Type I
error rate guarantee with power that attains the minimax optimal rate up to poly-
logarithmic factors. Extensions cover classification, isotonic quantile regression
and heterogeneous treatment effect settings. Numerical studies on both simulated
and real data confirm the practical effectiveness of our proposal, which is imple-
mented in the R package ISS.

For more details, we refer the reader to [1].
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Clustered random forests with potential covariate shift

Elliot H. Young

(joint work with Peter Bühlmann)

We introduce Clustered Random Forests, a random forests algorithm for clustered
data, arising from independent groups that exhibit within-cluster dependence. The
leaf-wise predictions for each decision tree making up clustered random forests
takes the form of a weighted least squares estimator, which leverage correlations
between observations for improved prediction accuracy. Clustered random forests
are shown for certain tree splitting criteria to be minimax rate optimal for point-
wise conditional mean estimation, while being computationally competitive with
standard random forests. Further, we observe that the optimality of a clustered
random forest, with regards to how (population level) optimal weights are cho-
sen within this framework i.e. those that minimise mean squared prediction error,
vary under covariate distribution shift. In light of this, we advocate weight esti-
mation to be determined by a user-chosen covariate distribution with respect to
which optimal prediction or inference is desired. This highlights a key difference
in behaviour, between correlated and independent data, with regards to nonpara-
metric conditional mean estimation under covariate shift. We demonstrate our
theoretical findings numerically in a number of simulated and real-world settings,
implemented in the R package corrRF.



Frontiers of Statistics and Machine Learning 791

References
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A Novel Statistical Approach to Analyze Image Classification Problem

Juntong Chen

(joint work with Sophie Langer, Johannes Schmidt-Hieber)

The recent statistical theory of neural networks focuses on nonparametric de-
noising problems that treat randomness as additive noise. Variability in image
classification datasets does, however, not originate from additive noise but from
variation of the shape and other characteristics of the same object across different
images. To address this problem, we introduce a tractable model for supervised
image classification. While from the function estimation point of view, every pixel
in an image is a variable, and large images lead to high-dimensional function re-
covery tasks suffering from the curse of dimensionality, increasing the number of
pixels in the proposed image deformation model enhances the image resolution and
benefits the object classification problem. In this talk, we focus on an approach
based on fitting a convolutional neural network (CNN) to the data. We explicitly
characterize the construction of the CNN and establish an approximation result.
Under a minimal separation condition, we derive a misclassification error rate that
depends on the sample size and the complexity of the deformation class.

For further analysis on image processing and image alignment using a one-
nearest neighbor classifier, as well as related simulation studies, we refer the reader
to [1].
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Reflected diffusions as drivers of noise in denoising diffusion models

Asbjørn Holk

(joint work with Claudia Strauch and Lukas Trottner)

In recent years, generative AI has become ubiquitous in all parts of modern life.
Many of these models utilise a denoising diffusion model as their mathematical
backbone, however there is an inherent mismatch in the unbounded state space of
such models and the often bounded support of their target distributions, leading
to theoretically unjustified practices such as thresholding. We close this gap by
instead considering reflected diffusion models, where thresholding is an integral
part of the models. In particular, we show that under certain regularity conditions
of the target distribution, a certain class of reflected diffusion models is mini-max
optimal in total variation up to a polylogarithmic factor. We achieve this through
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a spectral decomposition of the transition density which is approximated by a
neural network in space and then interpolated in time.

Improving the Convergence Rates of Forward Gradient Descent with
Repeated Sampling

Niklas Dexheimer

(joint work with Johannes Schmidt-Hieber)

Forward gradient descent (FGD) has been proposed as a biologically more plausible
alternative of gradient descent as it can be computed without backward pass.
Considering the linear model with d parameters, previous work has found that the
prediction error of FGD is, however, by a factor d slower than the prediction error
of stochastic gradient descent (SGD). In this paper we show that by computing
ℓ FGD steps based on each training sample, this suboptimality factor becomes
d/(ℓ ∧ d) and thus the suboptimality of the rate disappears if ℓ ≥ d. We also
show that FGD with repeated sampling can adapt to low-dimensional structure
in the input distribution. The main mathematical challenge lies in controlling the
dependencies arising from the repeated sampling process.

Reporter: Lukas Trottner
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