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ABSTRACT. The Classification of Finite Simple Groups (CFSG) is considered
to be one of the most important results of modern mathematics, and has led to
many applications both inside and outside group theory. The theory of fusion
systems, although originating in topology and modular representation theory,
has quite recently grown into a new field with the potential for very strong
impact in finite group theory, and in particular on one of the programmes for
a new proof of part of the CFSG. The workshop focussed on some of these
developments, as well as recent applications of finite group theory both within
group theory and in other areas such as algebraic topology and algebraic
combinatorics.
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Introduction by the Organizers

The workshop “Finite groups, fusion systems and applications” was attended by
52 participants (4 online) with a total of 13 female participants. There were 22
presentations — six of 1 hour, fourteen of 40 minutes, and two 25 minute lectures
from PhD students.

There were two major lectures on the theory underpinning the Classification of
Finite Simple Groups (CFSG). The original proof of the CFSG was spread over
hundreds of articles over several decades, and the goal of the ongoing Gorenstein-
Lyons-Solomon (GLS) project is to produce a new unified proof of the classification
and is now nearing its completion. This project benefits from a variety of new
ideas, and also new tools such as the recent geometric methods for identifying finite
groups of Lie type and sporadic simple groups, and from the clearer understanding
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of the local structure of the known finite simple groups which has accumulated since
the completion of the original proof. Stroth gave a lecture on his work on the so-
called uniqueness case for groups of restricted even type, an extremely difficult
problem that is a part of the endgame of the classification. Stroth announced his
solution of this case, a proof of some 900 pages which is projected to form two of
the final volumes in the GLS project. Another lecture was given by Stellmacher on
an alternate approach to the proof of a large section of the CFSG. At the heart of
this programme, which was initiated by Meierfrankenfeld, is the amalgam method
pioneered by Goldschmidt and Stellmacher. This work leads naturally into the
study of saturated fusion systems, another main topic of the workshop.

The theory of fusion systems generalizes important aspects of finite group the-
ory, since each finite group leads to a saturated fusion system which encodes the
conjugacy relations between p-subgroups (traditionally referred to as fusion). It
is an important objective to understand the prevalence and behaviour of exotic
fusion systems, i.e. fusion systems which are not realized by finite groups. The
theory of saturated fusion systems connects previously independent developments
in local finite group theory, modular representation theory and homotopy theory.
As a result, the different methods in these topics merge and complement each
other, often in surprising ways. For example, building on earlier work of Broto,
Levi and Oliver that was motivated by applications in homotopy theory, Cher-
mak introduced group-like structures called localities, which are also important
for applications in finite group theory. Lectures on fusion systems and localities
were given by Chermak, Grazian, Lynd, Oliver, Salati and Serwene. Oliver pre-
sented a ground-breaking result (proved together with his coauthors Broto, Mgller
and Ruiz) which reduces the realizability of a fusion system by a finite group to
the realizability of components of the fusion system (or more generally the realiz-
ability of a normal subsystem containing every component). This underlines the
importance of understanding the exotic behavior of simple fusion systems through
classification results. Grazian presented her classification of fusion systems with
certain elementary abelian self-centralizing subgroups whose presence often cause
fusion systems to be exotic. Salati on the other hand reported on his effort to se-
verely limit the structure of fusion systems having abstract properties resembling
the structure of fusion systems of many groups of Lie type in defining charac-
teristic p. This is achieved by using localities to translate concepts and results
from the classification programme of Meierfrankenfeld and others. Localities are
special cases of “partial groups”. Lynd presented his work with Hackney which
aims to understand the structure of partial groups through higher Segal condi-
tions. Serwene lectured on the connection between fusion systems and modular
representation theory, mentioning in particular results on weight conjectures and
the first Hochschild cohomology group of a block algebra. Chermak suggested in
his talk a new line of research introducing a notion of finite p-dimension of locally
finite countable groups. This is motivated by his effort to extend results from
finite localities to infinite localities with certain finiteness properties.
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The third focus of the workshop was on properties and applications of finite group
theory, particularly simple groups. Here there were several spectacular lectures
containing announcements of the resolution of longstanding conjectures. First, a
major problem at the interface of group theory and topology is Quillen’s conjecture
— that for any finite group G and prime p, the poset of nontrivial p-subgroups of
G is contractible if and only if G has a nontrivial normal p-subgroup. Quillen
himself proved the ‘if’ part of this, but the much harder converse has remained
open for over 40 years. Piterman gave a survey of the problem, and presented the
recent resolution of the conjecture for all primes p apart from 2 — the first real
progress since a pioneeering 1993 paper of Aschbacher and Smith. Tiep lectured
on the use of character-theoretic methods in attacking the 40-year old Thompson
conjecture — that every finite simple group G possesses a conjugacy class C' such
that C? = G — and announced the solution of the conjecture for all sufficiently large
simple groups. Lifshitz showed how he has used his recently developed theory of
hypercontractivity to resolve the Liebeck-Nikolov-Shalev conjecture on the growth
of subsets in simple groups. And Roney-Dougal announced the solution of a 30-
year old conjecture of Pyber on the number of subgroups of symmetric groups.
In his lecture, Dona gave a new perspective on a classical theorem of Jordan
on finite linear groups. Gill presented some new techniques for studying binary
actions of simple groups, an area motivated by Cherlin’s theory of homogeneous
combinatorial structures. Praeger lectured on her classification of the finite arc-
transitive graphs that admit the action of a simple group and embed in a surface
as a regular map, and van Bon presented his and Stellmacher’s use of amalgam
methods to study locally s-arc transitive graphs. Finally, two of the PhD students
del Valle and Huang lectured on their work in permutation groups.

In summary, the workshop brought together researchers across a broad range of
fields, many of them early in their careers; almost half of the talks were given by
young speakers, and all of them gave excellent lectures. The schedule left plenty
of time for scientific exchange, and new collaborations were started, as well as
ongoing ones continued.
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Abstracts

Almost Finite Groups
ANDREW CHERMAK

Let G be a locally finite group, of countable (possibly finite) cardinality. Equiva-
lently, G is the union of a tower v = (G, )nen of finite subgroups G, ; and we say
that v is a framing of G.

Let p be a prime, let Sub,(G) be the set of all p-subgroups of G (partially
ordered by inclusion), and let Maz,(G) C Sub,(G) be the set of all maximal
p-subgroups of G. Define €2,(G) to be the set of all subgroups X of G such that
X = NM for some non-empty subset M of Max,(G). Then Q,(G) is partially
ordered by inclusion, and we say that G is p-finite if there exists d € N such that
there exists no tower in 2,(G) of length greater than d. If such a number d exists,
then the least such d is the p-dimension of G, denoted by dim,(G). If G is p-finite
for all primes p then G is almost finite. For example, if F' is the algebraic closure
of a finite field, and V is a finite-dimensional vector space over F', then GL(V) is
almost finite. On the other hand, the direct limit of the symmetric groups Sym/(n)
(i.e. the set of all permutations of N having finite support) is locally finite and
countable, but is not p-finite for any prime p.

Subgroups and homomorphic images of p-finite groups are again p-finite (and
so similarly for almost finite groups), and if G is p-finite then G acts transitively
on Mazx,(G) by conjugation. Our concern is with simple p-finite groups G such
that G contains an element of order p.

For any finite group H, a subgroup X of H is a p-component of H if H = [H, H]
and H/O, (H) is simple. In this lecture we outline a proof of the following result.

Theorem A. Let G be a simple p-finite group such that G contains an element of
order p, and assume that G is not of order p. Then there exists a framing (G )nen
of G such that:

(1) For each n, G, is perfect and G, /Oy (Gy) is simple.
(2) Both dimy(Gy) and dim,(G, /Oy (Gy)) are constant functions of n.

The proof of Theorem A relies only on elementary group theory. If one now
deploys the CFSG (the classification of the finite simple groups) then one obtains
the following result, as a corollary to a Theorem of Hartley and Shute [HS].

Theorem B. Let G be a simple p-finite group. Then G is almost finite, and if G
is infinite then G is a group of Lie type “§(E), where E is an infinite subfield of
the algebraic closure of a finite field.

The motivation for these results arose from an effort by the speaker, together
with Alex Gonzales, to gain insight into the “p-local compact groups” introduced
by Carles Broto, Ran Levi, and Bob Oliver [BLO]. These have an equivalent
formulation as “compact localities” at the prime p. In the language of localities
[CG], one has the following theorem (due to Gonzales [G]).
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Theorem (Gonzales). Let £ be a compact locality at the prime p. Then there
exists a sequence v = (L, — Lpt1)nen of injective homomorphisms of finite
localities at p such that L is the direct limit of vy in the category of partial groups.

By definition, localities (compact or otherwise) are countable, and are “finite-
dimensional” in a sense analogous to the notion of finite p-dimension for groups.
What Gonzales’ result adds to this is that compact localites are locally finite. The
category of finite localities (like the category of finite saturated fusion systems)
provides a framework in which to carry out elementary finite-group-theoretic ar-
guments, and for that reason we conjecture:

Theorem A’. Let L be a simple, locally finite locality at the prime p. Then there
exists a framing v of L (as in the above theorem of Gonzales), such that

(1) Fach L, is a simple locality at p, and
(2) dimy,(Ly,) is a constant function of n.

The goal here is to obtain a classification of the simple, locally finite, proper
localities - especially at p = 2. For this one requires the classification (initiated by
Aschbacher) of the simple, saturated fusion systems at p = 2 (the CFSF2). The
following formulation would suffice.

CFSF2. Let e be a natural number and let F. be the set of isomorphism classes
of simple saturated fusion systems F over a finite 2-group, such that the locality
associated with F has dimension e. Let 1L, be the set of all F € F, such that F is
the fusion system at the prime 2 of a simple group of Lie type. Then, for all but
one value e* of e, the complement of L. in F. is finite; while Fe« is the union of
Le, a set of Benson-Solomon fusion fusion systems, and a finite set.

We end with a question: Does there exist a simple, proper locality which is not
locally finite ?
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Greedy bases for primitive groups
COEN DEL VALLE
(joint work with Sofia Brenner, Colva Roney-Dougal)

Let G < Sym(f) be a finite permutation group. A base for G is a subset B C
such that the pointwise stabiliser G is trivial. Integral in computational group
theory (see e.g. [10]), bases and related group invariants have been a subject of
significant interest over the past half-century. Finding small bases can be critical
for computational purposes — the size of a smallest base for G is the base size,
denoted b(G).

Much work has been done to determine the base size of primitive groups. Sup-
pose that G is an almost simple primitive group with socle Gy and point stabiliser
H. We say that G has standard action if, up to equivalence, at least one of the
following holds

(i) Gy is alternating and Q is an orbit of either uniform subsets or uniform
partitions;
(ii) Gy is classical with natural module V' and € is an orbit of either subspaces
or pairs of subspaces of V'; or
(iil) Go = Sp,,(q) where q is even and H N Gy = O (q).

Otherwise, the action of G is non-standard. A famous conjecture of Cameron [7]
asserted that the base size of all almost simple primitive groups with non-standard
action should be at most 7. Remarkably, this conjecture was resolved in the
affirmative [3, 4, 5, 6].

The problem of finding a smallest base for arbitrary finite G is NP-hard [1], so
it has been of interest to find polynomial time algorithms which compute bases of
size as close to minimum as possible. One such algorithm is the so-called greedy
algorithm: start with By = 0, and for ¢ > 1 we set B; = B;—1 U {8;}, where §; is
an element in a longest orbit of the pointwise stabiliser G(,_,). Since orbits and
stabilisers may be computed in polynomial time, so too can a greedy base. We call
the size of a largest greedy base for G the greedy base size, and denote it G(G).

In 1992, Blaha [1] showed that G(G) < [b(G)loglog Q] + b(G). Additionally,
Blaha demonstrated that — up to a constant — this bound is best possible. In
1999, Peter Cameron [7] suggested that for primitive groups the situation appears
different.

Conjecture 1 (Cameron’s Greedy Conjecture). There exists an absolute constant
¢ such that if G is any finite primitive permutation group, then G(G) < c¢b(G).

Recently, a program has begun to settle Cameron’s Greedy Conjecture. Thus
far, the focus has been primarily on the almost simple primitive groups. The greedy
base sizes for primitive G with sporadic socle have been determined in a recent
paper [8], showing that for such groups the greedy base size coincides with the base
size. Similarly, if G is any primitive group of odd order, then b(G) = G(G) [2].
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The situation when G is almost simple primitive with alternating socle is more
complicated. When such G is equipped with a standard action on uniform parti-
tions we have that G(G) < 11b(G) [9, Theorem 3.18]. A similar bound has also
been determined in most cases for the standard actions of G on uniform subsets,
but the problem remains open when the size of the ground set is less than 472,
where 7 is the subset size [9, Theorem 2.9]. On the other hand, when such G is
equipped with a non-standard action, b(G) = G(G) [9]. Thus, given the situation
for sporadic groups, and non-standard groups with alternating socle, the following
conjecture is natural.

Conjecture 2. Let G be a finite almost simple primitive group with non-standard
action. Then G(G) < 7.

To prove the conjecture, it remains only to consider those groups with socle of
Lie type.
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Jordan’s theorem: explicit, CFSG-free, over arbitrary field
DANIELE DoNaA
(joint work with Jitendra Bajpai)

In 1878, Jordan proved the following (see [5, Thm. 40]).

Theorem 1. Let I’ < GL,,(C) be finite. Then there is a constant J(n), depending
only on n, and there an abelian normal subgroup A AT with |T'/A| < J(n).

The result has been improved and generalized several times. Different proofs
have different features, as they may: (1) feature explicit constants, (2) not rely on
CFSG, or (3) work for any field K. Theorem 1 satisfies (2). A network of proofs
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from the 1900s-1910s by Blichfeldt, Bieberbach, and Frobenius satisfies (1)(2).

In 1984 Weisfeiler gave a proof satisfying (1)(3), improved 15-20 years later by

Guralnick and Collins. In 1998 Larsen and Pink proved a version satisfying (2)(3).
With Bajpai, we gave a proof that satisfies (1)(2)(3) (see [1, Thm. 1.2]).

Theorem 2. Let K be any field, and let T < GL,,(K) be finite. Then there are

I's <y ATy AT, each of them normal inside T, such that

(a) |T/Ta| < J'(n) == 0" " ;

(b) either Ty =Ty, or char(K) = p > 0 and I'1 /Ty is a product of finite simple
groups of Lie type of characteristic p;

(c) T'2/T's is abelian of size not divisible by char(K);

(d) either I's = {e}, or char(K) =p >0 and I's is a p-group.

The strategy follows closely [7], with explicit computations handled via tech-
niques that the authors developed with Helfgott [2] [3]. The main intermediate
result is the following (see [1, Thm. 6.7], and compare it to [7, Thm. 0.5]).

Theorem 3. Let G < GLy, be a connected almost simple adjoint group over K,
with (r,d, D, 1) = (tk(G), dim(G), deg(G), mdeg(~1)). LetT' < G(K) be finite with

(i) [T > (2dDrn) 400" g
(ii) T £ H(K) for any H < G with dim(H) < d and deg(H) < (2dDr)4d2.
Then char(K) = p > 0, there is some ¢ = p° such that Fy is an Fp-subalgebra of

K or K2, and there is a Steinberg endomorphism F : G — G such that F or F?
is the F,-Frobenius map, with [GF',GF] <T < GF and with [GF',GT] simple.

Going from Theorem 3 to Theorem 2 essentially works as follows. If (i)(ii) hold,
throw the finite simple group [G¥, GF] into (b) and its index in T into (a). If (i)
fails, throw everything into (a). If (ii) fails, the dimension goes down and we enter
an induction, as long as we can make H into a connected almost simple adjoint
group as well: passing to H° makes it connected, throwing the index into (a); the
quotient by R, (H) makes it reductive, and the unipotent radical is thrown into
(d); the quotient by Z(H) makes it semisimple adjoint, and the centre is thrown
into (c); a semisimple is a product of almost simple parts, and the induction kicks
in. The base case dim(G) = 0 is handled via (a) and the degree bound in (ii).

To achieve Theorem 3, let us sketch the strategy in [7]. Assume that (i)(ii)
hold. First, we need to find the “correct” F;. One finds a regular unipotent u € I’
(implying already p > 0). Using u, one can determine some V < Z(U) abelian
unipotent such that |T'NV(K)| > 1: then I' NV (K) is group-isomorphic to some
F,, in turn a subalgebra of K or K2 depending on dim(V) € {1,2}.

Secondly, we spread F, everywhere. For v € I' in a dense open set of G, the
group H) = (V, vV~~1) is almost simple of the form A;, By, G5. One builds first
a Steinberg endomorphism F' : H(,) — H(,, yielding either A;(q), 2By (2251,
or 2G(32/*1). Furthermore H,) is the same for all 7, and 7 runs in an open
set, so we similarly build F' : G — G in a way that gives I' < G¥. The index
[GF : T] is bounded explicitly, and so is |GF /[GT,GF]|: considering the normal
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core of [GF, GF]NT in the simple group [G¥, GF], we conclude that [GF,GF] < T
as long as I is large enough.

Many of the steps above are non-explicit in [7]. In [1], we treat them using
techniques that were used in [2] [3] to study the growth of sets inside classical
groups. We illustrate one example, related to determining dimensional estimates:
it is used for instance (but not exclusively) to achieve the first steps of the strategy,
namely finding v € T" regular unipotent and V intersecting I" nontrivially.

A dimensional estimate is for us an upper bound of the form |I'N V(K)| <
|P|dim(v)/dim(c) for varieties V' C G, where the implicit constant depends only on
the data of V,G (dimension, degree). The first step leading to explicit estimates
of this form is an upper bound on the degree of intersections of varieties.

Lemma 4. Let {Z;}icr be a collection of varieties in AN . Assume that dim(Z;) <
d and deg(Z;) < D for all i € I. Then deg ((;c; Zi) < D1

The idea is to take intersections and keep track of degree changes for every
irreducible component X: if X is intersected non-trivially, dim(X) goes down by
> 1, and deg(X) is multiplied by < D by Bézout. Hence, the worst-case degree is
bounded by the value achieved by descending d times until we have dim(X) = 0
everywhere, which would mean D - D* = D4+1,

Through Lemma 4 we prove a second result related to escape from subvarieties.
In its classic form of [6], an escape result asserts that if a set A is such that
(A) Z V(K) then A*¥ ¢ V(K) for k bounded in terms of the data of V. This fact
is useless to us, since A = I' implies A* = (A) = I too. However, we may rephrase
it to show that escaping from subgroups implies escaping from subvarieties.

Lemma 5. Let I < G(K). IfT' C V(K) for some V. C G, then either || <
deg(V)dmM)+1 or T < H(K) for some H < G with deg(H) < deg(V)dim(V)+1,

The idea is to build a sequence of V; and S; with S; C I' C Vi(K), V; =
ﬂvesi Vv, and V; C V;_4, starting with Vp := V and Sy := {e}, and stop when

=

either I' < Stab(V;)(K) or dim(V;) = 0. To go from 4 to i + 1, take 7,11 € T not in
Stab(V;)(K) and set Vi1 := V; N Viyip1 and Siyq := S; U Si7i41, which satisfy all
requirements. When we stop, we are in one of two cases. If ' < H := Stab(V;)(K),
write H = (1, v; 'V~ and bound deg(H) by Lemma 4. If dim(V;) = 0, V; is
made of deg(V;) points, and Lemma 4 yields the bound on |T'| < deg(V;).

A third lemma bounds the degree of the exceptional locus of a variety V' through

a map f. The non-explicit version dates back to works of Chevalley (see [4]).

Lemma 6. Let V. C AN be an irreducible variety, and let f : V. — AM be a
morphism. Then there is a variety

B2 {veV|dm(f(f(v) > dim(V) - dim(f(V))}

with dim(E) < dim(V) and deg(E) < deg(f)?4™(V) deg(V)2.
(Different, more refined versions are available and used in the actual proof.)

With Lemmas 5-6 in hand, we can prove the dimensional estimate we need.
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Proposition 7. Let G S_GLn be connected almost simple, with d = dim(G) and
D =deg(G). Let I’ < G(K) be finite. Then

e ecither || < (2dD)**,

e orI' < H(K) with dim(H) < d and deg(H) < (2dD)%+1,

e or TNV (K)| < (2d deg(V))ddm(v) 0| 4m(V)/ 4 for any variety V.

The idea is to assume that the first two points do not hold, and use maps to
create an induction process on dim(V') to prove the third point. For a variety
W C AN and a “nice” map f : AV — AN (i.e., with f(I') C T'), we can bound
IT' N W (K)| by counting the points of I on the image f(W), on a generic “good”
fibre F' (i.e., of dimension dim(W) — dim(f(7/))), and on the exceptional locus E:

CNW(K)| < [T fW)(K)|- TN FK)|+ T NEK)|.

In practice the maps are more complicated, involving multiple copies of V: for
instance, we may have f : VxV — VAV for v € I such that dim(V~V) > dim(V).
Then there are two base cases V = G and dim(V') = 0 for the induction. Lemma 5
is used to guarantee the existence of v, and Lemma 6 to guarantee the descent
dim(E) < dim(V); the rest is patient bookkeeping.
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On the binary actions of the alternating and symmetric groups
Nick GILL
(joint work with Pierre Guillot)

Throughout we study a group G acting on a finite set Q2 (on the right). We call
the action binary if, roughly speaking, we can deduce the orbits of G on QF (for
any positive integer k) from knowledge of the orbits of G on Q2.

Our aim is to classify all such actions. We report on progress in two specific
cases.
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A precise definition. We start by giving a precise definition of a binary action.
To do this we need to introduce two equivalence relations on the sets Q¥ where %
is any positive integer k. These equivalence relations are defined with respect to
the action of G on €.
So, let I,J € QF be k-tuples of elements of €, for some k > 1, written I =
(Ii,...,Ix) and J = (J1,...,Jk).
(1) We say that I and J are 2-related if, for each choice of indices 1 < ¢; <
ly < k, there exists g € G such that I} = J,, for all i € {1,2}.
(2) We say that I and J are k-related if there exists g € G such that I] = J,
forall £ € {1,2,...,k}.
Now we say that the action of G on Q is binary if, for all k > 2 and all I, J € QF,
I and J are 2-related if and only if they are k-related.

Some context and the motivating question. The notion of a binary action
is due to the model theorist Gregory Cherlin. It is a particular instance of the
more general notion of the relational complexity of a finite group action. Cherlin
studied the “stratification” induced by the notion of relational complexity on the
universe of finite group actions. He was able to demonstrate some very interest-
ing properties of this stratification, particularly with regards to the existence of
sporadic behaviour in this universe [1].

It is easy to find examples of binary actions: first, if the action of G on ( is
regular, then it is binary; second, the natural action of G = Sym(Q2) on (2 is binary.

On the other hand it has hitherto proved rather difficult to classify the binary
actions of even very well understood families of groups. One reason is that the no-
tion of a binary action behaves rather badly with respect to basic group operations
like taking subgroups and quotients.

Nonetheless, we do at least have a full understanding of the primitive binary
actions. The following theorem was originally a conjecture of Cherlin and is now
a theorem, thanks to the work of various authors including Cherlin, Dalla Volta,
Gill, Hunt, Liebeck, Spiga and Wiscons [2, 3, 5, 6].

Theorem 1. A finite primitive binary permutation group must be one of the
following:
(1) a symmetric group Sym(n) acting naturally on n elements;
(2) a cyclic group of prime order acting regularly on itself;
(3) an affine orthogonal group V x O(V') with V' a vector space over a finite
field equipped with a non-degenerate anisotropic quadratic form, acting on
itself by translation, with complement the full orthogonal group O(V).

The task of extending this theorem to cover all transitive binary permutation
groups is a daunting one. So, for now, our focus is on the following question:

Question 2. What are the transitive binary actions of the almost simple groups?

The alternating and symmetric groups. We present two results dealing with
particular cases of Question 2. The first has appeared on the arXiv [4]; the second
will appear soon.
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Theorem 3. Let G = A,, with n > 2 and let H be a subgroup of G and suppose
that the action of G on the set of right cosets of H in G is binary if and only if
one of the following holds:

(1) H is normal in G, i.e. H is either {1} or A, itself, or else n = 4 and
H=((1,2)(3,4),(1,3)(2,4)).
(2) n=1>5 and H is conjugate to ((1,2)(3,4), (1,3)(2,4)).

Theorem 4. Let G = S,, withn > 2 and let H be a subgroup of G. The action of
G on the set of right cosets of H in G is binary if and only if one of the following
holds:

(1) H is normal in G, i.e. H is either {1}, A,, or S, itself, or elsen =4 and
H = <(17 2)(3,4),(1,3)(2,4)).

(2) H =2 Sy, for some k € {2,...,n — 1} and the action is permutation iso-
morphic to the natural action of G on "% where ¥ = {1,...,n}.

(8) H = (g) where g is an odd involution.

(4) n=4 and H is a Sylow 2-subgroup of G.

(5) n=1>5 and H is conjugate to ((1,2)(3,4),(1,3)(2,4)).

It is noticeable that A,, and S,, exhibit relatively few transitive binary actions.
To answer Question 2 we must extend these classifications to cover the almost
simple groups of Lie type and the almost simple sporadic groups.

A useful graph. The proofs of Theorems 3 and 4 involved extensive study of
a particular family of graphs, defined as follows: Let C be a conjugacy class of
involutions in a group G. We define T'(C) to be the graph whose vertices are the
elements of C, with an edge between z,y € C if and only if zy € C.

When g € C, we define the component group of g in I'(C) to be the subgroup of
G generated by all the elements in the connected component of I'(C) containing
g. The connection to binary actions is given by the next lemma.

Lemma 5. [4] Let G act on the set of cosets of a subgroup H of even order, and
assume that the action is binary. Let C be a conjugacy class of involutions of G
of mazimal fizity. Then, for any g € CN H, the component group of g in I'(C) is
contained in H.

It turns out that, for n > 6, the component group of an involution in A, is
always isomorphic to either A, _1 or A,. This fact, together with the lemma above,
allows one to immediately conclude that if G = A,, and H is a subgroup of even
order such that the action of G on the set of cosets of H is binary, then H = A,,
and the action is trivial. This is a significant first step in proving Theorem 3.
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Fusion systems with soft subgroups
VALENTINA GRAZIAN
(joint work with Chris Parker, Martin van Beek)

Fusion systems are structures that encode the properties of conjugation between
p-subgroups of a group, for p any prime number. A saturated fusion system F
on a finite p-group S is a category where the objects are the subgroups of S and
the morphisms are certain injective group homomorphisms. As an example, it is
always possible to define the saturated fusion system realized by a finite group G
on one of its Sylow p-subgroups S: in this case the morphisms are the restrictions
of conjugation maps induced by the elements of G.

In order to characterize a saturated fusion system F on the p-group S, it is not
necessary to describe the automorphism group Autz(P) in F of every subgroup P
of S. Indeed, the Alperin-Goldschmidt fusion theorem guarantees that every mor-
phism in F is the composition of restrictions of morphisms belonging to Aut z(S)
and to the automorphism groups of the so-called F-essential subgroups of S:

Definition 1. A proper subgroups E of S is F-essential if

e Cs(Ea) < Ea for every morphism « in F appliable to E
(where Cs(P) is the centraliser of P in S),

e |Ns(E)| > |Ns(Ea)| for every morphism « in F appliable to E
(where Ng(P) is the normaliser of P in S),

e the outer automorphism group Outrz(E) = Autz(E)/Inn(E) of E in F
contains a strongly p-embedded subgroup.

For this reason, the first step to study saturated fusion systems is to determine
the F-essential subgroups.

An active research direction in the theory of fusion systems consists in the under-
standing of the ones that are not realized by a finite group, called exotic, especially
for odd primes (this question was suggested by Oliver in [1, Part III, 7.4]). The
recent classification of saturated fusion systems defined on p-groups of maximal
nilpotency class [5] revealed that, in many cases, exoticity is caused by the pres-
ence of abelian F-pearls: F-essential abelian subgroups isomorphic to the direct
product C), x Cj, of two cyclic groups of order p. The concept of F-pearls in fusion
systems was first introduced in [3] and the name highlights the fact that these are
“small” subgroups enriching the structure of the fusion system.
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Abelian F-pearls are the smallest examples of soft subgroups, defined by Héthelyi
in [7] as self-centralizing abelian subgroups with index p in their normalizer in the
p-group. This motivates the study of fusion systems on p-groups containing soft
subgroups as a way to generalize the work on F-pearls. We present our recent
results in the subject, not published yet.

Our first result characterizes the F-essential subgroups containing a soft subgroup:

Theorem 1. Let F be a saturated fusion system on the p-group S, p odd, and let
A be a soft subgroup of S. If E is an F-essential subgroup of S containing A, then
one of the following holds
(1) B =4;
(2) E = Ns(A) and A is not F-essential;
(3) p =3, [S: A] > 33, E is the unique mazimal subgroup of S containing
A and S has sectional rank at least 4 (that is, at least one subgroup of S
cannot be generated by less than 4 elements).

We remark that there are examples of saturated fusion systems on 3-groups of
sectional rank 4 with F-essential subgroups as in case (3) and the list of candidates
for F-essential subgroups in Theorem 1 is best possible.

Next, we prove that if the soft subgroup A is F-essential, then we can construct
a saturated fusion subsystem G of F defined on a subgroup M (A) of S having
maximal nilpotency class. In particular G is known thanks to the classification
achieved in [5].

Theorem 2. Let F be a saturated fusion system on the p-group S, p odd, and
let A be a soft subgroup of S. Suppose A is F-essential with [S: A] > p?. Let
N be the unique maximal subgroup of S containing A. Then F and A uniquely
determine a mazimal class subgroup M(A) of S such that

(1) M(A) and N have the same nilpotency class;

(2) Ag=M(A)NAZC,x Cy;

(3) there exists a unique involution 7o € Z(OP (Autz(A))) s.t. Ag = [A,Tal;
(4) if G is the fusion system on M(A) determined by

74, Inn(M(A)) and {0]a, | 0 € O® (Autx(A))}

then G is a saturated fusion subsystem of F, Op(G) = 1 and Aoy is an
abelian G-pearl.

As an application of Theorems 1 and 2, we believe we can characterize the
reduced fusion systems on 3-groups of sectional rank 3 (the only missing case
in the classification of saturated fusion systems on p-groups of sectional rank 3
presented in [4]), obtaining what follows:

Conjecture 1. Let p be an odd prime, let S be a p-group of sectional rank 3 and
let F be a saturated fusion system on S with Op(F) =1 and F = OP(F). Then
either S has mazimal nilpotency class or S has a mazimal subgroup that is abelian.
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Note that in the first case F is known tanks to the work in [5].

The reduced fusion systems on p-groups possessing a maximal subgroup that is
abelian are also known ([8, 2, 9]) and form another important family of saturated
fusion systems containing many examples of exotic ones. As a future project, in a
joint work with J. Lynd, B. Oliver, C. Parker, J. Semeraro and M. van Beek, we
intend to study a larger family, considering reduced fusion systems F on p-groups
possessing a normal subgroup that is abelian and F-essential. We believe this
larger collection of fusion systems will contain only one previously unkown family
of exotic ones, described in the preprint [6].
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Stronger diameter bounds for classical groups
HARALD HELFGOTT
(joint work with Jitendra Bajpai, Daniele Dona)

Let G be a finite group and A a subset of G generating G. We would like to bound
the diameter of the Cayley graph I'(G, A); this diameter equals the smallest k
such that every element of G can be written as a product ajas---ag, £ < k,
a; € AUATL where A=t = {g7!: g € A}. (We will assume A = A~! from now
on, to make the graph symmetric.) We aim for bounds independent of A. We
will assume G is simple (as the problem can be essentially reduced to that case)
and non-abelian (as otherwise I'(G, A) can be very large for some A: consider
G =7/2025Z, A = {—1,1}). Babai’s conjecture states that, for G finite, simple
and non-abelian, and A arbitrary,

1) diam(I(G, A) < (log|G])°
where C' is an absolute constant.

This conjecture was first proved for the family SLo(F,) [HO8] and then general-
ized in a series of results. While there were generalizations to groups of arbitrary
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rank ([BGT11, PS16]), the dependence of the exponent of C' on the rank was very
poor: C was an exponential tower e®  of height depending on the rank r, in

fact of height proportional to 2. What we have done is introduce new methods
[BDH21, BDH24, BDH25] that make C' polynomial on r:

(2) C < 4081

Strategy. Let us go over the main ideas that have led to (2). First, let us review
ideas common to all proofs of diameter bounds for groups of Lie type.

1) Dimensional estimates. Let G be a simple linear algebraic group over a field
K. A dimensional estimate is a bound of the following form: for any A C G(K)
generating G(K), and any variety V C G,

(3) [ANV(EK)| < c|A*

where A¥ = {a;---ay : a; € A}, and ¢ and k depend only on dimV, degV and
dim G. In other words, either A* is much larger than A (in which case all is going
well: we replace A by A* and iterate) or the intersection of A with any variety is at
most roughly what we would expect from dim V. The first results of this kind were
in [LP11] (available since 1998), which considered the case of A a (non-algebraic)
subgroup, and in [HO8], [H11], where A is a set but the proofs are case-by-case for
different V.

2) Pivoting. There is an idea (the term “pivot” comes from [H11]) that is
implicit in the proof of sum-product theorems (e.g., [BKTO04]) but is now carried
out directly in the group. In brief, we can do induction in G (or rather G/T, for T
a maximal torus) given a generating set A; there is no need for a natural ordering.

Now let us list the kinds of improvements in [BDH21], [BDH24], [BDH25]. (Here
[BDH21] was essentially a first draft for what became [BDH24] and [BDH25].) Let
us first go over what goes into [BDH24].

a) Optimized quantitative algebraic geometry. Given a morphism f : V — A"
from a variety V € A™, how do we bound deg(f(V))? If W C A" is a variety, how
do we bound deg f~*(W)? It is hard to find satisfactory answers in the literature
even to such basic questions — or to answer them oneself. Part of what we do is
give good explicit versions of much of the first chapter of [M99]. This is enough to
get rid of exponential towers; the bound on C' in (1) becomes doubly exponential
on the rank r.

b) Escape from varieties, first improvement. An escape argument tells us that,
given an action of a group G = (A) on A" and a point = on a variety V C A™,
if (A)x is not contained in V' (i.e., there is a way out of the variety), there is a k
bounded only in terms of degV and dim V such that A*z is not contained in V'
(i.e., there is a short way out of the variety). This is a known kind of argument in
group theory. We gave clear improvements on the existing bounds on k by defining
and keeping track of the right quantity in the inductive argument in the proof.
These improvements (together with (a)) are enough to give a bound

(4) diam(I'(G, A)) < C1(log |G)“

with C7 doubly exponential on 7 and Cs polynomial on r.

dim V
dim G s
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¢) Improved inductive procedure. Both [BGT11] and [PS16] use non-trivial
inductive procedures to prove (3) (in [BGT11]’s case, the procedure comes from
[LP11]) in full generality. We show one can do better by using a different inductive
procedure. The result is better bounds on C; and Cs in (4), with better powers.

d) Improved pivoting. This gives us a quantitative improvement.

All of this [BDH24] is enough to give (1) with C' exponential on r (or, somewhat
better, a bound like (1) with C' polynomial on r, but with a doubly exponential
factor in front). Now, what is in [BDH25] but not in [BDH24]?

Rethinking escape from varieties. Consequences. We need not improve on (3)
for general V; it is enough to do so for V a conjugacy class and for V' a torus.
Conjugacy classes are orbits and tori are groups; should we not use these facts?

The crucial step is to ask for more from escape. “Old” escape showed that
there is a short way out of a variety. “New” escape, which we prove, shows that
there exists a recipe book (“Ariadne’s cookbook”), listing a small number of short
recipes a = ay - --ap € A¥; for any z in V, one of those recipes will take x out of
V, that is, ax € V. It is applying this idea that we manage to prove (2).

Zukunjftsmusik. The fact remains that we should aim to show that the exponent
C'in (1) satisfies

C < (logr)°W,

While this bound would still not be quite as strong as Babai’s conjecture, it would
match what is already known for permutation groups: for G = Alt, and an
arbitrary set A generating G,

(5) diam(I'(G, A)) < (log |G|)O((1°g”)31°g1°g") (see [HS14])

The theory (or theories) of groups over the field with one element (which is not a
field and has two elements) strengthens this parallel.

It is bemusing that we have stronger results for Alt,, than for algebraic groups:
surely algebraic groups have more structure? What is helpful in Alt,, is that it
acts non-trivially on sets much smaller than itself; in those sets, precisely because
they are small, a random walk must equidistribute quickly. We can try to get a
“blurrier picture” of the action of an algebraic group; the theory of buildings can
be helpful here.

Let us end with a very simple and concrete example. Say we have a point
x on a hyperplane V in A™ and a set A of linear transformations such that
(A)z ¢ V(K). Then it is easy to see that A"~z ¢ V(K) (try it! this is the
simplest escape example) yet it could happen that A" 22z C V(K) (how? look
at the permutation (12...n) for inspiration). All the same, that is not generic
behavior; what we expect for A “typical” is that A¥z ¢ V(K) for every = when
k is in the order of logn. (In the case of permutation groups, this is essentially
the same as “random graphs have small diameter”.) We can also ask ourselves
whether a small k always suffices for arbitrary A and the specific varieties V' we
are looking at; would that be typical or atypical behavior?
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Transitive subgroups of primitive groups
HonG Y1 HUANG
(joint work with Lei Wang)

Determining the transitive subgroups of primitive groups is a long-standing prob-
lem dating back to the 1900s and it is closely related to the group factorisation
problem. More precisely, if G is a transitive permutation group with point sta-
biliser H, then a subgroup K of G is transitive if and only if G = HK, which
we call a factorisation of G. Group factorisations have been investigated for more
than a century, and it remains a very active area. For example, the factorisations
of all the finite almost simple groups have very recently been determined in [1, 2].

In this talk we focus on transitive subgroups of finite primitive permutation
groups (or equivalently, the factorisations of finite groups G = HK such that H
is a core-free maximal subgroup in G).

Problem. Determine all the transitive subgroups of primitive groups, up to con-
Jugacy.

One of the key tools for studying the finite primitive groups is the O’Nan-Scott
theorem from the 1980s, which describes the finite primitive groups in terms of the

structure and action of the socle of the group. Following [4], this theorem divides
the primitive groups into five families:

affine, almost simple, diagonal type, product type, twisted wreath products.
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We are mainly interested in diagonal type groups in this talk. In particular, there
is a special interest in determining the regular subgroups of these groups because
they arise naturally in the study of Cayley graphs of finite groups (recall that
a simple graph is a Cayley graph if and only if its automorphism group has a
regular subgroup on the vertex set). Another goal is to better understand the
soluble transitive subgroups of diagonal type groups.

Let k£ > 2 be an integer and let T" be a non-abelian finite simple group. Then
D = {(t,...,t) : t € T} is a core-free subgroup of T* so T* < Sym(Q) is a
transitive permutation group with Q = 7%/D. A group G < Sym(f) is of diagonal
type if

T* 9 G < Nsym(o) (T*) 2 T*.(Out(T) x S).

Moreover, a group G of this form is primitive if and only if its induced permutation
group P on the set of k factors of T* either primitive, or k¥ = 2 and P = 1.
Building on earlier work of Liebeck, Praeger and Saxl [3], as well as some more
recent results of Morris and Spiga [5], we are able to classify the regular subgroups
and the soluble transitive subgroups of these groups.

Theorem. The reqular subgroups and the soluble transitive subgroup of diagonal
type primitive groups are classified, up to conjugacy.

Let us highlight the special case where k = 2 and P = 1, which turns out to
be the central part of the proof of the above theorem and finds some interesting
applications. Here G < Hol(T') = T:Aut(T), which is the holomorph of T. As
observed in [3], if B is a transitive subgroup of G, then there exist H, K < Aut(T)
isomorphic to some quotient groups of B satisfying the condition

T<HK = HT = KT < Aut(T).

This naturally brings into play the factorisations of almost simple groups, which
have been recently classified, as noted above.

The study of regular subgroups of holomorphs is of independent interest. For
example, for finite groups X, Y of the same order, the following are equivalent:

(a) Y is isomorphic to a regular subgroup of Hol(X) with respect to its action
on X;

(b) there exists a Hopf-Galois structure of type Y on any Galois extension of
fields with Galois group isomorphic to X;

(c) there exists a skew brace with additive group isomorphic to X and multi-
plicative group isomorphic to Y.

Corollary. The types of Hopf-Galois structures are determined on any Galois
extension of fields whose Galois group is finite simple.

Corollary. The skew braces with finite simple additive groups are classified, up
to isomorphism.
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On The Liebeck—Nikolov—Shalev Conjecture
NoOAM LIFSHITZ
(joint work with L&slé Pyber, Endre Szabd, and Nick Gill)

For subsetsof a group A, B C G We denote AB = {ab: a € A/b € B} and for
o € G we write A = {o7ao : a € A} Liebeck and Shalev [5] proved that for
every finite simple group G and every conjugacy class A, A* = G, for £ < C 1‘;2 ﬁ‘l,
where C' is an absolute constant. The Liebeck—Nikolov—Conjecture is a stronger
variant for sets that are not necessarily normal. It states that for every A there

exist o1,...,00 € G, such that A% ... A% = G, where again ¢ < C}Zi‘lil‘ for an

log |G| 140(1)
log |A|

in a recent pair of papers [2, 6] Gill, Pyber, Szabo and I proved the conjecture.

The above conjectures and results are part of a subfield of group theory known
as growth in finite groups. It is worth noting that one of the central remaining open
problems is Babai’s conjecture, which concerns showing that for every generating
subset A of a finite simple group G we have A’ = G for £ < log |G|® for an absolute
constant C' > 0.

The main tool for showing such growth results in finite groups is character
bounds. These are upper bounds on the values x(o) in terms of x(1) and o.
Character bounds are then used in conjunction with the Frobenius formula, which
I'm going to give here a probabistic version of. Given functions f,g: G — C we
write f  g(x) for Eyq[f(y)g(y~'z)]. The Frobenius formula then states that if

f and g are class functions and f = Zx f(X)X,g = ng(x) are expressed as a

absolute constant C' > 0. Dona [1] proved a variant with £ = ( , an

linear combinations of the characters. Then f* g = Zx % x. Now if f, g are

supported on A, B respectively, then f x g is supported on AB so estimates on the
characters can then be used to obtain growth.

The characters x are an orthonormal basis with respect to the L? inner product
(f,9) = Egoq[f(x)g(z)]. Since the characters are othonormal it is easy to show
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that for all class functions f1,..., f¢ of expectation 1 we have
fl fe(x)?
Hf1*f2*" 1”2_2 2@ 2 :
x#1
And in the special case where f = ‘C’;‘All“ for a conjugacy class A = ¢ we obtain

that the right hand side takes the form Zx 21 %Q)f; when the right hand side
is smaller than 0.1 this implies an L, mixing time, which in turn implies that
A* =@G.

One of the crucial ideas in [2, 6] is to generalize the Frobenius formula to
functions that are not necessarily class functions. Let C[G] be the group algebra,
namely the space of complex valued functions on the group. The group algebra
C[G] can be decomposed as an orthogonal direct sum € peter(G) Wp, where W, is
the space of matrix spanned by the matrix coefficients of p. Recall that for given
an irrep (V, p) a matriz coefficient corresponds tov € V, ¢ € V* and is the function
in C[G] given by g — ¢(gv). Given a function f we can orthogonally decompose
it as a sum of ‘pieces’ f# with f” € W,. The idea now is that upper bounds on
|I/?|l2 can play a similar role to character bounds when f is not necessarily a class
function.

Write f7 for the function with fo(7) = f(r=to7).

We proved that

o o L/ =X]13°
E017~~~705NG[H]€ Pk f [” Z 2@ 22

We then went on to give upper bounds on ||f*X||2 by proving that when f =
9114 we have [|f=X[|3 = x(1)Eaq,pualx(ab™)].

We then went on to apply character bounds due to Guralnick, Larsen, and
Tiep [3] and due to Larsen and Tiep [4]. We also proved new character bounds for
the symmetric group, and combined them with probabilistic arguments to prove
the LNS conjecture.

The above technique is suitable for covering a group by products of conjugates
of a set. For such type of result one is in the lookout for upper bounds of the form
[ £X]l2 < x(1)*~/¢ to obtain a mixing time of O(¢). When one desires to show
that A’ = G, such as in Babai’s conjecture it turns out that such bounds are still
useful. There one needs an upper bound of the form || fX||2 < x(1)*/2=/¢ due to
a method by Sarnak—Xue—Gowers.

Unfortunately the above character theoretic method never gives bounds better
that X(l)l/ 2. However, there are other methods of getting those knows as hyper-
contractive bounds.
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Partial groups and higher Segal conditions
JUSTIN LYND
(joint work with Philip Hackney)

In Chermak’s original group theoretic formulation [3], a partial group is a set
together with a multivariable product that is only defined on a subset of multi-
pliable words in the underlying set, together with an inversion for that product.
Here we report on work understanding the higher Segal conditions of Dyckerhoff
and Kapranov [5] in the context of partial groups. We define a new invariant of a
partial group, its degree, develop the discrete geometry of partial group actions as
a tool for computing this invariant, and through this we show that partial groups
form a rich class of higher Segal sets of finite group theoretic significance.

Partial groups as symmetric sets. Partial groups seem to be best regarded as
certain types of symmetric simplicial sets [9]. The simplex category A has objects
the totally ordered sets [n] = {0,1,...,n} (n > 0) and morphisms monotone maps
[m] — [n]. The symmetric simplex category T D A has the same objects, but
has morphisms all functions. A symmetric simplicial set is a presheaf on T, i.e.,
a functor T°P — Set. It amounts to a simplicial set X together with compatible
actions of the symmetric groups X, on the sets X,, := X([n]) of n-simplices for
each n.

The standard example of a simplicial set is the nerve BC' of a category. If the
category is a groupoid G, then its nerve BG enjoys the structure of a symmetric
simplicial set. Grothendieck’s Nerve Theorem characterizes nerves of categories
(resp. groupoids) as those simplicial sets (resp. symmetric sets) X for which the
Segal maps

gn: Xn—>X1 XX " XX X1
are bijections for all n > 2, a stipulation on X called the Segal condition. The
map &, sends an n-simplex z to its standard spine ({1, ..., €, ,2), where ¢; ;
is the map from [1] to [n] that sends 0 to ¢ and 1 to j.

We consider two different weakenings of the Segal condition and their interac-
tion. The first leads to one model for a partial category, but we will focus on the
symmetric version, a model for partial groupoid.

Definition 1. A symmetric set is spiny if the Segal maps are all injections. A
partial groupoid is a spiny symmetric set. A partial group is a reduced partial
groupoid, i.e., one with a single 0-simplex.
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Spininess, originally an insight of Gonzélez [8], allows one to write an n-simplex
f in a partial groupoid as f = [fi|--|fs] where f; = €;_; ;f is the i-th principal
edge. Chermak’s partial product is given by the span X xx, -+ X x, X1 + X,, =
X1, where the right map is € ,,. The inversion f — f~1is the action of the longest
element ¢ — n — i in Xp,;. Many partial groups of interest fall under the umbrella
of the next example, but not all.

Example 1. Let G be a group and S a set equipped with a partial action of G
in the sense of Exel [6] (see also [10]). This gives rise to a transporter groupoid
Ts(G) having object set S and morphisms s EN g - s whenever g acts on s, as well
as a functor Ts(G) — G. Let Lg(G) C BG be the image of the corresponding map
on nerves. Then Lg(G) is a partial group whose n-simplices are those [g1]- - - |gn]
such that there is s € S with g; - s defined, go - (g1 - s) defined, and so forth.

Higher Segal conditions. The second weakening is a family of associativity
conditions on simplicial objects, the higher Segal conditions of Dyckerhoff and
Kapranov [5]. They come in lower and upper versions, one for each d > 1; the
ordinary Segal condition corresponds to lower 1-Segality. Satisfaction of either
the lower or the upper (d — 1)-Segal condition implies lower and upper d-Segality.
The 2-Segal conditions were independently introduced by Gélvez-Carrillo-Kock—
Tonks [7] and have been studied intensely in recent years. We explain, based
on a distillation of [11], the meaning of the higher Segal conditions here only for
partial groupoids X, where they become concrete and combinatorial, and where
they collapse to the lower odd conditions. (For example a partial group is lower
or upper 2-Segal if and only if it is lower 1-Segal, i.e., a group.)

If X is a partial groupoid, then X is lower (2k — 1)-Segal if, given n > 1 and a
gapped sequence

0<ipKig K- <K <n,

of length k + 1 (i.e., adjacent terms are at distance at least two), and given a
potentially multipliable word w = (f1,..., fn) € X1 Xx, -+ Xx, X1 of length n,

diqw, dj,w, ..., dj,w e X,,_1 = w e X,.

Here, if ip = 2 say, the expression daw carries the tacit assumption that [fa|f3] €
X>, so that one can form the word dow = (f1,d1[f2|f3], fa,- -+, [n)-

Definition 2. The degree deg(X) of a partial groupoid X is the smallest & such
that X is lower (2k — 1)-Segal.

Example 2. If G is a group, the classifying space for commutativity Beom(G) C
BG is the partial group with n-simplices [¢1] - - - |gn] € BG, whenever gi,...,gn
pairwise commute, cf. [1]. It is lower 3-Segal. The first of the lower 3-Segal
conditions (n = 4) says that if ¢1,...,¢94 are elements of G such that g1, g2, 93
commute, g1, g293,94 commute, and g1, gz, g3 commute, then all four elements
commute. Beom(G) is lower 1-Segal only if G is abelian, in which case it is BG.
So deg(Bcom(G)) = 1 or 2 depending on whether G is or is not abelian.
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Degree as Helly number. We now describe tools for computing the degree
of a partial group. As motivation, we start with the following subexample of
Example 1. Let ® be a finite root system. A fixed set ® of positive roots admits
a partial action by the Weyl group W, and we form the partial group L = Lg+ (W).
It has elements/1-simplices L1 = W\{wo}, where wy is the longest element.

Theorem 1 (Hackney—L.). The degree of Lg+ (W) is the Helly number of ®* with
respect to convex subsets.

The classical Helly number is the smallest h such that whenever each collection
of h members of a family of convex sets has nonempty intersection, then the entire
family has nonempty intersection. Helly’s Theorem from 1913 says that the Helly
number for convex sets in R% is d + 1. In the situation of the theorem, a subset A
of &% is convex if it coincides with its convex cone R>gA N ®+. We compute the
Helly number of ®* explicitly by showing that it is closely related to the maximal
dimension of an abelian subalgebra of the associated semisimple Lie algebra, as
was computed by Malcev. In fact it coincides with this number in simply laced
types. For example, deg(Lg+(WW)) = 16,27, 36 in cases Eg, F7, Eg. In other words,
Lo+ (W) is 71-Segal when W = W (Ejg), but not 69-Segal.

It turns out the above story persists for arbitrary partial groups in almost full
generality.

Definition 3. An action of a partial groupoid L is a map p: £ — L of partial
groupoids with the following partial lifting condition: for each n-simplex g € L,,
and each = € Ey mapping to the source of g, there is at most one e € E, such

that p(e) = f.

We interpret this through a Grothendieck correspondence for partial actions,
giving a way for a simplex g of L to act on an element x € Ey, by choosing a lift e
of g with source x and setting ¢ -« = y, the target of e. The domain D,(g) of g is
the set of x’s for which there is such a lift. This is of course modeled on the map
BTs(G) & Ls(G) € BG of Example 1 and on domains of partial maps. In that
case, F = BTg(G) is (the nerve of) a groupoid, and p is surjective, a situation we
will temporarily call “nice” here.

Any action gives rise to a closure operator cl on Ep, sending a subset A of Fy to
the intersection of those domains of simplicies that contain A. An indexed family
of subsets {A1,..., Ai} of such a closure space is Helly independent if

k

ﬂcl UA] ZQ,

i=1  \j#i
and the Helly number h(p) is the maximal size of an independent set. (This is an

equivalent definition, dual to the one given before.)

Theorem 2 (Hackney-L.). If L is a partial group that is not a group and p is a
nice action of L, then deg(L) < h(p). Also, h(p) < deg(L) if domains of simplices
satisfy the descending chain condition.
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Every partial group has an explicit, nice action, so Theorem 2 gives effective
means for computing the degree. It applies, for example, to the discrete localities
[4] associated with p-local compact groups [2].
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Irreducible restrictions of spin representations of symmetric and
alternating groups

Lucia MOROTTI
(joint work with Alexander Kleshchev, Pham Huu Tiep)

Let G be a group, F' an algebraically closed field and V' an irreducible FG-
representation. Given H < G, one can ask whether the restriction V]}g of V
to H is still irreducible. This question is a natural question that can be asked on
its own, but it also has applications (when both G and H are almost quasi-simple)
to the Aschbacher-Scott program on maximal subgroups of finite classical groups.

Double covers of symmetric groups are specific groups S, and A,, with a central
element z of order 2 such that S, /(z) =2 S, and A, /(z) = A,.

Since z is central of order 2, if V' is an irreducible representation of S, or A,
then either z acts trivially on V', in which case V' is also a representation of S,, or
A, orp#2and z acts as —1 # 1, in which case V is called a spin representation.

Both representations and spin representations of symmetric and alternating
groups are labeled by certain subsets of partitions.

For representations of symmetric and alternating groups, the question of char-
acterising when V| g is irreducible was essentially answered in [1, 3, 4, 5, 7, 8, 10].
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In particular, excluding the basic spin case for p = 2, it is shown that Vg is
irreducible if and only if (V, H) are in a certain finite list of infinite families or
‘small’ exceptional cases.

Previous papers [2, 9] on irreducible restrictions of spin representations of sym-
metric and alternating groups covered the cases of H being almost quasi-simple or
7 (H) being primitive in .S,,. For subgroups H with 7w(H) imprimitive, only partial
results were known (in particular, in positive characteristic not even the case of
m(H) maximal imprimitive was fully treated).

In [6], joint with Kleshchev and Tiep, we started working on the still open cases.
In particular we are now able to completely describe when restrictions to lifts of
maximal imprimitive subgroups of S, or A,, are irreducible.

This allows us to formulate the following result:

Theorem. [2,6,9] Letp # 2, G € {gn,,gn}, H < G and 'V be an irreducible spin
representation of G. If V] is irreducible then one of the following holds:
(i) Az < H,
(i) V is basic spin and H < :S’vn_hk for some k or H < S,1.S, for some a,b
with ab = n,
(iii) V is second basic spin, n is even, p | (n — 1) and H < K for some
(Gv K) S {(Snv Sn/2 l 52)7 (Snv S? l Sn/Q)v (Ana Sn/Q ! 52 N An)};
(iv) n < 14.

More about Cases (i)-(iv) in the above theorem.

In Case (i) H is in a finite list of large natural subgroups of S, or A,. Using
branching rules by Brundan and Kleshchev it is possible to explicitly describe
when V] is irreducible. These descriptions only use combinatorial conditions
that the corresponding labeling partitition must satisfy.

In Case (iv) computations will allow us to obtain an explicit list of small ex-
ceptional cases.

This leaves only Cases (ii) and (iii) open. In particular only irreducible restric-
tions of first and second basic spin modules are not fully understood yet (after the
above mentioned computations for n < 14).

For basic spin representations, irreducible restrictions to maximal subgroups
with w(H) imprimitive have been completely described in [2, 9]. As there is a large
number of such maximal subgroups to which basic spin representations restrict
irreducibly, it seems out of reach, at least for now, to completely understand when
basic spin representations restrict irreducibly to arbitrary subgroups. The cases of
H almost quasi-simple or of w(H) primitive have however been completely covered
in [9)].

For second basic spins, restrictions V] with (G, K) one of the three pairs in
Case (iii) are irreducibles. More work is currently planned to understand the non-
maximal case. As a first step toward this, it is shown in [6] that if V' is second

basic spin, Vg is irreducible and H < l//_z\_S/g or H < §2_\Z/L for some L < S, /2,
then L is primitive or Cases (i) or (iv) hold.
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Realizability and tameness of fusion systems
BoB OLIVER
(joint work with Carles Broto, Jesper Mgller, and Albert Ruiz)

In this talk, I described recent work [4], where we show among other results that
a saturated fusion system F is realizable if there is a normal, realizable subsystem
€ in F that is centric in F (i.e., contains its centralizer). Another result is that
every realizable fusion system F is tame, meaning very roughly that it is realized
by a finite group that has “just as many” automorphisms as F has. Stated in this
way, the results depend on the classification of finite simple groups (CFSG), but
we also prove more precise statements formulated in such a way that their proofs
are independent of the classification.

The starting point for this work is the concept of fusion systems over finite
p-groups, originally defined by Puig. For each group G and each P,Q < G, let
Homg (P, Q) be the set of homomorphisms from P to @ induced by conjugation
by an element of G. For a given prime p and a finite p-group S, a fusion system
over S is a category F whose objects are the subgroups of S, whose morphisms are
injective homomorphisms between the subgroups, and where for each P,@Q < S,

e Homz(P, Q) O Homg(P, @), and
e for each ¢ € Homz(P,Q), we have ¢~! € Homz(p(P), P).

A fusion system is saturated if it satisfies certain additional axioms motivated by
the Sylow theorems and other properties of finite groups (see [2, §1.2] for details).
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For each finite group G, each prime p, and each S € Syl (G), let Fs(G) (the
fusion system of G over S) be the category whose objects are the subgroups of S,
and where for all P,@Q < S, Homz, (P, Q) = Homg(P, Q). Thus this category
encodes the G-conjugacy relations among subgroups and elements of a fixed Sylow
p-subgroup. By a theorem of Puig, Fs(G) is a saturated fusion system for each
finite group G and each S € Syl,(G). A saturated fusion system J over a finite
p-group S is called realizable if it is isomorphic to Fg(G) for some finite group G
with S € Syl,(G).

A fusion subsystem £ < F is a subcategory that is itself a fusion system over a
subgroup 7' < S. The fusion subsystem & is normal in F (£ < F) if £ is saturated,
T is strongly closed in F (i.e., g € T implies ¢(g) € T for all ¢ € Homz({(g), S)),
and certain other conditions are satisfied motivated by analogies with finite normal
subgroups. For example, if H < G are finite groups and S € Syl,(G), then
Fsnu(H) < Fs(G) (where SN H € Syl,(H)).

Let F be a saturated fusion system over a finite p-group S. Two fusion subsys-
tems &1, &, in a saturated fusion system F over T1,To < S commute in F if there
is a morphism of fusion systems & x & — F extending the inclusions & — F.
The centralizer fusion subsystem Cx(E) of a fusion subsystem & < F over T < S
(if it exists) is the largest fusion subsystem of F that commutes with &.

If £ < F, then Cr (&) always exists and is saturated and normal by a theorem
of Henke. (The subsystem Cr (&) was first defined by Aschbacher, but he didn’t
prove all of these properties.)

A normal fusion subsystem £ < F is called centric in F if it contains its
centralizer; i.e., if Cz(€) < &. Thus &£ is centric in F if each fusion subsystem of
F that commutes with £ is contained in £.

We can now state a first version of our main theorem.

Theorem 1 ([4, Theorem A]). Let £ < F be saturated fusion systems over finite
p-groups. Assume that £ is centric in F, and that £ is realizable. Then F is also
realizable.

The proof of the theorem stated in this form requires the classification of finite
simple groups. A second version of the theorem, formulated so as not to require
CFSG, will be given later. But before doing this, we need to define tameness and
components of fusion systems.

If F is a saturated fusion system over a finite p-group S, then Aut(F) is the
group of all @ € Aut(S) that extend to an automorphism of F as a category, and
Out(F) = Aut(F)/Aut#(S). If F = Fs(G) for a finite group G with S € Syl (G),
then there is a natural homomorphism

Au(G) L Nawo(S) Aut(F)

R OuG) = 1@ = Rutwas) (@) Auty(5) ~ )

that sends the class of f € Nauy)(S) to the class of 3]s € Aut(F). In this
situation, there are natural homomorphisms kg and pg such that
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Ra = pia 0 kg : Out(G) —— Out(L4(G)) —<— Out(Fs(Q)),
where L (G) is the centric linking system of G (see [2, Definition IIL.3.1]).

Definition 2 ([1, Definition 2.5]). Let F be a saturated fusion system over a
finite p-group S. Then F is tamely realized by a finite group G if S € Syl (G),
F =Fs(G), and kg : Out(G) ——— Out(LL(G)) is split surjective. The fusion
system F is tame if it is tamely realized by some finite group G.

In fact, tameness — the question of whether all realizable fusion systems are
tame — was our original motivation for beginning this project. In earlier work
by several different authors [1, 3, 5], it had already been shown that all fusion
systems of known finite simple groups are tame, and it was natural to ask whether
all fusion systems of all finite groups are tame (assuming CFSG).

Tameness is motivated by the problem: given fusion systems & < F over T' <1 S,
where & = Fr(H) for some finite group H with 7' € Syl (H). Under what
conditions can one find G such that H < G, S € Syl (G), and F = Fg(G)? This
requires understanding the relation between Out(G) and Out(LE(G)), as encoded
by the homomorphism k.

If p is odd, then ug is an isomorphism by theorems of Chermak, Glauberman,
and Lynd, and so Out(£%(G)) = Out(Fs(G)). Thus in this case, Fg(G) is tamely
realized by G if the natural map from Out(G) to Out(Fs(G)) is split surjective.
When p = 2, ug is always surjective, but not always injective.

The components of a fusion system F are defined as for groups: those subnor-
mal fusion subsystems that are quasisimple. Here, “subnormal” is defined in the
obvious way (obvious once one has defined “normal”), and a fusion system F is
quasisimple it OP(F) = F and F/Z(F) is simple. The basic properties of the
components of F were shown by Aschbacher. For example, they commute with
each other and with O,(F), and hence generate a central product.

We can now reformulate our main theorem in such a way that its proof does
not use CFSG. Let Comp(F) denote the sets of components of F. A finite group
G is p'-reduced if Oy (G) = 1. Note that if a fusion system F is realized by a finite
group G, then it is also realized by the p’-reduced group G/O, (G).

Theorem 3 ([4, Theorem 5.4]). Let & < F be saturated fusion systems over
finite p-groups such that Comp(E) = Comp(F). If £ is realized by a finite p’-
reduced group all of whose components are known quasisimple groups, then F is
tamely realized by a finite p’-reduced group all of whose components are known
quasisimple groups.

Just as for groups, one can show that Comp(£) C Comp(F) whenever £ < F.
So the important condition on components is that all components of F are also
components of £. Also, if £ < F and € is centric in F, then Comp(€) = Comp(F)
by results of Aschbacher. So Theorem 1 is a special case of Theorem 3 (together
with CFSG).

The following two consequences of Theorem 3 are also proven without using
CFSG (see [4, Theorems 5.5, 5.6]).
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Corollary 4. Let F be a saturated fusion system over a finite p-group.

o [f all components of F are realized by known finite quasisimple groups, then
F is tamely realized by a finite p’-reduced group all of whose components
are known quasisimple groups.

o If F is realized by a finite p’-reduced group all of whose components are
known quasisimple groups, then F is tamely realized by a finite p'-reduced
group all of whose components are known quasisimple groups. (The case
E = F of Theorem 3.)

Thus upon assuming CFSG, we have shown that all realizable fusion systems over
finite p-groups are tame.
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On Quillen’s conjecture
KEVIN I. PITERMAN
(joint work with Stephen D. Smith)

In the 1970s, Kenneth Brown and Daniel Quillen initiated the study of the topo-
logical and combinatorial properties of p-group posets motivated by algebraic and
cohomological questions concerning finite groups. Let G be a finite group and p a
prime number. In [2], Brown analysed the poset S,(G) of non-trivial p-subgroups
of G, ordered by inclusion, and showed that its (reduced) Euler characteristic is
divisible by |G|,, the largest power of p dividing the order of G. This result is
commonly known as the “Homological Sylow Theorem”, and it is related to the
computation of the p-rational part of the Euler characteristic of (non-necessarily
finite) groups satisfying certain finiteness conditions. In 1978, Quillen introduced
the poset A,(G) of non-trivial elementary abelian p-subgroups of G, and investi-
gated homotopical properties of these posets. Recall that a poset can be regarded
as a topological space by considering the geometric realization of its associated
order complex, allowing us to study its homotopy type. In [6], Quillen proved that
the inclusion A, (G) — S,(G) is a homotopy equivalence. Furthermore, when G is
a finite group of Lie type in characteristic p, he showed that S,(G) has the homo-
topy type of the building of G, and thus is homotopy equivalent to a non-trivial
wedge of spheres whose dimension equals that of the building.
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In general, the topology of the posets A,(G) remains poorly understood, and
they might not have the homotopy type of a wedge of spheres (this fails for p = 3
and G the alternating group on 13 letters, see [7]). A key question concerns the
contractibility or acyclicity of these posets. In this direction, Quillen proved that if
the largest normal p-subgroup of G, denoted by O,(G), is non-trivial, then A,(G)
is contractible. He further conjectured that the reciprocal should hold and proved
some cases supporting his claim. In fact, for these cases, he established a stronger
statement:

(H-QC) If Op(G) =1 then A,(G) is not Q-acyclic.
For instance, groups of Lie type in defining characteristic p and solvable groups
satisfy (H-QC). Moreover, for solvable groups, an even stronger property holds:

(9D), If O,(G) =1 then A,(G) has non-zero homology in the largest possible
degree.

Recall that the largest possible degree corresponds to the dimension of the order
complex, which in the case of A,(G) is the p-rank of G minus one. Later, various
authors extended Quillen’s proof of the solvable case to p-solvable groups using
the Classification of Finite Simple Groups (CFSG), also proving that (QD), holds
for these groups.

A major breakthrough in resolving the conjecture was made by Michael As-
chbacher and Stephen D. Smith in [1]. They showed that (H-QC) holds for G if
p > 5, provided that whenever PSU,,(¢) is a component of G with p | ¢ + 1 and
q odd, then p-extensions of PSU,,(¢?") satisfy (QD), for all m < n and e € Z.
Here, a p-extension of L is a semidirect product L x B where B is an elementary
abelian p-group inducing outer automorphism on L. Their proof relies on a se-
ries of reductions on a minimal counterexample to their main theorem, using the
CFSG to analyse p-extension of simple groups for odd primes p. In particular, they
show that for such a minimal counterexample G, every component L must have a
p-extension failing (QD),, and then provide a “(QD)-list” of potential candidates
for L when p is odd (see Theorem 3.1 in [1]). Notably, simple groups of Lie type
in characteristic p naturally appear on this list since their p-group posets have the
homotopy type of the building, whose dimension is strictly less than that of the
Ap-poset. Unitary groups PSU,(¢) with p | ¢+ 1 and ¢ odd are also contained
in this list at first, but Aschbacher—Smith conjectured that they shouldn’t. The
assumption p > 5 is necessary in their proof since, for p = 3,5, components of type
Sz(2%) (p = 5), PSL2(2%) (p = 3) and PSU3(23) (p = 3) present an obstruction
to key arguments used in their reductions. The next step involves constructing
“Robinson” subgroups for each simple group in the (QD)-list for p > 5. The final
contradiction is obtained by using these Robinson subgroups to show that the Lef-
schetz module for A,(G) is non-trivial, which in turn implies that 4,(G) cannot
be Q-acyclic. For unitary groups, such Robinson subgroups do not always exist,
but the main hypothesis says that they cannot be components in the first place.

In a joint work with S.D. Smith [5], we extended the reductions of [1] to any
prime p by using more topological and combinatorial methods while significantly
reducing the use of the CFSG. For instance, our approach allows us to eliminate
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components of type Sz(2°%) (p = 5), PSL2(23) (p = 3) and PSU3(23) (p = 3) in
a minimal counterexample. As a result, the Aschbacher—Smith original strategy
can now be extended to all odd primes, provided that Robinson subgroups can be
constructed in the final step for the simple groups in the (9QD)-list for p = 3,5
(recall that unitary groups are still excluded by hypothesis). While this construc-
tion is straightforward for p = 5, the components of Ree type don’t have Robinson
subgroups for p = 3. To handle this case, we propose an alternative argument. If a
group G satisfies certain inductive hypotheses on (H-QC) and L is a component of
Lie type in characteristic p such that G' contains no order-p graph automorphism
for L, then G satisfies (H-QC). In particular, in a minimal counterexample G,
this situation cannot occur, so for p = 3, L = Ree(3%) cannot be a component.
Consequently, we can extend the Aschbacher—Smith theorem to all odd primes
p. Finally, a recent result by Antonio Diaz Ramos [3] shows that p-extensions of
unitary groups satisfy (QD), (notably when p | ¢ + 1 with p, ¢ both odd), thus
completing the proof of Quillen’s conjecture for odd primes.

Since [5] makes these reductions possible for p = 2, we conclude that if G is a
minimal counterexample to (H-QC) for p = 2, then every component of G must
have some 2-extension failing (QD),. However, unlike the case for odd primes,
we don’t have a list of simple groups failing (QD), for some 2-extension. In [4],
it is shown that, with at most eight possible exceptions, 2-extensions of excep-
tional groups of Lie type in odd characteristic satisfy (QD)s2. On the other hand,
alternating and sporadic components either admit suitable Robinson subgroups
or can be eliminated using some of our methods. In summary, if G is a minimal
counterexample to (H-QC) for p = 2, then [4, 5] imply that every component L
of G has a 2-extension failing (9D)s, Ap(L) — Ap(Autg(L)) is the zero map in
homology, and every component of G that is neither alternating, sporadic, nor a
group of Lie type in characteristic 3, must be either a classical group in odd char-
acteristic, or of type A,,, D, or Eg in characteristic 2 with G containing order-2
graph and field automorphisms for such components. The CFSG is only used at
this final step to make this list complete.

Finally, for p = 2, the group PSL3(4) remains resistant to all the methods
and reductions proposed in our works, showing that we still need to develop new
techniques to deal with these components.

REFERENCES

[1] M. Aschbacher and S. D. Smith, On Quillen’s conjecture for the p-subgroup complex, Ann.
Math. 137 (1993), 473-529.

[2] K. S. Brown, Euler characteristics of groups: the p-fractional part, Invent. Math. 29 (1975),
no. 1, 1-5.

[3] A. Diaz Ramos, Quillen’s conjecture and wunitary groups, arXiv preprint (2024),
https://arxiv.org/abs/2303.15613.

[4] K.I. Piterman, Maxzimal subgroups of exceptional groups and Quillen’s dimension, Algebra
Number Theory 18 (2023), no. 7, 1375-1401.

[5] K.I. Piterman and S.D. Smith, Some results on Quillen’s Conjecture via equivalent-poset
techniques, J. Comb. Algebra. (2024), published online first.


https://arxiv.org/abs/2303.15613

724 Oberwolfach Report 16/2025

(6] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv.
Math. 28 (1978), 101-128.

[7] J. Shareshian, Hypergraph matching complezes and Quillen complezes of symmetric groups,
J. Combin. Theory Ser. A 106 (2004), no. 2, 299-314.

Maps, Simple Groups, and Arc-Transitive Graphs
CHERYL E. PRAEGER
(joint work with Martin Liebeck (and also Cai Heng Li and Shu Jiao Song))

By a map M, we mean an embedding of a (simple) graph I' = (V, E)) in a surface
S, such that the faces (connected components of S\I') are simply connected, that
is, homeomorphic to an open unit disc. We assume that T'; S are connected (but S
may or may not be orientable, or compact, and may be with or without boundary).

Symmetries of maps. An automorphism of a map M is an automorphism of
the graph T' that extends to a self-homeomorphism of S. The set of all map
automorphisms forms the map group G = Aut(M) which is a subgroup of Aut(T"),
often a proper subgroup. We are interested in maps with lots of symmetry.

We measure the symmetry of a map M via the action of the map group G
on the flags of M, that is, triples (v, e, f) consisting of a pairwise incident vertex
v, edge e, and face f. The only map automorphism fixing a fag is the identity,
and the most symmetrical maps are called flag-regular; they are the ones with
G transitive (hence regular) on flags. We are concerned with arc-transitive maps
where G is transitive on arcs, that is, on incident pairs (v, e), but not necessarily
transitive on flags. For such maps the number £ of edges incident with a vertex is
constant and the stabiliser G, of a vertex v is one of Cy, or Dy (with k even), or
Dy, (and in this last case the map is flag-regular); and in all cases |G, | < 2.

The study of flag-regular embeddings goes back at least to the early 1970s
with Biggs’ classification [1] of orientably regular embeddings of complete graphs.
Topological methods, together with studying monodromy groups, led Graver and
Watkins [3] to subdivide the family of edge-transitive maps into 14 distinct sub-
families, of which 5 subfamilies were arc-transitive. One of the five arc-transitive
families comprises the flag-regular maps, while for the other four subfamilies, two
are vertex-rotary (with G, = C}) and the other two are vertex-reversing (with
G, = Dy). A group theoretic framework for studying flag-regular embeddings was
introduced by Gardiner et al [2] in 1999, and in 2005 I heard Gareth Jones speak at
a mini-conference in Oxford about his then recent classification [4] of flag-regular
embeddings of merged Johnson graphs. Such graphs admit arc-transitive, vertex-
primitive actions of finite symmetric groups, and this prompted me to ask if a
similar classification might be possible for all primitive actions of almost simple
groups.

Recently, in joint work with Cai Heng Li and Shu Jiao Song [6, 7], we gave a
new characterisation of the five subfamilies of arc-regular maps including five group
theoretic constructions which between them produce all locally finite arc-transitive
maps. In particular, these constructions lead to the following characterisation in



Finite Groups, Fusion Systems and Applications 725

[11], with Martin Liebeck, of finite graphs which admit an almost simple subgroup
of automorphisms and can be embedded as an arc-transitive map.

Theorem 1. [11, Proposition 2.1] Let T' = (V, E) be a finite connected graph,
admitting an almost simple subgroup X < Aut(I') acting arc-transitively. Let
e = {u,v} be an edge of T and let G < X. ThenT has a G-arc-transitive embedding
if and only if the following three conditions hold.

(G,) X = GXv and Xv = Gva,uf

(b) Gy is cyclic or dihedral and Gy =1 or Cs;

(c) G contains an involution g such that g € Ng(Xy.) and (X,,9).

Our objective became more ambitious, namely: determine all finite graphs ad-
mitting an almost simple arc-transitive group X of automorphisms that can be
embedded as G-arc-transitive maps with map group G < X.

Cyclic/dihedral factorisations. Martin Liebeck and I extracted the first two
criteria from those given in Theorem 1 concerning factorisations of almost simple
groups: Let X be a finite almost simple group with socle Xy, and let A, B be
subgroups not containing Xy such that X = AB and AN B is cyclic or dihedral.
We call such a factorisation a cyclic/dihedral factorisation, and our first objective
was to determine all of them.

Theorem 2. [11, Theorems 1.1, 1.2, and 1.4] All cyclic/dihedral factorisations of
finite almost simple groups are known.

The examples are given explicitly in a number of tables [11, Tables 10.1, 10.3—
10.8] (which occupy six pages), together with those satisfying the following:
(Exceptional) X, = A, and (interchanging A and B if necessary),
ANXop=A,_1 and B is transitive in the natural permutation action
of degree n with point stabiliser A N B cyclic or dihedral.

The analysis was extremely delicate. It relied on known results about factorisations
of almost simple groups, as explained in detail in [11], and in particular using new
results from [8, 9, 10].

Arc-transitive embeddings. As a main application, we classified the graphs I"
admitting an almost simple arc-transitive group X of automorphisms, such that
I" has a 2-cell embedding admitting an arc-transitive map group G < X. This
involved considering each cyclic/dihedral factorisation X = AB from Theorem
2, and choosing one of A, B to be the map group G, say G = A, and the other
subgroup B to be a vertex-stabiliser X,, = B. This choice determines the vertex
set of an as yet unknown graph I as the coset space [X : B] with vertex v = B, the
trivial coset. We must determine (up to isomorphism) all involutions ¢ satisfying
condition (c) of Theorem 1. Each such involution determines a graph I" by taking
the arc set as the X-orbit on ordered pairs containing the coset pair (B, Bg).
The graph I is arc-transitive by construction, and is connected since (X,,g) = X.
Moreover I' admits an arc-transitive embedding by Theorem 1. (We must of course
consider both choices of A, B as the map group.)
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Theorem 3. If a connected graph I' admits an almost simple arc-transitive sub-
group X of automorphisms, and has an embedding with arc-transitive map group
G < X, then either

(a) T is a complete graph K, or a Johnson graph J(n,2); or
(b) T is one of fourteen explicitly known graphs; or
(¢) X has socle Xog = A,,; GNXo = Ap—1, and GN X, is cyclic or dihedral.

Necessary and sufficient conditions on parameters for embeddability of complete
graphs and Johnson graphs are known, see [4, 5].

In the exceptional case (c) of Theorem 3 we construct infinitely many graphs
which have arc-transitive embeddings [11, Section 4, Theorem 4.4]: we take n =
(p—1/2=1]A4,_4|, X = A,, and X,, = A, acting transitively in its coset action
on [4, : Cp] of degree n so GNX, = Cp. The difficult part of the construction is to
prove existence of an involution g satisfying Theorem 1(c). It would be interesting
to know more about examples in this case.
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Counting subgroups of the symmetric group
CoLvAa M. RONEY-DOUGAL
(joint work with Gareth Tracey)

One of the most elementary, but difficult, questions we can ask about a finite group
G is how many subgroups it has, i.e. to determine |Sub(G)|. For G the symmetric

group S,,, an elementary argument shows that |[Sub(G)| > n*/16
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Pyber showed in 1993 [2] that [Sub(S,)| < 24n*/6+0(n*) " and conjectured that
in fact [Sub(S,)| < 9n*/16+0(n*) " This talk presents a proof of this conjecture.
As part of the proof we give asymptotically tight bounds on the number of p-
subgroups of S,, for each prime p, and on the number of nilpotent subgroups of
Sh.

One motivation for enumerating these subgroups is to determine properties of
random subgroups of S,,, selected uniformly amongst all subgroups, or amost all
conjugacy classes of subgroups. Erdés conjectured that if m < 2% then the number
of groups of order m is bounded above by the number of groups of order 2°.
Building upon this, Pyber conjectured in 1993 [2] that as n — oo, the probability
that a random group of order at most m is nilpotent tends to 1, and Kantor
conjectured [1], also in 1993, that the probability that a random subgroup of S,
is nilpotent tends to 1. We prove that the probability that a random nilpotent
subgroup of S,, is a 2-group tends to 1 as n — oo, and hence show that Kantor’s
conjecture is false.
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Fusion systems of characteristic p-type — an approach via localities
EDOARDO SALATI

Within the frame of the classification of the finite simple groups (CFSG) the
study of the p-local structure of a finite group G (especially at the prime p = 2)
represents the major tool of investigation. A p-local subgroup of G is a subgroup
of the form Ng(P) for some non-trivial p-subgroup P of G. Among a number of
results making evident the power of the 2-local analysis we report the following.

Theorem (Gorenstein-Walter Dichotomy Theorem). Let G be a finite simple
group with tka(G) > 3. Then G is either of component type or of characteris-
tic 2-type.

Both the properties of being of component type (see [Asc:15, Section 2]) or of
characteristic 2-type depend only on the 2-local structure of G. In particular, a
group H is of characteristic 2 if Cy(O2(H)) < O2(H), where O2(H) denotes the
largest, normal 2-subgroup of H; G is of characteristic 2-type if all the 2-local
subgroups of G are of characteristic 2 (note that the above definitions obviously
generalize to all primes).

The p-local theory of finite groups spawned a number of tools, fusion systems
being one of them. A saturated fusion system on the p-group S is a category F
satisfying:
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— the set of objects is the set of subgroups of .S,
— for any P,Q < S, Homg(P, Q) € Homz(P, Q) C Injg,,(P,Q),
together with certain additional axioms modeled on the properties of the p-fusion
categories of finite groups, obtained as above by taking a Sylow p-subgroup of a
finite group G as S and G-conjugations as morphism, see [AKO:11, Definitions
1.1, 2.1 and 2.2].

Many ideas of group theory have a translation in terms of fusion systems. For
example, the theorem of Gorenstein and Walter translates to the following.

Theorem (Dichotomy Theorem for fusion systems). Let F be a saturated fusion
system on the p-group S. Then either F is of component type or of characteristic
p-type.

Parallel to the study of fusion systems, in the past fifteen years researchers have
worked on closely related structures, namely localities, developed in 2013 by Cher-
mak for the solution of a conjecture about fusion systems in connection with
algebraic topology, see [Ch:13]. A linking locality L on the p-group S is a partial
group in the sense of [Ch:13, Definition 2.1] (think of a non-empty set with a unit
and inverses of each element just like in a group, but with a weakened product,
not necessarily defined on all words of finite length) with the following features:

— S is embedded in £ as a subgroup and it is a maximal p-subgroup of L,

— there is a set A C {subgroups of S}, overgroup-closed and “not too small”, such
that for every P € A, N.(P) is a subgroup of L of characteristic p,

— L has an associated fusion system F = Fg(L) such that for all P € A the map
wp : Ng(P) — Autx(P) is an epi with kernel Cr(P).

The local structure theorem for groups. Paying attention back to the
simple groups of characteristic 2-type, a currently ongoing programme of Meier-
frankenfeld, see [MSS:03], aims at describing the p-local structure of the finite
groups of characteristic p-type (whose prototypes are the finite simple groups of
Lie type in their defining characteristic), promising a new classification of the sim-
ple ones at the prime 2. There is then a natural associated question: is a similar
programme possible for fusion systems of characteristic p-type?

We approach the problem by looking at a single, far-reaching result: the lo-
cal structure theorem for finite groups with a large p-subgroup [MSS:16]. A p-
subgroup Q of G is large if Co(Q) = Z(Q) and Ng(U) < Ng(Q) for any non-
trivial subgroup U < Z(Q); even though groups with a large p-subgroup may fail
being of characteristic p-type, they are of parabolic characteristic p: all the p-local
subgroups containing a p-Sylow are of characteristic p.

The theorem describes (and almost classifies) the structure of such p-local sub-
groups of G. The proof works as follows: first, one reduces the problem to the
study of certain maximal p-local subgroups M (having some “nice” properties)
containing a chosen p-Sylow S; such an M contains a canonical, normal, elemen-
tary abelian p-subgroup Yy, giving rise to a canonical FpM-module. Afterwards
one shows that any p-local subgroup L of G containing S has an analogous canoni-
cal F, L-module Y7, which is isomorphic to a module embedded in the pair (M, Yar).
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One is left then to analyze, and possibly classify, the pairs (M, Y)s), accomplished
by studying occurrence of offenders (see [MPS:18, Section 1] for the definition) on
Y or related subgroups, yielding the major case-history subdivision made of five
cases.

A local structure theorem for localities. Extending the definition of large
subgroups to fusion systems and localities in a compatible way is a relatively easy
task; in particular, after choosing the set A for the locality £ as the largest possible
(that is, the set of subcentric subgroups as in [He:15, Definition 1}), it turns out
that the quest for an analogous of the local structure theorem can be equivalently
pursued for fusion systems or for localities.

Note that localities easily detect fusion systems of characteristic p-type: in
particular, if F is the fusion system on S associated to the linking locality £ and
A is the set of subcentric subgroups, then

F is of characteristic p-type <= A ={1# P < S},
F is of parabolic char. p < AD{1# P <S5},

where the existence of a large subgroup implies that F is of parabolic characteristic
p in the sense of [He:15, Remark 10.9].

However, in the process of translating arguments from the proof in [MSS:16]
important obstructions appear when working with fusion systems, but not when
working in a locality, making for an obvious choice.

Already at the very beginning, in a locality £ with a large subgroup @ one can
identify pairs (M, Yas), with M a subgroup of £ and Y, a canonical F, M-module,
analogous to those in groups (such an argument doesn’t work for fusion systems).
This allows to reduce the analysis to a classification of modules based on offenders
and on a case-history closely resembling that in [MSS:16]. When an analogous
offender can be found, one obtains the same list of modules to go through; it
turns out that, for the studied cases, the elimination process of modules that are
incompatible with the overall structure of £ yields the same results as in [MSS:16],
where a whole group G is present in place of £. This is somehow surprising, since
within G such elimination process heavily relies on Q©, which is not completely
translatable in terms of the locality (more generally, conjugation in localities may
be poorly behaved). The trick here consists in restricting the problem on a smaller
set of conjugates of @), over which one retains enough control in L.

This happens in at least two of the five cases, and is expected in a third one as
well; we report an example, to be compared with [MSS:16, Theorem GJ.

Theorem (Theorem G). Let (£, A,S) be a Kp-locality, Q@ < S a large subgroup
and assume that L is Q-replete. Suppose that M € M, (S) is such that

- Y is asymmetric and char p-tall;
- Y is Q-short and Q 4 M.

Then one of the following holds for q a power of p and Mt = MT/Cri (Yar).
(1) M° = SL,(q) for n >3 and Yas is a corresponding natural module.
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(2) p=2, M € {O;(2), Sp4(2), Sp4(2)}, Y = O2(M) is a corresponding nat-
ural module and N (Q) < M. If M = O} (2), then for every non-singular
vector x € Yy, (x) & A.

(3) There exists a unique M-invariant set KC of subgroup of M such that Yas is a
natural SLy(q)-wreath product module for M with respect to K. Then also the
following hold.

(a) Yar = Op(M) and Nz (Q) < MT.

(b) Me° = Or({K))Q-

(c) Q is transitive over the set K.

(d) If |K| > 2, then q € {2,4} and for any K € K, ({Yu,F] | K #FeK) &
A.

A fourth case was dealt by different means; in particular, we show that the main
obstruction to a full classification of the occurring modules in [MSS:16], namely
the so-called tall, char p-short case [MSS:16, Chapter 6], vanishes in localities.

Finally, one last case seems to resist any argument borrowed from [MSS:16]; here
restriction to fusion systems of characteristic p-type may remove the issue, but
a result encompassing the more general setting of fusion systems with a large
subgroup requires additional work and possibly additional tools to manipulate
partial groups and localities, yet to be developed.
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The length of mixed identities for finite groups
JAKOB SCHNEIDER
(joint work with Henry Bradford and Andreas Thom)

The study of word maps has seen a lot of progress in recent years. Here a word
w is just an element of the free group ¥, = (x1,...,2,) of rank r. Given such
a w and a group G, the corresponding word map, also denoted by w: G" — G,
is the map that sends the r-tuple (g1,...,9-) € G” to the value p(w) of w under



Finite Groups, Fusion Systems and Applications 731

the homomorphism ¢: F,, — G which maps z; — ¢; (i = 1,...,7). There are
two extremal behaviors of the map w: Either its image w(G") is just the neutral
element, or w is close to random, meaning Py, o (w(g1,...,9r) = g) ~ ‘—(1;‘ for

all g € G and g¢1,...,9, € G equidistributed. A weaker formulation of the latter
case is that the mentioned probability is non-zero, i.e. w is surjective. In [3] it
was shown that the word image is e-dense in natural nomalized metrics of the
groups Sy, GL,(q), Sps,,(q), GO?(q) and GU,(q) for n resp. m large enough
(and € > 0 chosen arbitrarily). Another (deeper) result in this direction is the
celebrated solution of the Ore conjecture [5], establishing that every element of a
non-abelian finite simple group is a commutator.

In this talk we are interested in words with constants, i.e. elements of the free
product w = coxj((ll))cl . -cl,le((ll))cl € GxF, (co,...,c € G) for a group G, which
is finite in most cases. Here the word map w: G" — G is defined analogously to
the case of a word without constants, by substitution. The word w with constants
is called a mized identity for G if w(G™) = 1. We are interested in the following

question:

Question 1. Let G be a finite group. What is the length of a shortest mized
identity w € G« F, for G?

As a partial answer, we have the following theorem (see [1]) which reduces the
interesting groups G to almost simple ones:

Theorem 1. Either the finite group G has a mized identity of length at most 8,
or it is almost simple.

In the latter case, there is a constant ¢ > 0 such that if G has no mixed identity
of length < ¢, then G is almost simple with a simple group of Lie type as its socle.
This holds, since the alternating groups A,, satisfy a mixed identity w(z) = [z, 0]3°
for a 3-cycle o, which is of length 60, and the sporadic groups can be ignored as
they are finitely many.

Hence in the following we focus on finite groups G with S < G < Aut(S) for
a non-abelian simple group S. We present some new results from [1] using the
Landau notation:

Theorem 2. Let G be an almost simple group with socle PSL,(q) and q¢ = p°
for a prime number p. Then, G has a mized identity of length O(q). Moreover,
if G < PGL,(q) x Aut(F,), F is the Frobenius automorphism x +— xP acting
coordinate-wise, and f | e is the smallest positive integer such that F¥ € G, then
any mized identity of G is of length Q(%pf).

In contrast to the projective special linear groups, the projective symplectic
and orthogonal groups do have short mixed identities. This observation is due to
Tomanov [6].

Theorem 3 (Tomanov). The group PSp,,,(q) for m > 2 satisfies a mized identity
of length 8.
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Theorem 4 (Tomanov). There exists a mized identity for PQop,11(q) for m > 2
of length 8.

We list here a couple of new results from [1] in this area. The essence of these
theorems for symplectic and orthogonal groups is that short mixed identities do
not exist when there is no critical constant (these are constants ¢ € G such that
7 Lcz is a subword of w, with z a variable or its inverse) which is small. Here the
notion of smallness needs to be specified for every Lie type.

Theorem 5. Let q be a prime power and m > 2. For q odd, a shortest mized
identity for PSp,,, (q) without critical constants, which lift to involutions (the small
elements) in Spy,,(q), is of length ©(q). For q even it is Q(q).

Theorem 6. Let p # 2. If there is a mized identity W = onf((ll)) xf((ll))él €

PQe «F,. for PQ? of length QU (q) which lifts to w. Then one of its critical constants
c;j must be small.

Here for orthogonal groups, in Theorem 6, an element is small if and only if it
satisfies a quadratic polynomial p(z) = 22 — Az + 1.

For unitary groups there are no non-central critical constants, and we have the
following result.

Theorem 7. Let G be an almost simple group with socle PSU,(q). Then, G has
a mized identity of length O(q?). Moreover, any mized identity for PSU,(q), even
with constants from PGL,(¢?), is of length Q(q).

The following questions are currently studied, but so far we have no complete
solution to them:

Question 2. What about the remaining families of finite groups of Lie type: How
long is a shortest mized identity in this case?

Question 3. All mized identities of bounded length constructed for the groups con-
sidered are singular, i.e. e(w) = 1, where e: G+ F, — F,. is the unique homomor-
phism such that G > g — 1g, and which fizes F, elementwise (the augmentation
map). What about the shortest non-singular identities for these groups?

Question 2 we are currently working on. Indeed, Tomanov [6] proves:

Theorem 8. Let G be a simple algebraic group of Lie type and K a locally compact
field that is non-discrete (i.e. K is non-locally finite). Then there is a Zariski null
set S C G(K) of small constants such that there there is no mized identity for
G(K) with all critical constants non-small.

The notion of small here is more sophisticated and we omit the definition.
Only note that it agrees with the definitions of small in the other cases. The proof
happens by the idea of Tits of attracting and repulsing points.

For Question 3 we have new results from [4] and [2].

Theorem 9. A shortest non-singular mized identity for A, and PSL,(q) is of
length Q(log(n)/loglog(n)).
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Similar results hold for PSU,,(¢) but here the bound depends on g.
With these two facts, we establish:

Corollary 1. Let [ € N. Then there are only finitely many non-abelian simple
groups of Type A,, PSL,(q), PSU,(q) that satisfy a non-singular mized identity
of length <.

The corollary can be seen as a first step to settle the conjecture, that its state-
ments holds for all families of finite simple groups. This can be seen as an im-
provement of Jones’s result in [7].

On the size of word images, we have the following lower bound. Let K be an
algebraically closed field:

1)

Theorem 10. Let w = coxf(l)cl e cl,le((ll))cl € GL,(K) * F,. a reduced word.

Then the word image w(SL,(K)") has dimension at least n — 1.

We expect that similar results hold for other classical quasi-simple groups. Also
note that the bound in the last theorem is sharp up to factor two: The dimension
of the image of the word w(z) = ¢* = z~tcx, for a transvection ¢, is 2(n — 1).
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Applications of Fusion Systems in Block Theory
PATRICK SERWENE

Fix G to be a finite group, p € P, k a field with chark = p and k = k.

We first recall the concept of the fusion category of a finite group: P € Syl,(G),
define Fp(G) to be the category with objects subgroups of P (say “category on
P”) and if Q, R < P then Homz,()(Q, R) = {cy | g € G, Q < R}.

Fusion systems generalise this concept and are categories on p-groups with ap-
plications in Group Theory, Representation Theory and Topology.

The fusion category is a fusion system, but not every fusion system is of this
form. If it is we call it realisable, otherwise exotic.
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Blocks also induce fusion systems: If b is a block of kG, then the fusion system
Fp(G,b) is defined on a defect group P of b. Again, not every fusion system is
of this form. If it is we call it block-realisable, otherwise block-exotic. We
conjecture that the two mentioned ways for fusion systems to arise coincide:

Conjecture 1. Let F be a fusion system. Then F is exotic if and only if F is
block-exotic.

One direction is a consequence of Brauer’s Third Main Theorem: Every realisable
fusion system is also realisable as the fusion system of a principal block.

Applications to Weight Conjectures: Statements from Block Theory can
be expressed in the language of fusion systems. This is done for many known
results and open conjectures in [1], where the link is made by either Alperin’s or
the Ordinary Weight Conjecture. For realisable fusion systems, these are true.
We proved several of these conjectures for 27 exotic fusion systems on a Sylow
7-subgroup of G3(7), classified by Parker and Semeraro in [3]:

Theorem 2. [2] Siz weight conjectures from [1] hold for the exotic Parker—
Semeraro systems.

Applications to Linckelmann’s Conjecture: For an algebra A it is known
that HH'(kG) # 0 when p | |G|. Linckelmann conjectured that also HH' (kGb) #
0 when b is a block of kG with non-trivial defect group. In recent work we
try to tackle this conjecture with the help of fusion systems. First, recall that
hch.dim(A) = sup{n € N | HH"(A) # 0} and we say that an algebra A has
Happel’s property, if hch.dim(A) < co = gl.dim(4) < oco.

Theorem 3. [4] Let F be the fusion system of a block b. If F is realisable, then
kGb has Happel’s property.

Linckelmann’s conjecture holds for Jy,Jo and for A, when p > 3 and we have
certain assumptions on the respective block.

The idea for future work is to find a reduction of Linckelmann’s conjecture to
(quasi)simple groups with the help of fusion systems.
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My thoughts on the Meierfrankenfeld program
BERND STELLMACHER

About 20 years ago, a program began whose original goal was to classify the finite
groups of local characteristic p (LCp-Hypothesis). Over the years the program
has undergone an evolution that made large parts of it independent of the LCp-
Hypothesis.

In the literature this program is often called the MSS project. In my talk
I briefly explained why, from a personal perspective, I prefer the term Meier-
frankenfeld program; and I also identified those aspects of the program I personally
consider essential and characteristic for the program.

In the following G is a finite group and p is a prime divisor of |G| such that
0,(G) =1. Also let S € Syl,(G) and M be a maximal p-local subgroup of G with
Na(1(Z(S))) < M. We also fix the notation:

Q:= OP(M) and F := F;(M) N C]u(Y]u).

Here F;(M) is the inverse image of F*(M/Q) and Y)s is the largest p-reduced
elementary abelian normal subgroup of M.

The following elementary observation allows the program to be partitioned into
two parts, which can be treated completely independent from each other.

Basic Lemma. Suppose that M is the only maximal p-local subgroup containing
E. Then @ is a large p-subgroup of G.

Here @ is a large p-subgroup of G if
Ce(@Q) <@ and Ng(A) < Ng(Q) foralll#A<Cq(Q).
This allows the subdivision:

Part I. The Q!-case: @ is a large p-subgroup of G. (Standard examples: groups
of Lie type in characteristic p where the center of a Sylow p-subgroup is a root
subgroup)

Part II. The Non-E!-case: FE is contained in at least two maximal p-local subgroups
of G. (Standard examples: groups of Lie type in characteristic p where the center
of a Sylow p-subgroup is not a root subgroup)

Comments on Part I. In this case, large parts of the p-local analysis have already
been carried out, and the global analysis of the groups in question have already
begun. Cornerstones of these investigations are [3] and [4]. Both results do not
use the LCp-Hypothesis.

The first result provides input that is then used for the global analysis. More
precisely, for every p-local subgroup L of G with S < L and L £ M the Local
Structure Theorem in [3] gives the structure of L/Cr(Yr) and the structure of the
F,L-module Y7,.
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In addition to this information, the global analysis by means of [4] also requires
the structure of M/Q and a meaningful case subdivision that distinguishes between
the “large bulk” of the groups under consideration and “small cases”.

The Small World Theorem provides this subdivision and further information
for the global analysis. The small cases are:

— The rank 1 case, where M is the unique maximal p-local subgroup containing S.
— The rank 2 case, where there exist two p-minimal subgroups P, and P, with

S<PNPy, Op(Pl) # 1 and Op(<P1,P2>) = 1.
— An exceptional rank 3 case.

Right now Meierfrankenfeld and Stellmacher are working on a version of this the-
orem that does not require the LCp-Hypothesis. The exceptional rank 3 case
was already treated in [5] (but only in the version given by the LCp-Hypothesis).
Meierfrankenfeld, Parker and Stroth are working on the global analysis of those
groups that do not have small rank.

Comments on Part II. This part is much further away from completion than
Part I. There is an old and outdated preprint by Meierfrankenfeld, Stroth and Stell-
macher that subdivides this part into three cases and uses the LCp-Hypothesis,
and there exists another preprint by Meierfrankenfeld and Stroth that does the
global analysis in one of these cases.

In my talk I will use the following hypothesis which is more general than the
LCp-Hypothesis but still may allow further generalizations.

Hypothesis for Part II. As in Part I G is a finite group with O,(G) = 1,
S € Syl,(G), M is a maximal p-local subgroup of G of characteristic p with
Ng(1(Z(9))), Q = Op(M) and E = F; (M) N Cp(Yar). Moreover, in this part
F is contained in at least two maximal p-local subgroups and

N¢g(A) has characteristic p for all 1 # A < Cg(Q).

In this Part IT new features are used for the p-local analysis:

— Point stabilizers. Let H be a finite group and T' € Syl,(H). Then Cy (24 (Z(T)))
is the (full) point stabilizer of H with respect to 7.

— Uniqueness subgroups (for M). Let X < M. Then X is a uniqueness subgroup
for M if M is the unique maximal p-local subgroup of G containing X.

Cornerstones of the p-local analysis is the W (B)-Theorem from [1] and the Point
Stabilizer Theorem from [2]. Both results are independent of the LCp-Hypothesis.
The first result shows that for any finite group H of characteristic p and P a point
stabilizer of H either W(P) < H or there exist Baumann blocks in H and two
distinct Baumann blocks of H centralize each other.

Here W(P) is a non-trivial characteristic subgroup of O,(P) whose definition
only depends on O,(P) but not on P or H; and Baumann blocks are subnormal
subgroups of H with a very restricted structure, see [1] for the definition and
structure.
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One objective is now to discuss those groups that do not possess Baumann blocks
in any maximal p-local subgroup. This leads to the following working hypothesis.

Additional Hypothesis. No maximal p-local subgroup of G containing F possesses
a Baumann block.

This hypothesis allows to impose a partial order the set of maximal p-local sub-
groups of G different from M but containing F according to the size of their point
stabilizers. Let 9°®(E) be the set of maximal elements with respect to this partial
order. The following theorem gives some useful uniqueness subgroups.

Theorem. Let H € M*(E) and T € Syl,(M N H). The following subgroups are
uniqueness subgroups for M.

(1) Ca(2:1(Z(5))) and Cg(21(Z(T)))-
(2) P, where P is a point stabilizer of F;(M).

Combing this information gives:

Theorem. There exists H € 9M*(E), a point stabilizer P of M N H and a P-
invariant normal subgroup @ < F' < Fy(M) such that for L := F'P the following
hold:

1) F/Q is product of components of M/Q.
2) Yy, is an FF-module for L.
3) P is point btab1l1zer of H.

(
(
(
(4) O,((L, H)) =

The investigation of the amalgam (L, H) by means of suitable uniqueness sub-
groups has yet to be carried out.
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The Uniqueness Case, The Component Type
GERNOT STROTH

In the classification of the finite simple groups there was a subdivison in groups
of component type (H/O(H) possesses a subnormal quasisimple group for some
2-local subgroup H of G) and groups of local characteristic two (F*(H) = O2(H)
for all 2-local subgoups H of G). In dealing with the latter one tries to move
to odd primes p and tries to prove that for this prime one has a component
type. More precisely, let M be a maximal 2-local subgroup then one searchs for
elements x € M, o(z) = p, p odd, such that Cg(z) € M and Cg(x)/Op (Ca(x))
has a component. For this one has to deal with O,/ (Cq(z)). There are signalizer
functor methods which can be applied. They start to work if m,(Ca(z)) > 3.
The uniqueness case as a last step in the classification of the finite simple groups
is the case where all this does not work. We will describe this in more details.

Definition 1. For an odd prime p set
ma »(G) = max{m,(H) | H a 2-local subgroup of G}
e(G) = max{ms,(G) | p odd}

Definition 2. For odd primes p we define

o« 01(G) = {p > 2,ma,(G) > 3}
o 02(G) ={p > 3,m2,(G) = 3}
o 03(G) = {p>3,m2,(G) =3}

Let 79 = min{%, 0;(G) # 0}. Then set
0(G) = 04y (G)
Definition 3. Let P be a p-group, then define
Ipr = (Na(X) | X < Pm(X) > k)

Definition 4. Almost strongly p-embedded Let p be an odd prime and M a
maximal 2-local subgroup of G. We call M almost strongly p-embedded in G if
mp(M) > 1, p2(G) < M for P € Syl,(M) and one of the following holds:

e I'p1(G) <M (M is strongly p-embedded)

e p > 3, M is solvable, and there is a subgroup Py of P of order p, weakly
closed in P with respect to G, such that L = E(Cq(FPp)) = PSLa(p"),
n>2and Ng(X) < M forall Py # X < P, | X| =0p.

e p=3, M is solvable P = Z317Z3 and I y(p) 1(G) < M.

Definition 5. Uniqueness case. We say that G is in the uniqueness case
provided e(G) > 3, G is of local characteristic 2, and for each p € o(G) G possesses
an almost strongly p-embedded maximal 2-local subgroup.

Theorem 1. (M. Aschbacher [1]) There are no simple (K )-groups in the unique-
ness case.
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In the revision of the classification of the finite simple groups (GLS for short)
the groups of local characteristic 2 have changed to groups of even type or even
groups of restricted even type. For a definition see [2, Definition 8.8]. Nevertheless
one needs a similar kind of uniqueness result for groups of (restricted) even type.

The work on this version of the uniqueness case started in 1993 [6] and in the
talk at the workshop we present the (final) version from 2023. As this is part of
the GLS project and there the proof of the e(G) = 3 case still is not done, there
might be some changes in the assumptions as it has also been from 1993 on.

We start with the new definitions.

Definition 6. (Uniqueness group) We assume e(G) > 3 and p € o(G). A
subgroup M = M, is called a uniqueness group for the prime p if p € o(M),
|G : M| is odd and one of the following holds:

e one of the following holds

(1) (2-local type) M is a maximal 2-local subgroup of G with F*(M) =
O2(M); or
(2) (component type) F*(M) = Ox(M)K, Z(K) = Oz(K) and K is
a quasisimple group of Lie type in characteristic two (some are ex-
cluded), m,(K) > 2 and m,(Ca(K)) < 1.
In both cases for P € Syl (M), we have : If x € P, o(x) = p, mp(Cn (7)) > 3,
then Ng((z)) < M. Further I'p2(G) < M or p =3 and P = Z3 Zs.

o F*(M) = Oo(M). Set M/Oz(M) = M. Then Q = O,(M) is elementary
abelian of order p". We have C37(Q) = @ x X. Further if P is a Sylow
p-subgroup of M, then P = (PN X) x Q, m,(X) = 1 and M induces on
@ a Borel subgroup of an automorphism group of PSLy(p™), containing
the Borel subgroup of PSLy(p™). Let @ be a preimage of Q in P. Then
I'o1(G) < M. Further if w € P is a nontrivial element with @ € X, then
the following holds:

(a) (w) is strongly closed in P with respect to G.
(b) Co(w) £ M but Oy (Ca(w)) < M.

Definition 7. (Uniqueness case) We say that a simple group G is in the unique-
ness case if G is Ka-simple and the following holds.
(1) e(G) >3
(2) For every p € o(G) there is a uniqueness subgroup M, with p € o(M,,).
(3) Let M, be a uniqueness subgroup of G with p € o(M,). If H is any 2-
local subgroup of G such that HNM, > E,E = E,>,T'g 1(G) < M, then
H < M,.

Theorem 2. If G is a simple group of restricted even type in the uniqueness case
and M is a uniqueness group of G for some p € o(G), S € Syl,(M), then M
contains any 2-local subgroup H of G with S < H.

If O2(M) # 1, then by [2, page 90, Theorem M(S)] there are no such groups.
If O2(M) =1 a similar theorem, which also states that there are no groups in the
uniqueness case still waits to be proved.
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In the talk we give a survey of the proof of Theorem 2. We mainly concentrate us
on the case that the uniqueness group is of component type.

Suppose the theorem is false. The main idea is to establish an amalgam (G, Gs2)
which then eventually leads to a contradiction. Let M be some uniqueness group
for the prime p, and S be a Sylow 2-subgroup of M. Then (G is a certain subgroup
of M with S < G;. In case of the component type there is a root subgroup of
K in Z(SN K). We then choose G; = Nj;(R). The structure of M tells us that
F*(G1) = O2(G1). Then choose Gy with S < Ga, O2(G2) # 1 and minimal with
respect to Go £ M. This exists by the assumption that the theorem is false. Then
we prove that we may even choose G that additionally F*(G2) = O(G2). Using
the structure of M, in particular K, we prove that there is F < Gy, E elementary
abelian of order p? and I'g;(G) < M. This then implies by Definition 7(3)
that O2((G1,G2)) = 1. Hence (G1,G2) is an amalgam. The amalgam method
then yields that Zo = (Z(5)2) is a 2F-module. The classification of the 2F-
modules [3, 4, 5] and the minimality of G then provides us with the structure
of G2/Cq,(Z3). This finally yields the statement that ma(G2/Caq,(Z2)) < 3. Set
Q@ = 02(G1 N K). Then we prove hat Q £ Cg,(Z2). As m2(G2/Cq,(Z2)) < 3 we
get |Q : Cg(Z2)| < 8. Now we may use the structure of groups of Lie type (i.e.
K), in particular the action of the normalizer of a root group on the radical of this
normalizer. As |Q : Cg(Z2)| < 8, this shows that K = PSL,(2) or SU,(2). In
both cases we receive a contradition applying Holt’s theorem [2, page 89, Theorem
SF]. This then implies that Definition 6(2) cannot hold.

In case of Definition 6(1) we first prove that G possesses a unique uniqueness
group M, which is a uniqueness group for all p € o(G). Then we prove that G is
of parabolic charactreristic 2, i.e. F*(H) = Oz(H) for all 2-local subgroups of G
with |G : H| odd. Then again we set up amalgams, in this case there are eight
different ones to be treated. In fact G, is again minimal with respect not to be
contained in M and a list of further properties. To each G we then choose an
appropriate G; < M. The study of these amalgams then in any case eventually
leads to a contradiction.
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Character Estimates for Finite Classical Groups and
Thompson’s Conjecture

Puam Huu TIEP
(joint work with Michael Larsen)

A finite group G is called almost quasisisimple if S < G/Z(G) < Aut(S) for some
finite non-abelian simple group G. An important problem in complex representa-
tion theory of finite almost quasisimple groups is the following

Problem 1. Let G be a finite almost quasisimple group, g € G\ Z(G). Find an
explicit, and as small as possible, 0 < o = a(g) < 1, such that

Ix(9)] < x(1)%, ¥V x € Irr(G).

Results on Problem 1 have proved to be useful in a number of applications,
which usually involve using Frobenius character formula. Recently, building on
[2, 4, 5, 8], we have proved the following uniform exponential character bound,
which works for all elements in all finite quasisimple groups of Lie type:

Theorem 2. [6] There exists an explicit constant ¢ > 0 such that for all finite
quasisimple groups G of Lie type, all x € Irr(G), and all g € G, we have
_Clog\gG\
X(g)] < x(1)' T
Our main focus will be on finite classical groups G = Cl(V) = Cl,,(q), where
V =Ty. For any g € CI(V), the support supp(g) is defined to be

supp(g) = )\iélﬂrf_codimKer(g - A-1y),
q

where V = V @ F,. Note that the ratios supp(g)/n and (log|g%|)/(log |G|) are of
the same magnitude for all g € G = Cl,,(q).

Recall that the notion of level of an irreducible character x of a finite classical
group G = Cl,,(¢) was introduced in [4, 5]. Our next result gives a sharp estimate
for the character ratio x(g)/x(1) when both the level of x and the support of g
are not large compared to n:

Theorem 3. [7] Let n,m,j € Z>1, q any prime power, and let ¢ = +. Suppose
that

n > 8j% +4j +4mj+3
and x is an irreducible complex character of G, where either G = GL,,(q), GU,(q),
or 2 /fq and G = SO% (q) of level j. Then there exists some root of unity 8 € C
such that when g € G has support m, we have

mj

x(1)

As an application of Theorems 2 and 3, we prove the asymptotic version of
Thompson’s Conjecture, which asserts that every finite non-abelian simple group
G contains a conjugacy class C C G such that C? = G. According to a private
communication by Khukhro, the conjecture first appeared in Kourovka’s Notebook
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as Problem 9.24 in 1984. It was communicated to Mazurov by Thompson in
Oberwolfach in 1982, and although Thompson did not want to claim authorship,
he consented to Mazurov describing it as “Thompson’s problem”. Within a year
[1] it had achieved its modern name. In 1998, Ellers and Gordeev [3] reduced the
conjecture to the case of finite simple groups of Lie type over fields of order < 8.

Theorem 4. [7] There exists a constant N such that if G is a finite non-abelian
simple group of order > N, then G contains a conjugacy class C satisfying C? = G.
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Vertex stabilizer amalgams of locally s-arc transitive graphs
JOHN VAN BON

Let A be a connected undirected graph, without loops or multiple edges. A G-
graph is a graph A together with a subgroup G < Aut(A). The vertex set of a
G-graph A will be denoted by VA, and the stabilizer in G of a vertex z € VA
by G.. An s-arc emanating from a vertex xo € VA is a path (zg, z1, ..., zs) with
Ti—1 # xiqq for 1 <7< s—1. A G-graph A is called

- thick if the valency at each vertex is at least 3;

- locally finite if, for each z € VA, G, is a finite group;

- locally s-arc transitive if, for every z € VA, G, is transitive on the set of

s-arcs emanating from z.

For a l-arc (z1,22) in A, the triple (Gy,,Gaey; Gey N Gy,) is called the vertex
stabilizer amalgam of A with respect to the l-arc (x1,z2). It is easy to see that,
for a locally s-arc transitive G-graph A with s > 1, the group G is transitive on
edges. Therefore, when s > 1, the vertex stabilizer amalgam does not depend on
the choice of the edge {z1, 22} and is uniquely determined up to the order of the
vertices in a l-arc.

The main problem in the theory of locally s-arc transitive graphs is to bound
s and to classify the vertex stabilizer amalgams for large s. The study of locally
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s-arc transitive graphs was initiated by Tutte in [10, 11], where he showed that if
A is a finite trivalent locally s-arc transitive graph with G transitive on the vertex
set of A, then s <5 and |G| =273 for each z € VA (here s is chosen as large
as possible). This result was generalized by Goldschmidt [6], who proved that if A
is a locally finite trivalent G-graph with s > 1, then s < 7 and the vertex stabilizer
amalgam belongs to one of 15 isomorphism types.

About ten years ago Van Bon and Stellmacher [7] showed that for s > 6 the
vertex stabilizer amalgam of a thick, locally finite and locally s-arc transitive G-
graph must be a weak (B, N)-pair, hence is known by the classification of weak
(B, N)-pairs obtained by Delgado and Stellmacher [9]. In particular, this yields
s < 9. However, this is not the end of the story. For 4 < s < 5 the structure of
the vertex stabilizer amalgam also seems to be very restricted, and a classification
of the vertex stabilizer amalgams might be feasible. Before going into some detail,
we need to introduce some more notation and definitions. For a vertex z € VA,
G, acts on the set of its neighbors A(z). The kernel of this action is denoted by
G[Zl], and the group induced by G, on A(z) is denoted by GZA(Z). The Thompson-
Wielandt theorem ensures that, under some mild conditions, there exist a prime
p and a vertex z € VA for which O,,(GE]) = 1. This motivates the following
definitions. A locally finite G-graph A is called

- local characteristic p, if there exists a prime p such that
Ca. (0,(GM)) < 0,(GWY), for all z € VA,

- pushing up type with respect to the 1-arc (z,y) and the prime p, if A is of
local characteristic p and

0,(GL) < 0,(GY)).
We divide the set of G-graphs into three distinct classes:

- A is of local characteristic p but not of pushing up type;

- A is of pushing up type;

- A is not of local characteristic p.
The beginning of the proof of [7] establishes that a thick, locally finite and locally
s-arc transitive G-graph with s > 6, has to be of local characteristic p, but cannot
be of pushing up type. Hence, the second and third class are empty in this case.
This is no longer true when s = 5. However, the vertex stabilizer amalgams for
thick, locally finite and locally s-transitive G-graphs with s > 4, which are not
of local characteristic p were determined in [8]. Except for 2 vertex stabilizer
amalgams, they all belong to one infinite family. In all cases, the corresponding
G-graphs have s = 5. We expect that the vertex stabilizer amalgams of thick,
locally finite and locally s-arc transitive G-graphs that are of local characteristic
p, but not of pushing up type, are weak BN-pairs when s > 4.

The classification of vertex stabilizer amalgams of thick, locally finite and locally
s-arc transitive G-graphs of pushing up type with s > 4 is in progress. At the
start of this project no such G-graphs were known. In [5] it was shown that a
G-graph of pushing up type with s > 4 will have a vertex z with |A(z)| =¢+ 1
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and PSL,(¢) < Go) < PT'Ly(q), where ¢ is an odd prime power. Furthermore,
in [1] it was shown that exactly four vertex stabilizer amalgams are possible when
q = 3, with corresponding G-graphs constructed in [2, 3, 4]. Additional G-graphs
have been constructed for various other values of ¢ in [3, 4], yielding new shapes
of vertex stabilizer amalgams. The current belief is that the amalgams found so
far are the only ones that can exist.
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Pseudo-quadratic forms over simple artinian rings with involution
RICHARD M. WEISS
(joint work with Bernhard Miihlherr)

1. INTRODUCTION

The notion a pseudo-quadratic form was introduced independently in the late
1960s by Bak and Tits. In this talk we give a uniform description of the pseudo-
maximal parabolic subgroups of an arbitrary classical group in terms of pseudo-
quadratic modules defined over simple artinian rings with involution. Proofs of
the assertions we make will appear in [2].

2. A RESULT OF JACOBSON

We call a ring with involution (k,7) a Jacobson pair if either k is a skew field and
the involution 7 is arbitrary or k = £°P @ ¢ for some skew field £ and 7(a, b) = (b, a)
for all (a,b) € k. In this second case, we set J(¢) = (k, 7). Suppose that (F,p) is
a ring with involution and that z is an element of F'* such that z# = £z. We set
p-(a) = za"z7! for all a € F. Then p, is also an involution. We call (F,p.) an
isotope of (F, p). A ring with involution (K, o) is standard if for some m > 1 and
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some Jacobson pair (k,7), K is the matrix ring M,,(k) and o is the conjugate-
transpose map, where conjugation means “apply 7 to every entry.” In [1], Jacobson
showed that if (F, p) is a simple ring with involution and F' is artinian, then there
exist m > 1, a Jacobson pair (k,7) and an isomorphism from an isotope of (F, p)
to the standard ring with involution (K, o) determined by m and (k, 7).

3. PSEUDO—QUADRATIC MODULES
Let Q be a pseudo-quadratic module. This means that €2 is a 7-tuple
(Ka K07 o,¢&, L7 Qa H)7

where (K,0) is a ring with involution, e = +1 € K, Kp = {a—€a’ |a € K}, L
is a right K-module, H is a e-hermitian form on L and @ is a map from L to K
satisfying

(i) Q(at) =t°Q(a)t (mod Ky) and

(i) Q(a+b) =Q(a)+ Q(b) + H(a,b) (mod Ky)
foralla,be Land allt € K. If z € K* and 2° = §z for 6 = +1, then

Q, = (K,zKp,0,,0e,L,2Q, zH)

is also a pseudo-quadratic module. We call €, an isotope of Q and define two
pseudo-quadratic modules to be similar if one is isomorphic to an isotope of the
other.

4. THE GROUP Py

Let © = (K,Ky,o0,e,L,Q,H) be a pseudo-quadratic module. We set Ug =
{(a,t) € L x K | q(a) —t € Ko} and make Ug into a group by setting
(a,t)+ (b,s) = (a+b,s+t+ H(a,b))

for all (a,t),(b,s) € Ug. We write the group Ug additively even though it is
not, in general, abelian. Let M denote the subgroup of Aut(Ug) consisting of the
maps (a,t) — (as, s7ts) for all s € K* and let N denote the subgroup of Aut(Ug)
consisting of the maps (a,t) — (¢(a),t) for all p € Isom(0). The subgroups M
and N commute elementwise. We denote by Pg the semi-direct product Ug - M N.
If ©’ is similar to ©, then Ug: = Ug.

5. TENSOR PRODUCTS

Let Q = (K, Ky, 0,¢,L,Q, H) be a pseudo-quadratic module, let (k, 7) be a Jacob-
son pair and let m > 1. Suppose that (K, o) is the standard ring with involution
determined by m and (k, 7). Then there exists a pseudo-quadratic module

W= (ka kOa T, €&, Va q, h)
defined over (k,7) from which Q can be reconstructed. In particular,

L=V ®k Ml,m(k)a
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where My (k) is the space of 1 X m matrices over k, so as an additive group, we
can identify L with {(v1,...,vm) | v; € L for all i}, and

H((v1,. .. 0m), (0], ..., 00,)) = [h(vi,v})] € Mm(k) = K

rYm
for all (vy,...,vm), (v],...,v,) € L. We can also start with an arbitrary pseudo-
quadratic module w defined over a Jacobson pair (k,7) and an integer m > 1 and
apply our construction to obtain a unique pseudo-quadratic module defined over
the standard ring with involution (K, o) determined by m and (k, 7). We denote
this pseudo-quadratic module by w ® K.

6. CLASSICAL GROUPS

Let G be a group. We say that G is a classical group if G = Isom(w), where w is
a non-degenerate pseudo-quadratic module defined over a Jacobson pair (k,7) of
finite Witt index n. If we are in the case that (k,7) = J(¢) for some skew field ¢,
then G = GL(Z), where Z is a right vector space over ¢ of dimension n.

7. PSEUDO-MAXIMAL PARABOLIC SUBGROUPS

Let w = (k, ko, 7,¢,V, f,h) and n be as in the previous section. We assume that
G = Isom(w) if k is a skew field and G = GL(Z) if (k,7) = J(¢) for some £. Let
P be a subgroup of G. We say that P is a pseudo-mazimal parabolic subgroup of
G if either k is a skew field and P is the stabilizer of a totally isotropic subspace
of V of dimension m for some positive integer m < n or (k,7) = J(¢) and P is the
stabilizer of a flag X C Y such that m := dim, X = dim,(Z/Y") for some positive
integer m < n/2. In both cases, we call m the degree of the pseudo-maximal
parabolic subgroup P.

If k is a skew field, every maximal parabolic subgroup is pseudo-maximal. If
either (k,7) = J(¢) for some ¢ or k is a skew field, w is hyperbolic, ky = 0,
e =1 and m = n— 1, however, the corresponding pseudo-maximal subgroup is the
intersection of two maximal parabolic subgroups.

8. MAIN THEOREM

Let G = Isom(w) for some non-degenerate pseudo-quadratic module
w = (ka k077—7€7 ‘/qu’ h)

defined over a Jacobson pair (k, 7) of finite Witt index. Let P be a pseudo-maximal
subgroup of degree m of G, let K = M,,(k), let W be a hyperbolic submodule of
V of Witt index m and let # denote the restriction of w to W+. We let © denote
the pseudo-quadratic module 6§ ®; K obtained from 6 and m by our tensor product
construction. Then © is non-degenerate, its Witt index is finite, and

P = P,
where Pg is the group defined in Section 4. Furthermore, for every non-degenerate
pseudo-quadratic pseudo-quadratic module 2 defined over a simple artinian ring

with involution of finite Witt index, the group Pq is isomorphic to a pseudo-
maximal parabolic subgroup of some classical group.
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