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Pfister’s local-global principle for Azumaya algebras with
involution

Vincent Astier and Thomas Unger

Abstract. We prove Pfister’s local-global principle for hermitian forms over Azumaya algebras
with involution over semilocal rings, and show in particular that the Witt group of nonsingular her-
mitian forms is 2-primary torsion. Our proof relies on a hermitian version of Sylvester’s law of
inertia, which is obtained from an investigation of the connections between a pairing of hermitian
forms extensively studied by Garrel, signatures of hermitian forms, and positive semidefinite quad-
ratic forms.

1. Introduction

Pfister’s local-global principle is a fundamental result in the algebraic theory of quadratic
forms over fields. It states that the torsion in the Witt ring is 2-primary, and that a nonsin-
gular quadratic form represents a torsion element in this ring if and only if its signature
(the difference between the number of positive and the number of negative entries in any
diagonalisation of the form according to Sylvester’s “law of inertia”) is zero at all order-
ings of the field. The above facts are of course well known, and can easily be found in
standard references such as [28] or [19].

The main result of this paper (Theorem 6.6) is Pfister’s local-global principle for
nonsingular hermitian forms over Azumaya algebras with involution over semilocal com-
mutative rings in which 2 is a unit. (The special case of central simple algebras with
involution was treated in [21,27]; see also [7].) The assumption that the base ring is semi-
local is minimal in the sense that Pfister’s local-global principle is known to hold for
nonsingular quadratic forms over such rings, but not in general. We refer to [5] for more
details.

Our version of Sylvester’s law of inertia (Theorem 6.1) is used in the proof of the
main result, which is inspired by Marshall’s proof of Pfister’s local-global principle in the
context of abstract Witt rings, cf. [23]. A crucial ingredient in our proof is a certain pairing
of forms investigated by Garrel in his 2023 paper [10]. We were also very fortunate that
we could put many results from the recent papers by First [8] and Bayer–Fluckiger, First
and Parimala [6] to good use.
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2. Preliminaries

In this paper all rings are assumed unital and associative with 2 invertible. We identify
quadratic forms over commutative rings with symmetric bilinear forms, and assume that
all fields are of characteristic different from 2. Rings are not assumed to be commutative
unless explicitly indicated. Our main references for rings with involution and hermitian
forms are [16] and [8].

2.1. Hermitian forms over rings with involution

Let .A;�/ be a ring with involution and let "2Z.A/ be such that "�."/D 1. We denote the
category of "-hermitian modules over .A;�/ by Herm".A;�/. The objects of Herm".A;�/

are pairs .M; h/, where M is a finitely generated projective right A-module and

hWM �M ! A

is an "-hermitian form. Since we always assume that 2 2 A�, all hermitian modules are
even. We denote the category of nonsingular "-hermitian modules over .A;�/ (also known
as "-hermitian spaces) by H".A; �/. The morphisms of Herm".A; �/ and H".A; �/ are
the isometries. We denote isometry by '. See [16, I, Sections 2 and 3] for more details.
If " D 1, we simply write Herm.A; �/ and H.A; �/. It is common to say hermitian form
instead of hermitian module.

We denote the Witt group of nonsingular "-hermitian forms over .A; �/ by W ".A; �/

and note that since 2 2 A�, metabolic forms are hyperbolic, cf. [8, Section 2.2] for a
succinct presentation.

For a 2 A�, we denote the inner automorphism A! A, x 7! axa�1 by Int.a/. We
define Sym".A; �/ WD ¹x 2 A j �.x/ D "xº and Sym".A�; �/ WD Sym".A; �/ \ A�. We
also write Sym.A;�/ instead of Sym1.A;�/ and Skew.A;�/ instead of Sym�1.A;�/. For
a1; : : : ; a` 2 Sym".A; �/ we denote by ha1; : : : ; a`i� the diagonal "-hermitian form

A` � A` ! A; .x; y/ 7!
X̀
iD1

�.xi /aiyi :

Let .M; h/ 2 Herm".A; �/. We denote by D.A;�/.h/ WD ¹h.x; x/ j x 2M º the set of
elements of A represented by h.

If .M; h/ 2 H".A; �/, the adjoint involution of h is the involution adh on the ring
EndA.M/ implicitly defined by

h
�
x; adh.f /.y/

�
D h

�
f .x/; y

�
(2.1)

for all x; y 2M and all f 2 EndA.M/, cf. [8, Section 2.4].
Consider a second ring with involution .B; �/ and let .S; �/ be a commutative ring

with involution such that .A; �/ and .B; �/ are .S; �/-algebras with involution in the sense
of [16, I, (1.1)], i.e., A and B are both S -algebras and the involutions � and � are compat-
ible with �:

�.sa/ D �.s/�.a/; �.sb/ D �.s/�.b/; 8a 2 A; b 2 B; s 2 S:
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Then .A˝S B;�˝�/ is an .S; �/-algebra with involution and, if .M1;h1/2Herm"1.A;�/

and .M2; h2/ 2 Herm"2.B; �/, then

.M1 ˝S M2; h1 ˝ h2/ 2 Herm"1"2.A˝S B; � ˝ �/:

If .M1; h1/' .M
0
1; h
0
1/ in Herm"1.A;�/ and .M2; h2/' .M

0
2; h
0
2/ in Herm"2.B; �/, then

.M1 ˝S M2; h1 ˝ h2/ ' .M
0
1 ˝S M

0
2; h
0
1 ˝ h

0
2/:

Let .M; h/ 2 Herm".A; �/ and .N; '/ 2 Herm�.S; �/. Since .A ˝S S; � ˝ �/ Š
.A; �/ Š .S ˝S A; � ˝ �/ as rings with involution, it is not difficult to see that upon
identifying A˝S S with A,

h˝S '.m1 ˝ n1; m2 ˝ n2/ D h.m1; m2/'.n1; n2/

for all m1; m2 2M and n1; n2 2 N , and

.M ˝S N; h˝S '/ ' .N ˝S M;' ˝S h/

in Herm"�.A; �/.

Lemma 2.1. LetR be a commutative ring, assume thatA is anR-algebra and that � is an
R-linear involution on A. Let �D � jZ.A/. Let u1; : : : ; uk 2 R and .M;h/ 2 Herm".A;�/.
Then

hu1; : : : ; uki� ˝Z.A/ h ' hu1; : : : ; uki ˝R h

(under the canonical identifications Z.A/˝Z.A/ A Š R˝R A Š A).

Proof. It suffices to show that hui� ˝Z.A/ h' hui ˝R h for u 2 R. This follows from the
isometries hui� ' hui ˝R h1i�, h1i� ˝Z.A/ h ' h (which are straightforward, using the
observations preceding the lemma) and associativity of the tensor product.

We finish this section with a well-known result for which we could not find a reference.

Lemma 2.2. Let R be a commutative ring, assume that A and B are R-algebras and that
� and � are R-linear involutions on A and B , respectively. Let .M; '/ 2 H"1.A; �/ and
.N; / 2 H"2.B; �/. Then the map

�WEndA.M/˝R EndB.N /! EndA˝RB.M ˝R N/

induced by �.f ˝ g/ D Œx ˝ y 7! f .x/˝ g.y/� yields an isomorphism of R-algebras
with involution�

EndA.M/˝R EndB.N /; ad' ˝ ad 
�
Š
�
EndA˝RB.M ˝R N/; ad'˝ 

�
:

Proof. The map � is an isomorphism of R-algebras by [9, Theorem 1.3.26 and Corol-
lary 1.3.27]. To finish the proof it suffices to check that

ad'˝ 
�
�.f ˝ g/

�
D �

�
ad'.f /˝ ad .g/

�
using the definition of adjoint involution (2.1), which is a straightforward computation.



V. Astier and T. Unger 4

2.2. Quadratic étale algebras

Let R be a commutative ring and let S be a quadratic étale R-algebra. We recall some
results from [8, Section 1.3] and [16, I, (1.3.6)]. The algebra S has a unique standard
involution # , and the trace TrS=R satisfies

TrS=R.x/ D #.x/C x for all x 2 S . (2.2)

Furthermore, TrS=R is an involution trace for # (cf. [16, I, Proposition 7.3.6]) and
thus if h 2 Herm.S; #/ is nonsingular, then TrS=R.h/ is nonsingular by [16, I, Proposi-
tion 7.2.4]. Furthermore, if h is hyperbolic, then so is the quadratic form TrS=R.h/ by the
first paragraph of [16, p. 41]. The converse holds if R is semilocal by [8, Corollary 8.3].

If R is connected and S is not connected, then S Š R �R as R-algebras, and

# W .x; y/ 7! .y; x/

is the exchange involution.
If R is semilocal, then there exists � 2 S such that �2 2 R�, #.�/ D ��, and ¹1; �º

is an R-basis of S , cf. [8, Lemma 1.19].

2.3. Azumaya algebras with involution

Let R be a commutative ring. Recall from [16, III, (5.1)] that an R-algebra A is an Azu-
mayaR-algebra ifA is a faithful finitely generated projectiveR-module and the sandwich
map

swWA˝R Aop
! EndR.A/; a˝ bop

7! Œx 7! axb� (2.3)

is an isomorphism of R-algebras. Here Aop denotes the opposite algebra of A, which
coincides with A as an R-module, but with twisted multiplication aopbop D .ba/op. It is
clear that Aop is also an Azumaya R-algebra.

The centre Z.A/ is equal to R and EndR.A/ is again an Azumaya R-algebra. More
generally, ifM is a faithful finitely generated projective rightR-module, then EndR.M/ is
an AzumayaR-algebra. IfA andB are AzumayaR-algebras, their tensor productA˝R B
is again an Azumaya R-algebra.

First’s paper [8] contains a wealth of information about Azumaya algebras, with and
without involution, and we refer to it for a number of definitions and results that we recall
in the remainder of this section.

Proposition 2.3 ([8, Proposition 1.1]). A is Azumaya over Z.A/ and Z.A/ is finite étale
over R if and only if A is projective as an R-module and separable as an R-algebra.

Since the behaviour of the involution on the centre plays an important role in the study
of algebras with involution, this result helps motivate the following.

Definition 2.4 ([8, Section 1.4]). We say that .A; �/ is an Azumaya algebra with involu-
tion over R if the following conditions hold:

• A is an R-algebra with R-linear involution � ;
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• A is separable projective over R;

• the homomorphism R! A, r 7! r � 1A identifies R with Sym.Z.A/; �/.

Let .A;�/ be an Azumaya algebra with involution overR. Note thatA is Azumaya over
Z.A/ by Proposition 2.3, but may not be Azumaya overR. Indeed, “Azumaya algebra with
involution” means “Azumaya algebra-with-involution” rather than “Azumaya-algebra with
involution”.

The following lemma makes the connection between Definition 2.4 and a different
definition of Azumaya algebra with involution (the first sentence of Lemma 2.5) that is
introduced in [25, Section 4].

Lemma 2.5. Let A be an R-algebra with R-linear involution such that A is an Azu-
maya algebra over Z.A/, Z.A/ is R or a quadratic étale extension of R, and R D
Sym.Z.A/; �/. Then .A; �/ is an Azumaya algebra with involution over R.

The converse holds if R is connected.

Proof. The first statement is a direct consequence of Proposition 2.3. For the converse,
assume thatR is connected and that .A;�/ is an Azumaya algebra with involution overR.
Then A is Azumaya over Z.A/ by Proposition 2.3, and Z.A/ is R or a quadratic étale
extension of R by [8, Proposition 1.21].

Remark 2.6. If R D F is actually a field, then .A; �/ is an Azumaya algebra with invol-
ution over R if and only if it is a central simple F -algebra with involution in the sense
of [17, Sections 2.A and 2.B].

We recall the following, proved in [8, second paragraph of Section 1.4].

Proposition 2.7 (Change of base ring). Let T be a commutativeR-algebra. ThenZ.A˝R
T / D Z.A/˝R T and .A˝R T; � ˝ id/ is an Azumaya algebra with involution over T
(and in particular Z.A˝R T / \ Sym.A˝R T; � ˝ id/ D T ).

Corollary 2.8. Let T be a commutative R-algebra which is also a field. Then either
Z.A˝R T /D T orZ.A˝R T / is a quadratic étale extension of T , and .A˝R T;� ˝ id/
is a central simple T -algebra with involution.

Remark 2.9. Let S be a quadratic étale R-algebra with standard involution # . If T is
a commutative R-algebra, then S ˝R T is a quadratic étale T -algebra, cf. [9, Proposi-
tions 2.3.4 and 9.2.5].

Moreover, .S; #/ is an Azumaya algebra with involution over R in the sense of [25,
Section 4] (i.e., it has the properties listed in the first sentence of Lemma 2.5), and there-
fore an Azumaya algebra with involution over R in the sense of [8] (i.e., in the sense of
this paper), by Lemma 2.5. Therefore T D Sym.S ˝R T; # ˝ id/ by Proposition 2.7, and
it follows that # ˝ id is the standard involution of S ˝R T . Then (2.2) applies and yields,
for all x 2 S ,

TrS˝RT=T .x ˝ 1/ D TrS=R.x/˝ 1:
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We collect some results about ideals of A.

Proposition 2.10. The following properties hold:

(1) If I is an ideal of R, then A˝R .R=I / Š A=AI ;

(2) J.A/ D A � J.R/, where J denotes the Jacobson radical;

(3) If a 2 A is such that a 2 .A=Am/� for every maximal ideal m of R, then a 2 A�.

Proof. (1) This is well known. Item (2) is [8, Lemma 1.5], sinceA is a separable projective
R-algebra. Item (3) is [8, Lemma 1.6], using item (1).

Definition 2.11 (See [8, Section 1.4]). We say that the involution � on A is of orthogonal,
symplectic or unitary type at p 2 SpecR if .A˝R qf.R=p/; � ˝ id/ is a central simple
algebra with involution of orthogonal, symplectic or unitary type, respectively, over the
quotient field qf.R=p/, and that � is of orthogonal, symplectic or unitary type if it is of
orthogonal, symplectic or unitary type, respectively, at all p 2 SpecR.

We often simply say that � is orthogonal, symplectic or unitary (at p). We refer to [17]
for the definitions of orthogonal, symplectic and unitary involutions on central simple
algebras.

Proposition 2.12 (See [8, Proposition 1.21] for a more detailed statement). Assume that
R is connected. Then precisely one of the following holds:

(1) � is of orthogonal type, Z.A/ D R, and � jZ.A/ D idZ.A/;

(2) � is of symplectic type, Z.A/ D R, and � jZ.A/ D idZ.A/;

(3) � is of unitary type,Z.A/ is a quadratic étale R-algebra, and � jZ.A/ is the stand-
ard involution on Z.A/.

Remark 2.13. If .A; �/ is a central simple algebra over a field, the involution � is called
of the first kind if � jZ.A/ D idZ.A/ and of the second kind otherwise (so that “second kind”
is the same as “unitary type”), cf. [17].

Lemma 2.14. Let R be semilocal connected, let T be a quadratic étale R-algebra, and
let � be an R-linear involution on T . If T is connected, then every nonsingular hermitian
form over .T; �/ is diagonalizable.

Proof. The algebra T is semilocal by [16, VI, Proposition 1.1.1]. Since T is also connec-
ted, every projective T -module is free by [11]. Furthermore, 2 2 T �.

If � D id, the result follows since every quadratic form over T is diagonalizable (see [5,
Proposition 3.4]).

If � 6D id. Then � is the standard involution on T by [8, Lemma 1.17], and .T; �/ is
an Azumaya algebra with involution over R, cf. Remark 2.9. Since Z.T / 6D R, and in
particular � is not symplectic, we may conclude by [8, Proposition 2.13].

Theorem 2.15 (Hermitian Morita equivalence). Let R be semilocal connected and let
.B; �/ be an Azumaya algebra with involution over R such that A and B are Brauer
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equivalent and � jS D � jS , where S WD Z.A/ D Z.B/. Assume that S is connected. Then
there exists ı 2 ¹�1; 1º such that the categories Herm".A; �/ and Hermı".B; �/ are
equivalent, and this equivalence induces an isomorphism of Witt groups

W ".A; �/ Š W ı".B; �/:

Specifically, if � jS D idS , then ı D 1 if � and � are both orthogonal or both symplectic
and ı D �1 otherwise; if � jS 6D idS , then ı can be chosen freely in ¹�1; 1º.

Proof. If � jS 6D idS , then S is a quadratic étale R-algebra by Proposition 2.12 and is thus
semilocal by [16, VI, Proposition 1.1.1].

Since A and B are Brauer equivalent, there exist faithful finitely generated projective
S -modules P and Q such that A ˝S EndS .P / Š B ˝S EndS .Q/, cf. [16, III, (5.3)].
Since S is semilocal connected, P and Q are free by [11]. It follows that there exist
k; ` 2 N such that

EndA.Ak/ Š EndB.B`/: (2.4)

Consider the nonsingular hermitian forms .Ak ; ' WDk�h1i� / and .B`;  WD`�h1i� /
over .A; �/ and .B; �/, respectively. Since ' and  are hermitian, the involutions � and
ad' are of the same type and the same is true for the involutions � and ad , cf. [8, Pro-
position 2.11]. In particular, � jS D ad' jS and � jS D ad jS .

The categories Herm".EndA.Ak/; ad'/ and Herm".A; �/ are equivalent by hermitian
Morita theory. The same is true for the categories Herm".EndB.B`/;ad / and Herm".B;�/.
Furthermore, these equivalences respect orthogonal sums and send hyperbolic spaces to
hyperbolic spaces, cf. [16, I, Theorem 9.3.5].

The involution ad' induces an involution ! on EndB.B`/ of the same type via the iso-
morphism (2.4), and thus !jS D ad jS since � jS D � jS . By the Skolem–Noether theorem
[6, Theorem 8.6], ! differs from ad by an inner automorphism: there exists ı 2 ¹�1; 1º
and a unit u 2 EndB.B`/ with ad .u/ D ıu such that ! D Int.u/ ı ad , where ı can be
freely chosen in ¹�1; 1º if � jS 6D idS . Moreover, ı is unique if � jS D idS (D ad jS ): if
Int.u/ D Int.u0/, then u D u0s for some s 2 S�, and it follows that ad .u/ D ıu if and
only if ad .u0/ D ıu0.

By [16, I, (5.8)] (see also [8, Section 2.7]) there is an equivalence between the cat-
egories Herm".EndB.B`/;!/ and Hermı".EndB.B`/; ad / (and an induced equivalence
between the categories H".EndB.B`/;!/ and Hı".EndB.B`/;ad /) which respects ortho-
gonal sums and hyperbolic spaces. The equivalence of the categories Herm".A; �/ and
Hermı".B; �/ and the isomorphism of the Witt groupsW ".A; �/ andW ı".B; �/ follows.

It remains to show the claim about ı when � jS D idS . Since ı is unique, it suffices
to check its value at any p 2 SpecR (i.e., after tensoring over R by qf.R=p/). By [17,
Proposition 2.7] we know that ı D 1 if � and � are both orthogonal or both symplectic at
p and ı D �1 otherwise. The statement then follows, using Proposition 2.12.

Remark 2.16. Let R be connected and let .A; �/ be an Azumaya algebra with involution
over R. Note that when Z.A/ is not connected, then Z.A/ Š R � R by Section 2.2 and
Lemma 2.5. Hence, W ".A; �/ D 0, cf. [8, Example 2.4].
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2.4. Orderings, spaces of signatures

Let R be a commutative ring, and let .A; �/ be an Azumaya algebra with involution
over R. The real spectrum of R, SperR, is the set of all orderings on R, cf. [15, Defini-
tions 3.3.1 (a) and 3.3.4, and Proposition 3.3.5]. It is equipped with the Harrison topology,
with subbasis given by the sets of the form

VH.r/ WD
®
˛ 2 SperR j r > 0 at ˛

¯
D
®
˛ 2 SperR j r 2 ˛ n �˛

¯
;

for all r 2 R.
Let ˛ 2 SperR. We often write x �˛ y for x � y 2 ˛. The support of ˛ is the prime

ideal Supp.˛/ WD ˛ \�˛ 2 SpecR, and we denote by x̨ the ordering induced by ˛ on the
quotient field �.˛/ WD qf.R= Supp.˛//, and by k.˛/ a real closure of �.˛/ at x̨. Observe
that �.x̨/ WD qf.�.˛/= Supp.x̨// D qf.�.˛/=¹0º/ D �.˛/, and that we can take k.x̨/ D
k.˛/.

We also define �
A.˛/; �.˛/

�
WD
�
A˝R �.˛/; � ˝ id

�
;

which is a central simple �.˛/-algebra with involution by Corollary 2.8.

Remark 2.17. LetM be anR-module and let ˛ 2 SperR. Then, if x 2M ˝R �.˛/, there
are t 2 N, mi 2M , si 2 R and ri 2 R n Supp.˛/ such that

x D

tX
iD1

mi ˝
Nsi

Nri
D

tX
iD1

mi ˝
Ns0i
Nr 0
D

� tX
iD1

mis
0
i

�
˝
1

Nr 0
;

for some s0i 2 R, r 0 2 R n Supp.˛/. Therefore

M ˝R �.˛/ D

²
m˝

1

Nr
j m 2M; r 2 R n Supp.˛/

³
:

We denote by SignR the set of signatures of R, i.e., the space of all morphisms of
rings from the Witt ringW.R/ to Z. We recall some facts from [14, Section 5 up to p. 89]:

• The set SignR is equipped with the coarsest topology that makes all maps

sign� 'WSperR! Z; ˛ 7! sign˛ '

continuous, for ' 2 W.R/. When R is semilocal, a basis for this topology is given by
the sets

H.u1; : : : ; uk/ WD
®
� 2 SignR j �.u1/ D � � � D �.uk/ D 1

¯
;

for k 2 N and u1; : : : ; uk 2 R�.

• Denoting by SpermaxR the space of all elements of SperR that are maximal for inclu-
sion (equipped with the induced topology), the natural map

SpermaxR! SignR; ˛ 7! sign˛;



Pfister’s local-global principle for Azumaya algebras with involution 9

is continuous and surjective. If R is semilocal, this map is a homeomorphism and we
identify SignR and SpermaxR. In general, we have continuous maps

SpermaxR � SperR
�
�! SpecR;

where � is defined by �.˛/ WD Supp.˛/. (Note that ifRDF is a field, then SpermaxRD

SperR D XF , the space of orderings of F .)

The following theorems, due to Knebusch, explain how to obtain the maximal ordering
associated to a signature on a semilocal ring. These results can be found in [13, The-
orem 4.8] and [14, pp. 87–88]. The connection with maximal orderings is given in the
second reference, but is presented for connected rings. It is pointed out that this assump-
tion can be made without loss of generality, but we quickly present an argument in the
proof below.

Theorem 2.18. Assume that R is semilocal and let s be a signature on R. Define

Q.s/ WD

²
r21u1 C � � � C r

2
kuk j k 2 N; ui 2 R

�; s
�
hui i

�
D 1;

kX
iD1

Rri D R

³
:

Then

(1) Q.s/ is closed under sum, Q.s/\�Q.s/ D ; and p.s/ WD R n .Q.s/[�Q.s//
is a prime ideal of R.

(2) ˛.s/ WD Q.s/ [ p.s/ is a maximal ordering on R with support p.s/ such that
sign˛.s/ D s.

Proof. For (1), see [13, Theorem 4.8]. For (2), it follows immediately from the properties
of Q.s/ that ˛.s/ is an ordering on R with support p.s/ and that sign˛.s/ D s. Suppose
that ˛.s/ is not maximal, so that there is ˇ 2 SperR such that ˛.s/¨ ˇ. Take x 2 ˇ n ˛.s/.
Since x 62 ˛.s/ we have x 2 �˛.s/ n ˛.s/ D �Q.s/ and thus x D �.r21u1 C � � � C r

2
k
uk/

as described above. In qf.R=Suppˇ/ we have Nx D �
Pk
iD1 Nr

2
i Nui with Nui 2 x̌, Nui 6D 0, so

that Nui > x̌ 0. In particular, Nx 2 � x̌. Since Nx 2 x̌ by choice of x we have Nx D 0, which
implies that Nri D 0 for every i , i.e., r1; : : : ; rk 2 Suppˇ, contradicting

Pk
iD1Rri D R.

Applying this result to s D sign˛ for ˛ 2 SpermaxR, we obtain the following theorem.

Theorem 2.19. Assume that R is semilocal and that ˛ 2 SpermaxR. Then

˛ n Supp.˛/ D
²
r21u1 C � � � C r

2
kuk j k 2 N; ui 2 ˛ \R

�;

kX
iD1

Rri D R

³
:

The special case of R local easily follows, but is worth noting and was obtained earlier
(without the link to SperR, which was introduced later), first in [12] if 2 2 R�, and then
in general in [13]:

˛ n Supp.˛/ D
®
u1 C � � � C uk j k 2 N; ui 2 ˛ \R

�
¯
:
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Finally, we mention the following simple fact for future use.

Lemma 2.20. Let F be a field with space of orderings XF . Let P 2 XF , and denote by
FP any real closure of F at P . Then F is cofinal in FP , i.e., for every a 2 FP there exists
b 2 F such that a � b. In particular, for every a 2 FP , if a > 0, then there exists b 2 F
such that 0 < b � a.

Proof. Let p.X/ D a0 C a1X C � � � C ak�1Xk�1 CXk 2 F ŒX� be such that p.a/ D 0.
Then a � max¹1; ja0j C � � � C jak�1jº by [15, Proposition 1.7.1]. The second statement
follows by taking inverses.

2.5. Positive definite matrices

The results in this section are well known, but we could not find a reference for the qua-
ternion case. In this section we assume that F is a real closed field and that .D; #/ 2
¹.F; id/; .F.

p
�1/; 
/; ..�1;�1/F ; 
/º, where 
 denotes the canonical involution in each

case. We consider norms with values in F . For vectors in Dk we consider the euclidean
norm, i.e., for X D .x1; : : : ; xk/t 2 Dk we have

kXk D

vuut kX
iD1

n.xi /;

where n.x/ WD #.x/x. On Mk.D/ we use the induced operator norm, i.e., kMkop WD

supkXkD1 kMXk. Tarski’s transfer principle [24, Corollary 11.5.4] ensures that this su-
premum exists and that the operator norm is equivalent to the maximum norm determined
by the unique ordering of F on the F -vector space Mk.D/ (both properties can be
expressed by first-order formulas in the language of ordered fields, that are true in R).
Therefore, k � kop defines the same topology as the one induced by the ordering of F .

Lemma 2.21. Let k 2 N. Then

PDk.D; #/ WD
®
B 2 Sym

�
Mk.D/; #

t
�
j #.X/tBX > 0 for every X 2 Dk

n ¹0º
¯

is an open subset of Sym.Mk.D/;#
t/ for the topology induced by the unique ordering ofF.

Proof. Since this property can be expressed by a first-order formula in the language of
fields in each of the three cases .D; #/ 2 ¹.F; id/; .F.

p
�1/; 
/; ..�1;�1/F ; 
/º, it suf-

fices to prove it for F D R by Tarski’s transfer principle [24, Corollary 11.5.4]. The
well-known proof below works in all three cases, and we give the details in order to point
out that it also works in the quaternion case. Observe that for every X; Y 2 Dk , we have
k#.X/tY k � kXk � kY k (the verification is direct in the quaternion case).

We reformulate M 2 PDk.D; #/ as: there is ı > 0 such that #.X/tMX � ı for
every X 2 Dk , kXk D 1. Let M 2 PDk.D; #/ and let ı be as described above. Let
B 2 Sym.Mk.D/; #

t / be such that kB �Mkop � ". Then

#.X/tBX D #.X/tMX C
�
#.X/tBX � #.X/tMX

�
;
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and, if kXk D 1,ˇ̌
#.X/tBX � #.X/tMX

ˇ̌
D
ˇ̌
#.X/t .B �M/X

ˇ̌
D


#.X/t .B �M/X




� kXk �



.B �M/X


 � kB �Mkop � "

from which the result follows if we take " D ı=2.

3. M-signatures of hermitian forms

If .A;�/ is a central simple F -algebra with involution over a field F , h is a hermitian form
over .A; �/, and P is an ordering on F , we defined in [1, Section 3.2] the signature of h at
P with respect to a particular Morita equivalence MP (which determines the sign of the
signature), denoted signMP

P h. We only considered nonsingular forms in [1, Section 3.2],
which was unnecessarily restrictive since the method we used (reduction to the Sylvester
signature via scalar extension to a real closure of F at P and hermitian Morita theory)
applies in fact to forms that may be singular.

We will use the notation and results from [1]. Note that this signature is also presen-
ted in [2, second half of p. 499], where the omission in [1] of one (irrelevant) case for
.DP ; #P / has been rectified.

Let R be a commutative ring (with 2 2 R�), let .A; �/ be an Azumaya algebra with
involution over R, let S D Z.A/ and let � WD � jS .

Definition 3.1. Let h be a hermitian form over .A; �/ and let ˛ 2 SperR. Then h˝ �.˛/
is a hermitian form over the central simple algebra with involution .A.˛/; �.˛// and we
define the M-signature of h at ˛ by

signM
˛ h WD signMx̨

x̨

�
h˝ �.˛/

�
; (3.1)

where Mx̨ is a Morita equivalence as in [1, Section 3.2].

Note that the superscript M on the left-hand side of (3.1) signifies that each compu-
tation of signM

˛ depends on a choice of Morita equivalence Mx̨. The use of a different
Morita equivalence can result at most in a change of sign, cf. [1, Proposition 3.4]. There-
fore, the notation signM˛ should specify what Morita equivalence Mx̨ is used but, in order
not to overload the notation, we assume that for a given ˛ we always use the same Morita
equivalence Mx̨.

In fact, the main drawback of the M-signature is that the sign of the signature of a
form can be changed arbitrarily at each ordering by taking a different Morita equivalence.
This is in particular a problem if we hope to consider the total signature of a form as
a continuous function on SperR. We solved this problem in the case of central simple
algebras with involution by introducing a “reference form”, that determines the sign of
the signature at each ordering, cf. [1, Section 6] and [2, Section 3]. We will show in a
forthcoming publication that the same can be done in the case of Azumaya algebras with
involution.
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Remark 3.2. Let .B; �/ be a central simple F -algebra with involution, P 2 XF , and FP
a real closure of F at P . Note that F D Sym.Z.B/; �/. Then,

B ŠMn.D/ and B ˝F FP ŠMnP .DP /;

where D and DP are division algebras with involution over F and FP , respectively. (We
do not need to name the involutions on D and DP here.) Clearly, n � nP �

p
dimF B .

Let b 2 Sym.B; �/. By [3, Proposition 4.4], we have signMP

P hbi� � nP �
p

dimF B .
Applying this to .A.˛/; �.˛// in Definition 3.1, let � be a set of generators of A as an
R-module, and let a 2 Sym.A; �/. We have

signM
˛ hai� �

q
dim�.˛/A.˛/ � j� j;

which provides a bound on signM˛ hai� which is independent of a and ˛.

Proposition 3.3. Let h be a hermitian form over .A; �/, let q be a quadratic form over R
and let ˛ 2 SperR. Then

signM˛ .q ˝ h/ D .sign˛ q/ � .signM˛ h/;

where the same Morita equivalence is used in the computation of the signature on both
sides of the equality.

Proof. By definition signM˛ .q˝ h/ is equal to signMx̨
x̨
..q˝ h/˝ �.˛//, where .q˝ h/˝

�.˛/ is considered as a form over .A.˛/; �.˛//. But

signMx̨
x̨

�
.q ˝ h/˝ �.˛/

�
D
�
signx̨ q ˝ �.˛/

�
�
�
signMx̨

x̨
h˝ �.˛/

�
by [1, Proposition 3.6]. The result follows.

Lemma 3.4. Let T be a quadratic étale R-algebra with standard involution # . Let h be
a hermitian form over .T; #/. Then, for every ˛ 2 SperR, signM˛ h D 0 implies

sign˛ TrT=R.h/ D 0:

Proof. Note that .T; #/ is an Azumaya algebra with involution over R and that # ˝ id is
the standard involution on T ˝R k.˛/ by Remark 2.9. In particular, signatures are defined,
and by the definition of signatures for central simple algebras with involution, the form
h˝R k.˛/ has signature 0 at the unique ordering on k.˛/. Writing h˝R k.˛/ ' ' ? 0,
where ' is nonsingular and 0 is the zero form of appropriate rank, cf. [3, Proposition A.3],
it follows that ' has signature 0 at the unique ordering on k.˛/, and thus is weakly hyper-
bolic (i.e., `� ' is hyperbolic for some ` 2N) by [21, Theorem 4.1] (or [7, Theorem 6.5]).

As recalled in Section 2.2, TrT=R is R-linear and TrT=R.h/ is a quadratic form over R.
Also, TrT˝Rk.˛/=k.˛/ is an involution trace for #˝id, and it follows that TrT˝Rk.˛/=k.˛/.'/
is weakly hyperbolic by Section 2.2, and thus has signature 0. Since TrT=R.h/˝ k.˛/ D
TrT˝Rk.˛/=k.˛/.h˝ k.˛// by Remark 2.9, and observing that

TrT˝Rk.˛/=k.˛/
�
h˝ k.˛/

�
' TrT˝Rk.˛/=k.˛/.'/ ? TrT˝Rk.˛/=k.˛/.0/;

it follows that sign˛ TrT=R.h/ D 0.
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Definition 3.5. We call

NilŒA; �� WD
®
˛ 2 SperR j signM

˛ D 0
¯

the set of nil orderings of .A; �/. By the observation after Definition 3.1, NilŒA; �� is
independent of the choice of Morita equivalence at each ˛.

Remark 3.6. If .A; �/ is a central simple F -algebra with involution, this definition is
equivalent to our original one ([1, Definition 3.7] by [1, Theorem 6.4]), from which it
follows that if � is orthogonal and � is any symplectic involution on A, then NilŒA; �� D
XF n NilŒA; ��.

Also note that if P 2 XF n NilŒA; �� and FP is a real closure of F at P , then

.A˝F FP ; � ˝ id/ Š
�
MnP .DP /; Int.ˆP / ı #P t

�
;

where DP 2 ¹FP ; FP .
p
�1/; .�1;�1/FP º, #P is the canonical involution on DP , and

ˆP 2 Sym.MnP .DP /
�; #P

t /, cf. [4, p. 4 and Remark 6.2].

Lemma 3.7. Let ˛ 2 SperR. Then statements (1) and (2) below are equivalent:

(1) ˛ 2 NilŒA; ��;

(2) x̨ 2 NilŒA.˛/; �.˛/�.

Assume in addition that � is of unitary type at Supp.˛/. Then (1) and (2) and the following
statements are equivalent:

(3) Z.A.˛// ˝�.˛/ k.x̨/ Š k.x̨/ � k.x̨/, i.e., Z.A.˛// ˝�.˛/ k.˛/ Š k.˛/ � k.˛/

since we can take k.x̨/ D k.˛/ as observed before;

(4) Z.A/˝R k.˛/ Š k.˛/ � k.˛/;

(5) ˛ 2 NilŒS; ��.

Proof. (1))(2): Assume x̨ 62 NilŒA.˛/; �.˛/�. Then there exists z 2 Sym.A.˛/; �.˛//
such that signMx̨

x̨
hzi�.˛/ 6D 0 (see [1, Theorem 6.4]). Using Remark 2.17, write z D a˝ 1

Nr
,

for some r 2 R n Supp.˛/. Since Nr is invertible in �.˛/, we have

0 6D signMx̨
x̨
hzi�.˛/ D signMx̨

x̨
hz Nr2i�.˛/ D signMx̨

x̨
har ˝ 1i�˝id�.˛/ D signM

˛ hari� ;

contradicting that ˛ 2 NilŒA; ��.
(2))(1): This follows from the fact that signM

˛ h D signMx̨
x̨

h ˝ �.˛/ D 0 for any
hermitian form h over .A; �/.

For the remaining equivalences, recall that if .B; �/ is a central simple algebra with
involution of the second kind over a field F , then P 2 NilŒB; �� if and only ifZ.B ˝ FP /
Š FP � FP , cf. [2, bottom of p. 499 and Definition 2.1].

The equivalence (2),(3) follows from this observation, and we have (3),(4) since
k.˛/ is a real closure of �.˛/ at x̨ and Z.A.˛// D Z.A/˝R �.˛/ (by Proposition 2.7).
Finally, the equivalence (4),(5) follows from (1),(4) applied to .S; �/ since SDZ.S/D
Z.A/.
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Corollary 3.8. Assume that R is semilocal and that � is of unitary type. Then there is
d 2 R� such that NilŒA; �� D VH.d/.

Proof. By [8, Proposition 1.21], S D Z.A/ is a quadratic étale R-algebra, and for every
˛ 2 SperR, �.˛/ is of unitary type at the prime ideal Supp.˛/. Furthermore, as recalled
in Section 2.2, S D R ˚ �R for some � 2 S such that d WD �2 2 R�. In particular, for
any ˛ 2 SperR,

Z
�
A.˛/

�
D S ˝R �.˛/ D �.˛/˚ .�˝ 1/�.˛/ D �.˛/.

p
Nd/;

where Nd is the image of d in R= Supp.˛/, and where the first equality follows from
Proposition 2.7. Therefore, for ˛ 2 SperR:

˛ 2 NilŒA; �� ” Z
�
A.˛/

�
˝�.˛/ k.x̨/ Š k.x̨/ � k.x̨/ by Lemma 3.7

” �.˛/
�p
Nd
�
˝�.˛/ k.x̨/ Š k.x̨/ � k.x̨/

”

p
Nd 2 k.x̨/ ” Nd 2 x̨ ” d 2 ˛

” ˛ 2 VH.d/ since d is invertible:

Remark 3.9. Recall from Section 2.2 that when R is connected, then either S is con-
nected or S Š R � R. Moreover, if SperR n NilŒA; �� 6D ;, we cannot have S Š R � R
by Lemma 3.7. Therefore, if R is connected and SperR n NilŒA; �� 6D ;, then S is also
connected.

Lemma 3.10. LetF be a field and let .B;�/ be a central simpleF -algebra with involution
of the first kind. If NilŒB; �� 6D ;, then degB is even.

Proof. Assume that deg B is odd. Then B is split and � is orthogonal by [17, Corol-
lary 2.8 (1)]. It follows that NilŒB; �� D ; by [1, Definition 3.7].

Lemma 3.11. Assume that R is semilocal connected and that � is of orthogonal or sym-
plectic type. If NilŒA; �� 6D ;, then Skew.A�; �/ 6D ;.

Proof. Let ˛ 2NilŒA;��. Then x̨ 2NilŒA.˛/;�.˛/� by Lemma 3.7. Hence, degA˝R �.˛/
is even by Lemma 3.10. Since R is connected, the rank of A is constant (since A is a
projective R-module, see [26, p. 12]). It follows that degA˝R qf.R=p/ is even for every
p 2 SpecR. We can then apply [8, Lemma 1.26] with " D �1.

3.1. Elements of maximal signature

In [4], working with central simple algebras with involution, we investigated the maximal
value that the signature at P 2 XF can take (when it is non-zero) when applied to one-
dimensional nonsingular forms. We found that this maximal value is the matrix size of the
algebra over its skew-field part after scalar extension to FP (and linked it to the existence
of positive involutions), cf. [4, Proposition 6.7, Theorem 6.8].
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We are interested in the same question when .A; �/ is an Azumaya algebra with
involution. More precisely, we will show in Corollary 3.19 that if ˛ 62 NilŒA; ��, then
this maximal value is the matrix size nx̨ of A ˝R k.˛/ over its skew-field part (i.e.,
A ˝R k.˛/ Š Mnx̨ .Dx̨/ using the notation from Remark 3.2). We first introduce some
notation.

Definition 3.12. If .B; �/ is an Azumaya algebra with involution over R, and ˛ 2 SperR,
we define:

m˛.B; �/ WD max
®

signM˛ hbi� j b 2 Sym.B�; �/
¯
;

MM
˛ .B; �/ WD

®
b 2 Sym.B�; �/ j signM˛ hbi� D m˛.B; �/

¯
:

Observe that m˛.B; �/ is independent of the choice of the Morita equivalence Mx̨ (cf.
Definition 3.1), and is finite by Remark 3.2.

We introduce some notation that will be used in the next four results. For ˛ 2 SperR,
define

S˛.A;�/WD
[®

D.A;�/ha1; : : : ;aki� j k2N; ai2Sym.A;�/; ai˝12M
Mx̨
x̨

�
A.˛/;�.˛/

�̄
:

Furthermore, for p 2 SpecR, we denote by �p the canonical projection fromR toR=p
and by �Ap the canonical projection from A to A=Ap. Then, denoting by x� the involution
induced by � on A=Ap, we define

S0p WD
[®

D.A=Ap;x�/

˝
�Ap.a1/; : : : ; �Ap.ak/

˛
x�
j k 2 N; ai 2 Sym.A; �/;

ai ˝ 1 2M
Mx̨
x̨

�
A.˛/; �.˛/

�¯
:

Lemma 3.13. Let ˛ 2 SperR. Then there is an element b 2 Sym.A; �/ such that b˝ 1 2
M

Mx̨
x̨
.A.˛/; �.˛//. In particular, b 2 S˛.A; �/.

Proof. Let c 2 Sym.A.˛/�; �.˛// be such that signMx̨
x̨
hci�.˛/ D mx̨.A.˛/; �.˛//. By

Remark 2.17, there are b0 2 A and r 2 R n Supp.˛/ such that c D b0 ˝
1
Nr
. Let b1 WD

1
2
.b0 C �.b0//. Then b1 2 Sym.A; �/ and

b1 ˝
1

Nr
D
1

2

�
b0 ˝

1

Nr
C �.b0/˝

1

Nr

�
D
1

2

�
c C �.˛/.c/

�
D c:

We take b WD rb1. Then b 2 Sym.A; �/ and, since Nr 2 �.˛/�, we have b˝ 1D Nr2c 2
A.˛/�, and

signMx̨
x̨
hb ˝ 1i�.˛/ D signMx̨

x̨
hNr2ci�.˛/ D mx̨

�
A.˛/; �.˛/

�
;

so that b ˝ 1 2MMx̨
x̨
.A.˛/; �.˛//.

Lemma 3.14. Assume thatRDF is a field and letP 2XF nNilŒA;��. Let a2Sym.A;�/
be such that signM

P hai� D mP .A; �/. Then:

(1) a is invertible in A;

(2) There is � 2 P n ¹0º such that signMP ha � ri� D mP .A; �/ for every r 2 P such
that r �P �.
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Proof. By [4, Proposition 6.7], we have

mP .A; �/ D nP :

We use the notation from Remark 3.6. SinceP 62NilŒA;��, it follows from the computation
of M-signatures (cf. the beginning of Section 3) that signM

P hai� is equal to the Sylvester
signature of the form hˆ�1P .a˝ 1/i#P t , whereˆ�1P .a˝ 1/2 Sym.MnP .DP /;#P

t /. Since
DP 2 ¹FP ; FP .

p
�1/; .�1;�1/FP º and #P is the canonical involution onDP , the matrix

ˆ�1P .a ˝ 1/ can be diagonalized by congruences (which does not change the Sylvester
signature), so we can assume thatˆ�1P .a˝ 1/ is diagonal. Since it has Sylvester signature
nP , its diagonal elements are all positive, i.e.,ˆ�1P .a˝ 1/ 2 PDnP .DP ;#P /. In particular,
ˆ�1P .a˝ 1/ is invertible. Therefore a˝ 1 is not a zero divisor, and a is not a zero divisor
in A. It follows that a is invertible since A is Artinian. This proves (1).

For (2): The element a ˝ 1 is in ˆP � PDnP .DP ; #P /, which is an open subset of
Sym.MnP .DP /; #P

t / by Lemma 2.21. It follows that there is " > 0 in FP such that for
all M 2 Sym.MnP .DP /; #P

t / that satisfy kMkop < " we have

a˝ 1 �M 2 ˆP � PDnP .DP ; #P /:

Taking � 2 FP such that 0 < � < ", we obtain k�InP kop < ". Hence,

a˝ 1 � �InP 2 ˆP � PDnP .DP ; #P /:

In particular, the signature of the form ha˝ 1 � �InP i�˝id equals nP .
However, F is cofinal in FP by Lemma 2.20, so we can find such a � in F . The choice

of � guarantees that signM
P ha � ri� D nP D mP .A; �/ whenever r 2 P , r �P �.

Lemma 3.15. Let m be a maximal ideal ofR and let ˛ 2 SperR be such that Supp˛ �m.
Assume that

8a 2 Sym.A; �/ a˝R 1�.˛/ 2M
Mx̨
x̨

�
A.˛/; �.˛/

�
implies a 2 Am: (3.2)

Then property (3.2) is preserved under quotients by Supp ˛ and, if Supp ˛ D ¹0º, under
localisation at m. More precisely:

(1) Let R1 WD R= Supp ˛. Then property (3.2) holds for .A1; �1/ WD .A ˝R R1;

� ˝R idR1/ and the ordering ˛1 induced by ˛ on R1 together with the maximal
ideal m1 WD m=Supp˛ of R1, i.e.,

8a 2 Sym.A1; �1/ a˝R1 1�.˛1/ 2M
Mx̨1
x̨1

�
A1.˛1/; �1.˛1/

�
implies a 2 A1m1:

Furthermore, if ˛ 2 SpermaxR, then ˛1 2 SpermaxR1.

(2) Assume that Supp˛D¹0º. Then property (3.2) holds for .A2; �2/ WD .A˝R Rm;

� ˝R idRm/ and the ordering ˛2 induced by ˛ on Rm together with the unique
maximal ideal m2 of Rm, i.e.,

8a 2 Sym.A2; �2/ a˝Rm 1�.˛2/ 2M
Mx̨2
x̨2

�
A2.˛2/; �2.˛2/

�
implies a 2 A2m2:

Furthermore, if ˛ 2 SpermaxR, then ˛2 2 SpermaxRm.
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Proof. (1) We have natural maps

R! R1 D R=Supp˛ ! qf.R1/ D �.˛/ D �.˛1/

with x̨ D x̨1, and thus

A! A1 D A˝R R1 ! A˝R qf.R1/ D A.˛/ D A1.˛1/;

while

�1.˛1/ WD �1 ˝R1 id�.˛1/ D .� ˝R idR1/˝R1 id�.˛1/ D � ˝R id�.˛1/ D �.˛/:

Let b 2 Sym.A1; �1/ be such that

b ˝R1 1�.˛1/ 2M
Mx̨1
x̨1

�
A1.˛1/; �1.˛1/

�
DM

Mx̨
x̨

�
A.˛/; �.˛/

�
:

Then b D c ˝R 1R1 for some c 2 A (the argument is similar to Remark 2.17) and

b ˝R1 1�.˛1/ D c ˝R 1R1 ˝R1 1�.˛1/ D c ˝R 1�.˛/:

Therefore c ˝R 1�.˛/ 2 M
Mx̨
x̨
.A.˛/; �.˛// and thus c 2 Am by (3.2). It follows that

b D c ˝R 1R1 2 Am˝R 1R1 � .A˝R R1/.m=Supp˛/ D A1m1 (the inclusion follows
from am˝ 1 D .a˝ 1/.m˝ 1/ D .a˝ 1/.1˝ .mC Supp˛//).

The statement about the maximality of ˛1 follows from the fact that the homeomorph-
ism in [15, Proposition 3.3.11] clearly preserves inclusions.

(2) Note that ˛2 is indeed an ordering on Rm since .R nm/ \ Supp ˛ D ;, cf. [15,
Proposition 3.3.10]. We also have

˛2 D

²
r

s2
j r 2 ˛; s 2 R nm

³
(by [15, Proof of Proposition 3.3.10]) and Supp˛2D¹0º, so that �.˛2/Dqf.Rm/. Observe
that the map R ! qf.R/, which is the first step in the computation of signatures of ele-
ments of Sym.A; �/ (since Supp ˛ D ¹0º, cf. Definition 3.1) factors through Rm, giving
R!Rm! qf.R/, with qf.R/D qf.Rm/, i.e., �.˛/D �.˛2/. Finally, a direct verification
shows that x̨ D x̨2.

Let b 2 Sym.A2; �2/ be such that b˝Rm 1�.˛2/ 2M
Mx̨2
x̨2

.A2.˛2/; �2.˛2//. Then b D
c ˝R

1
s

for some s 2 R nm (the argument is again similar to Remark 2.17). Since s is
invertible in Rm, b has the same signature at ˛2 as bs2 D cs ˝R 1Rm , so that

.cs ˝R 1Rm/˝Rm 1�.˛2/ 2M
Mx̨2
x̨2

�
A2.˛2/; �2.˛2/

�
:

We have .cs ˝R 1Rm/˝Rm 1�.˛2/ D cs ˝R 1�.˛/, and thus

cs ˝R 1�.˛/ 2M
Mx̨2
x̨2

�
A2.˛2/; �2.˛2/

�
DM

Mx̨2
x̨2

�
.A˝R Rm/˝Rm qf.Rm/; .� ˝ idRm/˝ id�.˛2/

�
DM

Mx̨
x̨

�
A˝R �.˛/; � ˝ id�.˛/

�
:
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By property (3.2), we obtain cs 2 Am. Therefore,

cs ˝R 1Rm 2 Am˝R 1Rm � .A˝R Rm/m2

(the inclusion follows from am˝R1RmD.a˝R1Rm/.m˝R1Rm/D.a˝R1Rm/.1˝Rm/)
and thus b D c ˝R 1

s
D .cs ˝R 1Rm/

1
s2
2 .A˝R Rm/m2.

The statement about the maximality of ˛2 follows from the fact that the homeomorph-
ism in [15, Proposition 3.3.10] clearly preserves inclusions.

Lemma 3.16. Let m be a maximal ideal of R and let ˛ 2 Spermax R. Then there is a 2
Sym.A; �/ such that a˝ 1 2MMx̨

x̨
.A.˛/; �.˛// and a 62 Am.

Proof. We assume that the conclusion does not hold, so that property (3.2) of Lemma 3.15
holds. We proceed in four steps.

Step 1. Take a 2 Sym.A; �/ such that a˝ 1 2MMx̨
x̨
.A.˛/; �.˛//, cf. Lemma 3.13. Then

a 2 Am by property (3.2). Furthermore, for every r 2 Supp˛ we have signM˛ haC ri� D
signM˛ hai� , cf. Definition 3.1 (since the first step in the computation is scalar extension to
qf.R=Supp˛/). Thus, by hypothesis, aC r 2 Am. Since a 2 Am, we get that Supp˛ �
Am \R D m (cf. [9, Corollary 7.1.2 (1)] for the equality).

Step 2. We first apply Lemma 3.15 (1) and get that we can assume that Supp˛ D ¹0º, and
in particular that R is a domain. It is then possible to apply Lemma 3.15 (2) and we can
also assume that R is a local domain with maximal ideal m.

Step 3. Since R is a local domain and Supp˛ D ¹0º, the following holds:
For every r1

s1
2 qf.R/ with r1; s1 2 ˛ n ¹0º, there exists r 2 ˛ \R� such that r �˛ r1

s1
.

Proof of this claim. By the description of ˛ in Theorem 2.19, there is r 01 2 ˛ \ R
� such

that r 01 �˛ r1, so that
r 01
s1
�˛

r1

s1
:

Observe that if there is s01 2 ˛ \ R
� such that s01 �˛ s1, then r 01

s01
�˛

r1
s1

, and we can take
r WD r 01s

0
1
�1.

However, since R is local, such an s01 exists: If s1 is invertible, we take s01 D s1. If
s1 is not invertible, then s1 2 m. Therefore 1C s1 62 m, i.e., 1C s1 2 R�, and of course
1C s1 2 ˛. We then take s01 WD 1C s1. This proves the claim.

Step 4. We work in the central simple algebra with involution .A.˛/;�.˛//D.A˝Rqf.R/;
� ˝ id/, and denote by x̨ the ordering induced by ˛ on qf.R/. By Lemma 3.14 (2), there
is r1
s1
2 x̨ n ¹0º such that ha˝ 1 � r2

s2
i�.˛/ has maximal signature at x̨ for every r2

s2
2 x̨

such that r2
s2
�x̨

r1
s1

. In other words, a˝ 1 � r1
r2
2M

Mx̨
x̨
.A.˛/; �.˛//.

By Step 3, there is r 2 ˛ \R� such that r �x̨ r1s1 . In particular, we have

.a � r/˝ 1 2M
Mx̨
x̨

�
A.˛/; �.˛/

�
:

Therefore, a � r 2 Am by property (3.2) and thus r 2 Am. But this is impossible since
Am is a proper ideal and r is invertible.
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Lemma 3.17. Assume that R is semilocal, let m be a maximal ideal of R, and let ˛ 2
SpermaxR. Then there is bm 2 S˛.A; �/ such that bm C Am 2 .A=Am/�.

Proof. Let a 2 Sym.A; �/ be such that a˝ 1 2MMx̨
x̨
.A.˛/; �.˛// and �Am.a/ 6D 0, cf.

Lemma 3.16. Then D.A=Am;x�/.k � h�Am.a/ix� / � S0m for all k 2 N by definition of S0m.
Since .A=Am; x�/ is a central simple algebra with involution, [4, Lemma 2.4] applies and
there is ` 2 N such that `� h�Am.a/ix� represents an invertible element b0. Since b0 2 S0m
and �Am is surjective, we have

b0 D
X̀
jD1

x�
�
�Am.xj /

�
�Am.a/�Am.xj /;

with xj 2 A. Therefore, we take bm D
P`
jD1 �.xj /axj .

Proposition 3.18. Assume that R is semilocal and let ˛ 2 Spermax R. Then there are
invertible elements in S˛.A; �/. Furthermore, every invertible element a 2 S˛.A; �/ sat-
isfies signM

˛ hai� D mx̨.A.˛/; �.˛//.

Proof. Let m1; : : : ;m` be the maximal ideals of R. Observe that for each i 2 ¹1; : : : ; `º
there is bi 2 S˛.A; �/ such that bi CAmi 2 .A=Ami /

� by Lemma 3.17. By the Chinese
remainder theorem, the canonical map �WR!R=m1 � � � � �R=m` is surjective. In partic-
ular, there are r1; : : : ; r` 2R such that �.ri /D .0; : : : ; 0; 1; 0; : : : ; 0/, where the coordinate
1 is the one corresponding to the quotient R=mi . Define

b WD �.r1/b1r1 C � � � C �.r`/b`r`:

Observe that b 2 S˛.A; �/. We check that b is invertible. By Proposition 2.10, it suffices
to show that b C Am is invertible in A=Am for every maximal ideal m of R. Consider
such an ideal mi . By definition of ri we have ri Cmi D 1Cmi and rj Cmi D 0Cmi

for all j 6D i . Therefore b C Ami D bi C Ami , which is invertible in A=Ami .
We show that if a 2 S˛.A; �/ is invertible, then signM

˛ hai� D mx̨.A.˛/; �.˛//. Since
a 2 S˛.A; �/, there are a1; : : : ; ak 2 Sym.A; �/ such that a 2 D.A;�/ha1; : : : ; aki� and
a1 ˝ 1; : : : ; ak ˝ 1 2M

Mx̨
x̨
.A.˛/; �.˛//. Since a is invertible, a standard argument gives

ha1; : : : ; aki� ' hai� ? h for some hermitian form h over .A; �/. Extending the scalars
to �.˛/, we obtain ha ˝ 1i�.˛/ ? h˝ �.˛/ ' ha1 ˝ 1; : : : ; ak ˝ 1i�.˛/ over the central
simple algebra with involution .A.˛/; �.˛//. Observe that a1 ˝ 1; : : : ; ak ˝ 1 are invert-
ible inA.˛/, and thus that h˝ �.˛/ is nonsingular. By [4, Lemma 2.2] there is ` 2N such
that `� .h˝ �.˛//' hc1; : : : ; ct i�.˛/ for some c1; : : : ; ct 2 Sym.A.˛/�; �.˛// (they are
invertible since h˝ �.˛/ is nonsingular). Therefore,

` � ha˝ 1i�.˛/ ? hc1; : : : ; ct i�.˛/ ' ` � ha1 ˝ 1; : : : ; ak ˝ 1i�.˛/:

Note that both forms are diagonal over .A.˛/; �.˛//, so that ` C t D `k for dimen-
sion reasons. Since a1 ˝ 1; : : : ; ak ˝ 1 2M

Mx̨
x̨
.A.˛/; �.˛//, the form on the right-hand
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side has the maximal signature that can be obtained by a nonsingular diagonal form of
dimension `k over .A.˛/; �.˛//, namely `k � mx̨.A.˛/; �.˛//. It is therefore the same
for the form on the left-hand side, which implies that a ˝ 1 (and every ci ) belongs to
M

Mx̨
x̨
.A.˛/; �.˛//, i.e., signM˛ hai� D mx̨.A.˛/; �.˛//.

Sincem˛.A;�/�mx̨.A.˛/;�.˛// by the definition of signatures, the following corol-
lary is an immediate consequence of Proposition 3.18.

Corollary 3.19. Assume that R is semilocal and that ˛ 2 SpermaxR. Then

(1) m˛.A; �/ D mx̨.A.˛/; �.˛//.

(2) If a 2MM
˛ .A; �/, then a˝ 1 2MMx̨

x̨
.A.˛/; �.˛//.

Note that if ˛ 62 NilŒA; ��, then mx̨.A.˛/; �.˛// D nx̨.

Proof. The final statement is the only one that still requires a proof and follows from [4,
Proposition 6.7] since x̨ 62 NilŒA.˛/; �.˛/� by Lemma 3.7.

As already mentioned in Remark 3.2, we have signM˛ hai� � nx̨ for a 2 Sym.A; �/
by [3, Proposition 4.4]. It immediately follows from Corollary 3.19 that the definition of
m˛.A; �/ could include non-invertible elements when R is semilocal.

Corollary 3.20. Assume that R is semilocal and that ˛ 2 SpermaxR. Then

m˛.A; �/ D max
®

signM˛ hai� j a 2 Sym.A; �/
¯
:

Remark 3.21. While an element of maximal signature in a central simple algebra with
involution over a field is necessarily invertible (cf. Lemma 3.14), this may not be so for
Azumaya algebras with involution, even already in the ring case. For example, let .A;�/D
.Z3Z; id/ (in particular, hermitian forms over .A; �/ are just bilinear forms over Z3Z and
their signatures are the usual Sylvester signatures). The ring Z3Z has a unique ordering
˛0, and sign˛0h3i D 1 D m˛0.A; �/.

4. The involution trace pairing

Let R be a commutative ring (with 2 2 R�), let .A; �/ be an Azumaya algebra with
involution over R, let S D Z.A/ and let � WD � jS . Note that A is Azumaya over S , but not
necessarily Azumaya over R.

4.1. The involution trace form

We consider the reduced trace ofA, TrdAWA! S , cf. [18, IV, Theorem 2], and recall that it
is additive and S -linear. Furthermore, TrdA commutes with scalar extensions of S since its
computation does not depend on the choice of splitting ring, cf. [18, IV, Proposition 2.1].
In fact, TrdA also commutes with scalar extensions of R (the case of interest to us) as the
following computation shows.
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Lemma 4.1. Let R0 be a commutative ring that contains R. Then for all a 2 A,

TrdA.a/˝R 1R0 D TrdA˝RR0.a˝R 1R0/:

Proof. Observe thatA˝R R0ŠA˝S .S ˝R R0/, via a˝R r 0 7! a˝S 1˝R r
0. It follows

that

TrdA.a/˝R 1R0 D TrdA.a/˝S 1S ˝R 1R0

D TrdA˝SS˝RR0.a˝S 1S ˝R 1R0/

D TrdA˝RR0.a˝R 1R0/:

Lemma 4.2. For all a 2 A we have TrdA.�.a// D �.TrdA.a//.

Proof. If � D idS , i.e., S D R, the statement follows from [16, III, (8.1.1)]. We assume
that � 6D idS , and first observe that

TrdA
�
�.a/

�
D �

�
TrdA.a/

�
, 8p 2 SpecR TrdA

�
�.a/

�
˝R 1Rp D �

�
TrdA.a/

�
˝R 1Rp

, 8p 2 SpecR TrdA˝RRp

�
�.a/˝ 1Rp

�
D .�˝ id/

�
TrdA.a/˝ 1Rp

�
, 8p 2 SpecR TrdA˝RRp

�
.� ˝ id/.a˝ 1Rp/

�
D .�˝ id/

�
TrdA˝RRp.a˝ 1Rp/

�
:

Therefore, it suffices to prove the result for .A˝R Rp; � ˝ id/, and in particular it suffices
to prove the statement of the lemma under the extra hypothesis thatR is local. In this case,
the arguments in [17, (2.15) and (2.16)] hold mutatis mutandis for the Azumaya algebra
with involution .A; �/ over R. More precisely, since R is local, there is � 2 S such that
�2 2 R�, �.�/D�� and S D R˚ �R, cf. Section 2.2. Then [17, (2.15)] holds for .A;�/,
i.e., the map

.A˝R S; � ˝ id/! .A � Aop; "/; a˝ s 7!
�
as;

�
�.a/s

�op�
;

where " denotes the exchange involution, is an isomorphism of S -algebras with involution
(replacing the element ˛ in the proof of [17, (2.15)] by �, and observing that � � �.�/ D
2� 2 S�). The claimed equality becomes straightforward to verify after application of this
isomorphism since the reduced trace is invariant under scalar extension.

The involution trace form of .A; �/ is the form

T� WA � A! S; .x; y/ 7! TrdA
�
�.x/y

�
:

By Lemma 4.2, T� is symmetric bilinear over R if S D R and hermitian over .S; �/
otherwise.

Lemma 4.3. The form T� is nonsingular, i.e., .A; T� / 2 H.S; �/.
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Proof. Since S is a finitely generated R-module (cf. Definition 2.4 and Proposition 2.3),
the form T� is nonsingular if and only if the form T� ˝R R=m is nonsingular for all max-
imal ideals m of R, cf. [16, I, Lemma 7.1.3]. Since TrdA commutes with scalar extension,
T� ˝R R=m is isometric to the involution trace form of the central simple algebra with
involution .A˝R R=m; � ˝ id/, which is nonsingular, cf. [17, Section 11].

Lemma 4.4. The sandwich map sw (cf. (2.3)) induces an isomorphism

.A˝S A
op; � ˝ �op/ Š

�
EndS .A/; adT�

�
of Azumaya algebras with involution over R.

Proof. By (2.3), the sandwich map is an isomorphism of S -algebras. We first show that it
respects the involutions, i.e., adT� .sw.a˝ bop// D sw.�.a/˝ �op.bop// for all a; b 2 A.
With reference to (2.1) this follows from the straightforward computation

T�
�
x; sw

�
�.a/˝ �op.bop/

�
.y/
�
D TrdA

�
�.x/�.a/y�.b/

�
D TrdA

�
�.b/�.x/�.a/y

�
D TrdA

�
�.axb/y

�
D T� .axb; y/

D T�
�
sw.a˝ bop/.x/; y

�
which holds for all x; y; a; b 2 A.

Finally, .EndS .A/; adT� / is an Azumaya algebra with involution over R. Indeed, by
Proposition 2.3, S is finite étale over R and A is Azumaya over S . Hence, EndS .A/ is
Azumaya over S and in particular has centre S . Therefore, by Proposition 2.3, EndS .A/
is projective and separable over R. Clearly, adT� is R-linear. Thus we just have to show
that if s 2 S n R, then adT� .s � idA/ 6D s � idA. This can be checked by showing that if
adT� .s � idA/ D s � idA for some s 2 S , then �.s/ D s, using the nonsingularity of T� and
the definition of adT� in a similar fashion to the computation above.

4.2. The Goldman element

We can view TrdA as an element of EndS .A/. By the definition of the sandwich isomorph-
ism (2.3), there is a unique element gA D

P
i xi ˝ y

op
i in A˝S Aop such that

sw.gA/.a/ D
X
i

xiayi D TrdA.a/ for all a 2 A: (4.1)

The element gA is called the Goldman element of A.

Lemma 4.5. The Goldman element gA satisfies

.� ˝ �op/.gA/ D gA: (4.2)
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Proof. By Lemma 4.4 it suffices to show that adT� .TrdA/ D TrdA in EndS .A/ in order to
prove the claim. Consider (2.1) with h D T� and f D TrdA. Using the properties of T�
and TrdA we have

T�
�
x; adT� .TrdA/.y/

�
D T�

�
TrdA.x/; y

�
D �

�
TrdA.x/

�
T� .1; y/

D TrdA
�
�.x/

�
T� .1; y/

D T� .x; 1/TrdA.y/

D T�
�
x;TrdA.y/

�
for all x; y 2 A. Since T� is nonsingular, the claim follows.

We usually think of gA as an element of A ˝S A via the canonical S -module iso-
morphism A˝S A! A˝S A

op; a˝ b 7! a˝ bop and write gA D
P
i xi ˝ yi , cf. [18,

p. 112]. Since � ˝ � and � ˝ �op correspond to each other as additive maps under this
isomorphism, Lemma 4.5 yields

.� ˝ �/.gA/ D gA: (4.3)

in A˝S A. Furthermore, we have

g2A D 1; (4.4)

gA.a˝ b/ D .b ˝ a/gA for all a; b 2 A; (4.5)

cf. [18, IV, Proposition 4.1].

4.3. Module actions

We define �A to be the S -algebra given by the ring A equipped with the following left
action by S :

S � A! A; .s; a/ 7! s �� a WD a�.s/:

We denote this action of S on A with the symbol �� in order to distinguish it from the
product in A of elements of S and A. Note that .�A;�/ is an .S; �/-algebra with involution
as presented in Section 2.1, and that if .S; �/ D .R; id/, then �A D A.

We can view A as a left A˝S �A-module via the twisted sandwich action:

a˝ b �ts x WD ax�.b/ (4.6)

for all a; b; x 2 A (it is necessary to use �A in the tensor product instead of A, in order for
the action to be well defined, which is the motivation for introducing �A).

Lemma 4.6. The twisted sandwich map

A˝S
�A! EndS .A/; a˝ b 7! Œx 7! ax�.b/�

induces an isomorphism

.A˝S
�A; � ˝ �/ Š

�
EndS .A/; adT�

�
of Azumaya algebras with involution over R.
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Proof. The map � WAop! �A is an isomorphism of S -algebras and yields an isomorphism
.A˝S A

op; � ˝ �op/ Š .A˝S
�A; � ˝ �/ of Azumaya algebras with involution over R.

The result then follows from Lemma 4.4.

For a rightA-moduleM we denote by �M the right �A-module with the same elements
as M , with multiplication �M � �A! �M the same as the multiplication M � A! M

and with left action by S given by

S � �M ! �M; .s;m/ 7! s ��m WD m�.s/:

If .M; h/ 2 Herm".A; �/, then h is �."/-hermitian on �M , and we denote it by �h.
If M1 and M2 are right A-modules a direct verification shows that M1 ˝S

�M 2 is a
right A˝S �A-module with multiplication induced by

.M1 ˝S
�M 2/ � .A˝S

�A/!M1 ˝S
�M 2; .m1 ˝m2/ � .a˝ b/ WD m1a˝m2b:

4.4. The involution trace pairing

Let .M1; h1/ 2 Herm"1.A; �/ and .M2; h2/ 2 Herm"2.A; �/, and consider the involu-
tion trace form .A; T� / 2 H.S; �/. Using the twisted sandwich action of A˝S �A on A
(cf. (4.6)), we can define the S -module .M1 ˝S

�M 2/˝A˝S �A A, which carries the form

T� � .h1 ˝
�h2/ 2 Herm"1�."2/.S; �/;

where � denotes the product of forms from [16, I, (8.1), (8.2)]. In other words,

T� � .h1˝
�h2/.m1˝m2˝ a;m

0
1˝m

0
2˝ a

0/ WD T�
�
a;h1.m1;m

0
1/˝

�h2.m2;m
0
2/ �ts a

0
�

for all m1; m01 2 M1, m2; m02 2
�M 2 and a; a0 2 A. (Note that we do not indicate all

parentheses in long tensor products of elements, in order not to overload the notation.)
For this product to be well defined, A needs to be an .A˝S �A/-S bimodule and the

form .A; T� / needs to “admit” A˝S �A, which means that the equality

T�
�
�.x/˝ �.y/ �ts a; b

�
D T� .a; x ˝ y �ts b/

must hold for all x; y; a; b 2 A, but this follows from Lemma 4.6.
In this way we obtain the pairing

�WHerm"1.A; �/ � Herm"2.A; �/! Herm"1�."2/.S; �/;

.M1; h1/ � .M2; h2/ WD
�
.M1 ˝S

�M 2/˝A˝S �A A; T� � .h1 ˝
�h2/

�
:

(4.7)

Expanding the definition of the pairing and simply writing h1 � h2, we see that

h1 � h2.m1 ˝m2 ˝ a;m
0
1 ˝m

0
2 ˝ a

0/

D T�
�
a; h1.m1; m

0
1/˝

�h2.m2; m
0
2/ �ts a

0
�

D TrdA
�
�.a/h1.m1; m

0
1/a
0�
�
h2.m2; m

0
2/
��

D TrdA
�
h1.m1a;m

0
1a
0/�
�
h2.m2; m

0
2/
��
: (4.8)



Pfister’s local-global principle for Azumaya algebras with involution 25

Lemma 4.7. The Azumaya algebras with involution .A ˝S �A; � ˝ �/ and .S; �/ are
Morita equivalent via

Herm".A˝S
�A; � ˝ �/! Herm".S; �/; ' 7! T� � ':

Proof. This follows from Lemma 4.6 and [16, I, Theorem 9.3.5].

Corollary 4.8. The following properties hold:

(1) The pairing � preserves orthogonal sums in each component.

(2) If h1 and h2 are nonsingular, then h1 � h2 is nonsingular.

(3) If h1 ' h01 and h2 ' h02, then h1 � h2 ' h01 � h
0
2.

Proof. Let hi 2 Herm"i .A; �/ for i D 1; 2, then h1 � h2 D T� � .h1 ˝ �h2/ and the three
statements follow from Lemma 4.7, [16, I, Theorem 9.3.5] and standard properties of the
tensor product of forms.

Theorem 4.9. Let .Mi ; hi / 2 Herm"i .A; �/ for i D 1; 2; 3. Then

.h1 � h2/˝S h3 ' .h3 � h2/˝S h1:

Proof. We are grateful to the first referee for suggesting this proof, which is significantly
shorter and more conceptual than our original one.

Consider the "1�."2/"3-hermitian forms .M; h/ WD.M1˝S
�M 2˝SM3; h1˝

�h2˝h3/

and .M 0; h0/ WD .M3 ˝S
�M 2 ˝S M1; h3 ˝

�h2 ˝ h1/ over .A˝S �A˝S A; �˝3/. Let
g0A 2 A ˝S

�A ˝S A be the image of the Goldman element gA 2 A ˝S A under the
natural map a ˝ b 7! a ˝ 1 ˝ b. Using the properties of g0A, induced by those of gA
(cf. Section 4.2), the following computation shows that .M; h/ and .M 0; h0/ are isometric
via the isomorphism of right A˝S �A˝S A-modules M !M 0, defined by m1 ˝m2 ˝
m3 7! .m3 ˝m2 ˝m1/g

0
A:

h0
�
.m3 ˝m2 ˝m1/g

0
A; .m

0
3 ˝m

0
2 ˝m

0
1/g
0
A

�
D �˝3.g0A/h

0.m3 ˝m2 ˝m1; m
0
3 ˝m

0
2 ˝m

0
1/g
0
A

D g0A
�
h3.m3; m

0
3/˝

�h2.m2; m
0
2/˝ h1.m1; m

0
1/
�
g0A

D h1.m1; m
0
1/˝

�h2.m2; m
0
2/˝ h3.m3; m

0
3/

D h.m1 ˝m2 ˝m3; m
0
1 ˝m

0
2 ˝m

0
3/:

Since .A; �/ Š .EndA.A/; adh1i� /, it follows from Lemmas 4.6 and 2.2 that

.A˝S
�A˝S A; �

˝3/ Š
�
EndS .A/˝S A; adT� ˝ �

�
Š
�
EndS .A/˝S EndA.A/; adT� ˝ adh1i�

�
Š
�
EndS˝SA.A˝S A/; adT�˝h1i�

�
;

which yields the Morita equivalence

Herm".A˝S
�A˝S A;�

˝3/!Herm".S ˝S A; �˝ �/; ' 7!
�
T� ˝ h1i�

�
� ' (4.9)
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by [16, I, Theorem 9.3.5]. The isomorphism of right A˝S A-modules�
.M1 ˝S

�M 2/˝S M3

�
˝.A˝S

�A/˝SA .A˝S A/

!
�
.M1 ˝s

�M 2/˝A˝S �A A
�
˝S .M3 ˝A A/;

m1 ˝m2 ˝m3 ˝ a˝ b 7! m1 ˝m2 ˝ a˝m3 ˝ b;

followed by the isomorphism of right A-modulesM3 ˝A A!M3,m3 ˝ b 7! m3b, then
yield the isometries

.T� ˝ h1i� / � .h1 ˝
�h2 ˝ h3/ ' T� � .h1 ˝

�h2/˝ h1i� � h3 ' .h1 � h2/˝ h3:

A similar argument shows that .T�˝h1i� / � .h3˝�h2˝h1/'.h3 � h2/˝h1. The result
then follows from the isometry .M; h/ ' .M 0; h0/ since (4.9) preserves isometries.

Remark 4.10. The pairing � was introduced and studied in detail for "-hermitian forms
over central simple algebras with involution by Garrel in [10]. (A similar construction
for quaternion algebras had already been considered by Lewis [20], using the norm form
instead of the involution trace form of the quaternion conjugation, cf. [10, Remark 4.4].)
In our presentation we stayed close to Garrel’s approach via hermitian Morita theory. We
are grateful to the second referee for suggesting an alternative approach via the S -linear
isomorphism

M1 ˝A
�M 2 ! .M1 ˝S

�M 2/˝A˝S �A A; m1 ˝m2 7! .m1 ˝m2/˝ 1

(where �M 2 is the left A-module obtained by twisting the right A-module structure of
M2 by � ) with inverse

.M1 ˝S
�M 2/˝A˝S �A A!M1 ˝A

�M 2;

.m1 ˝m2/˝ a 7! m1a˝m2 D m1 ˝m2�.a/;

from which the pairing � can be defined directly as

h1 � h2.m1 ˝m2; m
0
1 ˝m

0
2/ WD TrdA

�
h1.m1; m

0
1/; �

�
h2.m2; m

0
2/
��
:

We finish this section with a number of results for later use. We first consider [10,
Proposition 4.9] in our context.

Lemma 4.11. If b; c 2 Sym.A; �/, then hbi� � hci� ' 'b;c , where .A; 'b;c/ 2 H.S; �/ is
given by

'b;c WA � A! S; .x; y/ 7! TrdA
�
�.x/byc

�
:

Proof. The form hbi� � hci� is defined on the S -module .A ˝S �A/ ˝A˝S �A A. Since
A is a left A˝S �A-module, the left action of A˝S �A induces an isomorphism of left
A˝S

�A-modules (and thus of S -modules):

f W .A˝S
�A/˝A˝S �A A! A; x ˝ y ˝ a 7! .x ˝ y/ �ts a D xa�.y/:



Pfister’s local-global principle for Azumaya algebras with involution 27

Using (4.8), we verify that it is the required isometry:

'b;c
�
f .x1 ˝ y1 ˝ a1/; f .x2 ˝ y2 ˝ a2/

�
D 'b;c

�
x1a1�.y1/; x2a2�.y2/

�
D TrdA

�
y1�.a1/�.x1/bx2a2�.y2/c

�
D TrdA

�
�.a1/�.x1/bx2a2�.y2/cy1

�
D TrdA

�
�.x1a1/bx2a2�

�
�.y1/cy2

��
D TrdA

�
hbi� .x1a1; x2a2/�

�
hci� .y1; y2/

��
D hbi� � hci� .x1 ˝ y1 ˝ a1; x2 ˝ y2 ˝ a2/:

Next we show that � is well behaved under scalar extensions, and start with the fol-
lowing lemma (for which we could not find a reference).

Lemma 4.12. Let ƒ be a commutative ring, and let B and C be ƒ-algebras. Let M1 be
a right B-module and M2 a left B-module. Then

.M1 ˝B M2/˝ƒ C ! .M1 ˝ƒ C/˝B˝ƒC .M2 ˝ƒ C/;

.m1 ˝m2/˝ c 7! .m1 ˝ 1/˝ .m2 ˝ c/

is an isomorphism of right C -modules.

Proof. Let f be the map defined in the statement of the lemma and let

gW .M1 ˝ƒ C/˝B˝ƒC .M2 ˝ƒ C/! .M1 ˝B M2/˝ƒ C;

.m1 ˝ c1/˝ .m2 ˝ c2/ 7! .m1 ˝m2/˝ c1c2:

A standard (but lengthy) verification shows that f and g are well defined and additive, are
inverses of each other, and that f is right C -linear.

Lemma 4.13. Let T be a commutative R-algebra. Then

.h1 � h2/˝R T ' .h1 ˝R T / � .h2 ˝R T /:

Proof. The form .h1 � h2/˝R T is defined on ..M1 ˝S
�M 2/˝A˝S �A A/˝R T . Using

Lemma 4.12 twice we have�
.M1 ˝S

�M 2/˝A˝S �A A
�
˝R T

Š
�
.M1 ˝S

�M 2/˝R T
�
˝.A˝S

�A/˝RT .A˝R T /

Š
�
.M1 ˝R T /˝S˝RT .

�M 2 ˝R T /
�
˝.A˝RT /˝S˝RT .

�A˝RT / .A˝R T /; (4.10)

and the successive isomorphisms are given by�
.m1 ˝m2/˝ a

�
˝ t 7!

�
.m1 ˝m2/˝ 1

�
˝ .a˝ t /

7!
�
.m1 ˝ 1/˝ .m2 ˝ 1/

�
˝ .a˝ t /:

We denote the composition of these two isomorphisms by �.
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By definition, .h1 � h2/˝R T D .T� � .h1 ˝S �h2//˝R T , while

.h1 ˝R T / � .h2 ˝R T / D T�˝idT �
�
.h1 ˝R T /˝S˝RT .

�h2 ˝R T /
�

and is defined on the module (4.10) (using that Z.A˝R T / D Z.A/˝R T , cf. Proposi-
tion 2.7). We check that � is an isometry:

T�˝idT �
�
.h1˝R T /˝S˝RT .

�h2˝R T /
��
�.m1 ˝m2˝a˝ t /; �.m

0
1˝m

0
2˝a

0
˝ t 0/

�
D TrdA˝T

�
.h1 ˝ T /

�
.m1 ˝ 1/.a˝ t /; .m

0
1 ˝ 1/.a

0
˝ t 0/

�
� .� ˝ idT /

�
.h2 ˝ T /.m2 ˝ 1;m

0
2 ˝ 1/

��
D TrdA˝T

�
.h1 ˝ T /.m1a˝ t; m

0
1a
0
˝ t 0/.� ˝ idT /

�
.h2 ˝ T /.m2 ˝ 1;m

0
2 ˝ 1/

��
D TrdA˝T

��
h1.m1a;m

0
1a
0/˝ t t 0

�
.� ˝ idT /

�
h2.m2; m

0
2/˝ 1

��
D TrdA˝T

�
h1.m1a;m

0
1a
0/�
�
h2.m2; m

0
2/
�
˝ t t 0

�
D TrdA

�
h1.m1a;m

0
1a
0/�
�
h2.m2; m

0
2/
��
˝ t t 0

D
��
T� � .h1 ˝

�h2/
�
˝R T

��
.m1 ˝m2 ˝ a/˝ t; .m

0
1 ˝m

0
2 ˝ a

0/˝ t 0
�
;

where we used that TrdA commutes with scalar extension in the penultimate step.

Remark 4.14. Recall that when S is not connected, the Witt groupsW ".A;�/ andW ".S; �/

are trivial, cf. Remark 2.16. Therefore the construction of the pairing � is not interesting
in this case.

5. Pairings and PSD quadratic forms

Throughout this section we assume that the commutative ring R (with 2 2 R�) is semi-
local. Let .A; �/ be an Azumaya algebra with involution over R, S D Z.A/ and � D � jS .

Let .M; h/ be a hermitian form over .S; �/. Then h.x; x/ 2 Sym.S; �/ D R for all
x 2M . Therefore we say that h is positive semidefinite (resp. negative semidefinite) at ˛ 2
SperR if h.x;x/2 ˛ (resp. h.x;x/2�˛) for all x 2M . We use the standard abbreviations
PSD and NSD.

Lemma 5.1. Let .M; h/ be a hermitian form over .S; �/ and let ˛ 2 SperR. Then h is
PSD at ˛ if and only if h˝ �.˛/ is PSD at the ordering x̨ induced by ˛ on �.˛/.

Proof. We use the description of M ˝R �.˛/ given in Remark 2.17.
“)”: Let m˝ 1

Nb
2M ˝R �.˛/, where m 2M and b 2 R n Supp.˛/. Then

h˝ �.˛/

�
m˝

1

Nb
;m˝

1

Nb

�
D h.m;m/

�
1

Nb

�2
;

which is in x̨ by hypothesis.
“(”: Letm 2M . We have h˝ �.˛/.m˝ 1;m˝ 1/D h.m;m/, which belongs to x̨,

and thus h.m;m/ 2 ˛.
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Remark 5.2. Let F be a real closed field and let P be the unique ordering on F . Recall
from Remark 3.6 and the beginning of Section 3 that if .A; �/ D .Mn.D/; #

t / with
.D;#/ 2 ¹.F; id/; .F.

p
�1/;
/; ..�1;�1/F ; 
/º, where 
 denotes conjugation, resp. qua-

ternion conjugation, and a 2 Sym.A; �/, then signMP

P hai� is plus or minus the standard
Sylvester signature of a at P .

Indeed, if a is a matrix in Sym.Mn.D/; #
t / such that # t .a/ D a, then under the her-

mitian Morita equivalence between Herm".Mn.D/; #
t / and Herm".D; #/ in [4, (2.1)],

the one-dimensional hermitian form hai# t over .Mn.D/;#
t / corresponds to the hermitian

form over .D; #/ whose Gram matrix is a, and the signature of hai# t is defined to be the
signature of the matrix a. The definition of signature of hermitian forms allows the use of
a different Morita equivalence MP than this particular one, which may result in a change
of sign.

In particular, there exists " 2 ¹�1; 1º (which depends only on MP ) such that for all
a 2 Sym.Mn.D/; #

t /, if signMP

P hai# t is maximal (among signatures of hermitian forms
of the form hbi# t ), then "a is a PSD matrix.

Lemma 5.3. Let F be a field and .B; �/ a central simple F -algebra with involution. Let
P 2 XF nNilŒB; ��. There is ı 2 ¹�1; 1º such that for every b; c 2MMP

P .B; �/ and every
x 2 B , TrdB.�.x/bxc/ 2 ı � P .

Proof. By [4, Proposition 6.7 and equation (6.1)], we have

mP .B; �/ D mP 0.B ˝F FP ; � ˝ id/;

where P 0 denotes the unique ordering on FP . Hence, x 2MMP

P .B; �/ implies

x ˝ 1 2M
MP 0

P 0 .B ˝F FP ; � ˝ id/:

Therefore, we can assume that F is real closed with unique ordering P , that .B; �/ D
.Mn.D/; Int.a/ ı # t / for some a 2Mn.D/

� with # of the same kind as � and

.D; #/ 2
®
.F; id/;

�
F.
p
�1/; 


�
;
�
.�1;�1/F ; 


�¯
;

where 
 denotes conjugation, resp. quaternion conjugation (cf. [3, first page of Sec-
tion 2.3]). Note that #.a/t D ıa for some ı 2 ¹�1; 1º by [17, Propositions 2.7 and 2.18].
Furthermore, the algebra .B; �/ is formally real in the sense of [4, Definition 3.2] since
P 62 NilŒB; �� (apply [4, Proposition 6.6], where zXF WD XF n NilŒB; ��), and it follows
that we can choose the involution # such that ı D 1 by [4, Corollary 3.8].

With reference to [1, Remark 3.13], observe that

a�1hbi� D ha
�1biInt.a�1/ı� D ha

�1bi# t ;

and that there is a Morita equivalence M0P such that

mP .B; �/ D signMP

P hbi� D sign
M0P
P a�1hbi� D sign

M0P
P ha

�1bi# t :
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Similarly we have sign
M0P
P ha

�1ci# t D mP .B; �/. By Remark 5.2 there exists " 2 ¹�1; 1º
such that "a�1b and "a�1c are both PSD with respect to P . Write b0 WD "a�1b and c0 WD
"a�1c. The matrix #.a/tc0a is then PSD over .D; #/, and thus is a hermitian square in
.Mn.D/; #

t /, i.e., there exists a matrix c00 2Mn.D/ such that #.a/tc0a D #.c00/tc00 (this
is a classical consequence of the principal axis theorem, which also holds for quaternion
matrices by [29, Corollary 6.2], cf. [4, Appendix A]). It follows that

TrdB
�
�.x/bxc

�
D TrdB

��
Int.a/ ı # t

�
.x/.a"b0/x.a"c0/

�
D TrdB

�
a#.x/ta�1ab0xac0

�
D TrdB

�
a#.x/tb0xac0

�
D ı TrdB

�
#.x/tb0x#.a/tc0a

�
D ı TrdB

�
#.x/tb0x#.c00/tc00

�
D ı TrdB

�
c00#.x/tb0x#.c00/t

�
;

which belongs to ıP since b0 is PSD.

Proposition 5.4. Let ˛ 2 SperR nNilŒA; ��. Then there is ı 2 ¹�1; 1º such that for every
b; c 2MM

˛ .A;�/, the hermitian form ı.hbi� � hci� / is nonsingular and PSD with respect
to ˛.

Proof. The forms hbi� and hci� are nonsingular since b and c are invertible, and thus
hbi� � hci� is nonsingular by Corollary 4.8. By Lemma 5.1, it suffices to show that the
form .ıhbi� � hci� /˝ �.˛/ is PSD with respect to x̨. Using now that�

hbi� � hci�
�
˝ �.˛/ ' hb ˝ 1i�˝id � hc ˝ 1i�˝id

by Lemma 4.13, and that b ˝ 1, c ˝ 1 2 MMx̨
x̨
.A.˛/; �.˛// by Corollary 3.19, we can

assume that .A; �/ is a central simple algebra with involution over the field �.˛/ with
ordering x̨ that is non-nil by Lemma 3.7. The result then follows from Lemma 5.3 since
hbi� � hci� is isometric to the hermitian form 'b;c , cf. Lemma 4.11.

Lemma 5.5. Let ˛ 2 SperR nNilŒA;��, and let b; c 2MM
˛ .A;�/. Then there are nonsin-

gular hermitian forms '1 and '2 over .S; �/ that are PSD at ˛ such that '1 ˝S hbi� '
'2 ˝S hci� .

Proof. Let ı 2 ¹�1; 1º be as given by Proposition 5.4. Then the hermitian forms ı.hci� �
hci� / and ı.hbi� � hci� / over .S; �/ are PSD with respect to ˛. Furthermore, they are
nonsingular since b and c are invertible and by Corollary 4.8. By Theorem 4.9 we have�

hci� � hci�
�
˝S hbi� '

�
hbi� � hci�

�
˝S hci� ;

hence
ı
�
hci� � hci�

�
˝S hbi� ' ı

�
hbi� � hci�

�
˝S hci� ;

and we conclude with Proposition 5.4.
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6. Sylvester’s law of inertia and Pfister’s local-global principle

Let .A; �/ be an Azumaya algebra with involution over R, S D Z.A/ and � D � jS . In
the case of central simple algebras with involution over fields, a weaker version of the
following result appears in [4, Theorem 8.9].

Theorem 6.1 (Sylvester’s law of inertia). Assume that R is semilocal connected and let
˛ 2 SperR n NilŒA; ��. Then S is connected and, letting t WD rankS A, we have:

(1) Let h be a nonsingular hermitian form over .A;�/. For every c 2MM
˛ .A;�/ there

are w1; : : : ; wt ; u1; : : : ; ur ; v1; : : : ; vs 2 ˛ \R� such that

hw1; : : : ; wt i ˝R h ' hu1; : : : ; uri ˝R hci� ? h�v1; : : : ;�vsi ˝R hci� :

(2) Assume ha1; : : : ; ari� ? h�b1; : : : ;�bsi� ' ha01; : : : ; a
0
pi� ? h�b

0
1; : : : ;�b

0
qi�

with a1; : : : ; ar , b1; : : : ; bs , a01; : : : ; a
0
p , b01; : : : ; b

0
q 2M

M
˛ .A; �/. Then r D p and

s D q.

Proof. We first observe that S is connected by Remark 3.9. By Lemma 2.14 every nonsin-
gular hermitian form over .S; �/ is diagonalizable. By Proposition 2.3, A is Azumaya over
S , hence a projective S -module and so rankS A is defined, and is constant since S is
connected, cf. [26, p. 12].

(1) By Theorem 4.9 we have .hci� � hci� /˝S h' .h � hci� /˝S hci� . Since h � hci�
is nonsingular by Corollary 4.8 and diagonalizable, we can write

h � hci� ' hu1; : : : ; uri� ? h�v1; : : : ;�vsi�;

with u1; : : : ; ur ; v1; : : : ; vs 2 ˛ \R�. Therefore�
hci� � hci�

�
˝S h '

�
h � hci�

�
˝S hci�

' hu1; : : : ; uri� ˝S hci� ? h�v1; : : : ;�vsi� ˝S hci� :

By Proposition 5.4, the nonsingular hermitian form hci� � hci� over .S; �/ is PSD or
NSD with respect to ˛. Up to replacing it by its opposite, we can assume it is PSD with
respect to ˛. As observed above, it is diagonalizable, and by Lemma 4.11 it is defined on
A and therefore has dimension rankS A D t . Hence there are w1; : : : ; wt 2 ˛ \ R� such
that hci� � hci� ' hw1; : : : ; wt i�, and thus

hw1; : : : ; wt i� ˝S h ' hu1; : : : ; uri� ˝S hci� ? h�v1; : : : ;�vsi� ˝S hci� :

The result now follows from Lemma 2.1.
(2) For dimension reasons (after localisation, since A is a projective R-module) we

have r C s D pC q. The result will follow if we show r � s D p � q, i.e., r C q D pC s.
We have the following equality in the Witt group W.A; �/:

ha1; : : : ; ar ; b
0
1; : : : ; b

0
qi� D ha

0
1; : : : ; a

0
p; b1; : : : ; bsi� ;
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which implies that

ha1; : : : ; ar ; b
0
1; : : : ; b

0
qi� ? ' ' ha

0
1; : : : ; a

0
p; b1; : : : ; bsi� ?  ;

where ' and  are hyperbolic forms over .A; �/. Taking signatures on both sides yields

.r C q/m˛.A; �/ D .p C s/m˛.A; �/

since hyperbolic forms have signature zero. The result follows.

For r1; : : : ; r` 2 R, we use the notation hhr1; : : : ; r`ii to denote the Pfister form

h1; r1i ˝R � � � ˝R h1; r`i:

Corollary 6.2. Assume that R is semilocal connected.

(1) Assume that � is of orthogonal or symplectic type (so that .S; �/ D .R; id/). Let
˛ 2 NilŒA; �� and let h be a nonsingular hermitian form over .A; �/. Then there
is a nonsingular quadratic form q over R of dimension rankR A that is PSD at ˛
and such that q ˝R h is hyperbolic.

(2) Let ˛ 2 SperR nNilŒA; ��, let a; b 2MM
˛ .A;�/, and let t WD rankS A. Then there

are ` 2 N and r1; : : : ; r`, w1; : : : ; wt 2 ˛ \R� such that�
hw1; : : : ; wt i ˝R hhr1; : : : ; r`ii

�
˝R ha;�bi�

is hyperbolic.

Proof. (1) By Lemma 3.11 there exists a skew-symmetric element a 2 A�. Let � D
Int.a/ ı � and note that � is orthogonal if � is symplectic and vice versa (indeed, by
Proposition 2.12 it suffices to check it for the central simple �.˛/-algebra with involution
.A.˛/; �.˛//, where it is true by [17, Proposition 2.7]). It follows from Remark 3.6 and
Lemma 3.7 (1),(2) that ˛ 2 Sper.R/ n NilŒA; ��. Scaling h by a gives the nonsingular
skew-hermitian form h0 WD ah over .A; �/.

Let c 2MM
˛ .A; �/. Then the form hci� is nonsingular, and so the pairing hci� � hci�

is also nonsingular by Corollary 4.8. By Proposition 5.4, there exists ı 2 ¹�1; 1º such that
the form ı.hci� � hci� / is PSD at ˛.

We now consider the form ı.hci� � hci� /˝R h
0 which is isometric to ı.h0 � hci� /˝R

hci� by Theorem 4.9. But h0 � hci� is a pairing of a skew-hermitian and a hermitian form
over .A; �/, and so is skew-symmetric over .S; �/ D .R; id/ by (4.7). Hence, h0 � hci� is
hyperbolic by [16, I, Corollary 4.1.2] since every projective R-module is free by [11].

Therefore, letting q WD ı.hci� � hci� /, the form q ˝R h
0 is hyperbolic and since scal-

ing by a�1 commutes with tensoring by q, we obtain that q ˝R h is hyperbolic by [16, I,
Theorem 9.3.5] applied to the scaling-by-a�1 Morita equivalence. Note that q is diagon-
alizable since R is semilocal and A is projective over R, and that the dimension of q is
rankR A, cf. Lemma 4.11.
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(2) Observe that rankS A is constant by the first paragraph of the proof of Theorem 6.1.
Let c 2MM

˛ .A;�/. By Theorem 6.1, there arew1; : : : ;wt , u1; : : : ;ur , v1; : : : ;vs 2 ˛\R�

such that

hw1; : : : ; wt i ˝R ha;�bi� ' hu1; : : : ; uri ˝R hci� ? h�v1; : : : ;�vsi ˝R hci� :

The signature at ˛ of the left-hand side is 0, so we must have r D s. Therefore,

hw1; : : : ; wt i ˝R ha;�bi� ' hu1; : : : ; uri ˝R hci� ? h�v1; : : : ;�vri ˝R hci�

' h Nui ˝R hci� ? h�Nvi ˝R hci� ' h Nu;�Nvi ˝R hci� ;

where we write Nu for u1; : : : ; ur and similarly for Nv. We use the notation hh Nu; Nvii for the
Pfister form hhu1; : : : ; ur ; v1; : : : ; vsii. The form hh Nu; Nvii ˝R h Nu;�Nvi is hyperbolic since

hh Nu; Nvii ˝R h Nu;�Nvi ' hh Nu; Nvii ˝R h Nui ? hh Nu; Nvii ˝R h� Nvi

'

r

?
iD1

hh Nu; Nvii ˝R hui i„ ƒ‚ …
hh Nu; Nvii

?

r

?
iD1

� hh Nu; Nvii ˝R hvi i„ ƒ‚ …
hh Nu; Nvii

' r � hh Nu; Nvii ? �r � hh Nu; Nvii;

where the final equality holds since Pfister forms over R are round (cf. [5, Corollary 2.16]
which uses the fact that the hypothesis 2 2 R� ensures that jR=mj > 2 for every maximal
ideal m of R). Therefore .hw1; : : : ; wt i ˝R hh Nu; Nvii/˝R ha;�bi� is hyperbolic, proving
the result.

The main idea of the proof of the next result comes from Marshall’s proof of Pfister’s
local-global principle in [23, Theorem 4.12].

Proposition 6.3. Let R be semilocal connected and let t0 WD rankR A. Let h be a nonsin-
gular hermitian form over .A; �/ such that for every n 2 N, the form 2nt20 � h is not
hyperbolic. Then there is ˛ 2 SpermaxR such that signM

˛ h 6D 0.

Proof. Observe that if t D rankS A is defined, then t0 is equal to t (if R D S ) or 2t
(if R 6DS ). We identify nonsingular hermitian forms with their classes in the Witt group
W.A;�/, considered as aW.R/-module. Note that a nonsingular hermitian form is hyper-
bolic if and only if its class is zero since we assume that 2 2 A� (and therefore metabolic
forms are hyperbolic).

For the convenience of the reader we first present the ideas of the three main steps of
the proof before giving the full details:

(1) We define a maximal non-empty set � of (nonsingular) Pfister forms over R such
that p � h 6D 0 for every p 2 � , and such that � is closed under products. This final
property produces an ideal J WD

S
p2� AnnW.A;�/.p/, and h 62 J by construction

(this is linked to the notion of Pfister quotient in [23, Chapter 4.7]).
The actual construction in the proof below is slighly different (a factor t20 appears
for technical reasons), and the ideal is called J� .
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(2) The maximality of � ensures that the set ˛0 of all elements of R� represented
by these Pfister forms is “almost” an ordering, more precisely: ˛0 D ˛ \ R� for
some ˛ 2 SpermaxR.

(3) The final step of the proof consists in checking that signM˛ � J , proving the result
since h 62 J .

We now proceed with the proof. Let � � W.R/ be a maximal subset of Pfister forms
such that:

(a) � � � � � ;

(b) for every n 2 N, 2n � h1i 2 � ;

(c) for every p 2 � , .t20 � p/ � h 6D 0.

Observe that � exists since the set ¹2n � h1i j n 2 Nº satisfies all these conditions. Define

˛0 WD
®
r 2 R� j 9p 2 � ; hri � p D p

¯
:

Clearly ˛0 � ˛0 � ˛0. We first prove the following four properties:

(P1) ˛0 [ �˛0 D R�;

(P2) ˛0 \ �˛0 D ;;

(P3) for every u 2 ˛0, h1; ui 2 � ;

(P4) for every k 2 N and all u1; : : : ; uk 2 ˛0, hhu1; : : : ; ukii 2 � .

Proof of (P1). For x 2 R� we define �x WD � [ h1; xi� . Obviously � � �x . In particular,
�x satisfies property (b). We check the non-obvious case of property (a): If p; q 2 � , then
h1; xiph1; xiq D 2h1; xipq, which belongs to �x by properties (a) and (b) of � .

Let x 2 R�. If x 62 ˛0 then h1; xi 62 � (otherwise, since hxih1; xi D h1; xi we would
get x 2 ˛0), so � ¨ �x .

So if we assume that x 62 ˛0 and �x 62 ˛0 we obtain � ¨ �x and � ¨ ��x . Since
both �x and ��x satisfy properties (a) and (b), by maximality of � we get that (c) does
not hold for either of �x and ��x : There are p; q 2 � such that t20 � h1; xiph D 0 and
t20 � h1;�xiqh D 0. Therefore t20 � h1; xipqh D 0 and t20 � h1;�xipqh D 0. Adding
both we obtain t20 � 2pqh D 0 in W.A; �/, a contradiction since 2pq 2 � . End of the
proof of (P1).

Proof of (P2). Assume that there is x 2 ˛0 \ �˛0. Then there are p; q 2 � such that
hxip D p and h�xiq D q. Therefore hxipq D pq and h�xipq D pq. Adding both, we
get 0D 2pq and thus 2pq � hD 0, a contradiction since 2pq 2 � . End of the proof of (P2).

Proof of (P3). Let u 2 ˛0 and let p0 2 � be such that hui � p0 D p0. Consider, as in
the proof of (P1), �u WD � [ h1; ui� . As seen in the proof of (P1), �u satisfies properties
(a) and (b). We check property (c): Assume t20 � h1; uiph D 0 for some p 2 � . Then
t20 � h1; uip0ph D 0, i.e., t20 � 2p0ph D 0, which is impossible since 2p0p 2 � . Since
�u satisfies properties (a), (b) and (c), and contains � , we must have � D �u by maximality
of � . Therefore h1; ui 2 � . End of the proof of (P3).
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(P4) is a direct consequence of (P3) and property (a). This finishes the proof of (P1)–
(P4).

Next, we define

J� WD
®
 2 W.A; �/ j 9p 2 � ; .t20 � p/ �  D 0

¯
:

Clearly, h 62 J� by property (c).
Consider the map

�WR� ! ¹�1; 1º; �.r/ WD

´
1 if r 2 ˛0;

�1 if r 2 �˛0:

Then � is a signature of R. Indeed, it is a character on R� since ˛0 � ˛0 � ˛0 and by
properties (P1) and (P2). Furthermore, by [14, top of p. 88], � will then be a signature
of R if it satisfies �.�1/ D �1 (which is true), as well as �.r21f1 C � � � C r

2
k
fk/ D 1

whenever f1; : : : ; fk 2 R� with �.f1/ D � � � D �.fk/ D 1 and r1; : : : ; rk 2 R are such
that z WD r21f1C � � � C r

2
k
fk 2R

�. We check this: Since f1; : : : ; fk 2 ˛0, we have by (P4)
that the Pfister form hhf1; : : : ; fkii is in � . Clearly, z 2 DRhhf1; : : : ; fkii and by [5, p. 94,
Theorem 2.1] (which applies since the hypothesis 2 2 R� ensures that every quotient of
R by a proper ideal has at least 3 elements) we have hzihhf1; : : : ; fkii D hhf1; : : : ; fkii.
Thus z 2 ˛0 and �.z/ D 1.

By the correspondence between SignR and Spermax R (cf. Section 2.4) there is ˛ 2
SpermaxR such that � D sign˛ , and thus ˛0 D ˛ \R�.

Claim 1. If � is of unitary type, then ˛ 62 NilŒA; ��.

Proof of Claim 1. Observe first that for every q 2 � , q˝R h1i� is not hyperbolic (if it were,
then .q˝R h1i�/˝S hwould be hyperbolic, and thus, by Lemma 2.1, .q˝R h1i�/˝S h'
q ˝R h would also be hyperbolic, contradicting the definition of �).

Assume that ˛ 2 NilŒA; �� D NilŒS; �� D VH.d/ for some d 2 R� (by Lemma 3.7 and
Corollary 3.8). Then d 2 ˛ \R� D ˛0 and signM

h1; d i ˝R h1i� D 0 on SperR. (Indeed,
the signature is zero on NilŒA; �� by definition, and the signature of h1; d i is zero on
SperR nNilŒA; �� by definition of d and since d 62 Supp˛.) Note that h1; d i 2 � by (P3).
Since R is connected, S is quadratic étale over R and � is the standard involution on S by
Proposition 2.12, and we may use Lemma 3.4. Therefore,

sign TrS=R
�
h1; d i ˝R h1i�

�
D 0

on SperR. Since TrS=R.h1; d i ˝R h1i�/ is nonsingular (cf. Section 2.2), Pfister’s local-
global principle for semilocal rings (cf. [22, p. 194] or [5, Theorem 7.16]) applies and there
is k 2 N such that 2k � TrS=R.h1; d i ˝R h1i�/ is hyperbolic. Applying [8, Corollary 8.3]
yields that 2k � h1; d i ˝R h1i� is hyperbolic, a contradiction (as observed above) since
2k � h1; d i is in � . End of the proof of Claim 1.

Claim 2. ker signM˛ � J� .
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Proof of Claim 2. Let  2 ker signM˛ . We consider two cases.

(1) ˛ 2 NilŒA; ��. By Claim 1 we know that � must be of orthogonal or symplectic
type. In particular, S D R and t0 D t . By Corollary 6.2 (1), there is a nonsingu-
lar diagonal quadratic form hu1; : : : ; ut0i of dimension t0 with coefficients in ˛
(and thus in ˛ \R� D ˛0) such that hu1; : : : ; ut0i is hyperbolic. Multiplying by
hhu1; : : : ; ut0ii and using that hui ihhu1; : : : ; ut0ii D hhu1; : : : ; ut0ii (cf. [5, Corol-
lary 2.16] which uses the fact that the hypothesis 2 2 R� ensures that jR=mj > 2
for every maximal ideal m ofR), we obtain t0 � hhu1; : : : ;ut0ii D 0. By property
(P4) the form hhu1; : : : ; ut0ii is in � and thus  2 J� .

(2) ˛ 62 NilŒA; ��. By Theorem 6.1, t D rankS A exists and we have

hw1; : : : ; wt i ' hu1; : : : ; urihci� ? h�v1; : : : ;�vsihci� ;

for some w1; : : : ; wt , u1; : : : ; ur , v1; : : : ; vs 2 ˛ \R� and c 2 Sym.A�; �/ such
that signM˛ hci�Dm˛.A;�/. Multiplying both sides by hhw1; : : : ;wtii and then by 2,
the left-hand side becomes first t � hhw1; : : : ;wt ii (using that hwi ihhw1; : : : ;wt ii
D hhw1; : : : ; wt ii) and then t0 � hhw1; : : : ; wt ii , while the right-hand side still
retains the same shape (up to taking larger values for r and s, and different ele-
ments ui ; vj 2 ˛ \R�). We thus have

t0 � hhw1; : : : ; wt ii ' hu1; : : : ; urihci� ? h�v1; : : : ;�vsihci� ;

where u1; : : : ; ur ; v1; : : : ; vs 2 ˛ \R�.
Since signM

˛  D 0 and signM
˛ hui ihci� D signM

˛ hvj ihci� D m˛.A; �/ for i D
1; : : : ; r and j D 1; : : : ; s, we must have r D s. In particular, we can pair each uic
with the corresponding �vic, so that

t0 � hhw1; : : : ; wt ii '

r

?
iD1

huic;�vici� : (6.1)

Fact. For each i D 1; : : : ; r there is pi 2 � such that t0 � pi � huic;�vici� D 0.

Proof of the fact. By Corollary 6.2 (2), there are z1; : : : ; zt , r1; : : : ; r` 2 ˛ \R� D
˛0 such that hz1; : : : ; zt ihhr1; : : : ; r`iihuic;�vici� D 0. Multiplying by the Pfister
form hhz1; : : : ; zt ii, we obtain�

t � hhz1; : : : ; zt ; r1; : : : ; r`ii
�
huic;�vici� D 0;

and thus .t0�hhz1; : : : ; zt ; r1; : : : ; r`ii/huic;�vici�D0. The fact follows since the
form hhz1; : : : ; zt ; r1; : : : ; r`ii is in � by property (P4). End of the proof of the fact.
Multiplying (6.1) by t0 � p1 � � �pr gives t20 � .p1 � � �prhhw1; : : : ; wt ii/ �  D 0,
proving that is in J� since p1 � � �prhhw1; : : : ;wtii2� (by properties (P4) and (a)).
End of the proof of Claim 2.

The conclusion is now clear since h 62 J� .
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Proposition 6.4. Let R be semilocal connected. The torsion in W.A; �/ is 2-primary.

Proof. By [6, Theorem 8.7 and Remark 8.8] there exists a connected finite étaleR-algebra
R1 of odd rank, and an Azumaya algebra with involution .A1; �1/ over R1 such that
A˝R R1 and A1 are Brauer equivalent over S1 WD S ˝R R1, � and �1 are both unitary,
or are both non-unitary, and such that at least one of the following holds:

(1) Z.A1/ Š R1 �R1;

(2) degA1 D 1;

(3) The index and degree ofA1 are equal and divide the index ofA. Moreover, degA1
is a power of 2 and there exist u;v 2 A�1 such that u2 2R�1 , �1.u/D�u, �1.v/D
�v and uv D �vu.

By [6, Corollary 7.4], the canonical map of Witt groups

W.A; �/! W.A˝R R1; � ˝ idR1/

is injective and thus it suffices to show that the torsion in W.A˝R R1; � ˝ idR1/ is 2-
primary.

If S1 is not connected, then W.A˝R R1; � ˝ idR1/ D 0 (cf. Remark 2.16) and we
can conclude. Thus we may assume that S1 is connected, and in particular that we are not
in case (1) above. By Theorem 2.15, we have a Witt group isomorphism

W.A˝R R1; � ˝ idR1/ Š W
ı.A1; �1/

for some ı 2 ¹�1; 1º, where we may take ı D 1 if � and �1 are unitary, observing that
� and � ˝ idR1 are of the same type. We now examine the remaining relevant cases
from [6, Theorem 8.7], as listed in (2) and (3) above:

(2) degA1 D 1, i.e., A1 D S1: Assume first that �1 is not unitary. By Proposition 2.12
we then haveA1DS1DR1 and �1D idS1 . In this caseW �1.R1; id/D 0 by [16, I,
Corollary 4.1.2] (whose hypotheses are satisfied since R1 is connected and also
semilocal by [16, VI, Proposition 1.1.1]), while the torsion in W.R1; id/ is 2-
primary by [5, Chapter V, Theorem 6.6].
On the other hand, if �1 is unitary (so that we may take ı D 1), then S1 is a
quadratic étaleR1-algebra and �1 is the standard involution. By [8, Corollary 8.3],
the map h 7! TrS1=R1 ıh is an injection fromW.S1; �1/ intoW.R1; id/, which has
2-primary torsion as observed above.

(3) degA1 is a power of 2 and there exists u 2A�1 such that �1.u/D�u. In particular,
rankS1 A1 and hence rankR1 A1 are powers of 2. We consider two cases.
If ı D 1, we conclude with Proposition 6.3: If h is torsion in W.A1; �1/, then h
has zero signature at every ordering of R1 and by Proposition 6.3, there is n 2 N
such that 2n � h is hyperbolic.
If ı D �1, we have

W �1.A1; �1/ Š W
�
A1; Int.u/ ı �1

�
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(by Morita equivalence, more precisely the �-conjugation equivalence of categor-
ies in [8, Section 2.7]), and we conclude again with Proposition 6.3 applied to
.A1; Int.u/ ı �1/.

Remark 6.5. If R is semilocal with only k maximal ideals, then any expression of R
as a product R1 � � � � � Rn of rings must be such that n � k. Therefore there is such an
expression ofR as a productR1 � � � � �Rt that cannot be further decomposed as a product
and thus where each Ri is connected.

Theorem 6.6 (Pfister’s local-global principle). Let R be semilocal, and recall that we
assume 2 2 R�. Let .M; h/ be a nonsingular hermitian form over .A; �/. The following
statements are equivalent:

(1) signM˛ h D 0 for every ˛ 2 SperR.

(2) signM˛ h D 0 for every ˛ 2 SpermaxR.

(3) There exists n 2 N [ ¹0º such that 2n � h is hyperbolic.

In particular, the torsion in W.A; �/ is 2-primary.

Proof. Observe that the final statement clearly follows from the equivalence of (1) and (3),
since a torsion form has zero signature at every ordering.

Clearly (1) implies (2), and (3) implies (1), so we only need to show that (2) implies (3).
Following Remark 6.5, we may assume that R D R1 � � � � � Rt with R1; : : : ; Rt

connected semilocal rings. Writing e1 D .1; 0; : : : ; 0/; : : : ; et D .0; : : : ; 0; 1/ in R, we
have

.A; �/ Š .Ae1; � jAe1/ � � � � � .Aet ; � jAet /:

Furthermore, we can identify M with
Lt
iD1Mei , and we consider hi WD hjMei as a

hermitian form over .Aei ; � jAei / for i D 1; : : : ; t . A direct verification shows that:

• h is nonsingular if and only if each hi is nonsingular for i D 1; : : : ; t (using for instance
that h is nonsingular if and only if for every maximal ideal m ofR the form h˝R R=m

is nonsingular, cf. [16, I, Lemma 7.1.3]).

• If hi is hyperbolic for i D 1; : : : ; t , then h is hyperbolic. Indeed: We can writeMei D
Li ˚ Pi with hi .Li ; Li / D 0 and hi .Pi ; Pi / D 0 (cf. [8, Section 2.2]). So M DLt
iD1 Li ˚ Pi Š .

Lt
iD1 Li /˚ .

Lt
iD1 Pi /. Let L D

Lt
iD1 Li and P D

Lt
iD1 Pi .

We check that h.L; L/ D 0; the proof of h.P; P / D 0 is similar. It suffices to show
that h.`i ; `0j / D 0 for each `i 2 Li and `0j 2 Lj . If i 6D j then h.`i ; `0j / D 0 and if
i D j then h.`i ; `0i / D hi .`i ; `

0
i / D 0.

Every ˛ 2 SpermaxRi can be seen as an element ˛0 in SpermaxR, and a direct verifica-
tion of the definition of signature shows that signM

˛0 hD signM
˛ hi . Therefore, (2) gives that

signM˛ hi D 0 for every ˛ 2 Spermax Ri and every i D 1; : : : ; t . By Propositions 6.3 and
6.4 we have that for every i D 1; : : : ; t there exists ni 2N such that 2ni � hi is hyperbolic.
Thus, letting n D n1 C � � � C nt , it follows that 2n � hi is hyperbolic for i D 1; : : : ; t and
hence that 2n � h is hyperbolic.
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