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Umemura quadric fibrations and maximal subgroups
of Crn.C/

Enrica Floris and Sokratis Zikas

Abstract. We study the equivariant geometry of special quadric fibrations, called Umemura quadric
fibrations, as well as the maximality of their automorphism groups inside Crn.C/. We produce
infinite families of pairwise non-conjugate maximal connected algebraic subgroups of Crn.C/.

1. Introduction

We work over an algebraically closed field k of characteristic 0.
The Cremona group Crn.k/ is the group of birational transformations of the projec-

tive space Pn over a field k. A classical problem in the theory of Cremona groups is the
classification of their maximal connected algebraic subgroups, that is, subgroups acting
rationally on Pn that are maximal with this property (see [8, Definition 1.1] for the pre-
cise definition of a rational action). While maximal connected algebraic subgroups and
their classification are objects of interest by themselves, they also admit a nice geomet-
ric description: they correspond to automorphism groups of “highly symmetric” rational
varieties.

Enriques [9] classified maximal connected algebraic subgroups of Cr2.k/ and showed
that they are conjugate to Autı.S/, where S D P2 or Fn with n ¤ 1. In dimension 3 a
similar classification was obtained by Umemura in a series of four papers [19–22].

Blanc, Fanelli and Terpereau in [2, 3] used an approach based on the Minimal Model
Program MMP to recover most of the classification of Umemura. More precisely, if G
is a connected subgroup of Crn.k/ acting rationally on Pn, then by Weil’s regularization
theorem there is a rational variety Z such that G acts regularly on Z. After running an
MMP on Z, we obtain a Mori fiber space X ! S with X rational, together with a regular
action of G on X .

The group G is maximal if for every G-equivariant Sarkisov program from X=S to
another Mori fiber space Y=T , the group Autı.Y / coincides withG (see [11]). The groups
appearing in the classification of maximal subgroups of Crn.k/ are thus automorphism
groups of Mori fiber spaces.
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In total contrast to the case of dimension 2 and 3, where we have a full classification,
and apart from some reduction results in dimension 4 (see [4]) there is no classification
theory of maximal connected algebraic subgroups of Crn.k/ for n � 4. In this paper we
aim at initiating a study of maximal subgroups in higher dimensions.

It is worth noting that, while in dimension 2 and 3 as a byproduct of the classification
every subgroup is contained in a maximal one, this is not true in dimension n � 4 by [10,
16].

In this note, we produce many examples of pairwise non-conjugated maximal sub-
groups of Crn.k/ for n � 3. More specifically, we study a certain class of n-dimensional
quadric fibrations, called Umemura quadric fibrations, and give necessary and sufficient
criteria for when their automorphism groups are maximal in Crn.k/.

Denote by Ea the vector bundle O˚n
P1
˚OP1.�a/ over P1, let g 2 kŒt0; t1� be a homo-

geneous polynomial of degree 2a. Then the Umemura quadric fibration associated to g is
the following divisor inside P .Ea/:

Qg WD
®
x21 � x0x2 C x

2
3 C � � � C x

2
n�1 C g.t0; t1/x

2
n D 0

¯
� P .Ea/:

See Definition 3.1 for more details. The restriction � WQg ! P1 of the projective
bundle structure is a Mori fiber space. If g has more than two roots, then Autı.Qg/ Š

SOn.k/ (see Proposition 3.8 for a complete discussion of the automorphism group).
Automorphism groups of Umemura quadric fibrations occupy a remarkable place in

the theory of maximal subgroups in dimension 3. They appear in the classification of
Umemura and Blanc–Fanelli–Terpereau and are the only ones lying in continuous fami-
lies. In dimension 4, they serve as natural candidates for producing maximal subgroups
from the point of view of [4]. Moreover, finite subgroups of them have been utilized by
Krylov to produce surprising results in the theory of finite subgroups of the Cremona
group Cr3.k/ [18].

Our main result is the following.

Theorem 4.7. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg !

P1 the associated Umemura quadric fibration. Write g D f 2h, where f; h 2 kŒt0; t1� are
homogeneous polynomials with h being square-free. Then Autı.Qg/ is conjugated to a
subgroup of Autı.Qh/.

Moreover, if h and h0 are two square-free polynomials, we have:

(1) Autı.Qh/ is a maximal connected algebraic subgroup of Crn.k/ if and only if h is
constant or has at least 4 roots;

(2) Autı.Qh/ and Autı.Qh0/ are conjugate if and only if h.t0; t1/D h0.˛.t0; t1//, with
˛ 2 PGL2.k/.

The outline of the paper is as follows: in Section 2, we collect some preliminary results
that will be used throughout the paper; in Section 3, we introduce Umemura quadric fibra-
tions, compute their automorphism groups and analyze their equivariant geometry; finally,
in Section 4, we study birational relations among Umemura quadric fibrations and deter-
mine maximality of their automorphism groups in Crn.k/.
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2. Preliminary results

This section contains some preliminary definitions and results on the geometry of bira-
tional maps of varieties with terminal singularities. We refer to [17] for the basic notions
of the MMP.

2.1. Extremal divisorial contractions

Definition 2.1. Let Y be a variety with terminal singularities and � � Y an irreducible
subvariety of codimension at least 2. An extremal divisorial contraction is a birational
morphism

f WE � X �! � � Y

such that:

• X is Q-factorial and has terminal singularities;

• f jXnE an isomorphism and E a prime divisor;

• �KX is f -ample;

• �.X=Y / D 1.

Typical examples of extremal divisorial contractions are blowups as well as an infinite
family of weighted blowups. However Remark 4.4 shows these are not the only examples,
even when the center is a smooth point. The situation is different if the center is an orbit
of codimension 2 and f is equivariant with respect to some group G, as in this case
by [5, Proposition 2.4] we have only blowups.

Example 2.2. Consider the standard .1; : : : ; 1; b/-weighted blowup of 0 2 AnC1xi ;t

Proj
�M
k�0

	k

�
�! AnC1;

where 	k D .¹x
m0
0 � : : : � x

mn�1
n�1 � t

mn j m0 C � � � Cmn�1 C bmn � kº/. This can also be
described as

X WD AnC1=Gm �! An

.u W x0 W � � � W xn�1 W t / 7�! .ux0; : : : ; uxn�1; u
bt /;

where Gm acts linearly with weights .�1; 1; : : : ; 1; b/. We demonstrate how to extract the
valuation of E D ¹u D 0º using the tower construction [14, Construction 3.1].

Denote by U the open subset ¹x0 D 1º � X . Since E 7! 0 2 An, the first step of the
tower construction is the blowup of 0 2 An, locally described by

V1 D AnC1v1;xi ;t
�! AnC1

.v1; x1; : : : ; xn�1; t / 7�! .v1; v1x1; : : : ; v1xn�1; v1t /

E1 WD ¹v1 D 0º 7�! 0:
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The induced birational map between V1 and U is given by

.u; x1; : : : ; xn�1; t / 7�! .u; x1; : : : ; xn�1; ut/

and E 7! �1 WD ¹v1 D t D 0º. The second step is the blowup of V1 along �1, locally
described by

V2 D AnC1v2;xi ;t
�! V1

.v2; x1; : : : ; xn�1; t / 7�! .v2; x1; : : : ; xn�1; v2t /

E2 WD ¹v2º 7�! �1:

Again, the induced birational map between U and V2 is given by

.u; x1; : : : ; xn�1; t / 7�! .u; x1; : : : ; xn�1; ut/:

Continuing like that, we get the diagram

Va
��

�

		

:::

��

V1

��

U
f

// AnC1;

where, for 1 � i < b, EiC1 � ViC1 ! �i � Vi is the blowup of Vi along �i , with �i
being the intersection of Ei with the strict transform of ¹t D 0º � AnC1.

We will return to this example again in Proposition 4.3.

2.2. Action on a product of quadrics

Let Qn � PnC1 be a smooth hypersurface of degree 2. In this subsection we recall some
basic facts on the action of Autı.Qn/ on Qn �Qn.

Lemma 2.3. Let n�3 be an integer. LetQn�PnC1 be a smooth hypersurface of degree 2.
Let x 2 Qn be a point and Gx the stabiliser of x in Autı.Qn/. Let H be the cone over
a quadric of dimension n � 2 obtained as intersection of Qn with the projective tangent
space in x. The orbits of Gx on Qn are

• the point ¹xº;

• the A1-bundle H n ¹xº;

• the open set Qn nH .

Proof. Without loss of generality we may assume that

Qn D ¹x0x1 C x
2
2 C � � � C x

2
nC1 D 0º and x D .1 W 0 W � � � W 0/:
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Consider the birational map

Qn Ü Pn

.x0 W x1 W � � � W xnC1/ 7�! .x1 W � � � W xnC1/�
x22 C � � � C x

2
nC1

x1
W x1 W � � � W xnC1

�

7�!

.x1 W � � � W xnC1/;

with its resolution .p; q/WW ! Qn � Pn, where:

(1) pWW ! Qn is the blowup along x;

(2) qWW ! Pn is the contraction of the strict transform of H .

By (1) Autı.W / Š Gx . Moreover, q coincides with the blowup of Pn along Qn�2 WD
¹x1 D x

2
2 C � � � C x

2
nC1 D 0º, and thus

pGxp
�1
D Autı.W / D qAutı.PnIQn�2/q�1:

The group Autı.PnIQn�2/ consists of matrices of the form0@ ˛ 0 � � � 0

b B

1A
where ˛¤0 andB�BD�In�2. The orbits of Autı.PnIQn�2/ areQn�2, ¹x1D0º nQn�2
and Pn n ¹x1D 0º. The orbits of Autı.W / are the intersectionZ of the exceptional divisor
E of q and the strict transform P of ¹x1 D 0º, the complements P n Z and E n Z and
W n .E [ P /. Finally, the orbits of Gx in Qx are the images of the orbits of Autı.W / on
W . Therefore the claim follows.

The case n D 2 is similar, yet slightly different.

Lemma 2.4. Let Q2 � P3 be a smooth hypersurface of degree 2. Let x 2 Q2 be a point
andGx the stabiliser of x in Autı.Q2/. The intersection ofQ2 with the projective tangent
space at x is the union of two lines l1, l2. The orbits of Gx on Qn are

• the point ¹xº;

• the lines l1 n ¹xº and l2 n ¹xº;

• the open set Q2 n .l1 [ l2/.

Proof. The proof is mutatis mutandis the one of Lemma 2.3, the caveat being that in
this case Qn�2 D Q0 is the union of 2 distinct points P1, P2. Consequently, the group
Aut.P2IQ0/ is not connected. Restricting to the connected component containing the
identity we get the claimed orbits.

Lemma 2.5. Let n�2 be an integer. LetQn�PnC1 be a smooth hypersurface of degree 2.
LetG DAutı.Qn/ and consider the diagonal action ofG onQn �Qn. Let��Qn �Qn
be the diagonal and

T WD .Qn �Qn/ \ TQn � PnC1 � PnC1;
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where TQn denotes the projectivized tangent bundle of Qn.

• If n � 3, the orbits of the action of G on Qn �Qn are: �;T n�;Qn �Qn n T ;

• If n D 2, T D T1 [ T2 and the orbits of the action of G on Qn �Qn are: �;T1 n�,
T2 n�;Qn �Qn n T .

Proof. Since the action of G on Qn is transitive, � is an orbit.
We show the statement for n � 3. Let .x; y/; .x0; y0/ 2 T . Let g 2 G be such that

g.x0/D x. Then g.y0/ 2 Tgx0Qn. By Lemma 2.3 there is h 2 Gg.x/ such that h.g.y0//D
y, and so .hg/ � .x; y/ D .x0; y0/. The proof that Qn �Qn n T is an orbit is similar.

We now treat the case n D 2. By Lemma 2.4, for any x 2 Qn, the fiber over x of the
projection T ! Qn to the first factor has two irreducible components, namely the two
1-dimensional orbits of Gx Let .x; y/ 2 T , x0 2Q2 and h 2 G such that h.x/D x0. Then
for every g 2 G with g.x/ D x0, h.y/ and g.y/ lie in the same irreducible component:
indeed hg�1 2 Gx0 and hg�1.g.y// D h.y/. Thus the orbit of .x; y/ is a proper subset
of T , that has the same dimension as its complement. If we denote by T1 the closure of
G � .x; y/ and T2 the closure of its complement we have T D T1 [ T2. The rest of the
proof is verbatim the proof of the higher-dimensional case of the previous step.

2.3. A useful lemma

We end the section with the following lemma, which is well known to experts. We give
the proof for the readers convenience.

Lemma 2.6. Let Z be a smooth projective variety and Li for i D 1; 2 line bundles on
Z such that L1 6� L2. Denote by P the projectivization PZ.L1 ˚L2/ together with the
induced morphism pWP ! Z and by Zi the sections of p induced by Li ! L1 ˚L2.
Then every section of p meets either Z1 or Z2.

If moreover Z has Picard rank one and L_1 ˝L2 is anti-ample, then

NE.P / D RCŒf �C i�
�

NE.Z2/
�

where f is a fiber of p and i WZ2 ! P is the immersion.

Proof. Let zZ be a section of p. There are divisors D1, D2 on Z such that

zZ � Z1 C p
�D1; Z2 � Z1 C p

�D2:

Assume that zZ is disjoint from Z1 [Z2. Then

0 D Z2j zZ D Z1j zZ C p
�D2j zZ D p

�D2j zZ :

Thus D2 � 0, implying that Z1 and Z2 are linearly equivalent. But this would imply
that the linear equivalence classes of OP .1/jZ1 and OP .1/jZ2 are the same. Indeed, let
D be a divisor such that OP .1/ � OP .Z1 C p

�D/. Thus OP .1/ � OP .Z1 C p
�D/ �

OP .Z2 C p
�D/. Taking restrictions to Z1 and to Z2, we get OP .1/jZ1 � OP .p

�D/jZ1
and OP .1/jZ2 � OP .p

�D/jZ2 . This is a contradiction as OP .1/jZi � Li and L1 6� L2.
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For the second part of the statement, we have �.P / D 2 and so NE.P / is a cone with
2 extremal rays, one generated by the class f of a fiber of p. Note that we have

OP .Z2/ D p
�.L_1 /˝OP .1/:

For any curve C � Z2, we have

Z2 � C D p
�.L_1 / � C COP .1/ � C D L_1 � p�C COP .1/jZ2 � C

D .L_1 ˝L2/ � p�C < 0: (1)

Thus ŒC � cannot be in the interior of NE.P / since it has negative intersection with an
effective divisor. Therefore, i�.NE.Z2// is the second extremal ray.

3. Umemura quadric fibrations

In this section, we introduce Umemura quadric fibrations and study their basic properties.

3.1. Definition and basic properties

Let aD .a0; : : : ;an/with a0; : : : ;an 2Z. Denote by Ea the vector bundle
Ln
iD0OP1.�ai /

over P1. Then the projective bundle P .Ea/ can be described as the geometric quotient of
.AnC1 n ¹0º/ � .A2 n ¹0º/ by G2

m with the action given by:

G2
m �

�
AnC1 n ¹0º

�
�
�
A2 n ¹0º

�
�!

�
AkC1 n ¹0º

�
�
�
A2 n ¹0º

�
.�; �/; .x0; x1; : : : ; xnI t0; t1/ 7�! .���a0x0; ��

�a1x1; : : : ; ��
�anxnI�t0; �t1/:

In the special case when a D .0; 0; : : : ; a/, we will simply denote Ea by Ea.

Definition 3.1. Let n � 3, a 2 N and let g 2 kŒt0; t1�2a be a homogeneous polynomial of
degree 2a. We define the Umemura quadric fibration associated to g as

Qg WD
®
x21 � x0x2 C x

2
3 C � � � C x

2
n�1 C g.t0; t1/x

2
n D 0

¯
� P .Ea/:

We will denote by � WQg ! P1 the projection to P1.

The choice of a non-diagonal equation is to highlight the existence of a section (see [6]).

Remark 3.2. Qg is rational: indeed, in the open subset ¹x2 D 1º, we may solve

x21 � x0x2 C x
2
3 C � � � C g.t0; t1/x

2
n D 0 for x0I

therefore, the projection .x0 W � � � W xnI t0; t1/ 7! .x1 W � � � W xnI t0; t1/ gives us a birational
map to P .O˚n�1

P1
˚OP1.�a//, the latter being rational.

The following lemma and corollary show that Umemura quadric fibrations appear
naturally as standard birational models of quadric fibrations.
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Lemma 3.3. Let K be a field with char.K/ ¤ 2 and let Q � PnK be a smooth quadric,
n � 3. Assume moreover that Q.K/ ¤ ;. Then up to a change of coordinates Q is given
by the equation

x21 � x0x2 C

k�1X
iD3

x2i C

nX
iDk

�ix
2
i D 0

and �i satisfying the condition that there exist no ak ; : : : ; an 2 K such that
Pn
iDk a

2
i �i is

a non-zero square in K.

Proof. SinceQ.K/¤ 0, up to a change of coordinates, we may assume that .1 W 0 W � � � W 0/
2 Q.K/. Then Q \ ¹x3 D x4 D � � � D xn D 0º is a plane quadric containing .1 W 0 W 0/
and, again up to change of coordinates, we may assume Q is given by the equation

x21 � x0x2 C

nX
iD3

lixi D 0 (�)

with li 2KŒx0; : : : ; xn�1. LetM be the matrix of the quadratic form (�). The top-left 3� 3
block is given by the coefficients of x21 � x0x2. After two changes of coordinates of the
form x2 D x2 � �.x3; : : : ; xn/ and x1 D x1 � �.x3; : : : ; xn/, x0 D x0 � �.x3; : : : ; xn/
for some �;�; � 2 KŒx0; : : : ; xn�1, we may assume that there is q 2 KŒx3; : : : ; xn�2 such
that Q is given by the equation x21 � x0x2 C q D 0. Thus we diagonalize q and we get
the desired form.

Proposition 3.4. Let � WX ! P1 be a Mori fiber space where the generic fiber Xk.t/

is isomorphic to a smooth quadric hypersurface Pnk.t/. Let G D Autk.X/P1 . Then X is
G-equivariantly birational to a hypersurface

Qg WD ¹x
2
1 � x0x2 C x

2
3 C � � � C x

2
k C g1x

2
kC1 C � � � C glx

2
n D 0º

� P

�
O˚kC1

P1

lM
iD1

OP1.�ai /

�
where ai 2 N and gi 2 kŒt0; t1�2ai are homogeneous polynomials of degree 2ai .

Proof. By Lemma 3.3 the generic fiber of � is of the form

x21 � x0x2 C

k�1X
iD3

x2i C

nX
iDk

�ix
2
i D 0;

where �i D ri
si
2 k.t/ for i D k; : : : ; n.

Denote by H the closure of the subset ¹x0 D 0º � ��1.U /, where U is the locus of
P1 where the si do not vanish. Since ��OX .H/ is a locally free sheaf of rank nC 1 (it is
a torsion free sheaf over P1), it is a direct sum of line bundles

Eb D
M

OP1.bi /:
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Consider the rational map

X

��

�
// Y � P

�
��
�
OX .H/

��
ww

P1;

withY the image ofX. Note that, since �.X=P1/D1, OX .H/ isG-invariant and so � isG-
equivariant. Over U the sections ¹x0; : : : ; xk�1; skxk ; : : : ; snxnº generateH 0.��1U;Eb/.
Thus � is locally given by

��1.U / �! U � Pn

.x0 W � � � xnI t0; t1/ 7�! .x0 W � � � W xk�1 W skxk W � � � W snxn/:

Taking gi D risi 2 kŒt0; t1�2ai we recover the claimed equation and weights.

The following lemma is a computation of the Picard group and Mori cone of Qg . We
omit the proof as it follows the same lines as [3, Lemma 4.4.3].

Lemma 3.5. Let g2kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg! P1

the associated Umemura quadric fibration. Let F be a fiber of � ,H D ¹xnD 0º, e a curve
in a fiber of � and � the section of � defined as � D ¹.1 W 0 W � � � W 0I t0 W t1/j .t0 W t1/ 2 P1º.
Then

(1) Pic.Qg/ D ZŒF �C ZŒH �.

(2) NE.Qg/ D RCŒe�CRCŒ�� and curves with class in RCŒ�� cover the divisor H .

(3) KQg
� �.n � 2/H C .a � 2/F .

(4) The intersection numbers with the canonical divisor of Qg are

KQg
� e D n � 1 and KQg

� � D a � 2:

Proposition 3.6. Let g2kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration.

(1) The singular locus of Qg is the discrete set

Sing.Qg/ D
®
.0 W � � � W 0 W 1I t0; t1/ j .t0; t1/ is a multiple root of g D 0

¯
:

(2) Qg has terminal singularities and is Q-factorial.

(3) � WQg ! P1 is a Mori fiber space.

Proof. Item (1) follows from the Jacobian criterion. Terminality and Q-factoriality follow
from [15, Section 1.42] and [13, XI, Corollaire 3.14].

For (3), the variety Qg is terminal and Q-factorial by (2). Moreover, �.Qg/ D 2 by
Lemma 3.5 and therefore �.Qg=P1/ D 1. Finally, let F denote a general fiber of Qg !

P1. Then F is isomorphic to a smooth quadric Qn�1 � Pn and thus �KQg
jF D �KF is

ample, the equality obtained by adjunction formula.
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3.2. Automorphism group

In this subsection, we will compute the automorphism group of Qg . We first begin by
analyzing the automorphism group of the ambient space P .Ea/.

Lemma 3.7. Let a > 0 and write Ea for the vector bundle

O˚n
P1
˚OP1.�a/:

Then Aut.P .Ea//P1 equals8̂̂<̂
:̂
0BB@ M

0
:::
0

f0 � � � fn�1 1

1CCA 2 PGLnC1
�
kŒt0; t1�

� ˇ̌̌̌M 2 GLn.k/;
fi 2 kŒt0; t1�a

9>>=>>; Ì Gm=�a;

where �a denotes the group of a-th roots of unity, with the first factor acting on the coor-
dinates xi and the second on the ti diagonally.

Proof. The statement follows from [12, Proposition 2] and the discussion that follows
that result, and some easy observations on Aut.Ea/. See also [1, Section 6.1] for a sample
computation in dimension 2.

Proposition 3.8. Let g2kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration. Then Autı.Qg/P1 D SOn.k/.
Moreover, we have

Autı.Qg/ D

8̂̂̂̂
<̂
ˆ̂̂:

Autı.Qg/P1 ; if g has more than 2 rootsI

Autı.Qg/P1 Ì Gm; if g has exactly 2 rootsI

Autı.Qg/P1 �Ga; if g has exactly 1 rootI

Autı.Qg/P1 � PGL2; if g is constant:

In particular, H acts trivially on P1 if g has more than 2 roots, and with an open orbit,
otherwise.

Proof. By Lemma 3.5, we have �.Qg=P1/ D 1. Moreover, the restriction map

H 0
�
P .Ea/;O.1/

�
�! H 0

�
Qg ;O.1/jQg

�
is surjective, and so the embedding Qg ! P .Ea/ is given by a complete linear system
over P1. It is therefore Autı.Qg/-equivariant. In particular, Autı.Qg/P1 coincides with
the stabilizer of Qg in Autı.P .Ea//P1 . If ˛ 2 Aut.P .Ea//P1 , by Lemma 3.7 there is
M 2 GLn.k/, there are fi 2 kŒt0; t1�a such that

˛ D

0BB@ M

0
:::
0

f0 � � � fn�1 1

1CCA :
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If ˛ stabilizes Qg , we get: fi D 0, i D 0; : : : ; n � 1, M 2 On.k/ and the action on the ti
is trivial. If moreover ˛ 2 Autı.P .Ea//P1 then M 2 SOn.k/.

For the second part, consider the short exact sequence

0 �! Autı.Qg/P1 �! Autı.Qg/ �! H �! 0; (�)

where H is the image of the homomorphism Autı.Qg/! PGL2 induced by Blanchard’s
lemma. Note that Autı.Qg/ must permute the singular fibers, therefore H is a connected
group permuting the roots of g. Thus, in the four cases of the Proposition, we have that
H � G � PGL2, where G D 0, Gm, Ga and PGL2 respectively.

If g has exactly two roots then, up to change of coordinates, g D ta00 t
a1
1 with 0 < a0 �

a1 � 2a and a0 C a1 D 2a. In this case we have the Gm-action

� � .x0 W � � � W xnI t0; t1/ 7�! .x0 W � � � W �
�a0xnI t0; �

2t1/;

which shows that H D G, and also provides a section to (�).
In a similar fashion, if g has 1 root or is constant, we can write a G-action on Qg ,

which furthermore commutes with the action of Autı.Qg/P1 , showing that the product is
direct.

Remark 3.9. In Proposition 3.8 the automorphism group only depends on the number of
roots without multiplicity. Nevertheless, we do not assume that the roots of g are of multi-
plicity one, as multiple roots naturally appear when performing the Sarkisov program, see
Example 4.1.

We are now ready to compute the orbits of Autı.Qg/P1 on Qg .

Lemma 3.10. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg !

P1 the associated Umemura quadric fibration. Set Hn D ¹xn D 0º. Then Autı.Qg/P1

acts on Qg with the following orbits:

(1) if t 2 P1 is not a root of g, then we have the orbits �t WD ��1.t/ \Hn and its
complement ��1.t/ n �t ;

(2) if t 2 P1 is a root of g, then we have the orbits p D .0 W � � � W 0 W 1I t /, �t WD
��1.t/ \Hn and their complement ��1.t/ n .�t t ¹pº/.

Proof. The specific description of the orbits follows from the explicit action given in
Lemma 3.7.

Remark 3.11. When g has more than 2 roots, Lemma 3.10 gives a description of the
orbits of Autı.Qg/. This follows from Proposition 3.8, since in that case Autı.Qg/ D

Autı.Qg/P1 .

3.3. A structural result for equivariant birational maps to Qg

The next two subsections consist of a collection of technical computations, that culmi-
nate in results essential to the proof of Proposition 4.3. For the reader uninterested in the
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technical details, we now briefly describe the results necessary to skip ahead directly to
Section 4. In what follows G denotes the group Autı.Qg/P1 .

In Section 3.4, we produce a “minimal” G-equivariant log-resolution Xm ! Qg of
the pair .Qg ; F / where F is a fiber of � WQg ! P1. More specifically, in Corollary 3.13,
we show that it is obtained by repeatedly blowing up the unique singular point P in the
fiber over �.P /. In Proposition 3.15, we describe the relative Mori cone NE.Xm=Qg/. In
Corollary 3.17, we describe the irreducible components of the preimage of F in Xm.

In Section 3.5, we studyG-equivariant birational morphismsX!Xm centered overP.
In Lemma 3.18, we show that all orbits over P have codimension at most 2 and so,
by [5, Proposition 2.4], X ! Xm is a composition of smooth blowups. More specifi-
cally, Lemma 3.18 shows that the dual graph of the fiber over �.P / is a chain. We end the
subsection with Proposition 3.22, by computing the relative cone of curves NE.X=Qg/,
as well as some intersection numbers of its extremal rays with KX .

3.4. An equivariant resolution

In this subsection, we compute an explicit Autı.Qg/P1 -equivariant resolution of singular-
ities for Qg . We also we compute the orbits of the action on the resolution.

A very useful feature of the projective bundle P .Ea/ is that it admits an open covering
by affine spaces Ui;j WD ¹xi D tj D 1º Š AnC1, for i D 0; : : : ; n, j D 0; 1. The following
lemma is a local calculation on the chart Un;1.

Lemma 3.12. Let 
.t/ 2 kŒt � and consider the hypersurface

U0 WD
®
x21 � x0x2 C x

2
3 C � � � C x

2
n�1 C t

k
.t/ D 0
¯
� AnC1xi ;t

with k � 0 and 
.0/ ¤ 0. Then U0 is singular at the origin if and only if k � 2.
Suppose k � 2, let f WX ! AnC1 be the blowup of the origin, zU0 the strict transform

of U0 and E the exceptional divisor of zU0 ! U0.

(1) There exists an open neighborhood V Š AnC1 of X , intersecting E such that

U1 WD zU0 \ V D
®
x21 � x0x2 C x

2
3 C � � � C x

2
n�1 C t

k�2
.t/ D 0
¯

(2) V contains all the singular points of zU0 over the origin.

(3) Let � W U0 ! A1 be the restriction of the projection AnC1 ! A1 onto the last
factor. Let F be the fiber of � over 0 2 A1 and zF its strict transform in zU0. Then

(a) zF is an A1-bundle over a smooth quadric in Pn�1; the intersection zF \ E
is a section of the A1-bundle.

(b) If k D 2 the divisor E is a smooth quadric in Pn.

(c) If k � 3 the divisor E is a cone over a smooth quadric in Pn�1. Let e be a
generator of the ruling in E. Then e � zF jE D 1 and zF \ E does not contain
the singular point of E.

(4) Finally, we have

K zU0 D f
�KU0 C .n � 2/E and f �F D zF CE:



Umemura quadric fibrations and maximal subgroups of Crn.C/ 13

Proof. The first claim is a straightforward application of the Jacobian criterion: all partial
derivatives vanish at the origin if and only if k � 2.

We now proceed to the calculations on the blowup. The blowup of An at the origin
may be described as²�
.x0; : : : ; xn�1; t /; .y0 W � � � W yn�1 W s/

�
2AnC1�Pn j rank

�
x0 x1 � � � xn�1 t

y0 y1 � � � yn�1 s

�
D1

³
:

This is covered by the open subsets Vi WD ¹yi D 1º, i D 0; : : : ; n � 1 and Vs WD ¹s D 1º,
all isomorphic to the affine space AnC1. Set V D Vs .

The strict transform zU0 is given by ¹y21 � y0y2 C y
2
3 C � � � C y

2
n�1 C t

k�2
.t/ D 0º

in V , proving (1). A local calculation in the open sets Vi , i D 0; : : : ; n� 1 reveals that zU0
has no singular points over the origin there, proving (2).

We now prove (3). The fiber F is an affine quadric cone, the blowup of the vertex is a
desingularization and zF is an A1-bundle. Moreover, zF \ E is the preimage of the vertex
in zF and is thus a section of the A1-bundle. This proves (a). Let EŠ Pn be the exceptional
divisor of the blowup of AnC1 at the origin, with coordinates .y0 W � � � W yn�1 W s/. Then
equation of E in E is

y21 � y0y2 C y
2
3 C � � � C y

2
n�1 C s

2
.0/ D 0 if k D 2;

y21 � y0y2 C y
2
3 C � � � C y

2
n�1 D 0 if k � 3:

Let F be the strict transform of the fiber of AnC1 ! A1 over 0 2 A1. Then

e � zF jE D e � F jE D 1:

The intersection zF \ E is cut out by the equation s D 0 in E, proving that it does not
contain the vertex .0 W � � � W 0 W 1/ and concluding the proof of (b) and (c).

The final claim on the pullback of the canonical divisor follows from the adjunction
formula. As for the pullback of F , we have f �F D zF C aE, for some a � 0. Moreover,
if e is as in (3c), we have

0 D f �F � e D zF � e C aE � e D 1 � a

and the claim follows.

Corollary 3.13. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration. Over every singular point P 2 Sing.Qg/,
there exists a log resolution of .Qg ; F /

Xm �! Xm�1 �! � � � �! X0 WD Qg

obtained by repeatedly blowing up the unique singular point over P (locally described
in Lemma 3.12), where F is the fiber over the point �.P / 2 P1. In particular, it is
Autı.Qg/P1 -equivariant.
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Proof. The existence of the resolution follows from Lemma 3.12 (1) and (2). Indeed notice
that after i successive blowups Xi ! � � � ! X0 D Qg , Xi is locally, around its unique
singular point pi over p, given by®

x21 � x0x2 C x
2
3 C � � � C x

2
n�1 C t

k�2i
.t/ D 0
¯
:

Moreover, by Lemma 3.12 (3), pi is the vertex of the quadric coneEi WDExc.Xi!Xi�1/.
Thus the strict transform of Ei in any further blowup is smooth. After m D dk

2
e blowups

Xm is smooth and the preimage of F is a union of smooth prime divisors meeting transver-
sally.

As for its equivariance, the action of Autı.Qg/P1 on Sing.Qg/ is trivial, since the
former is connected and the latter discrete. This proves the equivariance of the first l Dbk

2
c

blowups. If k is not even, the action of Autı.Qg/P1 on Xl fixes the quadric cone El and
thus its vertex.

Notation 3.14. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated n-dimensional Umemura quadric fibration. Let P 2 Qg be a singular
point, let F be the fiber over the point �.P / 2 P1 and let f WXm! Qg be the log resolu-
tion of Corollary 3.13. We write f D fm ı � � � ı f1 as decomposition of blowups. Denote
by

• Ei the strict transform in Xm of the exceptional divisor of fi ,

• xEi the pullback of the exceptional divisor of fi ,

• ei � Ei for i D 1; : : : ; m � 1 the generator of the ruling of Ei ,

• e0 � zF be the generator of the ruling,

• em the generator of NE.Em/ (note that Em is either isomorphic to Pn�1 or to Qn�1
by Corollary 3.17).

Proposition 3.15. Notation as in 3.14. Then

(1) NE.Xm=Qg/ D
Pm
iD1 RCŒei �.

(2) The intersections with the canonical divisor of the resolution of singularities are
computed by

KXm � ei D

8̂̂̂̂
<̂
ˆ̂̂:
�.n � 2/; i D m if m is even;

�.n � 1/; i D m if m is odd;

0; i D 1; : : : ; m � 1;

�1; i D 0:

Proof. We prove the statement if n � 5, the proof in the case n D 4 being similar. We
prove by induction on k that NE.Xk=Qg/ D

Pk
iD1 RCŒei �. By a slight abuse of notation

we denote by ei the push-forward on Xk of ei � Xm. If k D 0, we have Xk D Qg and
the claim is true. Assume that NE.Xk=Qg/ D

Pk
iD1 RCŒei � and let XkC1 ! Xk be the

blowup along the singular point.
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Let C be an irreducible curve in Exc.XkC1 ! Qg/. Let i be an integer such that
C �Ei . We prove by induction on k � i C 1 that C is numerically equivalent to a positive
combination of ei ; : : : ; ekC1. If i D k C 1, since �.EkC1/D 1 the curve C is numerically
equivalent to a positive multiple of ekC1. If i < k C 1, then Ei is a P1-bundle over a
smooth quadric of dimension n � 2. The Mori cone of Ei can be written as RCŒei � C
RCŒ
i � where 
i is contained in Ei \ EiC1. Indeed Ei \ EiC1 is the exceptional divisor
of fiC1jEi and the curves which span it are thus extremal.

Thus there are a; b � 0 such that C � aiei C b
i . The curve 
i is contained in EiC1,
thus, by inductive hypothesis, there are aiC1; : : : ; akC1 such that


i � aiC1eiC1 � � � C akC1ekC1:

Part (1) follows.
Lemma 3.12 (4) implies that

f �F D zF CE1 C � � � CEm�1 C rEm;

where r D 1 if m is even and 2 otherwise. For 1 � i � m � 1 we have

0 D f �F � ei D Ei�1 � ei CEi � ei CEiC1 � ei H) Ei � ei D �2:

Similarly we get zF � e0 D Em � em D �1.
Again by Lemma 3.12 (4) we get that

KXm D f
�KQg

C

m�1X
iD1

i.n � 2/Ei C
�
s.m � 1/.n � 2/C t

�
Em;

were .s; t/D .1;n� 2/ ifm is even and .2;n� 1/ otherwise. Part (2) follows by computing
the intersections using the formulas above.

3.5. Equivariant geometry of Qg

Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg ! P1 the associ-
ated Umemura quadric fibration. LetP 2Qg be a singular point, let F be the fiber over the
point �.P / 2 P1. In Corollary 3.13 we provided an explicit Autı.Qg/P1 -equivariant log
resolution f WXm!Qg of .Qg ; F /. In this section we describe the action of Autı.Qg/P1

on Xm over F as well as its action on higher models. We also compute some intersection
numbers on these higher models.

Lemma 3.16. Let 
 2 kŒt � and consider the hypersurface

U0 D
®
x21 � x0x2 C x

2
3 C � � � C x

2
n�1 C t

k
.t/ D 0
¯
� Anx �A1t

with k � 2 and 
.0/ ¤ 0. Consider the group G Š SOn.k/ acting on Anx by preserving
quadratic form

x21 � x0x2 C x
2
3 C � � � C x

2
n�1:

Let E0 be the G-invariant subset ¹t D 0º \ U0.
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Let f W zU0! U0 be the blowup along the origin, zE0 the strict transform of E0 and E1
the exceptional divisor. Then f is G-equivariant and

(1) if k D 1, E1 Š Pn�1; the G-orbits contained in E1 are the smooth .n � 2/-
dimensional quadric E1 \ zE0 and its complement;

(2) if k D 2, E1 is an .n� 1/-dimensional smooth quadric; the G-orbits contained in
E1 are the hyperplane section E1 \ zE0 and its complement;

(3) if k � 3, then E1 is a quadric cone with vertex P1; the G-orbits contained in E1
are P1, the base of the cone E1 \ zE0 and their complement.

Proof. The action ofG onE0 is transitive, thusE0 is an orbit. The same is true for its strict
transform zE0 and thus its intersection E1 \ zE0 with E1. The rest is a local calculation:
using the notation used in the first part of the proof of Lemma 3.12, the complement of
E1 \ zE0 is E1 \ Vs; the description of the action of G on the coordinates y0; : : : ; yn�1,
s can be deduced by its action on x0; : : : ; xn�1, t together with the equations xi D tyi .

For the second part we choose H to be the subgroup of G acting via

˛� � .x0; x1; x2; x3; : : : ; xn�1; t / 7�! .�x0; x1; �
�1x2; x3; : : : ; xn�1; t /;

with � 2 k�. Using the notation of Lemma 3.12 we take V D V0 WD ¹y0 D 1º. There the
exceptional divisor is given by E1 D ¹h WD x0 D 0º and the rest follows.

Corollary 3.17. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration. Let P 2 Qg be the singular point of a
singular fiber F . Let

Xm �! Xm�1 �! � � � �! X0 WD Qg

be the log-resolution of .Qg ; F / of Corollary 3.13, with exceptional divisors Ei WD
Exc.Xi ! Xi�1/ and E0 WD F . We have that

(1) for i < m the divisor Ei is a P1-bundle over a quadricQ of dimension n� 2, not
isomorphic to the product P1 �Q;

(2) for 0 < i < m the action of Autı.Qg/P1 on Ei has exactly three orbits: the 2
disjoint sections Ei \Ei˙1 and their complement.

(3) Em is isomorphic to Pn�1 ifm is odd and to a quadric hypersurface of dimension
n � 1 if m is even;

(4) the action of Autı.Qg/P1 on Em has exactly two orbits: Em \ Em�1 and its
complement.

Proof. Assume that i < m. Lemma 3.16 implies that the exceptional divisor Ei � Xi of
fi is a cone over a quadric Q D Qn�2 of dimension n � 2. Thus, its strict transforms in
Xj for j > i are P1-bundles over Q, isomorphic to P .OQ ˚OQ.�1// The computation
of the orbits follows readily by Lemma 3.16.

We now proceed to studying the action of Autı.Qg/P1 on higher models of Xm.
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Lemma 3.18. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg !

P1 the associated n-dimensional Umemura quadric fibration. Let P 2Qg be the singular
point of a singular fiber F . Denote by G D Autı.Qg/P1 and let f WXm ! Qg be the
log-resolution of .Qg ; F / of Corollary 3.13.

Let

XmC`
fmC`

// � � �
fmC2

// XmC1
fmC1

// Xm

be a sequence of smooth G-equivariant blowups over P . Let Zi be the center of fi , Ei
the strict transform of the exceptional divisor of fi for i D 1; : : : ;mC ` and E0 the strict
transform of F . Then for every j D 1 � � � ` there are integers 0 � hj < kj < mC j with
the following properties:

(1) ZmCj D Ehj \Ekj , it is isomorphic to a quadric of dimension n� 2, and G acts
transitively on it;

(2) for every j > 0 the divisor EmCj is the P1-bundle P .O.Ehj /˚ O.Ekj // over
ZmCj , with Ehj jZmCj 6� Ekj jZmCj . In particular, EmCj is not a product;

(3) the action of G on EmCj has exactly three orbits: two disjoint sections of the
P1-bundle corresponding to the injections

O.Ehj / ,! O.Ehj /˚O.Ekj / and O.Ekj / ,! O.Ehj /˚O.Ekj /

and their complement in Ej .

Proof. We prove by induction on ` the following four statements:

(1)` on XmC`�1 there exist integers h`; k` such that ZmC` D Eh` \ Ek` , ZmC` is
isomorphic to a quadric of dimension n � 2, and G acts transitively on it;

(2)` if ` > 1 the divisor EmC` on XmC` is the P1-bundle P .O.Eh`/˚O.Ek`// over
ZmC`, with EhjZmC` 6� EkjZmC` . In particular, EmC` is not a product;

(3)` if ` > 1 the action of G on EmC` in XmC` has exactly three orbits: two disjoint
sections of the P1-bundle corresponding to the injections

O.Eh`/ ,! O.Eh`/˚O.Ek`/ and O.Ek`/ ,! O.Eh`/˚O.Ek`/

and their complement in EmC`;

(4)` For every h; k 2 ¹1; : : : ; mC `º such that Eh \Ek D Z ¤ ;, either OZ.Eh/ is
ample and OZ.Ek/ is anti-ample or vice versa.

Step 1. Let i � m, and let Ki D Ei \ Ei�1. Let f WXm ! Qg be the log resolution
of Corollary 3.13. We assume for simplicity that m is even, the other case being analo-
gous. The restriction Ei jEi�1 is the exceptional divisor of the blowup fi . Thus Ei jKi D
.Ei jEi�1/jKi is anti-ample. Since f �F D zF C

P
Ej , we have 0 D f �F jKi D Ei jKi C

Ei�1jKi . Therefore Ei�1jKi is ample.
If ` D 1, the statements .1/1 and .4/1 follow from Corollary 3.17 and Step 1.
We assume then that ` > 1 and that the four statements are true for j < `.
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Step 2: proof of .1/` and .2/`. By Corollary 3.17 and .3/j , for every a < ` the orbits of
codimension at least 2 in Ea � XmC`�1 are quadrics of the form Ea \ Eb . This implies
.1/`: the center ZmC` of fmC` is of the form Ek \ Eh for h; k < mC `. It also implies
that the normal bundle of ZmC` in XmC` satisfies

NZmC`=XmC` D O.Eh/˚O.Ek/

and that ZmC` is disjoint from all the other exceptional divisors.
By Step 1 and .4/`�1 without loss of generality EhjZmC` is ample and EkjZmC` is

antiample. This implies .2/`.

Step 3: proof of .3/`. The restriction fmC`WEmC`!ZmC` gives the P1-bundle structure.
Let Eh; Ek � XmC`�1 be such that ZmC` D Ek \ Eh. By abuse of notation we denote
again by Eh; Ek their strict transform in XmC`. By the equivariance of all the morphisms
involved, the intersections Eh \EmC` and Ek \EmC` are G-invariant.

We now show that there are no other closed orbits. Suppose by contraposition that
zZ � EmC` is a closed orbit distinct from Eh \ EmC` and Ek \ EmC`. By .1/` G acts
transitively on ZmC` and, since fmC` is G-equivariant, zZ surjects onto ZmC` and the
restriction fmC`W zZ ! ZmC` is also G-equivariant. The variety zZ being an orbit, the
restriction is étale. Since zZ,ZmC` are Fano, the restriction of fmC` is an isomorphism [7,
Corollary 4.18 (b)]. Thus zZ is a section of the P1-bundle. Then we get a contradiction
with Lemma 2.6.

Step 4: proof of .4/`. Let h, k 2 ¹1; : : : ;mC `º. If h¤mC ` and k ¤mC `, then fmC`
is an isomorphism in a neighborhood of Eh \Ek and the claim follows from .4/`�1.

Assume now that hDmC `, setZ D EmC` \Ek . In what follows we will denote by
Ei the strict transform of the exceptional divisor of fi in both XmC` and XmC`�1. Notice
that there is j such that ZmC` D Ei \ Ek in XmC`�1. Set g D fmC` ı � � � ı f1. Then
there are positive integers ci such that g�F D

P
ciEi . We notice that f �

mC`
.Ei CEk/D

Ei CEk C 2EmC` and f �
mC`

.Ek/ D Ek CEmC`, proving that cmC` � ck C 1.
By .4/`�1, the restriction EkjZmC` is˙ample, thus

f �mC`.EkjZmC`/ D f
�
mC`.Ek/jZ D EkjZ CEmC`jZ

is˙ample. Moreover,

0 � g�F jZmC` D cmC`EmC`jZ C ckEkjZ

D .cmC` � ck/EmC`jZ C ck.EkjZ CEmC`jZ/

which implies that EmC`jZ is�ample and in turn that EkjZ is˙ample.
This concludes the proof of .4/`.

Lemma 3.19. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg !

P1 the associated Umemura quadric fibration. Let P 2 Qg be the singular point of a
singular fiber F . Denote by G D Autı.Qg/P1 and let f WXm! Qg be the log-resolution
of .Qg ; F / of Corollary 3.13.
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Let

XmC`
fmC`

// � � �
fmC2

// XmC1
fmC1

// Xm

be a sequence of smooth G-equivariant blowups over P .
LetZ�Exc.f1 ı � � � ı fmC`/ be a codimension 2 orbit. Then Exc.f1 ı � � � ı fmC`/ nZ

has two connected components C1; C2. Assume that Em \ C1 ¤ ;. Then there are two
integers N , S 2 ¹1; : : : ; mC `º such that:

• Z D EN \ES , EN \ C1 ¤ ;, ES \ C2 ¤ ;;

• OZ.ES / is ample and OZ.EN / is anti-ample.

Proof. We prove this by induction on `. First suppose that `D 0. Then by the construction
of the resolution of Corollary 3.13 EN D Ek and ES D Ek�1. But Ek is the exceptional
divisor of fk and so EkjZ is anti-ample. Moreover, by Lemma 3.12 (4), we have f �F DPk
iD1 ciEi , where ci D 2, if i D m and m is odd, and 1 otherwise. Restricting to Z we

get Ei�1jZ D �ciEi jZ , which is ample.
We now suppose that the statement is true for all j < `, and consider the blowup

fmC`WXmC`! XmC`�1 with center ZmC` D EN \ES . Then we only need to show the
statement for the two centers ZN WD EN \ EmC` and ZS WD ES \ EmC`. Denote by
fN the restriction fmC`jZN WZN ! ZmC`, which is an isomorphism. By the inductive
hypothesis we have that

f �N .ES / D����: 0
ES jZN CEmCl jZN

is ample. On the other hand

f �N .EN / D EN jZN CEmCl jZN

is anti-ample, which implies that EN jZN is anti-ample. Restricting the class of the pull-
back of the fiber to ZN we get that EmC`jZN D �EN jZN , and is thus ample. The proof
for ZS is analogous.

Remark 3.20. In the setup of Lemma 3.18, note that Em is isomorphic to Pn�1 if m is
odd and to a quadric hypersurface of dimension n � 1 if m is even: indeed, for every j
the morphism fmCj is the blowup of a smooth codimension 2 center either contained in
or disjoint from Em. Thus fmCj induces an isomorphism on Em.

Notation 3.21. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration. Let P 2 Qg be the singular point of a
singular fiber F . Denote by G D Autı.Qg/P1 and let f WXm ! Qg be the log-resolution
of .Qg ; F / of Corollary 3.13.

Let

XmC`
fmC`

// � � �
fmC2

// XmC1
fmC1

// Xm

be a sequence of smooth G-equivariant blowups over P . Denote by

• Ei the strict transform in Xm of the exceptional divisor of fi ,
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• ei � Ei for i ¤ m the generator of the ruling of Ei
• e0 � zF be the generator of the ruling

• em the generator of NE.Em/ (recall that Em is either isomorphic to Pn�1 or to Qn�1
by Remark 3.20).

Proposition 3.22. Notation as in 3.21. Assume that ` > 0. Assume moreover that for every
j > 1 the center of fmCj lies in EmCj�1. Then

(1) NE.XmC`=Qg/ D
Pm
iD1 RCŒei �.

(2) The intersections with the canonical divisor of XmC` are

KXmC` � ei

8̂̂̂̂
<̂
ˆ̂̂:
� �.n � 2/; i D m if m is even;

� �.n � 1/; i D m if m is odd;

� 0; i ¤ m;mC `;

D �1; i D mC `:

Proof. Assume that n � 5, the case nD 4 being analogous. Let C be an irreducible curve
contained in the exceptional locus of XmC` ! Qg and k be such that C � Ek . If k D m
then �.Em/D 1 and by Corollary 3.17, and C � amem. Otherwise by Corollary 3.17 and
Lemma 3.18 (2) we have NE.Ek/ D RCŒek � C RCŒ
k �, where 
i is a line in a smooth
quadric of dimension n� 2 of the form Ei \Ek . Thus it is enough to prove the statement
for 
k .

Corollary 3.13 and Lemma 3.18 imply that each exceptional divisor with i ¤ m; 1

meets exactly two other exceptional divisors. Let .Fj /mC`jD1 be a relabeling of .Ej /mC`jD1 so
that, for each j , Fj meet exactly Fj�1 and FjC1. We will prove by induction on i that


mC`�i �

mCX̀
mC`�iC1

aiei ;

with ai � 0.
The base case i D 0 is trivial since FmCe DEm and NE.FmCe/DRCŒemC`�. Suppose

that the statement holds for all 0 � i � n. By Lemmas 3.19 and 2.6,


mC`�n � FmC`�n \ FmC`�nC1:

In particular, 
mC`�n � FmC`�nC1 and so there are positive numbers ˛; ˇ such that


mC`�n � ˛emC`�nC1 C ˇ
mC`�nC1:

By the inductive hypothesis 
mC`�nC1 is a positive linear combination of the ei , with
i > mC ` � nC 1 and so we conclude (1).

We now prove (2) by induction on `. The base case ` D 0 follows from Proposi-
tion 3.15. Suppose that the statement holds for all ` < j and consider a G-equivariant
blowup fmCj WXmCj ! XmCj�1. Lemma 3.18 implies that the center ZmCj is of the
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form Ehj \Ekj . We then have KXmCj D f
�
mCjKXmCj�1 CEmCj , thus

KXmCj � ei D

8̂̂<̂
:̂
KXmCj�1 � ei ; i ¤ mC j; hj ; kj ;

KXmCj�1 � ei C 1; i D hj ; kj ;

�1; i D mC j

and we conclude by the inductive hypothesis.

4. Maximality of Autı.Qg/

In this section we study maximality of Autı.Qg/ in various cases using the theory of the
equivariant Sarkisov program.

We begin with two fundamental examples.

Example 4.1. Let h2kŒt0; t1� be a homogeneous polynomial. The Autı.Qht20
/-equivariant

birational map

�WQht20
Ü Qh

.x0 W � � � W xnI t0 W t1/ 7�! .x0 W � � � W t0xnI t0 W t1/:

conjugates Autı.Qht20
/ into Autı.Qh/.

More specifically � is a Sarkisov link factorizing as

X
p

xx

q

&&

Qht20

�
// Qh;

where p is the blowup of the point .0 W � � � W 0 W 1I0 W 1/ and q is the blowup of ¹xnD t0D 0º.

Example 4.2. Let g D ta00 t
a1
1 with a0 C a1 even. The Autı.Qg/-equivariant morphism

pWQg �! Qn
� PnC1

.x0 W � � � W xnI t0 W t1/ 7�! .x0 W � � � W xn�1 W xnt
a0
0 W xnt

a1
1 /:

conjugates Autı.Qg/ into Autı.Qn/ where Qn is the smooth n-dimensional quadric
¹y21 � y0y2 C y

2
3 C � � � C y

2
n�1 C ynynC1 D 0º � PnC1.

More specifically, it is a Sarkisov link contracting ¹xn D 0º to…D ¹yn D ynC1 D 0º,
and so p conjugates Autı.Qt0t1/ into Autı.QnI…/ ¨ Autı.Qn/.

Proposition 4.3. Let g2kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!

P1 the associated Umemura quadric fibration. Assume that a � 2 and let P 2 Qg be a
singular point of a fiber F .

Let f WE � X ! P 2 Qg be a G-equivariant extremal divisorial contraction, where
G WD Autı.Qg/P1 . Then, after a change of coordinates, f is the restriction of a standard
.1; : : : ; 1; b/-blowup (see Example 2.2).
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Proof. Let Xm!Qg be the log resolution of .Qg ; F / of Corollary 3.13. If the valuation
induced by E is not divisorial on Xm, then let W WD XmC` ! Xm ! Qg be the G-
equivariant extraction of the valuation of E obtained via [14, Construction 3.1]. We thus
get a birational map

�WW Ü X

that is a contraction and such that �.EmC`/ D E.

Step 1. The map � is a morphism. The map � restricts to a G-equivariant birational map
�WEmC` Ü E. The indeterminacy locus of the restriction of � is both G-invariant and
of codimension at least 2. All the G-orbits have codimension at most one in EmC`, thus
the restriction �WEmC` ! E is a morphism. Thus the closed orbits of G in E are images
of the orbits of G in EmC` and are either points, quadrics of dimension n � 2 or P1 (the
latter case occurs only if n D 4).

Let .p; q/W yW ! W � X be a G-equivariant resolution of the indeterminacies of �.
We can moreover assume that p is the composition of smooth blowups of smooth centers.
Therefore, by Corollary 3.17 and Lemma 3.18, all the p-exceptional divisors are P1-
bundles over smooth quadrics of dimension n � 2. If � is not a morphism, then there is a
curve C � yW such that p.C / is a point and q.C / is a curve. The curve C is contained in
the exceptional locus of p. Let yE be an irreducible component of Exc.p/ such thatC � yE.
Since p.C / is a point, C is a fiber of the ruling defined by pj yE . We set OpW yE ! Q the
ruling defined by the restriction of p. The group G acts on yE with at least two orbits,
because it preserves the intersection of yE with the other components of Exc. yW ! Qg/.
We setGQ the kernel of the compositionG!Autı. yE/!Autı.Q/, where the last map is
given by the Blanchard lemma. Then GQ acts on the fibres of Op with at least a fixed point,
corresponding to the intersection of yE with the other components of Exc. yW ! Qg/.

Let us consider now the restriction qW yE ! E. Then q is G-equivariant and q. yE/ is a
G-stable irreducible closed set in E. It cannot be a point, as C � yE and q.C / is a curve.
We assume then that q. yE/ D P1. But then we must have yE D P1 �Q, contradicting
Lemma 3.18 (2).

Assume now that q. yE/ is a quadric Q of dimension n � 2. Thus the two restrictions
yield an Autı.Q/-equivariant morphism .p; q/W yE ! Q �Q which is generically finite
onto its image. The image is a G-stable subvariety of dimension n � 1.

Assume that n � 2 � 3. Then by Lemma 2.5 the group Autı.Q/ has no invariant
subvariety in Q �Q of dimension n � 1, this is a contradiction.

Assume that nD4. Then the image of yE is one of the two varieties Ti from Lemma 2.5.
But Autı.Q/ preserves one section of Ti!Q and two sections of yE!Q by Lemma 3.18
and this is a contradiction.

Step 2. The support of
PmC`�1
iD1 Ei is connected. Assume otherwise and let C1, C2 be the

two connected components with Em � C1. Thus, the morphism � factors as

W
�2
��! W2

�1
��! X;

where Exc.�i / D Ci .
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Let Zi D �2.Ci / for i D 1; 2. Then away from Z1 (resp. Z2) W2 is isomorphic to a
neighborhood of W (resp. X ), and so W2 has terminal singularities. The relative Kodaira
dimension of W over X , and therefore of W over W2 is �1. Thus W2 is the output of
any MMP on W , relative over W2. This contradicts Proposition 3.22: indeed, by Proposi-
tion 3.22 (1) the first extremal contraction from W is a contraction of a ray RCŒei � with
i ¤ m, mC `. By Proposition 3.22 (2) those rays are not KW -negative.

Step 3. Finalizing the proof. By the previous step the strict transform of E in XmC` is
either Em, and in this case ` D 0, or the unique divisor meeting the strict transform of F .
In the first case, we conclude as in Step 2: the morphism � is an MMP over X , but the
rays RCŒei � for i ¤m are notKW -negative. In the second case, the only possibility is that
for every j the morphism fmCj is the blowup of E1 \ zF if j D 1 and of EmCj�1 \ zF
if j > 0, where zF is the strict transform of F in any of the XmCj . We are therefore in the
setting of Example 2.2.

Remark 4.4. We notice that, if b > 1 and P is a smooth point of Qg , the extremal divi-
sorial contraction of Proposition 4.3 is an example of extremal divisorial contraction of a
divisor to a smooth point which is not a weighted blowup. Indeed, the exceptional divisor
is a cone over a quadric and not a weighted projective space.

Corollary 4.5. Let Qg be an Umemura quadric fibration with and f WE � X ! P 2Qg

be an extremal divisorial contraction, where P is point of a singular fiber F . Up to a
change of coordinates we may assume that F is the fiber over .0 W 1/ and g D tk0 g

0, with
k � 1 and g0.0; 1/ ¤ 0.

Then NE.X=P1/ D RCŒe�C RCŒ Ql0� where e � E and Ql0 is the strict transform of a
line l0 � F . Moreover,KX � l0 < 0 if and only if k � 2 and f is the blowup of Qg along P .

Proof. By Proposition 4.3 we may assume that f is the restriction of a standard weighted
blowup of the ambient space P .Ea/ with weights .1; : : : ; 1; b/. In that case, using the
adjunction formula, we obtain

�KX D f
�.�KQg

/ �
�
n � 1C b �min¹k; 2º

�
E;

f �F D zF C bE

where zF is the strict transform of F . Let l0 be a ruling of F and Ql0 its strict transform
in X . We first prove that NE.X=P1/ D RCŒe�C RCŒ Ql0�, where e � E. The ray RCŒe�
is extremal and KX -negative. By the discussion in Example 2.2, the variety zF is a P1-
bundle over a quadric of dimension n� 2, and NE. zF /DRCŒe�CRCŒ Ql0�. The intersection
zF � Ql0 D �b can be easily computed. Assume that we can write Ql0 � ˛e C ˇC with C

another curve and ˛; ˇ � 0. Then zF � C < 0 and C � ˛0e C ˇ0 Ql0 with ˛0; ˇ0 � 0. We
get .1 � ˇˇ0/ Ql0 � .˛ C ˛0ˇ/e. Intersecting with an ample divisor, we get 1 � ˇˇ0 � 0
and ˛ C ˛0ˇ � 0. Intersecting with zF we get 1 � ˇˇ0 � 0. We conclude that ˛ D 0 and
C � Ql0, proving that RCŒ Ql0� is also extremal.
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Finally,

�KX � Ql0 D �KQg
� l0 �

�
n � 1C b �min¹k; 2º

�
D min¹k; 2º � b:

The previous quantity being positive if and only if k � 2 and b D 1, i.e., f is the blowup
of Qg along P .

Lemma 4.6. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg!P1

the associated Umemura quadric fibration. Assume that a� 2 and g has more than 2 roots.
Suppose that Qg Ü Y is an Autı.Qg/-equivariant Sarkisov link to a Mori fiber space
Y=B .

Then Y=B D Qh=P
1 with

h D l2g or g D l2h;

for some linear polynomial l 2 kŒt0; t1�1.

Proof. Assume that Y=B is not isomorphic to Qg=P1. Let

Q0

�1

��

 
// Y 0

�2

��

Qg

��

Y

��

P1

  

B

~~

R

be a Sarkisov link from Qg to Y . We first prove that �1 cannot be an isomorphism.
Assume by contradiction that it is one. By Lemma 3.5 the extremal rays of NE.Qg/ are the
extremal ray inducing � and RCŒ�� that spans a divisor and whereKQg

� � � 0. Therefore
RCŒ�� cannot be contracted giving rise to a divisorial contraction nor an isomorphism in
codimension 1.

Thus �1WE � X ! Z � Qg is an Autı.Qg/-equivariant extremal divisorial contrac-
tion. The center Z is an orbit and thus, by Lemma 3.10 and Remark 3.11, we have either

(1) Z D Hn \ F for some fiber F or

(2) Z is the singular point P of a singular fiber.

In the first case,Z has codimension 2 in Qg and thus, by [5, Proposition 2.4],X!Qg

is the blowup ofZ. The resulting link is the inverse of the one in Example 4.1, whose target
is Qh with h D gl2, for some linear polynomial l 2 kŒt0; t1�.

In the latter case, by Proposition 4.3, the morphism �1 is the restriction of a stan-
dard weighted blowup of the ambient space P .Ea/ with weights .1; : : : ; 1; b/. If b � 2
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or Z is not a singular point of Qg Corollary 4.5 implies that the extremal ray RCŒ Ql0� of
NE.X=P1/, not corresponding to �1, is KX -non-negative and span a subset of codimen-
sion 1. Therefore RCŒ Ql0� cannot be contracted giving rise to a divisorial contraction nor
an isomorphism in codimension 1, contradicting the existence of the link. In the case that
Z is a singular point of Qg and b D 1 the resulting link is the one of Example 4.1, whose
target is Qh with g D hl2, for some linear polynomial l 2 kŒt0; t1�.

We are now ready to prove the main result of our paper.

Theorem 4.7. Let g 2 kŒt0; t1� be a homogeneous polynomial of degree 2a and � WQg !

P1 the associated Umemura quadric fibration. Write g D f 2h, where f; h 2 kŒt0; t1� are
homogeneous polynomials with h being square-free. Then Autı.Qg/ is conjugated to a
subgroup of Autı.Qh/.

Moreover, if h and h0 are two square-free polynomials, we have:

(1) Autı.Qh/ is a maximal connected algebraic subgroup of Crn.k/ if and only if h is
constant or has at least 4 roots;

(2) Autı.Qh/ and Autı.Qh0/ are conjugate if and only if h.t0; t1/D h0.˛.t0; t1//, with
˛ 2 PGL2.k/.

Proof. The first claim follows by repeatedly applying the link in Example 4.1 to clear all
square terms.

Suppose now that h is square-free and let G WD Autı.Qh/. If h is constant, then Qh

is isomorphic to the product Qn�1 � P1. Then G D Autı.Qn�1/ � Autı.P1/ acting fac-
torwise, thus the action is transitive. This implies that there are no G-equivariant Sarkisov
links, and so G is maximal by [11, Corollary 1.3].

If h has exactly two roots then, up to a change of coordinates, h D t0t1. Example 4.2
shows that G is conjugate to a strict subgroup of PSOnC1.k/.

Finally, suppose that h has strictly more than 2 roots. Then, by Proposition 3.8,

Autı.Qh/ D Autı.Qh/P1 D SOn.k/:

Successive applications of Lemma 4.6 show that if Qh is G-equivariantly birational to an
MfsX=B , thenX=B DQhf 2 . Since hf 2 has strictly more than 2 roots too, Autı.Qhf 2/D

SOn.k/. Thus G is maximal by [11, Corollary 1.3]. This concludes (1).
Finally, let h and h0 be two square-free polynomials such that Autı.Qh/ and Autı.Qh0/

are conjugate. Then there exists a birational map �WQh Ü Qh0 . By Lemma 4.6, � has to
be an isomorphism of Mori fiber spaces, i.e., an isomorphism fitting in a diagram

Qh

�
//

�
��

Qh0

� 0

��

P1
˛
// P1;

where ˛ is an isomorphism. Since � has to send singular fibers of � to singular fibers
of � 0, and by Lemma 3.6 (1), we have h.t0; t1/ D h0.˛.t0; t1//. Conversely, if h.t0; t1/ D
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h0.˛.t0; t1// for some ˛ 2 PGL2.k/ then we have the Mori fiber space isomorphism

Qh

�
//

�
��

Qh0

� 0

��

P1
˛
// P1

that conjugates Autı.Qh/ into Autı.Qh0/. This concludes the proof of (2).

Finally, we can deduce the following characterization of the maximality of Autı.Qg/.

Corollary 4.8. Let g2kŒt0; t1� be a homogeneous polynomial of even degree and � WQg!

P1 the associated Umemura quadric fibration. Write g D f 2h where f; h 2 kŒt0; t1� are
homogeneous polynomials with h being square-free. Then Autı.Qg/ is a maximal con-
nected algebraic subgroup of Crn.k/ if and only if either f and h are constant or h has at
least 4 roots.

Remark 4.9. When g has 2 roots, one can actually prove a more precise result: Autı.Qg/

is contained in a unique maximal connected algebraic subgroup M of Crn.k/; namely
M D PSOnC1.k/ with the conjugation being given by Example 4.2.

Indeed, using the description of Autı.Qg/ of Proposition 3.8, we can compute the
orbits, and deduce that all equivariant Sarkisov links from Qg are of the two forms of
Examples 4.1 and 4.2. It then suffices to notice that the links of the two examples com-
mute, i.e., if g D ta00 t

a1
1 and g0 D tb00 t

b1
1 , with bi D ai ˙ 2ki , then the diagram

Qg

&&

// Qg 0

xx
Qn

is commutative.
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