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Pretriangulated 2-representations via dg algebra
1-morphisms

Robert Laugwitz and Vanessa Miemietz

Abstract. This paper develops a theory of pretriangulated 2-representations of dg 2-categories. We
characterize cyclic pretriangulated 2-representations, under certain compactness assumptions, in
terms of dg modules over dg algebra 1-morphisms internal to associated dg 2-categories of compact
objects. Further, we investigate the Morita theory and quasi-equivalences for such dg 2-representa-
tions. We relate this theory to various classes of examples of dg categorifications from the literature.
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1. Introduction

Categorification aims to lift important algebraic structures to a higher categorical level,
where elements are replaced by functors (or 1-morphisms) and equations are upgraded to
natural isomorphisms (or invertible 2-morphisms). The underlying classical structure can
then be recovered through the process of passing to Grothendieck groups. Categorifica-
tions of Hecke algebras, through Soergel bimodules, or quantum groups have been among
the most celebrated achievements of the field and featured in solutions to long-standing
conjectures in representation theory, see e.g. [10, 15, 50]. A natural framework for cat-
egorification is that of 2-categories, which contain monoidal or tensor categories as the
one-object case.

Studying categorical representations was proposed in [42]. A systematic theory for
categorical representations of tensor categories (such as fusion categories) was developed
by Etingof–Ostrik and others [17]. These categories are usually abelian while several
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categorifications are based on non-abelian additive categories. A systematic theory of
2-representations tailored to the latter, categorifying in some sense the theory of repre-
sentations of finite-dimensional algebras, has been developed in a programme starting
with [33], see also [30, 32, 34–36] among others.

Many of the important categorifications, such as categorified braid groups or categori-
cal braid group actions [24,40,41,46], only emerge when passing from additive categories
to triangulated categories. This is manifest, for example, in the fact that braid group rela-
tions only become isomorphisms on the level of homotopy or derived categories. This
observation motivates the need for a theory of 2-representations that allows working with
homotopy categories. In fact, the literature contains several constructions of categorifi-
cations of 2-representations of specific categorified algebras on the level of triangulated
categories, including, e.g., [3, 7, 8, 19, 43, 44] to list a few examples.

Working directly with triangulated categories involves technical obstacles to a formal
treatment of 2-representations. For a formal theory of 2-representations, it is important to
account for coherence conditions of the structural isomorphisms involved. The definition
of triangulated categories, in addition to being very involved, lacks fundamental proper-
ties such as functoriality of cones. A solution to these technical issues was provided by
Bondal–Kapranov [5] by working with pretriangulated categories. Pretriangulated cate-
gories are differentially graded (dg) categories closed under taking cones and shifts, thus
ensuring that the associated homotopy or derived categories are triangulated. In this case,
the dg category is an enhancement of the triangulated category [28]. This approach solves
key technical issues associated with triangulated categories such as functoriality of cones,
taking duals and tensor products [6, 28]. Dg enhancements have been used in numerous
constructions in categorification, for example, in the theory of spherical twists underlying
categorical braid group actions [1].

The present paper proposes a theory of 2-representations suitable for working with
pretriangulated categories. We extend the setup used in [30, 33, 34] to pretriangulated
categories. In particular, this setup allows to consider pretrianguated hulls of finitary
2-categories, Z-gradings, and relaxes the strict finiteness requirements on spaces of 2-
morphisms for some of the constructions of finitary 2-representation theory. This first
paper in this direction focuses on representing cyclic 2-representations through modules
over dg algebra 1-morphisms generalizing results of [17, 30].

The theory of pretriangulated 2-representations proposed in this paper applies to sev-
eral classes of 2-categories, some of which we start to explore here.

• Pretriangulated hulls of finitary 2-categories. This allows us to consider 2-representa-
tions acting on (bounded) complexes of (projective) modules over finite-dimensional
k-algebras. These 2-representations descend to triangulated categories by acting on
the associated homotopy categories.

• Categorifications involving dg 2-categories such as [25,47–49]. As a first example, we
explore the categorification of ZŒ

p
�1� and its natural action on Z˚2 of [49] in detail

in Section 5.4.
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• Dg 2-categories CA built from projective bimodules over finite-dimensional dg k-al-
gebras. In finitary 2-representation theory, these 2-categories can be used to classify
simple transitive 2-representation of categorified finite-dimensional Lie algebras, see
[36, Section 7.2]. The first example of such dg 2-categories is given by Ck, the 2-
category of bounded complexes of finite-dimensional k-vector spaces. Using results
of Orlov [38], we prove in Proposition 5.3 that Ck has a unique non-acyclic quotient-
simple pretriangulated 2-representation.

• Finally, we explain how the theory developed in this paper can be applied to categor-
ical braid group actions of [24, 40, 41] in Section 5.5. We relate 2-representations of
categorified braid groups in the approach of [24] to dg 2-representations of categories
CA, where A is a zigzag algebra with trivial differential. More generally, categorified
braid group representations of [40] are related to pretriangulated 2-representations of
pretriangulated hulls of 2-categories of Soergel bimodules.

Given a dg 2-category C, we define the dg 2-category of pretriangulated 2-repre-
sentations C-modpre in Section 3.2. Given a pretriangulated 2-representation M, one ob-
tains the homotopy 2-representation KM by passing to the associated homotopy categories
KM.i/ at each object i of C, see Section 3.6.

The main results of this paper involve an assignment of internal dg algebra 1-mor-
phisms to pretriangulated 2-representations which admit a generator under the action of
the dg 2-category C and taking thick closures. We obtain the following results:

• We define the internal dg 2-representation MA consisting of certain modules over an
internal dg algebra 1-morphism A which lives in the dg 2-category

#–

C introduced in
this paper. The dg 2-category

#–

C provides a generalization and dg enhancement of the
completion of a finitary additive 2-category under cokernels.

• In Corollary 4.11 we prove that if X is a C-generator of a compact pretriangulated
2-representation M, then the dg idempotent completion Mı is dg equivalent to the
internal dg 2-representation MAX , where AX D ŒX; X� is the internal endomorphism
dg algebra 1-morphism of X .
A version of this result, where X is only a C-quasi-generator, i.e., X generates the
associated homotopy 2-representation KM, is given in Corollary 4.22.

• We define a possible notion of “simple” dg 2-representations of dg 2-categories called
quotient-simple pretriangulated 2-representations. We show in Corollary 4.18 that a
cyclic pretriangulated 2-representation M is quotient-simple if and only if AX is sim-
ple as a dg algebra 1-morphism.

• Using results by Keller [20], we characterize equivalences (and quasi-equivalences)
between internal dg 2-representations MA and MB over C in terms of Morita equiva-
lence, see Sections 4.5 and 4.6.

• In Section 4.8 we explain how a dg 2-functor FW C ! D which is a local quasi-
equivalence and essentially surjective on objects induces a correspondence between
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internal dg 2-representations of C and D up to quasi-equivalence, see Propositions
4.26, 4.27, and 4.29 as well as Corollary 4.30 for precise statements.

The definition of quotient-simple pretriangulated 2-representations was inspired by an
extension of the theory of cell 2-representations of [33] to the pretriangulated setup that
will appear in a forthcoming paper in preparation.

The results of this paper refine and extend some of the constructions given in the setup
of p-dg 2-representations from [26]. It would be possible to adapt the constructions of
algebra 1-morphisms of the present paper to the p-dg setup (for char k D p) in order to
be applied to the categorifications of quantum groups at p-th roots of unity of [13, 14].
Further, the setup presented here could be adapted to incorporate Z=2Z-gradings as used,
e.g., in [11, 16].

The paper is organized as follows. Section 2 introduces the technical constructions for
dg categories required in this paper, including a description of the dg category of compact
objects as a dg enriched generalization of the projective abelianization of a finitary cate-
gory of [18] by adding cokernels. Next, Section 3 introduces dg 2-categories and pretrian-
gulated 2-representations, including the concepts of cyclic and quotient-simple pretrian-
gulated 2-representations and explains how pretriangulated 2-representations induce trian-
gulated homotopy 2-representations. The main results of the paper are found in Section 4
revolving around associating dg algebra1-morphisms to pretriangulated 2-representations.
Finally, Section 5 discusses various classes of examples.

2. Generalities

2.1. Dg categories

A dg category C is a category enriched over the symmetric monoidal category of cochain
complexes of k-modules. If C is a cochain complex of k-modules, we denote by Z.C/
the subspace of cocycles in C of degree zero.

We denote by k-moddg the category of dg k-modules. Its objects are Z-graded k-
vector spaces equipped with a differential @ of degree C1 such that @2 D 0. A morphism
f W V ! W in k-moddg of degree n is a k-linear map satisfying f .V k/ � W kCn on the
k-th graded piece. The differential of such a morphism is given by @.f / D @W ı f �

.�1/nf ı @V : Hence, the category k-moddg is enriched over the symmetric monoidal
category of cochain complexes of k-modules (see e.g. [21, Section 2.1]). It is equipped
with a shift functor defined by .V h1i/k D V kC1 on the k-th graded piece with differential
given by �@V . For a homogeneous morphism f W V ! W in k-moddg of degree n, the
morphism f h1iWV h1i !W h1i is given by .�1/nf . By abuse of notation, for morphisms
of degree zero, we often omit the shifts in the notation to simplify the exposition.

Given a dg category, we denote by Z.C/ the k-linear category given by the same
objects as C with morphisms given by the k-vector spaces

HomZ.C/.X; Y / D Z
�
HomC .X; Y /

�
D
®
f 2 HomC .X; Y / j degf D 0 and @f D 0

¯
:
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We call the morphisms in Z.C/ dg morphisms. We use the terminology of dg isomor-
phism, dg idempotent, dg direct summand, dg indecomposable, dg equivalent etc. for
properties referring to or defined by morphisms in Z.C/.

Let C be a small dg category. We define the dg category C -moddg of dg modules
over C to be the dg category of dg functors Cop ! k-moddg (cf. [21, Section 1.2], [37,
Section 2.2]). Throughout this paper, we will only consider dg modules over small dg
categories without further mention. Given a dg category C , the Yoneda lemma gives a
fully faithful dg functor

C ! C -moddg; X 7! X_ WD HomC .�; X/:

We refer to X_ as a free dg C -module. It has the property that given any dg module M
over C , there is a dg isomorphism

HomC -moddg.X_;M/ ŠM.X/:

We require the following notion of idempotent completion to obtain dg categories
closed under taking dg direct summands. Given a dg category C , the dg idempotent com-
pletion Cı is defined as having objects Xe for any dg idempotent e D e2 2 EndC .X/, i.e.,
deg.e/ D 0 and @.e/ D 0, and morphism spaces

HomCı.Xe; Yf / D f HomC .X; Y /e:

Then Cı is a dg category and the embedding C ,! Cı is a dg functor. Furthermore, .Cı/ı

is dg equivalent to Cı.
Given a dg functor F WC ! D , we obtain an induced dg functor

F ıWCı ! Dı; F .Xe/ D F.X/F.e/: (2.1)

Further, given a natural transformation of dg functors �WF ! G,

�ıXe WD G.e/ ı �X ı F.e/ (2.2)

defines a natural transformation �ıWF ı ! Gı.

2.2. Pretriangulated categories

A dg category C is pretriangulated if its Yoneda embedding into C -moddg viaX 7!X_D

HomC .�; X/ is closed under shifts and cones, cf. [21, Section 4.5]. Note that we do not
require C to be closed under dg direct summands. To alleviate notation, we refer to a
pretriangulated dg category simply as a pretriangulated category. We say that a full dg
subcategory D � C is a pretriangulated subcategory if it is closed under shifts, cones
and dg isomorphisms, and say that D is thick if it is, in addition, closed under all direct
summands which exist in C .

Let C be a pretriangulated category. Given a pretriangulated category C , and a set
X of objects in C , we define the thick closure of X in C to be the full subcategory yX of
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C generated by all objects in X under shifts, cones, direct sums, dg direct summands, and
closed under dg isomorphisms. That is, yX is the smallest thick subcategory of C containing
X. An object X in C is a (classical) generator for C if the thick closure b¹Xº of X is all
of C . Note that these constructions are taken inside the pretriangulated category, rather
than at the homotopy level and do thus not coincide with the notions of thick closure and
classical generator for the associated triangulated category. This is desirable since most
constructions in this paper will take place on the pretriangulated level. For constructions
involving passing to homotopy, we will usually use the prefix quasi, see e.g. Section 3.6.

Given a dg category C , we denote by xC the dg category of (one-sided) twisted com-
plexes in C . Explicitly, we define xC as the dg category whose

• objects are given by pairs .X D
Ls
mD1 Xm; ˛ D .˛k;l /k;l / where the Fm are shifts

of objects in C and ˛k;l 2 HomC .Xl ; Xk/, ˛k;l D 0 for all k � l such that the matrix
@ � Is C ..˛kl /�/kl acts as a differential on

Ls
mD1 X

_
m in C -moddg (here Is is the

identity matrix), or, equivalently, @.˛/C ˛2 D 0;

• morphisms are matrices of morphisms between the corresponding objects, with the
differential of a homogeneous morphism


 D .
n;m/n;mW

� sM
mD1

Xm; ˛ D .˛k;l /k;l

�
!

� tM
nD1

Yn; ˇ D .ˇk;l /k;l

�
defined as

@
�
.
n;m/n;m

�
WD
�
@
n;m C .ˇ
/n;m � .�1/

deg
 .
˛/n;m
�
n;m
:

The notation
Ls
iDm Xm denotes an ordered list of objects rather than a direct sum

internal to C . We give xC the explicit additive structure

.X; ˛/˚ .Y; ˇ/ WD

�
X ˚ Y;

�
˛ 0

0 ˇ

��
;

where X ˚ Y is the concatenation of ordered lists of objects. This additive structure on xC
is strict, in the sense that .X ˚ Y /˚Z D X ˚ .Y ˚Z/.

Note that xC is a pretriangulated category, and the smallest pretriangulated category
containing C , cf. [28, Section 1], [1, Section 3.2]. Note that, in particular, xC -moddg is dg
equivalent to C -moddg, see e.g. [21, Section 4.5].

Let f WX ! Y be a dg morphism in xC , whereX D .
Lt
iD1Xi ; ˛/, Y D .

Lt
iD1 Yi ; ˇ/.

The cone Cf of f is the object

Cf D

�
Y ˚Xh1i;

�
ˇ �f

0 ˛

��
:

The cone Cf comes equipped with the dg morphisms

Cf h�1i ! X; Y ! Cf ;

such that pre- (respectively, post-) composition with f yields a null-homotopic morphism.
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Given a dg functor F WC ! D , we obtain an induced dg functor

xF W xC ! xD; xF

� tM
iD1

Xi ; ˛

�
D

� tM
iD1

F.Xi /; F .˛/

�
; (2.3)

by applying F component-wise to ˛ and to morphisms in xC . It follows directly that
G ı F D xG ı xF for compatible dg functors F WC ! D , GWD ! E . Moreover, a natural
transformation � WF ! G induces a natural transformation x� W xF ! xG using the diagonal
matrix

�.˚tiD1Xi ;˛/
D diag.�X1 ; : : : ; �Xt /:

This way, we obtain a dg 2-functor .�/ that sends dg categories C to pretriangulated
categories xC .

Recall that, for a dg category C , a finitely-generated semi-free dg C -module is a dg
functor from Cop to k-moddg which has a finite filtration by shifts of free dg C -modules,
cf. [37, Section 2.2].

Lemma 2.1 ([38, Section 2.3]). The dg category xC is dg equivalent to the dg category of
finitely-generated semi-free dg C -modules.

We say that an ideal 	 in a dg category C is a dg ideal provided that, for any morphism
f in 	, we also have @.f / in 	. For future reference, we record the following lemmas.

Lemma 2.2. Let C be a full subcategory of C 0, and 	 a dg ideal in C . Then the restriction
to C of the dg ideal generated by 	 in C 0 is equal to 	.

Lemma 2.3. Suppose C is a dg category equivalent to b¹Xº for some X 2 C and let 	 be
a dg ideal in C . Then 	 is completely determined on ¹Xº. Thus, the subset 	 \ EndC .X/

generates 	.

Proof. Let Y; Z 2 b¹Xº. Then there exist objects Y 0; Z0 2 ¹Xº and dg idempotents eY 2
End

¹Xº.Y
0/ and eZ 2 End

¹Xº.Z
0/ such that Homc¹Xº.Y;Z/ D eZHomc¹Xº.Y 0; Z0/eY . We

claim that Hom	.Y;Z/ Š eZHom	.Y
0; Z0/eY .

Indeed, the inclusion End	.Y; Z/ � eZEnd	.Y
0; Z0/eY is trivial from 	 being an

ideal. An element of Hom	.Y;Z/ is of the form eZ ı f ı eY D eZ ı .eZ ı f ı eY / ı eY
and f D eZ ı f ı eY 2Hom	.Y

0;Z0/, so the inclusion End	.Y;Z/� eZEnd	.Y
0;Z0/eY

also holds. This proves the lemma.

Given a dg ideal 	 in C we denote by x	 the dg ideal of morphisms in xC with compo-
nents contained in 	.

Lemma 2.4. Let C be a dg category and 	 a dg ideal in C .

(a) If J is a dg ideal in xC , then J D JjC , where JjC is the restriction of J to C .

(b) There is a fully faithful dg functor xC= x	 ,! .C=	/.

(c) Assume that 	 has the property that if @.f / is in 	, then f itself is in 	. Then the
dg functor from (b) becomes a dg equivalence.
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Proof. (a) Denote 	 D JjC . Let f D .fij / 2 J, then using the injection �i and projection
�j , fij D �jf �i 2 J. Thus, f 2 x	. Conversely, 	 � J implies x	 � J.

(b) Note that the quotient dg functor P W C ! C=	 induces a dg functor xP W xC !
.C=	/. On morphisms in xC , this functor is given by component-wise application of � .
Thus, the kernel of xP is precisely the ideal x	.

(c) It remains to show that the quotient xC= x	 is closed under cones. Given a dg mor-
phism f in xC maps to the cone of the image of this morphism in xC= x	. Under the
assumptions, any dg morphism in xC= x	 is the image of a dg morphism in xC , proving
the claim.

Remark 2.5. Under additional conditions, see, e.g., [9, Lemma 3.4], the dg category xC= x	
is itself pretriangulated and hence dg equivalent to C=	.

It follows that if C has a generator X , then C=	 has a generator, which is the image
of X under the projection functor.

Lemma 2.6. If C is a pretriangulated category, then the dg idempotent completion Cı is
also pretriangulated and �WC ! Cı displays C as a full pretriangulated subcategory. In
particular, this implies xCı ' xCı for any dg category C .

Proof. It is clear thatXeh1iD .Xh1i/e . To show that Cı is closed under cones, we observe
that for a dg morphism g D fgeWXe ! Yf in Cı, the object Z�f 0

0 e

�, for

Z D

�
Y ˚Xh1i;

�
0 �g

0 0

��
is the cone of g in Cı. This shows Cı is pretriangulated.

2.3. Compact objects

In this section, we give a diagrammatic description of the dg category of compact objects
in C -moddg, for a dg category C .

Let
#–

C denote the category

• whose objects are diagrams of the formX1
x
�!X0 forX0;X1 2 xC and x a dg morphism

in xC ;

• whose morphism are pairs .�0; �1/ of morphisms in xC producing solid commutative
diagrams of the form

X1
x //

�1

��

X0
�

ww

�0

��

Y1
y

// Y0;

(2.4)

modulo the dg submodule generated by diagrams where there exists a morphism �, as
indicated by the dashed arrow, such that �0 D y�;
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• the differential of such a pair .�0; �1/ is simply the component-wise differential in xC .

Alternatively, one could define
#–

C as the quotient of the category of dg functors from
the path category of the quiver 1! 0 to k-moddg by the ideal defined in the second bullet
point.

We note that xC is a full dg subcategory of
#–

C by mapping X to 0! X . We denote
this inclusion functor by ‚, but will usually just write X instead of ‚.X/ or 0 ! X .
We denote by‚�W

#–

C -moddg
! xC -moddg

' C -moddg the restriction functor sendingM to
M ı‚.

Observe that, for X0; X1; Z 2 xC ,

Hom #–

C .Z;X1
x
�! X0/ Š coker

�
Hom xC .Z;X1/

xı.�/
����! Hom xC .Z;X0/

�
(2.5)

and for X0; X1; Z0; Z1 2 xC ,

Hom #–

C .Z1
z
�! Z0; X1

x
�! X0/

Š ker
�
Hom #–

C .Z0; X1
x
�! X0/

.�/ız
���! Hom #–

C .Z1; X1
x
�! X0/

�
: (2.6)

Note that the components �0 and �1 of a morphism as in (2.4) are sums of homogeneous
morphisms of necessarily the same degrees, and � is necessarily also a sum of homoge-
neous morphisms of those degrees.

Any dg functor F W xC! xD extends to a dg functor
#–
F W

#–

C!
#–

D component-wise, that is,

#–
F .X1

x
�! X0/ D F.X1/

F.x/
���! F.X0/:

Consider the two Yoneda embeddings

‡C W
xC ! C -moddg; X 7! X_ D Hom xC .�; X/

and
‡ #–

C W
#–

C !
#–

C -moddg; .X1
x
�! X0/ 7! Hom #–

C

�
�; .X1

x
�! X0/

�
:

Let �WC -moddg
!

#–

C -moddg be defined by

�.M/.Z1
z
�! Z0/ D ker

�
M.Z0/

M.z/
���!M.Z1/

�
:

This is a dg functor and ‚�� Š Id xC -moddg , which implies that � is faithful.

Lemma 2.7. There is a fully faithful dg functor

‡ W
#–

C ! C -moddg; .X1
x
�! X0/ 7! coker

�
‡C .x/

�
inducing a commutative diagram (up to isomorphism)

#–

C
‡ #–

C //

‡

##

#–

C -moddg:

C -moddg

�

88
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Proof. It is clear that ‡ defines a dg functor. Assume that the diagram commutes. Then,
since‡ #–

C is full and faithful, we see that‡ is faithful and � is full. Since � is also faithful,
this then implies that ‡ is also full. So it remains to show that the diagram commutes.

First, letX2 xC and identifyX with its image in
#–

C. Then by construction‡.X/DX_, so

�‡.X_/.Z1
z
�! Z0/ D ker

�
X_.Z0/

X_.z/
����! X_.Z1/

�
D ker

�
Hom xC .Z0; X/

�ız
��! Hom xC .Z1; X/

�
Š Hom #–

C .Z1
z
�! Z0; X/

D ‡ #–

C .X/.Z1
z
�! Z0/:

Next, consider an object X1
x
�! X0 in

#–

C . Then, by definition,

�‡.X1
x
�! X0/.Z1

z
�! Z0/ Š ker

�
coker

�
‡C .x/

�
.Z0/! coker

�
‡C .x/

�
.Z1/

�
Now coker.‡C .x//.Zi / Š Hom #–

C .Zi ; X1
x
�! X0/ by (2.5), so

�‡.X1
x
�! X0/.Z1

z
�! Z0/ Š ker

�
Hom #–

C .Z0; X1
x
�! X0/

�ız
��! Hom #–

C .Z1; X1
x
�! X0/

�
(2.6)
Š Hom #–

C .Z1
z
�! Z0; X1

x
�! X0/

D ‡ #–

C .X1
x
�! X0/.Z1

z
�! Z0/

proving ‡ #–

C .X1
x
�! X0/ Š �‡.X1

x
�! X0/, as required.

Lemma 2.8. The category
#–

C is pretriangulated.

Proof. Direct sums and shifts can be taken component-wise, so it suffices to check that
#–

C

is closed under cones in the sense that for any dg morphism � in
#–

C , there exists an object
in

#–

C which represents the cone of ‡ #–

C .�/ in
#–

C -moddg. In light of Lemma 2.7 and since
any dg functor preserves cones, it suffices to find an object C� in

#–

C such that ‡.C�/ is
the cone of the morphism ‡.�/ in C -moddg.

For this, consider a dg morphism

� D

X1
x //

�1

��

X0

�0

��

Y1
y

// Y0:

(2.7)

In particular, there exists �WX0! Y1 such that @�0C y�D 0:We observe that, by replac-
ing Y1

y
�! Y0 by the dg isomorphic object

X0h�1i ˚ Y1
.�@.�0/; y/
�������! Y0;

we can assume that @� D 0.



Pretriangulated 2-representations via dg algebra 1-morphisms 11

Thus, we now consider a dg morphism � as in (2.7) with @� D 0. We claim that the

cone C� D .C�;1
c�
�! C�;0/ is then given by

C�;1 D

0@Y1 ˚ Y1h1i ˚X0 ˚X1 ˚X1h1i;
0@ 0 �id �� @�1C�x ��1
0 0 0 0 0
0 0 0 0 �x
0 0 0 0 �id
0 0 0 0 0

1A1A
c�D

�
y 0 0 0 0

0 id � 0 0
0 0 0 0 x

�
��

C�;0 D

�
Y0 ˚ Y1h1i ˚X0h1i;

�
0 �y ��0
0 0 ��

0 0 0

��
:

To prove this, we need to compare the two following objects. On the one hand, we have
‡.C�/, which is the cokernel of c� ı .�/WC_�;1 ! C_�;0 in C -moddg. On the other hand,
� induces a morphism‡.�/ between the cokernels of x ı .�/ and y ı .�/ in C -moddg, and
we can consider the cone of‡.�/. We need to verify that these two objects are isomorphic
in C -moddg.

For any Z in C , consider

‡.C�/.Z/ Š coker
�
Hom xC .Z; C�;1/

c�ı.�/
����! Hom xC .Z; C�;0/

�
2 k-moddg:

Direct computation shows that the upper commutative square in the diagram

HomC

�
Z; Y1 ˚ Y1h1i ˚X0 ˚X1 ˚X1h1i

� � id 0 0 0 0
0 0 0 0 id

�
ı.�/
//

 
y 0 0 0 0
0 id � 0 0
0 0 0 0 x

!
ı.�/

��

�
y 0 0 0 0
0 0 0 0 x

�
ı.�/

**

HomC

�
Z; Y1 ˚X1h1i

�
�
y 0
0 x

�
ı.�/

��

HomC

�
Z; Y0 ˚ Y1h1i ˚X0h1i

� �
id 0 0
0 0 id

�
ı.�/

//

����

HomC

�
Z; Y0 ˚X0h1i

�
����

‡.C�/.Z/
� // ‡.Y /.Z/˚ ‡

�
Xh1i

�
.Z/

induces an isomorphism of k-modules on cokernels as indicated. It remains to show
that this isomorphism on cokernels is compatible with the differentials. Every element
in ‡.C�/.Z/ can be represented as

� ˛
0
ˇ

�
, for morphisms ˛WZ ! Y0 and ˇWZ ! X0h1i

in C and we have

@‡.C�/

0@˛0
ˇ

1A D 0@@˛0
@ˇ

1AC0@0 �y ��0
0 0 ��

0 0 0

1A0@˛0
ˇ

1A D 0@@˛ � �0ˇ��ˇ

@ˇ

1A :
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By the induced map on cokernels, this element is mapped to

�
id 0 0

0 0 id

�0@@‡.C�/
0@˛0
ˇ

1A1A D �id 0 0

0 0 id

�0@@˛ � �0ˇ��ˇ

@ˇ

1A D �@˛ � �0ˇ
@ˇ

�
D

�
@˛

@ˇ

�
C

�
0 ��0
0 0

��
˛

ˇ

�
D @C‡.�/

�
˛

ˇ

�
D @C‡.�/

0@�id 0 0

0 0 id

�0@˛0
ˇ

1A1A ;
so the induced map on the cokernels indeed commutes with the differential.

We call an object X in a dg category D compact in D if the corepresentable functor

HomD.X;�/WD ! k-moddg

commutes with filtered conical colimits, see e.g. [39, Section 7.5]. More precisely, for a
directed set I and a diagram .Xi /i2I of objects in D with dg morphisms between them,
there is a canonical dg isomorphism

HomD

�
X; colim
������!

i2I

Xi
�
Š colim
������!

i2I

HomD.X;Xi /;

provided that the conical colimit colim
������!i2I

Xi exists in D . Setting D D C -moddg, we
denote the full dg subcategory of C -moddg on compact objects by C -moddg;cp.

We note that k-moddg is complete and cocomplete with respect to small weighted (and
hence, in particular, conical) limits and colimits. This follows from [39, Corollary 7.6.4]
using [39, Example 3.7.5] and that k-moddg is the category of cochain complexes of k-
vector spaces enriched over itself. Note that this implies that C -moddg is also (co)complete
under weighted (co)limits by [23, Section 3.3] with (co)limits being computed object-
wise.

Lemma 2.9. The image of xC under the Yoneda embedding is contained in C -moddg;cp.

Proof. We first show that for X in C , X_ is compact in C -moddg. Indeed, for a directed
set I and a diagram .Mi /i2I in C -moddg with dg morphisms, we have a chain of dg
isomorphisms

HomC -moddg
�
X_; colim

������!

i2I

Mi

�
Š
�

colim
������!

i2I

Mi

�
.X/ Š colim

������!

i2I

Mi .X/

Š colim
������!

i2I

HomC -moddg.X_;Mi /;

where the first and last isomorphisms use the dg Yoneda Lemma of [39, Lemma 7.3.5],
the second isomorphism follows from the discussion preceding this lemma.
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Note that the inclusion of k-moddg into k-moddg is a dg equivalence. Thus, sending a
dg C -moduleM to the dg xC -module xM gives a dg equivalence of C -moddg and xC -moddg.
This proves the claim.

Note that this implies that the category of finitely-generated semi-free dg C -modules
consists of compact objects.

Lemma 2.10. Every object in C -moddg is isomorphic to a filtered conical colimit of
objects in the image of ‡ W

#–

C ! C -moddg.

Proof. LetM be a dg module over C . By [21, Section 3.2] we find a semi-free dg module
N (with a possibly infinite filtration by free dg modules) together with a surjective dg
morphism N

�
�!M . Denote K WD ker� . As N is semi-free, there exists a filtration 0 �

F 1N � F 2N � � � � of N with free subquotients. We denote by � the set of pairs .i; U /
where i � 0 and U is a dg submodule ofK \ F iN such that there exists a compact semi-
free dg C -module with a dg surjection onto U . It follows that � is a directed set, where
.i;U /� .j;V / if and only if i � j and U � V . The meet operation is given by the sum of
dg submodules. A standard argument now shows that M is dg isomorphic to the filtered
conical colimit over quotients F iN=U , where .i; U / is an index from � . We note that all
quotients F iN=U are in the image of the functor ‡ since F iN is in xC .

Alternatively, the claim also follows from the implication (i) implies (iv) of [22, Theo-
rem 6.11], with

#–

C op for T , and the dg equivalence of C -moddg and the full dg subcategory
of left exact functors in

#–

C -moddg from [23, Theorem 5.35].

Lemma 2.11. The full subcategory C -moddg;cp of C -moddg given by compact objects is
dg equivalent to the full subcategory on the image of

#–

C under ‡ .

Proof. Assume given an object X WD .X1
x
�! X0/ in

#–

C . By construction, its image under
‡ is the cokernel of the dg morphism ‡.X1/

‡.x/
���!‡.X0/ in C -moddg. Thus, we have an

exact sequence

‡.X1/
‡.x/
���! ‡.X0/! ‡.X/! 0

of dg morphisms in C -moddg. Thus, by [22, (4.14)], using that ‡.X1/ and ‡.X0/ are
compact by Lemma 2.9, ‡.X/ is also compact.

Conversely, letM be a compact object in C -moddg. By Lemma 2.10,M is dg isomor-
phic to a filtered conical colimit colim

������!i2I
Mi , with Mi in the image of ‡ extended to

#–

C .
Since M is compact,

HomC -moddg.M;M/ Š colim
������!

i2I

HomC -moddg.M;Mi /:

Thus, idM factors through Mi !M for some i via some dg morphism. Therefore, M is
a dg direct summand of Mi and hence contained in the image of ‡ itself.

Corollary 2.12. Let C be a dg category. Then the dg category
#–

C has conical cokernels.
In particular, Z.

#–

C / has cokernels.
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Proof. One easily checks that for a dg morphism .f1; f0/ from X1
x
�! X0 to Y1

y
�! Y0, the

morphism

Y1
y

//�
id
0

�
��

Y0

id
��

Y1 ˚X0
.y;f0/ // Y0

in
#–

C satisfies the universal property of a conical cokernel.

2.4. Compactness and adjunctions

Let C and D be pretriangulated categories. Assume given a dg functor F WC ! D . We
now establish compactness conditions to ensure that

#–
F W

#–

C !
#–

D , obtained by extending
F as in Section 2.3, has a right adjoint GW

#–

D !
#–

C .
Recall the Yoneda embedding ‡ D ‡C WC ! C -moddg, X 7! X_ D HomC .�; X/.

Then any dg functor F WC ! D induces a dg functor

F �WD-moddg
! C -moddg; M 7!M ı F:

Given a D-module M , we refer to F �M as the pullback of M along F . By [20, Section
6.1], the dg functor F � is right adjoint to the dg functor F�WC -moddg

!D-moddg defined
by M 7! F�M , where for D 2 D , F�M.D/ is the cokernel of the dg morphismM
C1;C22C

M.C2/˝ HomC .C1; C2/˝ HomD.D; FC1/
�
�!

M
C

M.C/˝ HomD.D; FC/;

�.m˝ f ˝ g/ DM.f /.m/˝ g �m˝ F.f / ı g:

The dg functor F� extends F under the Yoneda embedding, i.e., F� ı ‡C D ‡D ı F .
Note that, in particular, since F� is a left adjoint and hence commutes with cokernels,

it restricts to the dg functor
#–
F W

#–

C !
#–

D . The following lemma characterizes when this
restriction has a right adjoint.

Lemma 2.13. The functor F � restricts to a dg functor from
#–

D to
#–

C if and only if for any
object D of D , the dg C -module F �.D_/ D HomD.F.�/;D/ is compact.

Proof. Using Lemma 2.11, the right adjoint dg functorF � restricts to a dg functorRW
#–

D!
#–

C if and only ifF �.‡.D// is a compact object inC -moddg, for any objectDD.D1
d
�!D0/

in
#–

D . If the latter condition is satisfied for all D 2
#–

D , then it holds, in particular, for all
D_ D ‡.D/ for D 2 D �

#–

D . Conversely, assume that F �.D_/ is a compact object in
C -moddg, for any D 2 D . Using a similar argument as in the proof of Lemma 2.11, the
dg C -module

F �
�
‡.D1

d
�! D0/

�
D coker

�
F �D_1

F �‡.d/
�����! F �D_0

�
is a compact object, as the cokernel of a dg morphism between two compact objects is a
compact object.
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If a dg functor F satisfies the equivalent conditions of Lemma 2.13, we say that F has
a compact right adjoint. In the presence of generators for C and D , we have alternative
characterizations of the existence of a right adjoint for

#–
F , i.e., for F having a compact

right adjoint.
If C has a compact generatorX , then by Lemma 2.1, the category xC is dg equivalent to

that of compact objects in the dg category of right semi-free modules over the dg algebra
A WD EndC .X/. Here, the product in A is fg WD f ı g.

Lemma 2.14. Let F WC ! D be a dg functor.

(a) Assume D has a generatorD. Then
#–
F has a right adjoint if and only ifF �.D_/D

HomC .F.�/;D/ is a compact object in C -moddg.

(b) Assume D has a compact generator D, C has a generator C , and denote by
A the dg algebra EndC .C /. Then

#–
F has a right adjoint if and only if MF WD

HomC .F.C /; D/ is a compact object in A-moddg. The action of A on MF is
given by m˝ a WD m ı F.a/, for m 2MF and a 2 A.

Proof. Part (a) follows from the fact that if F �.D_/ is a compact object, then for any
object X in the thick closure of D inside of xD , F �.X_/ is also compact.

Part (b) follows from Part (a) under use of the dg equivalence between C -moddg

and the category of right dg A-modules, which is given by sending X_ to X_.C / D
HomC .C;X/, for X 2 C .

2.5. The homotopy category of compact objects in semi-free dg modules

In this section, we discuss the passage from dg categories to triangulated categories in the
setup used for this paper.

Let C be a dg category. We denote the homotopy category of C by K.C/ and recall that
K.C/ has the same objects as C but morphism spaces are given by 0-th cohomology, i.e.,

HomK.C/.X; Y / D H
0
�
HomC .X; Y /

�
:

It follows that if C is pretriangulated, then K.C/ is a triangulated category, see [5, Sec-
tion 1, Proposition 2], [20, Section 2.2]. A dg functor F W C ! D induces a functor
K.F /WK.C/!K.D/. The functor K. xF / is a triangle functor (also called exact functor
of triangulated categories) [5, Section 3]. Moreover, a dg natural transformation � WF !G

between two dg functors descends to a natural transformation K.�/WK.F /!K.G/.
We say that a morphism f WX ! Y is a homotopy isomorphism if it descends to an

isomorphism in K.C/.
A dg functor F WC!D is (part of) a quasi-equivalence if, for any pair of objectsX;Y

in C , it induces quasi-isomorphisms (i.e., isomorphisms in all cohomological degrees)
between HomC .X; Y / and HomD.FX; F Y / and K.F / is an equivalence of categories
[21, Section 2.3]. Note that if C and D are both pretriangulated, closure under shifts
implies that HomC .X; Y /! HomD.FX;F Y / being a quasi-isomorphism for all X;Y 2
C is equivalent to K.F / being fully faithful.
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Given a dg category C , a morphism f WM ! N of dg C -modules is a quasi-isomor-
phism if @.f / D 0 and f induces a quasi-isomorphism f .X/WN.X/! M.X/ for each
object X of C . The derived category D.C -moddg/ is the localization of the category
Z.C -moddg/ of dg morphisms (or, equivalently, of K.C -moddg/), see Section 2.1, by the
all quasi-isomorphisms [21, Section 3.2]. The derived category can also be defined as
the Verdier quotient of K.C -moddg/ by the full subcategory of acyclic modules. Here,
a C -module M is acyclic if the complex M.X/ is acyclic for any object X of C [37,
Section 2.2].

The full subcategory of perfect objects of C -moddg is given by those dg modules
whose images in D.C -moddg/ are in the idempotent completion of compact semi-free
modules. The full subcategory of perfect objects yields the subcategory D.C -moddg/cp of
compact objects in D.C -moddg/ [21, Corollary 3.7].

The following well-known result justifies that we will mostly be working with K. xC/

as a model for the compact derived category of dg modules over C .

Proposition 2.15. The functor K. xC/ı ,!D.C -moddg/cp forms part of an equivalence of
triangulated categories.

Proof. By [21, Corollary 3.7], every compact object in D.C -moddg/ is a direct summand
of an object in the image of K. xC/ in the derived category. As the derived category is
idempotent complete [4, Proposition 3.2], this implies that the idempotent completion
K. xC/ı (see [2]) admits a triangle functor into D.C -moddg/cp. This functor is fully faithful
by [21, Section 3.2] and hence gives an equivalence of categories.

We remark that the image of K.
#–

C / in D.C -moddg/ does not usually consist of com-
pact objects in the latter. In particular, this already fails for finite-dimensional algebras
with zero differential and infinite global dimension. Nevertheless, one can consider K.

#–

C /,
as the bounded homotopy category of compact objects in C -moddg, which motivates the
following lemma.

Let F WC ! D be a dg functor and recall the adjoint dg functors

F�WC -moddg � D-moddg
WF �

from Section 2.4.

Lemma 2.16. If F WC ! D is a quasi-equivalence, then so is
#–
F W

#–

C !
#–

D .

Proof. Recall that if F is a dg functor that has a compact right adjoint (cf. Section 2.4),
then both dg functors F �; F� restrict to compact objects to a pair of adjoint dg functors

F�WC -moddg;cp � D-moddg;cp
WF �:

We first consider the unit � of this adjunction. For a representable dg C -module X_,
we have

F �F�.X
_/ D HomD

�
F.�/; FX

�
:
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Then �X_ WHomC .�; X/! HomD.F.�/; FX/ is simply given by applying F to mor-
phism spaces, and is a quasi-isomorphism by assumption. By Lemma 2.11, any compact
object M in C -moddg is dg isomorphic to a cokernel of a morphism between dg modules
in the pretriangulated closure of representable dg C -modules. By right exactness of F�
and exactness of F �, we have a commutative diagram

X_1
//

�X_1
��

X_0

�X_0
��

// // M

�M

��

F �F�.X
_
1 /

// F �F�.X
_
0 /

// // F �F�M

of dg morphisms in C -moddg;cp. Since �X_1 ; �X_0 are quasi-isomorphisms, so is the induced
morphism �M on the cokernel. Thus � is a quasi-isomorphism on all compact objects in
C -moddg.

Now consider the counit of the adjunction. Let X 2D and consider the dg D-module
F�F

�.X_/. This is given as the cokernel ofL
C1;C22C

HomD.FC2; X/˝ HomC .C1; C2/˝ HomD.�; FC1/

�

��

h˝ f ˝ g_

��L
C2C

HomD.FC;X/˝ HomD.�; FC /; hF.f /˝ g � h˝ F.f /g:

There is a natural map  W
L
C2C HomD.FC; X/ ˝ HomD.�; FC / ! HomD.�; X/

induced by composition, which annihilates the image of � and hence factors over the
cokernel, producing the component "X_ WF�F �.X_/! X_ of the counit.

Next, we show that in the special case X D FY , for Y 2 C , ".F Y /_ is a quasi-
isomorphism. In fact, we can compute the cokernel of � by evaluating the maps �Z and
cZ for any object Z in D . Note that  Z is surjective, with idZ ˝ f being a preimage
of f 2 HomD.Z; F Y /. Moreover, if h 2 HomD.FC; F Y /, g 2 HomD.Z; FC/ are dg
morphisms such that  Z.h˝ g/ D hg D 0, there exists a morphism f WC ! Y such that
F.f / D h inH 0.HomD.FC;F Y //, i.e., F.f / D hC @.a/ for some morphism a. Thus,
we compute

�.id˝ f ˝ g/ D F.f /˝ g � id˝ F.f /g

D
�
hC @.a/

�
˝ g � id˝

�
hC @.a/

�
g

D h˝ g C @.a/˝ g � id˝ hg � id˝ @.a/g

D h˝ g C @.a/˝ g � id˝ @.a/g

D h˝ g C @.a˝ g � id˝ ag/;

where in the last step we use that @.g/ D 0. This shows that, after passing to cohomol-
ogy, ker �Z D Im Z and hence the cokernel of � is given by the representable functor
associated to FY . In other words, ".F Y /_ gives an isomorphism in K.D-moddg;cp/.
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Now consider a general compact object X_1
x
�! X_0 � M , with X1; X0 in xD . Then

by right exactness of F� and exactness of F �, we have a commutative diagram

F�F
�.X_1 /

//

"X_1
��

F�F
�.X_0 /

"X_0
��

// // F�F
�M

"M

��

X_1
// X_0

// // M

of dg morphisms in D-moddg;cp. Arguing similarly to before, the morphism "M is a quasi-
isomorphism as both "X_1 and "X_0 are quasi-isomorphisms. Thus " is a quasi-isomorphism
on all compact objects in D-moddg which shows that K.F �/ and K.F�/ are equiv-
alences. Thus, as categories of compact objects are closed under shift, F �, F� induce
quasi-equivalences on compact objects as claimed. Since

#–
F corresponds to F� under the

dg equivalence of Lemma 2.11, it is also a quasi-equivalence.

3. Dg 2-categories and 2-representations

In this section, we collect generalities on pretriangulated 2-categories and define different
classes of pretriangulated 2-representations.

3.1. Dg 2-categories

We call a 2-category C a dg 2-category if the categories C.i; j/ are dg categories for any
pair of objects i; j 2 C, and horizontal composition is a dg functor.

A dg pseudofunctor is a pseudofunctor whose component functors are dg functors
and whose coherers are dg isomorphisms. A dg 2-functor is a dg pseudofunctor whose
coherers are identities. A dg pseudofunctor ˆWC! D is part of a dg biequivalence if it is
surjective on objects up to dg equivalence and each component functor is a dg equivalence.

Given a dg 2-category C, we can associate a new dg 2-category of (one-sided) twisted
complexes, denoted by xC. It consists of

• the same objects as C;

• 1-morphism categories C.i; j/;

• with horizontal composition of two 1-morphisms X D .
Ls
mD1 Fm; ˛/ 2 C.k; l/ and

X 0 D .
Lt
nD1 F0n; ˛

0/ 2 C.j; k/ given by

X ı X0 D
� M
.m;n/

FmF0n; .ık0;l 0˛k;l ı0 idF0
k0
C ık;l idFk ı0 ˛

0
k0;l 0/.k;k0/;.l;l 0/

�
; (3.1)

where pairs .m; n/ are ordered lexicographically;

The above composition of 1-morphism gives a strict operation (for details, see [26, Propo-
sition 3.5]). We say that a dg 2-category is pretriangulated if the embedding C ,! xC is
part of a dg biequivalence.
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We can further extend the dg 2-category xC by formally adding dg quotients to obtain
a dg 2-category

#–

C .

Lemma 3.1. There exists a dg 2-category
#–

C containing C as a dg 2-subcategory. A given
dg 2-functor ˆWC! D extends naturally to a dg 2-functor

#–
ˆW

#–

C !
#–

D.

Proof. We define
#–

C .i; j/ WD
#            –

C.i; j/. The composition in
#–

C is defined as

.G1
g
�! G0/.H1

h
�! H0/ WD

�
G1H0 ˚ G0H1

.gı0idH0 idG0ı0h /
������������! G0H0

�
;

for objects .G1
g
�! G0/ in

#–

C .j; k/ and .H1
h
�! H0/ in

#–

C .i; j/. Here, we crucially use
the explicit additive structure on xC making composition of 1-morphisms in

#–

C strictly
associative.

Given morphisms

.�0; �1/W .G1
g
�! G0/! .G01

g 0

�! G00/; and . 0;  1/W .H1
h
�! H0/! .H01

h0

�! H00/

in
#–

C , we define

.�0; �1/ ı0 . 0;  1/ WD

�
�0 ı0  0;

�
�1 ı0  0 0

0 �0 ı0  1

��
:

Note that given a homotopy �WG0! G01 rendering the morphism .�0; �1/ zero in
#–

C .j;k/,
the homotopy

�
�ı0 0
0

�
shows that the morphism .�0; �1/ ı0 . 0;  1/ is zero in

#–

C .i; k/.
Similarly, if "WH0 ! H01 is a homotopy rendering the morphism . 0;  1/ zero, use the
homotopy

�
0

�0ı0"

�
. Thus, horizontal composition in

#–

C is well defined.
Next, we define vertical composition ı1 and the differential on morphism spaces

component-wise. One directly verifies that in this way,
#–

C obtains the structure of dg 2-
category.

For a dg 2-functor ˆWC! D, the underlying dg functors ˆi;jWC.i;j/! D.ˆi;ˆj/
extend by component-wise application to give dg functors

#     –
ˆi;jW

#–

C .i; j/!
#–

D.ˆi; ˆj/;

which assemble into a dg 2-functor as required.

Corollary 3.2. If the dg 2-functor ˆ in Lemma 3.1 is a local quasi-equivalence, meaning
that every component functor is a quasi-equivalence, then so is

#–
ˆ.

Proof. This follows directly from Lemma 2.16.

Definition 3.3. Let C be a dg 2-category.

(a) We say that a dg 2-category C has generators if each category C.i; j/ has a gen-
erator.
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(b) We say that a dg 2-category C has compact left adjoints if for any F in C.i; j/,
there exists a morphism �F 2

#–

C .j; i/ together with dg morphisms

uFW1i ! F.�F/ 2
#–

C .i; i/; cFW .
�F/F! 1j 2

#–

C .j; j/

satisfying the usual identities of an adjunction internal to
#–

C .

Given a dg 2-category C, the dg idempotent completion Cı is the dg 2-category with
the same objects as C and Cı.i; j/ D C.i; j/ı, the closure under dg idempotents, for two
objects i;j. We note that by Lemma 2.6, if C is pretriangulated, then Cı is pretriangulated.

To a dg 2-category C, we can associate the 2-category ZC of dg 2-morphisms which
has the same objects and 1-morphisms as C but only those 2-morphisms which are of
degree zero and annihilated by the differential.

The homotopy 2-category KC associated to C is defined by having the same objects as
C and categories of 1-morphisms given by the homotopy categories

KC.i; j/ WDK
�
C.i; j/

�
:

If C is pretrianguated, each KC.i; j/ is triangulated, and we will hence call KC a trian-
gulated 2-category. Note that horizontal composition with 1-morphisms is, in particular, a
triangle functor.

3.2. Dg 2-representations

For the purpose of giving targets for dg 2-representations in this section, we define the dg
2-category Mdg as the 2-category whose

• objects are pretriangulated categories C ;

• 1-morphisms are dg functors between such categories;

• 2-morphisms are all morphisms of such dg functors.

The dg 2-subcategory M
dg
g of Mdg consists of those dg categories which have a generator.

A pretriangulated 2-representation of a dg 2-category C is a 2-functor MW C!Mdg

such that locally the functors from C.i;j/ to Mdg.M.i/;M.j// are dg functors. Explicitly,
M sends

• an object i 2 C to a pretriangulated category M.i/,

• a 1-morphism G 2 C.i; j/ to a dg functor M.G/WM.i/!M.j/,

• a 2-morphism ˛WG!H2C.i;j/ to a morphism of dg functors M.˛/WM.G/!M.H/.

A morphism of dg 2-representations ˆWM! N consists of

• dg functors ˆiWM.i/! N.i/ for each i 2 C and

• natural dg isomorphisms �FWˆj ıM.F/! N.F/ ı ˆi for each F 2 C.i; j/ such that
for composable F;G

�FG D .idN.F/ ı0 �G/ ı1 .�F ı0 idM.G//:
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The collection of pretriangulated 2-representations of C, together with morphisms
of dg 2-representations and modifications satisfying the same condition as in [35, Sec-
tion 2.3], form a dg 2-category, which we denote by C-modpre.

We say a pretriangulated 2-representation has generators if its target is M
dg
g , that is, if

M.i/ has a generator for any object i. The 1-full and 2-full dg 2-subcategory of C-modpre

consisting of pretriangulated 2-representations with generators is denoted by C-modpre
g .

A pretriangulated 2-representation M is acyclic if, for any object i, any X 2 M.i/ is
acyclic, i.e., there exists a morphism f such that @.f / D idX .

Note that a pretriangulated 2-representation M of a dg 2-category C extends to a pre-
triangulated 2-representation M of xC.

Lemma 3.4. Extending from C to xC and restricting from xC to C define mutually inverse
dg biequivalences between C-modpre and xC-modpre.

The following lemma describes how to extend pretriangulated 2-representations from
C to

#–

C .

Lemma 3.5. Let C be a dg 2-category

(a) Given a pretriangulated 2-representation M of C, we can define a pretriangulated
2-representation

#–

M by
#–

M.i/ D
#        –

M.i/. Moreover,
#–

M extends to a pretriangulated
2-representation of

#–

C .

(b) Given a morphism of 2-representations ˆWM! N of C, we obtain a morphism
of dg 2-representations

#–
ˆW

#–

M!
#–

N of
#–

C .

(c) Given morphisms of dg 2-representations ˆ;‰WM! N, a modification � Wˆ!
‰ extends to a modification

#–

� W
#–
ˆ !

#–
‰. This assignment yields a faithful dg

morphism
HomHomC.M;N/.ˆ;‰/! HomHom #–

C .
#–M; #–N /.

#–
ˆ;

#–
‰/:

Proof. We first prove (a). The fact that
#–

M.i/ WD
#        –

M.i/ defines a dg 2-representation
#–

M
of C follows from the observation that for G 2 C.i; j/ and H in C.j; k/, the induced dg
functor satisfy the equality

#             –

M.HG/ D
#         –

M.H/
#         –

M.G/, since these dg functors are defined by
component-wise application of M.

Given an object .G1
g
�! G0/ in

#–

C .i; j/, we define

#–

M.G1
g
�! G0/.X1

x
�! X0/ D

� #–

M.G1/X0 ˚
#–

M.G0/X1
.

#–M.g/.X0/
#–M.G0/.x/ /

��������������!
#–

M.G0/X0
�
;

for any .X1
x
�! X0/ in

#–

M.i/, and extend to morphisms accordingly. It is readily verified
that this extends

#–

M to a dg 2-representation of
#–

C proceeding similarly to the proof of
Lemma 3.1. We note that the dg 2-representation is pretriangulated as

#        –

M.i/ is pretriangu-
lated for any object i, cf. Section 2.3.

To prove (b), we denote by �GWˆj ıM.G/! N.G/ ıˆi the dg natural isomorphism
given as part of the data of a morphism of dg 2-representation, which is also natural in
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G 2 C.i; j/. Given an object .G1
g
�! G0/ in

#–

C .i; j/ and .X1
x
�! X0/ in

#–

M.i/, we define
the dg morphism�

#–�
.G1

g
�!G0/

�
.X1

x
�!X0/

W
#  –
ˆj ı

#–

M.G1
g
�! G0/.X1

x
�! X0/!

#–

N.G1
g
�! G0/ ı

#  –
ˆi.X1

x
�! X0/

by the diagram

ˆjM.G1/.X0/˚ˆjM.G0/.X1/

�
ˆjM.g/X0 ˆjM.G0/.x/

�
//

� .�G1 /X0 0

0 .�G0 /X1

�
��

ˆjM.G0/.X0/

.�G0 /X0

��

N.G1/ˆi.X0/˚ N.G0/ˆi.X1/

�
N.g/ˆi.X0/ N.G0/ˆi.x/

�
// N.G0/ˆi.X0/:

This diagram commutes since

N.g/ˆi.X0/ ı .�G1/X0 D .�G0/X0 ıˆjM.g/X0

by naturality of .�G/X0 in G applied to the morphism g, and

N.G0/ˆi.x/ ı .�G0/X1 D .�G0/X0 ıˆjM.G0/.x/

by naturality of �G0 applied to the morphism x.

The morphisms . #–�
.G1

g
�!G0/

/
.X1

x
�!X0/

thus defined are natural in .G1
g
�! G0/ and

.X1
x
�! X0/ because all their components are instances of morphisms .�G/X which are

natural in G and X . As the differential in
#      –

N.j/ is defined component-wise, we see that #–�

consists of dg morphisms. The equation

�HG D .idN.H/ ı0 �G/ ı1 .�H ı0 idM.H//

implies the corresponding equation for #–� since it holds component-wise.
We leave the verification of (c) to the reader.

For any dg 2-category C and i one of its objects, we define the i-th principal dg
2-representation Pi, which sends

• an object j to C.i; j/,

• a 1-morphism G in C.j;k/ to the dg functor C.i; j/! C.i; k/ induced by composition
with G,

• a 2-morphism to the induced dg morphism of functors.

Pretriangulated 2-representations can also be extended to the dg idempotent comple-
tion Cı of C. For this, given M 2 C-modpre, consider Mı 2 C-modpre given by Mı.i/ D
M.i/ı and extending the dg functors M.F/ to Mı.F/ via (2.1). The dg 2-representation
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Mı extends to a pretriangulated 2-representation of Cı where Fe , for eW F! F an idem-
potent in C.i; j/, is sent to the dg functor Mı.Fe/WMı.i/!Mı.j/ defined by

X 7!Mı.Fe/.X/ D
�
M.F/.X/

�
M.e/X

; f 7!M.e/Y ıM.F/.f / ıM.e/X ;

where X; Y are objects and f WX ! Y is a morphism in Mı.i/. Functoriality of M.Fe/
follows using naturality of M.e/.

Lemma 3.6. There is a dg 2-functor

.�/ıWC-modpre
! Cı-modpre;

where the assignments on dg 2-representations, morphisms, and modifications extend the
given structures from C to Cı.

Proof. A morphism of dg 2-representations ˆWM! N naturally extends to a morphism
of dg 2-representations ˆıWMı ! Nı of C using (2.1), which is a functorial assignment.
For a 1-morphism F and a dg idempotent eWF! F, one defines

.�Fe /X WD N.e/ˆı.X/ ı .�F/X ıˆ
ıM.e/X

and extends �Fe via (2.2). This way, it follows that ˆı indeed commutes with the action
of Cı defined above. Modifications of dg morphisms of dg 2-representations are naturally
extended using (2.2).

The dg 2-functor .�/ıWC-modpre
! Cı-modpre is, in a certain sense, left dg 2-adjoint

to restriction N 7! NjC along the inclusion of C into Cı.

Lemma 3.7. There are dg equivalences

EWHomC.M;NjC/ � HomCı.Mı;N/ WR;

where N is a dg idempotent complete pretriangulated 2-representation of Cı and M 2
C-modpre.

In particular, the dg 2-functor .�/ı restricts to a dg biequivalence on the full 2-sub-
categories of dg idempotent complete pretriangulated 2-representations.

Proof. The dg functorE is defined by extending a morphism of 2-representationsˆWM!
NjC of C by setting

E.ˆ/i D ˆi
ı:

The target of this dg functor is N.i/ ' N.i/ı since N is dg idempotent complete. The dg
functor R is simply given by restricting to N.i/ � N.i/ı. Given a dg morphism‰WMı!
N and an object .X; e/ in N.i/, it is clear that

E.‰/i.X; e/ D
�
‰i.X/;‰i.e/

�
gives a splitting for the idempotent ‰i.e/ and is hence isomorphic to ‰i.X; e/.
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3.3. Compact pretriangulated 2-representations

Given a pretriangulated 2-representation M and an object X of M.i/, we define, for any
object j of C, evaluation at X to be the dg functor

EvX W xC.i; j/!M.j/; F 7!M.F/X:

We say that a pretriangulated 2-representation M is compact if for any objects i;j of C
and any X 2M.i/, the functors EvX satisfy the equivalent conditions of Lemma 2.13 (see
also Lemma 2.14), i.e., the extended dg functors #–EvX have right adjoints. In this situation,
we will also say that EvX has a compact right adjoint.

Lemma 3.8. Let M be a pretriangulated 2-representation of a dg 2-category C and

X D

�
X 0 ˚X 00;

�
0 ˛

0 0

��
2M.i/:

Assume that EvX 0 ;EvX 00 have compact right adjoints. Then EvX has a compact right adjoint.

Proof. For G 2 C.i; j/, Y 2M.j/, we compute

HomM.j/
�
EvX .G/; Y

�
Š HomM.j/

��
GX 0 ˚ GX 00;

�
0 G˛
0 0

��
; Y

�
Š

�
HomM.j/.GX 00; Y /˚ HomM.j/.GX 0; Y /;

�
0 � ı G˛
0 0

��
Š

 
Hom #–

C .i;j/.G; Ev
�
X 00Y /˚ HomM.i/.G; Ev�X 0Y /;

 
0 Hom #–

C .i;j/

�
G; .Ev�˛/Y

�
0 0

!!
Š Hom #–

C .i;j/

�
G;
�
Ev�X 00 ˚ Ev�X 0 ;

�
0 Ev�˛
0 0

��
Y

�
;

where in the third isomorphism we have used that Ev is, in fact, a bifunctor by definition
of a 2-representation. This computation shows that EvX has the compact right adjoint�
Ev�X 00 ˚ Ev�X 0 ;

�
0 Ev�˛
0 0

��
.

We have the following dg 2-subcategories of C-modpre.

• The 2-subcategory of compact pretriangulated 2-representations denoted by C-modpre
c .

• The 2-subcategory of compact pretriangulated 2-representations with generators de-
noted by C-modpre

cg .

We observe that Pi is in C-modpre. The following lemma establishes when Pi belongs
to C-modpre

c .

Lemma 3.9. Let C be a dg 2-category. Then all principal 2-representations Pi are com-
pact if and only if C has compact left adjoints.
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Proof. First, assume that C has compact left adjoints. Let F 2 C.i; j/ be a 1-morphism.
Using Lemma 2.13, we need to show that the C.j; k/-module

Ev�F.G
_/ D Hom #–

C .i;k/

�
.�/F;G

�
is a compact object for any 1-morphism G in C.i; k/.

For the left adjoint �F 2
#–

C .j; i/ of F , there is a natural dg isomorphism

Hom #–
C .i;k/.HF;G/

�
�! Hom #–

C .j;k/.H;G
�F/; ˛ 7! .˛ ı0 id�F/ ı1 .idH ı0 uF/;

for any H 2 C.j; k/. This provides a dg isomorphism of dg C.j; k/-modules between
Hom #–

C .i;k/..�/F;G/ and the image under ‡ of G�F, which is, by Lemma 2.11, a compact
object in C.j; k/-moddg.

Conversely, assume Pi is compact for any object i of C. Then, in particular, for any
F 2 C.i; j/ the functor Hom #–

C .j;j/..�/F;1j/ is compact. Again using Lemma 2.11, there

exists a 1-morphism �F in
#–

C .j; i/ such that Hom #–
C .j;j/..�/F; 1j/ is dg isomorphic to

‡.�F/ as a dg C.j; i/-module. Thus, there are dg isomorphisms

Hom #–
C .j;j/.GF;1j/ Š Hom #–

C .j;i/.G;
�F/;

natural in G 2 C.j;i/. These dg functors and natural dg isomorphisms extend to inputs G
from

#–

C .j; i/. In particular, there are natural dg isomorphisms

Hom #–
C .j;j/

�
.�F/F;1j

�
Š Hom #–

C .j;j/.
�F; �F/:

We define cF to be the element corresponding to id�F under this isomorphism. Similarly,
Hom #–

C .i;j/..�/F;F/ is compact. Applying this to the identity 1-morphism 1i, there exists
a natural dg isomorphism

Hom #–
C .i;j/.1iF;F/ Š Hom #–

C .i;i/

�
1i; .F�/F

�
:

The image of the identity idF gives the element uF. The adjunction axioms for uF, cF now
follow from the fact that the isomorphisms Hom #–

C .i;k/.GF;H/ Š Hom #–
C .j;k/.G;H

�F/ are
natural in G;H adapting the argument of [29, Section IV.1].

Thus, Pi is in C-modpre
cg provided that C has compact left adjoints and generators (see

Section 3.1).

Example 3.10. LetRD kŒx�, considered as a dg algebra concentrated in degree zero. We
define the dg 2-category CR to have one object � and morphism category CR.�; �/ given
by a strictification of 7¹R˚R˝k Rº with horizontal composition induced by the tensor
product over R, and 1 corresponding to R.

The dg 2-category CR has its natural dg 2-representation N on N.�/D ¹Rº induced by
viewing the dg bimodules in CR.�; �/ as acting by tensor functors. This pretriangulated
2-representation is not compact. Indeed, since

HomN.�/.R˝k R˝R R;R/ Š Homk-moddg.R;R/
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is not a compact object in the dg category of dg R-R-bimodules, the requirement

HomN.�/.R˝k R˝R R;R/ Š Hom #–
C .�;�/

�
R˝k R; Ev�R.R/

�
cannot be satisfied.

On the other hand, we have the trivial dg 2-representation M with M.i/ D k-moddg,
on which R ˝k R acts by 0, R acts as the identity functor, with the endomorphism x of
R acting by zero. This is a compact dg 2-representation, since

HomM.�/
�
M.F/k;k

�
Š Hom #–

C .�;�/

�
F; Ev�k.k/

�
is satisfied for any F when taking Ev�k.k/ to be the diagram 1

x
�! 1 in

#–

C .�; �/.

3.4. Dg ideals of 2-representations and dg 2-subrepresentations

In this section, we collect facts about dg ideals used later in the paper.
A dg ideal of a pretriangulated 2-representation M of a dg 2-category C is a collection

of dg ideals I.i/ �M.i/ which is closed under the C-action.

Definition 3.11. Let M be a pretriangulated 2-representation of C, i 2 C, and f a mor-
phism in M.i/. Define the dg ideal IM.f / generated by f to be the smallest dg ideal of
M containing f .

If I is a dg ideal in a pretriangulated 2-representation M, we can form the quotient
M=I acting on

.M=I/.i/ DM.i/=I.i/:

In particular, given a dg 2-subrepresentation N of M, we define the quotient M=N to be
the quotient of M by the dg ideal generated by N.

Let M be a pretriangulated 2-representation of C. A pretriangulated 2-subrepresenta-
tion N of M is a collection of thick subcategories N.i/ �M.i/ for all objects i of C such
that for all 1-morphisms G and any 2-morphism ˛ in C.i; j/, we have that

NG.N / DMG.N / 2 N.j/; NG.f / DMG.f / 2 N.j/; N.˛/N DM.˛/N ;

for all objects N and morphisms f in N.i/. In particular, the thick subcategories N.i/
are closed under the C-action, which is the restriction of the C-action given by the dg 2-
functor M. Note that we require that N.i/ is closed under forming biproducts and taking
dg direct summands that exist in M.i/.

Given a collection of pretriangulated 2-subrepresentations ¹N�º�2I of a fixed pretrian-
gulated 2-representation M, we define the sum

P
�2I N� , as the smallest pretriangulated

2-subrepresentation of M containing all N� .

3.5. Cyclic and quotient-simple dg 2-representations

Recall that by the thick closure of a collection of objects in a dg category, we mean the
smallest dg subcategory which is generated by the given objects under shifts, cones, direct
sums, dg direct summands, and is closed under dg isomorphisms.
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Definition 3.12. Given a pretriangulated 2-representation M of C and an object X 2
M.i/, for some i 2 C, we denote by GM.X/ the 2-representation on the thick closure of
¹M.G/X jG 2 C.i;j/; j 2 Cº inside

`
j2C M.j/. We call GM.X/ the dg 2-subrepresenta-

tion C-generated by X . If GM.X/ D M, we say X C-generates M. We call M cyclic if
there exists an X 2M.i/, for some i 2 C, which C-generates M.

Lemma 3.13. Let C be a dg 2-category and M a cyclic dg 2-representation C-generated
by X 2M.i/.

(a) If C has generators, then M 2 C-modpre
g .

(b) If C has compact left adjoints, and EvX has a compact right adjoint, then M 2
C-modpre

c .

Proof. To prove (a), we first note that by assumption that X C-generates M, the thick
closure of ¹M.F/Xº, where F ranges over the 1-morphisms in C.i; j/, is M.j/. If C.i; j/
is the thick closure of Fi;j, then every 1-morphism is a dg direct summand of an object in
¹Fi;jº. Hence, every object in M.j/ is a dg direct summand of an object in ¹M.Fi;j/Xº

since the dg 2-functor M preserves shifts and cones, so M 2 C-modpre
g .

To prove (b), we first argue that, given the assumptions, for any F 2 C.i; j/, EvM.F/X
also has a compact right adjoint. For this, we show that, for any object Y 2 M.k/, the
object Ev�M.F/X .Y / is dg isomorphic to Ev�X .Y /

�F and hence compact. This follows from
the following computation

HomM.k/
�
EvM.F/X .G/; Y

�
D HomM.k/

�
EvX .GF/; Y

�
Š Hom #–

C .i;k/

�
GF; Ev�X .Y /

�
Š Hom #–

C .j;k/

�
G; Ev�X .Y /

�F
�

of the right adjoint of EvM.F/X , for G 2 C.j; k/. Here, the first equality follows using
M.GF/ D M.G/M.F/, the second dg isomorphism uses the right adjoint of EvX , and the
last dg isomorphism uses Lemma 3.9. Thus, by Lemma 2.13, EvM.F/X has a compact right
adjoint. For X 0 in the thick closure of the ¹M.F/Xº, the right adjoint of EvX 0 has compact
right adjoint by Lemma 3.8 and additivity. Therefore EvX 0 has a compact right adjoint for
any X 0 2M.i/ and M is compact.

Given a dg 2-subrepresentation N of a pretriangulated 2-representation M we define
the weak closure NÞ as the dg 2-subrepresentation defined on the full dg subcategories
NÞ.i/ � M.i/ on objects whose identities are contained in the ideal generated by N. A
dg 2-subrepresentation N is weakly closed in M if N D NÞ.

We say that X 2M.i/, for some i in C, weakly C-generates M if GM.X/
Þ DM.

We say M is weakly transitive if the weak closure of any dg 2-subrepresentation of M
equals M. Equivalently, M is weakly transitive if it is C-generated by any non-zero object
X in any M.i/.

We call a pretriangulated 2-representation M quotient-simple provided it has no proper
non-zero dg ideals. Note that, by definition, if M is quotient simple, it is also weakly
transitive.
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3.6. Homotopy 2-representations

LetCbe a dg2-category. In this section, we describe how a pretriangulated2-representation
M descends to a 2-representations KM on the corresponding triangulated categories. For
this, we define KM.i/ WDK.M.i// for any object i in C and

KM.F/ WDK
�
M.F/

�
WKM.i/! KM.j/;

for any 1-morphism in C.i; j/. If ˛W F! G is a dg 2-morphism, then ˛ induces a nat-
ural transformation KM.˛/WKM.F/! KM.G/. By construction, KM is an additive 2-
representation of ZC, cf. Section 3.1.

Lemma 3.14. The 2-representation KM is a 2-representation of the homotopy 2-category
KC.

Proof. If ˛WF! G is null-homotopic, i.e., @.ˇ/ D ˛ for some morphism ˇWF! G, then

KM.˛/ D KM.@ˇ/ D @
�
KM.ˇ/

�
;

and hence KM.˛/ D 0 as a natural transformation from KM.F/ to KM.G/. Thus, KM
descends to the quotient KC of ZC.

We call KM the homotopy 2-representation derived from M. We refrain from giving a
general definition of a triangulated 2-representation of KC but note that the homotopy 2-
representations KM defined above are triangulated in the sense that they define 2-functors
to the target 2-category T dg whose

• objects are triangulated categories of the form K. xC/;

• 1-morphisms are functors between such categories that are induced from dg functors
and hence are functors of triangulated categories;

• 2-morphisms are natural transformations of such functors coming from dg natural
transformations of the corresponding dg categories.

We will restrict ourselves to triangulated 2-representations that have dg enhancements as
described above. We note that the idempotent completion .KM/ı is again triangulated
by [2].

The dg 2-subcategory T
dg
g of T dg consists of such triangulated categories which have

a generator (also called a classical generator, see e.g. [28, Definition 1.10]), i.e., are equal
to the thick closure of a single object. We say a 2-representation of the form KM has
generators if its target is T

dg
g , that is, if KM.i/ has a generator for any object i. We note

that if M has generators as a pretriangulated 2-representation, then, in particular, KM has
generators as a triangulated 2-representation.

We will also use the following weaker notion of equivalence of dg 2-representations.
Let M and N be pretriangulated 2-representations. A morphism ˆWM ! N of dg 2-
representations is a quasi-equivalence if the dg functors ˆiWM.i/ ! N.i/ are quasi-
equivalences (see Section 2.5). In this case, we say that M and N are quasi-equivalent.
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In particular, given that our 2-representations are pretriangulated, the dg morphism ˆ

induces an equivalence Kˆ of triangulated 2-representations if and only if ˆ is a quasi-
equivalence.

We say that X is a C-quasi-generator for a pretriangulated 2-representation M if the
inclusion of GM.X/ into M is a quasi-equivalence (and hence KGM.X/ and KM are
equivalent).

For instance, if M is acyclic, the zero object is a C-quasi-generator for M.

4. Dg algebra 1-morphisms

Throughout this section, assume that C is a dg 2-category and M a pretriangulated 2-
representation in C-modpre.

4.1. Compact modules over dg algebra 1-morphisms

We say that A is a dg algebra 1-morphism in C.i; i/ if it comes with dg morphisms
uAW1i ! A, mAWAA! A satisfying the usual axioms of a unitary product internal to C.
Similarly, a morphism of dg algebra 1-morphisms is just a 2-morphism commuting with
the multiplication and unit morphisms. Given A, define moddg

C.i;j/-A to be the category of
right dg A-modules in C.i; j/.

Lemma 4.1. For 1-morphisms G in C.i; j/ and Y 2 moddg
C.i;j/-A, there is a dg isomor-

phism
Hommoddg

C.i;j/-A
.GA;Y/ Š HomC.i;j/.G;Y/;

natural in G and Y.

Proof. The proof is an adaptation of the purely formal argument in [17, Lemma 7.8.12],
noting that the mutually inverse morphisms

f 7!
�
f ı .idG ı0 uA/

�
and

�
�Y ı .g ı0 idA/

�
 [ g

are dg morphisms since uA and �Y, the right A-action on Y, are.

We now construct pretriangulated 2-representations of modules over a dg algebra 1-
morphism A in

#–

C .i; i/.

Definition 4.2 (
#–

MA, MA). Let A be a dg algebra 1-morphism in
#–

C .i; i/.

(1) Define
#–

MA.j/ D moddg
#–
C .i;j/

-A, for any object j of C. Left multiplication by 1- and
2-morphisms in C induces a natural structure of a pretriangulated 2-representation
of C on the

#–

MA.j/ which we denote by
#–

MA.

(2) Define MA.j/ to be the thick closure of the set ¹GA jG 2 C.i;j/º in moddg
#–
C .i;j/

-A.
The collection of dg subcategories MA.j/ forms a pretriangulated 2-subrepresen-
tation of

#–

MA of C, which we denote by MA.
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Lemma 4.3. The dg 2-representation
#   –

MA is dg equivalent to
#–

MA.

Proof. For any j, the dg category
#–

MA.j/ is closed under taking conical cokernels of dg
morphisms. Thus, the embedding I WMA.j/!

#–

MA.j/ extends to a fully faithful dg functor
#–
I W

#   –

MA.j/!
#–

MA.j/.
Now, any object X2

#–

MA is dg isomorphic to the (conical) cokernel of the dg morphism

idX ı0 m � a ı0 idAWXAA! XA;

where aWXA! A denotes the right A-action on X. Both modules XAA, XA are in the
image of

#–
I . But the image of

#–
I is closed under taking cokernels of dg morphisms. This

follows as cokernels of dg morphisms exist in
#   –

MA.j/ by Lemma 2.12 and these cokernels
are preserved by

#–
I . Thus, X is in the essential image of

#–
I . This proves the claim.

Lemma 4.4. Let A be a dg algebra 1-morphism in
#–

C .i; i/.

(a) If C has generators, then MA 2 C-modpre
g .

(b) If C has compact left adjoints, then MA 2 C-modpre
c .

Proof. If C.i; j/ has a generator Fi;j, then, by definition, MA.j/ is the thick closure of
Fi;jA and thus MA has generators, i.e., MA 2 C-modpre

g . This proves (a).
To prove (b), we use Lemma 3.13 (b) to see that it suffices to show that EvA has a

compact right adjoint. By Lemmas 4.1 and 4.3, for any G 2
#–

C .j; k/, Y 2
#–

MA.k/, we
obtain natural isomorphisms

Hom #–MA.k/

� #–EvA.G/;Y
�
D Hom #–MA.k/.GA;Y/ Š Hom #–

C .i;k/.G;Y/

thus EvA has the forgetful functor on
#–

MA !
#–

C as right adjoint, which is a compact right
adjoint by construction.

Similarly to dg modules, one also defines dg bimodules in a general dg 2-category.
Working with

#–

C , the existence of cokernels ensures that these dg bimodules can be com-
posed. Indeed, let A, B; C be dg algebra 1-morphisms in

#–

C and let M be a dg A-B-
bimodule 1-morphism with (commuting) left and right actions �M and �M and let N be
a dg B-C-bimodule 1-morphism with (commuting) left and right actions �N and �N. We
define the relative composition M ıB N as the cokernel of the dg morphism

MBN
�Mı0idN�idMı0�N
������������! MN;

which exists in
#–

C by Lemma 2.12. Note that M ıB N is now a dg A-C-bimodule.

4.2. The algebra structure on internal homs ŒX; X�

Let X 2M.i/ be non-zero. We consider the evaluation dg functors

EvX WC.i; j/!M.j/; F 7!M.F/X;

which we may extend to xC.i; j/ defined at the beginning of Section 3.3.
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If EvX has a compact right adjoint (that is, if it satisfies the equivalent conditions of
Lemma 2.13), then we denote the right adjoint dg functor of #–EvX by

ŒX;��W
#–

M.j/!
#–

C .i; j/;

called the internal hom. We note that ŒX;�� is natural inX . Furthermore, for the restriction
of ŒX;�� to xM.j/, and an object .

L
i Yi ; ˛/ in xM.j/, we haveh

X;
�M

i

Yi ; ˛
�i
Š

�M
i

ŒX; Yi �; ŒX; ˛�
�
:

For X 2M.i/; Y 2
#–

M.j/, we define

evX;Y W
#–

M
�
ŒX; Y �

�
X ! Y

as the image of the identity morphism under the dg isomorphism

Hom #–
C .i;j/

�
ŒX; Y �; ŒX; Y �

�
Š Hom #–M.j/

� #–

M
�
ŒX; Y �

�
X; Y

�
:

Note that, as the image of a dg morphism under a dg isomorphism, evX;Y is also a dg
morphism.

Lemma 4.5. For non-zeroX 2M.i/ such that EvX has a compact right adjoint, the object

AX WD ŒX;X� 2
#–

C .i; i/

carries the structure of a dg algebra 1-morphism.

Proof. We define the unit morphism uAX as the image of the identity on X under the dg
isomorphism

Hom #–M.i/.X;X/ Š Hom #–
C .i;i/.1i;AX /:

We define the multiplication mAX as the image of the dg morphism

evX;X ı
#–

M.AX /.evX;X /W
#–

M.AX /
#–

M.AX /X !
#–

M.AX /X ! X

under the dg isomorphism

Hom #–M.i/
� #–

M.AXAX /X;X
�
Š Hom #–

C .i;i/.AXAX ;AX /:

It is a routine exercise to check the algebra axioms.

Note that if M is compact, i.e., M 2 C-modpre
c , then we can associate an algebra 1-

morphism AX to any non-zero object X 2M.i/.

Lemma 4.6. For any Y 2
#–

M.j/, the object ŒX; Y � in
#–

C .i; j/ has the structure of a right
dg module over AX . Moreover, for any morphism f W Y1 ! Y2 2

#–

M.j/, the morphism
ŒX; f � commutes with the right action of AX and satisfies ŒX; @f � D @ŒX; f �.
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Proof. We define the right action �ŒX;Y �W ŒX; Y �AX ! ŒX; Y � as the image of

evX;Y ı
#–

M
�
ŒX; Y �

�
.evX;X /W

#–

M
�
ŒX; Y �

� #–

M.AX /X !
#–

M
�
ŒX; Y �

�
X ! Y

under the dg isomorphism

Hom #–M.j/
� #–

M
�
ŒX; Y �AX

�
X; Y

�
Š Hom #–

C .i;j/

�
ŒX; Y �AX ; ŒX; Y �

�
:

It is, again, a routine exercise to check that this morphism satisfies the axioms of a right
action. Compatibility with differentials follows from evX;Y being a dg morphism.

Note that Lemma 4.6 can be reformulated as saying that ŒX;�� is a dg functor from
#–

M.j/ to
#–

MAX .j/ for any j 2 C.

4.3. An equivalence of dg 2-representations

Throughout this subsection, we will assume that C has compact left adjoints, see Defini-
tion 3.3 (b). We additionally assume that M is compact though, strictly speaking, we could
fix X and only require that EvX has a compact right adjoint.

Lemma 4.7. For any G 2 xC.i;j/, X 2M.i/, and Y 2M.j/, we have a dg isomorphism�
X;M.G/Y

�
Š GŒX; Y �

in
#–

C .i; j/, natural in all variables.

Proof. For any H 2 xC.i; j/, there is a sequence of dg isomorphisms, natural in all vari-
ables,

Hom #–
C .i;j/

�
H;
�
X;M.G/Y

��
Š HomM.j/

�
M.H/X;M.G/Y

�
Š Hom #–M.i/

��
� #–

M.G/
� #–

M.H/X; Y
�

Š Hom #–M.i/
� #–

M
�
.�G/H

�
X; Y

�
Š Hom #–

C .i;j/

�
.�G/H; ŒX; Y �

�
Š Hom #–

C .i;j/

�
H;GŒX; Y �

�
;

where the second and third dg isomorphisms follow from 2-functoriality of
#–

M, which, in
particular, implies that

#–

M.�G/ is left adjoint to
#–

M.G/.

Proposition 4.8. There is a morphism of dg 2-representations from
#–

M to
#–

MAX induced
by the functor ŒX;��.

Proof. For notational simplicity, we denote the dg functor ŒX;��W
#–

M.j/!
#–

MAX .j/, which
indeed has the latter target by Lemma 4.6, by ˆ. By Lemma 4.7, for each 1-morphism G,
there is a dg isomorphism of functors �GWˆ ı

#–

M.G/!
#–

MAX .G/ ıˆ, natural in G.
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To prove that the dg functor ˆ together with the natural dg isomorphism � indeed
induces a morphism of 2-representations, it hence suffices to check that

�GH D .id #–MAX .G/
ı0 �H/ ı1 .�G ı0 id #–M.H//;

for any objects k; l and 1-morphism H 2 xC.j; k/, G 2 xC.k; l/, K 2 xC.i; l/.
This follows from commutativity of

Hom #–M.l/
� #–

M.K/X;
#–

M.GH/Y
� � //

�

��

Hom #–M.k/
� #–

M
�
.�G/K

�
X;

#–

M.H/Y
�

�

��

Hom #–M.j/
� #–

M
�
�.GH/K

�
X; Y

�
�

��

Hom #–M.j/
� #–

M
�
.�H/.�G/K

�
X; Y

�
�

��

Hom #–
C .i;j/

�
�.GH/K; ŒX; Y �

�
�

��

Hom #–
C .i;j/

�
.�H/.�G/K; ŒX; Y �

�
�

��

Hom #–
C .i;l/

�
K;GHŒX; Y �

�
Hom #–

C .i;k/

�
.�G/K;HŒX; Y �

��oo

in exactly the same vein as in [30, Lemma 6].

Proposition 4.9. The morphism of dg 2-representations constructed in Proposition 4.8
is fully faithful when restricted to GM.X/, the pretriangulated 2-subrepresentation C-
generated by X .

Proof. First, note that

Hom #–MAX .j/

��
X;M.G/X

�
;
�
X;M.H/X

��
Š Hom #–MAX .j/

�
GAX ;

�
X;M.H/X

��
Š Hom #–

C .i;j/

�
G;
�
X;M.H/X

��
Š Hom #–M.j/

�
M.G/X;M.H/X

�
Š HomM.j/

�
M.G/X;M.H/X

�
where the second isomorphism is given by Lemma 4.1. This shows that the functor ŒX;��
is full and faithful for objects of the form M.G/X .

From the definition of morphism spaces in M.j/ ' xM.j/, it is immediate that

Hom #–MAX .j/

�
ŒX; Y �; ŒX;Z�

�
Š HomM.j/.Y;Z/;

for all Y;Z in the thick closure of ¹M.G/X j G 2 C.i; j/º, completing the proof.

The dg 2-representation GM.X/ may not be dg equivalent to MAX as the latter is
closed under dg idempotents but the former is not. However, when replacing M by the
dg idempotent completion Mı, we obtain an equivalence of dg 2-representation between
GMı.X/ and MAX .
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Proposition 4.10. The morphism of dg 2-representations from Proposition 4.8 induces an
equivalence of dg 2-representation GMı.X/!MAX .

Proof. Note that FA Š ŒX; FX� and ŒX;�� commutes with taking dg direct summands.
Hence, the full image of ŒX;�� is the thick closure of the set ¹FAX j Fº.

As X C-generating M implies that X also C-generates Mı, we obtain the following
result.

Corollary 4.11. If the object X C-generates M, then the dg 2-representations MAX and
Mı are dg equivalent.

Observe that, if M.j/D b¹Xjº, then MAX .j/'3¹ŒX;Xj�º and MAX .j/ is hence in M
dg
g .

Hence, if such Xj exists for any j, then MAX 2 C-modpre
g .

Corollary 4.12. Provided that X C-generates M, the morphism of dg 2-representations
#–

M!
#–

MAX constructed in Proposition 4.8 is a dg equivalence.

Proof. We note that the equivalences from Corollary 4.11 and Lemma 4.3 give an equiv-
alence of

#   –

Mı '
#–

M and
#       –

MAX '
#–

MAX .

Corollary 4.13. If M is cyclic, then there exists a dg algebra 1-morphism A in C, such
that Mı is dg equivalent to MA.

Proof. This is seen by choosing a C-generator X of M, and setting A D AX .

If M only has a weak C-generator, the following weaker statement still holds true.

Proposition 4.14. Let X be a weak C-generator for M. Then ŒX;�� restricts to a full and
faithful morphism of pretriangulated 2-representations MÞ ! MÞ

AX . Here, the target is
the weak closure taken in

#–

MAX .

Proof. Assume given an object Y 2 MÞ.i/, we find an object Y 0 2 M.i/ together with
(non-dg) morphisms �W Y ! Y 0, pW Y 0 ! Y such that idY D p�. As ŒX;�� is a functor,
ŒX; p�ŒX; �� is the identity on ŒX; Y � and hence the latter is contained in the closure MÞ

AX .
The arguments in the proof of Proposition 4.9 can again be used to prove that the func-
tor ŒX;�� to the closure MÞ.i/ is fully faithful. For this, observe that, for 1-morphisms
G;G0 2 xC.i;j/, and objects Y;Y 0 2M.j/ together with morphisms idY D Y

�
�!M.G/X

p
�!

Y and idY 0 D Y 0
�0

�!M.G0/X
p0

�! Y 0, the diagram

Hom
�
M.G/X;M.G0/X

�
ŒX;p0�ı.�/ıŒX;��





ŒX;��
// Hom

��
X;M.G/X

�
;
�
X;M.G0/X

��
p0ı.�/ı�





Hom
�
Y;M.G0/X

�ŒX;�0�.�/ıŒX;p�

JJ

ŒX;��
// Hom

�
ŒX; Y �;

�
X;M.G0/X

���0ı.�/ıp

JJ

commutes.The horizontal maps are the application of a dg functor and hence commute with
differentials. Although the vertical maps are not necessarily dg morphisms, they display
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the lower row as direct summands of the upper row. Hence, the lower horizontal map is
the restriction of an isomorphism and hence a dg isomorphism.

The morphism ŒX;�� of dg 2-representations, when extended to the weak closures, is
not necessarily an equivalence. For example, take C to be the trivial dg 2-category with
single object �, 1-morphism 1 D 1� and EndC.�;�/.1/ D k. Let M.�/ consist of acyclic
objects in k-moddg. Then any generator of M yields MÞ

AX .�/ ' k-moddg, that is, MÞ
AX

is the natural pretriangulated 2-representation, into which M D MÞ embeds as a proper
pretriangulated 2-subrepresentation.

4.4. Morphisms of dg 2-representations and dg algebra 1-morphisms

In this section, we again assume that the dg 2-category C has compact left adjoints, see
Definition 3.3 (b), and that M, N are compact pretriangulated 2-representations.

Lemma 4.15. Let A;B be dg algebra 1-morphisms in
#–

C and assume given a morphism
ˆWMA ! MB of dg 2-representations. Then there exists a dg A-B-bimodule X and a dg
isomorphism ˆ Š .�/ ıA X.

Proof. Given A;B, let i;j denote the objects such that A 2
#–

C .i;i/, B 2
#–

C .j;j/. Assume
that we have a morphism of dg 2-representations ˆWMA ! MB. We note that ˆ induces
a morphism

#–

MA !
#–

MB of dg 2-representations of
#–

C by Lemma 3.5 (b), which we will
also simply denote by ˆ. Let ˆk denote the dg functor

#–

MA.k/!
#–

MB.k/ underlying this
morphism of dg 2-representations. Define X WD ˆi.A/ 2

#–

C .j; i/. As A 2 MA.i/, X is
a right B-module in MB.i/. Furthermore, X carries a left A-module structure via the
composition

Aˆi.A/ D
#–

MB.A/ˆi.A/ Š ˆi
� #–

MA.A/A
�
D ˆi.AA/

ˆi.�A/
�����! ˆi.A/;

where the dg isomorphism is given by the natural transformation � included in the data of a
morphism of 2-representations. Thus, X is an A-B-bimodule in

#–

C .j;i/, with XB 2MB.i/.
Next, we show that there exists a dg isomorphism ˆ Š .�/ ıA M. Indeed, for any

object Y in MA.k/, we have

Y ıA X D coker
�
YAX

�Yı0idX�idYı0�X
�����������! YX

�
Š coker

�
ˆk.YAA/

ˆk.�Y/ı0idA�idYı0ˆk.�A/
�����������������! ˆk.YA/

�
Š ˆk

�
coker

�
YAA

�Yı0idA�idYı0�A
�����������! YA

��
Š ˆk.Y/:

Here, the second step uses that ˆ commutes with the
#–

C -action and the definition of the
left action on XDˆi.A/, the third step uses that the dg functorˆk preserves cokernels of
dg morphisms (as it is induced by a dg functor from MA.k/ to MB.k/), and the final step
uses that Y and Y ıA A are dg isomorphic. The dg isomorphisms used above are all natural
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with respect to morphisms of right A-modules in
#–

C . In fact, a morphism of such modules
induces morphisms of the diagrams of the displayed cokernels, and the dg isomorphism �

used in the third step is natural in Y.

Denoting by C-mod
pre
int the dg 2-category of internal dg 2-representations, it follows

from Lemmas 4.13 and 4.15 thatC-mod
pre
int is dg biequivalent to the 2-full dg 2-subcategory

of C-modpre
cg consisting of pretriangulated 2-representations which are dg idempotent com-

plete and cyclic.

Proposition 4.16. Let ˆWM! N be a morphism of dg 2-representations and ˛WA! B
be a dg morphism of dg algebra 1-morphisms in

#–

C .i; i/.

(a) For any object X in M.i/, ˆ induces a dg morphism of dg algebra 1-morphisms
˛ˆWAX ! AˆiX :

(b) The morphism ˛ induces an essentially surjective morphism of dg 2-representa-
tions ˆ˛WMA !MB.

(c) We have ˛ D ˛ˆ˛ .

(d) ˆ is full if and only if ˛ˆ is an epimorphism in
#–

C .i; i/.

(e) ˆ˛ is full if and only if ˛ is an epimorphism in
#–

C .i; i/.

Proof. (a) For simplicity of notation, we set Y D ˆiX . Then, for any G 2 C.i; i/, the
functor ˆi induces a morphism

HomM.i/
�
M.G/X;X

�
! HomN.i/

�
N.G/Y; Y

�
;

natural in G. Transferring this via the adjunction isomorphism, we obtain a morphism

Hom #–
C .i;i/

�
G; ŒX;X�

�
! Hom #–

C .i;i/

�
G; ŒY; Y �

�
;

again natural in G. This implies that there is a dg morphism ˛ˆW ŒX;X�! ŒY;Y �, such that
the second morphism of morphism spaces is given by post-composition with ˛ˆ. Thanks
to naturality of all constructions, ˛ˆ preserves the algebra structure.

(b) Let M 2 MA.i/. We define ˆ˛.M/ D M ıA B, noting the natural structure on B
as a left dg A-module. It is immediate that this assignment induces a morphism of dg 2-
representations. Since MB is thick closure of the GB, for all 1-morphisms G in C, essential
surjectivity follows from GB Š GA ıA B.

(c) To prove ˛ D ˛ˆ˛ , consider the diagram

Hom #–
C .i;i/.G;A/

˛ˆ˛ ı�

��

� HomMA.i/.GA;A/

ˆ˛

��

HomMB.i/.GA ıA B;A ıA B/

�

��

Hom #–
C .i;i/.G;B/

� HomMB.i/.GB;B/
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and trace g 2 Hom #–
C .i;i/.G;A/ along the path going down, to the right, and then up again.

The image of g going down is �A ı .g ı0 idA/, which is mapped to .�A ıA idB/ ı .g ı0
idA ıA idB/ byˆ˛ , and then in the natural isomorphism is identified with �B ı .˛ ı0 idB/ ı

.g ı0 idB/ D �B ı ..˛ ı1 g/ ı0 idB/. The latter is then sent to ˛ ı1 g going back up, and
hence ˛ˆ˛ D ˛, as claimed.

(d) Assume ˆ is full. Then for any G in C.i; i/, the morphism

ˆiWHomM.i/
�
M.G/X;X

�
! HomN.i/

�
N.G/Y; Y

�
is an epimorphism, implying that the morphism

Hom #–
C .i;i/

�
G; ŒX;X�

�
! Hom #–

C .i;i/

�
G; ŒY; Y �

�
;

is also an epimorphism. This implies that ˛ˆ is an epimorphism. Conversely, notice that
for G in C.i; i/, under the Yoneda embedding, Hom #–

C .i;i/.G;�/ is sent to

HomC.i;i/-moddg.G_;�/;

which is exact and thus Hom #–
C .i;i/.G;�/ is exact. Thus, if ˛ˆ is an epimorphism, so is

Hom #–
C .i;i/.G; ˛ˆ/ as well as the induced morphism

HomM.i/
�
M.G/X;X

�
! HomN.i/

�
N.G/Y; Y

�
:

(e) This follows from ˛ D ˛ˆ˛ and (d).

We call a dg algebra1-morphism A simple if anydg morphisms of algebra1-morphisms
A! B in

#–

C which is an epimorphism in
#–

C is necessarily an isomorphism.
The following is an analogue of [32, Corollary 12].

Lemma 4.17. Let A be a dg algebra 1-morphism in
#–

C . Then A is simple if and only if
MA is quotient-simple.

Proof. Assume A is simple and assume there is a full and essentially surjective morphism
of dg 2-representations ˆWMA ! N. Let X D ˆ.A/, then N Š MB for B D ŒX; X�. By
Lemma 4.16 (a), this induces a morphism of dg algebra 1-morphisms A! B, which is an
epimorphism in

#–

C by Lemma 4.16 (d), since ˆ is full. By assumption, this implies that
this epimorphism is an isomorphism, and ˆ is an equivalence.

Conversely, assume that MA is quotient-simple and we have a morphisms of dg algebra
1-morphisms ˛WA! B, which is an epimorphism in

#–

C . Then we obtain an essentially
surjective morphism of dg 2-representations ˆ˛WMA!MB by Lemma 4.16 (b), which is
full by Lemma 4.16 (e), since ˛ is an epimorphism. By quotient-simplicity of MA, we see
that ˆ˛ is also faithful and hence a dg equivalence, which implies that ˛ D ˛ˆ˛ is a dg
isomorphism.

Denote by Ci the 2-category on the single object i with morphism category C.i; i/.
We have the following corollary, cf. [30, Corollary 4.10].
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Corollary 4.18. There is a bijection between equivalence classes of cyclic dg 2-represen-
tations M 2 C-modpre

c which are C-generated by some object X 2M.i/ and equivalence
classes of cyclic dg 2-representations in Ci-modpre

c .
This bijection preserves the class of quotient-simple dg 2-representations.

Proof. Let M 2 C-modpre
c be C-generated by X 2 M.i/. Then AX 2

#–

C .i; i/ and hence
AX gives rise to a dg 2-representation of Ci. Similarly, any dg algebra 1-morphism in
# –

Ci is also a dg algebra 1-morphism in
#–

C , giving the converse map. This yields the first
statement.

Since simplicity of AX is a property formulated inside of the dg category
#–

C .i;i/, AX
is a simple dg algebra 1-morphism in Ci if and only if it is a simple dg algebra 1-morphism
in C. Thus, the second statement follows from Lemma 4.17.

4.5. Morita equivalence

Two dg algebra 1-morphisms will be called dg Morita equivalent provided that MA and
MB are dg equivalent as pretriangulated 2-representations of C. We emphasize that this
notion is distinct from the usual notion of dg Morita equivalence for dg algebras, which
considers quasi-equivalences of derived categories of dg modules.

Proposition 4.19. Let A 2
#–

C .i;i/ and B 2
#–

C .j;j/ be two dg algebra 1-morphisms. The
following are equivalent:

(a) A and B are dg Morita equivalent;

(b) There exist a dg A-B-bimodule X 2
#–

C .j;i/ and a dg B-A-bimodule Y 2
#–

C .i;j/
with YA 2MA.j/ and XB 2MB.i/ such that X ıB Y Š A and Y ıA X Š B.

Proof. The implication (b))(a) is obvious, since � ıA X and � ıB Y provide mutually
inverse dg equivalences between MA and MB.

For the implication (a))(b) assume that we have a dg equivalenceˆWMA!MB. Let
ˆk be the dg functor MA.k/!MB.k/ underlying this morphism of dg 2-representations.
Define X WD ˆi.A/ be the dg A-B-bimodule inducing ˆ by Lemma 4.15. We similarly
obtain a dg B-A-bimodule Y from the dg functor ‰jWMB.j/! MA.j/ which is part of
the given dg equivalence. The given dg isomorphisms ‰k ıˆk Š IdMA.k/ and ˆk ı‰k Š

IdMB.k/ provide dg isomorphisms

A Š ‰i ıˆi.A/ Š ‰i.X/ Š X ıB Y

and
B Š ˆj ı‰j.B/ Š ˆj.Y/ Š Y ıA X

as required.

Corollary 4.20. Let C be a pretriangulated 2-category with compact left adjoints. Fur-
ther, let M, N be two compact pretriangulated 2-representations C-generated byX and Y ,
respectively. Then the dg 2-representations Mı and Nı are dg equivalent if and only if the
dg algebra 1-morphisms AX and AY are dg Morita equivalent.
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4.6. Morita quasi-equivalence

Let A 2
#–

C .i; i/ and B 2
#–

C .j; j/ be dg algebra 1-morphisms and ˆWMA ! MB a mor-
phism of dg 2-representations. Let X 2

#–

C .j; i/ be the dg A-B bimodule inducing ˆ by
Lemma 4.15.

Proposition 4.21. The morphism of dg 2-representations ˆWMA ! MB is a quasi-equi-
valence if and only if the following conditions hold:

(a) the natural maps HomMA.k/.FA;GA/ ! EndMB.k/.FX;GX/ are quasi-isomor-
phisms for all 1-morphisms F;G 2 C.i; k/ for any k 2 C;

(b) X cyclically generates the homotopy 2-representation KMB.

If we have generators Fi;k of C.i; k/, for k 2 C, we can simplify (a) to requiring a
quasi-isomorphism EndMA.k/.Fi;kA/! EndMB.k/.Fi;kX/.

Proof. First, assume that ˆ is a quasi-equivalence. As ˆk sends FA to FA ıA X Š FX,
condition (a) follows. Condition (b) follows since A cyclically generates KMA.

For the converse, first note that since ˆk is a dg functor, it descends to a collection
of triangle functors KˆkWKMA.k/! KMB.k/. Then (a) implies that each Kˆk is fully
faithful, by [20, Lemma 4.2 (a)], since every object in KMA.k/ is in the thick closure of
the FA, for F 2 C.i; k/. Moreover, Kˆk is dense by (b).

We also obtain the following analogue of Corollary 4.11 for C-quasi-generators.

Corollary 4.22. Let M be a pretriangulated 2-representation with a C-quasi-generatorX.
Then the morphism of dg 2-representations ŒX;��WM !

#–

MAX induces an equivalence
between .KM/ı and .KMAX /

ı.

Proof. By assumption that X is a C-quasi-generator for M, it follows that the inclusion of
KGM.X/ into KM is an equivalence of homotopy 2-representations.

We claim that .KGM.X//
ı is equivalent to .KMAX /

ı. Note that the functors

KŒX;��WKM.i/! K
#–

MAX .i/

restrict to fully faithful functors KGM.X/.i/ ! KMAX .i/ by Proposition 4.9. The dg
isomorphisms ŒX;GX� Š GAX are natural in the second component and descend to the
homotopy categories. Clearly, all objects GAX are in the image of these functors. Using
fully faithfulness, passing to the idempotent completions implies the claim. Thus, we con-
clude that the homotopy 2-representations .KM/ı and .KMAX /

ı are equivalent.

Remark 4.23. If the categories KM.i/ have a bounded t-structure, then they are idem-
potent complete by [27] and hence KM ' .KM/ı. In this case, assuming the setup of
Corollary 4.22, consider the fully faithful functors KŒX;��WKGM.X/.i/! KMAX .i/.
Given an idempotent e in the image, e D ŒX; f � for a morphism f in KM.i/ which
is also an idempotent and hence splits off a dg direct summand Y in KGM.X/.i/ '
KM.i/. Thus, e splits off the object ŒX; Y � as a dg direct summand and, hence, KMAX .i/
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is idempotent complete. Hence, if M has a bounded t-structure, the morphism of dg
2-representations ŒX;��WM!MAX is a quasi-equivalence provided that X is a C-quasi-
generator.

Algebraic conditions on the categories M.i/ which imply the existence of a bounded
t-structure are provided in [45, Theorem 1]. Namely, if A is a positively graded dg algebra
with A0 semi-simple such that @.A0/ D 0, then K.A-csf/ is closed under taking direct
summands.

4.7. Restriction and pushforward

Let C;D be dg 2-categories and FWC! D a dg 2-functor.
We obtain a dg 2-functor R D RFWD-mod

pre
int ! C-modpre by precomposition, i.e.,

R.M/ DM ı F.
On the other hand, we can consider a dg 2-functor P D PFWC-mod

pre
int ! D-mod

pre
int ,

by defining P.MA/ DMF.A/.

Lemma 4.24. For MA 2 C-mod
pre
int , there is a morphism of dg 2-representations ˆWM!

RPM induced by F.

Proof. Writing RPM D RMF.A/, we define ˆj by mapping an object X 2M.j/ to F.X/
and similarly on morphisms. It is straightforward to check that this defines a morphism of
dg 2-representations.

Let MB 2 D-mod
pre
int . Assuming that B 2 M.i/ is a C-generator for RMB, we have

a canonical choice of internal dg 2-representation of C dg equivalent to RMB defined by
MC0 , for C0 D CŒB;B�, where we distinguish internal homs in

#–

C and
#–

D by denoting them
by CŒ�:�� and DŒ�:��, respectively. We can then define PRMB as PMC0 .

Lemma 4.25. Let MDMB2D-mod
pre
int and assume that B2M.i/ is a C-generator for RM.

Then there is an essentially surjective morphism of dg 2-representations‰WPRMB!MB.

Proof. Set C0 D CŒB; B�, the dg algebra 1-morphism associated to B, and C D F.C0/.
By the assumption that B is a C-generator for RM, the latter is dg equivalent to MC0 by
Corollary 4.11 as the restriction is dg idempotent complete. Then, by construction, we
have an equivalence of dg 2-representations PRMB !MC. We define the map 'WC! B
as the image of idC0 under the chain of isomorphisms

Hom #–
C .i;i/.C

0;C0/ Š Hom #   –RM.i/

�
RM.C0/B;B

�
D Hom #–M.i/

�
F.C0/B;B

�
D Hom #–M.i/.CB;B/

Š Hom #–
D.i;i/.C;B/:

Recalling that the inverse dg isomorphisms

Hom #–M.i/.FB;B/ Š Hom #–
D.i;i/.F;B/
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for F 2 C.i; i/ are given by

˛W g 7! g ı1 .idF ı0 uB/

mB ı1 .f ı0 idB/ [ f Wˇ;
(4.1)

we see that, explicitly, ' D ˛.evCBB/ D evCBB ı1 .idC ı0 uB/.
We claim that this is an algebra homomorphism, i.e., ' ı1 mC D mB ı1 .' ı0 '/. In

order to prove this, we consider the images of both sides of the claimed equality under the
dg isomorphism

Hom #–
D.i;i/.CC;B/ Š Hom #–M.i/.CCB;B/:

The strategy is to show that the morphisms on both sides of the claimed equation corre-
spond to evCBB ı1 .idC ı0 evCBB/.

First, observe that

mB ı1 .' ı0 idB/ D ˇ.'/ D ˇ˛.evCBB/ D evCBB: (4.2)

On the one hand, mB ı1 .' ı0 '/ corresponds to

mB ı1
��

mB ı1 .' ı0 '/
�
ı0 idB

�
:

Consider the diagram

CCB
'ı0idCB //

idCı0evCBB ((

BCB
idBı0'ı0idB //

idBı0evCBB

((

BBB
mBı0idB

''

idBı0mB

��

CB
'ı0idB //

evCBB
//

BB
mB

''

BB

mB

��

B;

where the two triangles commute by (4.2), the leftmost square commutes by the inter-
change law, and the rightmost square commutes by associativity of mB. This shows that
mB ı1 .' ı0 '/ corresponds to evCBB ı1 .idC ı0 evCBB/ as claimed.

On the other hand, ' ı1 mC corresponds to

mB ı1
�
.' ı1 mC/ ı0 idB

�
D mB ı1 .' ı0 idB/ ı1 .mC ı0 idB/

D evCBB ı1 .mC ı0 idB/;

where the second equality uses (4.2). Now consider the definition of mC D F.mC0/. Then
the map mC ı0 idBW CCB ! CB in

#–

M.i/ is really the map F.mC0/ ı0 idBW F.C0C0/B !
F.C0/B in

#–

M.i/, which, by definition of R, describes the action of mC0 via RMB. By
associativity of the action of RMB.C0/ via evCBB, we have

evCBB ı1
�
F.mC0/ ı0 idB

�
D evCBB ı1

�
F.idC0/ ı0 evCBB

�
D evCBB ı1 .idC ı0 evCBB/

as claimed.
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Since ' defines a left dg C-module structure on B, we obtain a morphism of dg
2-representations MC!MB given by � ıC B. As this morphism sends C to B, it is essen-
tially surjective.

4.8. Local quasi-equivalences and dg 2-representations

Throughout this subsection, we use the same setup as in the previous one and additionally
assume that the dg 2-functor FWC! D is a local quasi-equivalence and, moreover, essen-
tially surjective on objects. That is, for any object j in D, there exists an object i in C

such that Pk D D.k;�/ is dg equivalent to PF.i/ D D.F.i/;�/ through composing with
1-morphisms in D.

Proposition 4.26. Under the assumptions on F as above, ˆWMA ! RPMA is a quasi-
equivalence of dg 2-representations.

Proof. Recall that, if A 2 C.i; i/, MA.j/ is the thick closure of the GA with G 2 C.i; j/
and RPMA.j/ is the thick closure of the HF.A/ for H 2 D.F.i/; F.j//. Since KFi;j

is essentially surjective, we can find G 2 C.i; j/ such that H 2 D.F.i/; F.j// is quasi-
isomorphic to F.G/ and hence HF.A/ is quasi-isomorphic to F.G/F.A/ D F.GA/, so
Kˆ.i/ is also essentially surjective. Moreover, we have a commutative diagram

HomMA.j/.GA;G0A/

��

Š Hom #–
C .i;j/.G;G

0A/

��

HomRPMA.j/

�
F.GA/; F.G0A/

� Š Hom #–
D.i;j/

�
F.G/; F.G0A/

�
:

(4.3)

Since the right vertical arrow is a quasi-isomorphism by assumption, so is the left vertical
arrow. This proves the lemma.

Proposition 4.27. Assume, in addition, that B is a C-generator for RMB. Then the dg
functor ‰WPRMB !MB is a quasi-equivalence.

Proof. It suffices to prove that � ıC B is a quasi-equivalence. By Lemma 4.25, this mor-
phism of dg 2-representation is essentially surjective. Thus, it suffices to show that it
induces quasi-isomorphisms of morphism spaces. Recall that ' D evCBB ı1 .idC ı0 uB/.

We first claim that the diagram

HomMC.j/.GC;HC/ Š

�ıCidB

��

Hom #–
D.j/.G;HC/

.idHı0'/ı1�

��

HomMB.j/.GB;HB/ Š Hom #–
D.j/.G;HB/

(4.4)

commutes. Indeed, using evDCC D mC, a morphism f 2 Hom #–
D.j/.G;HC/ corresponds to

GC
f ı0idC
����! HCC

idHı0mC
�����! HC
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in HomMC.j/.GC;HC/, which, under � ıC idB maps to

GB
f ı0idB
����! HCB

idHı0evCBB
������! HB:

Here we have used that mC ıC idB D evCBB since both, by construction, correspond to
the action on B when viewed as a left C-module.

The above morphism then corresponds to

G
idGı0uB
�����! GB

f ı0idB
����! HCB

idHı0evCBB
������! HB

in Hom #–
D.j/.G;HB/. Given

.f ı0 idB/ ı1 .idG ı0 uB/ D .idHC ı0 uB/ ı1 f;

we see that

.idH ı0 evCBB/ ı1 .f ı0 idB/ ı1 .idG ı0 uB/ D
�
idH ı0

�
evCBB ı1 .idC ı0 uB/

��
ı1 f

D .idH ı0 '/ ı1 f;

proving that the diagram in (4.4) commutes.
It thus suffices to show that the right vertical map in (4.4) is a quasi-isomorphism. To

see this, first assume G D F.G0/ and H D F.H0/ and consider the diagram

Hom #–
C .i;j/.G

0;H0C0/

Š
��

F.�/
// Hom #–

D.j/.G;HC/:

.idHı0'/ı1�pp

HomMB.j/.GB;HB/

Š
��

Hom #–
D.j/.G;HB/

Under the vertical isomorphisms,f 2Hom #–
C .i;j/.G

0;H0C/ is first mapped to .idHı0 evCBB/ı1
.F.f / ı0 idB/ and subsequently, using the same arguments as before, to

.idH ı0 evCBB/ ı1
�
F.f / ı0 idB

�
ı1 .idG ı0 uB/ D .idH ı0 '/ ı1 F.f /;

and hence the diagram commutes. Given that the vertical maps are isomorphisms, and the
horizontal map is a quasi-isomorphism, the map .idH ı0 '/ ı1 � is also a quasi-isomor-
phism as desired in this case.

For general G;H, there exist G0;H0 and zigzags of quasi-isomorphisms between G and
F.G0/ as well as H and F.H0/. The quasi-isomorphism

.idF.H0/ ı0 '/ ı1 �WHom #–
D.j/

�
F.G0/; F.H0/C

�
! Hom #–

D.j/

�
F.G0/; F.H0/B

�
propagates along these to imply that

.idH ı0 '/ ı1 �WHom #–
D.j/.G;HC/! Hom #–

D.j/.G;HB/

is also a quasi-isomorphism. This completes the proof.



R. Laugwitz and V. Miemietz 44

Even if B does not C-generate RMB as assumed in Lemma 4.25 and Proposition 4.27,
F being a local quasi-equivalence and essentially surjective on objects implies that it is
equivalent to a C-quasi-generator.

Lemma 4.28. The dg algebra 1-morphism B corresponds to a C-quasi-generator for
RMB.

Proof. By assumption that F is essentially surjective on objects, we can assume w.l.o.g.
that B 2 D.F.k/; F.k//, for an object k of C. We need to show that the inclusion

IWGRMB
.B/ ,! RMB

is a quasi-equivalence. As I is fully faithful, it remains to show that KI is essentially
surjective. That is, we claim that every object X in KRMB.j/ is isomorphic to an object
in the thick closure of ¹F.G/B j G 2 C.j; k/º in the homotopy category KRMB.j/. Note
that X 2 RMB.j/ DMB.F.j// is dg isomorphic to an object in the thick closure of ¹HB j
H 2 D.F.j/; F.k//º. Since any 1-morphism H of D is homotopy isomorphic to F.G/ for
some 1-morphism G of C, the claim follows.

Pullback and pushforward preserve quasi-equivalences of internaldg2-representations,
see Section 4.6.

Proposition 4.29. Retain the assumptions on FWC! D of this section.

(a) For any quasi-equivalence ˆWMA1 !MA2 of internal dg 2-representations of C,
P.ˆ/ is a quasi-equivalence.

(b) For any quasi-equivalence‰WMB1 !MB2 of internal dg 2-representations of D,
R.‰/ is a quasi-equivalence.

Proof. To prove Part (a), recall Proposition 4.21 and denote by X a dg bimodule giving
the quasi-equivalence ˆWMA1 ! MA2 . That is, we have a isomorphism ˆ.A1/ Š X in
KMA2 , which implies that P.ˆ/.F.A1// Š F.X/. By Proposition 4.21, A2 appears in the
thick closure of ¹GX j Gº in KMA2 , for G varying over 1-morphisms of C. Thus, F.A2/
appears in the thick closure of ¹F.G/F.X/ j Gº in KMF.A2/. As F.A2/ generates PMA2 by
definition, we see that the second condition in Proposition 4.21 holds for F.X/.

As in the diagram (4.3), we have quasi-isomorphisms

HomMA1 .k/
.FA1;GA1/! HomMF.A1/.Fk/

�
F.F/F.A1/; F.G/F.A1/

�
:

Thus, we have the following commutative diagram of dg morphisms

HomMA1 .k/
.FA1;GA1/ //

��

EndMA2 .k/
.FX;GX/

��

HomMFA1
.Fk/

�
F.F/F.A1/; F.G/F.A1/

�
// EndMFA2

.Fk/

�
F.F/F.X/; F.G/F.X/

�
;
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where the vertical morphisms are quasi-isomorphisms, and the top vertical morphism is
a quasi-isomorphism as ˆWMA1 ! MA2 is a quasi-equivalence. Thus, the bottom ver-
tical morphism is a quasi-isomorphism. For general 1-morphisms H;K in D, we have
homotopy isomorphisms F.F/ Š H and F.G/ Š K. Composing with these homotopy iso-
morphisms we obtain the commutative diagram

HomPMA1 .k/

�
F.F/F.A1/; F.G/F.A1/

�
��

// EndPMA2 .k/

�
F.F/F.X/; F.G/F.X/

�
��

HomPMA1 .k/

�
HF.A1/;KF.A1/

�
// EndPMA2 .k/

�
HF.X/;KF.X/

�
;

where the vertical morphisms are quasi-isomorphisms by the above. As the top horizontal
morphism is a quasi-isomorphism, so is the bottom morphism.

Hence, both conditions of Proposition 4.21 are satisfied for the dg bimodule F.X/,
which implies that the morphism P.ˆ/ from PMA1 Š MF.A1/ to PMA2 Š MF.A2/ is a
quasi-equivalence and Part (a) follows.

To prove Part (b), assume given a quasi-equivalence ‰WMB1 !MB2 of internal dg 2-
representations of D. Since F is essentially surjective on objects, without loss of generality,
B1 2 D.F.i/;F.i// and B2 2 D.F.j/;F.j// for objects i; j in C. By Proposition 4.21, ‰
corresponds to composing with a dg B1-B2-bimodule Y in

#–

D which descends to a cyclic
generator for KMB2 and induces quasi-isomorphisms on morphism spaces. We observe
that

‰.B1/ Š Y 2
�
GMB2

.B2/
��
F.j/

�
D
�
GRMB2

.B2/
�
.j/:

By Lemma 4.28, B2 cyclically generates KRMB2 . Now, as F is a local quasi-equivalence,
B2 is in the thick closure of ¹F.G/Y jGº in KRMB2 . Thus, Y cyclically generates KRMB2 .
Moreover, the quasi-isomorphisms

HomMB1 .k/
.HB1;KB1/

‰
�! HomMB2 .k/

.HY;KY/;

for 1-morphisms H;K in D, induced by ‰ provide quasi-isomorphisms

HomRMB1 .h/

�
F.F/B1; F.G/B1

� R‰ // HomRMB2 .h/

�
F.F/Y; F.G/Y

�
HomMB1 .Fh/

�
F.F/B1; F.G/B1

� ‰ // HomMB2 .Fh/

�
F.F/Y; F.G/Y

�
when restricting to acting by 1-morphisms of the form F.F/, F.G/, for 1-morphisms F;G
in C, and h an object of C. Thus, R.‰/ is a quasi-equivalence of dg 2-representations
of C.

The results of this section imply the following corollary.

Corollary 4.30. Assume given a dg 2-functor FWC! D that is a local quasi-equivalence
and essentially surjective on objects.
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(a) For every internal dg 2-representation MB of D there exists an internal dg 2-
representation MA of C and a quasi-equivalence of dg 2-representations of D
from PMA to MB.

(b) For every internal dg 2-representation MA of C there is a quasi-equivalence of dg
2-representations of C from MA to RMF.A/.

Proof. We first proof Part (a). Assume given an internal dg 2-representation MB of D

and, w.l.o.g., B 2 D.F.k/;F.k//. Set C0 D CŒB;B� and C D F.C0/, then PMC0 DMC. The
proof of Lemma 4.25 shows that, even if B is not a C-generator for RMB, there is a natural
morphism of dg 2-representations ‰WMC !MB which, by the proof of Proposition 4.27,
is quasi-equivalence. Setting A D C0, Part (a) follows.

Part (b) directly follows from Proposition 4.26.

5. Examples

5.1. The dg 2-category CA

Let A D A1 � � � � �An be a finite-dimensional dg algebra, where each Ai is indecompos-
able as a k-algebra.

Let Ai be a small dg category dg equivalent to b¹Aiº inside Ai-moddg, and set A D`n
iD1 Ai. Note that, by definition, A is a pretriangulated category.

Definition 5.1. We define CA as the dg 2-category with

• objects 1; : : : ; n where we identify i with Ai;

• 1-morphisms in CA.i; j/ are all functors dg isomorphic to tensoring with dg Aj-Ai-
bimodules in the thick closure of Aj ˝k Ai, if i ¤ j, and in the thick closure of of
Ai ˚ Ai ˝k Ai, if i D j;

• 2-morphisms all natural transformations of such functors.

We define the natural 2-representation N of CA as its defining action on A, that is,
N.i/ D Ai, N.F/ D F for a 1-morphism F, and N.˛/ D ˛ for a 2-morphism ˛. By con-
struction, CA is a pretriangulated 2-category, and N is in CA-modpre. It is cyclic with any
Ai 2 N.i/ D Ai as a CA-generator.

We further denote by Fj;i the functor given by tensoring with Aj ˝k Ai.

Lemma 5.2. Choosing Ai as a CA-generator for N, the corresponding algebra dg 1-
morphism AAi is given by (tensoring with) the dg bimodule A�i ˝k Ai.

We remark that AAi is indeed a dg 1-morphism in
# –

CA by our assumption of finite-
dimensionality of Ai. In fact, CA has compact left adjoints and N is compact as required
in Section 4.3.

Proof. First, notice that since Ai 2 N.i/, the dg algebra 1-morphism AAi is thus in
# –

CA.i; i/ and we only need to apply EvAi to the generator of this dg category, which is
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given by 1i ˚ Fi;i. We thus verify that

Hom # –
CA.i;i/.1i ˚ Fi;i;AAi/ Š HomAi-moddg-Ai

.Ai ˚ Ai ˝k Ai; A
�
i ˝k Ai/

Š HomAi-moddg-Ai

�
Ai ˚ Ai ˝k Ai;Homk.A

k
i /˝k Ai

�
Š HomAi-moddg-Ai

�
Ai ˚ Ai ˝k Ai;Homk.Ai; Ai/

�
Š HomAi-moddg.Ai ˚ Ai ˝k Ai; Ai/

Š Hom #–N .i/
�
EvAi.1i ˚ Fi;i/; Ai

�
;

which proves the claim.

Hence, as N.j/ is dg idempotent complete for any object j, Corollary 4.11 implies
that N is dg equivalent to the internal dg 2-representation MAAi

, for any i.
As a first example, we can consider the dg 2-category Ck. In this case,

#–

Ck and Ck are
dg biequivalent and a dg algebra 1-morphism in Ck corresponds to a finite-dimensional
dg algebra over k. Results of [38] imply the following corollary.

Proposition 5.3. There is a unique non-acyclic quotient-simple pretriangulated 2-repre-
sentations of Ck up to dg equivalence.

Proof. By Lemma 4.17, a quotient simple 2-representation M corresponds to a dg k-
algebra A that does not have any proper dg ideals. Using [38], this in particular implies
that the dg ideal denoted by JC in loc. cit. is zero, or JC DA, in which case the dg algebra
and hence the dg 2-representation are acyclic. Thus, if M is not acyclic, the (ungraded) k-
algebra underlying A is a product of matrix rings by [38, Proposition 2.16]. It is remarked
in the proof of loc. cit. that the central idempotents defining the individual factors are
annihilated by @, and hence simplicity of A implies that the k-algebra underlying A is
isomorphic to Mn.k/ for some n.

Given a (non-zero) dg k-module V , V � ˝ V is a dg k-algebra with underlying k-
algebra isomorphic to Mn.k/. As a dg algebra 1-morphism in Ck, V � ˝ V appears as
the internal hom ŒV; V � obtained from N with V as a (weak) Ck-generator similarly to
Lemma 5.2. In fact, all differentials on matrix rings are of this form by [38, Proposi-
tion 2.15]. Thus, A is isomorphic to V � ˝ V as a dg algebra, for some dg k-module V .

It remains to show that the pretriangulated 2-representations MV �˝V are dg equivalent
for any choice of V . For this, we apply Proposition 4.19 to V viewed as a k-V � ˝ V -
bimodule and V � viewed as a V � ˝ V -k-bimodule. Since V ˝V �˝V V � Š k is an
isomorphism of dg k-k-bimodules, it follows that V � ˝ V and k are dg Morita equiv-
alent and hence MV �˝V is dg equivalent to the natural 2-representation N Š Mk of Ck.
This proves the claim.

Example 5.4. Consider the dg k-algebra D D kŒx�=.x2/ with @.x/ D 1. Then D has no
proper dg ideals. The internal dg ideal I� of D is equal to zero, while the external dg
ideal IC D D. This implies that D is acyclic [38, Section 2.1]. In particular, D has no
proper dg ideals, but is not given by a matrix algebra.
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5.2. Pretriangulated hulls of finitary 2-categories and 2-representations

Let D be a k-finitary 2-category in the sense of [33]. We can view D a dg 2-category
with zero differential. Let C D xD be the pretriangulated 2-category associated to it. Any
finitary 2-representation M of D extends naturally to a pretriangulated 2-representation xM
of C. It is easy to see that given an object X 2 M.i/ and viewing it as an object in xM.i/
by placing it in degree 0, the associated dg algebra 1-morphism AX in

#–

C .i; i/ is simply
the algebra 1-morphism obtained from the finitary 2-representation M, again interpreted
as an object in

#–

C .i; i/ by placing it in degree zero with zero differential.
For example, if A D A1 � � � � � An, for Ai finite-dimensional connected k-algebras,

one defines the k-finitary 2-category CA following [35, Section 4.5]. Then the pretriangu-
lated hull of CA recovers the dg category CA0 defined in Section 5.1, for the dg algebra
A0 given by A with zero differential. The dg category CA0.i;j/ is dg equivalent to that of
bounded complexes of Aj-Ai-bimodules that are projective (if i ¤ j) or a direct sum of
projective Ai-Ai-bimodules and direct sums of copies of Ai, if i D j.

Question 5.5. Are there quotient-simple dg 2-representations of C which are not dg equiv-
alent to ones of the form xM for a simple transitive 2-representation M of D?

We remark that this question has a negative answer in case DD Ck by Proposition 5.3.

5.3. Pretriangulated hulls of finite multitensor categories

We can consider a (strict) finite multitensor category D as in [17], viewed as a 2-category
with one object �, and consider its pretriangulated hull CD xD as in the preceding section.
For any 2-representation N of (in [17] called a (strict) module category over) D gives rise
to a pretriangulated 2-representation M D xN of C.

Now assume that D is a strict finite multitensor category. In particular, D is abelian,
locally finite, and every 1-morphism has left and right adjoints. These structures extend
to the pretriangulated hull C. Therefore, the evaluation dg functor EvX W C.�; �/! M.�/

from Section 4.2 has a right adjoint ŒX;��WM.�/! C.�; �/ without extending to
#–

C (see
[17, Sections 4.2, 7.3]). Our results in Section 4 generalize aspects of [17, Section 7].
Similarly to Section 5.2, algebra 1-morphisms associated to M D xN can be chosen inside
D (i.e., concentrated in degree zero).

5.4. Categorification of ZŒi �

In [49], Tian constructs an explicit monoidal dg category 	 which decategorifies to ZŒi �,
and its action on a dg category DGP.R/, which categorifies the natural action of ZŒi �
on Z˚2. Here, we explicitly compute a dg algebra 1-morphism associated to this dg 2-
representation. We adopt the notation in loc. cit.

LetXDP.x/, the projectiveR-module at vertex x, which generates the dg 2-represen-
tation. Using the fact that 	 D ¹Q0;Q1 D Qº (see [49, Definition 2.2] together with the
isomorphism Q2 Š Q0Œ1�) it suffices to compute morphism spaces to ŒX; X� from Q0



Pretriangulated 2-representations via dg algebra 1-morphisms 49

and Q1. We compute

Hom	

�
Q0; ŒX;X�

�
ŠHom	

�
Q0
˝R P.x/; P.x/

�
ŠHom	

�
P.x/; P.x/

�
ŠkŒd �=.d2/;

Hom	

�
Q1; ŒX;X�

�
ŠHom	

�
Q1
˝R P.x/; P.x/

�
ŠHom	

�
P.y/; P.x/

�
ŠkŒ�1�;

where d is the degree 1-endomorphism of P.x/. This implies that the dg algebra 1-mor-
phism in

#–

	 is given by Q1Œ�2�
˛0ıhf
����!Q0. The multiplication is given by

Q1Œ�2�˚Q1Œ�2�

.id;id/
��

.˛0ıhf ;˛0ıhf / // Q0

id
��

Q1Œ�2�
˛0ıhf // Q0:

As multiplication is induced by the identity on Q0, there is a dg algebra epimorphism
given by

Q1Œ�2�
˛0ıhf //

˛1

��

Q0

id
��

Q1Œ�1�
hf

// Q0

(note that ˛0 ı hf D hf ı ˛1). The given dg 2-representation is thus not quotient-simple.
Indeed, it has an ideal given by the radicals of R and M . Note that this dg ideal satisfies
the conditions from Lemma 2.4 (c). The quotient is given by factoring out the radicals of
R and M , i.e., acting on DGP.R0/ where R0 D kex � key and the action of Q1 given by
the R0-R0-bimodule M 0 D key ˝ ex ˚ kex ˝ ey Œ1�.

5.5. Braid group categorification

The setup developed in this paper can be applied to existing categorified braid group
actions from the literature. Firstly, in [24], the authors consider a categorification of the
braid group of type An using complexes of bimodules over the symmetric zigzag alge-
bra Z D Zn on n-vertices. We denote the resulting dg 2-category by Bn with generating
1-morphisms Ti DZei ˝ eiZ!Z, T 0i DZ!Zei ˝ eiZ, as well as the identity bimod-
ule.

Note that any pretriangulated 2-representation of Bn is necessarily closed under cones,
and hence extends to a dg 2-representation of CZ , see Section 5.1. In fact, CZ is the dg
idempotent completion of the Bn.

Given that any dg ideal in a dg 2-representation of Bn gives rise to a dg ideal in the
extended dg 2-representation of CZ and vice versa, there is a one-to-one correspondence
between quotient-simple pretriangulated 2-representations of Bn and CZ . Thus, it follows
from Lemma 5.2 that the dg algebra 1-morphism of the defining action corresponds to the
dg algebra 1-morphism Z ˝k Z in

#  –

Bn.
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More generally, Rouquier [40] considers a categorification of the braid group associ-
ated to an arbitrary finitely-generated Coxeter system .W;S;V / in the homotopy category
of Soergel bimodules. One could alternatively consider the dg 2-category BW generated
by the complexes denoted in loc. cit. by Fs , which has a natural action on the category
of bounded chain complexes of graded kŒV �-modules. The homotopy category of this dg
2-category gives rise to Rouquier’s categorification of the braid group, which he conjec-
turally strictifies in [41].

As before, we can describe the dg idempotent completion of BW as the monoidal
category of chain complexes of Soergel bimodules SW , and we again restrict or extend
pretriangulated 2-representations to pass from one to the other. Note that in both cases the
dg ideal generated by the total invariants kŒV �W acts by zero on every quotient-simple dg
2-representation, so we can pass to the quotient dg 2-categories defined in the same way,
but over the coinvariant algebra C D kŒV �=.kŒV �WC / instead of kŒV �, which, provided W
is finite, is a finite-dimensional symmetric algebra, see e.g. [31], and references therein,
for details. Then, for finite W , the natural (or defining) dg 2-representation of BW on
chain complexes of C -modules simply corresponds to the pretriangulated hull of the cell
2-representation of SW associated to the longest element w0 of the (finite) Coxeter group
whose Kazhdan Lusztig basis element is categorified byC ˝C , see [12, Sections 2.1–2.2]
for more explanations, where this bimodule is described as C ˝CS C with C S denoting
the total invariants in the coinvariants and hence is isomorphic to k (more generally for
J � S , C ˝CJ C decategorifies to the Kazhdan–Lusztig basis element corresponding to
the longest element of the parabolic subgroup determined by J—this uses the Decategori-
fication Theorem [15]). The corresponding dg algebra 1-morphism is the simply given by
C ˝ C , which is indeed a 1-morphism in

#    –

BW D
#   –

SW .
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