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K3 surfaces with maximal complex multiplication

Eva Bayer-Fluckiger

Abstract. Let X be a complex projective K3 surface having complex multiplication by a CM field
E, and let TX be its transcendental lattice. We say that X has maximal complex multiplication if
EndHdg.TX / is the ring of integers of E.

For which CM fields E does such a K3 surface exist? What are the possibilities for the tran-
scendental lattices, Picard lattices of these surfaces? The aim of this paper is to study these questions
and give some examples.

1. Introduction

LetE be a CM field, and letOE be its ring of integers. A complex projectiveK3 surfaceX
is said to have complex multiplication byE (or CM byE, for short) if EndHdg.TX ˝Z Q/'
E and rank.TX / D ŒE W Q�, where TX is the transcendental lattice of X . This implies that
ŒE W Q� 6 20, and Taelman proved that if ŒE W Q� 6 20 then there exists aK3 surface with
CM by E (cf. [T 16, Theorem 3]).

Following Valloni [V 21], we say that a K3 surface X has complex multiplication by
OE ifX has CM byE and moreover EndHdg.TX /'OE ; we also say thatX has then max-
imal complex multiplication (in [V 21] this is called “principal complex multiplication”).

If X is a K3 surface, set LX D H 2.X; Z/; the intersection form makes LX into a
(unimodular) lattice, and TX is a sublattice of LX . If moreover X has maximal complex
multiplication, then TX has a structure of OE -module, hence so has its dual T ]X ; therefore
the quotient T ]X=TX is isomorphic to OE=DX , where DX � OE is an OE -ideal, called
the discriminant ideal of X ; note that the norm of DX is the determinant of TX , hence
also the absolute value of the determinant of the Picard lattice of X .

Question 1. What are the possibilities for the ideal DX?

This is the subject matter of Section 9 (see Corollary 9.2), based on results of Sec-
tions 4 and 7.

The next issue is to classify up to isomorphism the K3 surfaces with a given discrim-
inant ideal.

Question 2. What are the possibilities for the K3 surfaces X with a given discriminant
ideal DX?
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It is well known that ifE is an imaginary quadratic field, then the isomorphism classes
of elliptic curves with complex multiplication by OE are in bijection with the ideal class
group of E.

For an arbitrary CM field E, we define a finite group C having a similar property for
the isomorphism classes ofK3 surfaces with complex multiplication byOE with the same
discriminant ideal (see Corollary 9.3). We show the following theorem.

Theorem 1. There are only finitely many isomorphism classes of K3 surfaces having
maximal complex multiplication by the same CM field and the same discriminant ideal.

The next sections contain some applications of the previous results. In [V 21], Valloni
raised the following question.

Question 3. For which CM fields E do there exist K3 surfaces with maximal CM by E?

Valloni proved that if ŒE W Q� 6 10, then there exist infinitely many non-isomorphic
K3 surfaces having CM by OE . The aim of Section 8 is to give a sufficient criterion for
the existence of infinitely many non-isomorphic K3 surfaces with CM by OE in terms of
ramification properties ofE (see Theorem 8.2). One of the applications is a generalization
of Valloni’s result (cf. Corollary 8.4).

Theorem 2. If ŒE W Q� 6 14, then there exist infinitely many non-isomorphic complex
projective K3 surfaces with complex multiplication by OE .

This is no longer true in general if ŒE W Q� D 16; 18 or 20 (cf. Proposition 8.5 and
Example 8.6); but it does hold for cyclotomic fields.

Theorem 3. If E is a cyclotomic field with 2 6 ŒE W Q� 6 20, then there exist infinitely
many non-isomorphic complex projectiveK3 surfaces with complex multiplication byOE .

In another direction, maximal complex multiplication on the transcendental lattice
implies some properties of the Picard lattice, such as possible degrees of polarization,
existence of elliptic fibrations.

A start on this is made in Section 10; the following example illustrates the results of
this section (see Example 10.7; here U denotes the 2-dimensional hyperbolic lattice, and
for all integers N , the lattice U.N/ denotes U multiplied by N ).

Example 1. Let E D Q.�m/ with m D 44 or 66. There exists a K3 surface with maximal
complex multiplication by E with Picard lattice L, L ' U.N/ where N > 1 is an
integer� 1 .mod m/ such that all the prime divisors of N are� ˙1 .mod m/.

With this strategy in mind, the second part of the paper concerns K3 surfaces having
maximal complex multiplication by cyclotomic fields. One of the results is the following.

Theorem 4. Let p be an odd prime number with 3 6 p 6 11, and set E D Q.�p/. Let
a > 1 be an odd integer. There exists a unique (up to isomorphism) complex projectiveK3
surface Xa with maximal complex multiplication by E such that det.TXa/ D p

a.
Moreover, the surfaces Xa are isogeneous for all a > 1.
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If a D 1, these surfaces are isomorphic to Vorontsov’s K3 surfaces (see [V 83,K 92]).
If p D 3; 7 or 11, then for all a > 1 theK3 surfacesXa above and their twists (cf. Def-

inition 7.3) have automorphisms of order p inducing the complex multiplication by OE
(see Theorem 18.1), and the corresponding pairs (K3 surface, automorphism of order p)
are the CM points by OE of the moduli spaces M

p
K3 defined by Artebani, Sarti and Taki

in [AST 11] (see Section 19); see also [AS 08] for p D 3 and [OZ 10,ACV 21] for p D 11.
The above observation suggests two approaches to fields of definition of the surfaces

Xa and their twists: one using class field theory (see Valloni, [V 21, V 23]), the other
using the geometry of the moduli space M

p
K3 and elliptic fibrations. This is illustrated

by an example due to Brandhorst and Elkies in [BE 23]; their example turns out to be
isomorphic to a twist of X1.7/ by a prime OE -ideal above 13 (see Example 20.1).

The existence of the K3 surfaces is proved by transcendental methods, using the sur-
jectivity of the period map. However, the method of Brandhorst and Elkies can be used to
obtain explicit equations for this family of surfaces. This is done in [BE 23] for the above
mentioned twist of X1.7/; I thank Simon Brandhorst for sending me similar results for
two other surfaces in this family, obtained by the method of [BE 23] (see Examples 21.1
and 21.2).

2. Lattices, discriminant forms and embeddings

A lattice is a pair .L; q/, where L is a free Z-module of finite rank, and q W L � L! Z
is a symmetric bilinear form such that det.q/ 6D 0; it is unimodular if det.1/ D ˙1, and
even if q.x; x/ is an even integer for all x 2 L. Set

L] D
®
x 2 L˝Z Q j q.x; y/ 2 Z for all y 2 L

¯
;

and GL D L]=L. The form q induces GL �GL ! Q=Z, called the discriminant form of
L, and GL the discriminant group of L; note that the absolute value of det.q/ is the order
of GL. The discriminant form is denoted by .GL; qL/.

The Witt group of symmetric bilinear forms on finite abelian groups with values in
Q=Z is denoted by W.Q=Z/; see [Sch 85, Chapter V, Section 1].

An embedding of lattices L! L0 is called primitive if its cokernel is free.

Definition 2.1. Let L and L0 be two lattices. We say that L embeds uniquely into L0 if
there exists a primitive embedding f W L! L0, and if g W L! L0 is another primitive
embedding, then there exists ' 2 O.L0/ such that g D ' ı f .

3. K3 surfaces

The aim of this section is to recall some basic facts concerningK3 surfaces; see [H 16] or
[K 20] for details. If X is a complex projective K3 surface, set LX D H 2.X;Z/, and let

H 2.X;C/ D H 2;0.X/˚H 1;1.X/˚H 0;2.X/

be its Hodge decomposition; we have dim.H 2;0/D dim.H 0;2/D 1, and dim.H 1;1/D 20.
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Let SX DLX \H 1;1 be the Picard lattice ofX , and set �X D rankZ.SX /. The intersection
form of X makes LX into an even unimodular lattice of signature .3; 19/; since X is
projective, the signature of SX is .1; �X � 1/. Let TX be the orthogonal complement of SX
in LX . The lattice TX has signature .2; 20 � �X /, and is called the transcendental lattice
of X .

Theorem 3.1. LetX and Y be two complex projectiveK3 surfaces, and let f WLX !LY
be an isometry of lattices whose C-linear extension maps H 2;0.X/ to H 2;0.Y /. Then the
surfaces X and Y are isomorphic.

Proof. This is the weak Torelli theorem, see for instance [H 16, Chapter 7, Theorem 5.3].

Definition 3.2. LetX and Y be two complex projectiveK3 surfaces, and let f W TX! TY
be an isometry of lattices. We say that f is a Hodge isometry if its C-linear extension maps
H 2;0.X/ to H 2;0.Y /.

Let us fix an even unimodular lattice ƒ of signature .3; 19/.

Theorem 3.3. Let X and Y be two complex projective K3 surfaces. Suppose that the
lattice TX embeds uniquely into ƒ, and that there exists a Hodge isometry f W TX ! TY .
Then the surfaces X and Y are isomorphic.

Proof. Let us choose isometries 'X W LX !ƒ and 'Y W LY !ƒ; note that 'X W TX !ƒ

and 'Y ı f W TX ! ƒ are two primitive embeddings of the lattice TX into ƒ. There-
fore, there exists an isometry g W LX ! LX such that g ı 'X D 'Y ı f ; note that the
C-linear extension of '�1Y ı g ı 'X W LX ! LY sends H 2;0.X/ to H 2;0.Y /. Hence, by
Theorem 3.1, the K3 surfaces X and Y are isomorphic.

4. OE -lattices, discriminant ideals and discriminant modules

Let E be an algebraic number field with a non-trivial involution x 7! Nx, and let F be the
fixed field of this involution; let n be an integer such that ŒE W Q�D 2n, and let � 2 F � be
such that E D F.

p
�/. Let OE be the ring of integers of E, and let DE be the different

of E.
An OE -lattice is by definition a pair .I; q/, where I is a fractional OE -ideal and

q W I � I ! Z is given by q.x; y/ D TrE=Q.˛x Ny/, for some ˛ 2 F �; we also use the
notation .I; ˛/ for this lattice.

If L is an OE -lattice, then so is its dual L], and the quotient GL D L]=L is also an
OE -module, called the discriminant module of L; it is isomorphic to OE=D for some
ideal D � OE .

Definition 4.1. The discriminant ideal of an OE -lattice L is by definition the ideal D �

OE such that L]=L is isomorphic to OE=D . The discriminant ideal of L is denoted by
D.L/.
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The aim of this section is to characterize the discriminant ideals (equivalently, the
discriminant modules) of OE -lattices.

Let Ram be the set of finite places of F that ramify inE, and let Int be the set of finite
places of F that are inert in E. If v 2 Ram or Int, we denote by Pv the prime OE -ideal
corresponding to the unique place vE of E above v. Let RamE be the set of places w of
E such that w D vE for some v 2 Ram.

Let Ramodd be the set of places v of Ram such that vE .DE / is odd, and let Intodd be
the set of v 2 Int such that vE .DE / is odd; let t be the cardinality of Intodd.

Let us denote by s the number of real embeddings of F that extend to imaginary
embeddings of E.

Theorem 4.2. Let �1, �2 be integers > 0 such that �1 C �2 D 2n. Let L D .I; q/ be an
OE -lattice of signature .�1; �2/. Then we have

(i) �1 > n � s, �2 > n � s, �1 � �2 � n � s .mod 2/.

Let D.L/ be the discriminant ideal of L. Then D.L/ D
Q
P eP where the product is

taken over the prime ideals of OE such that the following conditions hold:

(ii) We have eP D 0 for almost all P .

(iii) For all P , we have e xP D eP .

(iv) If P D Pv with v 2 Ramodd, then eP is odd.

(v) Let m be the number of v 2 Int such that ePv is odd. If Ram D ¿, then

�1 � �2 � 4m .mod 8/:

Conversely, let �1, �2 be integers > 0 such that �1 C �2 D 2n and such that (i) holds,
and let eP > 0 be integers such that D D

Q
P eP satisfies conditions (ii)–(v). Then there

exists an OE -lattice L of signature .�1; �2/ and discriminant ideal D .
Moreover, if a is an integer with 0 6 a 6 s and if A is a set of real places of F of

cardinality a, then we can choose L such that L D .I; ˛/ with ˛ negative at the places in
A and positive at all the other places of F .

Proof. (i) follows from [B 99, Theorem 1 (i)]. Let ˛ 2 F � be such that

q.x; y/ D TrE=Q.˛x Ny/ for all x; y 2 I:

We have I ] D D�1E ˛�1 xI�1, hence D.L/ D ˛I xIDE . This implies that D.L/ is of the
required form, and that (ii) holds. Note that DE D DE , hence condition (iii) is satisfied.
If w D vE for some v 2 Ramodd, then

w.˛I xIDE / � w.DE / � 1 .mod 2/I

this implies (iv). Finally, let us prove (v). Let a be the number of infinite places v of F
such that .˛; �/v D �1, and let a0 be the number of v 2 Int such that v.˛/ is odd; note
that v.˛/ is odd if and only if .˛; �/v D �1. Assume that Ram D ¿; then the product
formula implies that a0 � a .mod 2/. We have t � a0 Cm .mod 2/ by definition, hence
t � aCm .mod 2/.
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We have �1 � �2 D 2s � 4a (see for instance [B 99, Proposition 2.2]), and s � 2t

.mod 4/ (cf. [BM 94, Theorem 1.6]). Hence,

�1 � �2 D 2s � 4a � 4t � 4a � 4.aCm/ � 4a � 4m .mod 8/;

as claimed.
Conversely, suppose that conditions (i)–(v) hold. Let a be an integer such that 06 a 6

s and that �1 � �2 D 2s � 4a; such an integer exists by (i). Let A be a set of real places
of F of cardinality a that extend to imaginary places of K; this is possible since a 6 s.

Let M be the set of v 2 Int such that ePv is odd; recall that the cardinality of M
is denoted by m. Let A0 be the symmetric difference of M and Intodd, and let a0 be the
cardinality of A0. We define "v D ˙1 for all the places of v as follows. Set "v D �1 if
v 2 A [ A0. If Ram D ¿, then we set "v D 1 for all the other places of v. Otherwise, let
us choose a finite place w of F that ramifies in E, and set "w D .�1/aCa

0

; set "v D 1 for
all the other places of F .

We have
Q
v "v D 1. This is clear if Ram 6D ¿. Suppose that RamD ¿; then

Q
v "v D

.�1/aCa
0

. Condition (v) implies that �1 � �2 � 4m .mod 8/; since �1 � �2 D 2s � 4a,
this implies that s � 2a � 2m .mod 4/. We have s � 2t .mod 4/ by [BM 94, Theo-
rem 1.6] andm� t C a0 .mod 2/ by construction; this implies that a0� a .mod 2/, henceQ
v "v D 1.

There exists ˛ 2 F � such that .˛; �/v D "v for all places v of F (see for instance
[O’M 73, Theorem 71.19]). We have vE .˛DE / � 1 .mod 2/ if v 2 Ramodd or v 2 M .
Let I be an OE -ideal such that w.˛I xIDE / D eP for all places w of E, where P is such
that w.P / D 1.

The OE -lattice .I; q/ given by q.x; y/ D TrE=Q.˛x Ny/ has signature .�1; �2/ and
discriminant ideal D . Moreover, ˛ is negative at the places in A and positive at all the
other places of F . This completes the proof of the theorem.

Corollary 4.3. Let �1, �2 be integers > 0 such that �1 C �2 D 2n. Let L D .I; q/ be an
OE -lattice of signature .�1; �2/, and let GL be the discriminant module of L. Then GL 'L
OE=P

eP where the sum is taken over the prime ideals of OE such that conditions
(ii)–(v) above hold.

Conversely, let �1, �2 be integers > 0 such that �1 C �2 D 2n and such that (i) holds,
and let eP > 0 be integers such that G D

L
OE=P

eP satisfies conditions (ii)–(v). Then
there exists an OE -lattice L of signature .�1; �2/ and discriminant module G.

Moreover, if a is an integer with 0 6 a 6 s and if A is a set of real places of F of
cardinality a, then we can choose L such that L D .I; ˛/ with ˛ negative at the places in
A and positive at all the other places of F .

Proof. This is an immediate consequence of Theorem 4.2.

The following results will be used in the next sections.

Lemma 4.4. If no dyadic place of F ramifies in E, then every OE -lattice is even.
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Proof. See for instance [B 99, Proposition 1].

Lemma 4.5. Let I be an ideal of OE , let ˛ 2 F � and let L D .I; q/ with q.x; y/ D
TrE=Q.˛x Ny/. Suppose that for all dyadic places w of E we have w.˛I xI / > 0. Then L is
an even lattice.

Proof. Let w be a dyadic place of E. Since w.˛I xI / > 0, we have ˛x Ny 2 Ow for all
x;y 2 I . On the other hand, x̨ D ˛, therefore TrKw=Q2.˛x Nx/ is divisible by 2. This implies
that L is even.

Recall that s is the number of real places of F that extend to imaginary places ofE.

Proposition 4.6. Suppose that no finite place of F ramifies in E. Then s � 0 .mod 2/.

Proof. Let S be the set of real places of F that extend to imaginary places of E; if v is an
infinite place of F , then .�1; �/v D�1 if and only if v 2 S . If v is a finite place of F , then
v is unramified in E by hypothesis, hence .�1; �/v D 1. Therefore, the product formula
implies that

Q
v2S .�1; �/v D 1, hence s is even, as claimed.

Corollary 4.7. Assume that E is a CM field with maximal totally real subfield F , and
that no finite place of F ramifies in E. Then n is even.

Proof. This follows from the previous proposition, since s D n.

Definition 4.8. Let .L; q/ and .L0; q0/ be two OE -lattices. We say that L and L0 are
isomorphic (as OE -lattices) if there exists an isomorphism of OE -modules f W L! L0

such that q0.f .x/; f .y// D q.x; y/ for all x; y 2 L.
Set .V; q/ D .L; q/˝Z Q and .V 0; q/ D .L0; q0/˝Z Q. We say that L and L0 become

isomorphic over Q if there exists an isomorphism of E-vector spaces f W V ! V 0 such
that q0.f .x/; f .y// D q.x; y/ for all x; y 2 V .

If .L; q/ is an OE -lattice, then there exists an OE -ideal I and ˛ 2 F � such that
q.x; y/ D TrE=Q.˛x Ny/. If L is given by .I; ˛/ and L0 by .J; ˇ/ as above, then the OE -
lattices L and L0 are isomorphic if and only if there exists e 2 E� such that J D eI and
that ˛ D e Neˇ.

Definition 4.9. Let L D .I; ˛/ and L0 D .J; ˇ/ be two OE -lattices. We say that L and
L0 have the same signature (as OE -lattices) if and only if �.˛ˇ/ > 0 for all embeddings
� W F ! R that extend to imaginary embeddings of E.

Proposition 4.10. Let L D .I; ˛/ and L0 D .J; ˇ/ be two OE -lattices of the same signa-
ture, and let GL D

L
OE=P

eP , GL0 D
L
OE=P

e0P be their discriminant modules. The
OE -lattices L and L0 become isomorphic over Q if and only if

eP � e
0
P .mod 2/

for all prime OE -ideals P such that xP D P .
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Proof. Recall that E D F.
p
�/. The OE -lattices L and L0 become isomorphic over Q if

and only if ˛ˇ�1 belongs to NE=F .E�/; equivalently, if .˛; �/v D .ˇ; �/v for all places
v of F . If v is a real place of F , then .˛; �/v D .ˇ; �/v if and only if ˛ˇ is positive
at v, i.e., if �v.˛ˇ/ > 0 where �v W F ! R is the embedding corresponding to v; since the
lattices have the same signature, the condition holds at v. The condition trivially holds if
v is an imaginary place of F , hence it holds for all infinite places. Suppose now that v
is a finite place of F . If v is split in E, then .˛; �/v D .ˇ; �/v D 1, hence the condition
also holds at split places. If v is inert or ramified in E, then .˛; �/v D .ˇ; �/v if and only
if ePv � e

0
Pv
.mod 2/, where Pv is the unique prime ideal of OE that is above the prime

OF -ideal corresponding to v. This completes the proof of the proposition.

Notation 4.11. We denote by hE the class number of E.

Proposition 4.12. Suppose that E is a CM field with maximal totally real subfield F , and
that hE D 1. Then two OE -lattices of the same signature are isomorphic if and only if
their OE -discriminant modules are isomorphic.

Proof. Let L and L0 be two OE -lattices of the same signature. It is clear that if L and L0

are isomorphic OE -lattices, then their OE -discriminant modules are isomorphic.
Conversely, suppose that the OE -discriminant modules of L and L0 are isomorphic.

Since hE D 1, we haveL' .OE ;˛/ andL0'OE ;ˇ for some ˛;ˇ 2E�0 . SinceGL'GL0
as OE -modules, the discriminant ideals of L and L0 are equal, and hence ˛OE D ˇOE ,
therefore ˇ˛�1 is a unit of OF . Moreover, it is a totally positive unit, because L and L0

have the same signature. Since hE D 1, every totally positive unit ofE0 is a norm of a unit
of E (see [Sh 77, Proposition A2], [B 84, Lemma 3.2]). This implies that the OE -lattices
L and L0 are isomorphic.

5. Classification

We keep the notation of Section 4; in particular, E is a number field of degree 2n with
a non-trivial involution and fixed field F . To complement the results of Section 4, in this
section we describe the isomorphism classes of OE -lattices having the same discriminant
ideal and the same signature (see Definition 4.9).

Let C.E/ be the set of pairs .I; ˛/, where I is an OE -ideal and ˛ 2 F � such that
˛I xI DOE , and let CC.E/ be the subset of pairs with �.˛/ > 0 for all real embeddings �
of F that extend to imaginary embeddings of E. Let us consider the equivalence relation
on C.E/ (respectively CC.E/) given by

.I; ˛/ � .I 0; ˛0/ ” there exists 
 2 E� with I 0 D 
I and ˛0 D
�
1


 x


�
˛:

In both cases, the set of equivalence classes is a finite abelian group, the multiplication
being induced by .I; ˛/.I 0; ˛0/D .II 0; ˛˛0/; we denote this group by C.E/ (respectively
CC.E/).
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Let L D .J; ˇ/ be an OE -lattice, and let a D .I; ˛/ 2 C.E/. Setting a:L D .IJ; ˛ˇ/
induces an action of C.E/ on the set isomorphism classes of OE -lattices with the same
discriminant ideal as L; if moreover, a 2 CC.E/, then a:L has the same signature as
L, hence we obtain an action of the group C.E/C on the set of isomorphism classes of
OE -lattices with the same discriminant ideal and the same signature as L.

Proposition 5.1. (i) The set of isomorphism classes ofOE -lattices with the same discrim-
inant ideal is a principal homogeneous space over the group C.E/.

(ii) The set of isomorphism classes of OE -lattices with the same discriminant ideal
and the same signature is a principal homogeneous space over the group CC.E/.

Proof. Let L D .J; ˇ/ and L0 D .J 0; ˇ0/ are OK-lattices. We have a:L D L0 for a D
.J 0J�1;ˇ0ˇ�1/; ifL andL0 have the same discriminant ideal, then a 2C.E/; if moreover
L and L0 also have the same signature, then a 2 C.E/C.

Suppose that E is a CM field, and that F is the maximal totally real subfield of E.

Notation 5.2. Let C l.E=F / be the relative class group of E=F , and let C lC.E=F / be
the strict relative class group. Let O�CF be the group of totally positive units of OF , and
let N W E� ! F � be the norm map.

Proposition 5.3. We have the exact sequences

1! O�F =N.O�E /! C.E/! C l.E=F /! 1;

1! O�CF =N.O�E /! C.E/! C lC.E=F /! 1:

Proof. The maps C.E/!C l.E=F / and C.E/!C lC.E=F / are induced by .I;˛/ 7! I .
It is easy to check that this gives rise to the above exact sequences.

6. Twisting

We keep the notation of Section 4.

Definition 6.1. Let L be an OE -lattice, and let J � OE be an OE -ideal prime to the
discriminant ideal D.L/ such that xJ D J . We say that an OE -lattice L0 is a twist of L by
J if L and L0 have the same signature (see Definition 4.9), and if D.L0/ D D.L/J .

We first examine the conditions under which anOE -latticeL has a twist by an ideal J .

Proposition 6.2. AnOE -lattice L has a twist by an ideal J if and only if D.L/J satisfies
condition (v) of Theorem 4.2.

Proof. Let .�1; �2/ the signature of L; since L is an OE -lattice, condition (i) of The-
orem 4.2 holds. Condition (ii) obviously holds for D.L/J , and condition (iii) is also
satisfied, since xJ D J ; condition (iv) also holds since J is supposed to be prime to D.L0/,
hence J does not have any factor Pv with v 2 Ramodd. Therefore, Theorem 4.2 implies
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that there exists an OE -lattice L0 with D.L0/ D D.L/J if and only if condition (v) hold
for D.L/J . Moreover, Theorem 4.2 shows that we can choose L0 with the same signature
(as OE -lattice) as L. This concludes the proof of the proposition.

Corollary 6.3. Suppose that there exists a finite prime of F that ramifies in E. Let L be
an OE -lattice, and let J � OE be an OE -ideal prime to the discriminant ideal D.L/

such that xJ D J . Then L has a twist by J .

Proof. This follows from Proposition 6.2; indeed, condition (v) is trivially satisfied since
Ram 6D ¿.

Such a twist is not unique in general; however, we have the following.

Proposition 6.4. Suppose that E is a CM field. Let L be an OK-lattice and let J � OE
be an ideal prime to the discriminant ideal D.L/ such that xJ D J . Let L1 and L2 be two
twists of L by J . If hE D 1, then the OE -lattices L1 and L2 are isomorphic.

Proof. This follows from Proposition 4.12.

Example 6.5. Let L D .I; ˛/ be an OE -lattice, and let P be a prime OE -ideal such that
xP 6D P . Suppose that P and xP are prime to I . Then L0 D .PI; ˛/ is a twist of L by P xP .

Moreover, Proposition 4.10 implies that L and L0 become isomorphic over Q.

Proposition 6.6. Let J � OE be an ideal with xJ D J . If all prime factors P of J are
such that P 6D xP , then every twist ofOE -lattice L by J becomes isomorphic to L over Q.

Proof. This is a consequence of Proposition 4.10.

Example 6.7. Let L be an OE -lattice, and let P be a prime OE -ideal prime to D.L/

such that xP D P . Theorem 4.2 and Proposition 6.2 imply that L has a twist by P if and
only if Ram 6D ¿; such a twist does not necessarily become isomorphic to L over Q.

7. OE -lattices and K3 surfaces

We keep the notation of the previous sections, and set ŒE WQ�D 2n. We assume in addition
that E is a CM field with ŒE W Q� 6 20, i.e., E is totally imaginary and F is totally real
with 1 6 n 6 10. If X is a K3 surface, we denote by TX its transcendental lattice.

Let us fix an even unimodular lattice ƒ of signature .3; 19/.

Proposition 7.1. Let L be an OE -lattice of signature .2; 2n � 2/ and assume that L
embeds primitively intoƒ. Then there exists a complex projectiveK3 surface X such that
the transcendental lattice TX of X has a structure of OE -lattice isomorphic to L, and
EndHdg.TX / D OE .

Proof. Let L be given by .I; ˛/, where I is an OE -ideal and ˛ 2 F �. Let � 0 W F ! R be
the real embedding of F such that � 0.˛/ > 0; note that ˛ is negative at all the other real
embeddings of F , since the signature of L is .2; 2n � 2/. Let � W E ! C be an extension
of � 0 to E.
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Let f W L! ƒ be a primitive embedding, and let us also denote by f its extension to

f W L˝Z C! ƒ˝Z C:

We have L˝Z C D
L
� WE!C C� . Set ƒ2;0 D C� .

We obtain the desiredK3 surface by surjectivity of the period map. Indeed, the choice
ofƒ2;0 induces onƒ a Hodge structure. Let X be the correspondingK3 surface. By con-
struction, we have TX DL and EndHdg.TX /DOE . Since the signature of L is .2; 2n�2/,
the surface X is projective.

Notation 7.2. IfX is aK3 surface with complex multiplication byOE , we denote byGX
the discriminant OE -module T ]X=TX . The minimal number of generators (as an abelian
group) of GX is denoted by `.X/, and is called the length of X .

Definition 7.3. Let X and Y be two complex projective K3 surfaces with complex mul-
tiplication by OE . Let J � OE be an OE -ideal such that xJ D J . We say that Y is a twist
of X by J if GY ' GX ˚OE=J .

Let us consider E embedded in C. This implies that if X and Y are two K3 surfaces
with CM byOE , then theOE -lattices TX and TY have the same signature (asOE -lattices).

Proposition 7.4. Let L be anOE -lattice, and assume that L embeds uniquely intoƒ. Let
X and Y be two complex K3 surfaces with CM by OE , and suppose that the OE -lattices
TX and TY are isomorphic to L. Then the surfaces X and Y are isomorphic.

Proof. This follows from Theorem 3.3.

We next note that hE D 1, then K3 surfaces with maximal complex multiplication by
E of length 6 20 � 2n are determined by their discriminant modules.

Proposition 7.5. Suppose that hE D 1, and letX and Y be twoK3 surfaces with maximal
complex multiplication by E of length 6 20 � 2n. Then X and Y are isomorphic if and
only if the discriminant OE -modules of TX and TY are isomorphic.

Proof. IfX and Y are isomorphic, then theOE -lattices TX , TY are isomorphic, and hence
so are their discriminant modules. Let us prove the converse. Since hE D 1, Proposi-
tion 4.12 implies that the OE -lattices TX and TY are isomorphic.

We fix an even unimodular lattice ƒ of signature .3; 19/. Since by hypothesis

`.X/; `.Y / 6 20 � 2n;

the lattices TX ; TY are uniquely embedded in ƒ (see Nikulin [N 79, Theorem 1.14.4]).
Therefore, by Proposition 7.4 the K3 surfaces X and Y are isomorphic.

Corollary 7.6. LetX be a complexK3 surface with CM byOE , and suppose that hE D 1.
Let J � OE be an OE -ideal such that xJ D J , and let Y1, Y2 be two twists of X by J of
length 6 20 � 2n. Then Y1 and Y2 are isomorphic.

Proof. This follows from Proposition 7.5.
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8. Existence of K3 surfaces with maximal complex multiplication

We keep the notation of the previous sections; in particular, E is a CM field of degree
6 20. The aim of this section is to give a criterion for the existence of infinitely many
isomorphism classes of K3 surfaces with complex multiplication by OE . Valloni proved
that this is always the case if the degree of E is 6 10 (cf. [V 21, Proposition 6.11]); as we
will see, this result extends to fields of degree 6 14 (see Corollary 8.4).

We start by introducing some notation. If w is a place of E, we denote by fw its
residual degree.

Notation 8.1. If p is a prime number such that p 6D 2, we denote by Ram.p/ the set
of places of RamE above p. Let Ram.2/ be the set of dyadic places of E such that
w.DE / > 0. For all prime numbers p, set

f .p/ D
X

w2Ram.p/

fw :

Note that for almost all p, we have Ram.p/ D ¿, hence f .p/ D 0.

Theorem 8.2. Suppose thatf .p/<22�2n for all prime numbersp such that Ram.p/ 6D¿.
Then there exist infinitely many non-isomorphic complex projective K3 surfaces having
complex multiplication by OE .

Moreover, there exist infinitely many such surfaces in the same isogeny class.

Proof. Suppose first that Ram 6D ¿. Let P be a prime ideal of OE of degree 1; there
exist infinitely many such ideals by Chebotarev’s density theorem. Assume that P is not
dyadic, and that N.P / is relatively prime to N.Pv/ for all v 2 Ram, where N is the norm
map.

By Corollary 4.3, there exists an OE -lattice with signature .2; 2n � 2/ and discrimi-
nant module

L
v2Ramodd

OE=Pv ˚OE=P ˚OE= xP ; let I be anOE -ideal and let ˛ 2 F �

such that the lattice q W I � I ! Z with q.x; y/ D TrE=Q.˛x Ny/ for all x; y 2 I is such a
lattice.

If there exist dyadic places of F that ramify in E, let J D I
Q
w2Ram.2/ P

ew
w with

ew 2 Z such that w.˛J xJ / > 0 for all dyadic places w of E, where Pw is the prime OE -
ideal such that w.Pw/ D 1. Let L be the OE -lattice given by q W J � J ! Z such that
q.x; y/ D TrE=Q.˛x Ny/ for all x; y 2 J . By Lemmas 4.4 and 4.5, the lattice L is even.

Assume now that RamD¿, i.e., no finite place of F ramifies inE; by Lemma 4.7 this
implies that n is even. As before, let P be a non-dyadic prime ideal of OE of degree 1. If
n� 2 .mod 4/, setG DOE=P ˚OE= xP . Suppose that n� 0 .mod 4/. SinceE is a CM
field, Chebotarev’s density theorem implies that there exist infinitely many prime OE -
ideals Q such that Q \OF is inert in E=F , and that the residual degree of Q is 2. Let Q
be such an ideal, and set G D OE=P ˚OE= xP ˚OE=Q in this case. By Corollary 4.3,
there exists an OE -lattice L of signature .2; 2n � 2/ and discriminant module G; by
Lemma 4.4, this lattice is even.
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In all the above cases, we denote by G the discriminant module of L, and let `.G/ be
the number of generators of G as an abelian group. Let f be the maximum of the integers
f .p/ such that Ram.p/ 6D¿ if there exists such a p with f .p/ > 1; otherwise, set f D 2.
We have `.G/6 f . If n6 9, then the hypothesis implies that `.G/< 22� 2n; by Nikulin’s
result [N 79, Corollary 1.12.3] this implies thatL can be primitively embedded in an even,
unimodular latticeƒ of signature .3; 19/. Suppose that nD 10, and let p DN.P /. The p-
component of G is .Fp/2, and the p-component of the discriminant form has determinant
�p2. By [N 79, Theorem 1.12.2], the lattice L can be primitively embedded in an even,
unimodular lattice ƒ of signature .3; 19/ in this case as well.

Let � 0 W F ! R be the unique embedding of F such that � 0.˛/ > 0, and let � W E! C
be one of the two extensions of � 0 to E. Let J ˝Z C D

L
� WE!C C� and set ƒ2;0 D

C� , where we consider J ˝Z C contained in ƒ ˝Z C. This endows the lattice ƒ with
a Hodge structure. Let X be the corresponding K3 surface: such a surface exists by the
surjectivity of the period map. The transcendental lattice ofX is isomorphic to L, a lattice
of signature .2; 2n � 2/, hence the surface X is projective. It has complex multiplication
by OE by construction. Varying the ideal P gives rise to infinitely many non-isomorphic
projective K3 surfaces having complex multiplication by OE . By Proposition 4.10 the
OE -lattices become isomorphic over Q, hence the K3 surfaces are all isogeneous (cf.
[Mu 87, N 87, Bu 19]). This completes the proof of the theorem.

We now state some consequences of this result.

Corollary 8.3. If no finite place of F ramifies in E, then there exist infinitely many non-
isomorphic complex projective K3 surfaces with complex multiplication by OE .

Proof. Ram D ¿ in this case, hence f .p/ D 0 for all prime numbers p.

Corollary 8.4. If ŒE W Q� 6 14, then there exist infinitely many non-isomorphic complex
projective K3 surfaces with complex multiplication by OE .

Proof. Recall that ŒE W Q� D 2n. It is easy to see that for all prime numbers p, we have
f .p/ < n. If ŒE W Q� 6 14, then f .p/ < 7, and hence f .p/ < 22� 2n 6 8. Therefore, by
Theorem 8.2 there exist infinitely many non-isomorphic complex projective K3 surfaces
with complex multiplication by OE .

Note that this no longer holds in general when ŒE WQ�> 16, as shown by the following
proposition and example.

Proposition 8.5. Let p be a prime number, p 6D 2. Suppose that there exists a prime OF -
ideal P that ramifies in E such that N.P / D pf with f > 22 � 2n. Then there does not
exist any complex projective K3 surfaces with complex multiplication by OE .

Proof. Let X be a complex projectiveK3 surface, let TX be the transcendental lattice and
let SX be the Picard lattice of X . If X has complex multiplication by E, then rank.TX / D
2n and hence rank.SX / D 22 � 2n. Let G be the discriminant group of the lattice TX ;
then G is also the discriminant group of the lattice SX . Theorem 4.2 implies that OE=P
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is a subgroup of G; the hypothesis on P implies that the minimal number of generators
of G is > 22 � 2n. This contradicts the fact that G is the discriminant group of the lattice
SX , of rank 22 � 2n.

Example 8.6. Let F be the maximal totally real subfield of the cyclotomic field Q.�17/,
and setE D F.

p
�3/. Note thatE is a CM field of degree 16. There exists a unique prime

ideal P above 3 in F ; this ideal ramifies inE, and its residual degree is 8, i.e.,N.P /D38;
by Proposition 8.5 this implies that there does not exist any complex projective K3 sur-
faces with complex multiplication by OE . The same method gives rise to infinitely many
examples in degrees 16, 18 and 20.

Corollary 8.7. If E is a cyclotomic field with 2 6 ŒE W Q� 6 20, then there exist infinitely
many non-isomorphic complex projectiveK3 surfaces with complex multiplication byOE .

Proof. If no finite prime of F ramifies in E, then this follows from Corollary 10.1. Sup-
pose now that there exist finite primes of F that ramify inE; this implies thatE DQ.�pr /,
where p is a prime number and r > 1 is an integer. Let P be the unique ramified ideal
of OE . Then the residual degree of P is 1, and P is the only prime ideal of OE above p,
hence f .p/D 1. We have f .q/D 0 for all prime numbers q 6D p, hence by Theorem 8.2,
this implies that there exist infinitely many non-isomorphic complex projective K3 sur-
faces with complex multiplication by OE .

9. K3 surfaces with a given discriminant ideal

We keep the notation of the previous sections:E is aCM field of degree 2n, with maximal
totally real subfield F , and 2n 6 20. We now apply the results of Sections 4–7 to the
existence and classification of K3 surfaces with a given discriminant ideal.

Definition 9.1. Let X be a K3 surface with CM by OE . The discriminant ideal of X ,
denoted by DX , is the integral ideal ofOE such that theOE -modules T ]X=TX andOE=DX

are isomorphic.

Recall that GX D T
]
X=TX is called the discriminant module of X , and that the length

of X , denoted by `.X/, is by definition the minimal number of generators of GX , as an
abelian group.

If X is a K3 surface with CM by OE , then TX is an even OE -lattice of signature
.2; 2n � 2/, hence the discriminant ideal DX satisfies the conditions of Theorem 4.2 for
�1 D 2 and �2 D 2n � 2; moreover, `.X/ 6 22 � 2n.

Corollary 9.2. Suppose that no dyadic place of F ramifies in E, and let D � OE be an
ideal satisfying conditions (ii)–(v) of Theorem 4.2 for .�1; �2/D .2; 2n� 2/, and suppose
that `.OE=D/ < 22 � 2n. Then there exists a K3 surface X with DX D D .

Proof. Theorem 4.2 implies that there exists an OE -lattice L with discriminant ideal D

and signature .2; 2n� 2/. Since no dyadic place of F ramifies inE, the lattice is even (see
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Lemma 4.4). The lattice L embeds primitively into the K3-lattice ƒ (see [N 79, Corol-
lary 1.12.3]), hence by Proposition 7.1 there exists a complex projective K3 surface X
with complex multiplication by OE such that TX ' L.

Let us consider E embedded in C; hence all transcendental lattices of K3 surfaces
with maximal complex multiplication by E have the same signature (as OE -lattices).

Set C D CC.E/, with the notation of Section 5. Let D � OE be an ideal such that
`.OE=D/ < 22 � 2n.

Corollary 9.3. Suppose that no dyadic place of F ramifies in E. Then the set of complex
projective K3 surfaces with complex multiplication by OE and discriminant ideal D is a
principal homogeneous space over C .

Proof. The hypotheses imply there exists aK3 surface with DX DD (see Corollary 9.2),
and that the transcendental lattice TX embeds uniquely into the K3-lattice. The corollary
now follows from Proposition 5.1 (ii), the fact that by Lemma 4.4 everyOE -lattice is even,
combined with Proposition 7.1 and Proposition 7.4.

Corollary 9.4. There exist only finitely many isomorphism classes of K3 surfaces with
CM by OE and discriminant ideal D .

Proof. Recall that X is a K3 surface with CM by OE and discriminant ideal D . Let Y
be another K3 surface with these properties. Both TX and TY are even OE -lattices of the
same signature, and their discriminant ideals are equal by hypothesis. Proposition 5.1 (ii)
implies that there exists a 2 C such that a:TX D TY . The group C is finite, hence there
are only finitely many possibilities for the isomorphism class of the OE -lattice TY . By
Proposition 7.4, this implies that there are only finitely many isomorphism classes of K3
surfaces Y as above.

Remark 9.5. Let jC j be the order of the group C . The number of isomorphism classes of
K3 surfaces with CM by OE and discriminant ideal D is 6 jC j, and equality holds if no
dyadic prime of F ramifies in E.

10. Picard lattices and complex multiplication

The aim of this section is to discuss the relationship between complex multiplication by
a ring of integers, and properties of the Picard and transcendental lattices. We keep the
notation of the previous sections; in particular, E is a CM field, F is its maximal totally
real subfield, deg.E/D 2n, with 2n6 20. In this section, we assume that no dyadic prime
of F ramifies in E.

Proposition 10.1. Let X be a complex projectiveK3 surface with maximal complex mul-
tiplication by E. Suppose that the Picard lattice SX is unimodular (equivalently, TX is
unimodular). Then no finite prime of F ramifies in E, and 2n � 4 .mod 8/.

Conversely, if no finite prime of F ramifies inE and 2n� 4 .mod 8/, then there exists
a complex projective K3 surface X such that SX and TX are unimodular.
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Proof. The hypothesis implies that TX is a unimodular OE -lattice; recall that this lattice
is even. With the notation of Section 4, this implies that ePv D 0 for all places v of E,
therefore by Theorem 4.2 (iv) we have Ram D ¿. We have .�1; �2/ D .2; 2n � 2/; since
TX is unimodular, m D 0. Therefore, Theorem 4.2 (v) implies that 2n � 4 � 0 .mod 8/,
hence 2n � 4 .mod 8/, as claimed.

Conversely, assume that no finite prime of F ramifies in E and that 2n � 4 .mod 8/.
Then by Theorem 4.2 there exists a unimodular OE -lattice L of signature .2; 2n � 2/.
Since no finite prime of F ramifies in E, this lattice is even (cf. Lemma 4.4). By Propo-
sition 7.1 there exists a complex projective K3 surface X with CM by OE and TX ' L.
Since SX is the orthogonal complement of TX inH 2.X;Z/, the lattice SX is also unimod-
ular.

Suppose now that 2n D 20; in this case, the Picard lattice is of rank 2. We denote by
U the rank 2 hyperbolic lattice, and if N is an integer, we denote by U.N/ the lattice U
with values multiplied by N .

Notation 10.2. Let S1 be the set of prime numbers p such that there exists a prime OE -
ideal P with xP 6D P and p D NE=Q.P /, let S2 be the set of prime numbers p such that
there exists a prime OE -ideal P with xP D P and p2 D NE=Q.P /, and let S3 be the set
of prime numbers p such that there exists a prime ideal P of E such that xP D P and
p D NE=Q.P /.

Lemma 10.3. (i) The set S3 is finite. (ii) If no finite prime of F ramifies inE, then S3D¿.

Proof. If p 2 S3, then there exists a prime OF -ideal above p that ramifies in E; this
proves both (i) and (ii).

Notation 10.4. Let NE be the set of integers N > 1 such that N D
Q
i2I p

ni
i , where for

all i 2 I we have pi 2 S1 or pi 2 S2, and ni > 0 is an integer such that if no finite prime
of F ramifies in E, then

P
pi2S2

ni is even.

Recall that if P is a prime ideal of OE above the prime number p, we denote by fP
the residual degree of P , i.e. fP D ŒOE=P W Fp�.

Proposition 10.5. Suppose that ŒE W Q� D 20, and that S3 D ¿. Let X be a complex
projective K3 surface with maximal complex multiplication by E.

Then the Picard lattice SX is isomorphic to U.N/ with N 2 NE .
Conversely, if N 2 NE , then there exists a complex projective K3 surface with maxi-

mal complex multiplication by E with Picard lattice isomorphic to U.N/.

Proof. The discriminant module GX is isomorphic to
L
P OE=P

eP for some prime OE
ideals P and integers eP > 0 with eP D e xP . Since S3 D ¿, the order of GX is a square,
and therefore det.SX / is a square. This implies that SX ' U.N/ for some integer N , and
GX ' .Z=NZ/2; therefore `.X/ D 2.

If P is a prime OE -ideal such that eP 6D 0 and xP 6D P , then this implies that fP D 1.
Set p D NE=Q.P /; we have p 2 S1.
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If P is a prime OE -ideal such that eP 6D 0 and xP D P , then we have p D NE=Q.P /

or p2 D NE=Q.P /, and this implies p 2 S3 in the first case and p 2 S2 in the second one.
But S3 D ¿ by hypothesis, hence we have p2 D NE=Q.P / and p 2 S2.

Note that if a prime number p divides N , then there exists a prime OE -ideal above p
with eP 6D 0, hence we proved that N is a product of primes in S1 [ S2.

Set N D
Q
i2I p

ni
i ; it remains to prove that if no finite prime of F ramifies in E, thenP

pi2S2
ni is even.

Suppose that no finite prime of F ramifies in E, and note that under this hypothesis, if
P is a prime ideal with xP D P , then eP > 0, N.P /D p2i for some pi 2 S2. Moreover,
eP D ni . With the notation of Theorem 4.2, we have �1D 2 and �2D 18, hence �1 � �2D
�16; by Theorem 4.2 (v) this implies that m is even. Therefore, eP is odd for an even
number of prime OE -ideals with xP D P ; this implies that the sum

P
pi2S2

ni is even, as
claimed.

Conversely, let p D pi be a divisor of N , and let P be a prime OE -ideal with p D
NE=Q.P / if p 2 S1, and p2 D NE=Q.P / if p 2 S2. Set eP D ni and G D

L
P OE=P

eP .
If no finite prime of F ramifies in E, then

P
pi2S2

ni is even, hence the number of prime
ideals P with xP D P and eP > 0 is even; with the notation of Theorem 4.2, this implies
that m is even. By Theorem 4.2 there exists an OE -lattice T of signature .2; 18/ and
discriminant module G. The lattice T embeds primitively into the K3-lattice ƒ, hence by
Proposition 7.1 there exists a complex projectiveK3 surfaceX with transcendental lattice
T and maximal complex multiplication by OE . The orthogonal complement of T in ƒ is
isomorphic to U.N/ by construction, and this completes the proof of the proposition.

Remark 10.6. If E is a Galois extension of Q and if no finite prime of F ramifies in E,
then S1 is the set of prime numbers that split completely in E, and S2 is the set of those
that split completely in F , but not in E.

Example 10.7. Let E D Q.�m/ with m D 44 or 66, and let p be a prime number. No
finite prime of F ramifies in E, hence S3 D ¿. We have

• p 2 S1, p � 1 .mod m/;

• p 2 S2, p2 � 1 .mod m/.

Proposition 10.5 implies that there exists a K3 surface with maximal complex multi-
plication byE with Picard latticeL,L'U.N/whereN > 1 is an integer� 1 .mod m/
such that all the prime divisors of N are� ˙1 .mod m/.

Note that for N D 1 we recover Kondo’s K3 surfaces, see [K 92, LSY 10].

Still supposing that 2n D 20, we now deal with the case where S3 6D ¿. We start by
introducing some notation.

Notation 10.8. Let K be a real quadratic field, and let � W K ! K be the unique non-
trivial element of the Galois group ofK over Q. LetO be an order ofK and let I � O be
a projective ideal of O . Let N W K ! Q be the norm map. We denote by qI the quadratic
form qI W I � I ! Z defined by qI .x; y/ D 1

N.I / TrK=Q x�.y/.



E. Bayer-Fluckiger 18

The conductor of an order O is by definition the index of O in the ring of integers
of K; we denote by cond.O/ the conductor of O .

Notation 10.9. Let ME be the set of integers N > 1 such that N D
Q
i2I p

ni
i , where for

all i 2 I we have pi 2 S1, pi 2 S2 or pi 2 S3, and ni > 0 is an integer such that ni is
even if pi 2 S3.

Proposition 10.10. Suppose that ŒE W Q� D 20 and that S3 6D ¿. Let X be a complex
projective K3 surface with maximal complex multiplication by E.

(i) If det.TX / is a square, then SX ' U.N/ for some N 2ME .

(ii) Suppose that det.TX / is not a square, and let det.TX / D dc2, where d is a
squarefree integer. Set K D Q.

p
d/. Then

SX ' qI

where I is an O-ideal of an order O of K of conductor c; moreover, c 2ME .

Proof. (i) Since det.TX / is a square, j det.SX /j is also a square, hence SX ' U.N/ for
some integer N . We have `.X/ D 2. The discriminant module GX is isomorphic toL
P OE=P

eP for some primeOE ideals P and integers eP > 0 with eP D e xP . If a prime
number p divides N , then there exists a prime OE -ideal P above p such that eP 6D 0.

Suppose that p is a prime divisor of N and that P is a prime OE -ideal above p with
eP 6D 0 such that xP 6D P . Since `.X/ D 2, this implies that fP D 1 and p D NE=Q.P /,
hence p 2 S1.

Let p be a prime divisor of N such that there exists a prime OE -ideal above p with
eP 6D 0 and xP D P . If fP D 2, then p2 D NE=Q.P /, and p 2 S2. Suppose that fP D 1.
Then we have p D NE=Q.P /, hence p 2 S3. Since det.TX / is a square, p2 dividesN , and
this implies that N 2ME .

(ii) We have j det.SX /j D dc2, and this implies that SX ' qI where I is anO-ideal of
an order O of conductor c of K. We have `.X/ 6 2, hence c 2ME .

Proposition 10.11. Suppose that ŒE W Q� D 20 and that S3 6D ¿. Set dE D
Q
p2S3

p and
KE DQ.

p
dE /. If c 2ME , then there exists a complex projectiveK3 surface with maxi-

mal complex multiplication by E with Picard lattice isomorphic to qI for some projective
ideal I of an order of conductor c of KE .

Proof. Let p D pi be a divisor of c, and let P be a prime OE -ideal with p D NE=Q.P /
if p 2 S1 or S3, and p2 D NE=Q.P / if p 2 S2. Set eP D ni , and G1 D

L
P OE=P

eP .
For all pi 2 S3, let Pi be a prime OE -ideal above pi , and set G2 D

L
pi2S3

OE=Pi ;
let G D G1 ˚ G2. By Theorem 4.2 there exists an OE -lattice T of signature .2; 18/ and
discriminant group G. The lattice T embeds primitively into the K3-lattice ƒ, hence by
Proposition 7.1 there exists a complex projectiveK3 surfaceX with transcendental lattice
T and maximal complex multiplication by OE . The orthogonal complement of T in ƒ is
an indefinite binary quadratic form of determinant �dEc2, hence it is of the form qI for
some projective ideal I of an order of conductor c of KE .
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Example 10.12. Let E D Q.�25/, and let P be the unique ramified prime OE -ideal. We
have fP D 1, hence with the above notation we have dE D 5 and KE D Q.

p
5/.

• p 2 S1, p � 1 .mod 25/.

• p 2 S2, p2 � 1 .mod 25/.

• S3 D ¹5º.

Proposition 10.10 implies that if X is a K3 surface with maximal complex multipli-
cation by E, then SX ' qI , where I is a projective ideal of an order O of KE . Moreover,
if c is the conductor of O , then we have c D 52rN where r > 0 is an integer, and if p is
a prime divisor of N , then p � ˙1 .mod 25/.

For N D 1, we recover one of Vorontsov’s K3 surfaces, see [V 83, LSY 10].

11. K3 surfaces with maximal complex multiplication by cyclotomic
fields

We keep the notation of the previous sections, and suppose that E is a cyclotomic field.
We consider E embedded in C, with E D Q.�m/, where m > 3 is an integer and �m is a
primitivem-th root of unity. As in the previous sections, the degree ofE is denoted by 2n;
note that 2n D '.m/, and that by hypothesis 2n 6 20.

Recall that if X is a K3 surface with complex multiplication by OE , we denote by
GX the discriminant OE -module T ]X=TX , and that the minimal number of generators (as
an abelian group) of GX is denoted by `.X/; it is called the length of X .

We start by observing that K3 surfaces with maximal complex multiplication by E of
length 6 20 � 2n are determined by their discriminant modules.

Proposition 11.1. LetX and Y be twoK3 surfaces with maximal complex multiplication
by E of length 6 20 � 2n. Then X and Y are isomorphic if and only if the discriminant
OE -modules of TX and TY are isomorphic.

Proof. We have hE D 1, since 2n6 20 (see for instance [W 97, Tables, Sections 3 and 4]),
therefore the proposition follows from Proposition 7.5.

12. Discriminant forms of Craig-like lattices

Let p be a prime number, p 6D 2. Craig’s lattices are positive definite lattices associated to
the cyclotomic field Q.�p/; see for instance [BB 92, Section 4] or [CS 99, Section 5.4]. In
this section and the next one, we define (definite and indefinite) analogs of these lattices.

Let r > 1 be an integer, and set E D Q.�pr /; we have ŒE W Q� D 2n D .p � 1/pr�1.
Let P be the unique prime ideal of OE above p, let us write DE D P ı , and let d be an
integer such that ı D 1 � 2d .

We consider the quadratic space .E; q/ with q W E � E ! Q defined by q.x; y/ D
TrE=Q.x Ny/. For all integers k such that k > d , let us denote by Ck the lattice of .E; q/
given by Ck D P k .
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Notation 12.1. If b 6D 0 is an integer, we denote by .Z=pZ; b
p
xy/ the symmetric bilinear

form
Z=pZ � Z=pZ! Q=Z

sending .x; y/ to b
p
xy.

Let W.Q=Z/ be the Witt group of symmetric bilinear forms on finite abelian groups
(see for instance [Sch 85, Chapter 5, Section 1]), and let ŒG; q� be the Witt class of .G; q/
in W.Q=Z/.

Theorem 12.2. Let L D Ck with k as above, set a D ı C 2k, and let e 2 ¹˙1º be such
that pr�1 � e .mod 4/. We have GL ' OE=P a, and�

.GL; qL/
�
D

h�
Z=pZ;

�e

p
xy
�i

in W.Q=Z/.

Lemma 12.3. The Witt class of .GCk ; qCk / is independent of k.

Proof. Let k; ` be such that d 6 k 6 `. We have C` � Ck , hence C ]
k
� C

]

`
; therefore,

Ck=C` is totally isotropic in C ]
`
=C`, and .Ck=C`/? D C

]

k
=C`. By [Sch 85, Lemma 5.1.3]

this implies that the Witt classes of .GCk ; qCk / and of .GC` ; qC`/ are equal.

Lemma 12.4. We have C ]
k
D C�ı�k and CkC2n D pCk .

Proof. Indeed, C ]
k
D D�1E P�k D C�ı�k , and CkC2n D P kP 2n D pCk .

Lemma 12.5. Suppose that r D 1. Then the lattice Cd is isomorphic to the root lattice
Ap�1, and C�dC1 is isomorphic to pA]p�1.

Proof. We have Cd ' Ap�1 by [E 94, Lemma 5.4]. The second assertion follows from
this, and the previous lemma.

Proposition 12.6. Assume that r D 1, and let L D Cd . Then .GL; qL/ is isomorphic to
.Z=pZ; �1

p
xy/.

First proof of Proposition 12.6. It is clear that GL ' Z=pZ. To show that qL.x; y/ D
�1
p
xy, apply [BT 20, Proposition 6.3] with �D 1. Note that (with the notation of [BT 20])

we have ��2dC2E D �
p�1
E D p, and that x�E D��E . This implies that the invariant unit u

of Proposition 6.3 is TrE=Q.
1
p
/ if d is even, and TrE=Q.

�1
p
/ if d is odd; hence u D p�1

2
if

p � 3 .mod 4/ and u D 1�p
2

if p � 1 .mod 4/. Suppose first that p � 3 .mod 4/. Then
qL.x; y/ D

�1
p
xy, as claimed. If p � 1 .mod 4/, then �1 is a square .mod 4/, hence

qL.x; y/ D
�1
p
xy in this case as well.

Second proof of Proposition 12.6. By Lemma 12.5, the lattice L D Cd is isomorphic to
the root latticeAp�1, and hence .GL; qL/ is isomorphic to .Z=pZ; �1

p
xy/; see for instance

[McM 11, Proposition 3.5].
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Remark 12.7. Assume that r D 1. With the notation of [BB 92], we have Ck D A`p�1,
where ` D k C p�1

2
.

Proof of Theorem 12.2. We have L ' P k and L] ' P�kD�1E D P
�kP�ı , hence GL '

OE=P
ıC2k DOE=P

a. To prove that Œ.GL; qL/�D Œ.Z=pZ; �e
p
xy/� inW.Q=Z/. we may

assume that L D OE (cf. Lemma 12.3). By [B 06, Proposition 9.1], the lattice .OE ; q/ is
isomorphic to the orthogonal sum of pr�1 copies of prA]p�1. Set M D prA]p�1 and T D
.Z=pZ; �1

p
xy/. The Witt class of .GM ;qM/ inW.Q=Z/ is equal to T ; indeed, Lemma 12.5

implies that pA]p�1 is isomorphic to C�dC1 for r D 1, and hence by Lemma 12.4 the
lattice prA]p�1 is also of the form C` for some ` and r D 1. By Proposition 12.6 and
Lemma 12.3, this implies that .GM ; qM / and T are in the same class in W.Q=Z/; hence
.GL; qL/ is Witt equivalent to the orthogonal sum of pr�1 copies of T . In W.Q=Z/, the
orthogonal sum of 4 copies of T is always 0, the sum of two copies of T is 0 if and only
if p � 1 .mod 4/. This implies that .GL; qL/ is Witt equivalent to T D .Z=pZ; �e

p
xy/,

as claimed.

Example 12.8. Let p D 3 and r D 2; then d D �4, and the lattice Cd is isomorphic to
the root lattice E6 (see [B 99, Section 3]).

13. Indefinite Craig-like lattices

We keep the notation of the previous section. Let F be the maximal totally real subfield
of E, and let �0 W F ! R be a real embedding of F . In this section, we assume that
there exists a unit u 2 O�F such that �0.u/ > 0 and that �.u/ < 0 for all the other real
embeddings � of F .

Let h� be the relative class number of E (i.e., the class number of E divided by the
class number of F ). If h� is odd, then there exists a unit u as above, and its image in
O�F =NE=F .O�E / is unique (see for instance [B 84, Lemma 3.2]).

We consider the quadratic space .E;q0/, where q0 WE �E!Q is given by q0.x;y/D
TrE=Q.ux Ny/; the signature of .E; q0/ is .2; 2n � 2/.

If k is an integer with k > d , we denote byLk the lattice of .E;q0/ given byLk DP k .

Lemma 13.1. The Witt class of the discriminant form of Lk in W.Q=Z/ is independent
of k.

Proof. This follows from the same argument as Lemma 12.3.

Let x" 2 F�p =F�2p be the unique non-trivial element, and let " 2 Z be such that the image
of " in F�p =F�2p is equal to x".

Theorem 13.2. Let L D Lk be as above, set a D ı C 2k and let e 2 ¹˙1º be such that
pr�1 � e .mod 4/. We have GL ' OE=P a, and�

.GL; qL/
�
D

h�
Z=pZ;

"e

p
xy
�i

in W.Q=Z/.
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Proof. We have GL ' OE=P a as in Theorem 12.2. Let us show that�
.GL; qL/

�
D

h�
Z=pZ;

"e

p
xy
�i

inW.Q=Z/. By Lemma 13.1 it is enough to consider the case kD d , hence we can assume
that GL D Z=pZ. By Theorem 12.2, the discriminant form of the positive definite lattice
Cd is .Z=pZ; �e

p
xy/; let us show that the discriminant form of Ld is .Z=pZ; "e

p
xy/.

Recall that n D ŒF W Q�. Let vp be the unique finite place of F above p. Let us write
E D F.

p
�/, with � 2 F �. We have .u;�/v D 1 for all finite places of v of F with v 6D vp .

Suppose that n is odd. Then .u; �/v D 1 at an even number of infinite places v of F , hence
the product formula implies that .u; �/vp D 1. This implies that the discriminant forms of
Ld and Cd are isomorphic, hence they are isomorphic to .Z=pZ; �e

p
xy/. Note that n is

odd if and only if p � 3 .mod 4/, and in this case �1 is not a square .mod p/, hence we
can take " D �1.

Suppose that n is even. Then the above argument shows that .u; �/vp D �1. Apply-
ing [BT 20, Proposition 6.6], we see that the discriminant form of Ld is isomorphic to
.Z=pZ; �"e

p
xy/ in this case. Note that n is even if and only if p � 1 .mod 4/, and �1 is a

square .mod 4/ in this case. This implies that the discriminant form of Ld is isomorphic
to .Z=pZ; "e

p
xy/ in this case as well.

Remark 13.3. The lattices Lk and Ck are defined for k > d , and their determinant is pa,
with aD ıC 2k. The condition k > d is equivalent to a > 1. This motivates the following
notation.

Notation 13.4. If a > 1 is an integer, set ƒa D Lk with k D a�ı
2

.

Example 13.5. Let E D Q.�p/, i.e. r D 1. Then e D 1, hence the discriminant form of
ƒ1 is .Z=pZ; "

p
xy/. If p � 3 .mod 4/, then we can take " D �1, and this implies that

the discriminant form is .Z=pZ; �1
p
xy/. Suppose that p � 1 .mod 4/. If p � 5 .mod 8/,

then 2 is not a square .mod p/, therefore we can take " D 2, and the discriminant form
is then isomorphic to .Z=pZ; 2

p
xy/. This covers all the prime numbers p needed for the

applications to K3 surfaces, except for p D 17. In this case, we can take " D 3, hence the
discriminant form is isomorphic to .Z=17Z; 3

17
xy/.

Example 13.6. Let E D Q.�m/, with m D 9; 25 or 27. We have e D �1 if m D 9 and
e D 1 for m D 25 or 27. We can take " D �1 for m D 9 or 27, and " D 2 if m D 25 (cf.
Example 13.5). Hence the discriminant form of ƒ1 is�

Z=pZ;
1

3
xy
�

if m D 9I
�

Z=pZ;
�1

3
xy
�

if m D 27I
�

Z=pZ;
2

5
xy
�

if m D 25:

IfL is a lattice and n is an integer, we denote byL.n/ the lattice with values multiplied
by n.

Notation 13.7. If a > 1 is an integer, set �a D Ck.�1/ with k D a�ı
2

.
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Lemma 13.8. Suppose that r D 1, and let a > 1 be an integer. Set LD�a. Then we have�
.GL; qL/

�
D

h�
Z=pZ;

1

p
xy
�i

in W.Q=Z/.

Proof. This follows from Theorem 12.2, noting that since r D 1, we have e D 1, and that
�a is negative definite.

14. Twisted lattices

We keep the notation of the previous section, and assume that r D 1, henceEDQ.�p/, and
F D Q.�p C ��1p /. We fix a real embedding �0 W F ! R, and we assume that there exists
a unit u 2 O�F such that �0.u/ > 0 and that �.u/ < 0 for all the other real embeddings
� of F . For all odd integers a � 1, we define the lattices ƒa and �a as in the previous
section. We denote by P the unique ramified ideal of OE .

Definition 14.1. Let .L; q/ be a negative definite even lattice. A root of L is an element
x 2 L such that q.x; x/ D �2. We say that L is a root lattice if it has an integral basis of
roots.

Proposition 14.2. Let J � OE be an ideal, and let a > 1 be an odd integer; let L be a
twist of �a by J . If a > 1 or if J 6D OE , then the lattice L does not contain any roots.

Proof. The lattice L has an isometry t W L! L with characteristic polynomial p̂ . By
[BM 94, Appendix], this shows that L does not contain any root sublattice if a > 1 or if
J 6D OE .

Proposition 14.3. Let p be a prime number with p � 3 .mod 4/, and let � be a primitive
p-th root of unity. Let a > 1 be an integer, and let J � OE be an ideal prime to P . Let ƒ
be a twist of ƒa by J , and let � be a twist of �a by J .

tƒ W ƒ! ƒ and t� W �! � be the isometries induced by multiplication by �. Then
there exists an even, unimodular latticeL containingƒ˚� as a sublattice of finite index,
and an isometry t W L! L such that t jƒ D tƒ, t j� D t�.

Proof. The proof uses gluing of lattices and isometries as in McMullen’s papers [McM 11,
Section 2] or [McM 16, Section 4]. We check that the conditions of [McM 11, p. 5] (gluing
of a pair of lattices, extending isometries) hold for ƒ, tƒ and �, t�. If suffices to check
these conditions for all prime numbers q dividing the orders of the discriminant groups
(glue groups) of ƒ and �, because of the primary decomposition of these groups (see
[McM 11, p. 4]).

We start with the p-primary components. The discriminant modules ofƒa and�a are
isomorphic, and their discriminant forms have opposite signs, since their Witt classes are
Œ.Z=pZ; �1

p
xy/�, respectively Œ.Z=pZ; 1

p
xy/�; hence McMullen’s conditions hold at p.
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Let q be a prime number with q 6D p. If J is squarefree, then the discriminant groups
are vector spaces over Fq , hence the conditions of [McM 11, Section 3] are fulfilled; if J
is not squarefree, then Milnor’s argument in [M 69, Section 3, Theorem 3.4], shows that it
is enough to consider the case where the discriminant groups are vector spaces over Fq .

Hence McMullen’s conditions hold at every prime number, and therefore there exists
an even, unimodular lattice L containing ƒ ˚ � with finite index, and an isometry t W
L! L such that t jƒ D tƒ, t j� D t�.

Remark 14.4. Let a D 1 and J D OE . The previous proposition holds with t� D id;
we obtain an even, unimodular lattice L and an isometry t W L! L such that t jƒ is the
multiplication by � and t j� is the identity.

15. A family of K3 surfaces

Let p be a prime number, 3 6 p 6 11. We keep the notation of the previous sections; in
particular, " 2 Z is such that the image of " in F�p =F�2p is the unique non-trivial element.
Set E D Q.�p/, and let P be the unique ramified prime ideal of OE .

If X is a K3 surface, we denote by TX its transcendental lattice and by SX its Picard
lattice.

Theorem 15.1. Let a > 1 be an odd integer. There exists a unique (up to isomorphism)
complex projective K3 surface Xa D Xa.p/ with maximal complex multiplication by E
such that the following equivalent conditions hold:

(i) The discriminant module of TXa is isomorphic to P=P a, and the Witt class of
its discriminant form .GXa ; qXa/ is Œ.Z=pZ; "

p
xy/�.

(ii) GXa ' P=P
a.

(iii) det.SXa/ D det.TXa/ D p
a.

Moreover, the surfaces Xa are isogeneous for all a > 1.

Recall that for all integers a > 1, the OE -lattice ƒa is defined in Section 13, see
Notation 13.4.

Theorem 15.2. Let a > 1 be an odd integer. There exists a unique (up to isomorphism)
complex projective K3 surface Xa with maximal complex multiplication by E such that
the transcendental lattice TXa is Hodge isomorphic to the OE -lattice ƒa.

Proof. Since p6 11, we have `.Gƒa/6 10, henceƒa embeds uniquely intoƒ. By Propo-
sition 7.1, there exists a complex projectiveK3 surface Xa having CM by E such that the
OE -lattice TXa is Hodge isometric toƒa; the surface Xa is unique up to isomorphism (cf.
Proposition 7.4). By construction, we have

ƒa ˝Z Q ' ƒb ˝Z Q for all a; b > 1I

hence, these surfaces are all isogeneous (see [Mu 87, N 87, Bu 19]).
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Proof of Theorem 15.1. The existence and the uniqueness of the K3 surfaces Xa with
property (i) results from Theorem 15.2 and Theorem 13.2; Theorem 15.2 also implies that
the surfaces Xa are all isogeneous. It is clear that (i))(ii))(iii), and by Proposition 7.5
we have (ii))(i). It remains to show that (iii))(ii). The only prime ideal of OE above p
is the unique ramified ideal P , and we have N.P / D p. Therefore, det.TX / D pa implies
that GTX ' OE=P

a as OE -modules, and therefore (ii) holds.

Example 15.3. For a D 1, we recover Vorontsov’s examples of K3 surfaces (see [V 83,
K 92]) arising in connection with automorphisms acting trivially on the Picard lattice;
these surfaces are elliptic with a section and defining Weierstrass equations over Q are
given in [K 92]. The discriminant forms of these surfaces are computed using an elliptic
fibration in [LSY 10, Table 5].

16. More K3 surfaces

Let E D Q.�m/ with m D 9; 13; 17; 19; 25 or 27, and let us denote by P the unique
ramified ideal of OE .

Theorem 16.1. Let a > 1 be an odd integer, and suppose that a 6 7 if m D 13, a 6 5 if
m D 17, a D 1 if m D 19; 25 or 27.

Then there exists a unique (up to isomorphism) complex projectiveK3 surface Xa.m/
with maximal complex multiplication by E such that the following equivalent conditions
hold:

(i) The discriminant module of TXa is isomorphic to P=P a, and the Witt class
of its discriminant form .GXa ; qXa/ is Œ.Z=pZ; "

p
xy/� if m D p D 13; 17 or

19; Œ.Z=3Z; 1
3
xy/� if m D 9; Œ.Z=3Z; �1

3
xy/� if m D 27 and Œ.Z=5Z; 2

5
xy/� if

m D 25.

(ii) GXa.m/ ' P=P
a.

(iii) det.SXa.m// D det.TXa.m// D p
a if m is a power of p.

Moreover, the surfaces Xa.m/ are isogeneous for all a > 1.

Proof. Suppose first that m 6D 25. Then the proof goes along the same lines as the proof
of Theorem 15.1; the conditions on a ensure that ƒa embeds uniquely in ƒ (see [N 79,
Corollary 1.12.3 and Theorem 1.14.4]). By Propositions 7.1 and 7.4, there exists a unique
(up to isomorphism) complex projective K3 surface Xa having CM by E such that the
OE -lattice TXa is Hodge isometric to ƒa of Section 13, cf. Notation 13.4.

IfmD 25, thenƒa embeds primitively inƒ (see [N 79, Corollary 1.12.3]), hence there
exists a complex projective K3 surface Xa having CM by E such that the OE -lattice TXa
is Hodge isometric to ƒa. The surface Xa has an automorphism that is the identity on
the Picard lattice and induces complex multiplication on the transcendental lattice; this
can be checked by noting that the action of the complex multiplication on TXa induces
multiplication by �1 on GXa .
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The discriminant form of Xa.m/ can be deduced from Theorem 13.2, see also Exam-
ple 13.6; the proof is completed as in the proof of Theorem 15.1.

Example 16.2. As in Example 15.3, for a D 1 we recover Vorontsov’s examples of K3
surfaces (see [V 83, K 92]). These surfaces are elliptic with a section, except if m D 25;
see [K 92] for defining equations over Q.

17. Automorphisms

Let p D 3; 7 or 11 and let a > 1 be an odd integer; let Xa D Xa.p/ be the K3 surface
of Section 15. Let � be a primitive p-th root of unity, and let E D Q.�/, considered as a
subfield of C.

Definition 17.1. Let X be a complex projective K3 surface with complex multiplication
by E. Let T W X ! X be an automorphism, and let t W TX ! TX be the isometry induced
by T . We say that t induces the complex multiplication by E if t .�/ D �� where � is a
non-zero 2-form in TX ˝Q C.

Theorem 17.2. (i) For all a > 1, the K3 surface Xa has an automorphism of order p
inducing the complex multiplication by E.

(ii) For all a > 1, the surface Xa is elliptic with a section.
(iii) If a > 1, then the Mordell–Weil lattice of Xa is isomorphic to �a.

Proof. If a D 1, then this is well known: the surfaces X1 are isomorphic to Vorontsov’s
K3 surfaces, see Example 15.3.

Suppose that a > 1. By Proposition 14.3 there exists an even, unimodular lattice L
containing ƒa ˚�a as a sublattice of finite index, and an isometry tL W L! L such that
tLjƒa D tƒ, tLj�a D t�.

Set r D 24 � 2p, and let M be an even, unimodular lattice of signature .1; r � 1/;
such a lattice exists (and is unique up to isomorphism) since r � 2 is divisible by 8. Let
tM WM !M be the identity.

Set N D M ˚ L, and let t W N ! N be such that t jL D tL, t jM D tM D id. The
lattice N is even, unimodular of signature .3; 19/. Set S DM ˚�a and T D ƒa. Since
a > 1, the lattice �a does not contain any roots (cf. Lemma 14.2). The isometry t is the
identity on N , hence tS satisfies the conditions of McMullen in [McM 16, Section 6].
Therefore, by [McM 16, Theorem 6.1] there exists a complex projective K3 surface X
with SX ' S , TX ' T , and an automorphism T W X ! X such that T � D t . This K3
surface is isomorphic to Xa. This shows (i).

The lattice M is even, unimodular and of signature .1; r/, hence it has an orthogonal
factor isomorphic to the 2-dimensional hyperbolic lattice U . This implies that Xa is ellip-
tic with a section (see [SS 19, Theorem 11.24]) hence (ii) holds. Note that the orthogonal
complement of U in M is a (negative) root lattice.

If a > 1, then �a has no roots, hence the trivial lattice of the fibration is isomorphic
to M , and the Mordell–Weil lattice to �a; this implies (iii).
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18. Twisted K3 surfaces
The aim of this section is to extend the results of Sections 15 and 17 to certain twistedK3
surfaces. Let p be a prime number, 3 6 p 6 11, and set E D Q.�p/. We keep the notation
of the previous sections; in particular, P is the unique ramified prime ideal of E.

If a> 1 is an odd integer, the latticesƒa and�a are defined in Section 15. Let J �OE
be an OE -ideal prime to P such that xJ D J . Since hE D 1, the twist of an OE -lattice by
J is uniquely defined (up to isomorphism; see Proposition 6.4). We denote by ƒa;J and
�a;J the twists of ƒa and �a by J .

Theorem 18.1. Let a > 1 be an odd integer, and let J � OE be an OE -ideal prime to P
such that xJ D J . Then

(i) There exists a unique (up to isomorphism) complex projective K3 surface Xa;J
with maximal complex multiplication by E such that the transcendental lattice
TXa;J is Hodge isomorphic to the OE -lattice ƒa;J .

Suppose that p D 3, 7 or 11.

(ii) The K3 surface Xa;J has an automorphism of order p inducing the complex
multiplication by E.

(iii) The surface Xa;J is elliptic with a section.

(iv) If a>1 or J 6DOK , then the Mordell–Weil lattice ofXa;J is isomorphic to�a;J .

Proof. (i) We have ŒE W Q� D p � 1 and p 6 11, hence the lattice ƒa;J embeds uniquely
into ƒ. Proposition 7.1 implies that there exists a complex projective K3 surface Xa;J
having CM by E such that the OE -lattice TXa;J is Hodge isometric to ƒa;J ; the surface
Xa;J is unique up to isomorphism (cf. Proposition 7.4).

(ii) and (iii) If a D 1, then this follows from Theorem 17.2 (i) and (ii). Set ƒ D ƒa;J
and � D �a;J . By Proposition 14.3 there exists an even, unimodular lattice L containing
ƒ ˚ � as a sublattice of finite index, and an isometry tL W L ! L such that tLjƒ D
tƒ, tLj� D t�. Set r D 24 � 2p, and let M be an even, unimodular lattice of signature
.1; r � 1/; such a lattice exists (and is unique up to isomorphism) since r � 2 is divisible
by 8. Let tM W M ! M be the identity. Set N D M ˚ L, and let t W N ! N be such
that t jLD tL, t jM D tM D id. The lattice N is even, unimodular of signature .3; 19/. Set
S DM ˚� and T D ƒ.

Suppose that a > 1. Then the lattice � does not contain any roots (cf. Lemma 14.2).
The isometry t is the identity on N , hence tS satisfies the conditions of McMullen in
[McM 16, Section 6]. Therefore, by [McM 16, Theorem 6.1], there exists a complex pro-
jectiveK3 surface X with SX ' S , TX ' T , and an automorphism T W X ! X such that
T � D t . This K3 surface is isomorphic to Xa;J , and this implies (ii).

The latticeM has an orthogonal factor isomorphic to the 2-dimensional hyperbolic lat-
ticeU, thereforeXa;J is elliptic with section (see [SS 19,Theorem11.24]), hence (iii) holds.

(iv) If a > 1 or J 6DOE , then by Lemma 14.2 the lattice� does not contain any roots.
Therefore, the trivial lattice of the fibration is isomorphic to M , and the Mordell–Weil
lattice is isomorphic to �.
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Theorem 18.2. Let p D 3; 7 or 11, and let X be a K3 surface having an automorphism
of order p inducing the complex multiplication by E. Then there exists an integer a > 1

and an ideal J � OE such that X ' Xa;J .

Proof. The OE -module GX D T
]
X=TX is isomorphic to OE=P a ˚OE=J for some inte-

ger a > 1 and some OE -ideal J . The discriminant module of Xa;J is also isomorphic to
OE=P

a ˚OE=J , and the length of this abelian group is 6 10, hence by Proposition 7.5
we have X ' Xa;J .

19. Moduli spaces

An automorphism of a K3 surface is said to be symplectic if it induces the identity on
the transcendental lattice (hence on the symplectic form), and non-symplectic otherwise.
Artebani, Sarti and Taki identified the irreducible components of the moduli space of
K3 surfaces with a non-symplectic automorphism of prime order (see [AST 11], see also
[AS 08] for p D 3 and [OZ 10, ACV 21] for p D 11).

Let ƒ D ƒ3;19 be the K3-lattice. If X is a K3-surface, we denote by !X a nowhere
vanishing holomorphic 2-form on X . Let p be a prime number, and let �p be a primitive
p-th root of unity. Let � W ƒ! ƒ be an isometry of order p, and let us denote by Œ�� its
conjugacy class in O.ƒ/. A Œ��-polarized K3 surface is a pair .X; t/ where X is a K3
surface and t a non-symplectic automorphism of X of order p such that t�.!X / D �p!X
and t� D ˆ ı � ı ˆ�1, for some (fixed) isometry ˆ W ƒ! H 2.X;Z/, which is called a
marking; the moduli space of such polarizedK3 surfaces is denoted by Mp (see [AST 11,
Section 9]). We say that a point of this moduli space is a CM point if the K3 surface X
has complex multiplication.

Let p D 3; 7 or 11, and let E D Q.�p/. We keep the notation of the previous sections:
in particular, P denotes the unique ramified ideal of E.

Let a > 1 be an odd integer and let J � OE be an ideal prime to P . Let Xa;J be the
K3 surface defined in Section 18. The following corollary is an immediate consequence
of Theorem 18.1 (ii).

Corollary 19.1. The K3 surface Xa;J has an automorphism of order p inducing the
complex conjugation on the transcendental lattice TXa;T , and determines a CM point on
the moduli space Mp .

Moreover, Theorem 18.2 implies that all CM points with maximal complex multipli-
cation by E arise in this way.

20. Fields of definition, class fields and elliptic fibrations

Piatetski-Shapiro and Shafarevich proved that a K3 surface with complex multiplication
can be defined over a number field (see [PS 73, Theorem 4]). If moreover the complex
multiplication is maximal, Valloni obtained more precise results in [V 21, V 23]; if E is a
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CM field and I � OE an ideal with xI D I , he defined a finite abelian extension FI .E/
such that everyK3 surface with CM by OE with discriminant ideal I can be defined over
FI .E/.

Let p D 3; 7 or 11, let �p be a primitive p-th root of unity and let E D Q.�p/. Let
a > 1 be an integer, let J � OE be an ideal relatively prime to the unique ramified ideal
P of E such that xJ D J . Let Xa;J be the K3 surface defined in Section 18. As we have
seen in Section 19, this gives rise to a CM point on the moduli space Mp; the description
of Artebani, Sarti and Taki of the moduli space can be used to obtain a field of definition
of Xa;J . This is illustrated by the following example, due to Brandhorst and Elkies.

Example 20.1. McMullen proved the existence of a K3 surface with an automorphism
of entropy equal to the logarithm of the Lehmer number (see [McM 16]), and raised the
question of constructing this surface and the automorphism explicitly. This was achieved
by Brandhorst and Elkies in [BE 23].

Set E D Q.�7/, F D Q.�7 C ��17 / and let J be one of the OE -ideals above 13. The
K3 surface S constructed in [BE 23] has a non-symplectic automorphism of order 7, and
the construction shows that it is isomorphic to X1;J . In [BE 23, Sections 3 and 4], the
authors use the description of M7 by [AST 11] to obtain an equation for the surface S ,
with coefficients in a quadratic extension K of the field F ; set K D Q.w/, where w is
such that

w6 � 2w5 C 2w4 � 3w3 C 2w2 � 2w C 1 D 0:

The field K has discriminant 7413, and contains the field F of discriminant 49.
Let P be the unique ramified prime ideal of E. The composite fieldKE is isomorphic

to Valloni’s number field FPJ .E/, i.e., FPJ .E/ ' Q.�7; w/. This computation was done
with the help of PARI/GP.

21. Some equations
Let p D 3; 7 or 11, let �p be a primitive p-th root of unity, and set E D Q.�p/. Let a be
an odd integer, let J � OE be an ideal relatively prime to the unique ramified ideal P
of E such that xJ D J . We denote by Xa;J .p/ the K3 surface defined in Section 18; if
J D OE , then we use the notation Xa.p/, as in Section 15. As mentioned in Example
20.1, Brandhorst and Elkies gave an explicit equation for the surface X1;J .7/, where J is
one of the prime OE -ideals above 13 (see [BE 23, Section 4]); their method can be used
for other choices of a and J .

I thank Simon Brandhorst for the following examples.

Example 21.1. Let p D 7, E D Q.�7/, set w D �7 C ��17 , and let J be one of the prime
OE -ideals above 2. An equation of the surface X1;J .7/ is given by

y2 D x3 C bx C ct7 C d;

where

bD.�3403=16/.w2C4wC4/; cD14.w2C2wC1/; dD.293419=32/.w2C2wC1/:
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Example 21.2. Let p D 7, E DQ.�7/, and set w D �7C ��17 . An equation of the surface
X3.7/ is given by

y2 D x3 C bx C ct7 C d;

where

bD.�230578777287775=2/w2C.127961567541885=2/wC4144846476936445=16;

cD�5842669785012830924w2C3242437110294043228wC13128359838180149367;

dD151461887453084383247079=32:

The computations are due to Simon Brandhorst, and they were done by Sage.

Acknowledgments. I thank Simon Brandhorst and Domenico Valloni for interesting dis-
cussions, and Matthias Schütt for sending me useful remarks. I am very grateful to Bill
Allombert for his help with PARI/GP.
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