
Doc. Math. (Online first)
DOI 10.4171/DM/1032

© 2025 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Posets of finite GK-dimensional graded pre-Nichols
algebras of diagonal type

Iván Angiono and Emiliano Campagnolo

Abstract. We classify graded pre-Nichols algebras of diagonal type with finite Gelfand–Kirillov
dimension over an algebraically closed field of characteristic zero. The characterization is made
through an isomorphism of posets with a family of appropriate subsets of the set of positive roots of
a semisimple Lie algebra attached to the Nichols algebra. The relation between this Lie algebra and
the Nichols algebra is that the algebra of functions of the corresponding unipotent group appears
in a central extension of the Nichols algebra, generalizing the corresponding extensions for small
quantum groups in de Concini–Kac–Procesi forms of quantum groups.

On the way to achieving this result, we also classify graded quotients of algebras of functions
of unipotent algebraic groups attached to semisimple Lie algebras.

1. Introduction

Let k be an algebraically closed field of characteristic zero. The so called quantized
enveloping algebras Uq.g/, where q is a parameter and g is a semisimple Lie algebra,
emerged after the works of Drinfeld and Jimbo as examples of non-commutative and non-
cocommutative Hopf algebras over the field k.q/: They were obtained by deforming the
structure of the corresponding enveloping algebra over k.q/. When we consider the eval-
uation of the parameter q in elements of k, we get a Hopf algebra over k, which behaves
as U.g/ in terms of representations if q is not a root of unity. In the nineties, de Concini,
Kac and Procesi [21, 22] studied the case in which q is a root of unity of order N , under
some mild conditions on N , and found a completely different story. To begin with, the
center of Uq.g/ is larger than in the case where q is not a root of unity, and it contains a
Hopf subalgebra Zq which gives rise to an extension of Hopf algebras

Zq ,! Uq.g/ � uq.g/: (1.1)

Here uq.g/ is the Frobenius–Lusztig kernel, a finite-dimensional pointed Hopf algebra.
The name comes from the evaluation of a different form of Uq.g/ studied by Lusztig
[27, 28] in connection with the representation theory of algebraic groups in positive char-
acteristic. He took an integral form generated by divided powers of the generators and the
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algebra Uq.g/ obtained after evaluation in q fits into an extension of Hopf algebras

uq.g/ ,! Uq.g/ � U.g/: (1.2)

Coming back to (1.1), Uq.g/ is Z� -graded, where � is the rank of g, and has a tri-
angular decomposition Uq.g/ ' UCq .g/ ˝ U

0
q .g/ ˝ U

�
q .g/, where U 0q .g/ is the group

algebra of a free abelian group in generators Ki , 1 � i � � , and U˙q .g/ has a PBW basis
made of PBW generators E˛ , respectively F˛ , of degree ˙˛ 2 �C, where � is the set
of roots of g viewed as a subset of Z� . In addition, Zq is the subalgebra generated by
EN˛ , FN˛ , ˛ 2 �C, and KNi , 1 � i � � , while uq.g/ has a restricted PBW basis with the
same set of generators, but we restrict the powers up to N . Also, the restriction of (1.1)
to the corresponding positive parts gives an extension ZCq ,! UCq .g/ � uCq .g/ of Hopf
algebras, but in the braided tensor category kZ�

kZ�
YD of Yetter–Drinfeld modules over Z� .

A few years later, Andruskiewitsch and Schneider [10] introduced the so called Lifting
Method to classify finite-dimensional pointed Hopf algebras. In a nutshell, this method is
based on the decomposition of the associated coradically graded Hopf algebra into the
bosonization between a group algebra k� and a coradically graded Hopf algebra R in
the category k�

k�YD by solving the following steps: first, to classify all finite-dimensional
Nichols algebras (see Section 2.1 and references therein for the definition and examples);
then classify the possible finite-dimensional Hopf algebras R extending the Nichols alge-
bras as before, called post-Nichols algebras; and finally to obtain all the liftings of the
corresponding bosonizations. This method was widely applied, with the first main result
[13] being the classification in the case of abelian groups with moderate restriction on the
order, where the examples are certain deformations of the bosonizations of uCq .g/ with
appropriate abelian groups. The general answer for abelian groups involves the classifica-
tion of finite-dimensional Nichols algebras Bq of diagonal type depending on a braiding
matrix q 2 .k�/��� , which in turn is contained in the classification of those with finite
root system (i.e., a finite number of PBW generators) given by Heckenberger [24]. To do
so, we attach a (kind of) Dynkin diagram with labels depending on q and consider the
connected components of this diagrams: the root system is, as expected, the disjoint union
of the root systems of the connected components, so the list in [24] contains just those
matrices q with connected Dynkin diagram. In [3] this list was split into the following
families:

• Cartan type.

• Super type.

• Standard type.

• Modular type.

• Supermodular type.

• UFO.

Here, Cartan type is essentially the case of quantized enveloping algebras, while super
type is related with quantized enveloping Lie superalgebras.
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Andruskiewitsch and Schneider also started the classification of pointed Hopf algebras
with finite Gelfand–Kirillov dimension (i.e., infinite-dimensional ones with some kind of
moderate growth) in [12] by classifying those which are domains and satisfy a technical
condition. To do so, they extend the Lifting Method to this context and obtained that all
possible Nichols algebras are close to UCq .g/ for q not a root of unity, and the unique
possible Hopf algebras R extending the Nichols algebras are just the Nichols algebras
themselves.

If we want to get all Hopf algebras including those which are not domains, the answer
is fully different: indeed, Lusztig examples provide post Nichols algebras UCq .g/ prop-
erly extending the Nichols algebras uCq .g/. Taking graded duals, the extension between
the positive parts in (1.2) becomes that of (1.1), where UCq .g/ is a pre-Nichols algebra (a
graded intermediate quotient between the tensor algebra and the Nichols algebra uCq .g/)
of finite GKdim, and classifying post-Nichols algebras with finite GKdim is related to
classifying pre-Nichols algebras with finite GKdim. In general, finite-dimensional Nichols
algebras Bq of diagonal type fit into an exact sequence of braided Hopf algebras ZCq ,!
zBq � Bq, generalizing the one between positive parts in (1.1), where zBq is the distin-
guished pre-Nichols algebra [15]: it has a PBW basis with the same set of generators as
Bq, but where we allow the powers of some of them to be arbitrary as in (1.1). Thus
we may identify first those Nichols algebras of diagonal type with finite GKdim and
then obtain all possible pre-Nichols algebras of finite GKdim covering each one of these
Nichols algebras. For the first question the answer was given in [18], following the con-
jecture made in [6]: a Nichols algebra of diagonal type has finite GKdim if and only if its
root system is finite, i.e., it appears in the lists in [24]. Therefore we have to classify all
pre-Nichols algebras B with finite GKdim covering the Nichols algebras Bq with finite
root system.

Fixing a braiding matrix q, the corresponding set of pre-Nichols algebras form a poset
whose maximal element is Bq and we may wonder if there exists a minimal element
between those of finite GKdim, called the eminent pre-Nichols algebra yBq in [9]. This is
the case for all q with connected diagrams up to Cartan types A� , D� with label q D �1,
thanks to [9, 16, 17, 20]: in most cases eminent and distinguished pre-Nichols algebras
coincide, i.e., yBqD

zBq. In any case, yBq fits into an exact sequence of braided Hopf algebras

yZq ,! yBq � Bq;

where yZq is an algebra of q-polynomials whose variables are homogeneous: we collect the
N�
0 -degrees of these variables in a set denoted by yOq

C, which is the set of positive roots of
a classical root system when yBq D

zBq by [4]. As we will explain later, we are interested
in subsets B � yOq

C closed by sums: it means if ˛; ˇ 2 B are such that ˛ C ˇ 2 yOq
C, then

˛C ˇ 2 B . Let Pc.q/ be the set of all subsets of yOq
C closed by sums, which is a subposet

of the poset of subsets of yOq
C.

Due to the results stated above, the determination of the poset of pre-Nichols algebras
with finite GKdim is equivalent to the characterization of all intermediate quotients B

between yBq and Bq. The main result of this paper deals with this question.
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Theorem 1.1. Let q be a braiding matrix whose connected components are not of Cartan
types A� , D� with label q D �1 neither one-dimensional with label q D ˙1. For each
ˇ 2 yO

q
C let zˇ be a generator of yZq of degree ˇ, and for each B 2 Pc.q/ let

B.q; B/´ yBq=
˝
zˇ j ˇ 2 yO

q
C � B

˛
:

Then each B.q;B/ is an N�
0 -graded pre-Nichols algebra such that GKdimB.q;B/D jBj.

The assignment B 7! B.q; B/ gives an anti-isomorphism of posets between

• the set Pc.q/ of all subsets of yOq
C closed by sums, and

• the set of all N�
0 -graded pre-Nichols algebras of q with finite GKdim.

The proof uses the determination of eminent pre-Nichols algebras made in [9, 16, 17]
and the equivalence between the finiteness of the root system and finite GKdim of Nichols
algebras of diagonal type stated in [18], which explain two restrictions of our results: We
avoid connected components of type A� , D� with label q D �1 due to the first papers,
and we restrict to algebraically closed fields because of the last one.

The strategy to prove Theorem 1.1 is the following:

(i) We check for those cases where yBq ¤
zBq that yZq is also skew central, see

Proposition 4.1 (i). Thus, for all connected braiding matrices q considered here
we have that the eminent pre-Nichols algebra is a skew central extension of the
Nichols algebra.

(ii) We prove that the poset of pre-Nichols algebras with finite GKdim is preserved
up to twist equivalence in Proposition 2.7, and that every braiding matrix q is
twist equivalent to a braiding matrix p such that yZp is central in Lemma 2.8.
Therefore we may assume that yZq is central.

(iii) Next we check that intermediate quotients of the eminent pre-Nichols algebra
are labeled by quotients of the central Hopf subalgebra yZq, see Proposition 2.2.
This leads us to study quotients of commutative connected Hopf algebras of a
certain shape: polynomial algebras in variables zˇ , labeled by their Z� -degrees
as elements of yBq, where the set of labels is denoted by O

q
C.

(iv) In the case in which yBq D
zBq, O

q
C is the set of positive roots of a semisimple

Lie algebra by [4], and yZq is the algebra of functions of the unipotent subgroup
attached to this root system, so we study quotients of this kind of commutative
Hopf algebras in Theorem 3.10. When yBq ¤

zBq we do it by hand in Propo-
sition 4.1 (ii), (iii). In any case we can relate all the quotients of yZq, which
in turn give all the quotients of yBq, with subsets of O

q
C closed by sums. This

leads to the classification of pre-Nichols algebras with finite GKdim when q is
connected in Theorem 4.5.

(v) Finally, we prove that the poset in the non-connected case decomposes as the
product of the corresponding posets of the connected components and give a
closed formula for the Hilbert series of each pre-Nichols algebra B.q; B/, see
Theorem 4.8.
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Going back through the steps of the Lifting Method, we classify by taking graded duals
all post-Nichols algebras of diagonal type and finite GKdim (up to few exceptions on the
connected components), which in turn give all coradically graded pointed Hopf algebras
with abelian coradical and finite GKdim after bosonization with suitable abelian groups.

We can observe that any B.q; B/ fits into an exact sequence of the Nichols algebra q

by a q-central Hopf subalgebra, so we may ask:

Question 1.2. Are there examples of pre-Nichols algebras of finite GKdim which are not
a “central” extension of braided Hopf algebras of the corresponding Nichols algebra?

Although the restriction to the N�
0 -graded case may seem very strong, it has both a

realization-independence reason and also a reduction to a problem with a closed answer:
the general case depends strongly on the realization of the braided vector space of diagonal
type as Yetter-Drinfeld module, and a general answer may be somewhat unmanageable,
see Remark 2.6.

The organization of the paper is the following. First we recall several notions about
Nichols algebras, distinguished and eminent pre-Nichols algebras when the braiding is of
diagonal type; we also summarize known results about eminent pre-Nichols algebras and
solve some questions on quotients of pre-Nichols algebras, extensions of Nichols algebras
by central subalgebras and twist equivalence of braidings of diagonal type in Section 2.
Motivated by the results in this section we consider quotients of the algebras of functions
of unipotent algebraic groups which are the positive parts of semisimple ones; hence, in
Section 3 we give the classification of these quotients in terms of subsets closed by sums
of the set of positive roots of the associated semisimple Lie algebra. Finally, we attack
the determination of the poset of N�

0 -graded pre-Nichols algebras with finite GKdim of a
matrix q such that Bq has a finite root system (or equivalently, such that GKdimBq <1).
Due to the results in Section 2, we can relate these quotients to those of the skew central
Hopf subalgebra yZq (the subalgebra of coinvariants of the projection yBq � Bq), and also
we can move to the case in which yZq is central. We attack first the connected case: we
apply results in Section 3 to solve all the cases where yBq D

zBq, and compute explicitly
the poset for the few exceptions where yBq ¤

zBq. Then we deal with the non-connected
case using tools from [9] and the answer for the connected case.

Notation

We fix � 2 N and set I D I� ´ ¹1; 2; : : : ; �º. Let . j̨ /j2I be the canonical basis of Z�

and ˛ij denote ˛i C � � � C j̨ , i � j . Let ˇ D
P
i2I ai˛i 2 Z� , sometimes also denoted

ˇ D 1a1 � � � �a� to shorten expressions. The support and the height of ˇ are given by

suppˇ D ¹i 2 I j ai ¤ 0º; ht.ˇ/ D
X
i2I

ai 2 Z:

If 
 D
P
i2I bi˛i 2 Z� is such that ai � bi for all i 2 I, then we say that ˇ � 
 .

If N 2 N and v 2 k�, then .N /v ´
PN�1
jD0 v

j . We denote by GN to the group of
roots of unity of order N in k, and G0N the subset of primitive roots of order N .
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Let A be an associative algebra (with unit). We denote by GKdimA the Gelfand–
Kirillov dimension of A. We refer to [26] for the definition and properties.

We will deal with N�
0 -graded objects U D

L
˛2N�

0
U˛ . The Hilbert series of U is

HU D

X
˛2N�

0

dimU˛ t
˛
2 N0Jt1; : : : ; t�K where t˛ D ta11 � � � t

a�
�

for ˛ D .a1; : : : ; a� /:

Given H D
P
˛2N�

0
a˛ t

˛ , H 0 D
P
˛2N�

0
b˛ t

˛ 2 N0Jt1; : : : ; t�K, we say that H � H 0 if

a˛ � b˛ for all ˛ 2 N�
0 . Thus, if U 0 � U as N�

0 -graded objects, then HU � HU 0 .
Let C be a coalgebra. We will use Sweedler notation for C and any (left) comodule V ;

explicitly,�.c/D c.1/˝ c.2/ 2C ˝C for all c 2C , and if � W V !C ˝V is the coaction,
then �.v/ D v.�1/ ˝ v.0/ for all v 2 V .

2. On pre-Nichols algebras of diagonal type

We start by recalling notions and results related with Nichols and pre-Nichols algebras,
with special focus on the diagonal case. Let H be a Hopf algebra. As usual, we denote
by H

HYD the category of (left) Yetter–Drinfeld modules over H . We refer to [1, 29] for
unexplained notions and notations on Yetter–Drinfeld modules and braided vector spaces,
and to [3] for more information on Nichols algebras of diagonal type, and to [26] for
definitions and basic results on Gelfand–Kirillov dimension.

2.1. Nichols algebras and pre-Nichols algebras

Recall that HHYD is a braided tensor category: for each pair V;W 2 HHYD , the braiding
is given by

cV;W W V ˝W ! W ˝ V; cV;W .x ˝ y/ D x.�1/ � y ˝ x.0/; x 2 V; y 2 W:

Therefore each pair .V; cV;V /, V 2 HHYD , is a braided vector space.
The tensor algebra T .V / D

L
n�0 V

˝n becomes a graded Hopf algebra in H
HYD

by declaring that every element in V is primitive. The Nichols algebra B.V / of V is
the quotient of T .V / by the maximal Hopf ideal J.V / D

L
n�2 Jn.V / generated by

homogeneous elements of degree � 2. Hence, B.V / is an N0-graded Hopf algebra over
H
HYD , where the degree one part is V , coincides with the set of primitive elements and
generates B.V /.

It is known that the structure of the Nichols algebra B.V / depends on the braiding
c ´ cV;V 2 GL.V ˝2/, not really on the realization as a Yetter–Drinfeld module. This is
why we consider braided vector spaces throughout this paper: i.e., pairs .V; c/, where V
is a vector space and c 2 GL.V ˝2/ is a solution of the braid equation.

Prominent examples are braided vector spaces of diagonal type. It means that there
exist a basis ¹xiºi2I and a matrix q D .qij / 2 .k�/I�I such that the braiding is

cq
W V ˝ V ! V ˝ V; cq.xi ˝ xj / D qijxj ˝ xi ; i; j 2 I:
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The matrix q is called the braiding matrix. The information of q is encoded in the associ-
ated Dynkin diagram. This is a labeled graph with � vertices, each of them labeled with
qi i , and a edge between vertices i and j if Qqij ´ qij qj i ¤ 1, labeled with this scalar.
Different braiding matrices can have the same Dynkin diagram: the associated Nichols
algebras are not isomorphic but equivalent in some sense as we will see in Section 2.4.

Nichols algebras of diagonal type depend only on q, so we will denote it by Bq; we
denote accordingly Jq to the defining ideal of Bq. In addition, .V; c/ is realized as a
Yetter–Drinfeld module over kZ� in a canonical way: We set the coaction on V given
by �.xi / D ˛i ˝ xi and the action given by ˛i � xj D qijxj , i; j 2 I. From here we can
deduce that Bq is Z� -graded, where each xi has degree ˛i .

A pre-Nichols algebra of V is a braided Hopf algebra B which is the quotient of
braided Hopf algebras of T .V / by an N0-homogeneous Hopf ideal J D

L
n�2 Jn. Thus

J � J.V / and there exist canonical graded Hopf algebra epimorphisms

T .V / � B � B.V /

whose restriction to degree one is idV . The set of pre-Nichols algebras of V becomes a
poset Pre.V /, where B1 � B2 if idV induces an epimorphism of braided Hopf algebras
B1 � B2. This poset has maximum and minimum elements, i.e., B.V / and T .V /.

Assume that GKdim B.V / < 1. The subset PrefGK.V / of pre-Nichols algebras of
V with finite Gelfand–Kirillov dimension is a subposet with maximum element B.V /. In
case it admits a minimum yB.V /, we will say that yB.V / is the eminent pre-Nichols algebra
of V . The existence and computation of eminent pre-Nichols algebras yB.V / reduces the
problem of finding the set of all pre-Nichols algebras of V with finite GKdim to the prob-
lem of finding quotients of yB.V /. As we will recall in Section 2.3, eminent pre-Nichols
algebras exist for most V of diagonal type.

2.2. Central extensions of braided Hopf algebras

As we want to study posets of pre-Nichols algebras, we have to deal with extensions
of connected Hopf algebras in H

HYD . Motivated by [30, Theorem 3.2] and [5, Propo-
sition 3.6] we can state the following correspondence between Hopf ideals and normal
coideal subalgebras in HHYD .

Proposition 2.1. Let R be a connected Hopf algebra in HHYD . The assignments

A 7! I.A/´ R=RAC; I 7! A.I /´ coR=IR;

give a bijection between the set of normal right coideal subalgebras A of R and the set of
Hopf ideals I of R.

Proof. By [5, Proposition 3.6 (c)] we have a bijection between the set of right coideal sub-
algebras A of R and the set of coideals I of R whose quotient map is of R-modules. Now
A is normal if and only if I.A/ is an ideal: the proof is by direct computation, analogous to
that in [30, Proposition 1.4].
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Recall that an extension of braided Hopf algebras [8, Section 2.5] is a sequence of
morphisms of braided Hopf algebras k! A

�
�! C

�
�! B! k such that � is injective, � is

surjective, ker� D C�.AC/ and A D C co� . For the sake of simplicity we just write

A
�
,! C

�
� B:

If C is connected then any surjective braided Hopf algebra morphism C
�

� B gives an
extension by choosing A D C co� , see [5, Proposition 3.6].

We say that an extension is central if A is contained in the center of C.
In case that A, B, C are N�

0 -graded with finite-dimensional homogeneous components
and the maps �, � preserve the N�

0 -grading, the Hilbert series of these algebras satisfy the
equality HC D HAHB, cf. [17, Lemma 2.4].

Now we deal with central extensions of Hopf algebras in HHYD whose right hand side
term is a Nichols algebra.

Proposition 2.2. Let Z,!B
�

� B.V / be a central extension of connected graded braided
Hopf algebras, where B D

L
n�0B

n is a pre-Nichols algebra of V , i.e., B1 D V .

(i) The assignment I 7! BI is a bijective correspondence between graded Hopf
ideals of Z and graded Hopf ideals of B generated in degree � 2.

(ii) Assume that B, B.V / are N�
0 -graded and � preserves the N�

0 -grading, so Z

is also N�
0 -graded. Let I be a N�

0 -graded Hopf ideal of Z, B0 ´ B=BI , Z D
Z co Z=I . Then HB D HB0HZ.

Proof. (i) Let AD
L
n�0A

n be a graded right coideal subalgebra of B such that A1 D 0.
We claim that An � Z for all n � 0: The proof is by induction on n. For n D 0, A0 D
k1 � Z. Now assume that Ak � Z for all k � n. For each x 2 AnC1,

�.x/ � x ˝ 1 � 1˝ x 2

nM
iD1

Ai ˝BnC1�i :

Thus, by inductive hypothesis, .� ˝ id/�.x/ D �.x/˝ 1C 1˝ x, so

�
�
�.x/

�
D .� ˝ �/�.x/ D �.x/˝ 1C 1˝ �.x/:

Hence �.x/ is a primitive element of B.V / in degree n C 1 � 2, so �.x/ D 0. Thus
x 2 co�B D Z, and the inductive step follows. Therefore, the set of graded right coideal
subalgebras of B such that A1 D 0 is the set of graded coideal subalgebras of Z, and all
these coideal subalgebras are normal since Z is central.

Using Proposition 2.1, we obtain a bijective correspondence between the correspond-
ing Hopf ideals; that is, between the graded Hopf ideals of Z and the graded Hopf ideals
of B generated in degree � 2.

(ii) Notice that HZ D HZ0HZ and Z0 ,! B0
�

� B.V / is also a central extension
of connected graded braided Hopf algebras. From this exact sequence and the one of B
we have that HB D HZHB.V / and HB0 D HZ=IHB.V /. Thus the statement follows by
putting together the three equalities involving Hilbert series.
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2.3. Distinguished pre-Nichols algebras

Let .V; cq/ be a braided vector space of diagonal type with GKdim Bq < 1. By [18],
this means that Bq has a PBW basis with a finite set of homogeneous generators; in other
words, q belongs to the lists in [24]. The set �q

C of positive roots of q consist of the N�
0 -

degrees of these generators, which is independent of the chosen PBW basis [3, 23]. The
set of roots of q is �q ´ �

q
C [ .��

q
C/.

Assume from now on that j�q
Cj <1. For ˛ D .a1; : : : ; a� /, ˇ D .b1; : : : ; b� / 2 N�

0

set

q˛ˇ ´

�Y
i;jD1

q
aibj
ij ; Nˇ ´ ord qˇˇ 2 N [ ¹1º:

A total order � on �q
C is convex if for all ˛ � ˇ 2 �q

C such that ˛ C ˇ 2 �q
C we have

that ˛ � ˛C ˇ � ˇ. For each convex order ˇ1 � � � � � ˇM there exists a PBW basis with
set of generators xˇ , ˇ 2 �q

C, with each xˇ of degree ˇ. More explicitly, the set

x
n1
ˇ1
� � � x

nM
ˇM
; 0 � ni < Nˇi ;

is a basis of Bq, see e.g. [19, 25]. Thus, the Hilbert series of Bq is

HBq.t/ D

� Y
ˇ2�

q
CWNˇD1

1

1 � tˇ

�� Y
ˇ2�

q
CWNˇ<1

1 � tNˇˇ

1 � tˇ

�
:

Next we move to pre-Nichols algebras of diagonal type and connected Dynkin dia-
gram. Among the Nichols algebras Bq with finite GKdim, some of them are infinite-
dimensional. By [20] for most of these q the Nichols algebra Bq is the unique pre-Nichols
algebra with finite GKdim, and for the remaining ones there exist exactly one proper pre-
Nichols algebra yBq with finite GKdim (which is then eminent).

Thus we can restrict to the problem of determining pre-Nichols algebras of finite
GKdim when dimBq <1. This is equivalent to the fact that Nˇ <1 for all ˇ 2 �q

C.
In this case, there exists a pre-Nichols algebra with finite GKdim, called the distinguished
pre-Nichols algebra zBq [15]. This pre-Nichols algebra is the quotient zBq D T .V /=	q by
the ideal 	q generated by the set of defining relations in [14, Theorem 3.1] adding a few
extra relations and removing relations of the form x

N˛
˛ for ˛ 2 O

q
C. Here,

Oq
´

®
˛ 2 �q

W q˛ˇqˇ˛ 2 ¹q
n
˛˛ W n 2 Zº for all ˇ 2 Z�

¯
is the set of roots of Cartan type, cf. [4, 14], and O

q
C´ Oq \N�

0 . By [15] the set

x
n1
ˇ1
� � � x

nM
ˇM
; 0 � ni < zNˇi ;

is a basis of zBq, where zNˇ ´

´
1; ˇ 2 O

q
C;

Nˇ ; ˇ … O
q
C:

Thus, the Hilbert series of zBq is

H zBq
.t/ D

� Y
ˇ2O

q
C

1

1 � tˇ

�� Y
ˇ2�

q
C�O

q
C

1 � tNˇˇ

1 � tˇ

�
:
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Let Zq be the subalgebra of zBq generated by z˛´ x
N˛
˛ , ˛ 2O

q
C. By [15] there exists

an extension of braided Hopf algebras

Zq,!zBq
�

� Bq; (2.1)

i.e., Zq D
zBco�

q . Moreover, Zq is a q-central Hopf subalgebra of zBq, which is a q-poly-
nomial algebra in variables z˛ , ˛ 2 O

q
C. Now set

ˇ´ Nˇˇ; ˇ 2 Oq; Oq
´ ¹ˇ W ˇ 2 Oq

º; O
q
C´ Oq

\N�
0 :

By [4, Theorem 3.7], Oq is a root system (in the classical sense), with basis

…q
´ ¹
 2 O

q
C W 
 ¤ ˛ C ˇ for all ˛; ˇ 2 O

q
Cº:

With the notation above, the Hilbert series of zBq can be also written as

H zBq
.t/ D HBq.t/HZq.t/ D HBq.t/

� Y
ˇ2O

q
C

1

1 � tˇ

�
: (2.2)

Example 2.3. Fix A D .aij / a finite Cartan matrix, .di / 2 N� minimal such that .diaij /
is symmetric and q 2 k is a root of unity of order N coprime with all aij ’s. Let qD .qij /,
where qij D qdiaij . In this case q is of Cartan type and zBq ' UCq .g/, where g is the
(finite-dimensional) semisimple Lie algebra with Cartan matrix A. Moreover,

Nˇ D N for all ˇ 2 �q
C; O

q
C D �

q
C; thus O

q
C D ¹Nˇ W ˇ 2 �

q
Cº:

By [21] Zq is the algebra of functions of the unipotent algebraic group with Lie alge-
bra nC (the positive part of g, for a fixed Borel subalgebra).

From the Hilbert series we check that GKdim zBq DjO
q
C j<1. Thus we may wonder

if zBq is the eminent pre-Nichols algebra of q. This is mostly the case. More precisely:

Theorem 2.4 ([9,16,17]). Let .V;q/ be a braided vector space of diagonal type such that
dim Bq <1 and the Dynkin diagram is connected. Then the distinguished pre-Nichols
algebra zBq is eminent, except in the following cases:

(A) Cartan A� or D� with q D �1,

(B) A2 with q 2 G03,

(C) A3.q j ¹2º/ or A3.q j ¹1; 2; 3º/, with q 2 G1,

(D) g.2; 3/ with any of the following Dynkin diagram

�1
ı

� �1
ı

� �1
ı ;

�1
ı

�2 �
ı

� �1
ı :

If q is as in (A), it is not even known whether the eminent pre-Nichols algebra exists.
But for the other cases, there is an answer: the eminent pre-Nichols algebra is a q-central
extension of the distinguished pre-Nichols algebra, as we will describe below.



Posets of finite GK-dimensional graded pre-Nichols algebras of diagonal type 11

Theorem 2.5. Let .V;q/be a braided vector space of diagonal type such that dimBq<1.

(a) [9] If q is of type A2 with q 2 G03, then the eminent pre-Nichols algebra of q is

yBq D T .V /=hx1112; x2112; x2221; x1221i;

and GKdim yBq D 5. Let Zq be the subalgebra of yBq generated by x112, x221.
There is a N2

0 -homogeneous q-central extension of braided Hopf algebrasZq ,!
yBq � zBq, and Zq is a q-polynomial algebra in variables x112 and x221.

(b) [17] If q is of type A3.q j ¹2º/ with q 2 G0N , then

yBq D T .V /=hx
2
2 ; x13; x112; x332i

is the eminent pre-Nichols algebra of q, and GKdim yBq D 3. Let Zq be the
subalgebra of yBq generated by xu ´ Œx123; x2�c . There is a N3

0 -homogeneous
q-central extension of braided Hopf algebras Zq ,! yBq � zBq, and Zq is a
q-polynomial algebra in xu.

(c) [17] If q is of type A3.q j ¹1; 2; 3º/, with q 2 G0N , then

yBq D T .V /=
˝
x21 ; x

2
2 ; x

2
3 ; x213; Œx123; x2�c

˛
is the eminent pre-Nichols algebra of q, and GKdim yBq D 3. Let Zq be the sub-
algebra of yBq generated by x13. There is a N3

0 -homogeneous q-central extension
of braided Hopf algebras Zq ,! yBq � zBq, and Zq is a q-polynomial algebra
in x13.

(d) [16] If q is of type g.2; 3/ with diagram
�1
ı

� �1
ı

� �1
ı ; then set

xu´
�
Œx12; x123�c ; x2

�
c
; xv ´

�
Œx123; x23�c ; x2

�
c
;

Then the eminent pre-Nichols algebra is

yBq D T .V /=
˝
x21 ; x

2
2 ; x

2
3 ; x13; Œx1; xu�c ; Œx1; xv�c ; Œxu; x3�c ; Œxv; x3�c

˛
;

and GKdim yBq D 6. Let Zq be the subalgebra of yBq generated by xu and xv .
There is a N3

0 -homogeneous q-central extension of braided Hopf algebrasZq ,!
yBq � zBq, and Zq is a q-polynomial algebra in variables xu, xv .

(e) [16] If q is of type g.2; 3/ with diagram
�1
ı

�2 �
ı

� �1
ı ; then set

xu´
�
Œx123; x2�c ; x2

�
c
; xv ´ Œx123; x1223�c ;

Then the eminent pre-Nichols algebra is

yBq D T .V /=
˝
x21 ; x

2
3 ; x13; Œx223; x23�c ; x221; x2223; Œxv; x3�c ;

Œx12332 ; x2�c ; Œx12332 ; x3�c
˛
:
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and GKdim yBq D 6. Let Zq be the subalgebra of yBq generated by xu and xv .
There is a N3

0 -homogeneous q-central extension of braided Hopf algebrasZq ,!
yBq � zBq, and Zq is a q-polynomial algebra in variables xu, xv .

We denote by Pre.q/ the poset of pre-Nichols algebras when V is of diagonal type
with matrix q. Let PrefGK.q/ be the subposet of those with finite GKdim, and Pregr.q/

the subposet of N�
0 -graded pre-Nichols algebras. Finally, set

Pre
gr
fGK.q/ D PrefGK.q/ \Pregr.q/;

i.e., the subposet of those pre-Nichols algebras with finite GKdim which are N�
0 -graded.

The main result of this work is the characterization of Pre
gr
fGK.q/ for all those cases where

the eminent pre-Nichols algebra of all connected components of q is known.

Remark 2.6. There is a strong reason behind the restriction to the subposet of N�
0 -graded

pre-Nichols algebras: This is the set of all pre-Nichols algebras that can be realized in the
category of Yetter–Drinfeld modules for any principal realization of V over a group � .
Recall that a principal realization of a braided vector space of diagonal type means that
there exists a basis .xi / of V , elements gi 2 Z.�/ and �i 2 y� such that the coaction of xi
is given by gi and g � xi D �i .g/xi for all g 2 � , so qij D �j .gi / for all i; j 2 I.

For example, let q D .qij / be such that Qqij D 1, qi i 2 G0Ni , for all i ¤ j 2 I, where
Ni 2 N0. The distinguished pre-Nichols algebra is the so called quantum plane,

yBq D T .V /=hxij j i < j 2 Ii:

Fix i ¤ j such that Ni D Nj and a 2 k�. As xNii ; x
Nj
j are primitive elements of the same

degree, the quotient

B D T .V /=hxk`; k < ` 2 II xNii � a x
Nj
j i D

yBq=hx
Ni
i � a x

Nj
j i

is a pre-Nichols algebra of q of finite GKdim. Fix also a principal realization over a group
�: If either gNii ¤ g

Nj
j or else �Nii ¤ �

Nj
j , then B is not an object in k�

k�YD .

2.4. Twist equivalence and pre-Nichols algebras

Recall that two braiding matrices q D .qij /i;j2I and p D .pij /i;j2I are twist-equivalent
if qi i D pi i and qij qj i D pijpj i for all i ¤ j 2 I, cf. [11, Definition 3.8]. We write
q � p. Notice that two matrices are twist-equivalent if and only if their Dynkin diagrams
coincide.

Let .V; c/ and .W; d/ be the braided vector spaces of diagonal type with matrices q,
p, respectively. We want to relate Hopf ideals of T .V / and T .W /.

Proposition 2.7. Let q D .qij /i;j2I and p D .pij /i;j2I be twist-equivalent matrices.

(i) There exists an isomorphism of posets ‰ W Pregr.q/! Pregr.p/ preserving the
Hilbert series.

(ii) ‰ restricts to an isomorphism ‰ W Pre
gr
fGK.q/! Pre

gr
fGK.p/.
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Proof. (i) In [11, Proposition 3.9], the authors introduce a linear isomorphism

 W Bq ! Bp;

which is a coalgebra isomorphism: Let us recall more details about this isomorphism. In
loc. cit. the authors take the group cocycle

� W Z� � Z� ! k�; �.gi ; gj / D

´
pij q

�1
ij ; i � j;

1 i > j:

For any Hopf algebra R 2 kZ�

kZ�
YD , this group cocycle induces, up to projection, a Hopf

cocycle
� W R#kZ� ˝R#kZ� ! k

and we consider the Hopf algebra .R#kZ� /� : The coalgebra structure does not change and
the canonical inclusion kZ� ,! .R#kZ� /� and projection .R#kZ� /� � kZ� are still
Hopf algebra maps. Thus .R#kZ� /� decomposes as .R#kZ� /� ' R�#kZ� . As stated in
[11, Lemma 2.12], the assignment R 7! R� takes Hopf algebras in kZ�

kZ�
YD to Hopf alge-

bras in kZ�

kZ�
YD , where the coalgebra structure keeps unchanged, so it restricts to graded

Hopf algebras: If R D
L
n�0R

n, then R� D
L
n�0R

n
� , with Rn� D R

n as vector spaces.

Let V , W be as above: as usual we consider V; W 2 kZ�

kZ�
YD . Working as in [11,

Proposition 3.9 and Remark 3.10] we check that

T .V /� D T .W /:

Any Z� -graded pre-Nichols algebra B of V is a Hopf algebra in kZ�

kZ�
YD : the Hopf algebra

projection
� W T .V / � B

gives a Hopf algebra projection � W T .W / D T .V /� � B� , which preserves the N0-
graded components. Thus, we have a map ‰ W Pregr.q/! Pregr.p/, ‰.B/D B� . More-
over, ‰ is a map of posets, which has an inverse map given by ��1.

(ii) As‰ preserves the Hilbert series, GKdimB� DGKdimB by [26, Lemma 6.1].

Next we want to reduce to the case in which Zp is central (more than skew central).
We can do this reduction up to twist-equivalence.

Lemma 2.8. Let q be a matrix such that dimBq <1. There exists p � q such that Zp

is a central subalgebra of zBp.

Proof. By [7, Remark 4.4] we need to find a matrix p � q such that

p
Nˇ
˛iˇ
D 1 for all i 2 I and all ˇ 2 …p; (2.3)

and it is enough to check it just for one matrix q in each Weyl equivalence class.
If q belongs to the one-parameter families (that is, those Nichols algebras in [3, Sec-

tions 4, 5, 7.1, 7.2]), then the existence of p follows by [7, Appendix A].



I. Angiono and E. Campagnolo 14

The remaining cases are treated case-by-case. We will see that in all of them we can
choose pij D 1 if i < j , so pj i is the scalar in the edge between i and j when they are
connected, or pj i D 1 otherwise. We label the cases according with the subsections in [3].

• For Section 6.1, we choose the diagram such that qjj D �1 and qi i D ��˙1 if i ¤ j .
Here Nˇ D 6 for all ˇ 2 …p D ¹˛i W i ¤ j; �º [ ¹ j̨�1� C j̨� ; ˛��1 C 2˛�º, so we
need a matrix p with the same diagram as q such that

p6ik D p
6
i j�1

�Y
`Dj

p12i` D p
6
i ��1p

12
i� D 1; i 2 I; k ¤ j; �:

This holds if we choose pik D 1when i < k since all the scalars in vertices and arrows
of the diagram belong to G6.

• For Sections 6.2, 7.3, 8.1, 8.4, 8.7, 8.8, 8.10, 8.11, 8.12, 9.2, 10.1, 10.2, 10.3, 10.4,
10.5, 10.6, 10.8, 10.9, 10.10, 10.11 and 10.12, the proof is similar. Indeed, we can
choose a diagram with the following properties:

– qjj D �1 for some j 2 I, qi i ¤ �1 for all i ¤ j ,

– …p D ¹˛i W i ¤ j º [ ¹˛º for some non-simple root ˛ such that j 2 supp˛,

As Nˇ D N for N D 8, respectively 9, 18, 3, 3, 3, 3, 3, 3, 5, 4, 4, 6, 6, 6, 4, 12, 24,
20, 30, 14, and the scalars in the vertices and the edges belong to GN , we note that
(2.3) holds if we guarantee that pNij D 1 for all i; j . Hence we can choose pij D 1 for
i < j .

• For Sections 8.2, 8.3, 8.5, 8.6, 8.9, we can also choose a diagram such that qjj D �1
for some j 2 I, qi i ¤ �1 for all i ¤ j , and …p D ¹˛i W i ¤ j º [ ¹˛º for some non-
simple root ˛ such that j 2 supp ˛. But in these cases N˛i D 3 for i ¤ j , N˛ D 6
and the scalars in the vertices different from j and all the edges belong to G3. Hence,
(2.3) holds if we guarantee that p3ij D 1 for all i ¤ j , so we can choose again pij D 1
for i < j .

• For Section 9.1, we choose the diagram with q11 D � 2 G05, Qq12 D �2, q22 D �1.
Hence …p D ¹˛1; ˛1 C ˛2º, N˛1 D 5, N˛1C˛2 D 10, so we look for a matrix p ' q

such that
p511 D p

10
11p

10
12 D p

5
21 D p

10
21p

10
22 D 1:

This holds if we choose p12 D 1, p21 D �2.

Finally, the diagrams in Section 10.7 have no Cartan roots so the condition is trivial.

Putting together Proposition 2.7 and Lemma 2.8, we can restrict to matrices q such that
Zq is a central Hopf subalgebra. If so, then Zq is the algebra of functions of an algebraic
group. Taking graded duals in the central extension in (2.1) we get a new extension of
braided graded connected Hopf algebras

Bqt ,! Lq
�

� Zdq : (2.4)
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Here LqD
zBd

qt
is called the Lusztig algebra of q, cf. [4]. Notice that Zdq is cocommutative

and connected, thus it is (isomorphic to) the enveloping algebra of a finite-dimensional
nilpotent Lie algebra nq: By [4, Theorem 1.1], nq is the positive part of the semisimple
Lie algebra with root system Oq.

3. Hopf ideals of algebras of functions of unipotent groups
According with the previous section we have to understand the coalgebra structure of the
algebra of functions of unipotent algebraic groups whose Lie algebra is the positive part
nC of a semisimple Lie algebra g with root system �, that we denote Z�. Let # be the
rank of �, I´ ¹1; : : : ; #º. As an algebra, Z� D kŒz˛ j ˛ 2 �C�.

LetQC be the lattice of positive roots, i.e., if ¹˛i j i2Iº is the set of simple roots of�C,
thenQC D

P#
iD1Z˛i . Then Z� is aQC-graded Hopf algebra, with each z˛ of degree ˛.

Now we relate Z� and U.nC/. Although this relationship may be well known, we
give a proof as the tools involved are useful in some of the proofs in the next section.

Lemma 3.1. Let nC, Z�, QC, .z˛/˛2QC be as above.

(1) The QC-graded dual of Z� is (isomorphic to) U.nC/, the enveloping algebra of
the nilpotent Lie algebra nC.

(2) The subspace P .Z�/ of primitive elements of Z� has basis ¹z˛i j i 2 Iº.

Proof. For (1), let U D
L
ˇ2QC

Uˇ be the graded dual of Z�, with Uˇ the component of
degree ˇ. As Z� is connected (as algebra) and commutative, U is connected (as coalge-
bra), and cocommutative. Thus U is the enveloping algebra of its primitive elements.

The subspace P .U / of primitive elements of U is the space of derivations Z� ! k,
which is canonically identified with nC.

For (2), we proceed dually to the previous statement: P .Z�/ is the space of deriva-
tions @ W U ! k. This space has dimension � # , since U is generated by ei , i 2 I, as
algebra, so any derivation @ W U ! k is univocally determined by the values @.ei /, i 2 I.
On the other hand, each z˛i is primitive, so dim P .Z�/ � # . From these two statements,
dim P .Z�/ D # , and P .Z�/ has basis ¹z˛i j i 2 Iº.

Remark 3.2. For each ˇ 2 �C fix a non-zero element �ˇ 2 nC of degree ˇ. Then ¹�ˇ j
ˇ 2 �Cº is a basis of nC; moreover, if ˇ; 
 2 �C are such that ˇ C 
 2 �C, then there
exists d.ˇ j
/ ¤ 0 such that Œ�ˇ ; �
 � D d.ˇ j
/�ˇC
 , and if ˇ C 
 … �C, then Œ�ˇ ; �
 � D 0.

Next we introduce a family of subsets of �C which will parametrize graded Hopf
ideals of Z�.

Definition 3.3. Let A;B � �C.

(i) We say that A is compatible if for all 
 2 A and all pair ˛; ˇ 2 �C such that

 D ˛ C ˇ, then ˛ 2 A or ˇ 2 A.

(ii) We say that B is closed by sums if for each pair ˛;ˇ 2 B such that ˛C ˇ 2�C,
we have that ˛ C ˇ 2 B .
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Remark 3.4. A is compatible if and only if �C � A is closed by sums.

We denote by Pc.�C/ the set of all subsets of �C that are closed by sums.

Remark 3.5. Pc.�C/ is a subposet of P .�C/ with maximum �C and minimum ;, as
both trivial subsets are closed by sums.

To deal with subsets of roots as above we need first a statement on sums of roots.

Lemma 3.6. Let m � 3. If ˛; 
1; : : : ; 
m 2 �C are such that ˛ D
Pm
iD1 
i , then there

exist j < k 2 Im such that 
j C 
k 2 �C.

Proof. By induction on ht.˛/ � 3. If ht.˛/ D 3, then either ˛ D 2˛r C ˛s , r ¤ s or else
˛ D ˛r C ˛s C ˛t , with #¹r; s; tº D 3: In both cases m D 3 and the 
i ’s are simple roots:
in the first case ˛r C ˛s 2 �C, while in the second case the subdiagram with vertices
¹r; s; tº of the Dynkin diagram of � is connected with the other two: up to permute the
sub-indices we may assume that r; s are connected by an edge, so ˛r C ˛s 2 �C.

Now assume that the statement holds for roots of height � h and take ˛; 
1; : : : ; 
m 2
�C such that ht.˛/D hC 1, ˛D

Pm
iD1 
i . As the Cartan matrix of� is finite, there exists

` 2 I such that ˛_
`
.˛/ > 0, hence ht.s`.˛// < ht.˛/. We have two possibilities:

• 
i ¤ ˛` for all i 2 Im. Thus s`.
i /; s`.˛/ 2 �C, and s`.˛/ D
Pm
iD1 s`.
i /. Applying

inductive hypothesis for s`.˛/, there exist j < k 2 Im such that s`.
j /C s`.
k/ 2�C.
As s`.
j /C s`.
k/ D s`.
j C 
k/ and 
j C 
k ¤ ˛` since ht.
j C 
k/ � 2, we have
that 
j C 
k 2 �C.

• There exists i such that
iD˛`. Up to permute the indices we may assume that
mD˛`.
We know that ˛ � k˛` 2 �C for all 0 � k � ˛_

`
.˛/; in particular, ˛ � ˛` 2 �C and

˛ � ˛` D
Pm�1
iD1 
i . IfmD 3, then 
1 C 
2 D ˛ � ˛` 2 �C. Ifm > 3, then we apply

inductive hypothesis for ˛ � ˛` 2 �C.

In any case, there exist j < k 2 Im such that 
j C 
k 2 �C.

We write a slightly different version of compatibility which will be useful in the forth-
coming results.

Proposition 3.7. A subset A is compatible if and only if for all ˛ 2 A and 
i 2 �C such
that ˛ D

Pn
iD1 
i , then there exists i such that 
i 2 A.

Proof. .(/ The case n D 2 is exactly the definition of compatibility.
.)/ By induction on n: If n D 2, then it holds by definition. If the statement holds

for sums of less than n positive roots and ˛ D
Pn
iD1 
i , n � 3, with 
i 2 �C then we

can apply Lemma 3.6: up to permutation we may assume that 
 0 ´ 
n�1 C 
n 2 �C.
But ˛ D

Pn�2
iD1 
i C 


0 and we can apply inductive hypothesis: either 
i 2 A for some
i � n � 2 (in which case we are done) or else 
 0 2 A, in which case either 
n�1 2 A or

n 2 A by definition of compatibility.

Now we check that subsets closed by sums classify Lie subalgebras of nC. More
explicitly, we check the following result.
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Proposition 3.8. There exists a bijective correspondence between subsets closed by sums
and QC-graded Lie subalgebras of nC given by B 7! n.B/´

L
ˇ2B k�ˇ .

Proof. First we check that the map is well defined, i.e., each n.B/ is a Lie subalgebra.
This follows by Remark 3.2. Indeed, for each pair ˇ; 
 2 B , either ˇC 
 … �C, in which
case Œ�ˇ ; �
 � D 0, or else ˇ C 
 2 B and Œ�ˇ ; �
 � D d.ˇ j
/�ˇC
 2 n.B/.

The map is injective by definition, thus it remains to check that it is surjective. Let
n � nC be a QC-graded Lie subalgebra. As n is QC-graded, n D

L
ˇ2B k�ˇ , where B

is the subset of non-trivial homogeneous components. We have to check that B is closed
by sums, which follows again by Remark 3.2 as n is a Lie subalgebra.

Next we introduce a family of ideals and quotients of Z� indexed by P .�C/. For
each B � �C, then we set

I.B/´ hxˇ j ˇ 2 �C � Bi; Z.B/´ Z�=I.B/: (3.1)

By definition, Z.B/ is a polynomial algebra in variables (the images of) zˇ , ˇ 2 B .
We are mostly interested in those ideals attached to B 2 Pc.�C/ as we will see next.

Lemma 3.9. If B 2 Pc.�C/, then I.B/ is a QC-graded Hopf ideal.

Proof. Let A D �C � B . It is enough to prove that �.z˛/ 2 I.B/˝ Z� C Z� ˝ I.B/

for all ˛ 2 A. Let ˛ 2 A: �.z˛/ � z˛ ˝ 1 � 1˝ z˛ is a linear combination of terms

z
1 � � � z
k ˝ z
kC1 � � � z
m ; 1 � k < m; 
i 2 �C;

mX
iD1


i D ˛:

By Proposition 3.7, for each term z
1 � � �z
k ˝ z
kC1 � � �z
m there exists i such that 
i 2 A,
thus it belongs to I.B/˝Z� CZ� ˝ I.B/.

We will use the previous result to give a parametrization of graded Hopf ideals of Z�.

Theorem 3.10. There exists an anti-isomorphism of posets between Pc.�C/ and the set
of QC-graded Hopf ideals of Z� given by

B 2 Pc.�C/ 7! Z.B/:

Proof. By Lemma 3.9 the map is well defined. Moreover, the map is an anti-morphism of
posets, and is injective since if B ¤ B 0 2 Pc.�C/, then we may assume that there exists
˛ 2 B 0 � B , in which case z˛ 2 I.B/ � I.B 0/.

Thus, it remains to prove that the map is surjective. For this, we first notice the follow-
ing. For eachB 2Pc.�C/, as I.B/ is a Hopf ideal, I.B/?�U.nC/1 is a Hopf subalgebra
ofU.nC/ by [29, Proposition 5.2.5]. Thus I.B/?DU.n/ for some Lie subalgebra n of nC.
By Proposition 3.8, nD n.B 0/ for some subsetB 0 ��C closed by sums: clearly,B DB 0.

1As before, here we take the QC-graded dual of Z�.
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Now take I a QC-graded Hopf ideal of Z�: again, the subspace I? � U.nC/ is a Hopf
subalgebra of U.nC/, so I? D U.n.C // for some subset C � �C closed by sums. But
by the previous argument, U.n.C // D I.B/? for B D C , hence I D I.B/.

4. Posets of pre-Nichols algebras of diagonal type

Here we proceed to describe the poset of all graded pre-Nichols algebras of q with finite
GKdim. First we assume that the diagram of q is connected and consider two cases:
whether the eminent pre-Nichols algebra is or is not the distinguished one. Later on
we give an approach towards the non-connected case: we have an obstruction to attack
the general case coming from those cases where the eminent pre-Nichols algebra is not
known.

4.1. Eminent pre-Nichols algebras which are not distinguished

Throughout this section, q will denote a braiding matrix of one of the following types:
Cartan A2 with q 2 G03, A3.q j ¹2º/ with q 2 G1, A3.q j ¹1; 2; 3º/ with q 2 G1, g.2; 3/

with diagram d1 or g.2; 3/ with diagram d2. Therefore, the eminent pre-Nichols algebra
yBq is not the distinguished pre-Nichols algebra zBq as described in Theorem 2.5, and
we can consider three subalgebras of coinvariants, associated to the non-trivial canonical
projections yBq � zBq � Bq:

yZq D
yB

coBq
q ; Zq D

zB
coBq
q ; Zq D

yB
co zBq
q : (4.1)

By Theorem 2.5, Zq is a skew central Hopf subalgebra of yBq, and by [15] Zq is a skew
central Hopf subalgebra of zBq, and both are skew polynomial algebras: Oq is the set of
degrees of the generators of Zq. We will see that yZq is also a polynomial algebra whose
generators are obtained by joining the generators of Zq and Zq, and at the same time a
skew central Hopf subalgebra of yBq. To this end we introduce the set yOq

C by extending
O

q
C with the degrees of the generators of Zq. Explicitly,

yO
q
C´

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

¹13; 1323; 23; 122; 122º; type A2; q 2 G03;

¹1N ; 3N ; 1223º; type A3
�
q j ¹2º

�
; q 2 G1;

¹1N 2N ; 2N 3N ; 13º; type A3
�
q j ¹1; 2; 3º

�
; q 2 G1;

¹1323; 132633; 2333; 162636; 12233; 12332º; type g.2; 3/ with diagram d1;

¹132333; 132633; 23; 2636; 1233; 122332º; type g.2; 3/ with diagram d2;

(4.2)
where bold degrees are those of the generators of Zq. By [17, Lemma 2.4],

H yBq
D HZqH zBq

D H yZq
HBq ;

H zBq
D HZqHBq

µ
H) H yZq

D HZqHZq D

Y
ˇ2yO

q
C

1

1�tˇ
:
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Proposition 4.1. Let q be a braiding matrix of Cartan typeA2 with q2G03, type A3.q j¹2º/
with q 2 G1, type A3.q j ¹1; 2; 3º/ with q 2 G1, or type g.2; 3/ with diagram d1 or d2.

(i) yZq is a skew central Hopf subalgebra of yBq, and is a skew polynomial algebra
whose generators are homogeneous: yOq

C is the set of their degrees.

(ii) For each subset B � yOq
C closed by sums, there exists a Z� -graded pre-Nichols

algebra B.q; B/ with Hilbert series

HB.q;B/.t/ D HBq.t/
� Y
˛2B

1
1�t˛

�
:

(iii) The map Pc. yO
q
C/!Pre

gr
fGK.q/,B 7!B.q;B/ is an anti-isomorphism of posets.

Proof. We prove the three statements for each case. First assume that q is of Cartan type
A2 with q 2 G03: by [9, Lemma 4.10], yZq is a central Hopf subalgebra and, as an algebra,
is a skew polynomial algebra in variables x31 , x32 , x112, x221 and x312, so (i) holds. For (ii),
notice that ˛; ˇ 2 yOq

C are such that ˛ C ˇ 2 yOq
C iff ˛ C ˇ D 1323 and either ¹˛; ˇº D

¹13; 23º or else ¹˛;ˇº D ¹122; 122º. By [9, Lemma 4.10], x31 , x32 , x112, x221 are primitive
and the following formula holds in yBq:

�.x312/ D x
3
12 ˝ 1C 1˝ x

3
12 C .1 � q

2/q321x
3
1 ˝ x

3
2 C .q

2
� q/x112 ˝ x221: (4.3)

Thus, if B � yOq
C is closed by sums, then B.q; B/ D yBq=hx˛; ˛ 2 yO

q
C � Bi is a pre-

Nichols algebra with the desired Hilbert series. Reciprocally, if B is a Z� -graded pre-
Nichols algebra, then either B D yBq or else one of the primitive elements x31 , x32 , x112,
x221 is zero, since the subspace of primitive elements is spanned by these primitive ele-
ments (not in degree one) and V . Let T1 be the set of degrees of ¹x31 ; x

3
2 ; x112; x221º of

those elements annihilating in B. If T1 \ ¹x31 ; x
3
2º D ; or T1 \ ¹x112; x221º D ; then x312

cannot be zero in B, otherwise x312 is primitive and this element may be zero in B. Thus
set T D T1 if x312 ¤ 0 in B, or T D T1 [ ¹1323º if x312 D 0 in B. Then B´ T c is closed
by sums, with B D B.q; B/, and hence (iii) follows.

Next assume that q is of type A3.q j ¹2º/ with q 2 G1. As stated in Step 3 of the
proof of [17, Proposition 5.5],

xix1223 D qi1q
2
i2qi3 x1223xi ; for all i 2 I3;

so x1223 is skew central. Let i 2 ¹1; 3º, j ¤ i . As .adc xi /2xj D 0, N > 2 and qi i 2 G0N ,

0 D .adc xi /Nxj D
NX
kD0

.�1/k
�
N

k

�
qi i

q
k.k�1/
2

i i qkijx
N�k
i xjx

k
i D x

N
i xj � q

N
ij xjx

N
i :

Hence xN1 and xN3 are also skew central. In addition, the three elements are primitive.
Thus yZq is a skew polynomial algebra with generators x1223, xN1 and xN3 , and (i) follows.
Now every subset of yOq

C is closed by sums since ˛ C ˇ … yOq
C for all ˛; ˇ 2 yOq

C. Thus
the proofs of (ii) and (iii) are straightforward.
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The case in which q is of type A3.q j ¹1; 2; 3º/ with q 2 G1 is analogous. Indeed, we
check that xkx13 D qk1qk3 x13xk for all k 2 I3: the cases k D 1; 3 follow since x2

k
D 0,

qkk D �1, while the case k D 2 follows from the defining relation x213 D 0. Hence x13
is skew central. Also, as stated in Step 2 of the proof of [17, Proposition 5.9],

x1x
n
23 D q

n�1
12 qn�113 .n/ Qq23x

n�1
23 x123 C q

n
12q

n
13 x

n
23x1;

so for n D N D ord Qq23 we get x1xN23 D q
N
12q

N
13 x

N
23x1. The relations x22 D x

2
3 D 0 imply

that x2x23 D �q23x23x2, x23x3 D �q23x3x23, so xN23 is skew central. An analogous
argument proves that xN12 is also skew central. The three elements are primitive, and the
proof of this case follows as the one of type A3.q j ¹2º/.

If q is of type g.2; 3/ with diagram d1, then

xu D
�
Œx12; x123�c ; x2

�
c

and xv D
�
Œx123; x23�c ; x2

�
c

are primitive in yBq and skew central by [16, Proposition 4.2]. Also,

Œxi ; x
3
23�c D Œxi ; x

3
12�c D 0 for all i 2 ¹1; 2; 3º:

Indeed, the proof of that proposition says that Œx1; x323�c D Œx3; x
3
12�c D 0, and the other

relations follow from the quantum Serre relations. Thus x312, x323 are skew-central in yBq.
As these elements are primitive in zBq,

�.x3ij / 2 x
3
ij ˝ 1C 1˝ x

3
ij C hxu; xvi ˝

yBq C
yBq ˝ hxu; xvi:

Taking into account the Z� -degree we check that x312 and x323 are primitive in yBq as well.
Now we claim thatB D¹xa1u x

a2
v x

3a3
12 x

3a4
1223

x
3a5
23 x

6a6
123 j ai 2N0º is a basis of yZq. Indeed

these elements belong to yZq, are linearly independent by [16, Proposition 4.2] and then
they must generate yZq because of the expression of H yZq

above. As yZq is a normal sub-
algebra of yBq, we have that adc xi .x31223/ 2

yZq for i D 1; 2; 3. But we can check that
there are no elements of degrees 142633, 132733, 132634 in B , so adc xi .x31223/ D 0 for
all i D 1; 2; 3. A similar argument shows that adc xi .x6123/D 0 for all i D 1; 2; 3, so x3

1223

and x6123 are skew central. It means that yZq is skew central, and also a coideal subalgebra
on both sides, so it is a central Hopf subalgebra. As yZq is a skew polynomial algebra with
generators x312, x3

1223
, x323, x6123, xu and xv , (i) follows.

Now x6123 is skew primitive since the unique pairs of elements .b1; b2/ 2 B � B such
that the sums of their degrees is 162636 are .x6123; 1/ and .1; x6123/. Now we compute
�.x3

1223
/. By direct computation,

�.x1223/ D x1223 ˝ 1C 1˝ x1223 C 3�q23x12 ˝ x23

C .1 � �2/x123 ˝ x2 C 3x1 ˝ x23x2:

Using the degree again, the possible non-trivial summands of�.x3
1223

/ are x312 ˝ x
3
23 and

xu ˝ xv . Hence we just look at the corresponding degrees and use that xu D Œx12; x1223�c
and xv D Œx1223; x23�c to check the following identity:

�.x3
1223

/D x3
1223
˝ 1C 1˝ x3

1223
� 27q321q

3
31x

3
12˝ x

3
23C 3�q

2
21q

2
31q32xu˝ xv: (4.4)
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Next we see thatA� yOq
C is compatible if and only if either 132633 …A or else 132633 2A

and ¹1323; 2333º \ A, ¹12233; 12332º \ A ¤ ;, and a subset is compatible if and only of
the complement is closed by sums, as in Remark 3.4. Thus (ii) and (iii) follow by an
argument analogous to the Cartan case A2.

Finally, assume that q is of type g.2; 3/ with diagram d2. The proof of this case is
analogous to the one above but using [16, Proposition 4.3] and its proof. Indeed, set

xu D Œx1223; x2�c and xv D Œx123; x1223�c :

By loc. cit. xu and xv are primitive in yBq and skew central. In addition, x32 is primitive
and skew central by direct computation, and x623 and x3123 are also primitive and skew-
central in yBq since they are primitive and skew central in zBq and we take into account the
Z� -degree as above. Next we observe that B D ¹xa1u x

a2
v x

3a3
123x

3a4
1223

x
3a5
2 x

6a6
23 j ai 2 N0º is

a basis of yZq by looking at the expression of the Hilbert series H yZq
as above, so yZq is a

central Hopf subalgebra. As yZq is a skew polynomial algebra with generators x32 , x3
1223

,
x3123, x623, xu and xv , (i) follows.

We need now an explicit expression of �.x3
1223

/. To do so we compute first

�.x1223/ D x1223 ˝ 1C 1˝ x1223 � q23.1 � �
2/x12 ˝ x23

C .1 � �2/x123 ˝ x2 � 3�
2x1 ˝ x23x2:

Working as in (4.4) we obtain the following:

�.x3
1223

/ D x3
1223
˝ 1C 1˝ x3

1223
C 3q321q

3
23�.1 � �/x

3
123 ˝ x

3
2

C q221q
2
23.� � 1/xv ˝ xu: (4.5)

Now, A � yOq
C is compatible if and only if either 132633 … A or else 132633 2 A and

¹132333; 23º \ A, ¹122332; 1233º \ A ¤ ;, so (ii) and (iii) follow as above.

Assume that q is such that yZq is a central Hopf subalgebra (that we can assume up to
twist the braiding by Lemma 2.8). We finish this subsection by identifying the algebraic
groups of yZq. To do so, we describe an algebraic group Z.B/ related with yZq for types
Cartan A2 and g.2; 3/ (both diagrams).

Let nC be the positive part of the Lie algebra g D sl5, which is a 10-dimensional
nilpotent algebra with generators eij , 1 � i � j � 4, where

ei i D ei ; eij D Œeik ; ekC1 j �; i � k < j:

Notice that eij has degree ˛ij for all i � j .
Let Z� be the corresponding algebraic group with Lie algebra nC. The subset

B D ¹1; 123; 1234; 234; 4º � �C

is closed by sums. The associated quotient Hopf algebra Z.B/ in Theorem 3.10 is a poly-
nomial algebra in variables zˇ , ˇ 2 B , where all zˇ for ˇ ¤ 1234 are primitive, and

�.z1234/ D z1234 ˝ 1C 1˝ z1234 C z1 ˝ z234 C z123 ˝ z4:
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Lemma 4.2. Assume that q is such that yZq is a central Hopf subalgebra.

(i) If q is of Cartan type A2 and q 2 G03, then yZq ' Z.B/ as Hopf algebras.

(ii) If q is of type A3.q j ¹2º/ or A3.q j ¹1;2;3º/with q2G1, then yZq'kŒz1; z2; z3�
as Hopf algebras.

(iii) If q is of type g.2; 3/ and diagram d1 or d2, then yZq ' Z.B/ � kŒz� as Hopf
algebras.

Proof. It follows case-by-case, using the coproduct formulas (4.3), (4.4) and (4.5) in the
proof of Proposition 4.1.

4.2. The connected case

Let q be a braiding of diagonal type such that dimBq <1, the Dynkin diagram is con-
nected and q is not of Cartan type A� , D� with q D �1.

Those cases where the eminent pre-Nichols algebra yBq is not the distinguished pre-
Nichols algebra zBq were treated in Section 4.1, so assume for a while that yBq D

zBq.
Thus,

yZq D
yB

coBq
q D Zq

is a skew central Hopf subalgebra of yBq, and an skew polynomial algebra such that O
q
C is

the set of degrees of the generators of Zq. Hence we set yOq
C D O

q
C for this case: we have

already defined yOq
C for the other five kinds of braidings in (4.2), so in any case yOq

C is the
set of degrees of the generators of yZq.

We will extend Proposition 4.1 to any q with connected Dynkin diagram. We deal first
with the existence of pre-Nichols algebras. For each ˇ 2 yOq

C let zˇ be the corresponding
generator of degree ˇ: if ˇ D Nˇˇ for some Cartan root ˇ, then zˇ ´ x

Nˇ
ˇ

, otherwise
zˇ is the extra relation of such degree. For example, for Cartan type A2 and q 2 G03,
z122 D x112 and z122 D x221.

Lemma 4.3. Let q be a matrix with connected Dynkin diagram such that dim Bq <1

and is not of Cartan type An, Dn with q D �1.
For each B � yOq

C closed by sums, the quotient

B.q; B/´ yBq=hzˇ j ˇ 2 yO
q
C � Bi

is a Z� -graded pre-Nichols algebra B.q; B/ with Hilbert series

HB.q;B/.t/ D HBq.t/
� Y
ˇ2B

1

1�tˇ

�
: (4.6)

Proof. As mentioned above, it suffices to deal with the case yBqD
zBq as in Theorem 2.4,

since the statement holds for other q by Proposition 4.1 (ii). Here, yOq
C D �C is the set

of positive roots of the semisimple Lie algebra attached to zBq in [4]. Moreover, we can
assume that yZq is central up to change q by a twist equivalent braiding matrix, see Propo-
sition 2.7 and Lemma 2.8, in which case yZq D Z�.
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Let B � yOq
C be a subset closed by sums. By Remark 3.4, A D Bc is compatible, so

I.B/ D hzˇ j ˇ 2 Ai

is an N�
0 -graded Hopf ideal of Z� by Lemma 3.9. Thus yBqI.B/ is a Hopf ideal of yBq.

By Proposition 2.2 (ii), H zBq
.t/ D HB.q;B/.t/HZ.t/, where Z is the subalgebra of coin-

variants of the projection Zq � Zq=I.B/. As the subalgebra Z generated by zˇ , ˇ 2 A,
is simultaneously a coideal subalgebra and polynomial algebra in these variables such that
hZCi D I.B/, we have that Z D Z by Proposition 2.1, so HZ.t/ D .

Q
˛2A

1
1�t˛

/. As

H zBq
.t/ D HBq.t/

� Y
˛2yO

q
C

1
1�t˛

�
by (2.2), we obtain the expression (4.6) for HB.q;B/.t/.

Remark 4.4. Let B D ¹

1
; : : : ; 


L
º be a numeration of B . Then the set

x
n1
ˇ1
� � � x

nM
ˇM
zp1


1
� � � zpL


L
; 0 � ni < Nˇi ; 0 � pj <1;

is a basis of B.q; B/.

Now we state a characterization of the poset of N�
0 -graded pre-Nichols algebras.

Theorem 4.5. Let q be a matrix with connected Dynkin diagram such that dimBq <1

and is not of Cartan type An, Dn with q D �1. The map

Pc. yO
q
C/! Pre

gr
fGK.q/; B 7! B.q; B/;

is an anti-isomorphism of posets.

Proof. As in the proof of Lemma 4.3, we may assume that q is such that yBq D
zBq since

the remaining cases were treated in Proposition 4.1 (iii). In addition we may assume that
Zq is central up to change q by a twist equivalent matrix, thanks to Proposition 2.7 and
Lemma 2.8.

By Lemma 4.3, the map above is injective: if B ¤ B 0 are two different sets closed by
sums, then HB.q;B/.t/ ¤ HB.q;B 0/.t/. Also, it is a anti morphism of posets.

On the other hand, we will see that the map is also surjective. Let B 2 Pre
gr
fGK.q/:

• By definition, there exists an N�
0 -graded Hopf ideal 	 such that B ' yBq=	.

• By Proposition 2.2 (i) there exists a graded Hopf ideal I of yZq such that 	 D yBqI .

• By Theorem 3.10 there exists a setB � yOq
CD�C closed by sums such that I D I.B/.

All in all, we have that

B D yBq=yBqI.B/ D yBq=hzˇ j ˇ 2 Ai D B.q; B/;

so the map is also surjective, and the statement follows.
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Example 4.6. Fix � 2G03. Let q be a braiding matrix of type g.2; 3/with Dynkin diagram

d3 W
�1
ı

�2 ��2

ı
�2 �1
ı :

Then zBq D
yB is presented by generators and relations

x13; x2221; x2223; x21 ; x23 D 0; Œx1; x223�c C q23x1223 � .1 � �
2/x2x123:

Also, yOq
CD ¹1

223; 132633; 2333; 26º is (isomorphic to) the set of positive roots associated

to a Lie algebra of type A2 � A1, and yZq is the subalgebra generated by

z1 D x
3
12; z12 D x

3
1223

; z2 D x
3
23; z3 D x

6
2 :

The poset Pre
gr
fGK.q/ is the following:

zBq=hz1; z12i // //

++ ++

zBq=hz1; z12; z2i

&& &&

zBq=hz1i // //

33 33

&& &&

zBq=hz1; z2i

33 33

'' ''

zBq=hz1; z12; z3i

** **zBq
// //

55 55

)) ))

zBq=hz2i // //

33 33

&& &&

zBq=hz12; z2i

77 77

// // zBq=hz12; z2; z3i // // Bq:

zBq=hz3i // //

++ ++

zBq=hz1; z3i

77 77

// // zBq=hz1; z2; z3i

44 44

zBq=hz2; z3i

77 77

33 33

When we move from left to right, the GKdim goes down from 4 to 0.
We can observe here that the poset of graded pre-Nichols algebras is not preserved

by Weyl equivalence: if q is also of type g.2; 3/ but with Dynkin diagram d1 or d2, then
Pre

gr
fGK.q/ has 50 elements, since this is the number of subsets of yOq

C closed by sums.

4.3. The non-connected case

Here we take an arbitrary matrix q (whose diagram is not necessarily connected). Follow-
ing the spirit of [9, Section 3] we set

I˙´ ¹i 2 I W qi i D ˙1; Qqij D 1 for all j ¤ iº; I.c/´ I � .IC [ I�/:

that is, I˙ contains all the connected components of an isolated vertex labeled with ˙1
while I.c/ is the union of those points labeled with qi i ¤ ˙1 and those connected com-
ponents with at least two vertices. Let C1; : : : ; Cd be the partition of I.c/ in connected
components: i.e., I.c/ D

Sd
`D1 Cd , where the diagram of each q.`/´ .qij /i;j2C` is con-

nected and Qqij D 1 if i 2 C`1 , j 2 C`2 , `1 ¤ `2.
Let B be an N0-graded pre-Nichols algebra of q. For each 1 � ` � d , let B.`/ be the

subalgebra of B generated by xi , i 2 C`, which is a pre-Nichols algebra of q.`/. Similarly,
let B˙ be the subalgebra of B generated by xi , i 2 I˙, and q.˙/´ .qij /i;j2I˙ .
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Lemma 4.7. Let 1 � ` � d , i 2 C`, j 2 I � C` be such that qjj ¤ 1. If GKdimB <1,
then xij D 0 in B.

Proof. By hypothesis, i and j are not connected, so xij is primitive in B. Also, ordqi i � 2
since C` � I.c/, and also ord qjj � 2 since qjj ¤ 1. If either ord qi i > 2 or ord qjj > 2,
then xij D 0 by [9, Proposition 3.2]. Otherwise qi i D qjj D �1 and there exists k ¤ i; j
such that Qqik ¤ 1 D Qqjk . Suppose that xij ¤ 0 in B. Set y1 D xi , y2 D xk , y3 D xij
and W ´ ky1 C ky2 C ky3 is a three-dimensional subspace of P .B/. Working as in
the proof of [9, Proposition 3.2], GKdimB.W / <1 where W is of diagonal type with
matrix p D .prs/1�r;s�3. By direct computation, p33 D 1 and Qp23 D Qqik ¤ 1, so we get
a contradiction with [6, Proposition 4.16]. Hence xij D 0 in B.

Assume that IC D I� D ; and each C` is not of Cartan type An, Dn with q D �1
(thus we know the eminent pre-Nichols algebra of each q.`/) and GKdimB <1. Then
GKdimB.`/ <1, so B.`/ is a quotient of yBq.`/ . Set

yBq ´

O
1�`�d

yBq.`/ ;
yZq ´

O
1�`�d

yZq.`/ ;
yO

q
C D

[
1�`�d

yO
q.`/

C ; (4.7)

extending the definitions we have made from the connected to the non-connected case.
Hence we have an extension of N0-graded Hopf algebras yZq ,! yBq � Bq, yZq is a
polynomial algebra in variables zˇ , ˇ 2 yOq

C of degree ˇ, and we may wonder if yBq is an
eminent pre-Nichols algebra of q. We will see that this is the case, and then prove that the
poset Pre

gr
fGK.q/ splits as the product of the posets Pre

gr
fGK.q

.`//.

Theorem 4.8. Let q be such that IC D I� D ; and each connected component C` of the
Dynkin diagram is not of Cartan type An, Dn with q D �1 .

(i) yBq is the eminent pre-Nichols algebra of q.

(ii) Let B be an N0-graded pre-Nichols algebra of q such that GKdimB <1. For
each 1 � ` � d , let B.`/ be the subalgebra of B generated by xi , i 2 C`. Then

B ' ˝d`D1B
.`/:

(iii) There exists an anti-isomorphism of posets

Pre
gr
fGK.q/ '

dY
`D1

Pre
gr
fGK.q

.`// ' Pc. yO
q
C/:

Proof. (i), (ii). Let B be as in (ii). Notice that B0 ´ ˝d
`D1

B.`/ is an N�
0 -graded Hopf

algebra with defining relations those defining each B.`/ together with xij D 0 for i 2 Ck ,
j 2 C`, k ¤ `. Thus Lemma 4.7 says that there exists a surjective map B0 � B of N0-
graded Hopf algebras, which is the identity on V , i.e., a map of pre-Nichols algebras
of q. As we also have a map yBq � B0, the composition of both maps gives a map of
pre-Nichols algebras. As B is arbitrary with finite GKdim, yBq is eminent.
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Hence we have to the describe N�
0 -graded quotients of yBq. As before, we can use

Proposition 2.7 and Lemma 2.8 to assume that yZq is central. By Proposition 2.2 we have
to compute all the Hopf ideals of yZq, which in turn (by taking graded duals) are classified
by N�

0 -graded Lie subalgebras of the nilpotent Lie algebra nq D
Q
1�`�d nq.`/ : any of

these Lie subalgebras of nq is the product of N�
0 -graded Lie subalgebras of each nq.`/ ,

and these are classified by subsets B.`/ of �q.`/

C closed by sums, applying Theorem 3.10
and Proposition 4.1 (depending on `).

Coming back to yZq, we quotient this Hopf algebra by zˇ for those

ˇ … B ´
[

1�`�d

B.`/:

We obtain then the pre-Nichols algebra

B.q; B/´ yBq=hzˇ j ˇ … Bi '
O
1�`�d

B.q.`/; B.`//;

and any B 2 Pre
gr
fGK.q/ is of this shape, with B.`/ ' B.q.`/; B.`//, 1 � ` � d .

Now (iii) follows from (ii) and the fact that a subset B 2 yOq
C is closed by sums if

and only if each B.`/ D B \ yOq.`/

C is closed by sum, since the sum ˛ C ˇ of two roots
˛ 2 yO

q.k/

C , ˇ 2 yOq.`/

C , k ¤ `, is not a root.

Remark 4.9. Putting together Theorems 4.8, 4.5 and [20] we get a full description of
the poset of all N�

0 -graded pre-Nichols algebras with finite GKdim when all connected
components are not points with label˙1 neither of Cartan type An, Dn and q D �1.

Remark 4.10. Pre-Nichols algebras with finite GKdim for q D qC were classified in [2,
Section 3.4]. We do not include them in Theorem 4.8 since we do not know at the moment
how to control the interaction between BC and the pre-Nichols algebras B�, B.`/.

At the same time, we do not have at the moment a description of all pre-Nichols
algebras with finite GKdim for q D q� and for connected components of Cartan type
A� , D� . Anyway, by Lemma 4.7 we may wonder that the poset of q decomposes as the
product of the posets of pre-Nichols of different connected components and that of q�.
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