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Atomic representations of R. Thompson’s groups and
Cuntz’s algebra

Arnaud Brothier and Dilshan Wijesena

Abstract. We continue to study Pythagorean unitary representations of Richard Thompson’s groups
F; T; V and their extension to the Cuntz(–Dixmier) algebra O. Any linear isometry from a Hilbert
space to its direct sum square produces such. We focus on those arising from a finite-dimensional
Hilbert space. We show that they decompose as a direct sum of a so-called diffuse part and an
atomic part. We previously proved that the diffuse part is Ind-mixing: it does not contain induced
representations of finite-dimensional ones. In this article, we fully describe the atomic part it is a
finite direct sum of irreducible monomial representations arising from a precise family of parabolic
subgroups.

1. Introduction

Richard Thompson’s groups F � T � V are fascinating groups which appear in various
branches of mathematics, see [25]. Groups are often understood via their actions. Jones’
technology offers a practical machinery to construct such by leveraging that F; T; V are
fraction groups of basic categories [33, 34]. This approach has already been successfully
applied for constructing actions on operator algebras and groups, and unitary represent-
ations [2, 14, 15, 19, 21, 35, 37]. Beyond producing actions of the Thompson groups we
may use this technology to produce new knot invariants, obtain natural subgroups of the
Thompson groups, and to study certain non-commutative probabilities [3, 30, 31, 34, 39,
40]. Finally, this technology is useful for studying other Thompson-like groups built from
categories [14, 16–18, 41]. We refer the reader to the recent surveys [1, 13, 36].

The first author and Jones considered the following particular case of Jones’ techno-
logy [20]: any linear isometry R W H! H˚ H, with H a complex Hilbert space, permits
to construct a unitary representation .�V ;H/ of the largest Thompson group V . We write
�F ; �T for the restrictions to the subgroup F; T , respectively. We call these Pythagorean
representations (in short P-representations). The isometric condition translates into

A�AC B�B D idH; (PE)

where A;B 2 B.H/ are the legs of R. We call .A; B;H/ a Pythagorean module (in short
P-module). P-modules correspond to the representations of the Pythagorean algebra P :
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the universal C �-algebra defined by Relation PE. We consider maps between P-modules
that only intertwines the A’s and B’s (but not necessarily their adjoints as one would
classically require in Rep.P /). This develops a highly non-trivial representation theory
that allows us to perform powerful classifications of P-representations by solely work-
ing with P-modules. Beyond classification we are moreover able to read properties of
P-representations by only studying the operators A;B .

By adding the relations AA� D BB� D idH we obtain a quotient P � O on the
Cuntz(–Dixmier) algebra [26, 27]. Surprisingly, any representation of P canonically lifts
into a representation �O of O. Moreover, �O restricts into �V (after identifying V inside
O via the Birget–Nekrashevych embedding, see Section 2.4 and [11, 45]).

In practice we mostly consider H finite-dimensional, yet the space H on which V and
O act is always infinite-dimensional and is roughly equal to trees with leaves decorated
by vectors in H. Thus, the force of this construction resides in constructing and studying
representations of F; T; V and O using only finite-dimensional data.

Brief outline of the article. In this article, we continue our systematic study of P-repres-
entations initiated in [22]. For improving the clarity of the exposition we restrict our study
to finite-dimensional P-modules in this article. Several of our results extend to the infinite-
dimensional case and will be proven in a future article. We previously defined diffuse
P-modules (i.e., increasing words in A; B tend to zero for the strong operator topology)
and proved that the associated P-representation (also named diffuse) �X of the Thompson
groupsX DF;T;V are Ind-mixing (i.e., IndXH � 6� �

X for all subgroupsH �X and finite-
dimensional representations � W H ! U.Cd /) [22]. In this present article we define a
negation of being diffuse called atomic. We show that any P-representation � decomposes
into �atom ˚ �diff where �atom; �diff are themselves P-representations named the atomic
and diffuse parts of � , respectively. We then decompose �atom into explicit irreducible
components. This is achieved by solely decomposing the underlying P-module.

Detailed content of the article and main results. For the rest of the introduction all P-
modules are finite-dimensional and all P-representations are built from finite-dimensional
P-modules.

Decomposing and classifying P-modules is more much subtle than the usual repres-
entation theory of the C �-algebra P . However, this is a small cost to pay as it allows one
to decompose P-representations of F;T;V;O at the level of P . A P-modulemD .A;B;H/
does not decompose in general as a direct sum of irreducible components. However, we
have the (orthogonal) direct sum

H D Hcomp ˚ Hres

where the residual subspace Hres is the largest vector subspace that does not contain any
non-trivial sub-module and Hcomp is the complete sub-module. We will see that Hcomp can
be decomposed into irreducible components.

Diffuse and atomic P-modules. If p is an infinite binary sequence (often called a ray
when identified with a path in the infinite rooted binary tree), then write Œp� for its class
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obtained by swapping finite prefix. We set pn to be the first n digits of p that we often
identify with an operator obtained by replacing digits of p byA;B and reversing the order.
We define Hdiff � Hcomp to be the subset of vectors � satisfying that limnkpn�k D 0 for
all rays p. This forms a sub-module that we call the diffuse part of H. In contrast, for each
periodic ray p we define H

Œp�
atom � Hcomp to be the span of all vectors � such that there

exists a ray q 2 Œp� satisfying kqn�k D k�k for all n � 1. This also forms a sub-module
Hatom WD ˚Œp�H

Œp�
atom called the atomic part of H.

The Pythagorean functor. Jones’ technology promotes a P-module into a representa-
tion of F that extends to T; V and even O. This process is functorial giving the four
Pythagorean functors (P-functors) …X W Mod.P /! Rep.X/ for X D F; T; V;O, where
Rep.X/ is the usual category of representations of X , and Mod.P / is the category of P-
modules with same objects as Rep.P / but with more morphisms, see Section 2.5.6. We
can now state our first main theorem on decomposing P-modules and P-representations.

Theorem A. If .A;B;H/ is a P-module then the following assertions hold:

(i) …X .H/ Š …X .Hcomp/;

(ii) Hcomp D Hatom ˚ Hdiff D ˚Œp�H
Œp�
atom ˚ Hdiff;

(iii) …X .H/ Š …X .Hatom/˚…
X .Hdiff/ Š ˚Œp�…

X .H
Œp�
atom/˚…

X .Hdiff/

where Œp� runs over all periodic rays and X D F; T; V;O.

The first statement is proven in Proposition 3.4 and motivates the terminology. The
second statement is proven in Theorem 3.13 and Proposition 3.16. The third statement
follows from the first two. Note that we only consider (eventually) periodic rays. In fact,
we may even restrict to classes of rays with period of length smaller than dim.H/.

Description of atomic P-representations. The second half of the paper is dedicated
to precisely describing and classifying atomic representations: P-representations from
atomic P-modules. Given d � 1 define Wd to be a set of representatives of prime bin-
ary word of length d modulo cyclic permutations and write S1 for the circle (complex
numbers of modulus 1). For each pair .w; '/ 2 Wd � S1 we define an explicit P-module
mw;' using d by d matrices. This P-module is atomic and irreducible. We show that con-
versely all irreducible atomic P-module is of this form (up to isomorphism) and moreover
describe explicitly their associated P-representations…X .mw;'/ for the Thompson groups
X D F;T;V . These explicit descriptions together with the Mackey–Schoda criterion give
us a complete comprehension of atomic representations. We refer to Section 3.5 for nota-
tions and details. In the below theorem, statements (i), (ii), (v) are proven in Theorem 4.2
while statements (iii), (iv) follow easily from Section 4.1.

Theorem B. Let X D F; T; V and fix w 2 Wd , ' 2 S1. Write p for the periodic ray
w1, Xp for the parabolic subgroup ¹g 2 X W g.p/ D pº, �p' for the representation
Xp ! S1; g 7! ' log.2jpj/.g 0.p//. Then the following assertions are true.

(i) If .X; jwj/ ¤ .F; 1/, then …X .mw;'/ Š IndXXp �
p
' and this representation is

irreducible.
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(ii) If w D 0 (resp. w D 1) set q D 1 � 01 (resp. 0 � 11). We have:

…F .mw;'/ Š �
p
' ˚ IndqFq �

q
'

which is a direct sum of a one-dimensional representation and an irreducible
one.

(iii) Given .w;'/ and .v;�/ and assuming that .X; jwj/¤ .F;1/, then…X .mw;'/Š

…X .mv;�/ when .w; '/ D .v; �/.

(iv) Given .w; '/ and .v; �/ and assuming that jwj D jvj D 1, then …F .mw;'/ Š

…F .mv;�/ when .w; '/ D .v; �/ or ' D � D 1.

(v) Every atomic representation is a finite direct sum of irreducible ones appearing
in: ®

IndXXp �
p
' W p eventually periodic ray, ' 2 S1

¯
: (AR)

This classification permits to deduce that, up to few exceptions, the P-functors preserve
irreducible classes in the atomic case (see Section 4.2). Moreover, this extends to the Cuntz
algebra (since V � O and using items (i), (iii)). We will obtain a similar conclusion in the
diffuse case in [23] by using a direct conceptual argument.

Corollary C. Let X D F;T; V;O and H1;H2 be two atomic P-modules. If either X ¤ F
or both H1;H2 do not contain a copy of mw;' with jwj D 1 then:

(i) …X .H1/ is irreducible if and only if .H1/comp is irreducible;

(ii) …X .H1/ Š …
X .H2/ if and only if .H1/comp Š .H2/comp.

Recall that a representation of a group is weakly mixing (resp. Ind-mixing) if it does not
contain (resp. the induction of) a non-zero finite-dimensional representation. We proved
in [22] that a diffuse P-representation is Ind-mixing. In sharp contract, atomic represent-
ations are direct sum of monomial representations. This allows to deduce the following
characterisations (proved in Section 4.2).

Corollary D. Fix a P-module m D .A;B;H/ and set X D F; T; V . We have:

(i) the representation …X .m/ is weakly mixing if and only if either X D T; V or
limnA

n� D limn B
n� D 0 for all � 2 H;

(ii) the representation …X .m/ is Ind-mixing if and only if m is diffuse.

Geometrical interpretation. We now introduce coordinates: HDCd andA;B 2Md .C/
(they are d by d complex matrices). Denote by Irratom.d/ the set of P-modules m D
.A; B; Cd / that are atomic and irreducible. Our work demonstrates that in the atomic
case the number d is an invariant of both m and …X .m/ that we name the Pythagorean
dimension (in short P-dimension). The projective special unitary group PSU.d/ acts on
Irratom.d/ by conjugation: u � .A;B/ WD .uAu�; uBu�/. By definition, the PSU.d/-orbits
are the irreducible classes of atomic P-modules. Moreover, the P-modules mw;' of Sec-
tion 3.5 are representatives of these orbits. Using Corollary C we deduce that PSU.d/
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classifies the associated P-representations. Using obvious manifold structures we deduce
moduli spaces of atomic P-representations (see Section 4.3 for details).

Corollary E. Consider d � 1 and X D F; T; V;O. We have:

(i) PSU.d/�Wd � S1! Irratom.d/; .u;A;B/ 7! u � .A;B/ is a bijection. Hence,
Irratom.d/ has an obvious structure of compact smooth real manifold of dimen-
sion d2.

(ii) For .X; d/ ¤ .F; 1/ the set of irreducible classes of atomic representations of
X with P-dimension d is in bijection with Wd � S1 (a finite disjoint union of
circles).

(iii) If d ¤ Qd then …X .m/ 6Š …X . zm/ where m 2 Irratom.d/ and zm 2 Irratom. Qd/.

Atomic representations of Dutkay, Haussermann and Jorgensen. The family of so-
called purely atomic representations of the Cuntz algebra O was defined in [28]. They
coincide with the atomic representations of O considered in the current article. Simil-
arly to the current article, in [28] the authors classified the irreducible classes of purely
atomic representations of O. Despite sharing some common features, these two studies
are rather different in nature. Notably, the classification of purely atomic representations
is accomplished by studying directly the larger infinite-dimensional Hilbert space H via
certain projections associated to singleton sets. In contrast, our study is primarily focused
on classifying atomic representations by only studying the smaller finite-dimensional Hil-
bert space H. This allows us to follow somewhat simpler arguments and phrase many of
our results in terms of finite-dimensional liner algebra. Furthermore, we are largely con-
cerned on studying the restriction of the atomic representations to the Thompson groups
and to explicitly describe them (as direct sum of monomial representations). This takes
up the majority of the last section in the paper, where else irreducibility and equivalence
follows rather easily from classical results. Finally, our novel approach of decomposing
finite-dimensional P-modules provides an important framework for future work. This will
permit us to recover and extend, among other, results appearing in [4, 5, 7, 10, 12, 28, 29,
32, 37, 38, 44, 46]. This will be extensively explained in [23].

2. Preliminaries

In this section we fix notations (similar to the ones in [22]) and recall some standard
definitions and results.

Convention. We assume that all groups are discrete, all Hilbert spaces are over the com-
plex field C with inner-products linear in the first variable, and all group representations
are unitary. The set of natural numbers N contains 0 and we write N� for N n ¹0º.

2.1. Monomial representations and the Mackey–Shoda criterion

If H � G is a subgroup and � a representation of H , then IndGH � denotes the induced
representation of � associated to H . When � D � is one-dimensional (i.e., valued in the



A. Brothier and D. Wijesena 6

circle group S1) then IndGH � is called monomial. If � D 1H is the trivial representation
then �G=H WD IndGH � is the quasi-regular representation.

Commensurator. Let H � G be a subgroup.

• The commensurator ofH � G is the subgroup CommG.H/ � G of g 2 G satisfying
that H \ g�1Hg has finite index in both H and g�1Hg.

• The subgroup H � G is self-commensurating if H D CommG.H/.

We recall the celebrated Mackey–Shoda criterion [42,43] (see also [8, Theorem 1.F.11,
Theorem 1.F.16, and Corollary 1.F.18]).

Theorem 2.1. LetHi � Gi , i D 1; 2 be two subgroups and take one-dimensional repres-
entations �i W Hi ! S1, i D 1; 2. Set .H;G/ WD .H1; G1/. We have the following.

(i) The induced representation IndGH .�/ is irreducible if and only if for every g 2
CommG.H/ with g … H , the restrictions of � W H ! S1 and �g W g�1Hg 3
s 7! �.gsg�1/ to the subgroup H \ g�1Hg do not coincide.

(ii) The induced representation IndGH1 �1 is unitary equivalent to IndGH2 �2 if and
only if there exists g 2G such thatH1 \ g�1H2g has finite index in both groups
H1 and g�1H2g; and moreover the restrictions of �g2 and �1 toH1 \ g�1H2g
coincide.

In particular, all monomial representations constructed from self-commensurated sub-
groups are irreducible. Moreover, if H1; H2 are self-commensurating subgroups, then
IndGH1 �1 Š IndGH2 �2 if and only if g�1H2g D H1 and �g2 D �1 for some g 2 G. Here,
unitary equivalent, denoted Š, means that there exists a unitary transformation that inter-
twines the actions.

2.2. Richard Thompson’s groups F � T � V

We refer to [9,24,25] for details on the Richard Thompson groups and their diagrammatic
descriptions.

Cantor space and Thompson’s groups. Let C WD ¹0;1ºN
�

be the Cantor space of infinite
binary strings (also called sequences or rays). Sequences are written from left to right.
Finite binary strings or sequences are called words. We write w � u for the concatenation
of w with u. We equipped these sequences with the lexicographic order. If w is a finite
binary string (also called a word) we form Iw WD w � C : the set of all sequences with
prefix w. We call Iw a standard dyadic interval (sdi in short). The terminology comes
from the real interval Œ0; 1�: the usual surjection S W C ! Œ0; 1�, x 7!

P
n 2
�nxn maps

Iw into an interval of the form Œ2�nk; 2n.k C 1/�. If P WD .w1; : : : ; wn/ is an n-tuple of
words such that .Iw1 ; : : : ; Iwn/ forms a partition of C , then P is called a standard dyadic
partition (sdp in short). We say that P is oriented if wi < wiC1 for 1 � i � n � 1 for the
lexicographic order. Two sdp’s P D .u1; : : : ; un/ and Q D .v1; : : : ; vn/ with the same
number of sdi’s defines a homeomorphism g of C such as ui � x 7! vi � x. The collection
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of all of those form Thompson’s group V . Let F � V (resp. T � V ) to be the subset of
g as above where P and Q are oriented (resp. oriented up to cyclic permutation). The
subsets F; T of V are groups called the Thompson groups F and T .

Slope. Write juj for the word-length of a word. If g maps Iu onto Iv via u � x 7! v � x,
then we say that 2juj�jvj is the slope of g on Iu and write g0.u � x/D 2juj�jvj for all x 2 C .

Trees, forests, and rays. Consider the infinite binary rooted tree t1 that we geometrically
identify as a graph in the plane where the root is on top, the root has two adjacent vertices
to its bottom left and right, and every other vertex has three adjacent vertices: one above,
one to the bottom left, and one to the bottom right. The bottom two vertices are called
immediate children of the vertex (and further down vertices are called children). A pair of
edges that have a common vertex is called a caret and denoted by the symbol ^. We will
constantly identify vertices of t1 with words and boundary of t1 with sequences in the
usual manner (hence the digits 0 and 1 correspond to left-edge and right-edge, respectively,
and the trivial word corresponds to the root of t1). Elements of the boundary of t1 are
called rays. If p is a ray and n � 0, then pn is the word made of the first n digits of p and
np the rest of p so that p D pn � np. If p D v �w1 for some word v;w, then we say that
p is eventually periodic and that w is a period of p. Otherwise we say that p is aperiodic.
We say that w is prime when w ¤ un for all words u and n � 2. When p D v � w1 and
w is prime, then we write jpj for the length jwj. If v is trivial, then p D w1 and we say
that p is periodic. Finally, we write p � q when p D q modulo finite prefixes, i.e., there
exists n; k � 0 such that np D kq. We write Œp� for the class of p for �.

The term tree refers to any finite non-empty rooted sub-tree of t1 whose each vertex
has either none or two immediate children. They form the set T . If t is a tree, then the
vertices of t with no children are called leaves. The relation “being a rooted sub-tree”
defines a partial order � on T for which T is directed. If s � t , then the diagram obtained
by removing s from t is called a forest. A forest f is interpreted as a finite ordered list of
trees .f1; : : : ; fn/ that has n roots. Hence, t is obtained by stacking s on top of f . We then
write f ı s for t . This extends to an associated partially defined binary operation on the
set F of all forests. This confers to F a structure of a small category. Now, concatenating
list of trees: �

.f1; : : : ; fn/; .g1; : : : ; gm/
�
7! .f1; : : : ; fn; g1; : : : ; gm/

defines an associative binary operation on F . This is a monoidal product that we denote
by˝. It corresponds to concatenating horizontally forests.

Tree-diagrams for the Thompson groups. We now describe the Thompson groups using
trees. Consider .t; �; s/ where t; s are trees with same number of leaves, say n, and � is
a permutation on ¹1; : : : ; nº. If the j th leaf of s and t correspond to the words uj ; vj ,
respectively, then the triple defines the map ui � x 7! v�.i/ � x for x 2 C . This is an element
of V and all elements of V can be achieved in that way. It is in F (resp. T ) if and only if �
is trivial (resp. cyclic). Assume for simplicity that � is trivial and write .t; s/ for .t; id; s/.
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If f is a forest composable with t , then note that .f ı t; f ı s/ defines the same element of
F as .t; s/. Let� be the equivalence relation generated by .t; s/� .f ı t; f ı s/ and write
Œt; s� for the class of .t; s/. The set of these classes admits a group structure, isomorphic to
F , via the composition Œt; s� ı Œs; r� D Œt; r� and inverse Œt; s��1 D Œs; t �. Similarly, we can
define T and V using classes of triples Œt; �; s�. We call the triples .t; �; s/ tree-diagrams
and say that ui and v�.i/ are corresponding leaves of .t; �; s/.

Specific notations. The trivial tree (the tree with one leaf equal to its root) is denoted I
or e. We write fk;n WD I˝k�1 ˝ ^˝ I˝n�k for the so-called elementary forest that has
n roots, nC 1 leaves, all of its trees trivial except the kth one that is equal to a caret ^.
The complete tree with 2n leaves all at a distance n from the root is denoted tn. If f is a
forest, then Root.f / and Leaf.f / denote its root-set and leaf-set, respectively. We write
Ver for the vertex-set of the rooted infinite complete binary tree t1. If p 2 C , then Verp
denotes all the finite prefixes pn of p (i.e., the vertices that the ray p is passing through).

2.3. Parabolic subgroups of the Thompson groups

For this subsection we shall take X to denote any of F; T; V . Given p 2 C we form the
so-called parabolic subgroups

Xp WD
®
g 2 X W g.p/ D p

¯
:

Note that Xp ¤ X except when X D F and p is an endpoint of C .

2.3.1. Description of parabolic subgroups using tree-diagrams. Consider a ray p with
nth digit xn. Given g D Œt; �; s� 2 X we have that there exists a unique leaf � of t and !
of s so that �; ! lie in the ray p (equivalently p 2 I� \ I!). If j�j D m and j!j D n, then
� D pm and ! D pn. By definition of the action V Õ C we have that g 2 Xp if and only
if pm and pn are corresponding leaves of g and mp D np.

Assume that p is eventually periodic such that pD v �w1. Take v as small as possible.
Then from the preceding paragraph we have´

m D n; if m; n � jvj

n �m 2 jwjZ; if m; n > jvj:
(2.1)

In the case when p is not eventually periodic we obtain that Xp is the group elements
acting trivially on a neighbourhood of p (i.e., have slope 1 at p).

2.3.2. Monomial representations associated to parabolic subgroups. It is standard
that Xp � X is self-commensurating. Then Mackey–Schoda implies the following.

Lemma 2.2. Consider rays pi and one-dimensional representations �i ofXpi for i D 1;2.

(i) The monomial representation IndXXp1 �1 of X is irreducible.

(ii) If .X; jpi j/ ¤ .F; 1/ then IndXXp1 �1 ' IndXXp2 �2 if and only if �1 Š �2, and
Œp1� D Œp2�.
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2.4. Universal C �-algebras

The Cuntz algebra. The Cuntz algebra O WD O2 is the universal C �-algebra with two
generators s0; s1 satisfying the below relations:

s�0 s0 D s
�
1 s1 D s0s

�
0 C s1s

�
1 D 1:

Thus, any representation of O on a Hilbert space H is given by two isometries, S0 and S1,
with orthogonal ranges that span H. If � is a binary word in 0’s and 1’s, then denote s� to
be the corresponding composition respecting the order of the digits (hence if � D 01 then
s� D s0s1). Birget and Nekrashevyvch independently made the remarkable discovery that
Thompson’s group V embeds inside the unitary group of the Cuntz algebra U.O/ [11,45].
Indeed, take g 2V and let ¹�iºniD1, ¹!iºniD1 be vertices in Ver such that g.!i � x/D ��.i/ � x
for x 2 C and some permutation �. The formula

V 3 g 7!

nX
iD1

s�i s
�
!i
2 O

defines an embedding of V into U.O/. In fact, V corresponds to the normaliser subgroup
of the diagonal sub-algebra A inside O (where A is generated by all the projections s�s�� ).

From now on we identify V and its image inside O.
Consequently, every representation of O restricts to a (unitary) representation of V .

The Pythagorean algebra. The Pythagorean algebra is the universal C �-algebra P with
two generators a,b satisfying the Pythagorean equality:

a�aC b�b D 1:

Hence, a 7! s�0 ; b 7! s�1 defines a surjective �-morphism P � O. Note that P has many
(non-zero) finite-dimensional representations while O has none.

2.5. Pythagorean representations

We introduce the specific class of Jones’ representations that we will focus on.

2.5.1. Pythagorean module. Here is the main concept of our study.

Definition 2.3. A Pythagorean module (in short P-module) is a triple m D .A; B;H/

where H is a Hilbert space and A;B 2 B.H/ are bounded linear operators satisfying the
so-called Pythagorean equality

A�AC B�B D idH

where idH is the identity operator of H and A� is the adjoint of A. For convenience, we
may interchangeably refer to H and m as being a P-module.

For P-modules m D .A;B;H/; zm D . zA; zB; zH/ we say that:

• K � H defines a sub-module if K is closed under A and B , in which case we equip K

with the P-module structure obtained by taking the restrictions of A and B;
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• m is irreducible if m does not contain any proper non-trivial sub-modules;

• � W H! zH is an intertwiner or morphism between m and zm if it is a bounded linear
operator satisfying

� ı A D zA ı � and � ı B D zB ı � I

• m and zm are unitarily equivalent (we often drop the term “unitarily”) if there exists a
unitary intertwiner between them. In that case we write m Š zm;

• K � H is a complete sub-module of m if the orthogonal complement K? of the sub-
space H inside H does not contain any non-trivial sub-modules;

• m is a full sub-module if m does not contain any proper complete sub-modules;

• Z � H is a residual subspace if Z does not contain any non-trivial sub-modules and
Z? is a sub-module of m.

Remark 2.4. The P-modules and their morphisms form a category denoted Mod.P /. Let
Rep.P / denote the usual category of representations of the C �-algebra P . Then Mod.P /
and Rep.P / have same class of objects. However, there are more morphisms in Mod.P /
than there are in Rep.P /. Although, it can be proven that a morphism between two full
P-module is in fact a morphism of the associated representations.

2.5.2. From a P-module to a Hilbert space. Fix a P-module .A; B;H/. For each tree t
with n leaves we consider the Hilbert space Ht WD HLeaf.t/ of all maps from the leaves-set
of t to H. We identify Ht with H˚n and write .t; �/ for an element of it. We may write �`
or �i for the component corresponding to the leaf ` of t or to the i th leaf. For each forest
f with n roots and m leaves we have an isometry

ˆ.f / W Ht ! Hf t

obtained by placing the operatorR WDA˚B WH!H˚H at each node of f . For instance
ˆ.I ˝^/.^; �/ D ..I ˝^/^; �1; A�2; B�2/. This defines a functor ˆ W F ! Hilb from
the category of binary forests to the category of Hilbert spaces. It is monoidal for the
horizontal concatenation of forests and the direct sum of Hilbert spaces.

This forms a directed system of Hilbert spaces, indexed by the directed set of trees T ,
with maps being the ˆ.f /. The limit is a pre-Hilbert space K WD lim

�!t2T
Ht that we

complete into H. (It indeed has an inner-product because all the ˆ.f / are isometric.)
Equivalently, H is the disjoint union of the Ht modulo the equivalence relation generated
by .t; �/ � .f t; ˆ.f /�/. We write Œt; �� for the class of .t; �/ inside H and note that
.t; �/ 7! Œt; �� defines an isometric embedding Ht ,!H. Moreover, � 7! .I; �/ defines an
isomorphism H ' HI . We will often identify H with HI and Ht with its image inside H.
We note that dim.H/ D1 (except when H D ¹0º).

2.5.3. Partial Isometries on H. Fix � 2 Ver (i.e., � is a finite binary sequence) and
consider Œt; �� 2 K. Up to growing t we can assume that � is a vertex of t . Define t� to be
the sub-tree of t with root � and whose leaves are the leaves of t which are children of �.
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Then we set ��.Œt; ��/ WD Œt� ; �� where � is the decoration of the leaves of t in Œt; �� that
are children of �. It can be shown that �� is well defined and extends to a surjective partial
isometry from H onto itself (see [22, Section 2.1] for details).

We will be considering projections �� WD ��� �� . More generally, consider ��� �! the
partial isometry which “snips” the tree at ! and attaches the resulting sub-tree, along with
its components, at the vertex � while setting all other components to 0. Here is an example:

�1 �2 �3 �4

7�!

�1

�3 �4

7�!

��0

�3 �4

0

Observation 2.5. Note that .�0; �1;H/ forms a P-module. Moreover, �0 �HD A and
�1 �HD B . Hence, .A;B;H/ is a sub-module of .�0; �1;H/.

2.5.4. Pythagorean representations from P-modules. Consider as above our fixed P-
module m D .A;B;H/, the functor ˆ W F ! Hilb, and the Hilbert space H. Take g 2 F
and Œr; �� 2 H. There exists some trees t; s such that g D Œt; s�. Now, there exists forests
f; h such that f s D hr . We set

g � Œr; �� WD Œf t; ˆ.h/��:

In particular, if s D r , then Œt; s� � Œs; �� WD Œt; ��. This defines a unitary representation
� W F Õ H called the Pythagorean representation (in short P-representation) associated
to the P-module m. Now, if v 2 V , then v D Œt; �; s� for some permutation �. We set
v � Œs; �� WD Œt; �� � where ��.i/ WD ��.i/ (the i th coordinate of �� is the �.i/th coordinate
of �). This define a unitary representation �T ; �V of T; V on the same Hilbert space H.
Using the partial isometries of the previous subsection we deduce the following formula:

�.v/ D

nX
iD1

����.i/�!i ; (2.2)

where �i ; !i are the i th leaves of t; s, respectively, and where t has n leaves.

Example 2.6. An example of the action � is shown below. In this case, � only changes
the tree while retaining the original decoration.

�
�

;
�
�
�1

�2 �3

D

�1 �2

�3

Extension to O. Using the partial isometries �� we can easily observe that �V extends to
a representation �O of O via the formula

�O
W O ! B.H/; s0 7! ��0 ; s1 7! ��1 :

Using (2.2) we deduce that the representation �O restricted to V is equal to �V . Surpris-
ingly, every representation of O can be obtained in this manner ([20, Proposition 7.1]).
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Indeed, if .�;H/ 2 Rep.O/, then m D .�.s0/�; �.s1/�;H/ is a P-module. If we re-apply
the construction of above tomwe obtain a new representation �O of O which is equivalent
to � .

Remark 2.7. We thank the anonymous reviewer for observing the following interesting
parallel between Pythagorean technology and the work of Arveson in [6]. The Toeplitz
algebra T WD Td is the C �-algebra generated by the d -tuple of shift operators acting on
the symmetric Fock space of Cd . There is an exact sequence

0!K ! T ! C.S2d�1/! 0

where K is the C �-algebra of compact operators and C.S2d�1/ the continuous func-
tions on the .2d � 1/-sphere. All representations of T decompose into a direct sum of
the natural representation of T on the symmetric Fock space and a representation that
factors through C.S2d�1/. This latter is then commutative and thus decomposes into
one-dimensional representations. A spherical operator in the sense of Arveson is a tuple
.Z1; : : : ; Zd / of normal and mutually commuting operators satisfying the Pythagorean
equality

Pd
jD1Z

�
j Zj D id, see [6, Section 8]. It defines a representation of T factorising

through C.S2d�1/. Hence, modulo the natural representation, the representation theory of
T is described by spherical operators.

Let us relate these notions with the Pythagorean algebra and our machinery. To fit
with our framework we fix d D 2. A spherical operator is then a P-module .A; B/ where
A;B are moreover normal and mutually commute. They define a representation of C.S3/
and thus of T . Additionally, they define a representation of P that decomposes into one-
dimensional representations. These latter are parameterised by points of the 3-sphere S3.
Hence, the spherical operators of Arveson corresponds to the one-dimensional representa-
tion theory of T and of P . It is interesting to see that each of these representations lift into
representations of the Cuntz algebra (and of the Thompson groups) via the Pythagorean
functor …O , thus connecting the representation theory of T with the one of F; T; V;O.

2.5.5. Sub-modules and sub-representations. Sub-modules of H define sub-represent-
ations of � as explained below.

Definition 2.8. Let X � H be a sub-module (i.e., �i .X/ � X for i D 0; 1). Define the
closed subspace

hXi WD span
° [
�2Ver

��� .X/
±
� H:

By construction X is closed under the action of �O and defines a sub-representation
denoted �O

X . Similarly, we define �YX for Y D F; T; V .

Informally, hXi is the closure of the set of trees with leaves decorated by vectors in X.

Observation 2.9. If X is a sub-module of H, then the P-representation associated to the
P-module .�0 �X; �1 �X;X/ is equivalent to �X. Hence, all sub-representations that are
induced by sub-modules are also Pythagorean. For the remainder of the article we will
freely identify these two representations.
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2.5.6. Functoriality of Jones’ technology. Recall that Mod.P / denotes the category
of P-modules with morphisms being bounded linear maps intertwining the A’s and B’s.
Moreover, Rep.X/ denotes the usual category of unitary representations whenXDF;T;V
and the usual category of bounded linear �-representations when X D O.

LetmD .A;B;H/ and zmD . zA; zB; zH/ be two P-modules with associated P-representa-
tions .�;H/ and .z�; zH/, and functors ˆ; ẑ , respectively. Let � W H! zH be an intertwiner
between the two P-modules. For any tree t , this gives a map �t W Ht !

zHt by

�t W .t; �1; �2; : : : ; �n/ 7!
�
t; �.�1/; �.�2/; : : : ; �.�n/

�
where n is the number of leaves of t . Diagrammatically, �t works as follows when t D ^:

�1 �2
7�!

�^

�.�1/ �.�2/
.

Since � is an intertwiner this implies

�t ıˆ.f / D ẑ .f / ı �t (2.3)

for any composable forest f . From there we deduce a bounded linear map

‚ W H! zH; Œt; �� 7!
�
t; �t .�/

�
that intertwines the P-representations. We deduce four functors that we name the Py-
thagorean functors:

…X
W Mod.P /! Rep.X/:

Notation 2.10. From a P-module m D .A;B;H/ we have canonically constructed the P-
representations �X D…X .m/, forX DF;T;V;O, all acting on the same Hilbert space H.
We may drop the super-script X if it is clear from context or when making statements that
hold true for allX . Additionally, despite all representations of O coming from P-modules,
we may term a representation of O as being “Pythagorean” to emphasise we are viewing
it as arising from a P-module

For the remainder of the paper, we shall assume that all P-modules are finite-
dimensional.

3. Decomposition of P-modules

In this section, we will introduce the important notions of the “atomic” and “diffuse” parts
of a P-module. Furthermore, we will develop a powerful decomposition theory.

3.1. Complete sub-modules

It should be emphasised that sub-modules of P-modules are only required to be closed
under A and B , but not necessarily under A� or B�. Hence, the orthogonal complement
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of a sub-module may not be a sub-module making Mod.P / not semi-simple (unlike
Rep.P /). However, a weaker property holds as shown below. We refer to Section 2.5.1
for the definition of residual and complete.

Lemma 3.1. Let H be a P-module. There exists n � 1, some irreducible sub-modules
Hi � H; 1 � i � n, and a vector subspace Hres � H such that H D .˚niD1Hi /˚Hres. We
call Hres the residual subspace of H and Hcomp WD ˚

n
iD1Hi the complete sub-module of H.

Proof of the lemma. Consider a P-module H. If H is not irreducible, then there exists an
irreducible sub-module K�H (since H is finite-dimensional). If K? is an irreducible sub-
module or a residual subspace we are done. Otherwise, K? contains a proper non-trivial
sub-module and iteratively repeat the above process which must eventually terminate since
H is finite-dimensional.

Example 3.2. Here is an example where the decompositions in Mod.P / is thinner than
in Rep.P /. Consider

m D

0B@
0B@

1p
2

0 1p
6

0 �
1p
2

1p
6

0 0 1p
6

1CA ;
0B@

1p
2

0 �
1p
6

0 �
1p
2
�

1p
6

0 0 1p
6

1CA ;C3
1CA :

Let e1; e2; e3 be the standard basis elements of C3. We have Hcomp D Ce1 ˚ Ce2 which
decomposes into irreducible sub-modules .1

p
2;1
p
2;C/˚.�1

p
2;�1

p
2;C/, and HresD

Ce3. Yet, it is easy to verify that the associated �-representation of P on C3 is irreducible.

Remark 3.3. If H is full (that is, Hcomp D H and Hres D ¹0º) then the decomposition
with respect to the action of the P-module and the action of the Pythagorean algebra P

do coincide. This is because in a full P-module, every A; B-invariant subspace is also a
A�; B�-invariant subspace.

Proposition 3.4. Let m D .A;B;H/ be a P-module decomposed as in Lemma 3.1 and let
K � H be a sub-module. For each X D F; T; V;O we have:

(i) …X .K/ Š …X .H/ if and only if K is a complete sub-module;

(ii) there exists a sub-module X�K? �H such that…X .K/˚…X .X/Š…X .H/;

(iii) …X .H/ Š ˚niD1…
X .Hi /.

Proof. The last two items immediately follows from the first item and Lemma 3.1. Hence
we only need to prove the first item. For the forward implication, let X � K? be a sub-
module. Then hXi � hKi?. However, hKi D H and thus hKi? D ¹0º. This implies that
X is the trivial sub-modules and K is a complete sub-modules.

The converse of item i is equivalent to showing that hHcompi DH as Hcomp is contained
inside every complete sub-module of H. Since hHi D H, it is suffice to show that Hres D

H?comp � hHcompi. Heuristically we will proceed as follows: fix � 2 Hres and let �t its
representative in Ht inside H (i.e., �t WD ˆ.t/�). Then, when t grows we note that the
distance between each component of �t and Hcomp tends to zero. Moreover, we will show
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that this convergence is “global” among all the leaves in such a way that the distance
between the whole vector �t and hHcompi is manifestly small for t large. This will be
achieved by making a compactness argument on the closed unit ball .Hres/1.

Assume Hres is non-zero (the zero case being trivially true). Let P W H! H be the
orthogonal projection onto Hres. For each n consider tn the complete binary with 2n leaves
all at distance n from the root and the isometry

'n W H! Htn ; � 7! ˆ.tn/�:

Note that Htn is isomorphic to the 2n-fold direct sum of H and the map is conjugated to
� 7!

L
jwjDnw� where w is any word in A;B made of n letters. Define now

 n W Hres ! R; � 7!
X
jwjDn

kP.w�/k2

which is the restriction to Hres of the composition of 'n, P ˝ id, and the norm square.
This is obviously continuous with operator norm smaller or equal to 1. Since the space
H, and thus Hres, is finite-dimensional its closed unit ball .Hres/1 is compact. Therefore,
each of the maps  n restricted to .Hres/1 attain a maximum value Mn � 1 at some vector
�n 2 .Hres/1. The remainder of the proof will be separated into individual claims.

Claim 1. There exists a natural number N > 0 such that MN < 1.
Suppose that Mn D 1 for all n. Again, by appealing to the compactness of the closed

unit ball, there exists a sub-sequence .�mn/n which converges to some � 2 .Hres/1 and
satisfies  n.�/ D 1. This implies that necessarily w� is in Hres for all words w. Hence, �
defines a non-zero sub-module of Hres yielding a contradiction.

For the remainder of the proof we fix a unit vector � 2 Hres. Since Hcomp is a sub-
module it is clear that . n.�/ W n > 0/ forms a decreasing sequence which is bounded
below by 0. Hence, the sequence limits to some constant M� 2 Œ0; 1/.

Claim 2. The constant M� is equal to zero.
AssumeM� is strictly positive. Using Claim 1 we fixN � 1 such thatMN < 1. There

exists K > 0 such that  k.�/�M� < M�.1�MN / for all k � K. We can then write for
any j > 0:

 jCk.�/ D
X

jvjDj; jujDk



P.vu�/

2 D X
jvjDj; jujDk



Pv.Pu�/

2 D X
jujDk

 j
�
P.u�/

�
where the second equality follows by noting that PvP D Pv for all words v because
Hcomp is invariant under A;B . Hence we obtain for k � K:

 k.�/� NCk.�/ D
X
jwjDk



P.w�/

2 �  N �P.w�/��X
jwjDk



P.w�/

2�MN



P.w�/

2
D k.�/.1 �MN / �M�.1 �MN /:

We have obtained a contradiction.
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We are now able to conclude. Indeed, by Claim 2, for each " > 0 there exists k � 1
such that  k.�/ < ". Hence, for all � of length k there is �� 2 Hcomp so that

� � X

j�jDk

��� .��/


2 D  k.�/ < ":

Since �, the vector of Htn with �-coordinate being ��� .��/, is in hHcompiwe deduce that the
distance d.�; hHcompi/ between � and hHcompi is smaller than ". Hence, d.�; hHcompi/ D 0

and thus � 2 hHcompi since the latter is topologically closed.

Remark 3.5. The above proposition motivates the terminology of complete sub-modules
and residual subspaces. Indeed, complete sub-modules contain the “complete” informa-
tion of ….H/ while in contrast residual subspaces are the “residual” space left over from
complete sub-modules and do not contain any information of ….H/.

3.2. Classes of vectors in P-modules

We now introduce two classes of vectors in H that will play an important role in our
decomposition of Pythagorean representations. Recall we identify rays in C as an infinite
sequence of 0; 1 which is read from left to right.

Definition 3.6. Fix a P-module .A; B;H/. Let p be a ray and � a vector in H. For a
finite word w in binary digits we write w� to denote the action of the operator obtained
by replacing the digits of w with A; B and reversing the order (e.g. if w D 011 then
w� D BBA�). Recall pn is the first n digits of p for n 2 N. If � is non-zero then we say:

• � is contained in the ray p if limn!1kpn�k D k�k (i.e., kpn�k D k�k for all n 2 N);
• � is annihilated by all rays if limn!1kqn�k D 0 for all rays q.

The following observation explains the diagrammatic natures of the definitions of
above.

Observation 3.7. Consider a ray p and recall that Verp denotes the vertices equal to all
finite prefixes pn of p. A non-zero vector � 2 H is contained in p if and only if k��.�/k D
k��.�/k D k�k for � 2 Verp and ��.�/ D ��.�/ D 0 for � … Verp .

Example 3.8. Consider the P-module��
0 0
1 0

�
;

�
0 1
0 0

�
;C2

�
:

Then e1 D .1 0/T 2 H is contained in the zig-zag ray .01/1 D 0101 : : : as shown below.
e1

e2 0

0 e1

e2 0

Similarly, the diagram shows that e2 is contained in the ray .10/1.
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Lemma 3.9. Let �; � 2 H be two vectors contained in rays p; q, respectively. If p ¤ q
then �; � are orthogonal vectors.

In particular, if � 2H is contained in a ray, then p is eventually periodic and the length
of a period of p is smaller or equal to dim.H/.

Proof. We will show the first statement by identifying �; � with their images inside….H/.
Since p ¤ q, there exists n 2 N such that pn ¤ qn. We have:

h�; �i D
˝
Œe; ��; Œe; ��

˛
D
˝�
tn; ˆ.tn/�

�
;
�
tn; ˆ.tn/�

�˛
where recall ˆ is the functor F ! Hilb used to construct the P-representation. Now,
.tn; ˆ.tn/�/ corresponds to a map Leaf.tn/ ! H supported at pn. Since pn ¤ qn we
deduce that .tn; ˆ.tn/�/ and .tn; ˆ.tn/�/ have disjoint support. Therefore, h�; �i D 0.

Consider now a periodic ray p and � 2 H contained in p. If p has a period of length
m, then note that the np are all distinct for 0 � n � m � 1. Since pn� is contained in np

we deduce that the pn� are mutually orthogonal giving m � dim.H/, and that no vector
can be contained in an aperiodic ray.

We deduce below a strong dichotomy using the compactness of the unit ball of H.

Proposition 3.10. Let H be a P-module. Then either:

• every non-zero vector in H is annihilated by all rays; or

• there exists a vector contained in some periodic ray p.

Proof. Consider a P-module .A;B;H/. Assume that there exists a unit vector � that is not
annihilated by all rays. Thus, there exists a ray p satisfying limn!1 kpn�k ¤ 0. Since
both A;B have norm smaller than 1, the sequence .kpn�k/n�1 is decreasing. It must then
converge to a certain ` > 0. The sequence .pn�/n�1 is contained in the closed unit ball
of H which is compact since dim.H/ <1. Therefore, this sequence admits at least one
accumulation point �. We necessarily have that k�k D ` and thus � is non-zero. We now
construct a new ray Op satisfying k Opn�k D ` for all n � 1.

For any " > 0 define I" the set of indices n � 1 satisfying that k� � pn�k < ". By
definition I" is infinite for any choice of " > 0 (and obviously nested in "). If n < m we
write pmn for the word in a; b satisfying pm D pmn � pn. Observe that if n; m 2 I" and
n < m, then

k� � pmn �k � k� � pm�k C kpm� � p
m
n �k

� k� � pm�k C


pmn .pn� � �/



� k� � pm�k C kp
m
n k �



.pn� � �/

 � 2":
This implies that

kpmn �k � k�k � kp
m
n � � �k � k�k � 2":

Write xk the kth digits of p. The previous inequality implies that

kxnC1�k � k�k � 2" for all n 2 I":
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From now on we choose " > 0 small enough with respect to ` D k�k so that k�k � 2" >
k�k=
p
2. This implies that I" 3 n 7! xnC1 is constant. Indeed, if both digits 0; 1 would

appear as xnC1 and xmC1 for n;m 2 I" we would contradict the Pythagorean equation of
.A;B/ since we would have:

k�k2 D kA�k2 C kB�k2 D kxnC1�k
2
C kxmC1�k

2 > k�k2;

a contradiction. Let y1 2 ¹0; 1º be the digits equal to xnC1 for n 2 I". Observe that

ky1�k � k�k � 2"
0 for all 0 < "0 � ":

We deduce that ky1�k D k�k. A similar reasoning can be applied to the second digits of
pmn (for m � n C 2 and n; m 2 I") and the vector y1� to prove that n 3 I" 7! xnC2 is
constant equal to a certain y2 and moreover ky2y1�k D k�k. By induction we obtain a
sequence .yn/n�1 and thus a new ray Op from it satisfying that

k Opk�k D kyk : : : y1�k D k�k for all k � 1:

3.3. Atomic and diffuse P-modules

The next lemma will permit to only consider periodic rays rather than all eventually peri-
odic ones.

Lemma 3.11. If � 2 H is contained in an eventually periodic ray p that is not periodic,
then � 2 Hres.

Proof. Consider p and � as above. We have that p D v � w1 for some words w; v. We
choose v with the smallest possible length nwhich is non-zero by assumption. By restrict-
ing to sub-modules we can assume that � generates the P-module H. This means that H

is the span of all the u� with u any finite word in binary digits. Since � is contained in
p we can restrict to words u D pk for all k � 0. Define K as the span of the pk� with
k � n. Lemma 3.9 shows that K? is the span of pj � with 0 � j < n. Therefore, K? is
residual.

Definition 3.12. For a P-module H define the following subspaces:

Hatom WD span¹� 2 Hcomp W � is contained in some periodic ray pº

Hdiff WD ¹� 2 Hcomp W � is annihilated by all raysº:

Then we say:

• Hatom (resp. Hdiff) is the atomic (resp. diffuse) part of H;

• H is atomic (resp. diffuse) if Hatom D Hcomp (resp. Hdiff D Hcomp).

Theorem 3.13. The subspaces Hatom and Hdiff are sub-modules of H. Furthermore,

Hcomp D Hatom ˚ Hdiff
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giving the decomposition

H D Hatom ˚ Hdiff ˚ Hres and � D �atom ˚ �diff

where �atom WD �Hatom and �diff WD �Hdiff are the atomic and diffuse parts of � , respectively.

Proof. Let � be a non-zero vector in Hcomp. If � is contained in a periodic ray p, then
either A� is contained in the periodic ray 1p and B� D 0 or vice versa. In contrast, if �
is annihilated by all rays, it is clear that A� and B� are also annihilated by all rays. Thus,
this shows that Hatom and Hdiff are sub-modules.

For the second statement, since Hcomp decomposes as a direct sum of irreducible sub-
modules, it is suffice to show that every irreducible P-module is either atomic or diffuse.
Suppose K is an irreducible P-module which is not diffuse. Then by Proposition 3.10
there exists a vector � 2 K which is contained in some periodic ray p. Consider the sub-
module generated by � which must be equal to K by assumption of irreducibility of K.
Observe that for a binary word w, if w D pn for some n then w� is contained in the ray
np, otherwise w� is zero. Thus, we deduce K is equal to the linear span of the vectors
¹pk�ºk2N where pk� is contained in the periodic ray kp. Therefore, we can conclude K

is an atomic P-module. The rest of the theorem follows from Propositions 3.4.

Remark 3.14. Before continuing, it is important to caution the reader of the subtleties
present in the above definitions and explain the choice of definitions.

(i) By Lemma 3.11, the requirement for the ray to be periodic in the definition of
Hatom is superfluous.

(ii) If H is an atomic (resp. diffuse) P-module, then this does not necessarily imply
that HDHatom (resp. HDHdiff). For example, consider the P-module .A;B;C2/
withAe1DBe2D e1 andAe2DBe1D 0 (here e1; e2 denote the standard basis
vectors of C2). Then Hcomp D Ce1, Hres D Ce2, and the vector e1 is contained
in the ray 01. Thus, Hatom D Ce1 D Hcomp and H is atomic, but the atomic part
of H does not coincide with H. An analogous example can be constructed for
diffuse P-modules. However, at the level of P-representations, we do define � to
be atomic (resp. diffuse) if and only if � is equal to its atomic (resp. diffuse) part.
This is because the residual subspace Hres is “forgotten” by the P-representation.

(iii) The atomic and diffuse parts of H have been defined to be sub-modules of Hcomp.
This is to ensure that Hatom and Hdiff are full P-modules and can be decomposed
into a direct sum of irreducible atomic and diffuse P-modules, respectively. It is
possible to alternatively define the atomic and diffuse parts of H as sub-modules
zHatom and zHdiff, respectively, of H by using the same definitions for Hatom and
Hdiff, respectively, but instead taking � 2 H rather than � 2 Hcomp. This will
still yield a canonical decomposition H D zHatom ˚ zHdiff ˚ Z, where Z is some
residual subspace, and � D z�atom˚ z�diff. We have that z�atomŠ �atom; z�diffŠ �diff;

and by Lemma 3.11, Hatom D zHatom. Additionally, Z� Hres and zHdiff � Hdiff but
these inclusions may be proper.
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(iv) The notion of diffuse P-modules were first introduced in [22] where it was also
defined for infinite-dimensional P-modules using the same definition.

(v) The notions of diffuse and atomic are automatically well defined for P-modules
but for P-representations this requires a non-trivial argument. One approach
consists in applying Theorem A and Corollary D. Indeed, if a representation is
diffuse (resp. atomic) then it is Ind-mixing (resp. not Ind-mixing) which is a
property preserved by the class of representations.

The remainder of the paper will solely study full atomic P-modules and atomic
P-representations.

We aim to provide a complete classification up to unitary equivalence for such objects.

3.4. Atomic sub-representations associated to rays

We now provide a decomposition of the atomic part of a sub-module using periodic rays.

Definition 3.15. For a P-module H and equivalence class Œp� of a periodic ray p define
the sub-module

H
Œp�
atom WD span¹� 2 Hatom W � is contained in kp for some kº � H

and define the sub-representation � Œp�atom WD ….H
Œp�
atom/ � � WD ….H/.

Note that the space H
Œp�
atom is indeed a sub-module since if � is contained in the ray kp

then A� is either 0 or contained in kC1p, and similarly for B� . Moreover, note that if p; q
are periodic and p � q, then H

Œp�
atom D H

Œq�
atom. Hence, H

Œp�
atom only depends on the class Œp�.

Proposition 3.16. Given a P-module H with associated P-representation � we have the
following direct sum decomposition of the atomic part:

Hatom D ˚Œp�H
Œp�
atom and �atom D ˚Œp��

Œp�
atom

where the direct sum runs over all equivalence classes of periodic rays whose period has
length smaller or equal to dim.Hatom/.

Proof. Lemma 3.9 shows that if Œp� ¤ Œq� then H
Œp�
atom;H

Œq�
atom are orthogonal sub-modules.

By definition, every vector in Hatom belongs in H
Œp�
atom for some periodic ray p. Therefore,

we immediately obtain the decomposition:

Hatom D ˚Œp�H
Œp�
atom and �atom D ˚Œp��

Œp�
atom

where the direct sum runs over all equivalence classes of periodic rays. Lemma 3.9 implies
that if jpj > dim.Hatom/, then H

Œp�
atom D ¹0º.

3.5. Irreducible classes of atomic P-modules

We construct explicit representatives of irreducible classes of atomic P-modules.
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Notation 3.17. FixWd to be a set of representatives of all prime binary wordsw of length
d up to cyclic permutation (by prime we mean there does not exist a word v and n> 1 such
that w D vn). Set W WD

S
d�1Wd . Consider a prime word w 2 Wd . Write ¹e1; : : : ; ed º

for the standard basis of Cd . Define matrices Aw ; Bw 2 B.Cd / such that .Aw/nC1;n D 1
if the nth digit of w is 0, otherwise .Bw/nC1;n D 1 for n D 1; : : : ; d (by .Aw/dC1;d we
mean .Aw/1;d ). Set all other entries ofAw andBw to be 0. Thus,Aw ;Bw represent partial
shift maps such that Aw C Bw maps ej to ejC1 with j modulo d . For ' 2 S1 define D'
to be d by d diagonal matrix whose diagonal entries are all ones except for the last entry
which is '. We then set

mw;' WD .AwD' ; BwD' ;Cd /:

Proposition 3.18. Consider two atomic P-modules mw;' and m zw;z' for any two prime
words w; zw 2 W and unital scalars '; z' 2 S1. Then we have the following:

(i) mw;' is an irreducible P-module and is equal to .Cd /Œp�atom where p D w1 and
d D jwj;

(ii) If H is atomic and irreducible then H ' mv;� for some v 2 Wd , � 2 S1 with
d D dim.H/;

(iii) mw;' and m zw;z' are equivalent if and only if .w; '/ D . zw; z'/.

Proof. Proof of (i). Let � D
Pd
iD1 ˛iei 2Cd be a non-zero vector and let k be the smallest

number such that ˛k ¤ 0. Define zw to be the cyclic permutation of w so that the first digit
of zw is the kth digit of w. Of the basis elements ¹eiºi , only ek is contained in the ray zw1.
Thus, zw� D ˛k'ek . We now apply .Aw C Bw/D' which is the shift map times D' . We
obtain all the basis elements ej proving that mw;' is irreducible.

Proof of (ii). Consider an irreducible and atomic P-module H. By Proposition 3.16
there exists v 2 Wd such that H D H

Œq�
atom where d � dim.H/ and q D v1. Since H ¤ ¹0º

there exists � in it of norm one. Up to applying a sub-word of q to � we may assume
that � is contained in q. Lemma 3.9 implies that „ WD ¹�; q1�; : : : ; qd�1�º are pairwise
orthogonal and of norm one. Moreover, qd � is orthogonal to qi� for i D 1; : : : ; d � 1.
Irreducibility of H forces to have qd � D �� for some � 2 S1. Hence,„ is an orthonormal
basis of H. By taking matrices over „ we obtain H ' mv;�.

Proof of (iii). Let U W C jwj! C j zwj be a unitary intertwiner between mw;' and m zw;z' .
Write d for jwj and note that d D j zwj since U is unitary. If � 2 Cd is contained in a
ray p then the intertwining conditions gives that U� must also be contained in p. This
immediately implies that zw is some cyclic permutation of w and thus w D zw by definition
of W . Since Aw C Bw is the shift operator S we deduce that USD' D SDz'U . Taking
the determinant yields ' D z'.

Corollary 3.19. The set of equivalence classes of irreducible atomic P-modules is in
bijection with W � S1. Geometrically, this is a disjoint union of circles indexed by W .

Remark 3.20. One could define a more general class of atomic P-modules by

mw;D D .AwD;BwD;Cd /
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where D is any d by d diagonal unitary matrix. However, we do not obtain more irredu-
cible classes of P-modules. Indeed, if U is the unitary diagonal matrix with j th coefficientQj�1

lD1
Dl;l , then U conjugates mw;D with mw;' where ' D det.D/.

3.6. Examples of decomposition of Pythagorean representations

To conclude this section we provide some instructive examples of the decomposition of
P-modules.

Example 3.21. Consider the P-module m D .A; B;C4/ with A; B given by the below
matrices

A D

0BBB@
1 0 0 0

0 0 i 0

0 0 0 1p
2

0 0 0 0

1CCCA ; B D

0BBB@
0 0 0 1p

2

0 0 0 0

0 �i 0 0

0 0 0 0

1CCCA :
The vector e1 is contained in the ray ` WD 01 which is the ray going down the left
side of t1 while e2; e3 are contained in the zig-zag rays p WD .10/1 and 1p D .01/

1,
respectively. Hence, Ce1 and Ce2 ˚ Ce3 are atomic sub-modules of C4. However, since
Ae4 D 1=

p
2e3 and Be4 D 1=

p
2e1, Ce4 is not a sub-module. Therefore, we obtain the

following decomposition:

C4 D .C4/Œ`�atom ˚ .C4/
Œp�
atom ˚ .C4/res;

where
.C4/Œ`�atom D Ce1; .C4/Œp�atom D Ce2 ˚ Ce3; .C4/res D Ce4:

By Proposition 3.18, we obtain that the complete sub-module ofm is equivalent tom0;' ˚
m10;' , where ' is the scalar 1 2 S1. By Proposition 3.4, we deduce

….m/ Š ….m0;'/˚….m10;'/:

The following sectionwill provide a precise classification for the above sub-representations.

Example 3.22. Consider the P-module m D .A;B;C4/ where

A D

0BBB@
1p
2

1
2

0 0

0 1
2

0 0

0 0 0 0

0 0 1 0

1CCCA ; B D

0BBB@
1p
2
�
1
2

0 0

0 1
2

0 0

0 0 0 0

0 0 0 1

1CCCA :
We have that

.C4/comp D Ce1 ˚ Ce4; .C4/res D Ce2 ˚ Ce3:

Additionally, .C4/diff D Ce1 and .C4/atom D Ce4 as the vector e4 is contained in the ray
r WD 11. Note that Ce1 ˚Ce2 forms a sub-module ofm and is diffuse, but is not equal to
the diffuse sub-module of C4 since it contains a residual subspace. Similarly, Ce3 ˚ Ce4
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forms a sub-module of m and is atomic with e3 being contained in the ray 0 � r D 0 � 11.
However, Ce3 � .C4/res. The sub-module Ce4 is equivalent tomw;' where w is the prime
word 1 and ' the scalar 1. Hence, we obtain:

….m/ Š ….mw;'/˚….1=
p
2; 1=
p
2;C/:

The diffuse representation …F .1=
p
2; 1=
p
2;C/ is the Koopman representation of F Õ

Œ0; 1� as explained in [20, Section 6.2].

4. Classification of atomic Pythagorean representations

In this section we describe and classify the atomic part of arbitrary P-representations. For
this section X denotes any of the Thompson groups F; T; V unless specified otherwise.

4.1. Family of one-dimensional representations of the Thompson groups and their
parabolic subgroups

Recall the family of parabolic subgroups Xp WD ¹g 2 X W g.p/ D pº � X given by
periodic rays p D w1 and let jpj be the length w. Each of these subgroups are proper
except for F01 ; F11 which are both equal to F . Define the family ¹�X;p' º'2S1 of one-
dimensional representations of Xp given by

�X;p' .g/ D ' log.2jpj/.g 0.p// for all g 2 Xp

where log.2jpj/ is the logarithm function in base 2jpj and recall the definition of the deriv-
ative from Section 2.2. To lighten notation, we shall drop the super-script X .

We consider the following class of monomial representations of X :®
IndXXp �

p
' W ' 2 S1 and p is an eventually periodic ray

¯
:

Each of the representations are irreducible by Lemma 2.2. When .X; jpj/ ¤ .F; 1/, then
the above representations are infinite-dimensional since Xp � X has infinite index and
otherwise IndFFp �

p
'D�

p
' is one-dimensional. When .X; jpj/¤.F;1/, then the equivalence

class of IndXXp �
p
' only depends on the ray p up to finite prefixes and ' (see Lemma 2.2).

Definition 4.1. Write ` WD 01; r WD 11 for the endpoints of C and let d � 1 be a natural
number. Define:

RF1 D
®
�`' ˚ IndFF1�` �

1�`
' W ' 2 S1

¯
[
®
�r' ˚ IndFF0�r �

0�r
' W ' 2 S1; ' ¤ 1

¯
;

RXd D
®

IndXXp �
p
' W p D w

d for w 2 Wd ; ' 2 S1
¯
; .X; d/ ¤ .F; 1/:

4.2. Decomposition of atomic P-representations

Propositions 3.16 and 3.18 showed that all complete atomic P-modules can be decom-
posed into a finite direct sum of irreducible atomic P-modules of the form mw;' for
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some w 2 W , ' 2 S1. Hence, to classify all atomic representations, it is sufficient to
only classify the class of representations ¹�Yw;'ºw2W;'2S1 where �Yw;' WD…

Y .mw;'/ and
Y D F; T; V;O.

Theorem 4.2. TakeX DF;T;V , ' 2S1,w 2W and set p WDw1. We have the following.

(i) If .X; jwj/ ¤ .F; 1/ then
�Xw;' Š IndXXp �

p
' :

(ii) If .X; jwj/ D .F; 1/ then

�Fw;' Š �
p
' ˚ IndFFq �

q
'

where q D 1 � ` if w D 0 and q D 0 � r when w D 1.

(iii) A representation of X is atomic if and only if it is a finite direct sum of ones
belonging in RX

d
for d � 1.

(iv) If …X .H/ Š ˚d;j�d;j with �d;j 2 RXd and j is in some index set Jd , thenP
d;j d D dim.Hatom/.

Proof. Most of the proof consists in showing the first two statements.This will be achieved
by finding suitable cyclic vectors and by comparing matrix coefficients. Fix d � 1 and
consider an atomic P-module mw;' D .AwD' ; BwD' ;Cd / for .w; '/ 2 Wd � S1 and
take X in F; T; V . Hence, jwj D d . Recall that .e1; : : : ; ed / is the standard basis of Cd .

We first assume that .X;d/¤ .F;1/. Define p WDw1 and � WD �Xw;' . Here we identify
w with a vertex in Ver. Observe that w lies in the ray p and by definition ofmw;' we have

�wn.e1/ D '
ne1 and ��wn.e1/ D '

�ne1 for all n � 1:

Claim 1. The vector e1 is cyclic for � .
It is suffice to show that ��v .ej / 2 span¹�.X/e1º for all words v and all 1 � j � d .

Fix such v and j . Note that e1 D '��w.e1/ and moreover there exists a sub-word x of w
and a scalar � 2 S1 such that e1 D �x.ej /. Moreover, if g D Œt; �; s� 2 T and y; w are
corresponding leaves, then

�.g/.e1/ D �
�
y �w'�

�
w.e1/ D '�

�
y .e1/ D '��

�
y �x.ej /:

Since T acts transitively on the non-trivial sdi’s andw is non-trivial we can choose y to be
anything we want. Taking y WD vx yields the result. This proves the T -case. The V -case
follows since T � V . Now, for the F -case we proceed in the same way. Since jwj ¤ 1
and is prime we must have that w does not lie on any of the two endpoints of C . We then
use the fact that F acts transitively on sdi’s that do not contain an endpoint of C .

Denote �p to be the cyclic representation of Xp given by the sub-representation of
� �Xp (the restriction of � to the subgroup Xp) generated by e1.

Claim 2. The representation �p of Xp is equivalent to �p' .
We shall make use of the description of Xp using tree-diagrams as discussed in Sec-

tion 2.3.1. Let g WD Œt; �; s� 2Xp . Since g.p/D p there exists i; j � 1 such that g restricts
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into pi � z 7! pj � z. Moreover, we must have ip D jp implying that ji � j j D jwjn for
some n 2 Z. We deduce that �.g/e1 D 'ne1. Hence, �p is one-dimensional and equivalent
to �p' .

Now consider g WD Œt; �; s� 2 X and set Leaf.t/D ¹�iºi2I and Leaf.s/D ¹!iºi2I . Let
�k ; !l be the leaves of t and s, respectively, which the ray p passes through. Denote

� W X ! R; g 7!
˝
�.g/e1; e1

˛
the associated matrix coefficient.

Claim 3. If g … Xp , then �.g/ D 0.
By the discussion in Section 2.3.1, g …Xp if and only if k ¤ l (equivalently, �k and !l

are not corresponding leaves of g) or k D l and equation 2.1 is not satisfied. First suppose
k ¤ l . Then by equation 2.2:

�.g/ D
˝
�.g/e1; e1

˛
D

X
i2I

˝
�!i .e1/; ��i .e1/

˛
D

X
i¤k;l

˝
�!i .e1/; ��i .e1/

˛
C
˝
�!k .e1/; ��k .e1/

˛
C
˝
�!l .e1/; ��l .e1/

˛
:

From Observation 3.7, ��i .e1/ D 0 for i ¤ k since �i … Verp . Similarly �!j .e1/ D 0 for
j ¤ l . Thus, each of the terms in the above equation is 0 and we obtain �.g/ D 0.

Then suppose k D l and equation 2.1 is not satisfied for m D length.�k/ and n D
length.!l /. Subsequently, �k ; !l are corresponding leaves and m � n … dN. Then by a
similar reasoning as before we have

�.g/ D
X
i¤k

˝
�!i .e1/; ��i .e1/

˛
C
˝
��k .e1/; �!k .e1/

˛
D hpne1; pme1i:

Since m � n … dN and the length of a period of p is d it follows that pne1; pme1 are
vectors contained in different rays. Therefore, hpne1; pme1i D 0 by Lemma 3.9 and thus
�.g/ D 0.

The three claims yield item (i).
We shall now treat the remaining case .X; d/ D .F; 1/. There are only two cases to

consider here:w D 0 orw D 1. We consider the first. The second one follows via a similar
proof. Set p D ` D 01 and q D 1 � ` D 1 � 01. Note now that mw;' D .'; 0;C/. Write �
for a unit vector of C. The dense subspace K of H are then trees with leaves decorated by
scalars. Given g D Œt; s� 2 F we have that

�.g/� D .�k0 /
��n0 � D '

n�k�

where k D jyj; n D jxj and y; x are the first leaves of t; s, respectively. We deduce that
H1 WD C� � H defines a sub-representation �1 of � equivalent to �p' .

Consider now the vector ��1 .�/. It is orthogonal to � inside H and thus span a sub-
representation .�2;H2/� .�;H/ so that H1?H2. Consider any word v¤ 0n for all n. By
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transitivity of the action of F on sdi’s not containing endpoints there exists g D Œt; s� 2 F
where v � 0 and 10 are corresponding leaves of .t; s/. Then, �.g/��1 .�/ D ��v .�/. The
space H is the closed linear span of the ��u .�/ with u any word. Moreover, note that
��0 .�/ D '

�1�. From there we deduce that H DH1 ˚H2. By slightly adapting the proof
of item (i) we deduce that �2 ' IndFFq �

q
' . This yields item (ii).

The third and fourth statements follow from the fact that: P-functors preserve direct
sums, the classification of all atomic irreducible P-modules from Proposition 3.18, and the
first two statements of the theorem.

We can now prove several useful corollaries.

Proof of Corollary C. TakeX D F;T;V , 'i 2 S1,wi 2W and set pi WDw1i for i D 1; 2.
It is elementary to show that all the parabolic subgroupsXp �X are self-commensurated.
Hence, by the Mackey–Shoda criterion we have that IndXXp �

p
' is irreducible. Moreover,

the representations IndXXp �
p1
'1 ; IndXXp �

p2
'2 are equivalent if and only if either .w1; '1/ D

.w2; '2/ or X D F and .jwi j; 'i / D .1; 1/ for i D 1; 2 (note we only require w2 to be
a cyclic permutation of w1; however, by definition of W this implies w1 D w2). Then
the corollary for F; T; V , and thus O, immediately follows from Proposition 3.4 and The-
orem 4.2.

Recall that a representation of a group G is weakly mixing (resp. Ind-mixing) when it
does not contain any (resp. induction of a) non-zero finite-dimensional representation.

Proof of Corollary D. Consider a P-module m D .A; B;H/ and X D F; T; V . Using the
main results of our previous article we only need to prove the two reverse implications
that is: …X .m/ weak-mixing (resp. Ind-mixing) implies either X D T; V or limn A

n� D

limn B
n� D 0 (resp. limn pn� D 0 for all rays p) for all vectors � 2 H [22].

Assume X D F and there exists � 2 H so that limn A
n� ¤ 0. Then the proof of Pro-

position 3.10 implies there exists a vector � 2 H contained in the ray ` D 01. Then from
Theorem 4.2 we obtain that…F .m/ contains a one-dimensional representation �`' . Hence,
…F .m/ is not weakly mixing. A similar proof works by swapping A by B and the end-
points of C . For X D T; V Theorem 4.2 shows that …X .m/ is always weak-mixing. This
proves the first statement of the corollary.

Assume now that there exists � 2 H and a ray p so that limn pn� ¤ 0. Applying
Proposition 3.10 again implies there exists a vector � 2 H contained in a periodic ray q.
By Theorem 4.2, …X .m/ contains a monomial representation induced from a parabolic
subgroup of X . Therefore, …X .m/ is not Ind-mixing.

4.3. Manifolds of atomic representations

From the above proof of Corollary C we can deduce that for an atomic P-module H, if
Hcomp Š mw;' for some ' 2 S1, w 2 W then jwj is an invariant for ….H/. That is, if v
is any prime word (not necessarily in W ) and � 2 S1 such that Hcomp Š mv;� then neces-
sarily jvj D jwj (i.e., they have minimal periods of same length). Hence, this provides a
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dimension number dimP .….H// D dimP .H/ WD jwj for both the atomic representation
and underlying P-module which we term as the Pythagorean dimension (P-dimension for
short). Observe the P-dimension coincides with the usual dimension of Hcomp as a com-
plex vector space. Using the results from the previous subsection, we obtain a powerful
classification result for atomic representations for each P-dimension.

Fix d � 1 and consider the Hilbert space Cd equipped with its standard basis. Let
PM.d/ be the set of all P-modules .A; B;Cd / where now A; B are d by d matrices.
The group PSU.d/ acts by conjugation on PM.d/ and by definition two P-modules are
equivalent if they are in the same PSU.d/-orbit. Define now Irratom.d/ � PM.d/ as the
subset of irreducible atomic P-modules. It is of course globally stabilised by PSU.d/.
Section 3.5 implies that ¹mw;' W .w; '/ 2 Wd � S1º forms a set of representatives of the
orbit space of Irratom.d/. Then Corollary C shows that if .X;d/¤ .F; 1/, then…X .mw;'/

is irreducible for all .w; '/ 2 Wd � S1 and moreover …X preserves equivalence classes.
All together this proves Corollary E.
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