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Geometric rigidity in variable domains and derivation of
linearized models for elastic materials with free surfaces

Manuel Friedrich, Leonard Kreutz, and Konstantinos Zemas

Abstract. We present a quantitative geometric rigidity estimate in dimensions d D 2; 3 generaliz-
ing the celebrated result by Friesecke, James, and Müller [Comm. Pure Appl. Math. 55 (2002),
1461–1506] to the setting of variable domains. Loosely speaking, we show that for each y 2
H1.U IRd / and for each connected component of an open, bounded set U � Rd , the L2-distance
of ry from a single rotation can be controlled up to a constant by its L2-distance from the group
SO.d/, with the constant not depending on the precise shape of U , but only on an integral curvature
functional related to @U . We further show that for linear strains the estimate can be refined, leading
to a uniform control independent of the set U . The estimate can be used to establish compactness
in the space of generalized special functions of bounded deformation (GSBD) for sequences of dis-
placements related to deformations with uniformly bounded elastic energy. As an application, we
rigorously derive linearized models for nonlinearly elastic materials with free surfaces by means of
�-convergence. In particular, we study energies related to epitaxially strained crystalline films and
to the formation of material voids inside elastically stressed solids.

1. Introduction

Rigidity estimates have a long history dating back to Liouville’s fundamental result which
states that smooth mappings are necessarily affine if their gradient is a rotation every-
where. After various generalizations of this classical theorem over recent decades [58,60,
77], a fundamental breakthrough was achieved by Friesecke, James, and Müller [48] with
their celebrated quantitative geometric rigidity result in nonlinear elasticity theory. In its
basic form, the estimate states that in any dimension d � 2, for a mapping y 2H 1.�IRd /
there exists a corresponding rotation R 2 SO.d/ such thatZ

�

jry �Rj2 dx � C
Z
�

dist2.ry;SO.d// dx (1.1)

for a constant C > 0 only depending on the (sufficiently regular) bounded domain�. This
result is fundamental in the analysis of variational models in nonlinear elasticity, as it
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provides compactness for sequences of deformations and corresponding displacements
with uniformly bounded elastic energy in a sharp quantitative fashion. In fact, it has proved
to be the cornerstone for rigorous derivations of lower-dimensional theories for plates,
shells, and rods in various scaling regimes [47–49, 64, 70, 71], and for providing relations
between geometrically nonlinear and linear models in elasticity [30]. The estimate (1.1)
was generalized in various directions to analyze variational models for materials with
elastic and plastic behavior. Among others, we mention results for mixed growth condi-
tions [22], incompatible fields [24, 62, 72], and settings involving multiple energy wells
[20, 21, 25, 31, 34, 56, 65].

Background and motivation. In this paper, we are interested in rigidity estimates for
nonlinearly elastic energies involving free surfaces. Our motivation lies in studying models
in the framework of stress driven rearrangement instabilities (SDRI), i.e., morphological
instabilities of interfaces between elastic phases generated by the competition between
elastic bulk and surface energies, including many different phenomena such as brittle
fracture, formation of material voids inside elastically stressed solids, or hetero-epitaxial
growth of elastic thin films. We refer to [8, 50–52, 59, 83, 85] for an overview of some
mathematical and physical literature. From a variational viewpoint, the common feature
of functionals describing SDRI is the presence of both stored elastic energies in the bulk
and surface energies. This can be formulated in the language of free discontinuity prob-
lems [33], where the set of discontinuities is not preassigned, but determined from an
energy minimization principle.

In this context, a major challenge in obtaining rigidity results lies in the fact that the
functional setting goes beyond Sobolev spaces and requires functions allowing for jump
discontinuities, more precisely (special) functions of bounded variation (SBV), see [4,
Section 4], or (special) functions of bounded deformation (SBD), see [3, 29]. Moreover,
the formulation is genuinely more involved compared to (1.1), as the domain may be
disconnected by the jump set into various components, and therefore at most piecewise
rigidity results can be expected, i.e., on each connected component of the domain without
the jump set the deformation is close to a possibly different rigid motion.

Recent years have witnessed tremendous progress for rigidity results in the linearly
elastic setting [13–15, 23, 42, 43], suitably generalizing the classical Korn inequality to
SBD, and also controlling the surface contributions of the energy. The situation in the
geometrically nonlinear setting, however, is far less well understood. A first key step in
this direction was achieved by Chambolle, Giacomini, and Ponsiglione [18], showing a
Liouville-type result for brittle materials storing no elastic energy. To the best of our
knowledge, to date counterparts of the quantitative estimate (1.1) are limited to dimension
two [46] or, in general dimensions, to a model for nonsimple materials [44], where the
elastic energy depends additionally on the second gradient of the deformation; cf. [87].
The latter results have been employed successfully to identify linearized models in the
small-strain limit [41, 44], and to perform dimension reduction [82].
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In this paper, we prove a novel quantitative geometric rigidity result for variable
domains in dimensions d D 2; 3; see Theorem 2.1. While our proof strategy in principle
allows us to establish the result in higher dimensions as well, there is a single missing
point, namely a specific geometric estimate of possible independent interest; see Remark
2.22. In the physically relevant dimensions d D 2; 3, we believe that our result may be
applicable in a variety of different contexts, in particular to study problems on dimension
reduction. In the present paper, as a first application, we employ the estimate to rigorously
derive linearized models for elastic materials with free surfaces.

The rigidity estimate. Loosely speaking, given a fixed open, bounded set � � Rd , d D
2; 3, our main result states the following: for every regular open set E � �, we can find a
thickened set E � E� � � such that

(i) Ld .E� nE/� 1; (ii) jHd�1.@E� \�/ �Hd�1.@E \�/j � 1; (1.2)

where Ld and Hd�1 denote the d -dimensional Lebesgue and .d � 1/-dimensional Haus-
dorff measures, respectively, and for each y 2 H 1.� n xEIRd / with elastic energy " WDR
�n xE

dist2.ry; SO.d// dx, and in the case � n E� is connected, there exists a proper
rotation R 2 SO.d/ such that

(i)
Z
�nE�

j sym.RT
ry/ � Idj2 dx � C.1C C curv

@E "/";

(ii)
Z
�nE�

jry �Rj2 dx � C curv
@E ";

(1.3)

where sym.F / WD 1
2
.F C F T/ for F 2 Rd�d , Id 2 Rd�d denotes the identity matrix, and

C > 0 is a constant depending on � but not on E. Eventually, C curv
@E

> 0 is a constant
depending on a suitable integral curvature functional of @E and can possibly become
large as the curvature of @E becomes large. If � n E� consists of different connected
components, the rotation R may be different for each connected component; cf. also the
piecewise estimate [18, Theorem 1.1].

Here, the role played by the unknown (i.e., variable) set E depends on the application,
e.g., it may model material voids inside an elastic material with reference domain �. As
E is regular, an estimate of the form (1.3) would in general follow directly from (1.1) for a
constant depending on E. We therefore emphasize that the essential point of our estimate
is that the constant C is independent of E and C curv

@E
does not depend on the precise shape

of E, but only on Z
@E\�

jAjq dHd�1 (1.4)

for some fixed q � d � 1, where A denotes the second fundamental form of @E. (The
choice q � d � 1 is essential for the proof; see Lemma 2.12 and Example 2.13.)
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Given a uniform control on the above curvature term, (1.3) (ii) yields the exact coun-
terpart of estimate (1.1), generalized to the setting of variable domains. Moreover, (1.3) (i),
say for simplicity for R D Id, shows that the L2-norm of the symmetric part of ry � Id
can be controlled by the nonlinear elastic energy independently of C curv

@E
, provided that "

is small compared to the inverse of C curv
@E

. The latter property will allow us to obtain a
uniform control on linear strains e.u/ WD 1

2
.ru C ruT/ for displacements u D y � id,

where id denotes the identity mapping. This naturally leads to effective descriptions in the
realm of SBD functions [29], for which only symmetrized gradients are controlled.

Proof strategy and discussion. The core of the proof consists of a geometric construc-
tion to modify the set E, along with the proof strategy for (1.1) devised in [48]. More
specifically, we find a thickened set E� � E consisting essentially of a union of cubes of
a specific sidelength � > 0, which depends only on the size of the curvature term in (1.4).
As already observed in [48], the rigidity constant of � n E� only depends on � and �,
which implies (1.3) (ii). To derive (1.3) (i), we use (1.3) (ii) and the fact that the tangent
space of the smooth manifold SO.d/ at the identity matrix is given by the linear space of
all skew-symmetric matrices, which in particular implies that

j.F T
C F /=2 � Idj D dist.F;SO.d//C O.jF � Idj2/:

Here, as in [48], we also reduce the problem to harmonic mappings in order to control
higher-order terms through anL2-L1 estimate obtained by the mean value property. After
controlling the symmetric part of the gradient, the last step in the proof of (1.1) in [48]
consists in applying Korn’s inequality to obtain (1.1). This, however, is not possible in our
setting as the constant in Korn’s inequality again depends on the shape of the domain � n
E� which would only give back an estimate of the form (1.3) (ii). In conclusion, even in the
regime where the elastic energy is sufficiently small with respect to the curvature energy
term in (1.4), uniform bounds independent of E can only be obtained for symmetrized
gradients but not for full gradients. Simple examples show that estimate (1.3) (ii) is indeed
sharp; see Example 2.7.

Whereas (1.3) can be derived by adapting the original strategy devised in [48], the real
novelty of our work lies in the construction of the thickened set E� �E. In the application
to variational models for SDRI presented below, estimate (1.2) is essential to ensure that
the thickening of the set does not affect E asymptotically in volume and surface measure.
In a first auxiliary step, in order to ensure that � nE� is essentially a union of cubes with
equal sidelength, we tessellate Rd with cubes of sidelength � > 0 and add to E all cubes
intersecting @E, the so-called boundary cubes. In order to verify (1.2) (i), one needs to
control the number of boundary cubes. This is highly nontrivial as the boundary @E might
become extremely complex, exhibiting thin spikes or microscopically small components
with small surface measure on different length scales; see Figure 1. The key ingredient is
Lemma 2.12 which, in rough terms, states that for a specific choice of the sidelength �, in
each boundary cube Q� we get that Hd�1.@E \Q�/ or

R
@E\Q�

jAjq dHd�1 is at least

of order �d�1.
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�

E

Figure 1. A possible void set E, depicted in gray, that contains thin spikes or small components that
may prevent rigidity for deformations defined on the set � n xE.

Loosely speaking, this means that spikes or microscopic components of @E accumu-
lating on scales smaller than � induce too high curvature energy, and can therefore be
excluded. Let us emphasize here that establishing the higher-dimensional version of the
last assertion for closed hypersurfaces is exactly the missing ingredient to generalize our
result to any space dimension.

Subsequently, the construction of E� needs to be refined in order to also satisfy
(1.2) (ii). To this end, we use the property that under a specific area and curvature bound
in a boundary cube Q�, the surface @E \Q� inside a smaller cube is essentially a finite
union of graphs of Lipschitz functions with appropriate a priori estimates. Based on this,
a direct geometric construction can be performed to thicken the sets. Whereas this local
graphical approximation of @E is elementary in dimension d D 2 (see Lemma 2.15), in
dimension d D 3 and for q D 2, it is a deep "-regularity result in geometric analysis due
to Simon [84]; see Lemma 2.16 and also Remark 2.22.

We note that the passage to a thickened setE� is not due to our specific proof strategy,
but is indeed necessary for a uniform rigidity estimate. Simple examples, where � n xE is
connected but only through a thin tunnel, show that (1.1) (with a uniform constant) can be
violated for deformations concentrating elastic energy in the tunnel; see Example 2.6.

Our result appears to address an immediate situation between the result in the Sobolev
setting [48] and the above-mentioned results [13, 18, 43, 46] in the function spaces SBV
and SBD, where additional difficulties are present due to the lack of regularity of defor-
mations. Indeed, in our setting, deformations are still Sobolev, yet defined on sets with
free boundary. By approximation results in SBV and SBD [16,26] however, jump sets can
be regularized and can be covered by regular sets E. In this sense, our estimate is in spirit
closer to results in SBV and SBD, and throughout the proof we encounter many intricacies
present in these function spaces concerning the topology and geometry of jump sets.

As a final comment on the rigidity result, let us emphasize that the idea of deriv-
ing uniform estimates for variable domains under certain assumptions on the sets E (or
assumptions on the geometry of the jump set) is not new but has been used in a variety
of free discontinuity problems; see e.g., [63, 73, 78]. These models, however, are based
on considering very specific classes of discontinuity sets with certain geometric features
such as well-separateness. Our approach, instead, readily relies on a curvature control of
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the form (1.4) which can be implemented easily in a variational model. Indeed, curva-
ture regularizations are widely used in the mathematical and physical literature of SDRI
models, including the description of (the evolution of) elastically stressed thin films or
material voids; see [5, 12, 35, 39, 40, 53, 54, 75, 76, 83].

Applications to linearization of variational SDRI models. We employ the rigidity
result to derive a rigorous connection between models for hyperelastic materials in nonlin-
ear (finite) elasticity and their linear (infinitesimal) counterparts. Although a classical topic
in elasticity theory, this relation has been derived rigorously via �-convergence [9,28] only
comparatively recently by Dal Maso, Negri, and Percivale [30]. The authors performed a
nonlinear-to-linear analysis in terms of suitably rescaled displacement fields and proved
the convergence of minimizers for corresponding boundary value problems. Their study
has been extended in various directions, ranging from models for incompressible materi-
als [57, 67], from atomistic models [11, 81], to multiwell energies [1, 80], plasticity [69],
viscoelasticity [45], or fracture [41, 44]. In all of these results, the rigidity estimate (1.1)
or one of its variants plays a key role in establishing compactness.

Despite the huge body of literature on variational SDRI models, in particular on
epitaxially strained elastic thin films (see e.g., [6, 7, 19, 27, 32, 38]) and material voids
[10, 27, 37, 79], results on rigorous relations between nonlinear and linear theories are
scarce. To the best of our knowledge, the only available result is the recent work [61] on
two-dimensional elastic thin films. In this setting, one can resort to the Hausdorff topology
for sets, which in turn allows one to apply the rigidity estimate (1.1). Yet the situation in
higher dimensions and in the case of a possibly unbounded number of surface components
(as in the case of material voids) is much more intricate, and a more general rigidity result
of the form (1.3) is indispensable.

We consider functionals defined on function-set pairs featuring nonlinear elastic bulk
and surface contributions of the form

Fı.y;E/ WD
1

ı2

Z
�n xE

W.ry/ dx C
Z
@E\�

'.�E / dHd�1
C 
ı

Z
@E\�

jAjq dHd�1;

where E �� is open and regular, q � d � 1, y 2H 1.� n xEIRd /, and 
ı ! 0 as ı! 0.
The first part of the functional represents the elastic energy, whereW is a frame-indifferent
stored energy density and ı > 0 represents the scaling of the strain. The surface energy
consists of a perimeter term depending on a (possibly anisotropic) density ' evaluated at
the outer unit normal �E to @E, and a curvature regularization term. In the case d D 3,
qD 2, we will also discuss variants where jAj2 is replaced by a mean curvature regulariza-
tion corresponding to the Willmore energy. The setting is complemented with prescribed
Dirichlet boundary conditions which induce a stress in the solid.

This energy and its relaxation were studied in [10,19] without the curvature regulariza-
tion term, where, depending on the application, E describes material voids in elastically
stressed solids or the complement of an elastic thin film. In this paper, we are interested in
deriving an effective description in the small-strain limit ı ! 0, in terms of displacement
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fields u D 1
ı
.y � id/. We prove that the �-limit of the functionals .Fı/ı>0 is of the form

F0.u;E/ WD
1

2

Z
�nE

Q.e.u// dx C
Z
@�E\�

'.�E / dHd�1
C

Z
Jun@�E

2'.�u/ dHd�1;

i.e., coincides with the relaxation of the models studied in [27]. Here, the map u lies
in GSBD2.�/ (see Appendix A.4), where e.u/ denotes the approximate symmetrized
gradient and Ju is the jump set with corresponding measure-theoretical unit normal �u.
Moreover,E is a set of finite perimeter with essential boundary @�E and outward-pointing
measure-theoretical unit normal �E . The elastic energy depends on the linear strain e.u/
in terms of the quadratic form QDD2W.Id/. Besides the linearization of the elastic term,
a further relaxation occurs in the surface energy: parts of the set E may collapse into a
discontinuity Ju of the displacement u, and are counted twice in the energy. Eventually,
our assumption 
ı ! 0 as ı! 0 implies that the curvature regularization of the nonlinear
energy does not affect the linearized limit.

Organization of the paper and notation. The paper is organized as follows: Section 2
is devoted to the rigidity estimate. We give an exact statement of our result along with
several extensions in Section 2.1. The proof is contained in Sections 2.2–2.5. In Section 3
we present our applications to the linearization of SDRI models. Sections 3.1–3.2 address
the case of material voids in elastically stressed solids and epitaxially strained thin films,
respectively. The proofs are given in Sections 3.3–3.4. Finally, in Appendix A we prove
some elementary lemmata used in the proofs of our main results, and collect basic prop-
erties of the space GSBD2.

We close the introduction with some basic notation. Given��Rd open, d D 2;3, we
denote by M.�/ the collection of all measurable subsets of �. By Areg.�/ we indicate
the collection of all open subsets E � � such that @E \� is a .d � 1/-dimensional C 2-
submanifold of Rd . Manifolds and functions of C 2-regularity will be called regular in
the following. Given A 2M.�/, we denote by int.A/ its interior and by Ac D Rd nA its
complement. The diameter of A is denoted by diam.A/. Moreover, for r > 0 we let

.A/r WD
®
x 2 Rd W dist.x; A/ < r

¯
: (1.5)

Given A; B 2M.�/, we write A �� B if NA � B . The Hausdorff distance of A and B
is denoted by distH .A; B/ and we write A4B D .A n B/ [ .B n A/ for the symmetric
difference. By id we denote the identity mapping on Rd and by Id 2 Rd�d the identity
matrix. For each F 2 Rd�d we let sym.F /D 1

2
.F C F T/, and we define SO.d/ WD ¹F 2

Rd�d WF TF D Id; detF D 1º. Moreover, we denote by Rd�dsym and Rd�dskew the set of sym-
metric and skew-symmetric matrices, respectively. We further write Sd�1 WD ¹� 2 Rd W
j�j D 1º.

ByQr .x/ we denote the half-open-cubeQr .x/ WD xC rŒ�12 ;
1
2
/d of sidelength r > 0

centered at x 2 Rd . We introduce a tessellation of Rd by

Qr WD
®
Qr .x/W x 2 rZ

d
¯
: (1.6)
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In the following, we often omit the center .x/ and simply write Qr 2 Qr if no confusion
arises. In a similar fashion, by Q�r we indicate the cube with the same center, but side-
length �r for � > 0. We will use the following elementary fact several times: for each
Qr 2 Qr and each k 2 N it holds that

#
®
Q0r 2 Qr WQkr \Q

0
kr ¤ ;

¯
� .2k � 1/d ; (1.7)

where # indicates the cardinality of a set. Finally, by B� � Rd we denote the open ball
with radius � centered in 0.

2. A geometric rigidity result in variable domains

In this section we present a geometric rigidity result generalizing the celebrated result
in [48, Theorem 3.1] to the setting of variable domains with C 2-boundary. Here, with
variable domains we intend sets of the form � n xE, where � � Rd , d D 2; 3, is a fixed
bounded, open set and E 2 Areg.�/ is arbitrary. The main feature of the result lies in the
fact that the rigidity constant is independent of the choice of E, provided that a certain
curvature regularization for @E is assumed. In Section 2.1 we state our main result and
present the proof in Sections 2.2–2.5.

2.1. Statement of the rigidity result

Given E 2Areg.�/, we denote byA the second fundamental form of @E \�. In particu-
lar, for d D 3, we have jAj D

p
�21 C �

2
2 , where �1 and �2 are the principal curvatures of

@E \�. For d D 2, we simply have jAj D �, where � denotes the curvature of the bound-
ary, which is one-dimensional in this case. Given q 2 Œd � 1;C1/ and 
 2 .0; 1/, we will
assume a curvature regularization for @E of the form 


R
@E\�

jAjq dHd�1. Given also a
norm ' on Rd , we introduce the local surface energy, consisting of a perimeter term with
respect to ' and the curvature regularization, defined for every K 2M.�/, by

F
';
;q

surf .EIK/ WD

Z
@E\K

'.�E / dHd�1
C 


Z
@E\K

jAjq dHd�1; (2.1)

where �E denotes the unit outer normal to @E \�. WhenKD�, we omit the dependence
of the surface energy on the second argument. We now formulate the main result of this
paper.

Theorem 2.1 (Geometric rigidity in variable domains). Let d D 2; 3, q 2 Œd � 1;C1/,

 2 .0; 1/, and ' be a norm on Rd . Let� � Rd be open and bounded and let z� ��� be
an open subset. Then there exist constants C0 D C0.'/ > 0, �0 D �0.dist.@�; z�/; '/ 2
.0; 1/ and for each � 2 .0; �0� there exists C� D C�.�;�; z�/ > 0 such that the following
holds:
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For everyE 2Areg.�/ there exists an open setE�;
 such thatE �E�;
 ��, @E�;
 \
� is a union of finitely many regular submanifolds, and

(i) Ld .E�;
 nE/ � �

1=qF

';
;q
surf .E/; distH .E;E�;
 / � �
1=q;

(ii)
Z
@E�;
\�

'.�E�;
 / dHd�1
� .1C C0�/F

';
;q
surf .E/;

(2.2)

such that for the connected components . z��;
j /j of z� n E�;
 and for every y 2 H 1.� n

xEIRd / there exist corresponding rotations .R�;
j /j � SO.d/ and vectors .b�;
j /j � Rd

such that

(i)
X
j

Z
z�
�;

j

j sym..R�;
j /Try � Id/j2

� C0.1C C�

�5d=q"/

Z
�n xE

dist2.ry;SO.d//;

(ii)
X
j

Z
z�
�;

j

j.R
�;

j /Try � Idj2 � C�
�2d=q

Z
�n xE

dist2.ry;SO.d//;

(iii)
X
j

Z
z�
�;

j

jy � .R
�;

j x C b

�;

j /j2 � C�


.2�4d/=q

Z
�n xE

dist2.ry;SO.d//;

(2.3)

where for brevity " WD
R
�n xE

dist2.ry.x/;SO.d//.

We note that Theorem 2.1, in particular (2.3), provides a piecewise geometric rigidity
result in the spirit of [18,43,46]. In fact, global rigidity may fail if the domain� (or more
precisely z�) is disconnected byE into several parts on each of which y is close to a differ-
ent rigid motion. A separation of the domain into the sets . z��;
j /j might still be necessary
even if � n xE is connected. In fact, this is indispensable if the domain is connected only
through a thin tunnel, as explained in Example 2.6. Such phenomena are accounted for in
our result by defining the components . z��;
j /j with respect to an appropriate thickened set
E�;
 containing E. Note that (2.2) (i) ensures that we obtain a rigidity result outside the
small set E�;
 n E, which vanishes for �; 
 ! 0. In addition, (2.2) (ii) provides a sharp
control on the (anisotropic) perimeter of E�;
 as �; 
 ! 0, which will be essential for our
applications to models involving surface energies; see Section 3.

When comparing our result to [48], the constant in (2.3) depends on the small param-
eter � and the curvature regularization parameter 
 , with C� ! C1 as � ! 0. We
emphasize, however, that for configurations with gradient close to the set of rotations,
in the sense of Z

�n xE

dist2.ry;SO.d// dx � C�1� 
5d=q; (2.4)

we obtain a uniform control on symmetrized gradients; see (2.3) (i). (The subspace Rd�dsym
corresponds to the orthogonal space to SO.d/ at the identity matrix. Since different rota-
tions appear in our statement, Rd�dsym has to be replaced accordingly.) Indeed, in our
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application to linearization, since the elastic energy is of order " � ı2, we can fix an a
priori rate on the curvature regularization parameter 
 D 
ı in such a way that (2.4) holds.

In our applications, this uniform control will be essential to obtain compactness for
rescaled displacement fields; see (3.2) and Propositions 3.1 and 3.6 below. The estimate
(2.3) (ii) is needed to control higher-order terms in the passage to linearized elastic ener-
gies; see Lemma 3.12. Note that even under the assumption (2.4), a uniform control on
the gradients independently of the set E cannot be expected, as in Example 2.7 we show
that the estimate is actually sharp. This is related to the fact that the constant in Korn’s
inequality (see e.g., [74]) is not uniform for variable domains� n xE. In the proof, we will
first establish (2.3) (ii), (iii) and then derive (2.3) (i) from (2.3) (ii).

We also emphasize that the choice q � d � 1 for the curvature regularization is essen-
tial for the proof; see Lemma 2.12 and Example 2.13. We proceed with several slightly
modified versions of the statement which will be convenient for our applications.

Corollary 2.2 (Version with Dirichlet conditions). Suppose that � D U [ UD for two
bounded sets U; UD � Rd with Lipschitz boundary. Then, for every E 2 Areg.�/ and
every y 2 H 1.� n xEIRd / with y D id on UD , the statement of Theorem 2.1 holds with
the additional property that

if for some j it holds that Ld . z�
�;

j \ UD/ > 0, then we can take R�;
j D Id;

where the constant C� additionally depends on UD .

In the applications, Dirichlet conditions will indeed be imposed on a set of positive
Ld -measure, as is customary in free discontinuity problems.

Corollary 2.3 (Version for graphs). Consider � D ! � .�1;M C 1/ for some open and
bounded ! � Rd�1 and M > 0. Suppose that E D ¹.x0; xd / 2 � W x0 2 !; xd > h.x0/º
for a regular function hW! ! Œ0;M �, i.e., @E \� is the graph of the function h. Then,
in Theorem 2.1, we find another set E 0�;
 � E�;
 , which is the supergraph of a smooth
function h�;
 W!! Œ0;M �with h�;
 � h, i.e., we haveE 0�;
 D¹.x

0;xd /2� W x
0 2!; xd >

h�;
 .x
0/º such that

(i) Ld .E 0�;
 nE/ � �

1=qF

';
;q
surf .E/;

(ii)
Z
@E 0�;
\�

'.�E 0�;
 / dHd�1
� C0F

';
;q
surf .E/:

(2.5)

In particular, the thickened set can be chosen as a supergraph, at the expense of a
coarser estimate in (2.2) (ii). Corollaries 2.2 and 2.3 will be proved in Section 2.2 and
Section 2.3, respectively. We proceed with some further comments on the result.

Remark 2.4 (Version with mean curvature). For d D 3, q D 2, and a regular domain��
R3, there are situations where in estimate (2.2) we can replace the second fundamental
form A by the mean curvatureH W @E \�! R, i.e.,H WD �1 C �2, where again �1 and
�2 are the principal curvatures of @E \ �. In fact, denote by G WD �1�2 the Gaussian
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curvature of @E \�, by �.@E \�/ the Euler characteristic of @E \�, and by �g the
geodesic curvature of @.@E \ �/ � @�. (The outermost @ is meant here to denote the
boundary of the two-dimensional surface @E \� in the differential geometric sense and
we assume for simplicity that @.@E \�/ is C 2.) Then the Gauss–Bonnet theorem yieldsZ

@E\�

jAj2 dH2
D

Z
@E\�

jH j2 dH2
� 2

Z
@E\�

G dH2

D

Z
@E\�

jH j2 dH2
� 4��.@E \�/C 2

Z
@.@E\�/

�g dH1:

Exemplarily, we address two special cases:

(a) If E �� �, i.e., @E \� D @E has no boundary, and if one has

�4�
�.@E/ � C0�; (2.6)

then one can replace 

R
@E
jAj2 dH2 by 


R
@E
jH j2 dH2 without essentially affecting

estimate (2.2) (ii) (and similarly (2.2) (i)), which in this case would beZ
@E�;
\�

'.�E�;
 / dH2

� .1C C0�/

�Z
@E

'.�E / dH2
C 


Z
@E

jH j2 dH2
C C0�

�
: (2.7)

For instance, in this case, (2.6) holds true if @E \� D @E consists of m connected com-
ponents which are all topologically equivalent to the sphere S2, and since in this case
�.@E/ D 2m > 0, the second C0�-term on the right-hand side of (2.7) is actually obso-
lete.

(b) In a similar manner, if @E \� consists of a single connected component topologically
equivalent to the flat disk and 2


R
@.@E\�/

�g dH1 � C0�, we can again replace (2.2) (ii)
by (2.7).

Remark 2.5 (Set z�). Due to our proof strategy based on cubic sets, see (2.12) below, the
rigidity estimate is only local, given in terms of z�. Yet under certain regularity assump-
tions on � and E, one can replace z� by �, provided that we replace (2.2) (ii) byZ

@E�;
\�

'.�E�;
 / dHd�1

� .1C C0�/

�Z
@E\�

'.�E / dHd�1
C 


Z
@E\�

jAjq dHd�1
C C�;';
;q

�
for a suitable constant C�;';
;q > 0 independent of E. In fact, this follows by selecting
�� �� � and applying Theorem 2.1 for �� in place of �, the set � in place of z�, and
for E� D E [ .�� n x�/ in place of E, whenever @E� \�� is regular (e.g., if E �� �).
More specifically, the result would then yield a set E� � E��;
 � ��, and then we define
E�;
 WD E

�
�;
 \�.
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� E

y

E�;


Figure 2. A thin tunnel that leads to failure of uniform rigidity on the unique connected component
of � n xE, depicted schematically. On the left: The set � n xE, where E is depicted in gray. In the
middle: The set y.� n xE/. On the right: The set � nE�;
 , where E�;
 is the hatched set.

Example 2.6 (Thin tunnel). We give an example for the necessity of thickening the set
and refer to the schematic Figure 2 for an illustration. For ı > 0 we suppose that, up to
a negligible set, � n xE is given by the three sets U1 D .�1; 0/ � .0; 1/, U ı2 D .0; 1/ �

.1
2
; 1
2
C ı/, and U3 D .1; 2/ � .0; 1/. (Strictly speaking, smooth approximations of U1,

U ı2 , and U3 need to be considered.) For � 2 .0; �=2/ we define

yı;� .x/ D

8̂̂̂<̂
ˆ̂:
x C ��1 ; x 2 U1;��
x2 �

1

2

�
C
1

�

�
.sin.�x1/; cos.�x1//; x 2 U ı2 ;

R�x C �
�
3 ; x 2 U3;

(2.8)

where R� 2 SO.2/ denotes the rotation around the origin by the angle � and ��1 , ��3 are
suitable translations such that yı;� is continuous. Then ryı;� 2 SO.2/ on U1 [ U3 and
on U ı2 we have

ryı;� .x1; x2/ D

�
.1C �.x2 �

1
2
// cos.�x1/ sin.�x1/

�.1C �.x2 �
1
2
// sin.�x1/ cos.�x1/

�
:

This yields dist2.ryı;� ; SO.2// D j
p
ryT

ı;�
ryı;� � Idj2 D �2.x2 �

1
2
/2 on U ı2 , and

therefore Z
�n xE

dist2.ryı;� ;SO.2// dx D �2ı3=3: (2.9)

It is also easy to see that for all R 2 SO.2/ one hasZ
�n xE

jryı;� �Rj
2 dx � c�2

for a universal constant c > 0. Therefore, neither (2.3) (i) nor (2.3) (ii) can hold true on
� n xE with a constant independent of E.

Example 2.7 (Sharpness of constant). The constant in (2.3) (ii) is sharp. To this end, con-
sider � and E in dimension d D 2 as depicted in Figure 3, and note that the thickening
of the set E will not disconnect � n xE; see (2.2) (i). The set � n xE consists essentially
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3
1=q

�

E

Figure 3. A set� n xE that shows that the constant in (2.3) (ii) is sharp, for instance for�D .0; 1/2.
The set E is depicted in gray.

of m � 
�1=q “vertical stripes” depicted in white in the picture. We define a deformation
y on � n xE which on each of the stripes bends by an angle of � WD 
1=q as indicated in
(2.8) (for ı WD 3
1=q) such that between the first and the last stripe a macroscopic rota-
tion is performed. Repeating the argument in (2.9), we get

R
�n xE

dist2.ry; SO.2// dx .
m.
1=q/2.3
1=q/3=3 � 
4=q and on the other hand

R
�n xE
jry � Rj2 dx � c for all R 2

SO.2/.

2.2. Proof of Theorem 2.1

This subsection is devoted to the proof of Theorem 2.1. We start with a short outline of
the proof collecting the main intermediate steps. The core of our proof is the construction
of the thickened set E�;
 with the properties in (2.2). We formulate this in a separate
auxiliary result, and for this purpose we recall the definition of F

';
;q
surf in (2.1).

Proposition 2.8 (Thickening of sets). Let d D 2; 3, q 2 Œd � 1;C1/, 
 2 .0; 1/, and '
be a norm on Rd . Let � � Rd be open and bounded and let z� �� � be an open subset.
Then there exist a constant C0 D C0.'/ > 0, �0 2 .0; 1/ depending only on dist.@�; z�/
and ', and for each � 2 .0; �0� there exists c� 2 .0; 1/, with c� ! 0 as �! 0, such that
the following holds:

GivenE 2Areg.�/, we can find an open setE�;
 such thatE �E�;
 ��, @E�;
 \�
is a union of finitely many regular submanifolds, and

(i) dist.x;E/ � c�
1=q for all x 2
®
y 2 � nE�;
 W dist.y; z�/ < c�
1=q

¯
;

(ii) Ld .E�;
 nE/ � �

1=qF

';
;q
surf .E/; distH .E;E�;
 / � �
1=q;

(iii)
Z
@E�;
\�

'.�E�;
 / dHd�1
� .1C C0�/F

';
;q
surf .E/:

(2.10)
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We defer the proof to Section 2.3 below. Note that (2.10) (ii), (iii) are exactly the prop-
erties stated in the main result; see (2.2). The additional property (2.10) (i) is essential for
the proof of (2.3) as it allows one to cover

z�E�;
 WD
z� nE�;
 (2.11)

with cubes which are all contained in� n xE. More precisely, for r > 0 and U � Rd open
and bounded, recalling the definition in (1.6), we define the r-cubic set corresponding to
U by

.U /r WD int
� [
Qr2Qr .U /

Qr

�
; (2.12)

where Qr .U / WD ¹Qr 2 Qr W Qr \ U ¤ ;º. We define

r�;
 WD
c�


1=q

2
p
d
; (2.13)

where c� is the constant of Proposition 2.8. Now, by using (2.10) (i) and c�! 0 as �! 0,
by possibly passing to a smaller constant �0 depending on dist.@�; z�/ one can check that

Qr�;
 2 Qr�;
 .
z�E�;
 / ) Q2r�;
 � � n

xE: (2.14)

For general r-cubic sets the following rigidity result holds.

Proposition 2.9 (Rigidity on r-cubic sets). Let d � 2, U � Rd be open and bounded,
let r > 0, and suppose that the r-cubic set .U /r defined in (2.12) is connected. Then
there exists an absolute constant C > 0 independent of U and r such that for all y 2
H 1..U /r IRd / there exist R 2 SO.d/ and b 2 Rd such that

(i)
Z
.U /r
jry �Rj2 dx � C.#Qr .U //

2

Z
.U /r

dist2.ry;SO.d// dx;

(ii) r�2
Z
.U /r
jy.x/ � .Rx C b/j2 dx

� C.#Qr .U //
4

Z
.U /r

dist2.ry;SO.d// dx:

(2.15)

Additionally, if there existsQ 2Qr .U /with Ld .Q\¹ryD Idº/� crd for some absolute
constant c 2 .0; 1/, then (2.15) holds for R D Id, for a constant C > 0 depending on c.

The result is a direct consequence of the rigidity estimate (1.1) proved by Friesecke,
James, and Müller [48], applied on a cube, along with estimating the variation of the
rotations on different cubes. Although the latter argument is well known and has been
performed, e.g., in [48, Section 4], we include a short proof in Appendix A.3 for the
convenience of the reader.
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Observe that typically one has #Qr .U / � Ld .U /r�d , which along with (2.13)
explains the scaling in (2.3) (ii), (iii). The proof of (2.3) (i) instead will rely on Proposition
2.9 along with the linearization formula [48, equation (3.20)],

j sym.RTF � Id/j D dist.F;SO.d//C O.jF �Rj2/ (2.16)

for F 2 Rd�d and R 2 SO.d/. In fact, the latter shows that it suffices to have a good
bound on

R
jry �Rj4 dx in order to control the symmetrized gradient in L2. We are now

ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let q 2 Œd � 1;C1/, 
 2 .0; 1/, z� �� � be an open subset, and
let ' be a norm on Rd . Without restriction we can assume that z� is smooth. We let �0 be
as in Proposition 2.8 and � 2 .0; �0�. We can assume that for c� given in Proposition 2.8,
(2.14) also holds, where r�;
 is defined as in (2.13). From now on, we write r in place of
r�;
 for notational simplicity.

We let E�;
 be the set obtained from Proposition 2.8. In particular, (2.2) holds by
(2.10) (ii), (iii). Let z�E�;
 be the set in (2.11), and denote by . z��;
j /j the connected com-
ponents of z�E�;
 . Note that these are finitely many due to the regularity of E�;
 and z�.
The main part of the proof now consists in deriving (2.3). To this end, similarly to the
proof of [48, Proposition 3.4] (cf. Step 1 therein), a crucial step is to reduce the problem
to harmonic mappings, see Steps 1–2 below. In Steps 3–4 we then provide the rigidity
estimate (2.3) (i), (ii), and briefly indicate the Poincaré-type estimate (2.3) (iii) in Step 5.
In the following, C > 0 denotes a generic constant only depending �, which may change
from line to line. Without restriction, we suppose that the sets

y�
�;

j WD int

� [
Qr2Qr .z�

�;

j /

Q2r

�
are pairwise disjoint: (2.17)

Indeed, whenever y��;
i \ y�
�;

j ¤ ;, one can replace z��;
i and z��;
j in the reasoning

below by z��;
i [ z�
�;

j and can derive (2.3) for a single rotation on z��;
i [ z�

�;

j .

Step 1 (Reduction to Lipschitz mappings on cubes). For every cube Qr 2 Qr . z�
E
�;
 / we

haveQ2r �� n xE by (2.14). By a variant of [36, Theorem 6.15], see also [48, Proposition
A.1], we let yQ 2 W 1;1.Q2r IRd / be a Lipschitz truncation obtained from y satisfying

(i) kryQkL1.Q2r / � C;

(ii)
Z
Q2r

jry � ryQj
2 dx � C

Z
Q2r\¹jryj>2

p
dº

jryj2 dx:
(2.18)



M. Friedrich, L. Kreutz, and K. Zemas 1108

Here, with a slight abuse of notation, we write yQ instead of yQr . We now claim that it
suffices to prove that there exist .R�;
j /j � SO.d/ such thatX

j

X
Qr2Qr .z�

�;

j /

Z
Qr

j sym..R�;
j /TryQ � Id/j2

� C.1C r�5d"/

Z
�n xE

dist2.ry;SO.d//; (2.19)

where here and below we use the shorthand notation " WD
R
�n xE

dist2.ry;SO.d// dx, andX
j

X
Qr2Qr .z�

�;

j /

Z
Qr

j.R
�;

j /TryQ � Idj2 dx

� Cr�2d
Z
�n xE

dist2.ry;SO.d// dx: (2.20)

Indeed, let us note thatZ
Q2r\¹jryj>2

p
dº

jryj2 dx � C
Z
Q2r

dist2.ry;SO.d// dx; (2.21)

since jF j � 2 dist.F; SO.d// for all F 2 Rd�d with jF j > 2
p
d . This along with (1.7),

(2.14), (2.17), and (2.18) (ii) shows thatX
j

X
Qr2Qr .z�

�;

j /

Z
Q2r

jry � ryQj
2 dx � C

Z
�n xE

dist2.ry;SO.d// dx: (2.22)

Then (2.3) (i),(ii) for a constant C� D C�.�; �; z�/ > 0 and C0 > 0 (depending on �)
clearly follows from (2.19)–(2.20), (2.22), the triangle inequality, the definition of r D r�;

in (2.13), and the definition of Qr . z�

�;

j / below (2.12). Therefore, it suffices to prove

(2.19)–(2.20).

Step 2 (Reduction to harmonic mappings). For everyQr 2 Qr . z�
E
�;
 /, we consider yQ D

wQ C zQ, where, in the sense of distributions,´
�wQ D 0 on Q2r ;

wQ D yQ on @Q2r ;
and

´
�zQ D div.ryQ � cofryQ/ on Q2r ;

zQ D 0 on @Q2r :

It holds thatZ
Q2r

jrzQj
2 dx �

Z
Q2r

jcofryQ � ryQj2 dx � C
Z
Q2r

dist2.ryQ;SO.d//dx: (2.23)

In fact, this follows from the arguments in [48, Proof of Theorem 3.1, Step 1], in particular
using that jcofF � F j � c dist.F; SO.d// for all F 2 Rd�d with jF j � C for some
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c D c.C / > 0, where here C denotes the constant of (2.18) (i). In view of (2.18) (ii) and
(2.21), (2.23) impliesZ

Q2r

jryQ � rwQj
2 dx � C

Z
Q2r

dist2.ryQ;SO.d// dx

� C

Z
Q2r

dist2.ry;SO.d// dx: (2.24)

This along with (1.7), (2.14), and (2.17) shows that, in order to establish (2.19)–(2.20), it
suffices to show that there exist .R�;
j /j � SO.d/ such thatX

j

X
Qr2Qr .z�

�;

j /

Z
Qr

jsym..R�;
j /TrwQ � Id/j2

� C.1C r�5d"/

Z
�n xE

dist2.ry;SO.d// (2.25)

and X
j

X
Qr2Qr .z�

�;

j /

Z
Qr

j.R
�;

j /TrwQ � Idj2 dx

� Cr�2d
Z
�n xE

dist2.ry;SO.d// dx: (2.26)

Step 3 (Local (L2-L1)-estimate for harmonic mappings). In this step we show that for
each z��;
j there exists R�;
j 2 SO.d/ such thatX

j

X
Qr2Qr .z�

�;

j /

Z
Q2r

jrwQ �R
�;

j j

2 dx � Cr�2d
Z
�n xE

dist2.ry;SO.d// dx; (2.27)

and for each Qr 2 Qr . z�
�;

j / it holds that

krwQ �R
�;

j kL1.Qr / � Cr

�3d=2

�Z
�n xE

dist2.ry;SO.d// dx
�1=2

D Cr�3d=2
p
"; (2.28)

where we recall the notation for " below (2.19). To see this, we apply Proposition 2.9 for
2r=3 in place of r on the function y and on the sets y��;
j introduced in (2.17) in place of
U . In view of the fact that y��;
j D . y�

�;

j /2r=3, we find .R�;
j /j � SO.d/ such thatZ

y�
�;

j

jry �R
�;

j j

2 dx � Cr�2d
Z
y�
�;

j

dist2.ry;SO.d// dx; (2.29)
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where we used that #Q2r=3. y�
�;

j / � Ld .�/.2r=3/�d , i.e., C in (2.29) also depends on

�. By (1.7) this yieldsX
j

X
Qr2Qr .z�

�;

j /

Z
Q2r

j.R
�;

j /Try � Idj2 dx � Cr�2d

Z
�n xE

dist2.ry;SO.d//dx; (2.30)

where as before we also employed (2.14) and (2.17). In view of (1.7), (2.14), (2.17), (2.22),
(2.24), and the triangle inequality we getX

j

X
Qr2Qr .z�

�;

j /

Z
Q2r

jrwQ � ryj
2 dx � C

Z
�n xE

dist2.ry;SO.d// dx: (2.31)

Consequently, by (2.30) we finally obtain (2.27).
We now address (2.28). For every j and every Qr 2 Qr . z�

�;

j /, due to (2.27), the fact

that wQ is a harmonic mapping on Q2r and Q2r � � n xE, as a consequence of the mean
value property and the Cauchy–Schwarz inequality, we have

krwQ �R
�;

j kL1.Qr / �

C

rd=2

�Z
Q2r

jrwQ �R
�;

j j

2

� 1
2

�
C

r3d=2

�Z
�n xE

dist2.ry;SO.d//
� 1
2

: (2.32)

This yields (2.28), and Step 3 of the proof is concluded.

Step 4 (Global estimates). In this step we finally prove (2.3) (i), (ii). In view of Step 2, it
suffices to check (2.25)–(2.26). First, (2.26) follows directly from (2.27). By the lineariza-
tion formula (2.16), (2.28), (2.31), and Young’s inequality we haveX

j

X
Qr2Qr .z�

�;

j /

Z
Qr

jsym..R�;
j /TrwQ � Id/j2 dx

� C
X
j

X
Qr2Qr .z�

�;

j /

�Z
Qr

dist2.rwQ;SO.d// dx C
Z
Qr

jrwQ �R
�;

j j

4 dx
�

� C

Z
�n xE

dist2.ry;SO.d// dx

C Cr�3d"
X
j

X
Qr2Qr .z�

�;

j /

Z
Qr

jrwQ �R
�;

j j

2 dx: (2.33)

Then, by using (2.27) we getX
j

X
Qr2Qr .z�

�;

j /

Z
Qr

jsym..R�;
j /TrwQ � Id/j2 dx

� C.1C r�5d"/

Z
�n xE

dist2.ry;SO.d// dx:

This yields (2.25) and concludes the proof of (2.3) (i), (ii).
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Step 5 (Poincaré estimate). We briefly indicate how to derive (2.3) (iii). By applying
(2.15) (ii) of Proposition 2.9 for 2r=3 in place of r on the function y.x/ � R�;
j x and
on y��;
j in place of U , using again that #Q2r=3. y�

�;

j / � Ld .�/.2r=3/�d , we also find

.b
�;

j /j � Rd such thatX
j

X
Qr2Qr .z�

�;

j /

Z
Q2r

jy.x/� .R
�;

j xC b

�;

j /j2 dx � Cr2�4d

Z
�n xE

dist2.ry;SO.d//dx:

Recalling the definition of r D r�;
 in (2.13), and the definition of Qr . z�
�;

j / below (2.12)

we conclude (2.3) (iii).

Remark 2.10. A closer inspection of the proof shows that Theorem 2.1 can be localized,
in the sense that in the rigidity estimates (2.3) the sets �, z� can be replaced by open sets
U , zU respectively, with zU �� U � �, zU � z�, and dist.@U; zU/ � dist.@�; z�/, where
the connected components of zU n xE�;
 would then be denoted by . zU �;
j /j . In that case,
the constant C� does not depend on �, z�, but only on � and on .L3.U //2.

Indeed, the above arguments essentially rely on (2.14) and the estimates on cubic sets
given in Proposition 2.9. The estimate dist.@U; zU/� dist.@�; z�/ guarantees (2.14) for U ,
zU . The fact that the constant C > 0 appearing in (2.29) depends quadratically on L3.U /

follows by the comment just below it, while by scaling invariance, C > 0 appearing in
(2.32) can be chosen to be an absolute constant. Therefore, the estimates in (2.33) yield
this precise dependence.

We close this subsection with a short proof of Corollary 2.2.

Proof of Corollary 2.2. A careful inspection of the previous proof shows that we only
need to check that, whenever Ld . z�

�;

j \ UD/ > 0 holds, then in (2.29) we can choose

R
�;

j D Id. To this end, when Ld . z�

�;

j \ UD/ > 0, we find Qr 2 Qr . z�

�;

j / such that

Qr \ UD ¤ ;. Then we can select Q0
2r=3
2 Q2r=3. y�

�;

j /, Q0

2r=3
� Q2r � y�

�;

j , see

(2.17), such that by (2.13), the fact that 
 2 .0; 1/, and by the fact that UD has Lipschitz
boundary we get Ld .Q0

2r=3
\UD/� cr

d for a small absolute constant c 2 .0;1/, provided
that c� is sufficiently small also depending on UD . Then the desired property follows from
the additional statement in Proposition 2.9 and the fact that y D id on UD . In this context,
note that the constant C� in (2.3) depends on c� and therefore C� also depends on UD .

2.3. Thickening of sets

In this subsection we prove Proposition 2.8. Without restriction we will assume from now
on that 'min WDminSd�1 ' D 1. Indeed, we can simply perform the proof for '�1min' in place
of ' and '�1min
 in place of 
 to see that (2.10) (iii) holds. The proof essentially relies on a
local construction to thicken the set E in a suitable way. To formulate the local statement,
we introduce some further notation. Given � > 0 and a cubeQ� 2Q�, see (1.6), we denote
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the set of neighboring cubes by

N .Q�/ WD
®
Q0� 2 Q�WH

d�1.@Q� \ @Q
0
�/ > 0

¯
: (2.34)

Note that #N .Q�/ D 2d . We also recall the definition of F
';
;q

surf in (2.1). Moreover, for
notational convenience, we denote the anisotropic .d � 1/-dimensional Hausdorff mea-
sure by

Hd�1
' .�/ WD

Z
�

'.��/ dHd�1 (2.35)

for a norm ' on Rd and for a .d � 1/-rectifiable set � , where �� denotes a measure-
theoretical unit normal to � . Note that the integral is invariant under changing the orien-
tation of �� as ' is a norm. The proof of Proposition 2.8 will make use of the following
lemma, whose proof will be given later in Section 2.5.

Lemma 2.11 (Local thickening of sets). Let d D 2; 3, q 2 Œd � 1;C1/, 
 2 .0; 1/, and
' be a norm on Rd . Let � � Rd be open and bounded, z� �� � be an open subset, and
letƒ> 0. Then there exist constants C D C.';ƒ/ > 0 and �0 D �0.ƒ/ 2 .0; 1/ such that
for all � 2 .0; �0� the following holds:

For every 0 < � � �7
1=q and for each Q� 2 Q� such that Q12� � �, and

F
';
;q

surf .EIQ8�/ � ƒ�
d�1; F

';
;q
surf .EIQ08�/ � ƒ�

d�1
8Q0� 2 N .Q�/; (2.36)

we can find pairwise disjoint sets .�i /IiD1 in @E \Q3� with I � C , corresponding closed
sets .Ti /IiD1 � Q8�, with @Ti being a union of finitely many regular submanifolds and a
disjoint decomposition ¹1; : : : ; I º D 	good [

S
Q0�2N .Q�/

	bad.Q
0
�/ such that

(i) Hd�1
' .@Ti n xE/ � Hd�1

' .�i \Q�/C C��
d�1

8i 2 	good;

(ii) Hd�1
' .@Ti n xE/ � Hd�1

' .�i \ .Q� [Q
0
�//

C C��d�1 8Q0� 2 N .Q�/; 8i 2 	bad.Q
0
�/;

(2.37)

and

dist
�
@E \Q�;

�
E [

I[
iD1

Ti

�c�
� ��: (2.38)

Moreover, fixing Q0� 2 N .Q�/, introducing the notation 	0bad.Q�/ as above with respect
to the cube Q0�, and letting � 0i and T 0i be the corresponding sets, we have

i 2 	bad.Q
0
�/ ) 9j 2 	0bad.Q�/ such that �i D � 0j and Ti D T 0j : (2.39)

Properties (2.37) (i) and (2.38) are the fundamental points of the lemma: essentially,
in the proof we show that the connected components of @E \Q� can be covered with
thin polyhedra, leading to the definition of the sets .Ti /i . The case (2.37) (ii) is only of
technical nature, as additional care is needed if a component of @E \Q� is close to a
neighboring cube; see Figure 4.
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L

graph.u/ \Q

��

��

graph.u/ \Q

L

L

��

graph.u/ \Q

Figure 4. Different positions of planes inside a cube. In the left and in the middle cube, the two
different cases of good planes are depicted, whereas the figure on the right shows a bad plane. The
thick surfaces illustrate graph.u/ \Q� and the dashed planes are at distance �� to L, i.e., at the
maximal distance of graph.u/ from the plane L inside Q�. In the two pictures on the left, the area
of the dashed plane inside Q� and of the plane L inside Q� are comparable up to an error of order
��2. This is the key observation for the proof of (2.64)–(2.65). In the case of a bad plane, this is in
general not true.

The construction of E�;
 in Proposition 2.8 will rely on suitably modifying E by
applying Lemma 2.11 on cubes intersecting @E. To this end, we consider the tessellation
of Rd with the family of cubes Q� for � D �7
1=q , so that Lemma 2.11 is applicable. In
this context, it is important to control the number of boundary cubes, given by®

Q� 2 Q� W @E \Q� ¤ ;; Q12� � �
¯
: (2.40)

This will be achieved by the following lemma, whose proof will be given in the next
subsection.

Lemma 2.12 (Small area implies large curvature). Let d D 2;3,ƒ> 0, q 2 Œd � 1;C1/,
and 
 2 .0; 1/. Then there exist an absolute constant c0 > 0 and a constant cƒ > 0 only
depending on ƒ such that for all 0 < � � cƒ
1=q , E 2 Areg.�/, and Q� 2 Q� such that
Q8� � � and @E \Q3� ¤ ;, the following implication holds true:

Hd�1.@E \Q8�/ < c0�
d�1

) 


Z
@E\Q8�

jAjq dHd�1 > ƒ�d�1:

Indeed, the implication shows that whenever the surface @E inside a cube has small
but nonzero area, then necessarily the curvature contribution is high. This will allow us
to control the number of boundary cubes; see particularly (2.51) and (2.57) in the proof
below. The result is a consequence of [84, Corollary 1.3] and we present its proof in
Section 2.4 below. Let us mention that the analog of Lemma 2.12 is the main obstacle
to generalize our result to higher dimensions; see Remark 2.22 for more details in this
direction.
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Example 2.13. The statement of Lemma 2.12 is false for q < d � 1. In fact, letE DB� �
Q8� be a ball of radius � for � > 0 small. Then clearly Hd�1.@E \Q8�/ < c0�

d�1 for
� small enough. On the other hand,

R
@E\Q8�

jAjq dHd�1 coincides up to a constant with

�d�1��q .

We are now in a position to give the proof of Proposition 2.8.

Proof of Proposition 2.8. Recall that without restriction we have assumed that minSd�1 '

D 1. In the following proof we will write 'max D maxSd�1 ' for brevity. First of all, we
define the constantƒ WD 2d12d�115d'max, whose role will become clear in (2.54) below.
For this ƒ, we apply Lemma 2.11 to obtain �0, and from now on we fix � 2 .0; �0�. We
consider the tessellation of Rd with the collection of cubes Q�, where

� WD �7
1=q (2.41)

is chosen in such a way that Lemma 2.11 is applicable. Here, without restriction, up
to passing to a smaller constant �0, we can assume that �0 � c

1=7
ƒ , and therefore also

Lemma 2.12 is applicable. Moreover, we can further choose �0 > 0 also depending on �,
z� such that for all � 2 .0; �0� we have 20

p
d� � � dist. z�; @�/. Then, with a standard

layering argument and recalling (1.5), we can find an open set �0 with z� �� �0 �� �,
and

.@�0/
15
p
d�
� � n z�; (2.42)

such that for a constant C > 0 only depending on ' it holds that

Hd�1
' .@E \ .@�0/

3
p
d�
/ � C�.dist. z�; @�//�1Hd�1

' .@E \�/

� C�Hd�1
' .@E \�/: (2.43)

Note that the choice of �0 ensures that �0 depends only on dist.@�; z�/ and '. Roughly
speaking, the construction of the thickened set E�;
 will be performed according to the
following procedure:

(i) We choose a �-grid of cubes Q� as in (1.6), and perform a local set modification
with respect to each cube Q� 2 Q�.

(ii) We distinguish between cubes where a lot of surface energy is concentrated in
the sense that they violate hypothesis (2.36) of Lemma 2.11, and cubes for which
Lemma 2.11 is applicable.

(iii) For cubes where surface energy is concentrated we can further distinguish two
subcases: Either the energy bound in (2.36) is violated with respect to the cube
Q� (the collection of all such will be denoted by Qacc

� in what follows), or just
by a neighboring cube (the latter collection will be denoted by Q

neigh
� ). In such

cubes, Lemma 2.11 is not applicable.
First, if Q� 2 Qacc

� , we include in the void a sufficient enlargement of the
cube, namely Q12�. Secondly, if Q� 2 Q

neigh
� , by the previous choice, the cube
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is well contained in the enlargements coming from the cubes in Qacc
� and thus no

set modification needs to be made due to these cubes. By a proper choice of ƒ
(see directly above (2.41)), the collective error in volume and perimeter made by
this modification will be small.

(iv) For cubes where not too much surface energy is concentrated (whose collection
will be called Qflat

� ), a more careful thickening of the void set needs to be per-
formed by means of Lemma 2.11. This will imply again that the total error in
volume and perimeter is small.

We now perform the construction in detail.

Step 1 (Boundary cubes). We define the collection of boundary cubes by

Q@
� WD

®
Q� 2Q� WQ12� �� and: @E \Q� ¤ ; or F

';
;q
surf .EIQ8�/ > ƒ�

d�1
¯
: (2.44)

(For technical reasons, the definition slightly differs from (2.40) mentioned above.) We
decompose Q@

� as follows: first, we let Qacc
� be the collection of the cubes Q� 2 Q@

� satis-
fying

F
';
;q

surf .EIQ8�/ > ƒ�
d�1: (2.45)

This definition collects the cubes whose 8-times enlargement accumulates a lot of surface
energy. We further let Q

neigh
� �Q@

� nQacc
� be the collection of cubesQ� in a neighborhood

of Qacc
� , i.e.,

there exists Q0� 2 Qacc
� such that Q� � Q012�: (2.46)

Eventually, we set Qflat
� WD Q@

� n .Q
acc
� [Q

neigh
� /. As we will see in the statement of Lem-

mata 2.15–2.16 below, the latter collection corresponds to the cubes where the surface @E
is approximately flat. For later purposes, we observe that by applying Lemma 2.12 we find
that

Hd�1.@E\Q8�/� c0�
d�1 and F

';
;q
surf .EIQ8�/�ƒ�

d�1
8Q�2Qneigh

� [Qflat
� : (2.47)

The set E�;
 be will defined by

E�;
 WD int
�
E [

[
Q�2Q@

�

E�;
 .Q�/

�
; (2.48)

where the definition of the sets E�;
 .Q�/ for Q� 2 Q@
� is given in Step 2 of the proof. In

Step 3 we address (2.10) (i), (ii), and eventually Step 4 is devoted to the proof of (2.10) (iii).

Step 2 (Definition of the sets E�;
 .Q�/). We address the three cases Qacc
� , Q

neigh
� , and

Qflat
� separately:

(a) First, if Q� 2 Qacc
� , we set E�;
 .Q�/ WD Q12�.

(b) If Q� 2 Q
neigh
� , we set E�;
 .Q�/ WD ;.
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(c) Finally, we address the case ofQ� 2Qflat
� . IfQ� \�0D;, we letE�;
 .Q�/ WD ;.

Otherwise, by (2.42) we have Q14� � � and, in view of (2.44) and (2.46), for
every cube Q0 2 N .Q�/ we have that F

';
;q
surf .EIQ08�/ � ƒ�

d�1: This along
with (2.47) allows one to apply Lemma 2.11 for Q� 2 Qflat

� . We obtain finitely
many corresponding pairwise disjoint sets .�Qi /

I
iD1 in @E \Q3� and closed sets

.T
Q
i /

I
iD1, with TQi � Q8� and @TQi being a union of finitely many regular sub-

manifolds, such that (2.37)–(2.39) hold. In this case, we define

E�;
 .Q�/ D
[
i

T
Q
i : (2.49)

By definition it is clear that E�;
 � � and that @E�;
 \ � is a union of finitely many
regular submanifolds. We now confirm (2.10).

Step 3 (Proof of (2.10) (i), (ii)). We start with the proof of (2.10) (i). To this end, it suffices
to check that

dist.y;� nE�;
 / � �� for all y 2 @E \�0: (2.50)

Indeed, let us assume for a moment that we have (2.50), and let us set c� WD �8. Consider
an arbitrary x 2 � nE�;
 with dist.x; z�/ < �� D c�
1=q , where the last equality follows
from the choice of � in (2.41). Since E � E�;
 we have that dist.x;E/ D dist.x; @E/. In
view of (2.50) it remains to check that for every y 2 @E n�0 we have that jy � xj � ��.
This is trivial by the fact that dist.x; z�/ < �� and (2.42).

To verify (2.50), we first observe that each y 2 @E \�0 is contained in some cube of
Q@
�; see (2.42) and (2.44). Therefore, let y 2 Q� for some Q� 2 Q@

� with Q� \�0 ¤ ;.
If Q� 2 Qacc

� , then dist.y;� n E�;
 .Q�// � 11�=2, and (2.50) follows in view of (2.48).
IfQ� 2 Q

neigh
� , by (2.46) we find someQ0� 2 Qacc

� such thatQ� �Q012� D E�;
 .Q
0
�/. As

dist.@Q�; @Q012�/� �=2 by the definition of Q�, we get dist.y;� nE�;
 .Q0�//� �=2, and
as before, as long as 0 < �� �0 � 1=2, (2.50) follows from (2.48). Eventually, we suppose
that Q� 2 Qflat

� . Then by (2.38) along with (2.49) we get dist.y;� nE�;
 .Q�// � �� and
we conclude as before.

We now show (2.10) (ii). The estimate distH .E; E�;
 / � �
1=q follows immediately
from (2.48) and the fact that each E�;
 .Q�/, Q� 2 Q@

�, is contained in Q12�, thus hav-
ing diameter controlled by 12

p
d� � �
1=q , for �0 sufficiently small; see the definitions

in Step 2 and (2.41). In a similar fashion, as E�;
 .Q�/ � Q12� for all Q� 2 Q@
�, and

E�;
 .Q�/ D ; for Q� 2 Q
neigh
� , we obtain

Ld .E�;
 nE/ �
X

Q�2Qacc
� [Qflat

�

Ld .E�;
 .Q�// � .12�/
d#.Qacc

� [Qflat
� /:

In view of (2.45) and (2.47) we have F
';
;q

surf .EIQ8�/ � min¹ƒ; c0º�d�1 for all Q� 2
Qacc
� [Qflat

� , where we used the fact that we assumed 'min D 1. Now, by (1.7) we conclude

Ld .E�;
 nE/ � C�F
';
;q

surf .E/ (2.51)
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for C > 0 depending on '. In view of (2.41), for �0 sufficiently small this concludes the
proof of (2.10) (ii).

Step 4 (Proof of (2.10) (iii)). First, the construction of E�;
 in (2.48) and (2.10) (i) imply
that

@E�;
 \� �
[

Q�2Q@
�

�
@.E�;
 .Q�// n xE

�
[ @restE;

where

@restE WD .@E \�/ n
[

Q�2Q@
�

E�;
 .Q�/:

Hence, as E�;
 .Q�/ D ; for Q� 2 Q
neigh
� , recalling the notation in (2.35), we find

Hd�1
' .@E�;
 \�/ �

X
Q�2Qacc

�

Hd�1
'

�
@.E�;
 .Q�// n xE

�
C

X
Q�2Qflat

�

Hd�1
'

�
@.E�;
 .Q�// n xE

�
CHd�1

' .@restE/: (2.52)

We now estimate the terms on the right-hand side of (2.52) separately. Let Qflat
�;�0 be the

subset of cubes in Qflat
� intersecting�0. First, by construction, in particular by the fact that

@E \Q� � @E \E�;
 .Q�/ forQ� 2Qflat
�;�0 (recall (2.38) and the construction in Step 2),

we have

Hd�1
' .@restE/ � Hd�1

'

�
.@E \�/ n

� [
Q�2Qacc

�

Q12� [
[

Q�2Qflat
�;�0

Q�

��
: (2.53)

We continue with the first term. Since Hd�1
' .@.E�;
 .Q�/// � 'max2d.12�/

d�1 forQ� 2
Qacc
� , in view of (2.45), we calculate

X
Q�2Qacc

�

Hd�1
'

�
@.E�;
 .Q�//

�
�
'max2d.12�/

d�1

ƒ�d�1

X
Q�2Qacc

�

F
';
;q

surf .EIQ8�/

�
'max2d12

d�115d

ƒ
F
';
;q

surf

�
EI

[
Q�2Qacc

�

Q8�

�
;

where in the second step we used that each point in
S
Q�2Qacc

�
Q8� is contained in at most

15d different cubes Q8�; see (1.7). By the definition of ƒ D 'max2d12
d�115d at the

beginning of the proof, this exactly givesX
Q�2Qacc

�

Hd�1
'

�
@.E�;
 .Q�//

�
� F

';
;q
surf

�
EI

[
Q�2Qacc

�

Q8�

�
: (2.54)
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Finally, for the second term on the right-hand side of (2.52) we will prove thatX
Q�2Qflat

�

Hd�1
'

�
@.E�;
 .Q�// n xE

�
� Hd�1

'

�
@E \

[
Q�2Qflat

�;�0

Q3�

�
C C0�H

d�1
' .@E \�/; (2.55)

for C0 > 0 depending only on '. To this end, we enumerate the cubes in Qflat
�;�0 by

¹Q1
�; : : : ; Q

N
� º, and for each Qn

� , n D 1; : : : ; N , we denote by .�ni /
In
iD1 the pairwise

disjoint sets in @E \Qn
3� and by .T ni /

In
iD1 the sets obtained by Lemma 2.11. Accordingly,

we denote the set of indices by 	ngood and 	nbad. In particular, in view of (2.49), we have
that [

Q�2Qflat
�;�0

@.E�;
 .Q�// n xE �
[

i2	ngood[	nbad

@T ni n
xE:

In order to avoid multiple counting of indices in the estimate, since a “bad index” for a cer-
tain cube may as well be a “bad index” with respect to an adjacent cube, we make a more
careful distinction between the indices according to the following inductive procedure:

• Starting from the enumeration Qflat
�;�0 D¹Q

1
�; : : : ;Q

N
� º, we define the first set of indices

as J1 D ¹1; : : : ; I1º.

• For every nD 2; : : : ; N , and having defined the set of indices J1; : : : ;Jn�1, we define
Jn as the subset of ¹1; : : : ; Inº which does not contain the indices 	nbad.Q

0
�/ for Q0� 2

N .Qn
�/\ ¹Q

1
�; : : : ;Q

n�1
� º, i.e., the indices related to parts of @E which have already

been covered by the procedure, related to one of the previous cubes ¹Q1
�; : : : ;Q

n�1
� º.

• With this re-enumeration, every index in
SN
nD1 In D

SN
nD1.	

n
good [ 	nbad/ is counted

exactly once in the family
SN
nD1 Jn. We also note that #Jn � In � C D C.';ƒ/; see

Lemma 2.11.

Note that, as a consequence of (2.37) and (2.39), for each n 2 ¹1; : : : ; N º and each
i 2 Jn we find sets ‰ni � @E \Q

n
3� such that .‰ni /n;i are pairwise disjoint and

Hd�1
' .@T ni n

xE/ � Hd�1
' .‰ni /C C��

d�1: (2.56)

Indeed, if i 2 	ngood, one takes‰ni D �
n
i \Q

n
� . If i 2 	nbad.Q

0
�/, we set‰ni D �

n
i \ .Q

n
� [

Q0�/. The construction along with (2.56) shows that

NX
nD1

Hd�1
' .@.E�;
 .Q

n
�// n

xE/ �

NX
nD1

X
i2Jn

Hd�1
' .@T ni n

xE/

�

NX
nD1

X
i2Jn

.Hd�1
' .‰ni /C C��

d�1/

� Hd�1
'

�
@E \

[
Q�2Qflat

�;�0

Q3�

�
C C��d�1#Qflat

� ;
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where in the last step we used the fact that .‰ni /n;i are pairwise disjoint and their union is
contained in @E \

S
Q�2Qflat

�;�0
Q3�. This along with (2.47) and the fact thatE�;
 .Q�/D ;

whenever Q� \�0 D ; shows thatX
Q�2Qflat

�

Hd�1
' .@.E�;
 .Q�// n xE/

� Hd�1
'

�
@E \

[
Q�2Qflat

�;�0

Q3�

�
C C�

X
Q�2Qflat

�

Hd�1.@E \Q8�/

� Hd�1
'

�
@E \

[
Q�2Qflat

�;�0

Q3�

�
C C�Hd�1.@E \�/; (2.57)

where in the last step we again used that each point in
S
Q�2Qflat

�
Q8� is contained in at

most 15d different cubesQ8�, see (1.7), andQ8� ��, see (2.42). Asƒ itself is a constant
depending only on ', we obtain (2.55).

We now conclude the proof as follows: note that Q� 2 Qflat
� implies Q3� \Q08� D ;

for all Q0� 2 Qacc
� ; see (2.46). Moreover, we get that�

@E \
[

Q�2Qflat
�;�0

Q3�

�
n

[
Q�2Qflat

�;�0

Q� �
[

Q�2Qacc
�

Q12� [ .@E \ .@�
0/
3
p
d�
/:

Then, combining (2.52) and (2.53)–(2.55), and using (2.42)–(2.43), we obtain (2.10) (iii),
where C0 > 0 indeed only depends on '.

We close this subsection with the version for graphs.

Proof of Corollary 2.3. Consider�D ! � .�1;M C 1/ for some open and bounded ! �
Rd�1 and M > 0. Suppose that E D ¹.x0; xd / 2 � W x0 2 !; xd > h.x0/º for a regular
function hW! ! Œ0;M �. We start by introducing the set

E��;
 D int
�
E [

[
Q�2Q@

�

Q12�

�
:

Clearly, by construction, E��;
 � E�;
 . Moreover, by Lemma 2.12 we find that

Ld .E��;
 nE/ � C0�F
';
;q

surf .E/; Hd�1.@E��;
 \�/ � C0F
';
;q

surf .E/;

for an absolute constantC0 >0, where we use the definition of � in (2.41). We note that the
set � nE��;
 can be seen as the subgraph of a suitable BV-function with Hd�1.@�E��;
 n

@�E��;
 / D 0. The desired set E 0�;
 � E
�
�;
 is then obtained by approximating the set

� nE��;
 from below with a suitable smooth graph so that (2.5) holds true; see [27, Lemma
6.3].



M. Friedrich, L. Kreutz, and K. Zemas 1120

2.4. Small area implies large curvature: Proof of Lemma 2.12

This subsection is devoted to the proof of Lemma 2.12. We start with a lemma due to
L. Simon, whose original statement and proof can be found in [84, Corollary 1.3]. In the
next statement, by @† we intend the boundary of a regular surface † in the differential-
geometric sense.

Lemma 2.14. GivenR>0 and�2 .0;1/, there exist ˛0D ˛0.�/ > 0 and c0D c0.�/ > 0
such that the following holds: Consider a connected, regular, two-dimensional surface †
in R3 with H1.@† \ BR/ D 0 such thatZ

†\BR

jAj dH2 < ˛0R; † \ @BR ¤ ;; and † \ @B�R ¤ ;:

Then we have
H2.† \ BR/ � c0R

2:

We proceed now with the proof of Lemma 2.12.

Proof of Lemma 2.12. We first treat the elementary case d D 2, and then we address the
case d D 3 by using Lemma 2.14.

Step 1 (d D 2). Let c0 D 1 and cƒ D .ƒC 1/�1=q 2 .0; 1/. Consider Q� 2 Q� such that
Q8� � �, @E \Q3� ¤ ;, and H1.@E \Q8�/ < �. Let 
 be a connected component of
@E \Q8� intersecting Q3�. Clearly, 
 is a regular planar curve and we have

diam.
/ � H1.
/ � H1.@E \Q8�/ < �:

Therefore, 
 is a closed curve inside the cubeQ8�. Hence, for all 0 < � � cƒ
1=q , recall-
ing that cƒ D .ƒC 1/�1=q and q � 1, Lemma A.1 yields




Z
@E\Q8�

jAjq dH1
� c
�q
ƒ �q

Z



j�
 j
q dH1

� .ƒC 1/�q.diam.
//1�q

� .ƒC 1/�q�1�q > ƒ�:

Step 2 (d D 3). Let c0 D c0.3
p
3=8/ and ˛0 D ˛0.3

p
3=8/ be the constants in Lemma

2.14, applied for R D 4� and � D 3
p
3=8. We define

cƒ WD min
°
c
1�q
q

0 4˛0.ƒC 1/
�1=q; .4�/1=2c

1=q�1=2
0 .ƒC 1/�1=q

±
: (2.58)

Consider Q� 2 Q� such that Q8� � �, @E \Q3� ¤ ;, and

H2.@E \Q8�/ < c0�
2 < c0.4�/

2: (2.59)

Let K be a connected component of @E \ � such that K \ Q3� ¤ ;. As @E \ � is
a regular surface, we note that K is a regular surface as well, with @K � @�. We first
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suppose that K \ @Q8� ¤ ;. Then the connectedness of the regular surface K and the
fact that Q3� � B3

p
3�=2 � B4� � Q8� � � imply that

K \ @B3
p
3�=2 ¤ ;; K \ @B4� ¤ ;:

Moreover, since @K � @� and B4� �Q8� ��, we have that H1.@K \B4�/D 0. There-
fore, in view of (2.59), by applying Lemma 2.14 (or more precisely its negation) for
R D 4� > 0, � D 3

p
3=8 2 .0; 1/, and † D K, we deduce thatZ

K\B4�

jAj dH2
� 4˛0�: (2.60)

Using Hölder’s inequality, (2.59), (2.60), and the fact that q � 2 > 1, we obtain for all
0 < � � cƒ


1=q ,




Z
@E\Q8�

jAjq dH2
� c
�q
ƒ �q

Z
K\B4�

jAjq dH2

� c
�q
ƒ �q.H2.K \ B4�//

1�q

�Z
K\B4�

jAj dH2

�q
� .c

�q
ƒ �q/.c0�

2/1�q.4˛0�/
q
D .4q˛

q
0c
1�q
0 c

�q
ƒ /�2 > ƒ�2;

where the last step follows from the definition of cƒ in (2.58).
If instead we have K \ @Q8� D ;, then K is closed inside the cube Q8�, i.e., @.K \

Q8�/ D ;. By a classical topological-differential geometric fact regarding a lower bound
on the Willmore energy of closed surfaces, we then have thatZ

K\Q8�

jAj2 dH2
� 4� I

see e.g., [84, formula (0.2)] and the references therein for its simple proof. By using
Hölder’s inequality again, the fact that q � 2, and (2.59), as before we estimate




Z
@E\Q8�

jAjq dH2
� c
�q
ƒ �q

Z
K\Q8�

jAjq dH2

� c
�q
ƒ �q.H2.K \Q8�//

1�q=2

�Z
K\Q8�

jAj2 dH2

�q=2
� .c

�q
ƒ �q/.c0�

2/1�q=2.4�/q=2 � .4�/q=2c
1�q=2
0 c

�q
ƒ �2 > ƒ�2;

where the last step again follows from the definition of cƒ in (2.58). This concludes the
proof.

2.5. Local thickening of sets: Proof of Lemma 2.11

This subsection is devoted to the proof of Lemma 2.11. We start with a preliminary obser-
vation: given �;
 > 0 andQ� 2Q� for some 0 < � � �7
1=q such that F

';
;q
surf .EIQ8�/�
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ƒ�d�1, see (2.36), then by (2.1), Hölder’s inequality, and by minSd�1 ' D 1 (which was
assumed without loss of generality), we obtainZ

@E\Q8�

jAj dHd�1
� .Hd�1.@E \Q8�//

q�1
q

�Z
@E\Q8�

jAjq
� 1
q

� .ƒ�d�1/
q�1
q

�ƒ


�d�1

� 1
q

� ƒ
�1=q�d�1 � ƒ�7�d�2: (2.61)

Therefore, we can ensure that the L1-norm of jAj in @E \ Q8� is small compared to
�d�2.

Our proof fundamentally relies on the fact that, under the above bound on the cur-
vature, @E \Q� is essentially a finite union of graphs of regular functions with suitable
a priori C 1-estimates. To state this result, we introduce the following notation: given an
affine subspaceL�Rd of codimension 1 (i.e., a line in R2 or a plane in R3), we denote by
L? the one-dimensional subspace spanned by a unit normal vector �L to L. Accordingly,
for U � L and uWU ! L?, we define graph.u/ WD ¹x C u.x/W x 2 U º � Rd . We first
state the result for d D 2 separately, since its proof is significantly easier than for d D 3.
Note that the parameter " which appears in the next lemmata should not be confused with
the one used below (2.3), since it serves a totally different purpose.

Lemma 2.15 (Almost straight curves). There exist "0>0 and an absolute constantC1� 1
such that for everyƒ> 0 the following holds: for every " 2 .0; "0�, every squareQ� �R2,
� > 0, and every E 2 Areg.R2/ satisfying

@E \Q3� ¤ ;; H1.@E \Q8�/ � ƒ�; and
Z
@E\Q8�

jAj dH1
� ";

there exist regular curves .
i /MiD1 with M � ƒ such that

@E \Q3� D

M[
iD1


i \Q3�;

corresponding lines Li and functions ui WUi ! L?i , where Ui � Li are open segments
with diam.Ui / � C1�, such that graph.ui / D 
i for i D 1; : : : ;M , and

kuikL1.Ui / � C1"�; ku
0
ikL1.Ui / � C1":

The proof is elementary, and we refer to Appendix A.1. The analogous statement in
dimension d D 3 is more involved: it is known as the approximate graphical decomposi-
tion lemma, proved by L. Simon; see [84, Lemma 2.1].

Lemma 2.16 (Simon’s approximate graphical decomposition lemma). For anyƒ> 0 and
� 2 .0; 1/ there exist "S D "S .ƒ; �/ 2 .0; 1/ and a constant C1 D C1.ƒ; �/ � 1 such
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that for every " 2 .0; "S �, every � > 0, and every E 2Areg.R3/ satisfying @E \B�� ¤ ;,
and

H2.@E \ B�/ � ƒ�
2 and

Z
@E\B�

jAj dH2
� "�;

the following holds true: there exist pairwise disjoint, closed sets P1; : : : ; PN � @E with

NX
jD1

diam.Pj / � C1
p
"�

and functions ui 2 C 2.Ui IL?i / for i D 1; : : : ;M , with M � C1, such that

.@E \ B��/ n

N[
jD1

Pj D

� M[
iD1

graph.ui /
�
\ B��:

Here, for every i D 1; : : : ;M , Li is a two-dimensional plane in R3, Ui � Li is a smooth
bounded domain with

diam.Ui / � C1� (2.62)

of the form Ui D U 0i n .
SRi
kD1

di;k/, where U 0i is a simply connected subdomain ofLi and
.di;k/

Ri
kD1

are pairwise disjoint closed disks in Li , which do not intersect @U 0i . Moreover,
graph.ui / is connected and ui also satisfies the estimates

sup
x2Ui

jui .x/j � C1"
1=6�; sup

x2Ui

jrui .x/j � C1"
1=6:

Here, @U 0i has to be understood with respect to the relative topology of Li . Roughly
speaking, the result states that, apart from sets .Pj /jD1;:::;N of small diameter, so-called
pimples, @E \ B�� can be written as the union of finitely many graphs of regular func-
tions with small heights and small gradients. Compare the result to the easier statement of
Lemma 2.15.

Remark 2.17 (Adaptions to the original statement). We have phrased the result slightly
differently compared to the original statement in [84, Lemma 2.1], where the lemma was
stated only for � D 1=2 but for general smooth, closed two-dimensional manifolds †.
However, it is easy to verify through the proof that it is an interior "-regularity result,
valid for every @E 2 C 2 and for every � 2 .0; 1/, up to adapting the constants. The esti-
mate (2.62) is implicitly mentioned in the original statement, being a simple geometric
observation; see also the proof of Lemma 2.15 in Appendix A.1 for the analogous fact in
two dimensions. Finally, the original statement has the assumption 0 2 @E which, how-
ever, can readily be generalized to requiring that @E \ B�� ¤ ;.

Remark 2.18 (Result on cubes). As in [84], the lemma is phrased as an interior statement
for balls in R3. In the application below, we will apply it on cubes, by using Q8� in place
of B� andQ3� in place of B��. Indeed, to this end, it suffices to note that B4� �Q8� and
Q3� � B4�� for � 2 .3

p
3=8; 1/.
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Both statements above involve functions which are defined with respect to suitable
lines or planes, respectively. As a second preparation, we need to distinguish between
good and bad lines and planes for a cube Q�. We discuss the following definitions and
properties only for planes in R3 as the analogous definitions for lines in R2 can be simply
obtained by identifying lines in R2 with planes in R3 with one tangent vector given by e3.

Without restriction we suppose for the following arguments that Q� is centered in 0,
as this can always be achieved by a translation.

Definition 2.19. Let � 2 .0; 1=
p
3/ and let L be a plane with normal �L D .�1; �2; �3/ 2

S2 such that .L/3�� \Q� ¤ ;; see (1.5). We say that L is a � -good plane for Q� if and
only if one of the following two properties holds true:

(1) There exist i; j 2 ¹1; 2; 3º, i ¤ j , such that j�i j; j�j j � � .

(2) There exists k 2 ¹1; 2; 3º such that j�kj � � and

dist.L \Q3�; ¹xk D ��=2º [ ¹xk D �=2º/ � 20��: (2.63)

If L is not a � -good plane for Q�, we say that it is a � -bad plane for Q�. In the
statement of Lemma 2.11, the two different possibilities, namely � -good or � -bad planes,
are reflected in the two cases described in (2.37) (i) and (2.37) (ii), respectively. As stated
after Lemma 2.11, the case (2.37) (ii) and thus the case of � -bad planes is only of a tech-
nical nature and the main idea is already reflected in the construction for � -good planes.
The different cases of good and bad planes are depicted in Figure 4. In the following, we
denote by �L a unit vector normal to L whose orientation will be specified in the proof
below. Recall also the shorthand notation for the anisotropic perimeter in (2.35).

Lemma 2.20 (Surface estimate for � -good planes). There exist � 2 .0; 1=
p
3/ small

enough and a constant C� > 0 such that for any � > 0 and any � -good plane L for
Q� the following holds:

(i) By letting SL WD Q.1C6�/� \ .L/3��, we obtain

H2
' .@
�SL/ � H2

' .L \Q�/C C�'max��
2; (2.64)

where @�SL WD @SL n .�3���L C L/.

(ii) Let u2L1.U IL?/ for some bounded domainL\Q��U �Lwith kukL1.U /�
2��. Define !�u WD …L.graph.u/ \Q�/, where …L denotes the orthogonal pro-
jection onto the plane L. Then

H2.!�u4.L \Q�// � C���
2: (2.65)

Lemma 2.21 (� -bad planes). There exists � 2 .0; 1=
p
3/ small enough such that for any

� > 0 and any � -bad plane L for Q� the following holds: Let k 2 ¹1; 2; 3º be the unique
component such that j�kj � � . Then we have

either �
3�

4
<x � ek < �

�

4
8x 2L\Q3�, or

�

4
<x � ek <

3�

4
8x 2L\Q3�: (2.66)
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The proofs of the above lemmata are elementary but tedious. They are deferred to
Appendix A.2. We are now in a position to give the proof of Lemma 2.11.

Proof of Lemma 2.11. Let 
 2 .0; 1/ and without restrictionƒ� 1. ConsiderQ� centered
without restriction at 0 such thatQ12� �� and (2.36) holds. In the case d D 2, we choose
�0 D �0.ƒ/ such that ƒ�70 � "0, where "0 > 0 is the constant of Lemma 2.15. Then, by
(2.36) and (2.61), it is possible to apply Lemma 2.15. In the case d D 3, we choose
�0 D �0.ƒ/ such that ƒ�0 � min¹C1"

1=6
S ; C�61 ; 2�.1Cq=2/c0º, where "S and C1 � 1 are

the constants in Lemma 2.16, and c0 is the constant in Lemma 2.12. Consequently, in view
of (2.61), we have Z

@E\Q8�

jAj dH2
� ƒ�0�

6�d�2 � .�=C1/
6�:

In particular, as � � �0 � C1"
1=6
S , we get

R
@E\Q8�

jAjdH2 � "S�. This along with (2.36)
allows one to apply Lemma 2.16 in the version of Remark 2.18. From now on, we only
treat the case d D 3 since the case d D 2 is simpler (in the latter case, the sets .Pj /j below
in (2.68) can be chosen empty). In the following, C > 0 again denotes a generic absolute
constant, whose value is allowed to vary from line to line.

Step 1 (Application of Lemma 2.16). By Lemma 2.16 in the version of Remark 2.18,
applied for " WD .�=C1/6 � "S , there exist planes Li � R3 and functions ui WUi ! L?i
for i D 1; : : : ;M , withM � C1, where Ui D U 0i n

SRi
kD1

di;k for (two-dimensional) disks
.di;k/i;k in the planes Li , as well as pairwise disjoint closed subsets .Pj /NjD1 � @E such
that

@E \Q3� D

� M[
iD1

graph.ui / [
N[
jD1

Pj

�
\Q3�: (2.67)

Moreover,
NX
jD1

diam.Pj / � C1.�=C1/3� � ��; (2.68)

and for the functions .ui /iD1;:::;M we have the C 1-estimates

sup
x2Ui

jui .x/j � C1.�=C1/� D �� � 2��; sup
x2Ui

jrui .x/j � C1.�=C1/ D �: (2.69)

Here, in the estimates (2.68)–(2.69) we used that " D .�=C1/6 and the fact that we can
choose � � �0 � C1. The nonoptimal estimate with 2�� is introduced for later purposes
in Step 4 below. To simplify the exposition, we assume for the moment that there are no
pimples in @E \Q3�, i.e., by (2.67), that we have

@E \Q3� D

M[
iD1

graph.ui / \Q3�: (2.70)
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In particular, this further implies that
SRi
kD1

di;k D ;, i.e., Ui D U 0i for the domain of
definition of the functions ui . We defer the analysis of the case with pimples to Step 4. We
fix � > 0 sufficiently small such that Lemmata 2.20–2.21 are applicable. We distinguish
the two cases

(i) Li is a � -good plane for Q�; (ii) Li is a � -bad plane for Q�:

Let us note that I WDM � C1 by the statement of Lemma 2.16.

Step 2 (Good planes). First, let Li be a � -good plane forQ� and consider ui WUi � Li !
L?i . In this case, we will define �i WD graph.ui / \ Q� and thus it is not restrictive to
assume that graph.ui / intersects Q�. In the following, for notational convenience, we
drop the subscript i and simply write L for the plane, �L for a unit normal to L, u for the
function, and U for its corresponding domain.

We will first verify that L \Q2� � U . Indeed, by (2.69) and the fact that graph.u/ \
Q� ¤ ; we get that U \Q2� ¤ ; for � sufficiently small. Moreover, by (2.69) and by
taking � smaller if necessary, we get jx C u.x/j1 < 3

2
� for all x 2 L\Q2� \ @U . Since

@.@E \Q3�/� @Q3�, (2.70) implies that @U \Q2� D ;. As U \Q2� ¤ ;, we conclude
U � L \Q2�, as desired.

We choose the following orientation for �L, which is important for the definition of
@�SL in Lemma 2.20 (i): we denote by n.x/ the outer unit normal to @E \ � at x and
choose the orientation �L as well as an orthonormal basis .�1; �2/ ofL such that the normal
vector Qn.x/ D �.@�1u/�1 � .@�2u/�2 C �L to graph.u/ at the point x C u.x/ satisfies
n.x/ D Qn.x/=j Qn.x/j. Then, in view of (2.69), we have

kn � �LkL1.U / � C�: (2.71)

As in Lemma 2.20, we introduce the stripes SL WD Q.1C6�/� \ .L/3��. We claim that

dist.graph.u/ \Q�; ScL/ � �� (2.72)

and

H2
' .graph.u/ \Q�/ � H2

' .L \Q�/ � C���
2
� H2

' .@
�SL/ � C���

2; (2.73)

whereC� WDC.�;'/ > 0 is a constant depending only on � and '. Here, recall the notation
in (2.35) and the definition of @�SL in Lemma 2.20 (i). To obtain (2.72), it suffices to check
that

(a) dist.graph.u/\Q�;Qc
.1C6�/�/� �� and (b) dist.graph.u/\Q�; .L/c3��/� ��:

Item (a) is clear. To see (b), we first note that dist.L; .L/c3��/ D 3��. Then, in view of
(2.69), for each y 2 graph.u/ \Q� we have dist.y; L/ � 2��. Consequently,

dist.graph.u/ \Q�; .L/c3��/ � dist.L; .L/c3��/ � 2�� � 3�� � 2�� D ��:
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L
�i

Ti

E

L
�i

�j

Ti

E

Figure 5. The two fundamental cases for the selection of the sets Ti (hatched). In the right-hand
figure, the dark gray set is another connected component of SL nE that is not selected.

Regarding (2.73) we argue as follows: set as before !�u D …L.graph.u/ \Q�/, where
…L denotes the orthogonal projection onto the plane L. By Lemma 2.20 (ii) and the fact
that L \Q� � U , we have

H2.!�u4.L \Q�// � C���
2: (2.74)

Due to (2.71) and the fact that ' is Lipschitz, being a norm, we get k'.n/� '.�L/kL1.U /
� C 0�, for a constant C 0 depending additionally on '. Therefore, by (2.74), and the fact
that we have assumed without restriction that minS2 ' D 1, we obtain

H2
' .graph.u/ \Q�/ D

Z
!
�
u

'.n.x//
p
1C jru.x/j2 dH2.x/ � H2.!�u/.'.�L/ � C

0�/

�
�
H2.L \Q�/ �H2.!�u4.L \Q�//

�
.'.�L/ � C

0�/

� H2
' .L \Q�/ � C���

2;

where in the last step we also used the obvious bound H2.L \ Q�/ � 3�
2. Then, by

Lemma 2.20 (i),

H2
' .graph.u/ \Q�/ � H2

' .L \Q�/ � C���
2
� H2

' .@
�SL/ � C���

2:

This concludes the proof of (2.73).
We now set �i D graph.ui / \Q� and let Ti be the connected component of SLi n E

which contains �i ; see Figure 5. (From now on, for clarification we again add the index i
as the definition depends on ui WUi !L?i .) Let us verify (2.37) (i). To this end, we observe
by (2.69) that

@Ti n xE � @SLi n .�3���Li C Li / D @
�SLi ;

where the last identity is the definition of @�SLi . Thus, (2.73) implies (2.37) (i). We close
this step with the observation that for x … E,

dist.x; �i / � dist
�
x;

M[
jD1

graph.uj / \Q�

�
< �� ) x 2 Ti : (2.75)
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In fact, by using (2.72) and by assuming that dist.x;�i / < ��, we get x 2 SLi , in particular
x 2 SLi nE. If we had x 2 SLi n Ti , then we would necessarily find �j , j ¤ i , such that
dist.x; �j / < dist.x; �i /; see also Figure 5. This is a contradiction.

Step 3 (Bad planes). Now we suppose that Li is a � -bad plane for Q�. Then there exists
exactly one k 2 ¹1;2; 3º such that j�kj � � and j�j j< � for j ¤ k, and by Lemma 2.21 we
find that (2.66) holds. Without restriction we suppose that k D 1 and that x 2 Li \Q3�
implies that �3�

4
� x � e1 < �

�
4

. In fact, the other cases can be treated along the very same
lines. We let Q0� WD Q� � �e1 2 N .Q�/ be the neighboring cube of Q� to the left of it;
recall notation (2.34).

Due to (2.66), we have that Li is a � -good plane for the shifted cube zQ� WD Q� �
�
2
e1. In fact, case (2) of Definition 2.19 is satisfied, provided that � > 0 is chosen small

enough. Consequently, given (2.36) and the fact that zQ8� � �, we can repeat the above
reasoning for zQ� in place of Q�. Accordingly, we define �i WD graph.ui / \ zQ� and Ti
as the connected component of SLi n E containing �i , where now SLi D .

zQ�/.1C6�/� \

.Li /3��. Then (2.37) (ii) can be proved along similar lines to (2.37) (i) above, by using
zQ� � Q� [Q

0
�. In the same way, we obtain (2.75) in this case. We now observe that

(2.75) for good and bad planes yields (2.38). In particular, we also note that (2.66) and
(2.73) imply

H2
' .graph.ui / \ .Q� [Q0�// �

1

C
�2; (2.76)

provided that �0 > 0 is chosen sufficiently small.
Next we confirm (2.39). To this end, we exemplarily apply the construction for the

neighboring cubeQ0� DQ� � �e1. By Lemma 2.16 and Remark 2.18 (which are applica-
ble by (2.36) and the fact thatQ08� ��) we find planes L0j � R3, open sets U 0j in L0j , and
functions u0j such that (2.67)–(2.69) hold. Given the � -bad plane Li with corresponding
graph.ui / for the original cube Q� considered above, in view of (2.67) applied for both
Q� and Q0�, and by using (2.76), we observe that there exists a unique function u0j such
that graph.u0j / \ graph.ui / \ .Q� [Q0�/ ¤ ;. (In fact, since @E \� is a regular mani-
fold with boundary only in @� and Q12� � �, different graphs cannot intersect and the
graphs of the functions in the above representation are unique.) Then we observe that one
could replace graph.ui / and graph.u0j / in Lemma 2.16 applied on Q� and Q0�, respec-
tively, by the union graph.ui /[ graph.u0j / which can again be understood as the graph of
a function defined on the plane Li . This shows that the objects � 0j and T 0j for L0j can be
chosen identical to �i and Ti , i.e., the sets can indeed be constructed such that (2.39) is
ensured.

Step 4 (Presence of pimples). Now we argue how to reduce the case of existence of pim-
ples to the case of nonexistence of pimples. As a preparation, we first show that for
every pimple Pj � @E such that Pj \Q3� ¤ ; there exists i 2 ¹1; : : : ; M º such that
Pj \ graph.ui / ¤ ;. In fact, suppose by contradiction that this was not the case. Due to
the fact that Lemma 2.16 guarantees that Pk \ Pj D ; for all k ¤ j , we would get that
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Pj is a compact manifold without boundary. Thus, applying [84, Lemma 1.1] we get

H2.Pj / � .diam.Pj //2
Z
Pj

jH j2 dH2;

where H denotes the mean curvature. As the estimate clearly still holds with A in place
ofH up to a factor of 2, we get, along with Hölder’s inequality for q=2 � 1, (2.1), (2.36),
and (2.68), that

H2.Pj / � 2.diam.Pj //2
Z
Pj

jAj2 dH2
� 2�2�2.H2.Pj //

1�2=q

�Z
Pj

jAjq dH2

�2=q
� 2�2�2.H2.Pj //

1�2=q.ƒ
�1�2/2=q :

Simplifying the above formula and using the assumption � � �7
1=q , we have

H2.Pj / � 2
q=2ƒ
�1�2�q�q � 2q=2ƒ�8q�2 < c0�

2;

where the last step follows from the fact that 2q=2ƒ�8q0 � 2
q=2ƒ�0 < c0; see the beginning

of the proof for our choice of �0. By Lemma 2.12 applied to Pj we would then obtain the
estimate F

';
;q
surf .EIQ8�/ � F

';
;q
surf .Pj / > ƒ�2, where we used that Pj � @E \ Q8�,

which follows from (2.68). This is a contradiction. Therefore, for all j 2 ¹1; : : : ;N º there
exists an index i 2 ¹1; : : : ;M º such that Pj \ graph.ui / ¤ ;.

Now, again omitting the indices for simplicity, we consider a plane L and a func-
tion uW xU � L ! L? satisfying (2.69), in particular kuk1 � ��. Here, U is of the
form U D U 0 n

S
k dk , where U 0 is a simply connected subdomain of L and .dk/k are

pairwise disjoint closed disks in L, which do not intersect @U 0. If a pimple P touches
graph.u/, it can be covered by a cube that also touches graph.u/, has normal �L to
one of its faces (the orientation of the others being irrelevant), and sidelength diam.P /.
Due to (2.68), performing this construction for every pimple, the additional surface intro-
duced by the cubes is bounded by C�2�2 for an absolute constant C > 0. Furthermore,
by this procedure we obtain a piecewise smooth function QuW U 0 � L ! L? such that
k Quk1 � kuk1 C maxNjD1 diam.Pj / � 2��, i.e., (2.69) holds true, where (the classical
gradient) r Qu is well defined up to a set of H1-measure zero. Additionally, due to the
diameter bound on the cubes, see (2.68), we have

H2.graph. Qu/ \Q�/ � H2.graph.u/ \Q�/C C�2�2:

Now Steps 2 and 3 can be performed for the function Qu instead of the function u in order
to conclude the proof.

Remark 2.22 (Obstacles in higher dimensions). We close this section by commenting on
the current obstacles to generalizing our results to higher dimensions. The two essential
ingredients depending crucially on the dimension are Lemmata 2.12 and 2.16, whereas the
rest of our proof strategy can be carried out with very minor modifications. Lemma 2.16
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can in some sense be generalized to any dimension d � 2 in the spirit of "-regularity
results, with respect to the Lq-norm of the second fundamental form, but for q > d �

1. The result is due to Hutchinson, see [2, pp. 281–306], in particular Theorem 3.7 on
page 295, as well as [55], and it is a graphical representation rather than an approximation
result, i.e., the condition q > d � 1 excludes the presence of pimples. As we saw in Lemma
2.15, for d D 2 this graphical representation can easily be obtained for every q � 1, while
for d D 3 Simon’s lemma also handles the case 1 � q � 2, modulo the presence of small
pimples. For d > 3, it would be interesting to investigate to what extent Simon’s lemma
can be generalized for q D d � 1.

The other obstacle to generalizing our result to higher dimensions, especially for the
critical case q D d � 1, is Lemma 2.12. As in the statement of Lemma 2.14, the main
question is the validity of the implication that

Hd�1.† \ BR/ � c0R
d�1

for every connected, regular .d � 1/-dimensional hypersurface† in Rd with Hd�2.@†\

BR/ D 0, andZ
†\BR

jAjd�2 dHd�1 < ˛0R; † \ @BR ¤ ;; and † \ @B�R ¤ ;;

for suitable ˛0 D ˛0.d;�/ > 0 and c0 D c0.d;�/ > 0, � 2 .0; 1/. In fact, this would allow
us to repeat the proof of Lemma 2.12 for q � d � 1. Whereas the above implication holds
true in d D 2 and d D 3, to the best of our knowledge it is an open question for d > 3.
For related results in higher dimensions, although not sufficient for our purposes, we refer
to [86, Theorem 1.1] and [68, Theorem A].

3. Applications

This section is devoted to applications of our rigidity result. We identify effective lin-
earized models of nonlinear elastic energies in the small-strain limit in two settings,
namely for a model with material voids in elastically stressed solids and for epitaxially
strained elastic thin films. In the following, for d D 2; 3 we let � � Rd be a bounded
Lipschitz domain, and W WRd�d ! Œ0;C1/ be a frame-indifferent stored elastic energy
density with the usual assumptions in nonlinear elasticity. Altogether, we suppose that W
satisfies the following assumptions:

(i) frame indifference: W.RF / D W.F / for all R 2 SO.d/, F 2 Rd�d ;

(ii) single energy-well structure: ¹W D 0º D SO.d/;

(iii) regularity: W 2 C 3 in a neighborhood of SO.d/;

(iv) coercivity: there exists c > 0 such that for all F 2 Rd�d it holds that

W.F / � c dist2.F;SO.d//:

(3.1)
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Notice that the above assumptions particularly imply that DW.Id/ D 0. The general
approach in linearization results in many different settings (see, e.g., [1, 11, 30, 45, 46,
73, 80, 81]) is to consider sequences of deformations .yı/ı>0 with small elastic energy,
more precisely,

sup
ı>0

ı�2
Z
�

W.ryı/ dx < C1;

and to pass to the small-strain limit as ı! 0, in terms of rescaled displacement fields, i.e.,
mappings

uı D
1

ı
.yı � id/: (3.2)

These maps measure the distance of the deformations from the identity, rescaled by the
typical strain ı>0. This yields a linearization of the elastic energy, which can be expressed
in terms of the quadratic form QWRd�d ! Œ0;C1/ defined by

Q.F / WD D2W.Id/F W F for all F 2 Rd�d : (3.3)

In view of (3.1), Q is positive definite on Rd�dsym and vanishes on Rd�dskew . We will consider
models containing surface energies with an additional curvature regularization as indi-
cated in (2.1), where we choose a sequence of scaling parameters .
ı/ı>0 � .0;C1/ for
which we require


ı ! 0 and lim inf
ı!0

.ı�
q
3d 
ı/ D C1: (3.4)

In fact, this allows us to define a sequence .�ı/ı>0 � .0;C1/ satisfying

ı�3ı ! 0; 

d=q

ı
�ı !1 as ı ! 0; (3.5)

which will play a pivotal role in the linearization procedure. In the following, we will
focus on a curvature regularization in terms of the second fundamental form A. Under
certain assumptions however, in the case d D 3, q D 2, A can be replaced by the mean
curvatureH . We refer to Corollaries 3.5 and 3.9 for details in this direction.

In our applications, it will turn out that limiting mappings lie in the space of gen-
eralized special functions of bounded deformation GSBD2.�/. For basic properties of
GSBD2.�/, we refer to [29] and Appendix A.4 below. In particular, for u 2 GSBD2.�/,
we will denote by e.u/ D 1

2
.ruC ruT/ the approximate symmetric differential and by

Ju the jump set of u with measure-theoretical normal �u. Moreover, by L0.�IRd / we
denote the space of Ld -measurable mappings vW�! Rd , endowed with the topology of
the convergence in measure. For any s 2 Œ0; 1� and any E 2M.�/, Es denotes the set of
points with d -dimensional density s with respect to E. By @�E we indicate the essential
boundary of E; see [4, Definition 3.60].

We now present our two applications in Sections 3.1–3.2. The proofs of the results are
deferred to Sections 3.3–3.4.
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3.1. Material voids in elastically stressed solids

We study boundary value problems for elastically stressed solids with voids. We suppose
that the boundary data are imposed on an open subset @D� � @� and are close to the
identity. To this end, let u0 2 W 1;1.Rd IRd /, d D 2; 3, and for ı > 0 define yı0 WD
idC ıu0. Further, let ' be a norm, q 2 Œd � 1;C1/, and .
ı/ı>0 as in (3.4). Then for the
densityW WRd�d! Œ0;1/ introduced in (3.1), we letFı WL0.�IRd /�M.�/! Œ0;C1�

be the functional defined by

Fı.y;E/ WD
1

ı2

Z
�n xE

W.ry/dxC
Z
@E\�

'.�E /dHd�1
C
ı

Z
@E\�

jAjq dHd�1; (3.6)

if E 2 Areg.�/, xE \ @D� D ;, yj�n xE 2 H
1.� n xEIRd /, yjE D id, and tr.y/ D tr.yı0/

on @D�, and Fı.y; E/ D C1 otherwise. Here, �E again denotes the outer unit normal
to @E. We emphasize that the energy is determined by E and the values of y on � n xE.
The condition yjE D id is for definiteness only. The relaxation of this model without the
curvature regularization term has been studied in [10,79]. Here, instead, we are interested
in an effective description in the small-strain limit ı ! 0, in terms of displacement fields
defined in (3.2). From now on, we write

Fı.u;E/ WD Fı.idC ıu;E/

for notational convenience. We start with a compactness result which fundamentally relies
on Theorem 2.1. Note that in what follows, the sets !ıu, !u serve a totally different pur-
pose, and should not be confused with the set !�u in Section 2; see for instance (2.65).

Proposition 3.1 (Compactness, void case). For every sequence of pairs .uı ; Eı/ı>0 with

M WD sup
ı>0

Fı.uı ; Eı/ < C1; (3.7)

there exist a subsequence (not relabeled), u 2 GSBD2.�/, sets of finite perimeter E 2
M.�/, .E�

ı
/ı>0 �M.Rd / withEı �E�ı , and sets !u; .!ıu/ı>0 �M.�/ such that u� 0

on E [ !u,
Hd�1.@�!u/C sup

ı>0

Hd�1.@�!ıu/ � CM

for a constant CM > 0 depending only on M , and as ı ! 0,

(i) uı ! u in measure on � n !u;

(ii) ��n.E�
ı
[!ıu/

e.uı/ * ��n.E[!u/e.u/ weakly in L2loc.�IR
d�d
sym /;

(iii) Ld .¹jruı j > �ıº n !u/! 0;

(iv) lim inf
ı!0

Z
@E�

ı
\�

'.�E�
ı
/ dHd�1

� lim inf
ı!0

F
';
ı ;q

surf .Eı/;

(v) lim
ı!0

Ld .!ıu4!u/ D lim
ı!0

Ld .E�ı nEı/ D lim
ı!0

Ld .Eı4E/ D 0;

(3.8)

where �ı is defined in (3.5) and F
';
ı ;q

surf in (2.1).
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In view of the above compactness result, we introduce the following notion of conver-
gence on function-set pairs.

Definition 3.2. We say that a sequence .uı ; Eı/ı>0 � L0.�IRd / �M.�/ converges to
a pair .u; E/ 2 L0.�IRd / �M.�/ in the � -sense and write .uı ; Eı/

�
! .u; E/ if and

only if there exists a set !u 2M.�/ such that �Eı ! �E in L1.�/, uı ! u in measure
on � n !u, and u � 0 on E [ !u.

The compactness result is nonstandard in the sense that the behavior of the sequence
.uı/ı>0 on !u cannot be controlled. This set is related to the fact that � n Eı might be
disconnected into various connected components .P ıj /j by Eı , and on the sets not inter-
secting @D� the corresponding rotations Rıj , obtained from (2.3), cannot be controlled. It
is however essential that jRıj � Idj is at most of order ı, as otherwise uı defined in (3.2)
blows up on P ıj . In this sense, roughly speaking, !ıu consists of the components .P ıj /j
not intersecting @D�. Moreover, the sets Eı need to be replaced by the slightly larger sets
E�
ı

corresponding to the sets in (2.2).
We now introduce the linearized model studied in [27]. Given u 2 GSBD2.�/ and

E 2M.�/ with Hd�1.@�E/ < C1, we first define the boundary energy term by

F bdry.u;E/ WD

Z
@�E\@D�

'.�E / dHd�1
C

Z
¹tr.u/¤tr.u0/º
\.@D�n@

�E/

2'.��/ dHd�1; (3.9)

which is nontrivial if the void goes up to the Dirichlet part of the boundary or the map-
ping u does not satisfy the imposed boundary conditions. Here, �� denotes the outer unit
normal to @�, and tr.u/ indicates the trace of u at @�, which is well defined for functions
in GSBD2.�/; see Appendix A.4. Recalling the definition of Q in (3.3), we introduce the
effective limiting energy F0WL

0.�IRd / �M.�/! Œ0;C1� as

F0.u;E/ WD
1

2

Z
�nE

Q.e.u// dx C
Z
@�E\�

'.�E / dHd�1

C

Z
Jun@�E

2'.�u/ dHd�1
C F bdry.u;E/ (3.10)

if Hd�1.@�E/ < C1 and u D ��nEu 2 GSBD2.�/, and F0.u;E/ D C1 otherwise.
We now address that (3.10) can be identified as the �-limit of (3.6) for ı ! 0. In

fact, the functional (3.10) is effective in two respects: first, in the small-strain limit the
density of nonlinear elasticity is replaced by its linearized version Q. Secondly, the fact
that Fı is not lower semicontinuous in the variable E with respect to L1-convergence
of sets is remedied by a suitable relaxation. Indeed, in the limiting process, the voids E
may collapse into a discontinuity of the displacement u. In particular, this phenomenon is
taken into account in the relaxed functional since collapsed surfaces are counted twice in
the surface energy. Eventually, we point out that, due to the fact that 
ı ! 0 as ı! 0, the
curvature regularization of the nonlinear energy Fı does not affect the linearized limit.
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For the �-limsup inequality, more precisely for the application of a density result in
GSBD2, see [27, Lemma 5.7], we make the following geometrical assumption on the
Dirichlet boundary @D�: there exists a decomposition @� D @D� [ @N� [N with

@D�;@N� relatively open; Hd�1.N /D 0; @D�\ @N�D;; @.@D�/D @.@N�/;

where the outermost boundary has to be understood in the relative sense, and there exist
N� > 0 small enough and x0 2 Rd such that for all � 2 .0; N�/ it holds that

O�;x0.@D�/ � �;

where O�;x0.x/ WD x0 C .1 � �/.x � x0/. Recall the convergence � in Definition 3.2.

Theorem 3.3 (�-convergence, void case). Under the above assumptions, as ı ! 0, we
have that the sequence of functionals .Fı/ı>0 �-converges to F0 with respect to the con-
vergence � .

Remark 3.4 (Volume of voids). We proceed with two comments on the result:
(i) In the previous result, if Ld .E/ > 0, then for any .u; E/ 2 L0.�IRd /�M.�/ there
exists a recovery sequence .uı ;Eı/ı>0�L0.�IRd /�M.�/ such that Ld .Eı/DLd .E/

for all ı > 0. This shows that it is possible to incorporate a volume constraint on E in the
�-convergence result.
(ii) If we impose the condition Ld .Eı/! 0 along the sequence, we obtain E D ;, and
the limiting model corresponds to an (anisotropic) Griffith energy of brittle fracture.

We address an alternative formulation with the mean curvature in place of the second
fundamental form, in the case d D 3, q D 2.

Corollary 3.5 (Mean curvature regularization). We consider (3.6) with jH j2 in place of
jAj2 when d D 3, q D 2. We suppose that for Fı , only sets E satisfying E �� � and
�4��.@E/ � �ı


�1
ı

for some �ı ! 0 are admissible, where �.@E/ indicates the Euler
characteristic of @E. (For instance, this holds if @E consists of connected components
topologically equivalent to the sphere S2.) Then the statements of Proposition 3.1 and
Theorem 3.3 hold.

3.2. Energies on domains with a subgraph constraint: Epitaxially strained films

We now address a second application, namely deformations of an elastic material in a
domain which is the subgraph of an unknown nonnegative function h. Assuming that h is
defined on a smooth bounded domain ! �Rd�1, d D 2;3, deformations y will be defined
on the subgraph

�C
h
WD
®
x 2 ! �RW 0 < xd < h.x

0/
¯
;

where here and in the following we use the notation x D .x0; xd / for x 2 Rd . To model
Dirichlet boundary data on the flat surface ! � ¹0º, we will suppose that mappings are
extended to the set �h WD ¹x 2 ! � RW �1 < xd < h.x0/º and satisfy y D yı0 WD id C
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ıu0 on !�.�1; 0� for a given function u0 2 W 1;1.!�.�1; 0�IRd /. In the application to
epitaxially strained films, yı0 represents the interaction with the substrate and h indicates
the profile of the free surface of the film. We refer to [7,19,27] for a thorough description
of the model and a detailed account of the available literature.

For convenience, we introduce the reference domain � WD !�.�1;M C 1/ for some
M >0. For q 2 Œd � 1;C1/, 
ı as in (3.4), and the densityW WRd�d! Œ0;1/ introduced
in (3.1), we define the energy Gı WL0.�IRd / � L1.!I Œ0;M �/! Œ0;C1� by

Gı.y; h/ WD
1

ı2

Z
�C
h

W.ry.x// dx CHd�1.@�h \�/

C 
ı

Z
@�h\�

jAjq dHd�1; (3.11)

if h 2 C 2.!I Œ0;M �/, yj�h 2 H
1.�hIR

d /, y D id in � n�h, y D yı0 in !�.�1; 0�, and
Gı.y; h/ WD C1 otherwise. We emphasize that the two surface terms only contribute in
terms of the upper surface @�h \� of the film, which exactly corresponds to the graph
of h. In other words, the first surface term is exactly

R
!

p
1C jrh.x0/j2 dx0. On the other

hand, the curvature term can be written as
R
!
jr2h.x0/jq.1C jrh.x0/j2/

1�q
2 dx0. Note

that this model can be seen as a special case of (3.6) when we choose E D � n�h. As in
Section 3.1, the assumption y D id in � n�h is for definiteness only.

The relaxation of this model has been studied in [19]. Notice that, in contrast to [7,19],
here we assume that the functions h are equibounded by a value M : this is for technical
reasons only and is justified from a mechanical point of view, as indeed other physical
effects come into play for very high crystal profiles. In the present work, we address
the effective behavior of the model in the small-strain limit ı ! 0, again in terms of
displacement fields as defined in (3.2). From now on, we write

Gı.u; h/ WD Gı.idC ıu; h/

for notational convenience. Based on Theorem 2.1, we obtain the following compactness
result.

Proposition 3.6 (Compactness, graph case). For any sequence of pairs .uı ; hı/ı>0 with

K WD sup
ı>0

Gı.uı ; hı/ < C1;

there exist a subsequence (not relabeled), sets of finite perimeter .E�
ı
/ı>0 �M.�/ with

� n �hı � E�
ı

, as well as .!ıu/ı>0 � M.�/, and functions u 2 GSBD2.�/, h 2
BV.!I Œ0;M �/ with u D ��hu and u D u0 on ! � .�1; 0� such that

sup
ı>0

Hd�1.@�!ıu/ � CK
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for a constant CK > 0 depending only on K, and as ı ! 0,

(i) uı ! u in measure on �;

(ii) ��n.E�
ı
[!ıu/

e.uı/ * e.u/ D ��he.u/ weakly in L2loc.�IR
d�d
sym /;

(iii) Ld .¹jruı j > �ıº/! 0;

(iv) lim inf
ı!0

Hd�1.@E�ı \�/ � lim inf
ı!0

F
q;ı

surf .Eı/;

(v) lim
ı!0
khı � hkL1.!/ D lim

ı!0
Ld .!ıu/ D lim

ı!0
Ld .E�ı \�hı / D 0;

(3.12)

where �ı is defined in (3.5), and F
q;ı

surf in (2.1) for ' � 1 and 
 D 
ı .

We note that in contrast to Proposition 3.1, no exceptional set !u is needed here.
This is due to the imposed graph constraint @�C

hı
\ � which excludes the creation of

components disconnected from the substrate ! � .�1; 0�. Indeed, in this setting a stronger
compactness result holds; see [27, Theorems 2.4 and 2.5], and in particular Step 3 in the
proof of the lower inequality for Theorem 2.4, which is given in Section 6 therein. Note
that nevertheless the sets .!ıu/ı>0 obtained by an application of Proposition 3.1 are still
present in the statement.

We now introduce the effective model studied in [27]. Recalling the definition of Q in
(3.3), we introduce G0WL

0.�IRd / � L1.!I Œ0;M �/! Œ0;C1� by

G0.u; h/ WD
1

2

Z
�C
h

Q.e.u// dx CHd�1.@��h \�/C 2H
d�1.J 0u \�

1
h/ (3.13)

if uD ��hu 2GSBD2.�/, uD u0 in !�.�1;0�, h 2BV.!I Œ0;M �/, and G0.u;h/DC1

otherwise. Here, e.u/ D 1
2
.ruCruT/ again denotes the symmetric part of the (approxi-

mate) gradient of u 2 GSBD2.�/, �1
h

denotes the set of points with density 1, and

J 0u WD
®
.x0; xd C t / W x 2 Ju; t � 0

¯
: (3.14)

As for the functional (3.10), the energy (3.13) is effective in the sense that the elastic
energy density W is replaced by the linearized density Q and the model accounts for
“vertical cuts” J 0u \�

1
h

(see [38]) which may appear throughout the relaxation process.
Similarly to the corresponding term in (3.10), this part is counted twice in the energy. The
set .@��h \�/ [ .J 0u \�

1
h
/ can be interpreted as a “generalized interface”; cf. Figure 6

for a two-dimensional section of a possible limiting �h. As before, due to the fact that

ı ! 0 as ı ! 0, the curvature regularization of the nonlinear energy Gı does not affect
the linearized limit.

We work under the additional assumption that ! � Rd�1 is uniformly star shaped
with respect to the origin, i.e.,

tx 2 ! for all t 2 Œ0; 1/, x 2 @!:

This condition, however, is only of a technical nature and could be dropped at the expense
of more elaborate estimates; see also [19, 27]. We obtain the following result.
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! � .�1; 0/

@��h \�

!

h

J 0u \�
1
h

Figure 6. Possible limiting set �h.

Theorem 3.7 (�-convergence, graph case). Under the above assumptions, as ı ! 0,
we have that the sequence of functionals .Gı/ı>0 �-converges to the functional G0 with
respect to the topology of L0.�IRd /�L1.!I Œ0;M �/.

Remark 3.8 (Volume constraint). We note that throughout the linearization process one
could consider an additional volume constraint on the film, i.e., Ld .�C

h
/ D

R
!
h.x0/ dx0

is fixed.

We close this section with a result for an alternative setting where in (3.11) the second
fundamental form is replaced by the mean curvature, again in the case d D 3, q D 2.

Corollary 3.9 (Mean curvature regularization). We consider (3.11) with jH j2 in place of
jAj2 when d D 3, q D 2. We suppose that for Gı only functions h are admissible such that
�h WD @�h \� satisfies that @�h is C 2 and thatZ

@�h

�h;g dH1
� �ı


�1
ı

for some �ı ! 0 as ı ! 0, where �h;g denotes the geodesic curvature of @�h. Then the
statements of Proposition 3.6 and Theorem 3.7 hold.

The next subsections are devoted to the proofs announced in this section. As the proofs
for both applications are similar, we proceed simultaneously. We first address the compact-
ness statements in Section 3.3, and afterwards the �-convergence results in Section 3.4.

3.3. Compactness results

We start with the proof of Proposition 3.1. Afterwards, we present the small adaptions
necessary for the proof of Proposition 3.6.

Proof of Proposition 3.1. Consider a sequence .uı ; Eı/ı>0 satisfying (3.7), i.e.,

sup
ı>0

Fı.uı ; Eı/ �M < C1:
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Hence, @Eı \ @D� D ; and, as minSd�1 ' > 0, it holds that supı>0 Hd�1.@Eı/ < C1.
Thus, a compactness result for sets of finite perimeter (see [4, Theorem 3.39]) implies that
there exists a set of finite perimeterE �� with Hd�1.@�E/ <C1 such that �Eı ! �E
in L1.�/, up to a subsequence (not relabeled). This shows the last part of (3.8) (v).

We now proceed with the compactness for the deformations. We start by introducing
sets for a suitable formulation of the Dirichlet boundary conditions: choose an open set
V �� such that V and V n x� are Lipschitz sets and V \ @�D @D�. (Such a choice of V
is possible due to the fact that @D� is also Lipschitz, being a relatively open subset of @�;
recall its definition before Theorem 3.3.) Our goal is to apply Theorem 2.1 in the version
of Corollary 2.2 for U WD � and UD WD V n�. To this end, we introduce the functions
Oyı as

Oyı D

8<: idC ı.uı � u0/ on U D �;

id on UD D V n�:
(3.15)

Note that Oyı are Sobolev functions when restricted to V n Eı since V \ @� D @D� and
tr. Oyı/ D tr.yı0 � ıu0/ D id on @D�, by the fact that Fı.uı ; Eı/ < C1. Then, by the
triangle inequality, (3.1), and the fact that Fı.uı ; Eı/ �M , we getZ

V n xE

dist2.r Oyı.x/;SO.d// dx � C 0ı2 (3.16)

for a constant C 0 > 0 depending on M and also on u0. We want to apply Theorem 2.1
on . Oyı ; Eı/. To this end, in view of the fact that 
ı ! 0 as ı ! 0, see (3.4), and the
definition of �ı in (3.5), by a suitable diagonal argument we can find a sequence .�ı/ı>0
with �ı ! 0 and smooth sets z�ı �� V such that, as ı ! 0,

(i) C�ı�
�2
ı 


�2d=q

ı
! 0; (ii) sup

ı>0

C�ı ı
1=3 < C1; (3.17)

(i) Ld .V n z�ı/! 0; (ii) sup
ı>0

Hd�1.@ z�ı/ < C1; (3.18)

where C�ı is the constant in (2.3). We then apply Theorem 2.1 for �ı and 
ı , for V
in place of �, and for z�ı in place of z�. We use the notation F

';
ı ;q
surf introduced in

(2.1). Since Eı � �, V \ @� D @D�, and Eı \ @D� D ;, we have Eı 2 Areg.V /

and F
';
ı ;q

surf .Eı ; V / D F
';
ı ;q

surf .Eı/ � C
0 for every ı > 0. Now, by applying (2.2)–(2.3)

and using that 
ı ! 0, �ı ! 0 as ı ! 0, we get that there exist sets .E�
ı
/ı>0 with

Eı � E
�
ı
� V , @E�

ı
\ V is a union of finitely many regular submanifolds for every ı > 0,

and
(i) lim

ı!0
Ld .E�ı nEı/ D 0;

(ii) lim inf
ı!0

Z
@E�

ı
\V

'.�E�
ı
/ dHd�1

� lim inf
ı!0

F
';
ı ;q

surf .Eı/;

(3.19)
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such that for the finitely many connected components of z�ı n E�ı , denoted by . z��ı ;
ıj /j ,
there exist corresponding rotations .R�ı ;
ıj /j � SO.d/ such that by (3.16),

(i)
X
j

Z
z�
�ı ;
ı
j

jsym..R�ı ;
ıj /Tr Oyı � Id/j2 dx � C0C 0ı2;

(ii)
X
j

Z
z�
�ı ;
ı
j

j.R
�ı ;
ı
j /Tr Oyı � Idj2 dx � C 0C�ı


�2d=q

ı
ı2:

(3.20)

In fact, for (3.20) (i) we used that C�ı

�5d=q

ı
ı2D .ı�q=3d
ı/

�5d=q �C�ı ı
1=3! 0 by (3.4)

and (3.17) (ii). In view of Corollary 2.2 and (3.15), we can choose R�ı ;
ıj D Id whenever
we have Ld .UD \ z�

�ı ;
ı
j / > 0. We denote the union of the components with this property

by �good
ı

. Note that by its definition, the set �good
ı

satisfies

.UD \ z�ı/ nE
�
ı � �

good
ı

and @�
good
ı
� .@E�ı \ V / [ @

z�ı : (3.21)

We introduce the mappings .vı/ı>0 2 GSBD2.V / as

vı D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

uı on �good
ı
\�;

u0 on �good
ı
\ .V n�/;

0 on E�ı [ .V n z�ı/;
1

ı
e1 on z�ı n .�

good
ı
[E�ı /;

(3.22)

where e1 denotes the first coordinate vector; see Figure 7 for the different regions in the
definition of vı . By (3.15), (3.20), (3.22), the definition of�good

ı
, and the triangle inequal-

ity, we find for all ı > 0 that

(i) ke.vı/k2L2.V / � C
0; (ii) krvık2L2.V / � C

0C�ı

�2d=q

ı
; (3.23)

where C 0 depends additionally on u0. As Jvı � .@E
�
ı
\ V / [ @ z�ı , (3.18) (ii), (3.19),

(3.23), and the fact that minSd�1 ' > 0 imply that

sup
ı>0

.ke.vı/k
2
L2.V /

CHd�1.Jvı // < C1:

By a compactness result in GSBD2, see Theorem A.3 in Section A.4, letting

!u WD
®
x 2 V W jvı.x/j ! 1 as ı ! 0

¯
; (3.24)

by (A.21) (iii), we get that there exists CM > 0 (recall M > 0 in (3.7)) such that

Hd�1.@�!u \ V / � CM ; (3.25)

and we find v 2 GSBD2.V / with v D 0 on !u such that (again up to a subsequence, not
relabeled) vı converges in measure to v on V n !u. (In the language of [27, Section 3.4],
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V n�

z�
good
ı

�

@D�z�ı

E�
ı

Figure 7. The sets relevant for the definition of vı : the thick curve indicates the set @D� and E�
ı

is
depicted in gray. The region delimited by the dashed curve is z�ı . The region enclosed by the dotted
curve is V n�. The set z�good

ı
is depicted in light gray.

we say that vı ! v weakly in GSBD21.V /.) Moreover, we note that v D 0 a.e. on E,
which follows from the convergence in measure, the fact that �Eı ! �E , (3.19) (i), and
(3.22). Thus, v D 0 a.e. on E [ !u. We also find that

v D u0 a.e. on UD D V n� (3.26)

by (3.18) (i), (3.19) (i), (3.21), (3.22), and the fact that E ��. (Here and in the following,
set inclusions will be intended in the measure-theoretical sense, i.e., up to sets of Ld -
measure zero.) Therefore, we get !u � U D �. We denote the restriction of v to � by u,
and note that then u D 0 on E [ !u. We also observe that

Ld .� n .!u [�
good
ı
[Eı//! 0 as ı ! 0: (3.27)

In fact, Ld .� n z�ı/! 0 by (3.18) (i), Ld .E�
ı
n Eı/! 0 by (3.19) (i), and Ld .. z�ı n

.�
good
ı
[E�

ı
// n !u/! 0 by (3.22) and (3.24).

We now show properties (3.8). First of all, (3.8) (iv) follows directly from (3.19) (ii).
Since Fı.uı ; Eı/ < C1 for all ı > 0, we have uı D ��nEıuı . Then, using (3.22) as
well as (3.27), we get that Ld ..� n !u/ \ ¹vı ¤ uıº/ ! 0 as ı ! 0, and thus uı !
v D u in measure on � n !u. This shows (3.8) (i). To see (3.8) (iii), we again use that
Ld ..� n !u/\ ¹vı ¤ uıº/! 0 as ı! 0, as well as (3.17) (i) and (3.23) (ii) to calculate

lim sup
ı!0

Ld .¹jruı j > �ıº n !u/ � lim sup
ı!0

Ld .¹jrvı j > �ıº n !u/

� lim sup
ı!0

��2ı

Z
V

jrvı j
2 dx

� C 0 lim sup
ı!0

C�ı�
�2
ı 


�2d=q

ı
D 0:

It therefore remains to define the sets .!ıu/ı>0 �M.�/ and to prove (3.8) (ii), (v). Let
V 0 �� V . Since �Eı ! �E in L1.�/, (3.19) (i) also implies that �E�

ı
! �E in L1.V /.
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Moreover, for ı > 0 small, depending also on V 0, we have vı D 0 on E�
ı

and vı jV 0nE�
ı
2

H 1.V 0 n E�
ı
IRd /; see (3.18) (i) and (3.22). This, along with the fact that .vı/ı>0 con-

verges weakly to v in GSBD21.V /, means that we can apply [27, Theorem 5.1] on the set
V 0 for .vı/ı>0 and .E�

ı
/ı>0 to find

�V 0n.E�
ı
[!u/e.vı/ * �V 0n.E[!u/e.v/ weakly in L2.V 0IRd�dsym /; (3.28)

as well as Z
Jv\E0\V 0

2'.�v/ dHd�1
C

Z
@�E\V 0

'.�E / dHd�1

� lim inf
ı!0

Z
@E�

ı
\V 0

'.�E�
ı
/ dHd�1; (3.29)

whereE0 denotes the set of points with density zero forE and �v is a measure-theoretical
unit normal to Jv . Define !ıu WD !u [ ..�\ z�ı/ n .�

good
ı
[E�

ı
//. Note that Ld .!ıu4!u/

! 0 by (3.19) (i) and (3.27), which finishes the verification of (3.8) (v). Moreover, we have

Hd�1.@�!u/C sup
ı>0

Hd�1.@�!ıu/ � CM

for a constant CM > 0 (with M as defined in (3.7)). The last inequality follows from the
set inclusion

@�!ıu � @
�!u \ [.@E

�
ı \ V / [ @

z�ı ;

being a consequence of (3.21), together with the estimates (3.18) (ii), (3.19) (ii), (3.25),
and that by the choice of V actually Hd�1.@V / < C1. As e.vı/ D 0 on � n�good

ı
and

uı D vı on � \�good
ı

, see (3.22), by recalling (3.18) (i), for ı > 0 small enough we get
a.e. on V that

�.V 0\�/n.E�
ı
[!u/e.vı/ D �.V 0\�good

ı
\�/n.E�

ı
[!u/

e.uı/ D �.V 0\�/n.E�
ı
[!ıu/

e.uı/:

By using (3.28) and recalling that by definition uD v on�, we obtain (3.8) (ii) as V 0��V
was arbitrary. This concludes the proof of (3.8) (ii). For later purposes, we also directly
discuss the implications of the estimate (3.29) in the subsequent remark.

Remark 3.10. In the setting of the previous result, we also haveZ
Jun@�E

2'.�u/ dHd�1
C

Z
@�E\�

'.�E / dHd�1

C F bdry.u;E/ � lim inf
ı!0

F
';
ı ;q
surf .Eı/; (3.30)

where F bdry is defined in (3.9) and F ';
ı ;qsurf in (2.1). Indeed, note that Ju \E0 D Ju n @�E
since uD 0 onE. Then, by the fact that uD v on�,E ��, V \ @�D @D�, and (3.26),
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we observe thatZ
Jun@�E

2'.�u/ dHd�1
C

Z
@�E\�

'.�E / dHd�1
C F bdry.u;E/

D

Z
Jv\E0

2'.�v/ dHd�1
C

Z
@�E\V

'.�E / dHd�1:

Then, in view of (3.19) (ii) and (3.29) for a sequence .Vn/n2N �� V with Ld .V nVn/! 0

as n!1 we get (3.30).

Remark 3.11. A closer inspection of the previous proof reveals that the compactness
result in Proposition 3.1 remains valid, even if we impose thickened boundary conditions
for the sequence .uı/ı>0, for instance in the following way.

As before, let u0 2W 1;1.Rd IRd /, d D 2;3. Similarly to the argument in the previous
proof, we introduce an open set V � � such that V and V n x� are Lipschitz sets and
V \ @� D @D�. For ı > 0 define yı0 WD idC ıu0;ı , where .u0;ı/ı>0 � W 1;1.Rd IRd /
is such that u0;ı ! u0 locally uniformly in Rd as ı ! 0. Consider also a sequence of
open Lipschitz sets .Vı/ı>0, with Vı �� V n x� such that �Vı ! �V n� locally uniformly.
Again we let Fı.y; E/ be defined by (3.6) if E 2 Areg.�/, xE \ @D� D ;, yjV n xE 2
H 1.V n xEIRd /, yjE D id, and now yjVı D yı0 jVı , and Fı.y; E/ D C1, otherwise.
Then the conclusion of Proposition 3.1 still holds.

Proof of Proposition 3.6. Consider .uı ; hı/ı>0 with K WD supı>0 Gı.uı ; hı/ < C1.
First, by this energy bound, (3.11), and a standard compactness argument, we find h 2
BV.!I Œ0; M �/ such that hı ! h in L1.!/, up to a subsequence (not relabeled). For
the compactness of .uı/ı>0, we proceed as in the proof of Proposition 3.1, applied for
V WD ! � .�2;M C 1/, i.e., UD WD ! � .�2;�1�, and Eı WD � n�hı . The only point to
prove is that !u given in (3.24) satisfies Ld .!u/ D 0. In fact, then (3.12) for a limit
u 2 GSBD2.�/ follows from (3.8). Eventually, since uı D ��hı

uı and uı D u0 on
! � .�1; 0�, by the fact that Gı.uı ; hı/ < C1 (see (3.11)), (3.12) (i) shows u D ��hu
and u D u0 on ! � .�1; 0�.

Let us now check that Ld .!u/ D 0. To this end, we apply Corollary 2.2 once again,
now in the version for graphs; see Corollary 2.3. We denote the corresponding set E 0�ı ;
ı
by E 0

ı
for simplicity and we let h0

ı
W ! ! R be such that �h0

ı
D � n E 0

ı
. We note that

E 0
ı
� E�

ı
and thus h0

ı
� hı . This along with (2.5) (i) implies h0

ı
! h in L1.!/ since

�ı ; 
ı ! 0. In view of (3.23), (2.5) (ii) applied for ' � 1, and the fact that E 0
ı
� E�

ı
, we

get vı j�h0
ı

2 H 1.�h0
ı
IRd / and

sup
ı>0

�Z
�C
h0
ı

je.vı/j
2 dx C

Z
!

q
1C jrh0

ı
j2 dx0

�
< C1:

Therefore, by [27, Theorem 2.5] we find that uD ��hu 2 GSBD2.�/ is such that ��h0
ı

vı

! u in measure. (Indeed, u coincides with the limiting function identified above.) As
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vı D 0 on Eı and Ld .E 0
ı
n Eı/! 0 by (2.5) (i), we conclude that !u defined in (3.24)

satisfies Ld .!u/ D 0.

3.4. Derivation of effective linearized limits by � -convergence

We start with two results on the linearization of nonlinear elastic energies which are by
now classical; see e.g., [1,11,30,45,46,73,80,81]. For completeness, however, we include
short proofs, in particular due to the fact that our setting, involving varying sets .Eı/ı>0,
is slightly different compared to the above mentioned works. Recall the quadratic form Q

defined in (3.3).

Lemma 3.12. Let .uı/ı>0 � GSBD2.�/, u 2 GSBD2.�/, and let .‚ı/ı>0; ‚ 2M.�/

be such that �‚ı e.uı/ * �‚e.u/ weakly in L2.�;Rd�dsym /, Ld .¹jruı j > �ıº \‚/! 0,
and u D 0 on � n‚, where �ı is defined in (3.5). Then

lim inf
ı!0

1

ı2

Z
�

W.IdC ıruı/ dx �
1

2

Z
�

Q.e.u// dx:

Proof. We define #ı 2L1.�/ by #ı.x/D �Œ0;�ı �.jruı.x/j/, and note that Ld .¹jruı j>

�ıº \‚/! 0 implies #ı ! 1 boundedly in measure on ‚, as ı ! 0. By the regularity
and the structural hypotheses of W we get W.IdC F / D 1

2
Q.sym.F //C ˆ.F /, where

ˆWRd�d ! R is a function satisfying jˆ.F /j � C jF j3 for all F 2 Rd�d with jF j � 1.
Then the fact that (3.5) implies ı�ı ! 0 and hence 0 < ı�ı � 1 for ı > 0 sufficiently
small, together with the fact that W � 0, implies that

lim inf
ı!0

1

ı2

Z
�

W.IdC ıruı/ dx

� lim inf
ı!0

1

ı2

Z
‚

#ıW.IdC ıruı/ dx

D lim inf
ı!0

Z
‚

#ı

�1
2

Q.e.uı//C
1

ı2
ˆ.ıruı/

�
dx

� lim inf
ı!0

�
1

2

Z
‚

#ıQ.�‚ı e.uı// dx � C
Z
‚

#ııjruı j
3

�
:

The second term converges to zero since #ııjruı j3 is uniformly controlled from above
by ı�3

ı
, where ı�3

ı
! 0 by (3.5). As �‚ı e.uı/ * �‚e.u/ weakly in L2.�;Rd�dsym /, by

the convexity of Q, and the fact that #ı converges to 1 boundedly in measure on ‚, we
conclude that

lim inf
ı!0

1

ı2

Z
�

W.IdC ıruı/ dx �
1

2

Z
‚

Q.e.u// dx D
Z
�

1

2
Q.e.u// dx;

where the last step follows from the fact that uD 0 on� n‚. This concludes the proof.

Lemma 3.13. Let z� � � be open, and let u 2 W 1;1. z�IR3/. Then, as ı ! 0, we have
for yı WD idC ıu that

lim
ı!0

ˇ̌̌̌
1

ı2

Z
z�

W.ryı/ dx �
1

2

Z
z�

Q.e.u// dx
ˇ̌̌̌
D 0:
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Proof. As in the previous proof, we use that W.IdC F / D 1
2
Q.sym.F //C ˆ.F / with

jˆ.F /j � C jF j3 for jF j � 1. Then, for yı WD idC ıu, we compute

1

ı2

Z
z�

W.ryı/ dx D
1

ı2

Z
z�

W.IdC ıru/ dx

D

Z
z�

�1
2

Q.e.u//C
1

ı2
ˆ.ıru/

�
dx

D
1

2

Z
z�

Q.e.u// dx C
Z
z�

O.ıjruj3/

D
1

2

Z
z�

Q.e.u// dx C kruk3L1 O.ı/;

and the result now follows by taking the limit as ı ! 0.

We now proceed with the �-convergence results. The proofs essentially rely on the
above preparation, the estimates in Section 3.3, and the results in the linearized setting
obtained in [27, Section 2]. We start with Theorem 3.3.

Proof of Theorem 3.3. We first address the lower bound and afterwards the upper bound.

Step 1 (Lower bound). Suppose that .uı ; Eı/
�
! .u; E/, i.e., there exists a set of finite

perimeter !u 2M.�/ such that �Eı ! �E in L1.�/, uı ! u in measure on � n !u,
and u � 0 on E [ !u. Without restriction, we can assume that supı>0 Fı.uı ; Eı/ <

C1. In view of Proposition 3.1, this yields u D ��nEu 2 GSBD2.�/, Hd�1.@�E/ <

C1, and that (3.8) holds. Therefore, we obtain F0.u; E/ < C1. Now the lower bound
for the surface energy follows directly from Remark 3.10. For the elastic part, we use
(3.8) (ii), (iii) and apply Lemma 3.12 for an arbitrary�0 �� �, for‚ı D �0 n .E�ı [ !

ı
u/

and ‚ D �0 n .E [ !u/.

Step 2 (The �-lim sup inequality). For each E 2M.�/ with Hd�1.@�E/ < C1 and
each u D ��nEu 2 GSBD2.�/, recalling the definition of � -convergence in (3.2), we set

F 00.u;E/ WD � � lim inf
ı!0

Fı.u;E/

WD inf
°

lim inf
ı!0

Fı.uı ; Eı/W .uı ; Eı/
�
! .u;E/

±
;

F 000 .u;E/ WD � � lim sup
ı!0

Fı.u;E/

WD inf
°

lim sup
ı!0

Fı.uı ; Eı/W .uı ; Eı/
�
! .u;E/

±
:

By Step 1 we have that F 00.u; E/ � F0.u; E/, so it suffices to show that F 000 .u; E/ �

F0.u;E/. Assume first thatE ���with @E of classC1, and that u 2W 1;1.� n xEIR3/
with u D u0 on @D�. Choosing the constant approximating sequence .uı ; Eı/ WD .u;E/
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for every ı > 0 and recalling the definition of the energy in (3.6), we obtain

F 000 .u;E/ � lim sup
ı!0

Fı.uı ; Eı/

D lim sup
ı!0

�
1

ı2

Z
�n xE

W.idC ıu/
�
C

Z
@E

'.�@E / dHd�1

C
�

lim
ı!0


ı
� Z
@E

jAjq dHd�1

D
1

2

Z
�n xE

Q.e.u// dx C
Z
@E

'.�@E / dHd�1
D F0.u;E/;

where we used Lemma 3.13 (applied to the set z� WD � n xE), that 
ı ! 0 as ı ! 0, and
that @E is of class C1 (so that kAkL1.@E/ < C1).

In the general case, by [27, Theorem 2.2], for each E 2M.�/ with Hd�1.@�E/ <

C1 and each u D ��nEu 2 GSBD2.�/, there exists a sequence of sets .En/n2N with
En �� �, @En 2 C1, �En ! �E in L1.�/, and a sequence .un/n2N with unj�nEn 2
H 1.� nEnIRd /, unjEn D 0, and tr.un/D tr.u0/ on @D� such that un! u inL0.�IRd /
and

lim
n!1

F0.un; En/ D lim
n!1

�
1

2

Z
�nEn

Q.e.un// dx C
Z
@En

'.�En/ dHd�1

�
D F0.u;E/: (3.31)

Strictly speaking, [27, Theorem 2.2] only ensures that @En is Lipschitz, see [27, equation
(2.2)], but in the proof it is shown that En can be chosen compactly contained in � and
@En of class C1; see [27, Proposition 5.4]. By a density argument and the fact that � is
Lipschitz, without relabeling of functions and sets, it is not restrictive to further assume
that each un 2 W 1;1.� nEnIRd / so that, arguing as before, we obtain

F 000 .un; En/ �
1

2

Z
�nEn

Q.e.un// dx C
Z
@En

'.�En/ dHd�1
D F0.un; En/:

Using the lower semicontinuity of the �-lim sup, the above inequality, and (3.31) we arrive
at

F 000 .u;E/ � lim inf
n!1

F 000 .un; En/ � lim inf
n!1

F0.un; En/ D F0.u;E/;

which concludes the proof of the �-lim sup inequality. Finally, [27, Theorem 2.2] also
shows that a volume constraint can be incorporated, which yields Remark 3.4 (i).

We now proceed with the proof of Theorem 3.7. To this end, we recall the notion of
�2sym-convergence introduced in [27, Section 4], in a slightly simplified version. In the
following, we use the notation A z� B if Hd�1.A n B/ D 0 and A zD B if A z� B and
B z� A.
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Definition 3.14 (�2sym-convergence). LetU �Rd be open,U 0 �U be open with Ld .U 0 n

U/ > 0. Consider a sequence .�n/n2N � xU \ U
0 with supn2N Hd�1.�n/ < C1. We

suppose that for each C > 0 the sets

XC;n WD
®
v 2 GSBD2.U 0/ W v D 0 in U 0 n U; ke.v/kL2.U 0/ � C ; Jv z� �n

¯
(3.32)

are equi-precompact in L0.U 0IRd /, in the sense that every sequence .vn/n2N with vn 2
XC;n admits a convergent subsequence in L0.U 0IRd /. Then we say that .�n/n2N �2sym-
converges to � satisfying � � xU \ U 0 and Hd�1.�/ < C1, if the following hold:

(i) for any C > 0 and any sequence .vn/n2N with vn 2 XC;n, if a subsequence
.vnk /k2N converges in measure to v 2 GSBD2.U 0/, then Jv z� �;

(ii) there exist a function v 2 GSBD2.U 0/ and a sequence .vn/n2N with vn 2 XC;n

for some C > 0 such that vn ! v in measure on U 0 and Jv zD � .

Our definition is simplified compared to [27, Section 4] as we assume a compactness
property for the sets in (3.32). Indeed, all involved sequences converge in measure on
U 0, and therefore we can neglect the set G1 appearing in [27, Definition 4.1], which
is related to the set where a sequence .vn/n2N as in (i) may converge to infinity. In a
similar fashion, the space GSBD21 introduced in [27, Section 3.4] is not needed. Note that
imposing boundary conditions in (3.32) is fundamental for compactness, by excluding
nonzero constant functions. We refer to [27, Section 4] for a more general discussion on
this notion and mention here only the fundamental compactness result; see [27, Theorem
4.2].

Theorem 3.15 (Compactness of �2sym-convergence). Let U � Rd be open, U 0 � U be
open with Ld .U 0 n U/ > 0. Then every sequence .�n/n2N � xU \ U

0 satisfying the
assumptions in Definition 3.14 has a �2sym-convergent subsequence (not relabeled) with
limit � satisfying the inequality Hd�1.�/ � lim infn!1Hd�1.�n/.

Moreover, the following lower-semicontinuity result can be shown.

Lemma 3.16 (Lower semicontinuity of surfaces). Let � D ! � .�1; M C 1/. Let
.Dı/ı>0 be a sequence of Lipschitz sets such that �ı WD @Dı \� are �2sym-converging to
� in the sense of Definition 3.14 with respect to the sets U D ! � .�1

2
;M/ and U 0 D �.

Suppose that there exists a function h 2 BV.!I Œ0;M �/ such that Ld ..� nDı/4�h/! 0

as ı ! 0. Then, we have

Hd�1.@��h \�/C 2H
d�1.� \�1h/ � lim inf

ı!0
Hd�1.�ı/:

Proof. For the proof we refer to [27, Section 6.1], in particular to [27, equations (6.4),
(6.6)]. Note that there the proof was only performed in the case that @Dı \� are graphs,
but this assumption is not needed since the argument relies on the lower-semicontinuity
result in [27, Theorem 5.1].



Geometric rigidity in variable domains and derivation of linearized models 1147

We are now in a position to give the proof of Theorem 3.7.

Proof of Theorem 3.7. We first address the lower bound and afterwards the upper bound.

Step 1 (Lower bound). Suppose that uı ! u in L0.�IRd / and that hı ! h in L1.!/.
Without restriction, we can assume that supı>0 Gı.uı ; hı/ <C1. By Proposition 3.6 this
implies that h 2 BV.!I Œ0; M �/, u D ��hu 2 GSBD2.�/, and u D u0 on ! � .�1; 0�.
Therefore, G0.u; h/ < C1. Moreover, (3.12) holds. The lower bound for the elastic
energy follows by (3.12) (ii), (iii) and by Lemma 3.12 applied for ‚ı WD �0 n .E�ı [ !

ı
u/

and ‚ WD �0 for arbitrary �0 �� �. Therefore, it remains to prove that

Hd�1.@��h \�/C 2H
d�1.J 0u \�

1
h/

� lim inf
ı!0

�
Hd�1.@�hı \�/C 
ı

Z
@�hı

\�

jAı j
q dHd�1

�
;

where Aı denotes the second fundamental form corresponding to @�hı \ �, and J 0u is
defined in (3.14). To this end, we define

�ı WD @E
�
ı \�;

where .E�
ı
/ı>0 are given in (3.12), and note that supı>0 Hd�1.�ı/ < C1 by (3.12) (iv)

(up to a subsequence, not relabeled). We let U D ! � .�1
2
; M/ and U 0 D � D ! �

.�1;M C 1/. By [27, Theorem 2.5] and Corollary 2.3 for ' � 1, we now observe that
the sets given in (3.32) are equi-precompact in L0.U 0IRd /. In fact, given vı 2 XC;ı , we
define wı WD ��nE 0

ı
vı , where @E 0

ı
\� is the graph of a function; see Corollary 2.3. By

(2.5) (ii) and the fact that supı>0 ke.wı/kL2.�/ < C1, we can apply [27, Theorem 2.5]
to find that .wı/ı>0 converges in measure on � to some w 2 L0.�IRd /. By (2.5) (i) we
conclude vı ! w in measure, as well. Therefore, as .XC;ı/ı>0 are equi-precompact, we
can apply Theorem 3.15 to deduce that .�ı/ı>0 �2sym-converges (up to a subsequence) to
some � � xU \ U 0. By combining (3.12) (iv) and Lemma 3.16 for Dı D E�

ı
(note that

indeed Ld ..� nE�
ı
/4�h/! 0 as ı ! 0 by Proposition 3.6) we get

Hd�1.@��h \�/C 2H
d�1.� \�1h/

� lim inf
ı!0

�
Hd�1.@�hı \�/C 
ı

Z
@�hı

\�

jAı j
q dHd�1

�
: (3.33)

Thus, to conclude the proof, it remains to check that J 0u \�
1
h
� � \�1

h
up to an Hd�1-

negligible set. To this end, we follow [27, Section 6.1]: Consider the sequence of mappings
vı WD  ��nE�

ı
uı , where  2 C1.�/with  D 1 in a neighborhood of�C D�\ ¹xd >

0º and D 0 on ! � .�1;�1
2
/. Moreover, for t > 0, we let v0

ı
.x/ WD ��nE�

ı
.x/vı.x

0;xd �

t /, extended by zero in !�.�1;�1 C t /. Defining v0.x/ D  ��h.x/u.x
0; xd � t /, we

observe that v0
ı

converge to v0 in measure on U 0 since uı ! u in measure on U 0; see
(3.12) (i). We also observe that v0

ı
D 0 on U 0 nU D ! � ..�1;�1

2
�[ ŒM;M C 1//. Thus,
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applying Definition 3.14 (i) on the sequence .v0
ı
/ı>0, which clearly satisfies Jv0

ı
z� �ı , we

obtain Jv0 z� � . This shows

.Ju C ted / \�
1
h D Jv0 \�

1
h � � \�

1
h:

Since t � 0 was arbitrary, recalling the definition of J 0u D ¹.x
0; xd C t / W x 2 Ju; t � 0º,

see (3.14), we indeed find J 0u \�
1
h
� � \�1

h
. In view of (3.33), this concludes the proof

of the lower bound.

Step 2 (Proof of the �-lim sup inequality). Adopting similar notation to Step 2 of the
proof of Theorem 3.3, in exactly the same manner we can prove that

G 000 .u; h/ � G0.u; h/;

whenever h 2 C1.!I Œ0;M �/ and u 2 W 1;1.�C
h
IR3/ with u D u0 on ! � .�1; 0�.

For a general h 2 BV.!I Œ0;M �/ and u D ��hu 2 GSBD2.�/ with u D u0 on ! �
.�1; 0�, by applying [27, Theorem 2.4], there exist a sequence .hn/n2N � C

1.!I Œ0;M �/

and mappings .un/n2N with unj�hn 2 H
1.�hn IR

d /, un D 0 on � n�hn , and un D u0
on ! � .�1; 0� such that hn ! h in L1.!/, un ! u in L0.�IRd /, and

lim
n!1

G0.un; hn/ D lim
n!1

�
1

2

Z
�C
hn

Q.e.un// dx CHd�1.@�hn \�/

�
D G0.u; h/: (3.34)

Strictly speaking, [27, Theorem 2.4] only ensures that hn is a C 1-function, but in the proof
recovery sequences are constructed for profiles of regularity C1; see [27, Lemma 6.4].
Moreover, by a density argument we can assume that each un is Lipschitz on�C

hn
. Arguing

exactly as in Step 2 of the proof of Theorem 3.3, based on the lower semicontinuity of the
�-lim sup, we again obtain

G 000 .u; h/ � lim inf
n!1

G 000 .un; hn/ � lim inf
n!1

G0.un; hn/ D G0.u; h/;

where in the last step we used (3.34). This concludes the proof of the �-lim sup inequality.
Finally, [27, Remark 6.8] also shows that a volume constraint on the film can be taken into
account, as mentioned in Remark 3.8.

We close with short proofs of Corollaries 3.5 and 3.9:

Proof. In view of the above proofs, we observe that replacing jAı j2 by jHı j2 does not
affect the �-limit, but is only relevant for the compactness results in Propositions 3.1
and 3.6, respectively. To proceed as above, in particular in order to obtain (3.8) (iv) and
(3.12) (iv), it suffices to check that, under the assumptions given in Corollaries 3.5 and
3.9, it holds that

lim inf
ı!0


ı

Z
@Eı\�

jAı j
2 dHd�1

� lim inf
ı!0


ı

Z
@Eı\�

jHı j
2 dHd�1:

We refer to the cases (a) and (b) discussed in Remark 2.4.
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A. Some auxiliary lemmata

A.1. Two elementary lemmata on planar curves

Lemma A.1. Let q � 1. For every closed, planar C 2-curve 
 it holds thatZ



j�
 j
q dH1

� .diam
/1�q;

where �
 denotes the curvature of the curve.

Proof. Let 
 D .
1;
2/W Œ0; L
 � 7! R2 be an arc-length parametrization of 
 , where L


denotes the length of the curve. Without restriction, after a possible translation, we assume
that 
.0/D 
.L
/D 0. Also let s0 2 Œ0;L
 � be such that j
.s0/j D k
kL1 . Since j P
j � 1
in this parametrization, by integration by parts and Hölder’s inequality, we get

L
 D

Z L


0

j P
j2 ds D �
Z L


0


 � R
 ds � k
kL1
Z L


0

j R
j ds

D j
.s0/ � 
.0/j

Z L


0

j�
 j ds � diam
 � L1�1=q


�Z L


0

j�
 j
q ds

�1=q
:

This, along with the obvious fact that L
 � diam 
 for every closed curve 
 , concludes
the proof.

We proceed with the proof of Lemma 2.15.

Proof of Lemma 2.15. Clearly, @E \Q8� can be written as a finite union of pairwise dis-
joint curves .
i /NiD1. We denote by .
i /MiD1 the subset of those curves intersectingQ3�. It
suffices to establish the desired properties for one curve only, denoted by 
 for simplicity.
Additionally, we show that

H1.
 \Q8�/ � �: (A.1)

The latter, along with the assumption that H1.@E \Q8�/ � ƒ�, shows that M � ƒ.
Without restriction, we let 
 D .
1;
2/W Œ0; L
 � 7! R2 be an arc-length parametriza-

tion of 
 , where L
 denotes the length of the curve. Let L WD 
.0/C R P
.0/. Without
restriction, up to an isometry we suppose that L D R.1; 0/, i.e., 
.0/ D 0, P
.0/ D .1; 0/,
for notational convenience. As

R
@E\Q8�

jAj dH1 � ", we get

j P
.s/ � P
.0/j D

ˇ̌̌̌Z s

0

R
.t/ dt
ˇ̌̌̌
�

Z L


0

j R
.t/j dt

D

Z



j�
 j dH1
� " � "0 for all s 2 Œ0; L
 �:

Thus, provided that "0 is chosen sufficiently small, we get P
1 � 1=2 and j P
2j � ".
Consequently, 
 is the graph of a regular function uW xU ! L? for an open segment
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U � L containing 
.0/ D 0 satisfying u.
.0// D u0.
.0// D 0, more precisely u.x/ D

2.


�1
1 .x//e2. This implies u0 D P
2= P
1e2 and thus ku0k1 � 2".

Then, switching back to a general line L in R2, the fundamental theorem of calcu-
lus along with the fact that u.
.0// D 0 and that H1.U / D diam.U / � 8

p
2� yields

kuk1 � ku
0k1H1.U / � C1"�. It remains to show (A.1). In fact, by 
 \Q3� ¤ ; and

kuk1 � C1"�, provided that "0 > 0 is small enough, we have that L \Q4� ¤ ;. There-
fore, H1.L \Q6�/ � �, which along with kuk1 � C1"� implies the estimate.

A.2. Lemmata on good and bad planes

In this subsection we give the proofs of Lemmata 2.20–2.21. Let 0 < � < 1=
p
3. Without

restriction, let Q� be the cube centered at 0, and let L be a plane with normal �L WD � D
.�1; �2; �3/ 2 S2 such that .L/3�� \Q� ¤ ;; see (1.5). Before we start with the proofs,
we observe the following elementary property: suppose that there exists k 2 ¹1; 2; 3º such
that j�j j � � for both j ¤ k. Then we get

j.x � y/ � ekj � 18�� for all x; y 2 L \Q3�: (A.2)

Indeed, suppose without restriction (up to an appropriate reflection if necessary) that �1 >
� and j�2j; j�3j � � . Thus, we have �1 �

p
1 � 2�2, and an elementary computation yields

je1 � �j
2
� 2�2 C

�
1 �
p

1 � 2�2
�2
� 4�2

as 0 < � � 1=
p
2. Then there exists R� 2 SO.3/ with R�� D e1 such that jR� � Idj2 D

3je1 � �j
2 � 12�2, i.e., jR� � Idj � 2

p
3� . We fix two arbitrary points x; y 2 L \Q3�,

and observe that .x � y/ � � D 0. Therefore, we compute

j.x � y/ � e1j D j.x � y/ �R��j � j.x � y/ � �j C jx � yj jR� � Idj � 2
p
3� jx � yj � 18��;

where in the last step we used that x; y 2 Q3�, and therefore jx � yj � 3
p
3�.

Proof of Lemma 2.20. The main step of the proof consists in showing the following state-
ment: There exist � 2 .0; 1=

p
3/ small enough and a constant C� > 0 such that for anyQ�

and any � -good plane L forQ� the following holds: given a function v 2 L1.V IL?/ for
some bounded domain L\Q� � V � L and kvkL1.V / � 3��, for all � � r � .1C 6�/�
we get that

H2.!rv4.L \Q�// � C���
2; (A.3)

where !rv WD …L.graph.v/ \ Qr / and …L denotes the orthogonal projection onto the
plane L.

Step 1 (Reduction to (A.3)). In fact, once (A.3) has been shown, the statement can be
derived as follows: (2.65) is immediate from (A.3). For (2.64), observe that .@�SL/int WD

@�SL \ int.Q.1C6�/�/ can be expressed as the graph of the constant function zWL! L?



Geometric rigidity in variable domains and derivation of linearized models 1151

given by z� 3���, i.e., .@�SL/intD graph.z/\ int.Q.1C6�/�/D!
.1C6�/�
z C 3���. Then,

by (A.3), we obtain

H2..@�SL/int/ D H2.!.1C6�/�z / � H2.!.1C6�/�z 4.L \Q�//CH2.L \Q�/

� H2.L \Q�/C C���
2:

As the normal vector is a constant equal to˙� on both .@�SL/int and L\Q�, we also get

H2
' ..@

�SL/int/ � H2
' .L \Q�/C C�'max��

2;

where we recall the notation in (2.35). Consequently, to conclude the argument, we need
to check that

H2.@�SL n .@
�SL/int/ � C���

2: (A.4)

Then (2.64) indeed follows. To this end, note that the set @�SL n .@�SL/int consists of the
six (possibly empty) sets .L/3�� \ @Q.1C6�/� \ ¹˙xk D 1

2
.1C 6�/�º, for k 2 ¹1; 2; 3º.

We derive the estimate for only one of these sets. Without restriction let W WD .L/3�� \
@Q.1C6�/� \ ¹x3D

1
2
.1C 6�/�º and suppose thatW ¤;. First, provided that �0 is chosen

small with respect to � , we note that this set is nonempty only if (2.63) for k D 3 does not
hold. Therefore, as L is a � -good plane, we necessarily have j�1j � � or j�2j � � and thus
j�3j �

p
1 � �2.

LetWt WDW \ ¹xW .x � x0/ � � D tº for some arbitrary x0 2L. Note that H1.Wt /D 0

for jt j> 3�� and H1.Wt /�
p
2.1C 6�/�. Then, by the coarea formula (see [66], formula

(18.25), applied with slicing direction � in place of en and e3 as unit normal to the surface
W ) we getp

1 � .� � e3/2H
2.W / D

Z
W

p
1 � .� � e3/2 dH2

D

Z
R

H1.Wt / dt

� 6�� �
p
2.1C 6�/� � C��2:

By using the fact that
p
1 � .� � e3/2 � � and by repeating the estimate for all six sets, we

indeed get (A.4). A similar argument shows that

H2.L \ .Q.1C12�/� nQ�// � C���
2: (A.5)

We omit the details.

Step 2 (Proof of (A.3), preparation). Let us now show (A.3). For convenience, we extend
v to a function w defined on L \Q.1C12�/� satisfying kwk1 � 3��. It suffices to show
that for all � � r � .1C 6�/�,

H2.!rw4.L \Q�// � C���
2; (A.6)

as then the statement readily follows from the fact that

!rv4.L \Q�/ � .!
r
w4.L \Q�// [ ..L \Q.1C12�/�/ n V /
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and that by (A.5) and L \Q� � V we have

H2..L \Q.1C12�/�/ n V / � C���
2:

We start with the observation that, in view of kwk1 � 3��, for all � � r � .1C 6�/� it
holds that

L \Q.1�6�/� � !rw � L \Q.1C12�/�: (A.7)

Indeed, to see the left inclusion, for each x 2 L \Q.1�6�/� and every i 2 ¹1; 2; 3º we
estimate

j.x C w.x// � ei j � jx � ei j C kwk1 �
.1 � 6�/�

2
C 3�� D

�

2
�
r

2
:

To see the right inclusion, for every � � r � .1 C 6�/� and x 2 !rw , we estimate for
i 2 ¹1; 2; 3º,

jxi j � j.x C w.x// � ei j C kwkL1 �
r

2
C 3�� �

.1C 12�/�

2
:

For notational convenience, we let†rw WD !
r
w4.L\Q�/. We treat the two possible cases

in the definition of � -good planes separately.

Step 3 (Proof of (A.6), case (1)). Let L be a � -good plane belonging to case (1) in Defi-
nition 2.19. Without restriction we suppose that argminiD1;2;3 j�i j D 3. This implies that
j�3j � 1=

p
3 and j�1j; j�2j � � . For t 2 R and � � r � .1C 6�/�, we introduce the sets

Qt
r WD Qr \ ¹x3 D tº; !r;t WD !rw \ ¹x3 D tº and Lt WD .L \Q�/ \ ¹x3 D tº:

By the fact that j�3j � 1=
p
3, the second inclusion in (A.7), and by the coarea formula we

have for �� WD .1C 12�/� thatr
2

3
H2.†rw/ �

Z
†rw

�Q��

p
1 � .� � e3/2 dH2

D

Z
R

H1.†rw \Q
t
��
/ dt

�

Z ��=2

���=2

H1.!r;t4Lt / dt; (A.8)

where we use that � is a unit normal to †rw . We now proceed to estimate H1.!r;t4Lt /

for jt j � ��=2. To this end, fixing some z 2 L, we first introduce a parametrization of the
one-dimensional sets !r;t and Lt . First, for s 2 R we introduce

X t .s/ WD
�
s;�

�1

�2
s C bt;� ; t

�
; where bt;� WD

z � � � t�3

�2
;

and we observe that L \ ¹x3 D tº D ¹X t .s/ W s 2 Rº since X t .s/ � � D z � �. Thus, for
jt j � �=2 it holds that

Lt D
®
X t .s/W s 2 I tL

¯
; where I tL WD

h
�
�

2
;
�

2

i
\

h
�
j�2j

j�1j

�

2
C
�2

�1
bt;� ;

j�2j

j�1j

�

2
C
�2

�1
bt;�

i
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and Lt D ; for jt j > �=2. In a similar fashion, we obtain !r;t D ; for jt j > ��=2 and for
jt j � ��=2 we get !r;t D ¹X t .s/W s 2 I r;t! º, where

I r;t! WD
®
s W js C w1.X

t .s//j � r
2
;
ˇ̌�
�
�1
�2
s C bt;�

�
C w2.X

t .s//
ˇ̌
�

r
2
;

jt C w3.X
t .s//j � r

2

¯
wherewk denotes the k-th component ofw. Here, we have again used the second inclusion
in (A.7). By the area formula we get

H1.!r;t4Lt / �

s
1C

��1
�2

�2
H1.I r;t! 4I

t
L/ for all jt j � ��=2:

Then, from (A.8) and the facts that j�1j � 1; j�2j � � , we derive

H2.†rw/ �

r
3

2

Z ��
2

�
��
2

H1.!r;t4Lt / dt �

p
3

�

Z ��
2

�
��
2

H1.I r;t! 4I
t
L/ dt: (A.9)

A careful inspection of the definition of I r;t! and I tL implies that

H1.I r;t! n I
t
L/ �

8̂̂̂̂
<̂
ˆ̂̂:
.r � �/C 2kwk1

C
j�2j

j�1j
..r � �/C 2kwk1/ if jt j �

�

2
;

r C 2kwk1 if
�

2
< jt j �

��

2
;

(A.10)

as well as

H1.I tL n I
r;t
! / �

8̂<̂
:
2kwk1 C

j�2j

j�1j
2kwk1 if jt j �

�

2
� kwk1;

� if
�

2
� kwk1 < jt j �

�

2
:

(A.11)

Combining (A.10)–(A.11) and using the facts that j�1j � � , j�2j � 1, and r � �� , we getZ ��
2

�
��
2

H1.I r;t! 4I
t
L/ dt � .2� � 2kwk1/

�
.�� � �/C 2kwk1 C

1

�
..�� � �/C 2kwk1/

�
C .�� � �/.�� C 2kwk1/C 2kwk1�;

and, since kwk1 � 3�� and �� D .1C 12�/�, we conclude by recalling (A.9) that

H2.!rw4.L \Q�// D H2.†rw/ � C���
2

for a constant C� > 0. This concludes the proof of (A.6) in case (1).
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Step 4 (Proof of (A.6), case (2)). Now let L be a � -good plane for Q� belonging to
case (2) in Definition 2.19, i.e., there exists k 2 ¹1; 2; 3º such that j�kj � � and

dist.L \Q3�; ¹xk D ��=2º [ ¹xk D �=2º/ � 20��: (A.12)

Without restriction, we suppose that k D 3 and that j�1j; j�2j < � as otherwise case (1) of
the definition applies. We start by observing that (A.7) yields the estimate

H2.!rw4.L \Q�// � H2..L \Q.1C12�/�/ n .L \Q�//

CH2..L \Q�/ n .L \Q.1�6�/�//

D H2.L \Q.1C12�/�/ �H2.L \Q.1�6�/�/; (A.13)

for �� r � .1C 6�/�. In view of (A.12) and the fact that dist.L;Q�/� 3�� by definition,
(A.2) implies for �0 small with respect to � that

L \ .Œ�r=2; r=2�2 �R/ � Qr for all .1 � 6�/� � r � 3�: (A.14)

Let us denote by hLWR2!R the affine function with graph.hL/DL. Observe thatrhL�
.��1=�3;��2=�3/ and thereforep

1C jrhLj2 D 1=j�3j: (A.15)

Now, by the area formula, (A.14), and (A.15) we find

H2.L \Q.1C12�/�/ D

Z
.��=2�6��;�=2C6��/2

p
1C jrhLj2 dH2

D
.1C 12�/2

j�3j
�2;

and in a similar fashion

H2.L \Q.1�6�/�/ D
.1 � 6�/2

j�3j
�2:

Combining the previous two equalities with (A.13), we conclude

H2.!rw4.L \Q�// � ..1C 12�/
2�2 � .1 � 6�/2�2/=j�3j � C���

2

for a constant C� > 0 depending only on � , where in the last step we used that j�3j �p
1 � 2�2. This concludes the proof of (A.6).

Proof of Lemma 2.21. Let L be a � -bad plane for Q�. Let k 2 ¹1; 2; 3º be such that
j�kj � � and j�j j � � for j ¤ k. Since (2.63) does not hold, we get dist.L\Q3�; ¹xk D
˙�=2º/ < 20��, where˙ is a placeholder forC or �. Thus, we find x0 2 L \Q3� such
that j.x0 ˙ �=2/ � ekj < 20��. This along with (A.2) shows that j.x ˙ �=2/ � ekj < 38��
for all x 2 L \Q3�. For � < 1=152, we obtain the statement.
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A.3. Rigidity estimate on cubic sets

Here, we give the proof of Proposition 2.9. Recall the notation introduced in (2.12).

Proof of Proposition 2.9. We give the argument in detail for (2.15) (i), and only sketch
the proof for (2.15) (ii), which can be derived along similar lines. For convenience, we
drop the index r and simply write Q for cubes Q 2 Qr . Let us fix Q;Q0 2 Qr .U / with
Hd�1.@Q \ @Q0/ > 0. By applying [48, Theorem 3.1] for y and int.Q/ or int.Q [Q0/,
respectively, there exist RQ; RQ;Q0 2 SO.d/ such thatZ

Q

jry �RQj
2 dx � C

Z
Q

dist2.ry;SO.d// dx; (A.16)Z
Q[Q0

jry �RQ;Q0 j
2 dx � C

Z
Q[Q0

dist2.ry;SO.d// dx (A.17)

for an absolute constant C > 0. Then, due to (A.16) and (A.17), we have

rd jRQ �RQ;Q0 j
2
D

Z
Q

jRQ �RQ;Q0 j
2 dx

� 2

�Z
Q

jRQ � ryj
2 dx C

Z
Q[Q0

jRQ;Q0 � ryj
2 dx

�
� C

Z
Q[Q0

dist2.ry;SO.d// dx:

The same argument can be repeated with Q0 in place of Q for a corresponding RQ0 2
SO.d/ to obtain an estimate on jRQ0 �RQ;Q0 j2. Then we obtain

rd jRQ �RQ0 j
2
� C

Z
Q[Q0

dist2.ry;SO.d// dx: (A.18)

Based on this, we compare RQ and RQ0 for arbitraryQ;Q0 2 Qr .U /,Q ¤Q0. We show
that

rd max
Q;Q0
jRQ �RQ0 j

2
� CN

Z
.U /r

dist2.ry;SO.d// dx; (A.19)

where for notational convenience we have set N WD #Qr .U /. To this end, we consider
Q;Q0 2Qr .U /,Q¤Q0; and let ¹Q0; : : : ;QM º �Qr .U / be a simple path, i.e.,Q0DQ,
QM DQ

0,Qi ¤Qj for all i ¤ j , and Hd�1.@Qi \ @QiC1/ > 0 for all i D 0; : : : ;M � 1.
Here, we use that .U /r is connected. Clearly, we have M � N . Then, due to (A.18) and
the Cauchy–Schwarz inequality, we obtain

rd jRQ �RQ0 j
2
D rd

ˇ̌̌̌M�1X
iD0

.RQiC1 �RQi /

ˇ̌̌̌2
� rdM

M�1X
iD0

jRQiC1 �RQi j
2

� CN

M�1X
iD0

Z
Qi[QiC1

dist2.ry;SO.d// dx

� CN

Z
.U /r

dist2.ry;SO.d// dx:
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As the choice of the cubes Q;Q0 2 Qr .U / was arbitrary, we indeed get (A.19). We are
now in a position to prove the statement for R D RQ� 2 SO.d/ for some arbitrary Q� 2
Qr .U /. Indeed, by using (A.16) and (A.19) we haveZ
.U /r
jry �Rj2 dx D

X
Q2Qr .U /

Z
Q

jry �Rj2 dx

� 2
X

Q2Qr .U /

�Z
Q

jry �RQj
2 dx C rd max

Q;Q0
jRQ �RQ0 j

2

�
� 2C

X
Q2Qr .U /

Z
Q

dist2.ry;SO.d// dx C 2Nrd max
Q;Q0
jRQ �RQ0 j

2

� C

Z
.U /r

dist2.ry;SO.d// dx C CN 2

Z
.U /r

dist2.ry;SO.d// dx

� CN 2

Z
.U /r

dist2.ry;SO.d// dx:

In view ofN D #Qr .U /, this concludes the proof of (2.15). It remains to observe that one
can choose R D Id if there exists Q 2 Qr .U / with Ld .Q \ ¹ry D Idº/ � crd . Indeed,
by (A.16) one gets Ld .Q \ ¹ry D Idº/jRQ � Idj2 � C

R
Q

dist2.ry; SO.d// dx and
therefore (A.16) holds for Id in place of RQ, for C also depending on c. This, along with
the fact that R D RQ� 2 SO.d/ can be chosen for an arbitrary Q� 2 Qr .U /, concludes
the proof of (2.15) (i).

The proof of (2.15) (ii) follows analogously, as a direct consequence of the following
version of the Poincaré inequality on the cubic set .U /r :

In the setting of Proposition 2.9, there exists an absolute constant C > 0 (inde-
pendent of U and r) such that for every v 2 H 1..U /r IRd / there exists a vector
bv 2 Rd such that

r�2
Z
.U /r
jv.x/ � bvj

2
� C.#Qr .U //

2

Z
.U /r
jrvj2 dx: (A.20)

Once (A.20) is established, its application for v.x/ WD y.x/ � Rx along with (2.15) (i)
implies (2.15) (ii). For the proof of (A.20), note that for everyQ 2Qr , Poincaré’s inequal-
ity in Q gives a vector bQ 2 Rd for which

r�2
Z
Q

jv � bQj
2 dx � C

Z
Q

jrvj2 dx;

where C > 0 is an absolute constant. The proof can then be performed following the same
steps as the proof of (2.15) (i) above, with the obvious adaptions.

A.4. Generalized special functions of bounded deformation

Let U � Rd be open. A function v 2 L1.U IRd / belongs to the space of functions of
bounded deformation, denoted by BD.U /, if the distribution Ev WD 1

2
.Dv C .Dv/T/ is a
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bounded Rd�dsym -valued Radon measure on U , where Dv D .D1v; : : : ;Ddv/ is the distri-
butional differential. For v 2 BD.U /, the jump set Jv is countably Hd�1-rectifiable (in
the sense of [4, Definition 2.57]) and it holds that Ev D Eav C Ecv C Ej v, where Eav
is absolutely continuous with respect to Ld , Ecv is singular with respect to Ld and such
that jEcvj.B/D 0 if Hd�1.B/ <1, while Ej v is concentrated on Jv . The density of Eav
with respect to Ld is denoted by e.v/. The space SBD.U / is the subspace of all functions
v 2 BD.U / such that Ecv D 0.

We now come to the definition of the space of generalized functions of bounded
deformation GBD.U / and of generalized special functions of bounded deformation
GSBD.U / � GBD.U /. These spaces were introduced and investigated in [29]. We first
state the definition; see [29, Definitions 4.1 and 4.2].

Definition A.2. Let U � Rd be a bounded open set, and let vWU ! Rd be measurable.
We introduce the notation

…�
WD ¹y 2 Rd Wy � � D 0º; B�y WD ¹t 2 RWy C t� 2 Bº

for any B � Rd , � 2 Sd�1, y 2 …� , and for every t 2 B�y we let

v�y.t/ WD v.y C t�/; Ov�y.t/ WD v
�
y.t/ � �:

Then v 2 GBD.U / if and only if there exists a nonnegative bounded Radon measure �v
on U such that Ov�y 2 BVloc.U

�
y / for Hd�1-a.e. y 2 …� , and for every Borel set B � U ,Z

…�

�
jD Ov�y j

�
B�y n J

1

Ov
�
y

�
CH0

�
B�y \ J

1

Ov
�
y

��
dHd�1.y/ � �v.B/;

where J 1
Ov
�
y

WD ¹t 2 J
Ov
�
y
W jŒ Ov

�
y �j.t/ � 1º. Moreover, v belongs to GSBD.U / if and only if

v 2 GBD.U / and Ov�y 2 SBVloc.U
�
y / for every � 2 Sd�1 and for Hd�1-a.e. y 2 …� .

Every v 2 GBD.U / has an approximate symmetric gradient e.v/ 2 L1.U IRd�dsym /

and an approximate jump set Jv which is still countably Hd�1-rectifiable (cf. [29, The-
orems 9.1, 6.2]). The notation for e.v/ and Jv , which is the same as in the SBD case, is
consistent: in fact, if v lies in SBD.U /, the objects coincide, up to negligible sets of points
with respect to Ld and Hd�1, respectively. The subspace GSBD2.U / is given by

GSBD2.U / WD
®
v 2 GSBD.U /W e.v/ 2 L2.U IRd�dsym /; Hd�1.Jv/ <1

¯
:

If U has a Lipschitz boundary, for each v 2 GBD.U / the traces on @U are well defined,
see [29, Theorem 5.5], in the sense that for Hd�1-a.e. x 2 @U there exists tr.v/.x/ 2 Rd

such that

lim
"!0

"�dLd .U \ B".x/ \ ¹jv � tr.v/.x/j > %º/ D 0 for all % > 0:

We close this short subsection with a compactness result in GSBD2.U /; see [17, Theo-
rem 1.1].
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Theorem A.3 (GSBD2 compactness). Let U � Rd be an open, bounded set, and let
.un/n2N � GSBD2.U / be a sequence satisfying

sup
n2N

.ke.un/kL2.U / CHd�1.Jun// < C1:

Then there exists a subsequence, still denoted by .un/n2N , such that the set

!u WD
®
x 2 U W jun.x/j ! 1

¯
has finite perimeter, and there exists u 2 GSBD2.U / with u D 0 on !u such that

(i) un ! u in L0.U n !uIRd /;

(ii) e.un/ * e.u/ weakly in L2.U n !uIRd�dsym /;

(iii) lim inf
n!1

Hd�1.Jun/ � Hd�1.Ju [ .@
�!u \ U//:

(A.21)

In the language of [27, Section 3.4], we say that un ! u weakly in GSBD21.U /.
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