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Large time asymptotics for partially dissipative
hyperbolic systems without Fourier analysis: Application

to the nonlinearly damped p-system

Timothée Crin-Barat, Ling-Yun Shou, and Enrique Zuazua

Abstract. A new framework to obtain time-decay estimates for partially dissipative hyperbolic
systems set on the real line is developed. Under the classical Shizuta–Kawashima (SK) stability
condition, equivalent to the Kalman rank condition in control theory, the solutions of these systems
decay exponentially in time for high frequencies and polynomially for low ones. This allows us to
derive a sharp description of the space-time decay of solutions for large time. However, such analysis
relies heavily on the use of the Fourier transform, which we avoid here, developing the “physi-
cal space version” of the hyperbolic hypocoercivity approach introduced in Beauchard and Zuazua
[Arch. Ration. Mech. Anal. 199 (2011), 177–227], to prove new asymptotic results in the linear
and nonlinear settings. The new physical space version of the hyperbolic hypocoercivity approach
allows us to recover the natural heat-like time decay of solutions under sharp rank conditions, with-
out employing Fourier analysis or L1 assumptions on the initial data. Taking advantage of this
Fourier-free framework, we establish new enhanced time-decay estimates for initial data belong-
ing to weighted Sobolev spaces. These results are then applied to the nonlinear compressible Euler
equations with linear damping. We also prove the logarithmic stability of the nonlinearly damped
p-system.

1. Introduction

1.1. Presentation of the model

We study the long-time behavior of one-dimensional partially dissipative hyperbolic sys-
tems of the form

@tU C A.U /@xU D �BU; .x; t/ 2 R �RC; (1.1)

where U D U.x; t/ 2 Rn (n � 2) is the vector-valued unknown, AWRn ! Rn�n is a
smooth matrix-valued symmetric function, and B is a positive semidefinite symmetric
n � n matrix. System (1.1) models nonequilibrium processes in physics for media with
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hyperbolic responses and also arises in the numerical simulation of conservation laws by
relaxation schemes (see [23, 48, 56] and references therein).

We assume that (1.1) has a partially dissipative structure: The matrix B takes the form

B D

�
0 0

0 D

�
; (1.2)

withD a positive definite symmetric n2 � n2 matrix .1� n2 <n/. Under these conditions,
D satisfies the strong dissipativity condition: there exists a constant � > 0 such that, for
all X 2 Rn2 ,

hDX;Xi � �jX j2; (1.3)

where h ; i denotes the inner product on Rn.
A classical system fitting the description (1.1)–(1.2), which we investigate in this

manuscript, is the compressible Euler equations with damping:´
@t�C @x.�u/ D 0;

@t .�u/C @x.�u
2/C @xP.�/ D ���u;

(1.4)

where � D �.x; t/ � 0 denotes the fluid density, u D u.x; t/ 2 R stands for the fluid
velocity, P.�/ is the pressure function, and the friction coefficient � > 0 is assumed to
be constant. For a 
 -law pressure with the adiabatic coefficient 
 > 1, a standard sym-
metrization procedure (see [3, Chapter 4, p. 171–172]) allows us to rewrite system (1.4)
in the symmetric form (1.1):8̂<̂

:
@tc C u@xc C


 � 1

2
c@xu D 0;

@tuC u@xuC

 � 1

2
c@xc D ��u;

where c WD 2=.
 � 1/
p
@P.�/=@� is a multiple of the speed of sound. System (1.4)

describes compressible gas flows passing through porous media and can be interpreted
as a relaxation approximation (as �!1 and under a diffusive scaling, see [9,11,36,54])
of the porous medium equation describing fluid flow, heat transfer, or diffusion [47].

We are also interested in partial nonlinear dissipation phenomena. We investigate the
stability of the nonlinearly damped p-system:8̂̂<̂

:̂
@t�C @xu D 0;

@tuC @x�C juj
r�1u D 0;

.�; u/.x; 0/ D .�0; u0/.x/;

(1.5)

with r > 1. For small velocities juj � 1, system (1.5) is often used to model gas networks;
cf. [32, eqn. (1.2), p. 2]. Moreover, system (1.5) is strongly connected to the wave equa-
tions with nonlinear damping (see (7.8)), for which numerous stability results have been
established in contexts different from the one studied here. The interested readers may
refer to [18, 38, 40, 41, 46, 50, 57, 58] and references therein.
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1.2. Aims of the paper

Fourier analysis is a very important tool in the study of linear and nonlinear PDEs, par-
ticularly for partially dissipative hyperbolic systems (1.1)–(1.2). Their inherent frequency
dependence, see Section 1.3, has led most studies of their large-time asymptotics to rely
on Fourier analysis (cf. [4, 6, 10, 11, 27, 28, 44, 52, 53] and references therein). However,
Fourier analysis has a few limitations: it is not easily applied to equations set on bounded
or exterior domains, it can make it harder to extract beneficial properties from nonlin-
ear terms and to handle space-dependent matrices, and it is not well suited to analyzing
numerical schemes on nonuniform meshes.

In this paper we develop a new method inspired by the hyperbolic hypocoercivity
calculus in [4], but entirely developed in the physical space, so as to derive and pave the
way for new asymptotic results that cannot be obtained via Fourier analysis. To do it we
get inspired by the earlier works by Hérau and Nier [19,20] and Porretta and Zuazua [42].

We establish two main classes of results. First we study general stability properties
for the linearization of system (1.1) around a constant equilibrium, recovering the optimal
time-decay rates without using Fourier analysis and enhanced rates for initial data belong-
ing to weighted Sobolev spaces. Then we apply our new analysis to study the large-time
asymptotics of two concrete nonlinear systems: the compressible Euler equations with
linear damping (1.4) and the p-system with nonlinear damping (1.5).

1.3. Existing stability results

Before presenting our main results, we recall some well-known properties concerning the
stability of system (1.1)–(1.2). Its partially dissipative nature (1.2) does not play a role
when studying its local well-posedness but is crucial to justifying large-time results. For
B D 0, (1.1) reduces to a system of hyperbolic conservation laws, and it is well known
that for smooth initial data there exist local-in-time solutions [25,35,43] that may develop
singularities (shock waves) in finite time [12, 31]. On the other hand, when rank.B/ D n,
Li [33] proved the existence of global-in-time solutions that are exponentially damped.
In our partially dissipative setting (1.2), i.e. rank.B/ < n, the dissipation induced by
BU lacks coercivity, as it affects only some components of the solution. Nevertheless,
as observed by Shizuta and Kawashima [27, 44], interaction effects between the hyper-
bolic and dissipative parts of the system may generate dissipation in directions that are not
affected by B . More recently, Beauchard and Zuazua [4] have framed this phenomenon in
the spirit of Villani’s hypocoercivity theory [49] and improved its understanding. Below,
we present some key points of their approach.

Linearizing system (1.1)–(1.2) around a constant equilibrium xU 2 Ker.B/ and denot-
ing A WD A. xU/, we obtain the linear system

@tU C A@xU D �BU: (1.6)

To further highlight the partially dissipative structure of (1.6)–(1.2), we writeUD .U1;U2/
where U1 2 Ker.B/DRn1 and U2 2 Im.B/DRn2 , with n1, n2 satisfying 1� n1; n2 < n
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and n1 C n2 D n. By the decomposition

A D

�
A1;1 A1;2
A2;1 A2;2

�
;

we rewrite system (1.6) as´
@tU1 C A1;1@xU1 C A1;2@xU2 D 0;

@tU2 C A2;1@xU1 C A2;2@xU2 D �DU2;
(1.7)

with the initial datum .U1; U2/.x; 0/ D U0.x/ D .U1;0; U2;0/.x/.
Using the symmetry of A and the condition (1.3), one has the energy dissipation law

1

2

d

dt
k.U1; U2/.t/k

2
L2
C �kU2.t/k

2
L2
� 0: (1.8)

The law (1.8) demonstrates a lack of coercivity as dissipation is observed only for the
component U2. To recover dissipation for U1, in [4], the authors first apply the Fourier
transform to (1.6), which yields the parameterized ODE

@t yU C i�A yU C B yU D 0: (1.9)

Then a key observation is that, for a fixed � ¤ 0, the exponential stability of the solutions
of (1.9) is equivalent to the Kalman rank condition for the pair .A;B/:

the matrix K.A;B/ WD .B;AB; : : : ; An�1B/ has full rank n: (1.10)

Such a result, established for instance in [24] in the context of control theory, shows that
the large-time stability can hold even if the rank of the dissipative matrix is not full. For
hyperbolic systems, results in the same vein can be obtained, but due to the presence of
the parameter � , especially as � ! 0, uniform exponential stability may not be expected.

In order to get decay estimates with explicit control on the dependence of the fre-
quency parameter �, inspired by hypocoercivity arguments, in [4] the following Lyapunov
functional was introduced:

L�.t/ WD j yU j
2
Cmin

� 1
j�j
; j�j

�
Re

n�1X
kD1

�khBA
k�1 yU ;BAk yU i: (1.11)

The following proposition plays a fundamental role when quantifying the decay rates in
terms of the rank conditions, as a function of � .

Proposition 1.1 ([4]). Let A and B be symmetric matrices such that B satisfies (1.2). The
following conditions are equivalent:

• System (1.6) is polynomially stable and behaves as the heat equation for large times.

• The pair .A;B/ verifies the Kalman rank condition (1.10).
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• For every y 2 Cn, there exist constants c; C > 0 such that

cjyj2 �

n�1X
kD0

jBAkyj2 � C jyj2: (1.12)

The parameters �k in the Lyapunov functional (1.11) need to be chosen small enough
and the frequency-weight min.1=j�j; j�j/ are used so the dissipative and hyperbolic effects
interact efficiently. Once this is done, differentiating (1.11) with respect to time and using
the fact that (1.12) defines a full norm, for some constant c > 0, one obtains

j yU.�; t/j2 . j yU0.�/j2e�cmin¹1;j�j2ºt (1.13)

for all frequencies �, which leads to sharp decay rates (see Proposition 1.1).
For more details concerning this approach, the interested reader may refer to Appendix

A.1 or directly to [4].

1.4. Outline of the paper

As mentioned above, the main goal of this paper is to develop the physical space version
of the frequency-dependent hypocoercivity calculus.

In Section 2 we state our main results and present our methodology. Section 3 is
devoted to proving the natural time-decay estimates for linear systems without Fourier
analysis and without an additionalL1 regularity assumption on the initial data. These esti-
mates are further improved in Sections 4–5 under additional space-weighted conditions on
the initial data. Section 6 is devoted to the analysis of the nonlinear Euler system (1.4),
while the nonlinearly damped p-system (1.5) is studied in Section 7. Section 8 presents
additional results and comments on possible extensions of our methods. Some technical
lemmas are relegated to the appendix.

2. Main results and methodology

2.1. Natural time-decay rates without Fourier analysis

In our first result we retrieve the natural large-time asymptotics of linear partially dissipa-
tive hyperbolic systems (1.6) without using Fourier analysis or L1-type assumptions on
the initial data.

Theorem 2.1. Let U0 2 H 1, A and B be symmetric n � n matrices with B as in (1.2),
satisfying the Kalman rank condition (1.10). Then, for all t > 0, the solution U of (1.6)
with the initial datum U0 satisfies

kU2.t/kL2 C k@xU.t/kL2 � C.1C t /
� 12 kU0kH1 ; (2.1)

where C > 0 is a constant independent of time and U0.



T. Crin-Barat, L.-Y. Shou, and E. Zuazua 1170

Remark 2.1. Some remarks on the sharpness of the decay rates are in order:

• According to Proposition 1.1 and the Fourier representation (1.13), the rate obtained
for U in estimate (2.1) is sharp in our Hilbertian functional framework. It actually
corresponds to that of the heat equation, cf. Lemma A.4 in the appendix, but, due to
the absence of regularizing effects, under the assumption that the initial datum lies in
H 1 and not only in L2.

• Unlike Fourier-based approaches, our method is not well suited to exploiting the L1

control of the initial data. However, it is adaptable to weighted spaces, as we will see
in the next results.

Strategy of proof of Theorem 2.1. The core of the proof is the construction of an aug-
mented energy functional in the spirit of (1.11) but entirely defined in the physical space.
Inspired by the works of Hérau and Nier [19,20] and Porretta and Zuazua [42], concerning
the asymptotic decay of kinetic equations, we consider the time-weighted functional

L.t/ D kU.t/k2
H1 C �0tk@xU.t/k

2
L2
C

n�1X
kD1

"k.BA
k�1U;BAk@xU/L2 ;

where . ; /L2 denotes the inner product in L2. Setting the constants �0 and "k , k D
1; 2; : : : ; n � 1, suitably small and using the Kalman rank condition (1.10) and Propo-
sition 1.1, we obtain

d

dt
L.t/C c.kU2.t/k

2
L2
C tk@xU2.t/k

2
L2
C k@xU.t/k

2
L2
/ � 0; (2.2)

from which we infer
k@xU.t/kL2 � C.1C t /

� 12 kU0kH1 : (2.3)

Then, combining (2.3) with the fact that U2 verifies a damped equation with the linear
source term �A2;1@xU1 �A2;2@xU2, Grönwall’s inequality yields the extra decay for U2
stated in (2.1).

2.2. Enhanced decay rates in weighted Sobolev spaces

As depicted in Proposition 1.1, the solutions of (1.6) behave similarly to the solutions of
the heat equation as the time evolves. More precisely, as explained in [6, 21, 34, 55], they
decay as the solutions of ´

@tN � A1;2D
�1A2;1@

2
xN D 0;

N.x; 0/ D U1;0.x/;
(2.4)

where the operator �A1;2D�1A2;1@2x is strongly elliptic when the Kalman rank condition
(1.10) holds; see [11, 30, 55]. Based on Fourier analysis tools, Bianchini, Hanouzet, and
Natalini [6] obtained faster decay rates for the error of solutions between (1.6) and (2.4)
using L1-type assumptions on the initial data.
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Our next theorem justifies the validity of the large-time parabolic profile (2.4) of sys-
tem (1.6) without Fourier analysis and provides new enhanced time-decay rates when the
initial datum belongs to weighted Sobolev spaces.

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied and let U be the solution of
(1.6) with the initial datum U0. In addition, suppose also that jxjU2;0 2 L2 and

A1;1 D 0: (2.5)

Then, for all t > 0 and 0 < "� 1=2,

k.U1 �N/.t/kL2 � C.1C t /
� 12C".kU0kH1 C k jxjU2;0kL2/; (2.6)

where N is the solution of (2.4) associated to the initial datum U1;0 and C > 0 is a
constant independent of time and U0.

Furthermore, let 0 < � � 1. If we further assume

X0 WD kU0kH1 C k jxj�U1;0kL2 C k jxjU2;0kL2 <1;

then, for all t > 0,´
kU.t/kL2 � C.1C t /

�
�
2X0;

kU2.t/kL2 C k@xU.t/kL2 � C.1C t /
�
�
2 �

1
2X0:

(2.7)

Remark 2.2. Some comments are in order:

• In the context of fluid mechanics, condition (2.5) typically implies that the velocity
equilibrium satisfies Nu D 0. It is a natural condition when U1 is a scalar (like for
instance the fluid density) as it is always satisfied up to the Galilean change of frame
.x; t/! .x � A1;1t; t /; see [1, p. 6].

• When 1=2 < � � 1, the assumption X0 < 1 is a stronger condition than the L1

assumption usually used in Fourier-based approaches, but allows for faster decay rates.
For � D 1=2, the rate in (2.7)1 would correspond to the one recovered with Fourier
analysis and for initial data belonging to L1; cf. Lemma A.1.

Strategy of proof of Theorem 2.2. Inspired by considerations from [10, 11], we consider
the damped mode

R WD D�1A2;1U1 CD
�1A2;2U2 C

Z x

�1

U2.y; t/ dy; (2.8)

which has faster decay rates compared to U1 and U2 since R satisfies the purely damped
system

@tRCDR D D
�1A2;1@tU1 CD

�1A2;2@tU2: (2.9)

Inserting R into the system satisfied by U1, we have the parabolic system

@tU1 � A1;2D
�1A2;1@

2
xU1 D @

2
x.�A1;2RCD

�1A2;2U2/:
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Estimating the system satisfied by U1 �N and using the fact that R and U2 decay rapidly,
we obtain the asymptotic stability estimate (2.6). Then, in order to recover L2 decay esti-
mates forU1, we first recover the t�

�
2 time-decay estimates of kN.t/kL2 by performing an

energy argument on (2.4) and using the Caffarelli–Kohn–Nirenberg inequality. Together
with (2.6), this yields (2.7)1 for 0 < � < 1. In the case �D 1, we prove (2.7)1 by deriving
time-weighted energy estimates for .U1 � N; U2/ in the spirit of Theorem 2.1. Finally,
combining the L2 decay we obtained for U1 with the Lyapunov inequality (2.2) obtained
in Theorem 2.1, we derive the faster decay rates (2.7)2.

In our next result, we establish additional enhanced decay estimates, for a larger class
of initial data, but under stronger structural conditions on the system.

Theorem 2.3. Let 1=2 < � � 1 and assume that the hypotheses of Theorem 2.1 are sat-
isfied. Suppose also (2.5), n1 D n2, A1;2A2;1 positive definite,

Y0 WD kU0kH1 C k jxj�U1;0kL2 C k jxj
�� 12U2;0kL2 <1; (2.10)

and @tU1jtD0 D �A1;2@xU2;0. In addition, in the case 1=2 < � < 1, let jA1;2A2;1j � 1.
Then, for all t > 0, the solution U of system (1.6) with the initial datum U0 satisfies´

kU.t/kL2 � C.1C t /
��C 1

2Y0;

kU2.t/kL2 C k@xU.t/kL2 � C.1C t /
��Y0;

(2.11)

where C > 0 is a constant independent of time, �, and U0.

Remark 2.3. Some remarks are in order:

• The time-decay rates obtained in (2.11) are sharp for � D 1, but for � < 1 we obtain
a slower decay compared to Theorem 2.2 since ��C 1=2 > ��=2.

• The conditions imposed on A ensure that system (1.6) can be rewritten in a wave-
like formulation (see (2.12)). Such conditions are usually imposed on the equilibrium
states used to study the stability of systems in fluid mechanics such as the compressible
Euler equations (1.4); see [3].

• One of the main interesting aspects of Theorem 2.3 is that it can be extended to deal
with nonlinear dissipative phenomena (cf. Section 2.4), contrary to Theorem 2.2.

Strategy of proof of Theorem 2.3. Defining the unknown W such that U1 D @xW and
U2 D �A

�1
1;2@tW , we rewrite system (1.6) as the extended damped wave equation

@2tW � A1;2A2;1@
2
xW C A1;2A2;2A

�1
1;2@t@xW C A1;2DA

�1
1;2@tW D 0: (2.12)

Under this formulation, it suffices to estimate the wave energy k.@tW; @xW /.t/k2L2 to get
the decay for U in L2. To this end, we generalize and combine the works of Mochizuki
and Motai [38] and Ikehata [22]. In Lemma 5.1, performing hypocoercivity estimates with
space-time weights on (2.12), we getZ

R
.1C t C jxj/2��1.j@tW j

2
C j@xW j

2/ dx . Y 20 ; (2.13)
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which only holds for � � 1 and provides the desired decay rates for U in (2.11) since
.1C t /2��1 � .1C t C jxj/2��1, for x 2R and �� 1=2. The faster rates for U2 and @xU
in (2.11) are recovered by combining estimate (2.13) with the hypocoercive inequality
(2.2).

2.3. Application to the compressible Euler equations with damping

In our next result we justify a nonlinear analogue of Theorem 2.1 for the compressible
Euler system with linear damping (1.4), when the initial datum is close to a constant
equilibrium in H 2.

Theorem 2.4. Consider the equilibrium state . N�; 0/, with N� > 0 a given constant, and
suppose that

P.�/ 2 C1.RC/; P 0.�/ > 0: (2.14)

Then there exists a constant ı0 > 0 such that if the initial datum .�0; u0/ satisfies

k.�0 � N�; u0/kH2 � ı0; (2.15)

system (1.4) admits a unique global-in-time solution .�; u/ 2 C.RCIH 2/ such that

ku.t/kL2 C k@x.� � N�; u/.t/kL2 � C.1C t /
� 12 k.�0 � N�; u0/kH2 ; (2.16)

where C > 0 is a constant independent of time and U0.

The next result corresponds to nonlinear versions of Theorems 2.2 and 2.3 for sys-
tem (1.4).

Theorem 2.5. Assume that the hypotheses of Theorem 2.4 are satisfied and let .�; u/ be
the global solution of system (1.4) subject to the initial datum .�0; u0/. There exists a
constant C > 0 independent of time such that the following statements hold:

(1) If, in addition to (2.15), we assume jxju0 2L2, then, for all t > 0 and 0< "� 1=4,
there exists a constant independent of T such that

k.� � ��/.t/kL2 � C.1C t /
� 14C"; (2.17)

where �� solves the parabolic equation8<:@t�� �
P 0. N�/

�
@2x�� D 0;

��.0; x/ D �0.x/:

(2.18)

If for any 0 < � � 1, we further assume jxj�.�0 � N�/ 2 L2, then, for all t > 0,´
k.� � N�/.t/kL2 � C.1C t /

�
�
2 ;

ku.t/kL2 C k@x.� � N�; u/.t/kL2 � C.1C t /
�
�
2 �

1
2 :

(2.19)
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(2) Let 1=2<�� 1. If, in addition to (2.15), we assume .jxj�.�0 � N�/; jxj��
1
2u/2L2

and @t�jtD0D�@x.�0u0/, and additionally letP 0. N�/� 1 in the case 1=2<�<1,
then, for all t > 0,´

k.� � N�/.t/kL2 � C.1C t /
��C 1

2 ;

ku.t/kL2 C k@x.� � N�; u/.t/kL2 � C.1C t /
��:

(2.20)

Remark 2.4. Due to the nonlinear term arising from the pressure, the decay rate for the
error unknown in (2.17) is slower than the linear case in (2.6).

2.4. Application to the nonlinearly damped p-system

Our final result concerns nonlinear dissipative phenomena. We justify the logarithmic sta-
bility of system (1.5) when the initial datum belongs to logarithmically weighted Sobolev
spaces.

Theorem 2.6. Let 1 < r < 3 and suppose that .�0; u0/ 2 H 1. Then, for all t > 0, sys-
tem (1.5) with the initial datum .�0; u0/ admits a unique global-in-time solution .�; u/ 2
C.RCIH 1/ satisfying

k.�; u/.t/k2
H1 C

Z t

0

�
ku.�/krC1

LrC1
C k.@x�

rC1
2 ; @xu

rC1
2 /.�/k2

L2

�
d�

� Ck.�0; u0/k
2
H1 ;

where C > 0 is a constant independent of time and .�0; u0/.
Furthermore, let q > 0 and suppose

�0 2 L
1; logq .1C jxj/.�0; u0/ 2 L2; (2.21)

and @t�jtD0 D �@xu0. Then, for all t > 0,

k.�; u/.t/kL2 �
Cq

logq.1C t /
; (2.22)

where Cq > 0 is a constant independent of time.

Remark 2.5. Some remarks are in order:

• The restriction 1 < r < 3 appears naturally in our computations; see inequality (7.20).
It comes from the fact that the nonlinear dissipation becomes weaker and weaker when
r grows. Moreover, it is known that the solutions of the nonlinearly damped wave
equation decay in time for 1 < r < 3 and do not decay if r > 3 (cf. [14, 38, 39]). For
system (1.5), the asymptotic behavior in the case r D 3 is open.

• In contrast with the linear damping setting (r D 1), it would be difficult to handle
the nonlinear damping term jujr�1u via Fourier analysis, since this would result in a
nonlocal nonlinear term mixing all frequency components.

• Our proof is inspired by the hypocoercive arguments developed in the proof of Theo-
rem 2.3 and the results from [38]; see Section 7 for more details.
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2.5. Conclusions

In this paper we lay the foundations for hyperbolic hypercoercivity without resorting to
Fourier analysis. This enables us to extend the analysis of partially dissipative hyperbolic
systems to previously unexplored contexts. Furthermore, our approach provides a guide-
line for future research on partially dissipative systems in many contexts, such as initial
boundary value problems, more general nonlinearly damped systems, space-dependent
hyperbolic matrices, and numerical approximation schemes. Interested readers can refer
to Section 8 for more details on these possible extensions.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1 by employing pure energy arguments and avoiding
the use of the Fourier transform. We introduce the Lyapunov functional

L.t/ WD kU.t/k2
H1 C �0tk@xU.t/k

2
L2
C 	.t/; (3.1)

where the corrector term 	.t/ is defined by

	.t/ WD

n�1X
kD1

"k.BA
k�1U;BAk@xU/L2 ;

with positive constants �0 and "i , i D 1; 2; : : : ; k � 1, to be determined later.

3.1. Time-derivative of L

3.1.1. Energy estimates. Standard energy estimates for (1.7) lead to

d

dt
kU.t/k2

L2
C 2.DU2; U2/L2 D 0;

d

dt
k@xU.t/k

2
L2
C 2.D@xU2; @xU2/L2 D 0;

d

dt
.tk@xU.t/k

2
L2
/C 2t.D@xU2; @xU2/L2 D k@xU.t/k

2
L2
;

which, together with the strong dissipativity condition (1.3) for D, gives

d

dt
.L.t/ � 	.t//C 2�kU2.t/k

2
L2
C 2�.1C �0t /k@xU2.t/k

2
L2
� �0k@xU.t/k

2
L2
: (3.2)

In (3.2), dissipative estimates for @xU in L2 are missing. They are recovered in the next
subsection thanks to the corrector term 	.t/ in the Lyapunov functional (3.1).
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3.1.2. Estimation of the corrector term. Differentiating 	.t/ in time, we obtain

d

dt
	.t/C

n�1X
kD1

"kkBA
k@xU.t/k

2
L2
D �

n�1X
kD1

"k.BA
k�1BU;BAk@xU/L2

�

n�1X
kD1

"k.BA
k�1U;BAkB@xU/L2

�

n�1X
kD1

"k.BA
k�1U;BAkC1@2xU/L2 : (3.3)

Thanks to Proposition 1.1, the second term on the left-hand side of (3.3) leads to time-
decay information for @xU . To deal with the remainder terms, we proceed as in [4,10,13]
with some adaptations needed to bypass the Fourier analysis.

Lemma 3.1 (Time-derivative of 	). For any positive constant "0, there exists a sequence
¹"kºkD1;:::;n�1 of small positive constants such that

d

dt
	.t/C

1

2

n�1X
kD1

"kkBA
k@xU.t/k

2
L2
� "0kU2.t/k

2
L2
C "0k@xU2.t/k

2
L2
: (3.4)

Proof. To begin with, we fix a positive constant "0 and estimate the terms on the right-
hand side of (3.3) as follows:

• The terms 	1
k
WD "k.BA

k�1BU;BAk@xU/with k 2 ¹1; : : : ;n� 1º: SinceBU DDU2
and the matrices A, D are bounded, we obtain

j	1kj � C"kkDU2.t/kL2kBA
k@xU.t/kL2

�
"0

4n
kU2.t/k

2
L2
C
C"2

k

"0
kBAk@xU.t/k

2
L2
:

• The term 	21 WD "1.BU;BAB@xU/L2 : One has

j	21 j � C"1kDU2.t/kL2kD@xU2.t/kL2

�
"0

4n
kU2.t/k

2
L2
C
C"21
"0
k@xU2.t/k

2
L2
:

• The terms 	2
k
WD "k.BA

k�1U; BAkB@xU/L2 with k 2 ¹2; : : : ; n � 1º if n � 3: We
deduce, after integrating by parts, that

j	2kj D "kj.BA
k�1@xU;BA

kBU/L2 j

� C"kkBA
k�1@xU.t/kL2kBU.t/kL2

�
"0

4n
kU2.t/k

2
L2
C
C"2

k�1

"0
kBAk�1@xU.t/k

2
L2
:
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• The terms 	3
k
WD "k.BA

k�1U; BAkC1@2xU/L2 with k 2 ¹1; : : : ; n � 2º if n � 3: A
similar argument yields

	3k D "kj.BA
k�1@xU;BA

kC1@xU/L2 j

�
"k�1

8
kBAk�1@xU.t/k

2
L2
C
C"2

k

"k�1
kBAkC1@xU.t/k

2
L2
:

• The term 	3n�1 WD "n�1.BA
n�2U;BAn@2xU/L2 : Owing to the Cayley–Hamilton the-

orem, there exist coefficients cj� (j D 0; 2; : : : ; n � 1) such that

An D

n�1X
jD0

cj�A
j :

Consequently, one gets

j	3n�1j � "n�1

n�1X
jD0

cj�kBA
n�2@xU.t/kL2kBA

j @xU.t/kL2

�
"n�2

8
kBAn�2@xU.t/k

2
L2
C

n�1X
jD1

C"2n�1
"n�2

kBAj @xU.t/k
2
L2

C
C"2n�1
"n�2

k@xU2.t/k
2
L2
:

In order to absorb the right-hand-side terms 	1
k

and 	2
k

into the left-hand side of (3.3), we
take the constant "k small enough so that

C"21 �
"20
8
; C"2k �

"k"0

8
; k D 1; 2; : : : ; n � 1: (3.5)

To handle the above estimates of 	3
k

with k D 1; 2; : : : ; n � 2, one may let

C"2k �
1

8
"k�1"kC1; k D 1; 2; : : : ; n � 2 if n � 3:

In addition, to handle the term 	3n�1, we assume

C"2n�1 �
1

8
"j "n�2; j D 0; : : : ; n � 1: (3.6)

Clearly, inequality (3.4) holds if we find "1; : : : ; "n�1 fulfilling (3.5) and (3.6). As in [4],
for k D 1; : : : ; n� 2, one can take "k D "mk with some suitably small constant " � "0 and
m1; : : : ; mn�1 satisfying for some ı > 0 (that can be taken arbitrarily small),

mk > 1; mk �
mk�1 CmkC1

2
C ı and mn�1 �

mk Cmn�2

2
C ı:

This concludes the proof of Lemma 3.1.
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3.2. Decay of the PH 1 norm

First we fix suitably small "k , k D 1; 2; : : : ; n � 1, such that (3.4) holds and

L.t/ � kU.t/k2
H1 C �0tk@xU.t/k

2
L2
: (3.7)

Combining the Lyapunov inequality (3.2) and estimate (3.4) of the corrector term, we
obtain

d

dt
L.t/C �kU2.t/k

2
L2
C �.1C 2�0t /k@xU2.t/k

2
L2
C
1

2

n�1X
kD1

"kkBA
k@xU.t/k

2
L2

� �0k@xU.t/k
2
L2
C "0kU2.t/k

2
L2
C "0k@xU2.t/k

2
L2
: (3.8)

In view of Proposition 1.1, it holds that

�k@xU2.t/k
2
L2
C

n�1X
kD1

"kkBA
k@xU.t/k

2
L2
�
"�

CK
k@xU.t/k

2
L2

with "� WD min¹�; "1; "1; : : : ; "n�1º and CK > 0 a constant depending only on .A; B/
and n. Therefore, in order to ensure the coercivity of (3.8), we adjust the coefficients
appropriately as

0 < �0 <
"�

4CK
; 0 < "0 <

�

2

such that
d

dt
L.t/C

�

2
kU2.t/k

2
L2
C �

�1
2
C �0t

�
k@xU2.t/k

2
L2
C

"�

4CK
k@xU.t/k

2
L2
� 0: (3.9)

Therefore, by (3.7) and (3.9), we have

kU.t/kL2 C .1C t /
1
2 k@xU.t/kL2 � CkU0kH1 : (3.10)

3.3. Improved decay for the damped component

Taking the inner product of (1.7)2 with U2 and using property (1.3), we get

d

dt
kU2.t/k

2
L2
C 2�kU2.t/k

2
L2
� Ck@xU.t/kL2kU2.t/kL2 : (3.11)

Dividing the above inequality (3.11) by
q
kU2.t/k

2
L2
C ", employing Grönwall’s inequal-

ity, and then letting "! 0, we have

kU2.t/kL2 � e
��t
kU2;0kL2 C C

Z t

0

e��.t��/k@xU.�/kL2 d�: (3.12)

Together with the time-decay estimates (3.10) of @xU , this leads to

kU2.t/kL2 � e
��t
kU2;0kL2 C CkU0kH1

Z t

0

e��.t��/.1C �/�
1
2 d�

� C.1C t /�
1
2 kU0kH1 ;

which concludes the proof of Theorem 2.1.
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Remark 3.1. For t D 1, the computations in this section also lead to

kU.t/k2
H1 C

Z t

0

.kU2.�/k
2
L2
C k@xU.�/k

2
L2
/ d� � CkU0k

2
H1 ; (3.13)

which will be useful in the following sections.

4. Faster time-decay rates: Proof of Theorem 2.2

4.1. Time-decay estimates for the parabolic system in weighted Sobolev spaces

This section aims to capture time-decay rates for U1 in L2. Our method allows us to
recover faster decay rates compared to the decay .1 C t /�

1
4 obtained in [4, 6, 27, 28].

In these references, inspired by the work of Matsumura and Nishida [37], the authors
assumed L1 regularity on the initial data to recover decay in low frequencies. Here, to
avoid using the Fourier transform, we decompose (1.6) into a pure parabolic system and
a hyperbolic remainder part, and perform hypocoercivity estimates for space-weighted
initial data.

First we provide time-decay estimates for the equation associated with the large-time
parabolic profile of the hyperbolic system:´

@tN � A1;2D
�1A2;1@

2
xN D 0;

N.x; 0/ D U1;0.x/:
(4.1)

We recall a classical result ensuring that the operator �A1;2D�1A2;1 is strongly elliptic.

Lemma 4.1 ([11,30,55]). Assume thatA1;1 D 0. Then the following assertions are equiv-
alent:

• .A;B/ satisfies the (SK) or the Kalman rank condition.

• The operator A WD �A1;2D
�1A2;1@

2
x is strongly elliptic.

Relying on this result and an energy argument, we derive time-decay estimates for the
solutions of (2.4).

Lemma 4.2. Assume U1;0 2 L2 and let N be the solution of (4.1). Then, for all k D
1; 2; : : : ; there exists a generic constant Ck > 0 such that, for all t > 0,

k@kxN.t/kL2 � Ckt
� k2 kU1;0kL2 : (4.2)

Additionally, if k jxj�U1;0kL2 <1 with 0 < � � 1, then´
kN.t/kL2 � Ck.1C t /

�
�
2 k.1C jxj�/U1;0kL2 ;

k@kxN.t/kL2 � Ckt
� k2�

�
2 k.1C jxj�/U1;0kL2 :

(4.3)
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Proof. The Kalman rank condition (1.10) and Lemma 4.1 imply that there exists a con-
stant �0 > 0 such that

�.A1;2D
�1A2;1@

2
xV; V / � �0k@xV k

2
L2

for all V 2 Rn1 : (4.4)

Hence, using (4.4), standard energy estimates give

d

dt
kN.t/k2

L2
C 2�0k@xN.t/k

2
L2
D 0;

d

dt
k@kxN.t/k

2
L2
C 2�0k@

kC1
x N.t/k2

L2
D 0; k D 1; 2; : : : :

Using time weights, we get

d

dt
.tkk@kxN.t/k

2
L2
/C 2�0t

k
k@kC1x N.t/k2

L2
D ktk�1k@kxN.t/k

2
L2
:

Defining the Lyapunov functional

LN;k.t/ WD kN.t/k
2
L2
C

X
1�k0�k

Q"k0 t
k0
k@k

0

x N.t/k
2
L2
;

we have

d

dt
LN;k.t/C .2�0 � Q"1/k@xN.t/k

2
L2

C

X
1�k0�k

.2�0 Q"k0 � .k
0
C 1/Q"k0C1/t

k0
k@k

0C1
x N.t/k2

L2
D 0: (4.5)

Choosing
Q"1 D �0; Q"kC1 D

�0

k C 1
Q"k ;

and integrating (4.5) in time, we obtain

kN.t/k2
L2
C

X
1�k0�k

tk
0

k@k
0

x N.t/k
2
L2

C

Z t

0

�
k@xN.�/k

2
L2
C

X
1�k0�k

�k
0

k@k
0C1
x N.�/k2

L2

�
d� � CkkU1;0k

2
L2
; (4.6)

which leads to (4.2). Next we prove (4.3). We define

S.x; t/ D

Z x

�1

N.y; t/ dy and S0.x/ D

Z x

�1

U1;0.y/ dy:

Clearly, S also satisfies the parabolic equation (2.4) with the initial datum S0. Similarly,
we introduce the functional

L�N;k.t/ WD kS.t/k
2
L2
C

X
1�k0�k

"�k0 t
k0
k@k

0

x S.t/k
2
L2
; (4.7)
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with some suitable small constants "�
k

, k D 1; 2; : : : ; such that

d

dt
L�N;k.t/C �0k@xS.t/k

2
L2
C �0

X
1�k0�k

"�k0 t
k0
k@k

0C1
x S.t/k2

L2
� 0: (4.8)

Taking advantage of the Caffarelli–Kohn–Nirenberg inequality (A.3), we have

kS0kL2 � 2k jxjU1;0kL2 : (4.9)

Hence, integrating (4.8) over Œ0; t � and using (4.9) and the fact that @xS D N , we arrive atX
0�k0�k�1

tk
0C1
k@k

0

x N.t/k
2
L2
C

X
0�k0�k�1

Z t

0

�k
0C1
k@k

0C1
x N.�/k2

L2
d�

� Ckk jxjU1;0k
2
L2
: (4.10)

For k0 D 0; 1; 2; : : : ; let the linear operator T 0
k

be defined by Tk0.U1;0/ D @k
0

x N . Then the
inequalities (4.6) and (4.10) yield

kTk0.U1;0/kL2 � Ck0 t
� k
0

2 kU1;0kL2.dx/;

kTk0.U1;0/kL2 � Ck0 t
� k
0

2 �
1
2 kU1;0kL2.jxj2 dx/:

Employing the Stein–Wassin interpolation theorem (see [5, Theorem 5.4.1] or [45]), we
have

kTk0.U1;0/kL2 � Ck0 t
� k
0

2 �
�
2 kU1;0kL2.jxj2�dx/; 0 < � < 1;

which completes the proof of (4.3).

4.2. Time-decay estimates of the error

In this subsection we establish faster decay rates for the error between U1 andN . Inspired
by [10, 11], we introduce the damped mode

R D D�1A2;1U1 CD
�1A2;2U2 C

Z x

�1

U2.y; t/ dy;

which solves the damped system

@tRCDR D D
�1A2;1@tU1 CD

�1A2;2@tU2:

Setting U2 D @xR �D�1A2;1@xU1 �D�1A2;2@xU2 and since A1;1 D 0, equation (1.7)1
can be rewritten as

@tU1 � A1;2D
�1A2;1@

2
xU1 D @

2
x.�A1;2RCD

�1A2;2U2/: (4.11)

Therefore, as the right-hand-side terms in (4.11) decay rapidly, one expects that system
(4.11) is asymptotically close to the linear parabolic system (2.4). We have the following
lemma.
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Lemma 4.3. Let the assumptions of Theorem 2.1 be satisfied, and U D .U1; U2/ be the
solution to (1.6) supplemented with the initial datum U0 D .U0;1;U0;2/ 2H 1. In addition,
assume A1;1 D 0 and jxjU0;2 2 L2. Then, for all t > 0 and any constant 0 < "� 1=2,
we have

kR.t/kL2 � C.1C t /
� 12 .kU0kH1 C k jxjU0;2kL2/; (4.12)

k.U1 �N/.t/kL2 � C.1C t /
� 12C".kU0kH1 C k jxjU0;2kL2/; (4.13)

where R is defined by (2.8), N is the solution to (2.4) subject to the initial datum U0;1,
and C > 0 is a generic constant.

Furthermore, under the additional assumption jxjU1;0 2 L2, we have

k.U1 �N/.t/kL2 � C.1C t /
� 12 .kU0kH1 C k jxjU0kL2/: (4.14)

Proof. To recover the time-decay estimates, we adapt the hypocoercive approach from
Section 3. The proof is divided into three steps.

• Step 1: Decay estimates for R. Performing an L2-energy estimate on (2.9) and using
(1.3), we obtain

d

dt
kR.t/k2

L2
C 2�kR.t/k2

L2

� 2.kD�1A2;1@tU1.t/kL2 C kD
�1A2;2@tU2.t/kL2/kR.t/kL2 ;

which implies

kR.t/kL2 � e
��t
kR.0/kL2 C C

Z t

0

e��.t��/k.@tU1; @tU2/.�/kL2 d�: (4.15)

One deduces from the Caffarelli–Kohn–Nirenberg inequality (A.3) that

kR.0/kL2 � CkU0kL2 C Ck jxjU2;0kL2 ; (4.16)

and, according to (1.7) and the decay (2.1) of @xU and U2 at hand, we have

k.@tU1; @tU2/.t/kL2 � Ck.@xU;U2/.t/kL2 � C.1C t /
� 12 kU0kH1 : (4.17)

Substituting (4.16) and (4.17) into (4.15) yields (4.12).

• Step 2: Decay estimates for the error term. In this step we establish the decay estimates
(4.13) of the error unknown zU1 WD U1 �N . On this matter, we observe that zU1 satisfies

@t zU1 � A1;2D
�1A2;1@

2
x
zU1 D @

2
x
zF ; zU1.0; x/ D 0; (4.18)

with zF WD �A1;2RCD�1A2;2U2. Defining

zQ.x; t/ WD

Z x

�1

Z y

�1

zU1.z; t/ dz dy; (4.19)
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we deduce from (4.18) that

@t zQ � A1;2D
�1A2;1@

2
x
zQ D zF and zQ.0; x/ D 0: (4.20)

Hence, Duhamel’s principle applied to (4.20) yields

zQ.x; t/ D

Z t

0

G sF.x; t/ ds; (4.21)

where G sF.x; t/ is the solution to

@t .G
sF / � A1;2D

�1A2;1@
2
x.G

sF / D 0; t > s; G sF.x; s/ D F.x; s/: (4.22)

Applying Lemma 4.2 with k D 2 to (4.22) gives rise to

k@2xG sF.t/kL2 � .t � s/
�1
kF.s/kL2 : (4.23)

Then, differentiating (4.22) with respect to x and taking advantage of Lemma 4.2 with
k D 1, yields

k@2xG sF.t/kL2 � .t � s/
� 12 k@xF.s/kL2 : (4.24)

Using an interpolation argument between (4.23) and (4.24), for any 0 < " < 1=2, we have

k@2xG sF.t/kL2 � ..t � s/
�1
kF.s/kL2/

1�2"..t � s/�
1
2 k@xF.s/kL2/

2"

� .t � s/�.1�"/.kF.s/kL2 C k@xF.s/kL2/: (4.25)

Gathering estimates (2.1) and (4.12), we derive decay for F as follows:

kF.s/kL2 C k@xF.s/kL2 � CkR.s/kL2 C CkU2.s/kL2 C Ck@xU.s/kL2

� Cs�
1
2 .kU0kH1 C Ck jxjU2;0kL2/: (4.26)

It thus follows from (4.21), (4.25), and (4.26) that

k zU1.t/kL2 D k@
2
x
zQ.t/kL2

�

Z t

0

k@2xG sF.t/kL2 ds

� C

Z t

0

.t � s/�.1�"/s�
1
2 ds .kU0kH1 C k.1C jxj/U2;0kL2/

� CB
�
";
1

2

�
t�

1
2C".kU0kH1 C k jxjU2;0kL2/;

where B.s1; s2/ denotes the beta function. This leads to (4.13).
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• Step 3: Improved decay estimates for the error part. Under the additional condition
jxjU1;0 2 L

2, we now justify the improved decay estimates (4.14) for zU1. Taking the
inner product of (4.18) with � zQ given by (4.19) and applying (4.4), we obtain

d

dt
k@x zQ.t/k

2
L2
C 2�0k zU1.t/k

2
L2
D �2.@x zF ; zU1/L2 : (4.27)

On the other hand, . zU1; U2/ solves the partially dissipative hyperbolic system8̂̂<̂
:̂
@t zU1 C A1;2@xU2 D �A1;2D

�1A2;1@
2
xN;

@tU2 C A2;1@x zU1 C A2;2@xU2 CDU2 D �A2;1@xN;

. zU1; U2/.0; x/ D .0; U2;0/.x/:

Performing time-weighted L2-energy estimates, we obtain

d

dt
.tk. zU1; U2/.t/k

2
L2
/C 2t�0kU2.t/k

2
L2

D k. zU1; U2/.t/k
2
L2
� 2t.A1;2D

�1A2;1@
2
xN;
zU1/L2 � 2t.A2;1@xN;U2/L2 : (4.28)

We define the Lyapunov functional

zL.t/ WD L.t/CL�N;2.t/C �
�
1k@x

zQ.t/k2
L2
C ��2tk.

zU1; U2/.t/k
2
L2
;

where L.t/ and L�N;2.t/ are given by (3.1) and (4.7), respectively. In view of (3.9), (4.8),
(4.27), and (4.28), we get

d

dt
zL.t/C

��
2
� ��2

�
kU2.t/k

2
L2
C �

�1
2
C �0t

�
k@xU2.t/k

2
L2

C
"�

4CK
k@xU.t/k

2
L2
C �0

X
0�k0�3

"�k0 t
k0
k@k

0

x N.t/k
2
L2

C .2�0�
�
1 � �

�
2/k
zU1.t/k

2
L2
C 2�0�

�
2tkU2.t/k

2
L2

� �2��1.@x
zF ; zU1/L2 � 2�

�
2t .A1;2D

�1A2;1@
2
xN;
zU1/L2

� 2��2t .A2;1@xN;U2/L2 : (4.29)

The right-hand-side terms of (4.29) are analyzed as follows. First, one has

�2��1.@x
zF ; zU1/L2 � �0�

�
1k
zU1.t/k

2
L2
C C��1.kU2.t/k

2
L2
C k@xU.t/k

2
L2
/:

Similarly, we have

�2��2t .A1;2D
�1A2;1@

2
xN;
zU1/L2 � C�

�
2t
2
k@2xN.t/k

2
L2
C C��2k

zU1.t/k
2
L2

and
�2��2t .A2;1@xN;U2/L2 � �

�
2�0tkU2.t/k

2
L2
C C��2tk@xN.t/k

2
L2
:
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Substituting the above three estimates into (4.29) and choosing

��1 D min
° �
8C

;
"�

8CK

±
; ��2 D min

°�
8
;
�0"
�
1

2C
;
�0"
�
2

2C
;

�0�
�
1

2.C C 1/

±
;

yields

d

dt
zL.t/C

�

4
kU2.t/k

2
L2
C �

�1
4
C �0t

�
k@xU2.t/k

2
L2
C

"�

8CK
k@xU.t/k

2
L2

C
�0

2

X
0�k0�3

"0�k t
k0
k@k

0

x N.t/k
2
L2
C
1

2
�0�
�
1k
zU1.t/k

2
L2
C �0�

�
2tkU2.t/k

2
L2
� 0:

Integrating in time leads to

tk zU1.t/k
2
L2
C

Z t

0

.k zU1.�/k
2
L2
C �kU2.�/k

2
L2
/ d� � C.kU0k

2
H1 C k jxjU0k

2
L2
/;

which concludes the proof of Lemma 4.3.

Proof of Theorem 2.2. The L2-decay estimate (2.6) of the error U1 � N follows directly
from Lemma 4.3. Then we impose the condition jxj�U0;1 2 L2 with 0 < � � 1. In the
case 0 < � < 1, estimates (2.6) for 0 < " < 1

2
.1 � �/ together with (4.3) guarantee that

kU1.t/kL2 � kN.t/kL2 C k.U1 �N/.t/kL2

� C.1C t /�
�
2 k.1C jxj�/U1;0kL2

C C.1C t /�
1
2C".kU0kH1 C k jxjU2;0kL2/

� C.1C t /�
�
2X0:

In the case � D 1, one deduces from (4.3) and (4.14) that

kU1.t/kL2 � kN.t/kL2 C k.U1 �N/.t/kL2

� C.1C t /�
1
2 k.1C jxj/U1;0kL2 C C.1C t /

� 12 .kU0kH1 C k jxjU0kL2/

� C.1C t /�
1
2X0:

Combining the above decay estimates for U1 and the estimates derived for U2 in Theorem
2.1, we get L2-decay estimates for U in (2.7).

We now establish the faster decay rates of @xU andU2 in (2.7). The Lyapunov inequal-
ity (3.9) can be rewritten as

d

dt
.L�.t/C �0tk@xU.t/k

2
L2
/C

�

2
kU2.t/k

2
L2

C �
�1
2
C �0t

�
k@xU2.t/k

2
L2
C

"�

4CK
k@xU.t/k

2
L2
� 0; (4.30)
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with L�.t/ WD kU.t/k
2
H1 C	.t/�kU.t/k2

H1 :Choosing the constant �0 sufficiently small,
applying Lemma A.3 to the differential inequality (4.30), and noticing that @xU is uni-
formly bounded in L2, we conclude

k@xU.t/kL2 � C.1C t /
�
�
2 �

1
2X0:

Then, using (3.12) together with the decay for U1 and @xU at hand, leads to

kU2.t/kL2 � e
��t
kU2;0kL2 C CX0

Z t

0

e��.t��/.1C �/�
�
2 �

1
2 d�

� C.1C t /�
�
2 �

1
2X0;

which concludes the proof of Theorem 2.2.

5. Wave formulation method: Proof of Theorem 2.3

In this section we prove Theorem 2.3. We introduce the unknown

W.x; t/ D

Z x

�1

U1.y; t/ dy; (5.1)

which satisfies the following damped wave formulation:

@2tW � A1;2A2;1@
2
xW C A1;2A2;2A

�1
1;2@t@xW C A1;2DA

�1
1;2@tW D 0: (5.2)

We note that A�11;2 is well defined as, if A1;2 is not invertible, then A1;2 is not a n1 � n1
matrix of full rank, which, together with A1;1 D 0, contradicts the Kalman rank condition
(1.10). To obtain (5.2), we integrated (1.7)1 over .�1; x/ which gives

@tW C A1;2U2 D 0: (5.3)

Then, differentiating the above system in time and making use of (1.7)2, we get

@2ttW � A1;2A2;1@xU1 � A1;2A2;2@xU2 � A1;2DU2 D 0: (5.4)

Combining (5.1), (5.3), and (5.4), we have (5.2).
Since @xW D U1 and j@tW j � jU2j, we can derive L2 time-decay estimates for U

once we establish decay estimates for the wave energy k.@tW; @xW /.t/k2L2 . In the fol-
lowing lemma we establish time-space weighted energy estimates for W .

Lemma 5.1. Let W be defined by (5.1). Then, under the assumptions of Theorem 2.3, for
all t > 0, we haveZ

R
.1C t C jxj/2��1.j@tW j

2
C j@xW j

2/ dx

C

Z t

0

Z
R

�
.1C t C jxj/2��1j@tW j

2
C .1C t C jxj/2��2j@xW j

2
�
dx d�

� CY 20 ; (5.5)

with Y0 WD kU0kH1 C k jxj�U1;0kL2 C k jxj
�� 12U2;0kL2 .
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Proof. The proof is split into the cases � D 1 and 1=2 < � < 1:

• Case 1: � D 1. Taking the L2 inner product of (5.2) with .1C t C jxj/@tW , we get

d

dt

Z
R

1

2
.1C t C jxj/.j@tW j

2
C A1;2A2;1@xW � @xW /dx

C

Z
R

�
.1C t C jxj/A1;2DA

�1
1;2@tW � @tW �

1

2
A1;2A2;1@xW � @xW

�
dx

D

Z
R

�1
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW

�
dx; (5.6)

where we usedZ
R
.1C t C jxj/.@2tW � @tW � A1;2A2;1@

2
xW � @tW /dx

D
d

dt

Z
R

1

2
.1C t C jxj/.j@tW j

2
C A1;2A2;1@xW � @xW /dx

�
1

2

Z
R
.j@tW j

2
C A1;2A2;1@xW � @xW /dx C

Z
R

x

jxj
A1;2A2;1@xW � @tW dx

and Z
R
.1C t C jxj/A1;2A2;2A

�1
1;2@t@xW � @tW dx

D �
1

2

Z
R

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW dx:

In addition, taking the inner product of (5.2) with W , we obtain

d

dt

Z
R

�
W � @tW C

1

2
A1;2DA

�1
1;2jW j

2
�
dx C

Z
R
A1;2A2;1@xW � @xW dx

D

Z
R
.j@tW j

2
C A1;2A2;2A

�1
1;2@tW � @xW /dx: (5.7)

It follows from (5.6) and (5.7) that

d

dt
W.t/CH .t/ D

Z
R

�3
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW

C A1;2A2;2A
�1
1;2@tW � @xW

�
dx; (5.8)

where W.t/ and H .t/ are defined by

W.t/ WD

Z
R

1

2
.1C t C jxj/.j@tW j

2
C A1;2A2;1@xW � @xW /dx

C

Z
R

�
W � @tW C

1

2
A1;2DA

�1
1;2jW j

2
�
dx;
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H .t/ WD

Z
R
.1C t C jxj/A1;2DA

�1
1;2@tW � @tW dx C

Z
R

1

2
A1;2A2;1@xW � @xW dx:

Notice that A1;2DA�11;2 satisfies (1.3) since the eigenvalues of D and A1;2DA�11;2 are the
same. By the strong dissipation conditions (1.3) and the positive definiteness of A1;2A2;1,
we have

W.t/ �

Z
R

�
.1C t C jxj/

�1
2
j@tW j

2
C �1j@xW j

2
�
C �jW j2 � C j@tW j

2
�
dx

and
H .t/ �

Z
R

�
�.1C t C jxj/j@tW j

2
C
�1

2
j@xW j

2
�
dx:

Since j@tW j � jU2j, due to (5.3) and the fact that A1;2 is invertible, one can estimate the
right-hand side of (5.8) asZ

R

�3
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW C A1;2A2;2A

�1
1;2@tW � @xW

�
dx

�
�1

4

Z
R
j@xW j

2 dx C C

Z
R
jU2j

2 dx:

The above estimates give rise toZ
R

�
.1C t C jxj/

�1
2
j@tW j

2
C �1j@xW j

2
�
C �jW j2

�
dx

C

Z t

0

Z
R

�
�.1C � C jxj/j@tW j

2
C
�1

4
j@xW j

2
�
dx d�

� W.0/C C

Z
R
jU2j

2 dx C C

Z t

0

Z
R
jU2j

2 dx d�: (5.9)

Under the assumptions (2.10) and @tU1jtD0 D �A1;2@xU2;0, one deduces from the
Caffarelli–Kohn–Nirenberg inequality (A.3) that

W.0/ .
Z

R

�
.1C jxj/jU0j

2
C

ˇ̌̌̌Z x

�1

U1;0.y/ dy

ˇ̌̌̌2�
dx . Y 20 : (5.10)

By j@tW j � jU2j and (3.13), it holds thatZ
R
j@tW j

2 dx C

Z t

0

Z
R
j@tW j

2 dx d�

�

Z
R
jU2j

2 dx C

Z t

0

Z
R
jU2j

2 dx d� . Y 20 : (5.11)

Inserting (5.10) and (5.11) into (5.9), we get (5.5) with � D 1.



Asymptotics for partially dissipative hyperbolic systems 1189

• Case 2: 1=2 < � < 1. In this case, let 'WRC ! RC be a weight function to be deter-
mined later. Similarly to the case � D 1, one gets

d

dt

Z
R

1

2
'.t C jxj/.j@tW j

2
C A1;2A2;1@xW � @xW /dx

C

Z
R

�
'.tCjxj/A1;2DA

�1
1;2@tW � @tW �

1

2
'0.tCjxj/A1;2A2;1@xW � @xW

�
dx

D

Z
R
'0.t C jxj/

�1
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW

�
dx:

After taking the inner product of (5.2) with '0.t C jxj/W , we verify that

d

dt

Z
R

�
'0.t C jxj/@tWW � '

00.t C jxj/jW j2 C
1

2
'0.t C jxj/A1;2DA

�1
1;2W �W

�
dx

C

Z
R

�
'0.t C jxj/A1;2A2;1@xW � @xW C

1

2
'000.t C jxj/jW j2

�
dx

�

Z
R

�1
2
'000.t C jxj/C '00.t C jxj/ı0.x/

�
A1;2A2;1W �W dx

D

Z
R
'0.t C jxj/j@tW j

2 dx:

Here we have usedZ
R
'0.t C jxj/@2tW �W dx

D
d

dt

Z
R

�
'0.t C jxj/@tW �W �

1

2
'00.t C jxj/jW j2

�
dx

C

Z
R

�1
2
'000.t C jxj/jW j2 � '0.t C jxj/j@tW j

2
�
dx;Z

R
'0.t C jxj/A1;2DA

�1
1;2@tW �W dx

D
d

dt

Z
R

1

2
'0.t Cjxj/A1;2DA

�1
1;2W �W dx �

Z
R
'00.t Cjxj/A1;2DA

�1
1;2W �W dx;

and

�

Z
R
'0.t C jxj/A1;2A2;1@

2
xW �W dx

D �

Z
R

�1
2
'000.t C jxj/C '00.t C jxj/ı0.x/

�
A1;2A2;1W �W dx

�

Z
R
'0.t C jxj/A1;2A2;1@xW � @xW dx;
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where ı0.x/ denotes the Dirac function at 0. Gathering the previous estimates we get the
following inequality:

d

dt
W�.t/CH�.t/ D

Z
R
'0.t C jxj/

�3
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW

�
dx; (5.12)

with

W�.t/ WD

Z
R

1

2
'.t C jxj/.j@tW j

2
C A1;2A2;1@xW � @xW /dx

C

Z
R

�
'0.t C jxj/@tW �W �

1

2
'00.t C jxj/jW j2

�
dx

C

Z
R

1

2
'0.t C jxj/A1;2DA

�1
1;2W �W dx;

H�.t/ WD

Z
R

�
'.t C jxj/A1;2DA

�1
1;2@tW � @tW

C
1

2
'0.t C jxj/A1;2A2;1@xW � @xW

�
dx

C

Z
R

1

2
'000.t C jxj/jW j2 dx

�

Z
R

��1
2
'000.t C jxj/C '00.t C jxj/ı0.x/

�
A1;2A2;1W �W

�
dx:

In order to recover the coercivity estimates on W�.t/ and H�.t/, one requires that '.s/
satisfies

'0 > 0; '00 < 0; '000 > 0;
1

4
'.t C jxj/ �

1

�1
'0.t C jxj/: (5.13)

Indeed, due to (1.3) and (5.13), for some constant �1 > 0, there holds that

W�.t/ �

Z
R

�1
4
'.t C jxj/j@tW j

2
C �'.t C jxj/j@xW j

2
�
dx

C

Z
R

��1
4
'0.t C jxj/ �

1

2
'00.t C jxj/

�
jW j2 dx

and

H�.t/ �

Z
R

�
�'.t C jxj/j@tW j

2
C
�1

2
'0.t C jxj/j@xW j

2
�
dx

C

Z
R

1

2
'000.t C jxj/.jW j2 � A1;2A2;1W �W /dx � �1'

00.t/jW.0; t/j2

�

Z
R

�
�'.t C jxj/j@tW j

2
C
�1

2
'0.t C jxj/j@xW j

2
�
dx;
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where we have used the positive definiteness ofA1;2A2;1 with jA1;2A2;1j � 1. In addition,
one has Z

R
'0.t C jxj/

�3
2
j@tW j

2
�
x

jxj
A1;2A2;1@xW � @tW

C
1

2

x

jxj
A1;2A2;2A

�1
1;2@tW � @tW

�
dx

�

Z
R

�
C'0.t C jxj/j@tW j

2
C
�1

4
'0.t C jxj/j@xW j

2
�
dx;

which can be controlled by the left-hand side of (5.12) provided that

C'0.t C jxj/ �
�

2
'.t C jxj/: (5.14)

In addition, under the assumptions (2.10), one needs � > 1=2 and

'.s/ � .1C s/2��1; '0.s/ � .1C s/2��2; (5.15)

so as to bound the initial energy W.0/ by Y 20 in terms of (2.10) and the Caffarelli–Kohn–
Nirenberg inequality (A.3). One can show that the function

'.s/ D .aC s/2��1 with
1

2
< � < 1 and some constant a > max

° 4
�1
;
2C

�

±
fulfills conditions (5.13), (5.14), and (5.15). Therefore, integrating (5.12) over Œ0; t � and
using (3.13), we obtain the desired inequality (5.5).

Proof of Theorem 2.3. In view of estimate (5.5) obtained in Lemma 5.1 and the facts that
U1 D @xW , U2 D �A�11;2@tW , and that, for x 2 R, t > 0, and � � 1=2,

.1C t /2��1 � .1C t C jxj/2��1;

we get the L2 rate .1C t /��C
1
2 of U in (2.11). Applying the L2 rate of U in (2.11) and

Lemma A.3 to the differential inequality (4.30), we recover faster time-decay rates for
@xU in (2.11). Finally, the faster decay rates for U2 follow from the decay rates obtained
for @xU and (3.12). The proof of Theorem 2.3 is now complete.

6. Proofs of Theorems 2.4 and 2.5

6.1. Asymptotic estimates for the compressible Euler equations with damping

In this subsection we apply the methods developed in Theorems 2.1, 2.2, and 2.3 to a
concrete nonlinear partially dissipative hyperbolic system: the damped compressible Euler
equations (1.4) with a general pressure function P.�/ satisfying (2.14).
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6.2. Proof of global existence and time-decay estimates

To prove the global existence of system (1.4), we establish a priori estimates as follows:

Lemma 6.1 (A priori estimates). Let .�; u/ be the solution to system (1.4) on Œ0; T / for
any given time T > 0. Define

X.t/ WD sup
�2Œ0;t�

�
k.� � N�; u/.�/k2

H2 C �ku.�/k
2
L2
C �k@x.� � N�; u/.�/k

2
L2

�
C

Z t

0

�
k@x.� � N�/.�/k

2
H1 C ku.�/k

2
H2 C �k@xu.�/k

2
L2

�
d�:

There exists a small constant ı1 independent of T such that if

X.t/ � ı1; 0 < t < T; (6.1)

then there exists a generic constant C0 > 0 such that

X.t/ � C0k.�0 � N�; u0/k
2
H2 ; 0 < t < T: (6.2)

Proof. We use similar arguments to those used in the Section 3.1. Define the perturbation

n WD � � N�:

It is easy to check that the basic energy equality for (1.4) holds:

d

dt
Eeuler.t/C �ku.t/k

2
L2
D 0:

Here, Eeuler.t/ is given by

Eeuler.t/ WD

Z
R

�
1

2
�juj2 C �

Z �

N�

P 0.s/ � P 0. N�/

s2
ds

�
dx � k.n; u/.t/k2

L2
:

To derive higher-order estimates for .n; u/, we write (1.4) as´
@tnC �@xu D �u@xn;

@tuCG.n/@xnC �u D �u@xu;
(6.3)

where

G.n/ WD
P 0. N�C n/

N�C n
> 0:

We have

d

dt

Z
R

�
j@xnj

2
C

�

G.n/
j@xuj

2
�
dx C

Z
R

� 2��
G.n/

� @t
�

G.n/

�
j@xuj

2 dx

� 4k@xn.t/kL1k@xn.t/kL2k@xu.t/kL2

C 2



 �

G.n/





L1t .L

1/
.k@x.u@xu/.t/kL2 C k@xG.n/@xn.t/kL2/k@xu.t/kL2 (6.4)
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and

d

dt

Z
R
t
�
j@xnj

2
C

�

G.n/
j@xuj

2
�
dx C t

Z
R

� 2��
G.n/

� @t
�

G.n/

�
j@xuj

2 dx

�

Z
R

�
j@xnj

2
C

�

G.n/
j@xuj

2
�
dx

C 4tk@xn.t/kL1k@xn.t/kL2k@xu.t/kL2

C 2t



 �

G.n/





L1t .L

1/
.k@x.u@xu/.t/kL2 C k@xG.n/@xn.t/kL2/k@xu.t/kL2 : (6.5)

Unlike in the linear setting, H 2-regularity estimates are needed to control the nonlin-
ear terms. The system satisfied by .@2xn; @

2
xu/ reads´

@t@
2
xnC u@

3
xxxnC �@

3
xxxu D R1;

@t@
2
xuC u@

3
xxxuCG.n/@

3
xxxnC �@

2
xu D R2;

with the commutator terms

R1 WD Œu; @
2
x �@xnC Œn; @

2
x �@xu and R2 WD Œu; @

2
x �@xuC ŒG.n/; @

2
x �@xn:

Thence it holds that

d

dt

Z
R

�
j@2xnj

2
C

�

G.n/
j@2xuj

2
�
dx C

Z
R

� 2��
G.n/

� @t
�

G.n/

�
j@2xuj

2 dx

� 2k@xn.t/kL1k@
2
xn.t/kL2k@

2
xu.t/kL2 C k@xu.t/kL1k@

2
xn.t/k

2
L2

C

�


 �

G.n/





L1t .L

1/
k@xu.t/kL1 C




@x �

G.n/





L1t .L

1/
ku.t/kL1

�
k@2xu.t/k

2
L2

C 2kR1.t/kL2k@
2
xn.t/kL2 C 2




 �

G.n/





L1t .L

1/
kR2.t/kL2k@

2
xu.t/kL2 : (6.6)

Furthermore, to capture time-decay information for n, from (6.3) we have

d

dt

Z
R
.u@xnC @xu@

2
xn/ dx

C

Z
R

�
G.n/.j@xnj

2
C j@2xnj

2/ � �.j@xuj
2
C j@2xuj

2/C �u@xnC �@xu@
2
xn
�
dx

� ku@xn.t/kH1k@xu.t/kH1 C ku@xu.t/kH1k@xn.t/kH1

C kR0.t/kL2k@
2
xn.t/kL2 : (6.7)

Let c1; c2 2 .0; 1/ be two constants to be chosen later. Define

Leuler.t/ WD Eeuler.t/C .1C c1t /

Z
R

�
j@xnj

2
C

�

G.n/
j@xuj

2
�
dx

C

Z
R

�
j@2xnj

2
C

�

G.n/
j@2xuj

2
�
dx C c2

Z
R
.u@xnC @xu@

2
xn/ dx
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and

Deuler.t/ D �ku.t/k
2
L2
C .1C c1t /

Z
R

� 2��
G.n/

� @t
�

G.n/

�
j@2xuj

2 dx

C

Z
R

� 2��
G.n/

� @t
�

G.n/

�
j@2xuj

2 dx

C c2

Z
R

�
G.n/.j@xnj

2
C j@2xnj

2/ � �.j@xuj
2
C j@2xuj

2/

C �u@xnC �@xu@
2
xn
�
dx:

Using (6.1) with ı1 suitably small, we have

0 <
N�

2P 0. N�/
�

�

G.n/
.x; t/ �

2 N�

P 0. N�/
; .x; t/ 2 R � .0; T / (6.8)

and

k@t
�

G.n/
kL1t .L

1
x / � Ck@tnkL1t .L1x /

� CkukL1t .L1x /k@xnkL1t .L1x /

C Ck@xukL1t .L1x /.1C knkL1t .L1x // � �: (6.9)

Adjusting the coefficients c1, c2 suitably and making use of (6.8) and (6.9), we obtain

Leuler.t/ � k.n; u/.t/k
2
H2 C c1tk@x.n; u/.t/k

2
L2

(6.10)

and
Deuler.t/ & ku.t/k2

H2 C k@xn.t/k
2
H1 C c1tk@xu.t/k

2
L2
: (6.11)

Then it follows from (6.4), (6.5), (6.6), (6.7), and (6.8) that

d

dt
Leuler.t/CDeuler.t/

. k.@xn; @xu/.t/kL1k.@xu; @xn/.t/k2L2
C ku@xn.t/kH1k.n; @xu/.t/kH1 C ku@xu.t/kH1k.@xn; u/.t/kH1

C kR1.t/kL2k@
2
xn.t/kL2 C kR2.t/kL2k@

2
xu.t/kL2

C tk@xn.t/kL1k@xn.t/kL2k@xu.t/kL2

C t .k@x.u@xu/kL2 C k@xG.n/@xn.t/kL2/k@xu.t/kL2 : (6.12)

The nonlinear terms on the right-hand side of (6.12) are analyzed as follows. First, by the
Sobolev embedding one has

k.@xn; @xu/.t/kL1 . k.@xn; @xu/.t/kH1 :

Since H 1 is an algebra, we obtain

ku@xn.t/kH1k.n; @xu/.t/kH1 C ku@xu.t/kH1k.@xn; u/.t/kH1

. k.n; u/.t/kH2k.@xn; u/.t/kH1 :
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From standard commutator estimates (cf. [26]) and H 1 ,! L1, one gets

kR1.t/kL2 . kŒu; @2x �@xn.t/kL2 C kŒn; @
2
x �@xu.t/kL2

. k.n; u/.t/kH2k@2x.n; u/.t/kL2

and, similarly,

kR2.t/kL2 . kŒu; @2x �@xu.t/kL2 C kŒG.n/; @
2
x �@xn.t/kL2

. k.n; u/.t/kH2k@2x.n; u/.t/kL2 :

Concerning the time-weighted nonlinear terms, we have

tk@xn.t/kL1k@xn.t/kL2k@xu.t/kL2

C t .k@x.u@xu/kL2 C k@xG.n/@xn.t/kL2/k@xu.t/kL2

. k.@xn; u/.t/kL2.t
1
2 k@x.n; u/.t/kL2/.t

1
2 k@xu.t/kL2/

. �0tk@xu.t/k
2
L2
C

1

�0
k.@xn; u/.t/k

2
L2
tk@x.n; u/.t/k

2
L2
:

Substituting the above estimates into (6.12), choosing a suitable small constant �0 > 0,
and using (6.1), (6.10), and (6.11), we derive

d

dt
Leuler.t/C ku.t/k

2
H2 C k@xn.t/k

2
H1 C tk@xu.t/k

2
L2

. k.@xn; u/.t/kL2Leuler.t/: (6.13)

Applying Grönwall’s inequality to (6.13) and using the fact that k.@xn; u/.t/kL2 is uni-
formly integrable due to (6.1), we get

k.n; u/.t/k2
H2 C tk@x.n; u/.t/k

2
L2

C

Z t

0

.k@xn.�/k
2
H1 C ku.�/k

2
H2 C �k@xu.�/k

2
L2
/ d�

. k.�0 � N�; u0/k2H2 : (6.14)

Finally, taking the L2 inner product of (6.3)2 with v, we have

d

dt
ku.t/k2

L2
C 2�ku.t/k2

L2

. .kukL1t .L1x /k@xu.t/kL2 C k@xn.t/kL2/ku.t/kL2 : (6.15)

This, together with Grönwall’s inequality and (6.14), leads to

ku.t/kL2 . e��tku0kL2 C

Z t

0

e��.t��/k@x.n; u/.�/kL2

. .1C t /�
1
2 k.�0 � N�; u0/kH2 ;

which concludes the proof of Lemma 6.1.
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Proofs of Theorems 2.4 and 2.5. According to classical local well-posedness results (see
e.g. [3,6,35,43,51]), there exists a time T0 > 0 such that system (1.4) associated to the ini-
tial datum .�0; u0/ admits a unique solution .�; u/ satisfying .� � N�; u/ 2 C.Œ0; T0�IH 2/.
Then, according to the a priori estimates (6.2) established in Lemma 6.2 and a standard
bootstrap argument, one can extend the solution .�; u/ globally in time and recover prop-
erty (2.16) as long as C0k.�0 � N�; u0/k2H2 < ı1.

The time-decay estimates (2.19) and (2.20) in Theorem 2.5 are proved in Lemmas 6.2
and 6.3 in the next subsection.

6.3. Enhanced time-decay rates

Lemma 6.2. Let .�; u/ be the global solution of system (1.4) associated to the initial
datum .�0; u0/, and �� be the global solution of system (2.18) subject to the initial datum
�0. Assume (2.15) and jxju0 2L2; then �� �� verifies (2.17). Additionally, if jxj�.�0 � N�/
holds with 0 < � � 1, then .�; u/ fulfills (2.19).

Proof. Following a similar procedure to the one used in the proof of Theorem 2.3, we
introduce the damped mode

R� WD
P 0. N�/

N�
nC �

Z x

�1

udy;

so as to rewrite (6.3)1 as

@t� �
P 0. N�/

�
@2x� D �

N�

�
@2xR

�
� @x.nu/: (6.16)

One observes that R� satisfies a damped equation

@tR
�
C �R� D F3; (6.17)

with

F3 WD �
1

2
u2 � I.n/C

P 0. N�/

N�
@tn and I.n/ WD

Z n

0

�P 0. N�C s/
N�C s

�
P 0. N�/

N�

�
ds:

The proof of the decay estimates (2.17)–(2.19) is split into six steps.

• Step 1: Decay of R�. Let jxju0 2 L2. From (6.17), we have

kR�.t/kL2 � e
��t
kR�.0/kL2 C

Z t

0

e��.t��/kF3.�/kL2 d�: (6.18)

By virtue of (A.3), the first term on the right-hand side of (6.18) is controlled by

kR�.0/kL2 . k�0 � N�kL2 C k jxju0kL2 : (6.19)
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We now estimate the nonlinear term F3. Recalling estimate (2.16) and using the
Gagliardo–Nirenberg inequality, we get

ku2.t/kL2 � ku.t/kL2ku.t/kL1

. ku.t/k
3
2

L2
k@xu.t/k

1
2

L2
. k.�0 � N�; u0/kH2.1C t /�1:

With (6.3)1, we have

k@tn.t/kL2 � . N�C knkL1t .L1//kux.t/kL2 C kukL1t .L1/k@xn.t/kL2

. k.�0 � N�; u0/kH2.1C t /�
1
2 : (6.20)

Since I.0/ D I 0.0/ D 0 holds, (2.16) and the Gagliardo–Nirenberg inequality ensure that

kI.n/.t/kL2 . kn.t/kL1kn.t/kL2

. kn.t/k
3
2

L2
k@xn.t/k

1
2

L2
. k.�0 � N�; u0/kH2.1C t /�

1
4 : (6.21)

Putting the above estimates (6.19)–(6.21) into (6.18), we obtain the decay of R� as fol-
lows:

kR�.t/kL2 . .k.�0 � N�; u0/kH2 C k jxju0kL2/.1C t /
� 14 : (6.22)

• Step 2: Decay of � � ��. Next we aim to establish the stability of the parabolic profile,
i.e. (2.17). By (2.18) and (6.16), the error � � �� solves

@t .� � ��/ �
P 0. N�/

�
@2x.� � ��/ D �

N�

�
@2xR

�
� @x.nu/; (6.23)

with the initial datum .� � ��/.0; x/ D 0. Thus, Duhamel’s principle for (6.23) implies

� � �� D �

Z t

0

e
P 0. N�/
�
@2x.t�s/

�
N�

�
@2xR

�
C @x.nu/

�
ds: (6.24)

Similarly to (4.23)–(4.25), one deduces from (2.16) and (6.22) that for 0 < " < 1=2,

ke
P 0. N�/
�
@2x.t�s/@2xR

�.s/kL2 . .t � s/�.1�"/.kR�.s/kL2 C k@xR
�.s/kL2/

. .t � s/�.1�"/s�
1
4 .k.�0 � N�; u0/kH2 C k jxju0kL2/

C .t � s/�.1�"/s�
1
2 k.�0 � N�; u0/kH2 :

Owing to (2.16) and

knu.s/kL2 � ku.s/kL2kn.s/kL1 . ku.s/kL2kn.s/k
1
2

L2
k@xn.s/k

1
2

L2
;

we have

ke
P 0. N�/
�
@2x.t�s/@x.nu/.s/kL2

. .t � s/�
1
2 knu.s/kL2 . .t � s/�

1
2 s�

3
4 k.�0 � N�; u0/kH2 :
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Hence, applying the L2-norm of (6.24) yields

k.� � ��/.t/kL2 .
Z t

0

.t � s/�.1�"/s�
1
4 ds.k.�0 � N�; u0/kH2 C k jxju0kL2/

C

�Z t

0

.t � s/�.1�"/s�
1
4 ds C

Z t

0

.t � s/�
1
2 s�

3
4 ds

�
k.�0 � N�; u0/kH2

� .t�
1
4C" C t�

1
2C" C t�

1
4 /.k.�0 � N�; u0/kH2 C k jxju0kL2/:

Together with the uniform L2-bound of � � ��, the error � � �� satisfies the decay esti-
mate (2.17) for any 0 < " < 1

4
.

• Step 3: Decay of � � N� for 0 < � < 1=2. We assume further that

zX.0/ WD k.�0 � N�; u0/kH2 C k jxj�.�0 � N�/kL2 C k jxju0kL2 <1:

Then, for all 0 < � � 1, a direct application of Lemma 4.2 yields´
k.�� � N�/.t/kL2 . .1C t /�

�
2 k.1C jxj�/.�0 � N�/kL2 ;

k@kx.�
� � N�/.t/kL2 . .1C t /�

k
2�

�
2 k.1C jxj�/.�0 � N�/kL2 ; k D 1; 2; : : : :

(6.25)

In the case 0 < � < 1=2, the combination of (2.17) with 0 < " < 1�2�
4

and (6.25) yields

k.� � N�/.t/kL2 � k.�
�
� N�/.t/kL2 C k.� � �

�/.t/kL2 . .1C t /�
�
2 zX.0/:

• Step 4: Decay of � � N� for 1=2 � � < 1. When � � 1=2, the L2-decay rate of the error
�� �� in (2.17) is not enough. To overcome this difficulty, one needs to improve the decay
of � � ��. In the case 1=2 � � < 1, the lowest term I.n/ on the right-hand side of (6.17)
can be handled as

kI.n/.t/kL2 . kn.t/kL1kn.t/kL2

. kn.t/k
3
2

L2
k@xn.t/k

1
2

L2

. kn.t/k
1
2

L2
k@xn.t/k

1
2

L2
.k.�� � N�/.t/kL2 C k.� � �

�/.t/kL2/

. .1C t /�
1
4�

�
2X.0/

�
zX.0/C sup

�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2

�
; (6.26)

where we used n D �� � N� C � � ��, (2.16), and (6.25). By (6.18)–(6.20), (6.26), and
1
4
C

�
2
�

1
2

, we have

kR�.t/kL2 � zX.0/.1C t /
� 12 CX.0/.1C t /�

1
2 sup
�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2 :

On the other hand, the global existence result guarantees that

k@xR
�.t/kL2 . k@xn.t/kL2 C ku.t/kL2 . X.0/.1C t /�

1
2 :
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Hence, following the computations done in Step 2, we arrive at

ke
P 0. N�/
�
@2x.t�s/@2xR

�.s/kL2

. .t � s/�.1�"/s�
1
2 .k.�0 � N�; u0/kH2 C k jxj�.�0 � N�/kL2 C k jxju0kL2/

C .t � s/�.1�"/s�
1
2 k.�0 � N�; u0/kH2 sup

�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2 : (6.27)

Similar calculations lead to

ke
P 0. N�/
�
@2x.t�s/@x.nu/.s/kL2

. .t � s/�
1
2 ku.s/k

1
2

L2
k@xu.s/kL1.k.�

�
� N�/.s/kL2 C k.�

�
� N�/.s/kL2/

. .t � s/�
1
2 s�

1
2�

�
2X.0/

�
zX.0/C sup

�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2

�
: (6.28)

For " 2 .0; 1��
2
/, we combine (6.24), (6.27), and (6.28) to get

k.� � ��/.t/kL2 � .t
� 12C" C t�

�
2 /
�
zX.0/C sup

�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2

�
:

Since � � �� is uniformly bounded in L2, one has

sup
�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2

� X.0/ zX.0/CX.0/ sup
�2Œ0;t�

.1C �/
�
2 k.� � ��/.�/kL2 :

Together with the fact that X.0/ is suitably small, this yields

k.� � ��/.t/kL2 � .1C t /
�
�
2 zX.0/;

1

2
� � < 1: (6.29)

By (6.25) and (6.29), � � N� has the decay estimate (2.19)1 for 1=2 � � < 1.

• Step 5: Decay of � � N� for � D 1. We now deal with the limit case � D 1. It suffices to
improve the L2-rate of k.� � ��/.t/kL2 to .1C t /�1=2. To this end, following the idea in
Lemma 4.3, we consider the system satisfied by .� � ��; u/:8̂̂̂̂

<̂̂
ˆ̂̂̂:
@t .� � �

�/C N�@xu D F1 �
P 0. N�/

�
@2x�
�;

@tuC
P 0. N�/

N�
@x.� � �

�/C �u D F2 �
P 0. N�/

N�
@x�
�;

.� � ��; u/jtD0 D .0; u0/:

(6.30)
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Performing an L2-energy estimate of (6.30) with the time weight t gives

tk.� � ��; u/.t/k2
L2
C

Z t

0

�ku.�/k2
L2
d�

.
Z t

0

k.� � ��; u/.�/k2
L2
d�

C

Z t

0

�

Z
R

��
F1 �

P 0. N�/

�
@2x�
�
�
.� � ��/C

�
F2 �

P 0. N�/

N�
@x�
�
�
u
�
dx d�: (6.31)

To bound the first term on the right-hand side of (6.31), we recall that the L2.0; t IL2/-
estimate of u was obtained in (6.2), and we take the inner product of (6.23) with
�
R x
�1

R y
�1
.� � ��/.z; t/ dz dy such thatZ t

0

k.� � ��/.�/k2
L2
d� .

Z t

0

.k@xR
�.�/k2

L2
C knu.�/k2

L2
/ d� . X.0/: (6.32)

In order to bound the second term in (6.31), arguing similarly to (4.7)–(4.10), we perform
the energy argument on (2.18) to obtainX

0�k0�k�1

tk
0C1
k@k

0

x .�
�
� N�/.t/k2

L2
C

X
0�k0�k�1

Z t

0

�k
0C1
k@k

0C1
x .�� � N�/.�/k2

L2
d�

. k jxj.�0 � N�/k2L2 ; (6.33)

for any k D 1; 2; : : : : Therefore, taking advantage of (6.32) and (6.33), we haveZ t

0

�

Z
R
j@2x�

�.� � ��/j dx d� �

Z t

0

.�2k@2x�
�.�/k2

L2
C k.� � ��/.�/k2

L2
/ d�

. zX.0/

and, for some constant �1 > 0 to be chosen later,Z t

0

�

Z
R
j@x�

�uj dx d� . �1

Z t

0

�ku.�/k2
L2
d� C

1

�1

Z t

0

�k@x.�
�
� N�/.�/k2

L2
d�:

Integrating by parts, we obtainZ t

0

�

Z
R
F1.� � �

�/ dx d�

D

Z t

0

�

Z
R
@x..� � �

�/u/.� � ��/ dx d� C

Z t

0

�@x..�
�
� N�/u/.� � ��/ dx d�

�

Z t

0

�

Z
R

�
�
1

2
ux.� � �

�/2 C @x.�
�
� N�/u.� � ��/C .�� � N�/@xu.� � �

�/
�
dx d�
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� sup
�2Œ0;t�

�k.� � ��/.�/k2
L2

Z t

0

kux.�/kL1 d� C k.� � N�; �
�
� N�/k2L1t .L1/

�ku.�/k2
L2

C
�

sup
�2Œ0;t�

�k.� � ��/.�/k2
L2

� 1
2

�Z t

0

�k@xu.�/k
2
L2
d�

� 1
2

�

�Z t

0

k.� � ��/.�/k2
L2
d�

� 1
2

:

Similarly, one hasZ t

0

�

Z
R
F2udx d�

. k@xukL1t .L1/
Z t

0

�ku.�/k2
L2
d� C �1

Z t

0

�ku.�/k2
L2
d�

C
1

�1

Z t

0

k@xn.�/k
2
L2
d�
�

sup
�2Œ0;t�

�k.�� � N�/.�/k2
L2
C sup
�2Œ0;t�

�k.� � ��/.�/k2
L2

�
:

Substituting the above estimates into (6.31) and making use of (6.2) and (6.32), we end
up with

tk.� � ��; u/.t/k2
L2
C

Z t

0

�ku.�/k2
L2
d�

.
�
1C

1

�1

�
zX.0/

C .X.0/C �1/

�
sup
�2Œ0;t�

�k.� � ��; u/.�/k2
L2
C

Z t

0

�ku.�/k2
L2
d�

�
:

Choosing a suitably small constant �1 and recalling that X.0/ � 1, we derive the
.1C t /�

1
2 time-decay estimates of k.� � ��/.t/kL2 . Together with (6.25), we obtain the

decay rate of � � N� in (2.19)1 with � D 1.

• Step 6: Decay of u and @x.� � N�; u/. Since we showed (2.19)1 for all 0 < � � 1,
applying Lemma A.3 to the Lyapunov inequality (6.13) gives

k@x.� � N�; u/.t/kL2 . .1C t /�
�
2 �

1
2 zX.0/:

This, together with (2.19)1 and (6.15), gives rise to the desired decay estimate of u. We
thus finish the proof of Lemma 6.2.

Lemma 6.3. Let .�; u/ be the global solution to the Cauchy problem of system (1.4)
associated with the initial datum .�0;u0/. In addition to (2.15), assume jxj�.�0 � N�/2L2,
jxj��1=2u0 2 L

2 for 1=2 < � � 1, @t�jtD0 D �@x.�0u0/, and P 0. N�/ � 1. Then (2.20)
holds.
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Proof. In order to apply the method in Section 5, a key step is to consider the momentum
m D �u D .nC N�/u instead of the velocity v. Then system (1.4) is rewritten, in terms of
.n;m/, as8̂̂̂<̂

ˆ̂:
@tnC @xm D 0;

@tmC P
0. N�/@xnC �m D F3 WD �@x

� m2

N�C n
C P. N�C n/ � P. N�/ � P 0. N�/n

�
;

.n;m/jtD0 D .�0 � N�; �0u0/:

As in Section 5, we introduce the wave unknown

M.x; t/ WD

Z x

�1

n.y; t/ dy

such that
@2tM � P

0. N�/@2xM C �@tM D F3:

Then, following the computation done in the proof of Lemma 5.1, we can show thatZ
R
.1C t C jxj/2��1.j@tM j

2
C j@xM j

2/ dx

C

Z t

0

Z
R

�
.1C t C jxj/2��1j@tM j

2
C .1C t C jxj/2��2j@xM j

2
�
dx d�

. zY 20 C
Z t

0

Z
R
.1C t C jxj/2��1jF3j

2 dx d�: (6.34)

From (6.2) and composition estimates, we obtain

jF3j . jmj j@xmj C jnj j@xnj:

It thus follows thatZ t

0

Z
R
.1C t C jxj/2��1jF3j

2 dx d�

.
Z t

0

k@x.m; n/.�/k
2
L1

Z
R
.1C t C jxj/2��1.jmj2 C jnj2/ dx d�

.
Z t

0

k@x.n; u/.�/k
2
H1

Z
R
.1C t C jxj/2��1.j@tM j

2
C j@xM j

2/ dx d�;

where one has used the facts that @xM D n and @tM D �m. Inserting the above estimate
into (6.34) and using (6.2) and Grönwall’s inequality, we getZ

R
.1C t C jxj/2��1.jnj2 C jmj2/ dx

C

Z t

0

Z
R
.1C t C jxj/2��2jmj2 dx d� . zY 20 ;

which implies (2.20)1. Finally, in view of (2.20)1, (6.15), and Lemma A.3 to the Lyapunov
inequality (6.13), we are able to show the faster decay of v and @x.� � N�; u/ in (2.20)2.
The proof of Lemma 6.3 is complete.
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7. Proof of Theorem 2.6

7.1. Global existence for the p-system with nonlinear damping

In this section we prove the global existence of the nonlinearly damped p-system (1.5).
For brevity, we omit details concerning the local well-posedness of solutions to (1.5) sub-
ject to initial data in H 1 since it can be proved by standard iteration arguments; see e.g.
[3,6,35,43,51]. To extend the local solution to a global one, we establish uniform a priori
estimates as follows.

• L2 estimates. Standard energy estimates lead to

d

dt
k.�; u/.t/k2

L2
C 2ku.t/krC1

LrC1
D 0: (7.1)

• H 1 estimates. From direct energy estimates in (1.5), we get

d

dt
k.@x�; @xu/.t/k

2
L2
C r

Z
R
jujr�1.@xu/

2 dx D 0; (7.2)

where we used thatZ
R
@x.juj

r�1u/@xudx D

Z
R
@xjuj

r�1u@xudx C

Z
R
jujr�1.@xu/

2 dx

D r

Z
R
jujr�1.@xu/

2 dx:

• Dissipation for @xu. Multiplying (1.5)2 by jujr�1@x�, we inferZ
R
@tujuj

r�1@x� dx C

Z
R
jujr�1j@x�j

2 dx �

Z
R
juj2r�2u@x� dx D 0: (7.3)

Similarly, from (1.5)1, we getZ
R

1

r
jujr�1u@x@t� dx C

Z
R

1

r
jujr�1u@2xudx D 0: (7.4)

By (7.3) and (7.4), the fact that @tujujr�1 D @t .jujr�1u/=r , and integration by parts, we
obtain

d

dt

Z
R

1

r
jujr�1u@x� dx

C

Z
R
.jujr�1j@x�j

2
� juj2r�2u@x� � juj

r�1
j@xuj

2/ dx D 0: (7.5)

Defining

W�.t/ WD k.�; u; @x�; @xu/.t/k
2
L2
C �2

Z
1

r
jujr�1u@x� dx;

H�.t/ WD 2

Z
R
jujr�1.juj2 C j@xuj

2/ dx

C �2

Z
R
.jujr�1j@x�j

2
� juj2r�2u@x� � juj

r�1
j@xuj

2/ dx;
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we obtain from (7.1), (7.2), and (7.5) that

d

dt
W�.t/CH�.t/ D 0: (7.6)

Since, due to (7.1), (7.2), and the Gagliardo–Nirenberg inequality,

kukL1t .L1x / . kuk
1
2

L1t .L
2
x/
k@xuk

1
2

L1t .L
1
x /

. 1;

we are able to choose a suitably small constant �2 > 0 such that8<:W�.t/ � k.�; u; @x�; @xu/.t/k
2
L2
;

H�.t/ &
Z

R
jujr�1.juj2 C j@x�j

2
C j@xuj

2/ dx:
(7.7)

Integrating (7.6) over Œ0; t � and making use of (7.7), we have

k.�; u/.t/k2
H1 C

Z t

0

ku.�/krC1
LrC1
C k.@x�

.rC1/=2; @xu
.rC1/=2/.�/k2

L2
d� . k.�0; u0/k2H1 :

The above estimates enable us to prove the global existence of the solution to (1.5) with a
standard bootstrap argument.

7.2. Wave formulation

Differentiating (1.5)1 and (1.5)2 with respect to t , we rewrite (1.5) as two damped wave-
like equations

@2t � � @
2
x�C r juj

r�1@t� D 0; @2t u � @
2
xuC r juj

r�1@tu D 0: (7.8)

From equation (1.5)1 it follows that

u D �@t

Z x

�1

�.y; t/ dy;

from which we infer that

r jujr�1@t� D r

ˇ̌̌̌
@t

Z x

�1

�.y; t/ dy

ˇ̌̌̌r�1
@x@t

Z x

�1

�.y; t/ dy

D @x

�ˇ̌̌̌
@t

Z x

�1

�.y; t/ dy

ˇ̌̌̌r�1
@t

Z x

�1

�.y; t/ dy

�
:

Thus, defining the new unknown w by

w WD

Z x

�1

u.y; t/ dy;

and integrating equation (7.8)1 over .�1; x/, we obtain the nonlinearly damped wave
equation

@2tw � @
2
xw C j@twj

r�1@tw D 0: (7.9)
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From (1.5)1, we see that

k@tw.t/k
2
L2
D ku.t/k2

L2
; k@xw.t/k

2
L2
D k�.t/k2

L2
:

Thus, once we get the decay rate of k.@tw; @xw/.t/k2L2 , the L2 decay of .�; u/ follows.

7.3. Asymptotic estimates

In this subsection we prove Theorem 2.6 and derive logarithmic time-decay rates for the
solutions to system (1.5). On that matter, we capture the nonlinear dissipative structures in
(7.9) by adapting the method developed by Theorem 2.3 and the work of Mochizuki and
Motai in [38]. A key ingredient is the L2 coercive estimates for @tw that we derive from
the damped term j@twjr�1@tw with suitable weights (see (7.16) below).

Let two weight functions '1.s/, '2.s/ for s � 0 be determined later. Taking the L2

inner product of (7.9) with '1.t C jxj/@tw, we obtain

d

dt

Z
R

1

2
'1.t C jxj/.j@twj

2
C j@xwj

2/ dx

C

Z
R

�
'1.t C jxj/j@twj

r
�
1

2
'01.t C jxj/j@xwj

2
�
dx

D

Z
R

1

2
'01.t C jxj/j@twj

2 dx: (7.10)

In addition, multiplying (7.9) by '01.t C jxj/w and integrating by parts, we obtain

d

dt

Z
R

�
'01.t C jxj/w@tw �

1

2
'001 .t C jxj/jwj

2
�
dx

C

Z
R

�
'01.t C jxj/j@xwj

2
� '001 .t C jxj/ı0.x/jwj

2
�
dx

D

Z
R

�
'01.t C jxj/j@twj

2
� '01.t C jxj/j@twj

r�1@tww
�
dx; (7.11)

where ı0.x/ denotes the Dirac function at 0 and we have used thatZ
R
'01.t C jxj/w@

2
tw dx D

d

dt

Z
R

�
'01.t C jxj/w@tw �

1

2
'001 .t C jxj/jwj

2
�
dx

C

Z
R

�1
2
'0001 .t C jxj/jwj

2
�

Z
R
'01.t C jxj/j@twj

2
�
dx

and

�

Z
R
'01.t C jxj/w@

2
xw dx

D

Z
R

�
'01.t C jxj/j@xwj

2
�

�1
2
'0001 .t C jxj/C '

00
1 .t C jxj/ı0.x/

�
jwj2

�
dx:
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To control the second term on the right-hand side of (7.11), one needs to capture the
dissipation of jwjrC1 with a suitable weight. On this matter, a direct calculation yields

d

dt

Z
R
'2.t C jxj/jwj

rC1 dx �

Z
R
'02.t C jxj/jwj

rC1 dx

D �

Z
R
.r C 1/'2.t C jxj/jwj

r�1w@tw dx: (7.12)

For some small constant �3 > 0 to be chosen later, we define

W'.t/ WD

Z
R

1

2
'1.t C jxj/.j@twj

2
C j@xwj

2/ dx

C �3

Z
R

�
'01.t C jxj/w@tw �

1

2
'001 .t C jxj/jwj

2
C '2.t C jxj/jwj

rC1
�
dx

and

H'.t/ WD

Z
R
'1.� C jxj/j@twj

r dx

C �3

Z
R

�
'01.t Cjxj/j@xwj

2
� '001 .t Cjxj/ı0.x/jwj

2
� '02.t Cjxj/jwj

rC1
�
dx:

Thus, from (7.10), (7.11), and (7.12), we get

d

dt
W'.t/CH'.t/

D

Z
R

�1C �3
2

'01.t C jxj/j@twj
2
� �3'

0
1.t C jxj/j@twj

r�1@tww
�
dx

� �3.r C 1/

Z
R
'2.� C jxj/jwj

r�1w@tw dx: (7.13)

In order to control W'.t/, H'.t/ and derive the desired dissipation estimates, we require

'1 > 0; '01 > 0; '001 < 0; j'
0
1j
2
� C'1j'

00
1 j; '2 > 0; '02 < 0: (7.14)

Indeed, under condition (7.14), one hasZ
R
'01.t C jxj/jw@twj dx

� C

Z
R
'1.t C jxj/j@twj

2 dx �
1

4

Z
R
'001 .t C jxj/jwj

2 dx; (7.15)

which implies

W'.t/ �

Z
R

�1
2
� C�3

�
'1.t C jxj/.j@twj

2
C j@xwj

2/ dx

C

Z
R

�
�
�3

4
'001 .t C jxj/jwj

2
C �3'2.t C jxj/jwj

rC1
�
dx:
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Moreover, (7.14) also leads to

H'.t/ �

Z
R
'1.t C jxj/j@twj

r dx

C �3

Z
R

�
'01.t C jxj/j@xwj

2
� �3'

0
2.t C jxj/jwj

rC1
�
dx:

We now focus on the estimation of the right-hand-side terms (7.13). First, a use of Young’s
inequality gives

3

2

Z t

0

Z
R
'01.� C jxj/j@twj

2 dx d�

�
3

2

�Z t

0

Z
R
'1.� C jxj/j@twj

rC1 dx d�

� 2
rC1
�Z t

0

Z
R

j'01.� C jxj/j
rC1
r�1

'1.� C jxj/
2
r�1

dx d�

� r�1
rC1

�
1

4

Z t

0

Z
R
'1.� Cjxj/j@twj

rC1 dx d� C C

Z t

0

Z
R

j'01.� Cjxj/j
rC1
r�1

'1.� Cjxj/
2
r�1

dx d�: (7.16)

Similarly, we infer Z t

0

Z
R
'01.� C jxj/j@twj

r
jwj dx d�

�
1

4

Z t

0

Z
R
'1.� C jxj/j@twj

rC1 dx d�

C C

Z t

0

Z
R

j'01.� C jxj/j
rC1

'1.� C jxj/r
jwjrC1 dx d�

and

.r C 1/

Z t

0

Z
R

'2.� C jxj/jwj
r
j@twj dx d�

�
1

4

Z t

0

Z
R
'1.� C jxj/j@twj

rC1 dx d�

C C

Z t

0

Z
R

j'2.� C jxj/j
rC1

'1.� C jxj/r
jwjrC1 dx d�: (7.17)

Let �3 D 1=.4C /. Then it follows from (7.15)–(7.17) thatZ
R

�1
4
'1.t C jxj/.j@twj

2
C j@xwj

2/ �
1

4
'001 .t C jxj/jwj

2
C '2.t C jxj/jwj

rC1 dx
�
dx

C

Z t

0

Z
R

�1
2
'1.�Cjxj/j@twj

r
C
1

2
'01.�Cjxj/j@xwj

2
CC1.�Cjxj/jwj

rC1
�
dx d�

� W'.0/C C

Z t

0

Z
R

C2.� C jxj/ dx d�; (7.18)
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with

C1.s/ WD �'
0
2.s/ �

C.j'01.s/j
rC1 C j'2.s/j

rC1/

'1.s/r
; C2.s/ WD

j'01.s/j
rC1
r�1

'1.s/
2
r�1

:

Therefore, one needs to choose '1 and '2 such that

C1.s/ > 0;

Z 1
0

Z
R

C2.� C jxj/ dx d� <1: (7.19)

For all q > 0 and a suitable large constant a, we choose the functions

'1.s/ D log2q .aC s/; '2.s/ D
log2q�rC1 .aC s/
jaC sjr

;

which fulfill conditions (7.14) and (7.19). Indeed, for suitable large a > 0, it is easy to
verify that

'01.s/ D
2q log2q�1 .aC s/

aC s
> 0;

'001 .s/ D �
2q log2q�2 .aC s/.log .aC s/ � 1C 2q/

jaC sj2
< 0;

j'01j
2
�
1

4
'1j'

00
1 j;

'02.s/ D �
log .aC s/2q�r .r log .aC s/ � 2q C r � 1/

jaC sjrC1
< 0;

and

C1.s/ �
log .aC s/2q�r

jaC sjrC1

�
r log .a/ � 2q C r � 1

� C..2q/rC1 log�1 .a/ � C logr�r
2C1 .a//a�r

2C1
�
> 0:

The condition 1 < r < 3 comes into play for the second term. It implies .r C 1/=.r � 1/ >
2, and therefore,Z 1

0

Z
R

C2.� C jxj/ dx d� D

Z 1
0

Z
R

log2q�
rC1
r�1 .aC � C jxj/

jaC � C jxj j
rC1
r�1

dx d� <1: (7.20)

By (7.14), (7.19), and the facts that @xwD �, @twD�u, substituting '1.s/D log.aCs/2q

into (7.18), we obtain

log2q .1C t /
Z

R
.j�j2 C juj2/ dx �

Z
R
'1.t C jxj/.j@twj

2
C j@xwj

2/ dx

� CW'.0/C C:
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To bound the initial energy W'.0/, we use (2.21) and find that

W'.0/ � C

Z
R

log2q .1C jxj/.j�0j2 C ju0j2/ dx

C C

Z
R

log2q�2 .1C jxj/
.1C jxj/2

ˇ̌̌̌Z x

�1

�0.y/ dy

ˇ̌̌̌2
dx

C C

Z
R

log2q�r�1.1C jxj/
.1C jxj/r

ˇ̌̌̌Z x

�1

�0.y/ dy

ˇ̌̌̌rC1
dx

� C C Ck�0k
2
L1

Z
R

1

.1C jxj/2��
dx C Ck�0k

rC1
L1

Z
R

1

.1C jxj/r��
dx <1;

for some sufficiently small � 2 .0;min¹1; r � 1º/. Gathering the last two estimates, we
obtain (2.22) which concludes the proof of Theorem 2.6.

8. Extensions and open problems

We have analyzed the time-asymptotic behavior of general hyperbolic systems without
Fourier analysis on the real line. Our work opens up several possible extensions and open
problems. We list some of them below.

(1) The compressible Euler system with nonlinear damping. As an extension of Section 7,
one can consider the Euler system (1.4) with a nonlinear damping �jujr�1u with r > 1, a
relevant model for gas transport; see e.g.[15]. Following the approach used in Section 6,
similar decay rates to the one obtained for the nonlinearly damped p-system (1.5) in The-
orem 2.6 can be derived if one can construct a solution of the nonlinearly damped Euler
system belonging to L2.RCI PH 1/. However, in contrast with linear damping, the nonlin-
ear damping �jujr�1u does not seem sufficient, to the best of our knowledge, to control
the advection terms and, thus, to ensure the existence of a unique global-in-time solution.

(2) Numerics. As an application of the method developed here, inspired by [42], one can
prove that a centered finite-difference approximation of the partially dissipative system
(1.7) in the whole space preserves the asymptotic properties of the continuous solutions
as t !1. Such a result would highlight that the hyperbolic hypocoercive nature of the
system can be preserved at the semidiscrete level.

(3) Multi-dimensional setting. In the multi-dimensional setting, one can investigate the
n-component systems in Rd (d � 1) of the type

@V

@t
C

dX
jD1

Aj
@V

@xj
D BV; (8.1)

where Aj (j D 1; : : : ; d ) are symmetric matrices, B is symmetric satisfying (1.2), and the
unknown V D V.x; t/ 2 Rn depends on the time and space variables .x; t/ 2 Rd �RC.
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The hyperbolic hypocoercivity approach in [4], presented in the one-dimensional setting
here, can be extended to the multi-dimensional case, and similar time-decay rates can be
recovered under the Kalman rank condition. However, our approach does not allow us to
consider multi-dimensional systems of the general form (8.1). The issue comes from the
appearance of mixed derivatives (due the multi-dimensional setting) when differentiating
the low-order corrector term in the Lyapunov functional in time, and it is unclear how to
handle them without Fourier analysis.

Nevertheless, it is possible to obtain results under additional structural conditions on
(8.1), for instance when (8.1) has a structure similar to the multi-dimensional compressible
Euler system with damping. Indeed, for the multi-dimensional version of (1.4), straight-
forward computations show that the Lyapunov functional

L.t/ D k.� � N�; u/.t/k2
H1 C �tk.r�;ru/.t/k

2
L2
C

Z
Rd

u � r� dx

allows us to recover time-decay rates in any dimension.

A. Fourier-based results and technical lemmas

A.1. Fourier analysis of partially dissipative hyperbolic systems

Lemma A.1 ([4]). Let U0 2L1 \L2,A be a symmetric matrix, andB a matrix satisfying
(1.2) and (1.3). Then the following assertions are equivalent:

• The pair .A;B/ satisfies the Kalman rank condition (1.10).

• The solution U of (1.1) satisfies8̂̂<̂
:̂
kU `k.t/kL1 � Ct

� 12 kU0k1 ;

kU h.t/kL2 � Ce
�
�tkU0kL2 ;

kU.t/kL2 � Ct
� 14 kU0kL2 ;

(A.1)

with U `.�; t/ WD yU.�; t/1¹j�j<1º and U h.�; t/ WD yU.�; t/1¹j�j>1º, where � 2 R is the
frequency parameter, and C , 
� are positive constants depending only on A and B .

In addition, if U0 2 H 1 and .A;B/ satisfies the Kalman rank condition, we have

kU.t/k PH1 � Ct
� 34 kU0kH1 : (A.2)

Sketch of the Proof of Lemma A.1. According to Proposition 1.1, one introduces the fol-
lowing Lyapunov functional in the Fourier space

L�.t/ , j yU j2 Cmin
° 1
j�j
; j�j

±
Re

n�1X
kD1

�khBA
k�1 yU � BAk yU i;
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where h � i designates the Hermitian scalar product in Cn. For �0 D �0=2 and suitably
small coefficients �k (k D 1; 2; : : : ; n � 1), one deduces from (1.9) that

d

dt
L�.t/Cmin¹1; j�j2º

n�1X
kD0

�kjBA
k yU j2 � 0 and L�.t/ � j yU j

2:

Then the Kalman rank condition (1.10) for .A;B/ implies that

j yU.�; t/j2 . j yU0.�/j2e�N� min¹1;j�j2ºt ;

with

N� WD inf
²n�1X
kD0

�kjBA
kyj2; y 2 Sn�1

³
> 0;

and a low-high frequency splitting argument allows us to conclude the classical time-decay
rates (A.1) and (A.2).

Remark A.1. In Lemma A.1, the solutions can achieve the decay rates .1C t /�
1
2 .
1
q�

1
2 / in

L2 under more general Lq assumptions with q 2 Œ1; 2/. The L1 assumption on the initial

data can be replaced by a PB
� 12
2;1 assumption; cf. [10, 52, 53]. Moreover, these decay rates

are optimal in the sense that they follow those of the heat equation, which is expected by
the low frequencies (the slowly decaying part) of the solution.

A.2. Technical lemmas

Lemma A.2 (Caffarelli–Kohn–Nirenberg inequality [7, 8]). For all h 2 Cc.R/, it holds
that

k jxj�1hkLp � C�1;�2k jxj
�2@xhkL2 ; (A.3)

with �2 > 1
2

, �2 � 1 � �1 � �2 � 1
2

, and p D 2
2.�2��1/�1

. If �1 D �2 � 1, then p D 2
and the best constant in (A.3) is

C�1;�2 D C�2�1;�2 D
2

2�2 � 1
:

Lemma A.3. Let T > 0 be given time and E1.t/, E2.t/ be two nonnegative and abso-
lutely continuous functions on Œ0; T /. Suppose that

E1.t/ � a1t
�˛ (A.4)

and
d

dt
.E1.t/C �0tE2.t//C a2E2.t/ � 0; t 2 .0; T /; (A.5)

where �0, a1; a2, and ˛ are constants satisfying

a1; a2; ˛ > 0; 0 < �0 < min
°a2
˛
; a2

±
:
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Then it holds that
E2.t/ � Ca1t

�˛�1; t 2 .0; T /; (A.6)

where C > 0 is a constant independent of T , a1, and a2.

Proof. Let the constant p satisfy max¹1; ˛º < p < a2=�0. Multiplying (A.5) by tp , we
get

d

dt
.tpE1.t/C �0t

pC1E2.t//C .a2 � p�0/t
pE2.t/ � pt

p�1E1.t/: (A.7)

Noticing that a2 � p�0 > 0 and (A.4), we prove, after integrating (A.7) over Œ0; t �, that

tpE1.t/C �0t
pC1E2.t/ � pa1

Z t

0

�p�˛�1 d� D
pa1

p � ˛
tp�˛:

Hence, (A.6) follows.

A.3. Optimal decay rates for the heat equation

In this section we recover time-decay rates for the heat equation that are consistent with
the result obtained in Theorem 2.2. We consider the one-dimensional heat equation

@tu � @
2
xu D 0; .x; t/ 2 R �RC: (A.8)

The asymptotics for the heat equation or incompressible flows in space-weighted spaces
has been intensively analyzed; cf. [2, 16, 29] and references therein. Here we prove a
different estimate (A.11) pertaining to the decay of (A.8) without L1 assumptions. The
rates are optimal since our proof relies on the sharp Lp–Lq estimates for the heat flow.

Lemma A.4. Let u be the solution to the heat equation above with initial datum u0 2 L
2.

Then, for all k � 0 and t > 0,

k@kxu.t/kL2 � Ckt
� k2 ku0kL2 ; (A.9)

where Ck > 0 is a constant dependent only on k.

• If we assume that u0 2 Lp with p 2 Œ1; 2/, then

k@kxu.t/kL2 � Ck;pt
� 12 .

1
p�

1
2 /�

k
2 ku0kLp ; (A.10)

where Ck;p > 0 is a constant dependent only on k and p.

• If we further assume that jxj�u0 2 L2 with some fixed � > 0, then

k@kxu.t/kL2 � Ck;�t
�
�
2 �

k
2 k jxj�u0kL2 ; (A.11)

where Ck;� > 0 is a constant dependent only on k and �.

In Lemma A.4, the inequalities (A.10) and (A.9) are standard; cf. [17]. Below, we give
the proof of (A.11).
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Proof of Lemma A.4. The case � D 0 corresponds to the classical decay rate of the heat
equation. We divide the proof of the case � > 0 into three cases.

• Case 1: 1 � � � 3=2. We define the unknown u1.x; t/ WD
R x
�1

u.y; t/ dy satisfying

@xu1 D u; u1.x; 0/ D u1;0.x/ WD

Z x

�1

u0.y; t/ dy;

and
@tu1 � @

2
xu1 D 0: (A.12)

Note that the Caffarelli–Kohn–Nirenberg inequality (A.3) implies

ku1;0kLp1 �
2

2� � 1
k jxj�u0kL2 ;

where p1 WD 2=.2�� 1/ fulfills 1�p1 � 2 due to 1��� 3=2. Thence it follows from the
well-known L2–Lp1 decay estimates for the k-order derivative of the solution to (A.12)
(cf. [17]) that

k@kxu.t/kL2 D k@
kC1
x u1.t/kL2

. t
� 12 .

1
p1
� 12 /�

1
2�

k
2 ku1;0kLp1 . t�

�
2 �

k
2 k jxj�u0kL2 :

• Case 2: 0 < � < 1. The result from Case 1 gives

k@kxu.t/kL2 . t�
1
2�

k
2 k jxju0kL2 :

Recall that for the case � D 0, one has

k@kxu.t/kL2 � t
� k2 ku0kL2 :

Therefore, employing the Stein–Wassin interpolation theorem (e.g. [5, Theorem 5.4.1] or
[45]), we have the time-decay estimate (A.11) for 0 < � < 1.

• Case 3: � > 3=2. First we consider a � such that there exists an i 2 N� satisfying
i � � � 1=2C i . This implies that

pi WD 2=.2.� � i C 1/ � 1/ 2 Œ1; 2�:

Then, similarly to Case 1, we note that ui WD
R x
�1

R xi�1
�1
� � �
R x1
�1

u.y; t/ dy dx1 � � � dxi�1
satisfies

@ixui D u; ui .x; 0/ D ui;0.x/ WD

Z x

�1

Z xi�1

�1

� � �

Z x1

�1

u0.y; t/ dy dx1 � � � dxi�1;

and
@tui � @

2
xui D 0: (A.13)
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It follows from the Caffarelli–Kohn–Nirenberg inequality (A.3) that

kui;0kLpi . k jxj��.i�1/ui�1;0kL2 . k jxj��.i�2/ui�2;0kL2 � � � . k jxj�u0kL2 :

This, together with classical L2–Lpi decay estimates for the .k C i/-order derivative of
the solution to (A.13), yields

k@kxu.t/kL2 D k@
kCi
x ui .t/kL2 . t

� 12 .
1
pi
� 12 /�

i
2�

k
2 kui;0kLpi . t�

�
2 �

k
2 k jxj�u0kL2 :

For the complementary case where there exists an i 2 N� such that i � 1=2 < � < i , we
get the desired decay estimates by using a similar interpolation argument to Case 2. The
details are omitted.
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