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s-stability for W s;n=s-harmonic maps in homotopy groups

Katarzyna Mazowiecka and Armin Schikorra

Abstract. We study s-dependence for minimizing W s;n=s-harmonic maps uW Sn ! S` in homo-
topy classes. Sacks–Uhlenbeck theory shows that, for each s, minimizers exist in a generating subset
of �n.S`/. We show that this generating subset can be chosen locally constant in s. We also show
that as s varies, the minimal W s;n=s-energy in each homotopy class changes continuously. In par-
ticular, we provide progress on a question raised by Mironescu [in: Perspectives in nonlinear partial
differential equations (2007), 413–436] and Brezis–Mironescu [Sobolev maps to the circle (2021)].

1. Introduction

We study minimizing W s;p-harmonic maps between spheres in homotopy classes, which
are defined as maps u 2 W s;p.Sn;S`/ with least energy

Es;p.u/´

Z
Sn

Z
Sn

ju.x/ � u.y/jp

jx � yjnCsp
dx dy D Œu�p

W s;p.Sn;S`/
(1.1)

among maps of the same homotopy. Here, s 2 .0; 1/, p > 1. In (1.1) we take the RnC1-
Euclidean distance and R`C1-Euclidean distance in the numerator and in the denominator,
respectively.

A natural question arises: Given ˛ 2 �n.S`/, is the infimum of Es;p attained in ˛? In
other words, can we find a map u 2 W s;p.Sn;S`/, u 2 ˛ such that

Es;p.u/ � Es;p.v/ 8v 2 W
s;p.Sn;S`/; v 2 ˛:

If p > n
s

the answer is yes, by standard methods of calculus of variation, due to the
compact embedding of W s;p.Sn;S`/ into C 0.Sn;S`/. If p < n

s
it was shown by Brezis–

Nirenberg [4] that no homotopy theory can be defined for maps in W s;p.Sn;S`/ and the
infimum energy of Es;p in any homotopy class is zero. Thus, throughout this work we will
focus on the critical, conformally invariant case p D n

s
. By [4], it is known that the stan-

dard notions of homotopy can be extended to W s; ns -Sobolev maps; see also [15, Section
2] for an overview.
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For s 2 .0; 1/ set

#s˛´ inf
u2W s; ns .Sn;S`/;

u2˛

Es; ns .u/; ˛ 2 �n.S
`/:

In the case of maps between spheres of the same dimension uW Sn ! Sn, i.e., when the
homotopy classes are given by their degree, we instead write

#sd ´ inf
u2W s; ns .Sn;S`/;

deg.u/Dd

Es; ns .u/; d 2 Z:

In general the question whether #s˛ is attained is rather involved even in the local case
s D 1; see, e.g., [8, 20, 22] or, for n D 1 and s 2 .0; 1/, see [3, Chapter 12], as well as
[1, 18]. In [15] we showed the following theorem.1

Theorem 1. For any `; n � 1, with either .`; n/D .1; 1/ or ` � 2, s 2 .0; 1/. There exists
a generating set Xs � �n.S`/ such that for any ˛ 2 Xs the infimum #s˛ is attained.

In this work we are interested in the stability of such results as s changes.

Our first main result is that one can choose the generating set Xs from Theorem 1
locally stable as s varies. More precisely we have the following theorem.

Theorem 2. Fix n; ` � 1 with either .`; n/ D .1; 1/ or ` � 2. Let ƒ > 0 and set for
s 2 .0; 1/,

Xs ´
®
˛ 2 �n.S

`/ W there exists a W s; ns .Sn;S`/-minimizer u in ˛

and Œu�
W s; ns .Sn;S`/

� ƒ
¯
:

Then for any t 2 .0; 1/ there exists ı > 0 such that

Y ´
\

s2.t�ı;tCı/

Xs

spans the same set as Xs , i.e., Xs � spanY , for each s 2 .t � ı; t C ı/.

See Theorem 25 for a more precise statement with respect to the dependencies of ı.

Let us stress that Theorem 2 does not imply that

Xs ´
®
˛ 2 �n.S

`/ n ¹0º W #s˛ is attained
¯

is unchanged as s varies. Rather, it says that we can choose the set of attained generators
of �n.S`/ locally stable. In particular, for n D ` (when the homotopy class is identified

1The case s � 1
2

, n D 1 was not treated in [15] but is covered in [12].
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with the degree), in principle, it could be possible that

Xs D

8̂̂̂̂
<̂
ˆ̂̂:
¹1º; s < 1=2;

Z n ¹0º; s D 1=2;

¹1; 2;�3º; s 2 .1=2; 3=4/;

¹2;�3º; s 2 .3=4; 1/:

An important ingredient in the aforementioned Theorem 2, and our second main result,
is the following continuity result for the map s 7! #s˛. By smooth approximation it is
elementary that for ˛ 2 �n.S`/ we have for any t 2 .0; 1/,

#t˛ � lim sup
s!t

#s˛:

But actually, we have full continuity.

Theorem 3. Assume `; n � 1, with either .`; n/ D .1; 1/ or ` � 2. Let ˛ 2 �n.S`/. Then
the map

s 7! #s˛; s 2 .0; 1/

is continuous.

Besides being a crucial ingredient for the proof of Theorem 2, Theorem 3 also has
several interesting corollaries that we discuss now.

Firstly, it is natural to expect that minimizers exist in the class of degree-one maps in
W s; ns .Sn;Sn/. Towards this, Berlyand–Mironescu–Rybalko–Sandier obtain in [1, Lemma
3.1] that for maps in W

1
2 ;2.S1;S1/, minimizers are attained for any degree; see also [3,

Theorem 12.9]. Moreover, Mironescu proved a stability result [17, Theorem 2], which
asserts that for s 2 Œ1

2
; 1
2
C ı/, degree-one minimizers exist inW s; 1s .S1;S1/. As a corollary

of Theorem 3 we can extend the latter in the other direction.

Corollary 4. For maps from S1 to S1, there exists ı > 0 such that

#s1 D inf
°
Œu�

1
s

W s; 1s
W u 2 W s; 1s .S1;S1/; degu D 1

±
is attained for all s 2 .1

2
� ı; 1

2
C ı/.

This provides progress towards [16, Open Problem 1] and [3, Open Problem 24.].

More generally, if #s˛ is attained for an ˛ 2 �n.S`/, it is unclear whether #t˛ is
attained for t � s. Corollary 4 works for degree-one maps, because they have the lowest
energy level among nontrivial homotopy classes. This observation is true in any dimension
and we have the following corollary.

Corollary 5. Fix n; ` � 1 with either .`; n/ D .1; 1/ or ` � 2. Assume that for some
t 2 .0; 1/ and ˛ 2 �n.S`/ n ¹0º we have

#t˛ � #tˇ 8ˇ 2 �n.S
`/ n ¹0º:
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Then not only is #t˛ attained by [15], but also there exists ı > 0 such that #s˛ is attained
for all s 2 .t � ı; t C ı/.

For our next corollary of Theorem 3, we consider the Bourgain–Brezis–Mironescu
degree inequality, [2, Theorem 0.6], which says that for maps u 2 W s; ns .Sn;Sn/,

degu � Cn;sŒu�
n
s

W s; ns .Sn;Sn/
:

Let xCn;s be the minimal constant, i.e.,

xCn;s ´ sup
u2W s; ns .Sn;Sn/

degu

Œu�
n
s

W s; ns .Sn;Sn/

<1:

It is natural to discuss the continuity of the map s 7! xCn;s .

Corollary 6. The map s 7! xCn;s is lower semicontinuous.
More precisely, for any ƒ > 0 the map s 7! xCn;sIƒ defined by

xCn;sIƒ´ sup
u2W s; ns .Sn;Sn/;
0<Œu�

W
s; ns
�ƒ

degu

Œu�
n
s

W s; ns .Sn;Sn/

is continuous.

Corresponding results hold for the Hopf degree (see [26]):�
1 �

1

4n
; 1
�
3 s 7! zCn;s ´ sup

u2W s; ns .S4n�1;S2n/;
0<Œu�

W
s; 4n�1s

Œu��4n�1.S2n/

Œu�
4n
s

W s; 4n�1s .Sn;Sn/

;

and more generally for maps representing rational homotopy groups of spheres; see [19].
We turn to the main ideas for Theorem 3, and thus Theorem 2. We use the following

new ingredient:

whenever #s˛ is attained, then #t˛ � #s˛ C " for t � sI (1.2)

for the precise formulation see Corollary 24. To obtain (1.2) we show thatW s;n=s.Sn;S`/
minimizers actually belong globally to W s1;

n
s1 .Sn; S`/ for an s1 > s; see Theorem 16.

Hölder regularity in this situation has been established in [14, 23], after pioneering work
for n D 1 and s D 1

2
in [7], but this is a local result on domains where the BMO-norm is

small. Smallness of the BMO-norm is of course not a scaling invariant property, indeed
it depends heavily on the specific minimizer u and one cannot deduce from it a uniform
global property. Our higher regularity result in a conformally invariant Sobolev space,
Theorem 16, is, on the other hand, uniform and independent of the specific minimizer u.
Hence, using stability of the Sobolev norm W s;n=s , Proposition 12, we obtain (1.2). Once
we have (1.2), the main results follow from combinatorial observations coupled with the
Sacks–Uhlenbeck theory developed in [15] and the energy identity from Theorem 15.
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Remark 7. We conclude this introduction with a few remarks about possible generaliza-
tions of these results.

(1) The modulus of continuity in Theorem 3 and the ı in Theorem 2 are relatively
easily to compute. They depend on the regularity theory gain (which can be cal-
culated explicitly) and they get worse with large #s˛.

(2) In this paper, to ensure clarity in our presentation, we focus on the case when the
target manifold is a sphere. Nonetheless, it should be easy to extend the results to
the case of a compact Lie group in the target.

(3) It seems that an extension of our results to a general target manifold is more chal-
lenging – the only obstacle is regularity, but it is unclear even for minimizing maps
how to get scaling-invariant higher regularity of Theorem 16.

(4) It would be interesting to study the limiting cases as s ! 1� and s ! 0C.

Notation

We write ˛, ˇ, etc. to denote a homotopy group, Sn for the sphere in the domain, and
S` for the target sphere. For brevity, we write - whenever there is a constant C (not
depending on any crucial quantity) such that A � CB. Similarly, A � B means A - B

and B - A.

2. Preliminary results

Let us emphasize that some of the results of this section can be easily extended to general
target manifolds. For brevity we restrict everything to sphere targets.

The first result, which is well known and follows from the embedding of the critical
Sobolev space into BMO, is the following; see, e.g., [15, Lemma 2.10].

Proposition 8. For any `;n 2N there exists �D �.`;n/ > 0 such that whenever s 2 .0;1�
and ˛ 2 �n.S`/ n ¹0º,

#s˛ � �:

In [28, Theorem 1.2] or [3, Lemma 12.6.] the following is proven.

Proposition 9. Whenever s 2 .0; 1� and ˛ has a free homotopy group decomposition into
.˛i /

N
iD1 then

#s˛ �
NX
iD1

#s˛i :

In the case of W
1
2 ;2.S1; S1/ maps, minimizers exist for each degree and their exact

energy is known. Precisely, by [1, Lemma 3.1] (see also [3, Theorems 12.9 & 12.10]), we
have the following theorem.
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Theorem 10. For maps from S1 to S1 we have

# 1
2
d D 4�2jd j:

Moreover, # 1
2
d is attained for all d 2 Z.

By results in [28] and [2] we obtain that if we know that the energy of a map is bounded
then the map can belong only to a finite subgroup of �n.Sl /.

Theorem 11. Fix ƒ > 0 and let 0 < s0 < s1 < 1, n; ` � 1 with either .`; n/ D .1; 1/ or
` � 2. Then there exists a finite subgroup Q � �n.S`/ such that the following holds:

Whenever for some s 2 .s0; s1/ the map u 2 W s; ns .Sn;S`/ satisfies

Œu�
W s; ns .Sn;S`/

� ƒ

then u 2 Q.

Proof. In the case when n D ` the assertion follows from the degree estimate in [2, The-
orem 0.6], since for any s > 0 we have

j deguj - Œu�
n
s

W s; ns .Sn;Sn/
:

If �1.S`/ D ¹0º, i.e., ` � 2, we have for any " > 0,Z
Sn

Z
Sn
�¹jf .x/�f .y/j>"º

1

jx � yj2n
dx dy

� "
� n
s0

Z
Sn

Z
Sn

jf .x/ � f .y/j
n
s0

jx � yj2n
dx dy

� "
� n
s0 2

n
s0
� n
s1

Z
Sn

Z
Sn

jf .x/ � f .y/j
n
s

jx � yj2n
dx dy

� "
� n
s0 2

n
s0
� n
s1ƒn:

Hence the assumption in [28, Theorem 1.4] is satisfied and we may conclude.

2.1. Continuity for the s 7! W s; n
s -norm

We need the following continuity result for the fractional Sobolev norm.

Proposition 12. Fix n; ` 2 N. Letƒ > 0, t0 > 0, t 2 .t0; 1/, and let s1 > t . For any " > 0
there exists ı D ı.";ƒ; js1 � t j; n/ > 0 such that the following holds.

Assume that uWSn ! S` satisfies

Œu�
W
s1;

n
s1 .Sn;S`/

� ƒ:

Then
sup

r1;r22.t�ı;tCı/

ˇ̌̌
Œu�

n
r1

W
r1;

n
r1 .Sn;S`/

� Œu�
n
r2

W
r2;

n
r2 .Sn;S`/

ˇ̌̌
� ":
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The proof is based on the following elementary lemma.

Lemma 13. For any " > 0, � > 0, 0 < p0 < p1, there exists Qı D Qı.p0; p1; �; "/ > 0 such
that if jp � qj < Qı, p; q 2 Œp0; p1� then

jp � qj < Qı ) jap � aqj < " 8a 2 Œ0; ��: (2.1)

Proof. We may assume that " 2 .0; 1/ and � � 1, p0 � p < q � p1.
Set � ´ .1

2
"/

1
p0 2 .0; 1/. Then

jap � aqj < 2�p0 � " 8a 2 Œ0; ��:

Moreover, with the inequality j1 � et j � jt jejt j we find for ƒ"´ maxa2Œ�;�� jln aj,

jap � aqj D apj1 � aq�pj � �p1 j1 � aq�pj � jq � pj�p1ƒ"e
ƒ"2p1 8a 2 Œ�; ��:

So if we set
Qı´

1

�p1ƒ"eƒ"2p1
;

we have shown that

jap � aqj < " 8jp � qj < Qı; a 2 Œ0; ��:

Proof of Proposition 12. Pick some Ns 2 .t; s1/ and take t�t0
2
< ı < Ns�t

2
to be specified

later. The relation between the numbers is now

0 < t0 < t � ı < t < t C ı < Ns < s1 < 1:

Fix r1; r2 2 .t � ı; t C ı/ such that r2 > r1. We haveˇ̌̌
Œu�

n
r1

W
r1;

n
r1 .Sn;S`/

� Œu�
n
r2

W
r2;

n
r2 .Sn;S`/

ˇ̌̌
�

Z
Sn

Z
Sn

ˇ̌
ju.x/ � u.y/j

n
r1 � ju.x/ � u.y/j

n
r2

ˇ̌
jx � yj2n

dx dy

D

Z
Sn

Z
Sn

ju.x/�u.y/j
n
s1

ˇ̌
ju.x/�u.y/j

n
r1
� n
s1 � ju.x/�u.y/j

n
r2
� n
s1

ˇ̌
jx � yj2n

dx dy: (2.2)

Now set
a´ ju.x/ � u.y/j; p´

n

r1
�
n

s1
; q´

n

r2
�
n

s1
:

Since juj � 1 we have a 2 Œ0; 2�. Also p; q 2 Œp0; p1� for

p0 D
n

t C ı
�
n

s1
�
n

Ns
�
n

s1
> 0 and p1 D

n

t � ı
�
n

s1
�
n

t0
�
n

s1
<1:

We observe
jp � qj D

n

r1r2
jr2 � r1j �

2n

.t0/2
ı:
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Hence, choosing ı D Qı .t0/
2

2n
, where Qı is from Lemma 13, and combining (2.2) with (2.1)

we getˇ̌̌
Œu�

n
r1

W
r1;

n
r1 .Sn;S`/

� Œu�
n
r2

W
r2;

n
r2 .Sn;S`/

ˇ̌̌
� sup
a2Œ0;2�

jap � aqj

Z
Sn

Z
Sn

ju.x/ � u.y/j
n
s1

jx � yj2n
dx dy

� "

Z
Sn

Z
Sn

ju.x/ � u.y/j
n
s1

jx � yj2n
dx dy;

as desired.

3. Existence of minimizers and energy identity

In this section we show how to deduce an energy identity using [15] and [28]. We begin
by recalling the following lemma, which we will combine later with Theorem 11.

Lemma 14 ([15, Lemma 7.7]). Fix n; ` 2 N with either .`; n/ D .1; 1/ or ` � 2, and
s 2 .0;1/. There is a number � D �.s;n;`/ such that the following holds.2 Let ˛ 2�n.S`/ n
¹0º. Then either #s˛ is attained or for any ı > 0 there exist ˛1;˛2 2 �n.S`/ n ¹0º (possibly
depending on ı) such that ˛ D ˛1 C ˛2,

#s˛1 C #s˛2 � #s˛ C ı;

and

� < #s˛i < #s˛ �
�

2
; for i D 1; 2: (3.1)

From Lemma 14 we can conclude the following existence and energy identity.

Theorem 15 (Energy identity). Fix n; ` 2 N, with either .`; n/ D .1; 1/ or ` � 2, and
s 2 .0; 1/. For each ˛ 2 �n.S`/ n ¹0º there exists a finite sequence .˛i /NiD1 � �n.S

`/ n ¹0º

such that

(1) ˛ D
PN
iD1 ˛i ,

(2) #s˛ D
PN
iD1 #s˛i ,

(3) #s˛i are attained for each i 2 ¹1; : : : ; N º.

Proof. Fix ƒ´ #s˛ C 1.
Fix Qı 2 .0; 1/. If #s˛ is attained then we are done. If #s˛ is not attained, we apply

Lemma 14 and decompose ˛ D ˛1 C ˛2 with

#s˛1 C #s˛2 � #s˛ C 2�1 Qı and � < #s˛i < #s˛ �
�

2
for i D 1; 2:

2As mentioned before, the case s � 1
2

, n D 1 was not treated in [15] but is covered in [12].
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If both i 2 1; 2, #s˛i are not attained we finish; if at least one is not attained, say #s˛1, we
apply Lemma 14 again, with ı D 2�2 Qı. We decompose ˛1 D ˛1;1 C ˛1;2 and obtain

#s˛1;1 C #s˛1;2 C #s˛2 � #s˛1 C #s˛2 C 2�2 Qı C 2�1 Qı � #s˛ C
2X
iD1

2�i Qı;

with

� < #s˛1;i < #s˛1 �
�

2
< #s˛ � �;

where ˛ D ˛1;1 C ˛1;2 C ˛2. With an abuse of notation we relabel ˛ D ˛1 C ˛2 C ˛3.
We apply Lemma 14 iteratively, whenever the minimizer of one of the decomposed

terms is not attained – at the `th step we take ı D 2�` Qı and obtain a decomposition into
`C 1 terms with

`C1X
iD1

#s˛i � #s˛ C
`C1X
iD1

2�i Qı:

By (3.1), after 2`�1 iterations there is an i 2 ¹1; : : : ; 2`�1 C 1º for which

� < #s˛i < #s˛ � `
�

2
D ƒ � 1 � `

�

2
: (3.2)

If however ` > 2
�
.ƒ � 1 � �/, we get a contradiction in (3.2). Hence, we may iterate at

most 2L�1 times for an L D L.�; ƒ/, obtaining a decomposition into NQı terms, where
NQı � 2

L�1 C 1 for all Qı 2 .0; 1/ and

NQıX
iD1

˛i D ˛

such that #s˛i must be attained (otherwise we would have continued the iteration of
Lemma 14). Moreover,

NQıX
iD1

#s˛i � #s˛ C Qı:

We want to let Qı ! 0. Let us stress that as of now the decomposition of ˛i depends on Qı.
By Theorem 11, ®

ˇ 2 �n.S
`/ W #sˇ � #s˛ C 1

¯
is a finite set. Hence, there is only a finite number of possibilities of ˛i D ˛i . Qı/. Thus
there exists a sequence Qık ! 0 such that ˛i . Qık/ D ˛i . Qıj / for all j; k 2 N. Thus we have

NX
iD1

#s˛i � #s˛ C Qık ;



K. Mazowiecka and A. Schikorra 1228

where the left-hand side does not depend on Qık anymore. Letting k !1 we obtain

NX
iD1

#s˛i � #s˛:

On the other hand, since
PN
iD1 ˛i D ˛, we have by Proposition 9,

#s˛ �
NX
iD1

#s˛i :

Combining the two last statements we obtain

#s˛ D
NX
iD1

#s˛i :

Let us remark in passing that another strategy to obtain Theorem 15 would be to extend
the methods in [8], which mostly rely on the conformal invariance of the norms involved,
and thus should be applicable to our case.

4. Globally improved regularity in the conformal scaling

In this section we show thatW s; ns -minimizers actually belong globally toW ‚s; n‚s .Sn;S`/
for a ‚ > 1. To do so we adapt the strategy of [23]. It seems to us that we use a somehow
unique feature of the Gagliardo seminorm and the fractional p-Laplacian (i.e., we do not
see how the argument would work for the classical p-Laplacian): we use intrinsically a
feature of differential stability that was observed for the fractional p-Laplacian but is not
known for the classical p-Laplacian; see [13, 24].

Theorem 16. Fix n; ` 2 N. For every 0 < s0 < s1 < 1 there exists ‚ > 1 and for any
ƒ > 0 there is a constant C.ƒ/ D C.n; `; s0; s1; ƒ/ > 0 such that the following holds.

If s0 < s < s1 and u 2W s; ns .Sn;S`/ is aW s; ns .Sn;S`/-minimizer in its own homotopy
group with

Œu�
W s; ns .Sn;S`/

� ƒ;

then
Œu�

W
‚s; n

‚s .Sn;S`/
� C.ƒ/:

Theorem 16 is a consequence of Propositions 18 and 21 below.

Remark 17. A few observations regarding the previous regularity theorem are in order.

(1) The study of the regularity of fractional harmonic maps was initiated by Da Lio–
Rivière in their celebrated papers [6, 7].
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(2) The argument below applies generally to critical points, not only minimizers. We
only state the a priori estimate versions, since (local) higher regularity was dis-
cussed in [15].

(3) In [23] it was proven that minimizers as in Theorem 16 are Hölder continuous;
see also [14]. Observe that, however, there is no hope to prove

Œu�C 0;˛.Sn;S`/ - Œu�
W s; ns .Sn;S`/

:

Indeed, this can be simply disproved by conformal rescaling, concentrating the
map u into one point. The right-hand side is conformally invariant, and thus does
not change. However, the continuity on the left-hand side becomes worse and
worse.

(4) Similarly, there is no hope to obtain

Œu�W s1;p1 .Sn;S`/ - Œu�
W s; ns .Sn;S`/

whenever s1p1 > n.

(5) While Theorem 16, does not imply continuity, and therefore seems to be a weaker
result than [14, 23], it has the crucial advantage of being a global result on all
of Sn.

By the conformal invariance of the energy we may replace the domain Sn by Rn and
assume u 2 PW s; ns .Rn;S`/.

4.1. Improved global estimates for harmonic maps

We begin with the Euler–Lagrange equations for W s; ns -harmonic maps; see, e.g., [23].
For any ' 2 L1 \ PW s; ns .Rn;R`C1/, a critical point u 2 W s; ns .Rn; S`/ of the energy
Es; ns satisfies the equationZ

Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y// ^ .u.x/'.x/ � u.y/'.y//

jx � yj2n
dx dy D 0: (4.1)

Here, ^WR` �R` denotes the wedge product in R`C1,

.u ^ v/ij D u
ivj � uj vi ; i; j 2 ¹1; : : : ; `C 1º:

The crucial result is that the equation for fractional W s; ns -harmonic maps improves
globally.

Proposition 18. Let 0 < s0 < s1 < 1. There exists a � 2 .0; 1/ such that the following
holds.

For any s 2 .s0; s1/ and any u 2 PW s; ns .Rn;S`/, which is a minimizingW s; ns -harmonic
map in its own homotopy group, we have

Œ.��/sn
s
u�
W
��s; n

n��s .Rn/
� C.s0; s1; n/Œu�

n
s

W s; ns .Rn/
I
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that is, for any  2 PW �s; n
�s .Rn;R`C1/,Z

Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//. .x/ �  .y//

jx � yj2n
dx dy

� C.s0; s1; n/Œu�
n
s

W s; ns .Rn/
Œ �

W
�s; n

�s .Rn/
: (4.2)

In the proof below we will frequently work with the fractional Laplacian .��/
s
2 which

can be defined as
.��/

s
2 f D csF

�1.j�jsF f /;

where F is the Fourier transform. When s 2 .0; 1/, with a different constant, we also have
the representation

.��/
s
2 f .x/ D cs

Z
Rn

f .y/ � f .x/

jx � yjnCs
dy:

The inverse of the fractional Laplacian is the Riesz potential I s , defined as

I sf D csF
�1.j�j�sF f /;

or, for s 2 .0; n/,

I sf .x/ D cs

Z
Rn

jx � yjs�nf .y/ dy: (4.3)

For mapping properties of the Riesz potential we refer the reader to standard literature,
e.g., [9, 10, 21, 27].

In order to prove Proposition 18 we consider the following potential introduced in
[23]:

Ttu.z/´

Z
Rn

Z
Rn

ju.x/�u.y/j
n
s �2.u.x/�u.y//.jx�zjt�n�jy�zjt�n/

jx � yj2n
dx dy: (4.4)

Observe that for t < s we have by the representation of the Riesz potential I t , (4.3),Z
Rn

Ttu.z/'.z/ dz

D c

Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.I t'.x/ � I t'.y//

jx � yj2n
dx dy:

From the definition of Tt and Hölder’s inequality we haveˇ̌̌̌Z
Rn

Ttu.z/'.z/ dz
ˇ̌̌̌

- Œu�
n
s �1

W s; ns .Rn/
ŒI t'�

W s; ns .Rn/
: (4.5)

Thus, if t < s, Ttu is a tempered distribution for u 2 W s; ns .Rn/.
Observe that even as a distribution we have

kTtukL
n
n�t .Rn/

- ku � TtukL n
n�t .Rn/

C ku ^ TtukL
n
n�t .Rn/

; (4.6)
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whenever the right-hand side is finite. In the next two lemmas we will separately estimate
both terms on the right-hand side of (4.6): the orthogonal projection u � Ttu and the tan-
gential projection u^ Ttu (orthogonal and tangential are meant with respect to the tangent
space TuS`).

Lemma 19. Let 0 < s0 < s1 < 1. There exist a � 2 .0; 1/ and a constant C D C.s0; s1;
n; `/ > 0 such that the following holds.

For any s 2 .s0; s1/, there exists t < �s such that if u is a W s; ns .Rn;S`/-minimizing
harmonic map in its own homotopy group, then for Tt as in (4.4),

ku � TtukL
n
n�t .Rn/

� C Œu�
n
s

W s; ns .Rn/
: (4.7)

Proof. We argue similarly to the proof of [23, Lemma 6.5]. We note that since juj D 1 we
have

.u.x/ � u.y// � u.z/ D �
1

2
.u.x/ � u.y// � .u.x/C u.y/ � 2u.z//

and hence

ju � Ttu.z/j

-
Z

Rn

Z
Rn

ju.x/�u.y/j
n
s �1ju.x/Cu.y/�2u.z/j

ˇ̌
jx�zjt�n�jy�zjt�n

ˇ̌
jx � yj2n

dx dy:

We observe that for r 2 .0; 1/, we have by [25, Proposition 6.6],

ju.x/ � u.y/j - jx � yjr .M.��/
r
2u.x/CM.��/

r
2u.y//; (4.8)

where M denotes the Hardy–Littlewood maximal function.
We follow the proof in [23, Proposition 6.3] but replace the use of [23, Proposition

6.2] by (4.8) and consider the three regimes (similarly to [23, Proposition 6.1])®
jx � yj - min¹jx � zj; jy � zjº

¯
W in this case jx � zj � jy � zj;®

jx � zj - min¹jy � zj; jx � yjº
¯
W in this case jy � zj � jx � yj;®

jy � zj - min¹jx � zj; jx � yjº
¯
W in this case jx � zj � jx � yj:

We obtain for Qt 2 .0; t/ with r C Qt 2 .0; 1/,

ju.x/C u.y/ � 2u.z/j
ˇ̌
jx � zjt�n � jy � zjt�n

ˇ̌
- .M.��/

r
2u.x/CM.��/

r
2u.y/CM.��/

r
2u.z//

� jx � yjrC
Qtkt�Qt ;t .x; y; z/; (4.9)

where �˛;
 .x; y; z/ is given by

�˛;
 .x; y; z/ D min¹jx � zj˛�n; jy � zj˛�nº

C

�
jy � zj

jx � yj

�
�˛
jy � zj˛�n�¹jx�zj-min¹jy�zj;jx�yjºº

C

�
jx � zj

jx � yj

�
�˛
jx � zj˛�n�¹jy�zj-min¹jx�zj;jx�yjºº:
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Moreover, we have by (4.8),

ju.x/ � u.y/j
n
s �1

- jx � yjr.
n
s �1/

�
.M.��/

r
2u.x//

n
s �1 C .M.��/

r
2u.y//

n
s �1

�
: (4.10)

Combining (4.10) with (4.9) we obtain for a ' 2 C1c .R
n/, k'k

L
n
t .Rn/

� 1,

ku � TtukL
n
n�t .Rn/

-
Z

Rn

u.z/ � Ttu.z/'.z/ dz

-
Z

Rn

Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �1ju.x/C u.y/ � 2u.z/j

�
ˇ̌
jx � zjt�n � jy � zjt�n

ˇ̌
jx � yj2n

j'.z/j dx dy dz

-
Z

Rn

Z
Rn

Z
Rn

jx � yjr
n
sC
Qt�n�nkt�Qt ;t .x; y; z/Ur .x; y; z/j'.z/j dx dy dz; (4.11)

where

Ur .x; y; z/´
�
.M.��/

r
2u.x//

n
s �1 C .M.��/

r
2u.y//

n
s �1

�
�
�
M.��/

r
2u.x/CM.��/

r
2u.y/CM.��/

r
2u.z/

�
:

Assuming r n
s
C Qt � n > 0 we further estimate (4.11) with the help of [23, Proposition

6.4] and Hölder’s inequality:

ku � TtukL
n
n�t .Rn/

- max
t1Ct2Ct3
Dr ns �nCt

Z
Rn

I t1.M.��/
r
2u.z//

n
s �1I t2.M.��/

r
2u.z//I t3 j'.z/j dz

- max
t1Ct2Ct3
Dr ns �nCt

kI t1.M.��/
r
2u/

n
s �1k

L

n
r ns �r�t1 .Rn/

� kI t2.M.��/
r
2u/k

L
n

r�t2 .Rn/
kI t3 j'jk

L
n

t�t3 .Rn/
: (4.12)

Assuming r n
s
� r � t1 � �r � t C n > 0, t2 � r ns � nC t < r , t3 � r ns � nC t < t , we

apply Sobolev’s inequality and the maximal theorem twice to get

ku � TtukL
n
n�t .Rn/

- k.M.��/
r
2u/

n
s �1k

L

n
r ns �r .Rn/

kM.��/
r
2uk

L
n
r .Rn/

k'k
L
n
t .Rn/

- k.��/
r
2uk

n
s �1

L
. ns �1/

n
r ns �r .Rn/

k.��/
r
2uk

L
n
r .Rn/

k'k
L
n
t .Rn/

D k.��/
r
2uk

n
s

L
n
r .Rn/

k'k
L
n
t .Rn/

- Œu�
n
s

W s; ns .Rn/
: (4.13)

In the last line we used r < s.
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The conditions on r and t used in estimates (4.12) and (4.13) are

r < s; n <
n

s
r C t < nC r; r C t < n:

If nD 1 we choose r D t , and then any t 2 . s
1Cs

;min¹s; 1
2
º/ is admissible, so we can pick

t ´

s
1Cs
Cmin¹s; 1

2
º

2
� s

1
1Cs
C 1

2
� s

1
1Cs0
C 1

2
´ s�:

Observe that we do not need to make a distinction between the cases n
s
< 2 and n

s
� 2.

If n � 2 it is even easier, since r C t < n becomes a trivial condition. This finishes the
proof.

Now we estimate the second part of the right-hand side of (4.6).

Lemma 20. Let 0 < s0 < s1 < 1. There exists a � 2 .0; 1/ such that the following holds.

For any s 2 .s0; s1/, there exists t < �s such that if u is a W s; ns .Rn;S`/-minimizing
harmonic map in its own homotopy group, then for Tt as in (4.4),

ku ^ TtukL
n
n�t .Rn/

- Œu�
n
s

W s; ns .Rn/
: (4.14)

Proof. We argue as in [23, Proof of Lemma 3.5].

By duality, there is some  2 C1c .R
n/, k k

L
n
t .Rn/

� 1, for which

ku ^ TtukL
n
n�t .Rn/

-
Z

Rn

u ^ Ttu :

Take R � 1 so that supp � B.0; R/. Let �R 2 C1c .B.0; 2R// be a cut-off function
such that �R � 1 in B.0;R/, and set

'1;R ´ �RI
t ;

'2;R ´ .1 � �R/I
t :

Then Z
Rn

u ^ Ttu D

Z
Rn

u ^ Ttu.��/
t
2 '1;R C

Z
Rn

u ^ Ttu.��/
t
2 '2;R:

We observe that with a constant independent of R� 1,

k.��/
t
2 '1;RkL

n
t .Rn/

- k k
L
n
t .Rn/

� 1;

hence Z
Rn

u ^ Ttu � sup
'2C1c .R

n/;

k.��/
t
2 'k

L
n
t .Rn/

-1

Z
Rn

u ^ Ttu.��/
t
2 '

C lim sup
R!1

ˇ̌̌̌Z
Rn

u ^ Ttu.��/
t
2 '2;R

ˇ̌̌̌
:
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For the second term on the right-hand side we observe that similarly to (4.5), for suitably
small " > 0,ˇ̌̌̌Z

Rn

u ^ Ttu.��/
t
2 '2;R

ˇ̌̌̌
- Œu�

n
s �1

W s; ns .Rn/
ŒI t .u ^ .��/

t
2 '2;R/�W s; ns .Rn/

- Œu�
n
s �1

W s; ns .Rn/
k.��/

s�tC"
2 .u ^ .��/

t
2 '2;R/k

L
n
sC" .Rn/

- Œu�
n
s �1

W s; ns .Rn/
.1C Œu�

W s; ns .Rn/
/k.��/

sC"
2 '2;Rk

L
n
sC" .Rn/

;

where in the second estimate we used an embedding in Triebel–Lizorkin spaces; see [21,
Theorem 2.2.3].

Now we observe that, due to the support of 1 � �R and  , we have for some � > 0

k.��/
sC"
2 '2;Rk

L
n
sC" .Rn/

- R�s�"kI t k
L

n
sC"
C k.1 � �R/.��/

sC"�t
2  k

L
n
sC"

- R��C.supp /k k
L
n
t

R!1
����! 0:

Thus, for some ' 2 C1c .R
n/, k.��/

t
2 'k

L
n
t .Rn/

� 1,

ku ^ TtukL
n
n�t .Rn/

-
Z

Rn

u ^ Ttu.��/
t
2 '

D �

Z
Rn

'.��/
t
2u ^ TtuC

Z
Rn

.��/
t
2 .'u/ ^ Ttu„ ƒ‚ …
(4.1)
D 0

�

Z
Rn

H
.��/

t
2
.'; u/ ^ Ttu: (4.15)

Here we use the Leibniz term notation

H
.��/

t
2
.f; g/´ .��/

t
2 .fg/ � f .��/

t
2 g � .��/

t
2 f g:

For the last term of (4.15) we observe that similarly to (4.5) for a suitably small " > 0,Z
Rn

H
.��/

t
2
.'; u/ ^ Ttu - Œu�

n
s �1

W s; ns .Rn/
ŒI tH

.��/
t
2
.'; u/�

W s; ns .Rn/

- Œu�
n
s �1

W s; ns .Rn/
k.��/

s�tC"
2 H

.��/
t
2
.'; u/k

L
n
sC" .Rn/

- Œu�
n
s

W s; ns .Rn/
k.��/

t
2 'k

L
n
t .Rn/

:

The last line works as long s � t C " < t .
For the remaining estimates we abbreviate

diff n
s
u.x; y/ D ju.x/ � u.y/j

n
s �2.u.x/ � u.y//:
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By the representation of the Riesz potential, (4.3), and (4.1) we haveZ
Rn

'.��/
t
2u ^ Ttu

D

Z
Rn

Z
Rn

diff n
s
u.x; y/ ^

�
I t .'.��/

t
2u/.x/ � I t .'.��/

t
2u/.y/

�
jx � yj2n

dx dy

D

Z
Rn

Z
Rn

diff n
s
u.x; y/ ^

�
I t .'.��/

t
2u/.x/ � I t .'.��/

t
2u/.y/

�
1
2
.u.x/ � u.y//.'.x/C '.y//

�
jx � yj2n

dx dy:

Exactly as in the first lines of the proof of [23, Lemma 6.6] we haveˇ̌̌
I t .'.��/

t
2u/.x/ � I t .'.��/

t
2u/.y/ �

1

2
.u.x/ � u.y//.'.x/C '.y//

ˇ̌̌
-
Z

Rn

ˇ̌
jx � zjt�n � jy � zjt�n

ˇ̌
j.��/

t
2u.z/j j'.x/C '.y/ � 2'.z/j dz:

Thus,ˇ̌̌̌Z
Rn

'.��/
t
2u ^ Ttu

ˇ̌̌̌

-
Z

Rn

Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �1

ˇ̌
jx � zjt�n � jy � zjt�n

ˇ̌
� j.��/

t
2u.z/j j'.x/C '.y/ � 2'.z/j

jx � yj2n
dx dy dz:

This is the same situation as in (4.11): the role of ' 2 L
n
t in (4.11) is taken here by

.��/
t
2u 2 L

n
t and the role of ju.x/ C u.y/ � 2u.z/j by j'.x/ C '.y/ � 2'.z/j, and

observe that .��/
t
2 ' 2 L

n
t . As was discussedthere we can pick r � t , and thus we haveˇ̌̌̌Z

Rn

'.��/
t
2u ^ Ttu

ˇ̌̌̌
- k.��/

r
2uk

n
s �1

L
n
r .Rn/

k.��/
r
2 'k

n
s �1

L
n
r .Rn/

k.��/
t
2uk

L
n
t .Rn/

- Œu�
n
s

W s; ns .Rn/
k.��/

t
2 'k

L
n
t .Rn/

:

We can conclude. (Again it is worth noting that the proof above does not need to distin-
guish between the cases n

s
� 2 and n

s
� 2.)

We are now ready to proceed with the proof of the main result of this section.

Proof of Proposition 18. Combining (4.6) with (4.14) and (4.7) we get for a t < �s, where
t and � are as in Lemmas 19 and 20,

kTtukL
n
n�t .Rn/

- Œu�
n
s

W s; ns .Rn/
: (4.16)
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By duality, (4.16) implies, for any ' 2 C1 \ L
n
t .Rn;R`C1/,Z

Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.I t'.x/ � I t'.y//

jx � yj2n
dx dy

- Œu�
n
s

W s; ns .Rn/
k'k

L
n
t .Rn/

:

Thus for any  2 C1c .R
n/,Z

Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//. .x/ �  .y//

jx � yj2n
dx dy

- Œu�
n
s

W s; ns .Rn/
k.��/

t
2 k

L
n
t .Rn/

:

Using Sobolev embedding this implies for t < t2 < s,Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//. .x/ �  .y//

jx � yj2n
dx dy

- Œu�
n
s

W s; ns .Rn/
Œ �

W
t2;

n
t2 .Rn/

:

The constant depends on jt � t2j, so by taking Q� slightly larger than � and t2 D Q�s we have
Q�s � t > . Q� � �/s0, so the constant can be chosen uniform and, by density, [21, Section
2.6.2, Proposition 1], we obtain (4.2) for Q� .

4.2. A fractional version of Iwaniec’s stability result

A fractional version of Iwaniec’s stability result was proposed in [24]. However, the result
of [24] does not apply in our situation since it only considers stability in the differential
direction, without adjusting the integrability. We need the latter, since we need to stay
in the scaling-invariant case. Hence, we employ a different version of Iwaniec’s stability
result [11, Theorem 13.2.1] to obtain the following regularity result.

Proposition 21. For any 0 < s0 < s1 < 1 there exists an "0 D "0.s0; s1; n/ > 0 such that
the following holds.

For any s 2 .s0; s1/ and any ƒ > 0 there exists a constant C.ƒ/ such that if u 2
L1 \W s; ns .Rn;RN / satisfies for a t 2 .s � "0; s� and for any  2 PW t; nt .Rn;RN /,ˇ̌̌̌Z

Rn

Z
Rn

ju.x/�u.y/j
n
s �2.u.x/�u.y//. .x/� .y//

jx � yj2n
dx dy

ˇ̌̌̌
�ƒŒ �

W t; nt .Rn/
; (4.17)

then for r ´ s n�t
n�s
� s,

Œu�
W r; nr .Rn/

� C.ƒ; "0; s0; s1/:

We first observe that for p´ n
s

and "´ p � n
r
D

n
s
�
n
r
> 0 we have t

1�"
D r and

Œu�
n
r

W r; nr
D

Z
Rn

Z
Rn

ju.x/ � u.y/jp�2.u.x/ � u.y//

� ju.x/ � u.y/j�".u.x/ � u.y//

jx � yj2n
dx dy: (4.18)
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We perform a de facto Hodge decomposition:

ju.x/ � u.y/j�".u.x/ � u.y// D A.x/ � A.y/CG.x; y/; (4.19)

where, in the terminology of [14], we choose A such that

.��/tA.x/´ divt
�
ju.x/ � u.y/j�".u.x/ � u.y//

jx � yjt

�
; (4.20)

that is, for any ' 2 C1c .R
n/,

.��/tAŒ'� D

Z
Rn

Z
Rn

ju.x/ � u.y/j�".u.x/ � u.y//.'.x/ � '.y//

jx � yjnC2t
dx dy:

From the linear theory of partial differential equation we have the following lemma.

Lemma 22. For any 0 < t0 < t1 < 1 there exists an "0 > 0 such that whenever t 2 .t0; t1/,
an A 2 PW t; nt .Rn;RN / as in (4.20) exists and satisfies the estimate

ŒA�
W t; nt .Rn/

- Œu�1�"
W

t
1�" ;.1�"/

n
t .Rn/

D Œu�1�"
W r; nr .Rn/

with a constant independent of " as long as " 2 Œ0; "0�. The quantity A is unique up to
constants.

Proof. Proceeding exactly as in [5, Lemma A.1] we have the a priori estimate

.��/tAŒ'� D

Z
Rn

Z
Rn

ju.x/ � u.y/j�".u.x/ � u.y//.'.x/ � '.y//

jx � yjnC2t
dx dy

� Œu�1�"
W

t
1�" ;.1�"/

n
t .Rn/

Œ'�
W t; nn�t .Rn/

:

Using the identification via Triebel–Lizorkin spaces, [21, Section 2], we have

ŒA�
W t; nt .Rn/

� ŒA�
PF
t; nt
n
t

� Œ.��/tA�
PF
�t; nt
n
t

� Œ.��/tA��
PF
t; nn�t
n
n�t

�� - Œu�1�"
W

t
1�" ;.1�"/

n
t .Rn/

:

The constants depend only on t0 and t1 since t 2 .t0; t1/. In particular, A exists since
.��/tA 2

�
PF
t; nn�t
n
n�t

��. Further, A is unique up to constants, since ŒA�
W t; nt .Rn/

D 0 implies
that A is a constant.

From Lemma 22 and (4.19) we have in particular,�Z
Rn

Z
Rn

jG.x; y/j
n
t

jx � yj2n
dx dy

� t
n

- Œu�1�"
W r; nr .Rn/

:

The latter estimate can, however, be improved.

Proposition 23. For any 0 < t0 < t1 < 1 there exist an "0 > 0 and a constant C D
C.t0; t1; "0/ such that for any " 2 .0; "0/, and t 2 .t0; t1/ and G as in (4.19),�Z

Rn

Z
Rn

jG.x; y/j
n
t

jx � yj2n
dx dy

� t
n

� C j"jŒu�1�"
W r; nr .Rn/

:
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Proof. We follow the approach in [11, Theorem 13.2.1]. Fix "0 to be specified later. By
density, cf. [21, Section 2.6.2, Proposition 1], we may assume that u 2 C1c .R

n/ (observe
that we can change u by a constant without changing the definitions of G and A).

For z 2 C, jzj � "0 we set

Gz.x; y/ D .Az.x/ � Az.y// � ju.x/ � u.y/j
z.u.x/ � u.y//; (4.21)

where Az is defined as the solution to

.��/tAz Œ'� D

Z
Rn

Z
Rn

ju.x/ � u.y/jz.u.x/ � u.y//.'.x/ � '.y//

jx � yjnC2t
dx dy;

8' 2 C1c .R
n/: (4.22)

This is well defined since u 2 C1c .R
n/ and the right-hand side is a linear functional on a

Triebel–Lizorkin space. Assume that for a � 2 .0; 1
2
/ we have a q 2 .1;1/ such that

2t �
n

q
.1C<.z// 2 .�; 1 � �/: (4.23)

Let us remark here that later we will apply this to q D n
t
.1C<.z// for jzj � "0, so that

� and "0 can be chosen depending only on t0 and t1.
We get by (4.21),�Z

Rn

Z
Rn

jGz.x; y/j
q

1C<.z/

jx � yj2n
dx dy

� 1C<.z/
q

- Œu�
1C<.z/

W
n
q ;q.Rn/

C ŒAz �
W

n
q .1C<.z//;

q
1C<.z/ .Rn/

: (4.24)

Arguing with the identification of Triebel–Lizorkin spaces as in Lemma 22 we have

ŒAz �
W

n
q .1C<.z//;

q
1C<.z/ .Rn/

� ŒAz �
PF
n
q .1C<.z//

q
1C<.z/

;
q

1C<.z/

.Rn/
� Œ.��/tA�

PF
n
q .1C<.z//�2t

q
1C<.z/

;
q

1C<.z/

.Rn/
:

Moreover,

PF
n
q .1C<.z//�2t
q

1C<.z/
;

q
1C<.z/

.Rn/ D
�
PF
2t� nq .1C<.z//

.
q

1C<.z/
/0;.

q
1C<.z/

/0
.Rn/

��
D
�
W
2t� nq .1C<.z//;.

q
1C<.z/

/0
.Rn/

��
DW X�:

Hence, by the equivalence of the norms (the constant depends on �),

ŒAz �
W

n
q .1C<.z//;

q
1C<.z/ .Rn/

� sup
Œ'�X�1

Z
Rn

Z
Rn

ju.x/ � u.y/jz.u.x/ � u.y//.'.x/ � '.y//

jx � yjnC2t
dx dy

� sup
Œ'�X�1

Z
Rn

Z
Rn

ju.x/ � u.y/j1C<.z/

jx � yj
n
q .1C<.z//

j'.x/ � '.y/j

jx � yj
2t� nq .1C<.z//

dx dy
jx � yjn

- Œu�
1C<.z/

W
n
q ;q.Rn/

: (4.25)
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We stress that for jzj � "0, all of the constants above are independent of z but depend
on �. Hence, combining the estimates (4.24) with (4.25) we obtain�Z

Rn

Z
Rn

jGz.x; y/j
q

1C<.z/

jx � yj2n
dx dy

� 1C<.z/
q

- Œu�
1C<.z/

W
n
q ;q.Rn/

:

Fix now  WRn �Rn ! RN such thatZ
Rn

Z
Rn

j .x; y/jq

jx � yj2n
dx dy � 1 (4.26)

and set

F ;u.z/´

Z
Rn

Z
Rn

hGz.x; y/; j .x; y/j
q�2�Nz .x; y/iC

jx � yj2n
dx dy:

Then

jF ;u.z/j �

�Z
Rn

Z
Rn

jGz.x; y/j
q

1C<.z/

jx � yj2n
dx dy

� 1C<.z/
q

- Œu�
1C<.z/

W
n
q ;q.Rn/

;

where the constants are independent of q as long as the assumption (4.23) is satisfied.
We observe that F ;u.0/ D 0. Indeed, by the definition (4.22) we have.��/tA0 D

.��/tu, and hence A D u C c for a constant c. This, by definition (4.21), implies
G0.x; y/ � 0.

Moreover, just as in [11, Theorem 13.2.1], z 7! F ;u.z/ is holomorphic: since u 2
C1c .R

n/ the map @ NzF ;u is well defined, and we can compute explicitly that the Cauchy–
Riemann equations are satisfied.

From the Schwarz lemma for holomorphic functions we have for all jzj � "0,

jF ;u.z/j - jzjŒu�1C<.z/
W

n
p ;p.Rn/

; (4.27)

with constant independent of  as long as (4.26) is satisfied. The constant depends only
on � and thus on t0, t1, and "0.

Now take q D n
t
.1 � "/, z D �", " D n

s
�
n
r

, r D s n�t
n�s

, so that t
1�"
D r . By (4.27)

we get�Z
Rn

Z
Rn

jG�".x; y/j
n
t

jx � yj2n
dx dy

� t
n

D F ;u.�"/ � sup
 as in (4.26)

F ;u.�"/ - j"jŒu�1C<.z/
W

n
q ;q.Rn/

:

We are ready to proceed with the proof of the main result of this section.
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Proof of Proposition 21. We have by (4.18) and (4.19),

Œu�
n
r

W r; nr .Rn/
D

Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.A.x/ � A.y//

jx � yj2n
dx dy

C

Z
Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.G.x; y//

jx � yj2n
dx dy: (4.28)

By (4.17) and Lemma 22 we haveZ
Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.A.x/ � A.y//

jx � yj2n
dx dy

� ƒŒA�
W t; nt .Rn/

- ƒŒu�1�"
W r; nr .Rn/

: (4.29)

As for the second term on the right-hand side of (4.28), we note that r
n
.n
s
� 1/C t

n
D 1.

Hence, by Hölder’s inequality, Proposition 23, and the observation n
s
� " D n

r
,Z

Rn

Z
Rn

ju.x/ � u.y/j
n
s �2.u.x/ � u.y//.G.x; y//

jx � yj2n
dx dy

- Œu�
n
s �1

W r; nr .Rn/

�Z
Rn

Z
Rn

jG.x; y/j
n
t

jx � yj2n
dx dy

� t
n

- j"jŒu�
n
r

W r; nr .Rn/
: (4.30)

Combining (4.28) with (4.29) and (4.30) we obtain

Œu�
n
r

W r; nr .Rn/
- ƒŒu�1�"

W r; nr .Rn/
C j"jŒu�

n
r

W r; nr .Rn/
:

Now s � t � "0 implies " D n
s
�
n
r
D

n
s
. s�t
n�t

/ � C.s0; s1/"0, so for "0 suitably small we
can absorb and conclude

Œu�
n
r

W r; nr .Rn/
- C."0; ƒ; s1; s0/:

5. Continuous dependence

The main observation is that the regularity theory of Theorem 16 combined with the sta-
bility Proposition 12 imply the following corollary.

Corollary 24. Fix n; ` 2 N with either .`; n/ D .1; 1/ or ` � 2. Fix 0 < s0 < s1 < 1 and
ƒ > 0. Then for any " > 0 there exists ı > 0 such that the following holds.

If s 2 .s0; s1/ and #s˛ is attained with #s˛ �ƒ for a homotopy class ˛ 2 �n.S`/ then,
for any Qs 2 .s � ı; s C ı/,

#s˛ � #Qs˛ � ":
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Proof. Let u 2 ˛ be the minimizer of Es; ns . By Theorem 16 there is a ‚ > 0 such that

Œu�
W
‚s; n

‚s
� C.s0; s1; ƒ/:

Now we pick ı from Proposition 12 and conclude for any Qs 2 .s � ı; s C ı/,

#s˛ D Œu�
n
s

W s; ns .Sn/
� Œu�

n
Qs

W
Qs; n
Qs .Sn/

� " � #Qs˛ � ":

5.1. Continuous dependence of minimal energy: Proof of Theorem 3

Theorem 3 is a pretty straightforward consequence of Corollary 24.

Proof of Theorem 3. Fix " > 0 and ˛ 2 �n.S`/. Take any smooth map Nu 2 C1.Sn;S`/
that represents ˛. Then we have, for any 0 < s0 < s1 < 1, the estimate

sup
t2.s0;s1/

#t˛ � C. Nu/:

That is, we have a uniform energy bound that is needed later in the application of Corol-
lary 24.

In view of Theorem 15 there is an N 2 N for which

#s˛ D
NX
iD1

#s˛i for some
NX
iD1

˛i D ˛ such that #s˛i is attained:

By Corollary 24 there is a ı > 0 such that for all t 2 .s � ı; s C ı/ we have

#s˛ D
NX
iD1

#s˛i �
NX
iD1

�
#t˛i �

"

N

�
� #t˛ � ";

where the last inequality is a consequence of Proposition 9. The converse inequality fol-
lows by reversing the roles of t and s.

5.2. Proofs of corollaries

Proof of Corollary 4. Fix 0 < s0 < 1=2 < s1 < 1. Assume that #s1 is not attained for some
s 2 .s0; s1/. Then by Theorem 15,

#s1 � #sd1;s C #sd2;s

for degrees d1;s; d2;s 2 Q n ¹�1; 0; 1º such that #sdi;s is attained for i D 1; 2. Theorem
11 implies that Q can only be a finite set of integers.

By Theorem 3, the family of maps

.s0; s1/ 3 s 7! #sd; d 2 Q
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are equicontinuous. So, for every " > 0, there is a ı such that for every s 2 .1
2
� ı; 1

2
C ı/

we have

# 1
2
1 � #s1 � " � #sd1;s C #sd2;s � "

� # 1
2
d1;s C # 1

2
d2;s � 3":

Combining this with Theorem 10 we obtain

4�2 D # 1
2
1 � # 1

2
d1;s C # 1

2
d2;s � 3" � 8�

2
� 3":

For " < 4
3
�2 this is a contradiction.

In a very similar way to Corollary 4 we obtain the following proof.

Proof of Corollary 5. The fact that #t˛ is attained is an immediate consequence of [15,
Lemma 7.7]. Arguing exactly as in the proof of Corollary 4 – assuming that #s˛ is not
attained – we obtain for ˇ1;s; ˇ2;s 2 �n.S`/ n ¹0º,

#t˛ � #sˇ1;s C #sˇ2;s � " � #tˇ1;s C #tˇ2;s � 3":

However, by assumption #t˛ � #tˇi;s for i D 1; 2. Hence we would get #t˛ � 2#t˛ � 3".
This gives a contradiction with Proposition 8 for sufficiently small " > 0.

Proof of Corollary 6. In view of Theorem 11, for each ƒ > 0 there exists D 2 N such
that

xCn;sIƒ � sup
u2W s; ns .Sn;Sn/;
0<Œu�

W
s; ns
�ƒ

degu

Œu�
n
s

W s; ns .Sn;Sn/

D max
d2Zn¹0º;
jd j�D

sup
u2W s; ns .Sn;Sn/;
Œu�

W
s; ns
�ƒ;

deguDd

d

Œu�
n
s

W s; ns .Sn;Sn/

D max
° d

#sd
W jd j � D; d ¤ 0; 9u 2 W s; ns .Sn;Sn/ with degu D d

and Œu�
W s; ns

� ƒ
±
:

For each d 2 Z n ¹0º the map s 7! d
#sd

is continuous, by Theorem 3.
Since

xCn;s D sup
ƒ>0

xCn;sIƒ D lim
ƒ!1

xCn;sIƒ

we have that s 7! xCn;s is lower semicontinuous.
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5.3. Stability of generators of minimizing W s; n
s -harmonic maps: Proof of

Theorem 2

Theorem 2 is a consequence of the following more precise theorem.

Theorem 25. Fix n; ` � 1 with either .`; n/ D .1; 1/ or ` � 2. Let ƒ > 0 and 0 < t0 <
t1 < 1. There exists a ı D ı.`; n; t0; t1; ƒ/ 2 .0; 1/ such that the following holds for
t 2 .t0; t1/.

Set

Xs´
®
˛2�n.S

`/ W there exists a W s; ns .Sn;S`/-minimizer u in ˛ and Œu�
W s; ns .Sn;S`/

�ƒ
¯

and
Y ´

\
s2.t�ı;tCı/

Xs :

Then Xs is generated by Y , i.e., Xs � spanY , for each s 2 .t � ı; t C ı/.

Proof. Let " > 0 be fixed and chosen below. For this " we take ı > 0 from Corollary 24.
By Theorem 11 there exists a finite number M 2 N such that if for some s 2 .t � ı;

t C ı/Œu�
W s; ns .Sn/

< ƒ then u 2 Q´ ¹˛1; : : : ; ˛M º � �n.S`/. In particular, Xs � Q for
all s 2 .t � ı; t C ı/. Observe that for each s 2 .t � ı; t C ı/ we have from Theorem 1,

Xs generates Q:

Let us enumerate the elements of Y D
T
s2.t�ı;tCı/Xs:

Y D ¹
1; : : : ; 
Kº for K �M:

Of course, for now K D 0 is a possibility.
We define Z � Q n Y as the collection of homotopy groups ˇ, where #sˇ is not

attained for at least one s. More precisely,

Z´
®
˛ 2 �n.S

`/ W #s˛ � ƒ for an s 2 .t � ı; t C ı/
¯
n Y D ¹ˇ1; : : : ; ˇLº:

We note that LCK � M . Now assume that for some s 2 .t � ı; t C ı/ there is ˛ such
that ˛ 2 Xs n Y . Then there must be some Qs 2 .t � ı; t C ı/ with ˛ 62 XQs . By Theorem 15
we find ˇk 2 Z and 
k 2 Y n ¹0º such that #Qsˇk and #Qs
k are attained, 2 � ACB �M ,
and

˛ D

AX
kD1

ˇk C

BX
kD1


k ; #Qs˛ D
AX
kD1

#Qsˇk C
BX
kD1

#Qs
k : (5.1)

Using (5.1) and applying Corollary 24 twice we obtain

#s˛ � #Qs˛ � " D
AX
kD1

#Qsˇk C
BX
kD1

#Qs
k � "

� sup
r2.t�ı;tCı/

� AX
kD1

#rˇk C
BX
kD1

#r
k

�
� .M C 1/": (5.2)
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In particular, we have

#s˛ � #Qs˛ � " �
AX
kD1

#sˇk C
BX
kD1

#s
k � .M C 1/": (5.3)

Observe that this is a contradiction if any of the ˇk on the right-hand side are equal to ˛
(assuming " is small enough).

If A D 0 then we are done because then ˛ D
P

k and each 
k 2 Y .

If A > 0, then for each ˇk in (5.2) we have two possibilities: either #sˇk is attained
(but still ˇk 62 Y ) or #sˇk is not attained. Rearranging the terms we can assume that

• for the terms ˇ1; : : : ; ˇA1 , #sˇk is attained, i.e., ˇk 2 Xs n Y ,

• for the terms ˇA1C1; : : : ; ˇA the infimum #sˇk is not attained, i.e., ˇk 62 Xs .

It is possible that A1 D 0 or A1 D A.
In the case ˇk 2 Xs n Y we find an sk 2 .t � ı; t C ı/ such that ˇk … Xsk and we

apply (5.3).
In the case ˇk … Xs we apply Theorem 15.

We obtain, first using Corollary 24 and then using (5.3) and Theorem 15,

AX
kD1

#sˇk �
A1X
kD1

#skˇk C
AX

kDA1C1

#sˇk �M"

�

A1X
kD1

�A1;kX
jD1

#sˇkj C
B1;kX
jD1

#s
kj

�
C

AX
kDA1C1

�AQ1;kX
jD1

#sˇ Qkj C
BQ1;kX
jD1

#s
 Qkj

�
� .2M 2

CM/"

D

QA1X
iD1

#sˇ�.i/ C
QB2X
iD1

#s
�.i/ � .2M 2
CM/"; (5.4)

where QA1; QB1 � 2M 2, �.i/ 2 ¹1; : : : ; Lº, �.i/ 2 ¹1; : : : ; Kº for each i , and at each step
2 � A1;k C B1;k � M . Now again, we can repeat the procedure. However, since there
are at most M elements in Z we obtain that after a finite number of iterations of this
procedure, the same element ˇi would appear on the right-hand side and on the left-hand
side of (5.4). This would give a contradiction for a sufficiently small " (depending on M
and � from Proposition 8). Hence, we must obtain at some moment a decomposition of ˛
into terms belonging only to Y .
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