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Quantum fluctuations of many-body dynamics
around the Gross-Pitaevskii equation

Cristina Caraci, Jakob Oldenburg, and Benjamin Schlein

Abstract. We consider the evolution of a gas of N bosons in the three-dimensional Gross—
Pitaevskii regime (in which particles are initially trapped in a volume of order one and interact
through a repulsive potential with scattering length of order 1/ N'). We construct a quasi-free approx-
imation of the many-body dynamics, whose distance to the solution of the Schrédinger equation
converges to zero, as N — 00, in the L2(R3N )-norm. To achieve this goal, we let the Bose—Einstein
condensate evolve according to a time-dependent Gross—Pitaevskii equation. After factoring out the
microscopic correlation structure, the evolution of the orthogonal excitations of the condensate is
governed instead by a Bogoliubov dynamics, with a time-dependent generator quadratic in creation
and annihilation operators. As an application, we show a central limit theorem for fluctuations of
bounded observables around their expectation with respect to the Gross—Pitaevskii dynamics.

1. Introduction

In the Gross—Pitaevskii regime, we consider systems of N bosons confined by an external
field in a volume of order one (after appropriate choice of the length unit) and interacting
through a repulsive potential with small effective range of order 1/N. The corresponding
Hamilton operator is given by

N N
H}t\l;ap = Z[‘ij + Vexe(x)] + Z N?V(N(x; — xj)), (1.1)

j=1 i<j

with Vg (x) = 00 as |x| — oo and V' > 0 compactly supported. According to bosonic
statistics, H]t\r,ap acts as a self-adjoint operator on L?(R3N ), the subspace of L2(R3N)
consisting of wave functions that are symmetric with respect to permutations of the N
particles. In [48, 53] it was proven that, to leading order in N, the ground state energy
E;{,ap of (1.1) satisfies

trap
lim =& = min & , 1.2
NN T pers@imotam SF@) (12
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with the Gross—Pitaevskii energy functional

Ecp(9) = / (Vo + Vilol? + 4ralol*] dx. (13)

Here, a > 0 denotes the scattering length of the interaction potential V', which is defined
through the solution of the zero-energy scattering equation

[-a+4)r=o

with the boundary condition f(x) — 1, as |x| — oo, by requiring that f(x) =1 —a/|x]|
outside the support of V.

Let ¢gp € L?(R?) denote the (unique, up to a phase) normalized minimizer of (1.3). It
turns out that the ground state vector of (1.1) and, in fact, every sequence of approximate
ground states, exhibit complete Bose—Einstein condensation in the one-particle state ¢gp.
In other words, let us consider a normalized sequence ¥y € L2(R3V) satisfying

1 "
~ - Hy"Yn) = Ecp(gar)

as N — oo (i.e. ¥y is a sequence of approximate ground states). Let yx denote the one-
particle reduced density matrix associated with 1, which is defined as the nonnegative
operator on L?(R?) with the integral kernel

yN(x:y) = /dXz e dXN YN (X X2 XN)YUN (D, X2s L XN,
normalized so that tr yy = 1. Then, as first proven in [46,47,53],
lim (gcp, ynpcp) = 1. (1.4
N—o0

The convergence (1.4) implies that, in the states ¥y, the fraction of particles orthogonal
to ¢gp vanishes, in the limit N — ooc.

Recently, the estimates (1.2), (1.4) have been improved in [18, 19, 52, 54] for inte-
grable interaction potentials, through a rigorous version of Bogoliubov theory. In the
translation-invariant setting, these improvements have previously been achieved in [8, 9].
This approach determines the ground state energy E;{,ap of (1.1), up to errors vanishing as
N — oco. Moreover, it gives precise information on the low-energy excitation spectrum
of (1.1) and on the depletion of the Bose—Einstein condensate (in particular, it shows that
the rate of convergence in (1.4) is proportional to 1/N) and it provides a norm approxi-
mation for the ground state vector. It is interesting to remark that, in the Gross—Pitaevskii
regime, such precise estimates on the spectrum of the Hamiltonian cannot be obtained by
restricting our attention to quasi-free states. Instead, it is important to take into account
corrections that can be described by the action of a unitary operator on the Fock space of
excitations of the condensate, given by the exponential of a cubic expression in creation
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and annihilation operators. For related recent results concerning equilibrium properties
of Bose gases in the (translation-invariant) Gross—Pitaevskii regime, beyond the Gross—
Pitaevskii regime and in the thermodynamic limit, see [1,3-5,11,12,15,21,22,31,32,40,
41].

Gross—Pitaevskii theory is not only useful to predict the ground state energy of Bose
gases described by the Hamilton operator (1.1). It can also be used to approximate their
time evolution. From the point of view of physics, it is relevant to study the dynamics of
an equilibrium state of (1.1), after the external fields are switched off (so that the system is
no longer at equilibrium). At (or very close to) zero temperature, it is therefore interesting
to study the solution of the time-dependent Schrodinger equation

iath,t = HNl/fN,t (1.5)

with the translation-invariant Hamiltonian (obtained after turning off the trap)

N N
Hy =) —Ax + ) N V(N —xp)). (1.6)

Jj=1 i<j

for initial data v ¢ approximating the ground state of (1.1). In [26-29], it was first proven
that the time evolution ¥y, of an initial data ¥y, exhibiting Bose—Einstein condensate in
a one-particle state ¢ € L?(IR3) still exhibits Bose—Einstein condensation, in a new one-
particle state ¢;, given by the solution of the nonlinear time-dependent Gross—Pitaevskii
equation

i0rr = —A¢@s + 87ta|<p,|2<pt (1.7)

with the initial data p;—o = @. More precisely, denoting by yx ; the one-particle reduced
density associated with the solution ¥x; € L?(R3N ) of the Schrodinger equation (1.5),
it turns out that

Nlim (@1, YN191) = 1 (1.8)

—00

for any fixed ¢ € R, if (1.8) holds true at time ¢ = 0. Analogous stability results were later
established in [7, 55]. In [17], the convergence (1.8) is shown to hold with the optimal
rate 1/N, for every fixed ¢ € R. It is easy to check that (1.8) implies the convergence
YN, — |@:)(@:| in the trace-class topology (and also the convergence of the k-particle
reduced density matrix associated with ¥, towards the product |¢,){p,|®¥, for every
fixed k € N). However, (1.8) does not provide an approximation for the many-body wave
function ¥y, in the strong L2(R3) topology. To obtain a norm approximation, it is not
enough to approximate the evolution of the condensate. It is instead crucial to take into
account the evolution of its orthogonal excitations.

Norm approximations for many-body dynamics have been derived in the mean-field
setting, where particles are initially trapped in a volume of order one and interact weakly
through a potential whose range is comparable with the size of the trap (so that every par-
ticle interacts effectively with all other particles in the system). In this case, as shown
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in [24, 35, 38, 39, 42, 44, 49, 58], the solution of the many-body Schrddinger equation
can be approximated, after removing the condensate wave function (whose evolution is
described here by the nonlinear Hartree equation; see also [2,23,30,33,34,59]), by a uni-
tary dynamics on the Fock space of excitations, with a generator quadratic in creation and
annihilation operators, acting as a family of time-dependent Bogoliubov transformations
(an approximation to arbitrary precision has recently been obtained in [14]). A similar
norm approximation has been derived in [10, 16] for the many-body evolution generated
by Hamilton operators having the form

N N
1
Hy =2 =8 + 5 2 NPV (i =), (1.9)
j=1 i<j

with 8 € (0; 1), interpolating between the mean field and the Gross—Pitaevskii scaling
(analogous results have also been obtained in [36,37,50] for 8 < 1/3, and in [43,51] for
B < 1/2; higher-order estimates have been derived, for sufficiently small 8 > 0, in [13]).
To achieve this goal, it was important to combine the unitary dynamics with a quadratic
generator, describing the evolution of excitations on macroscopic scales, with an addi-
tional Bogoliubov transformation generating the correct microscopic correlation structure.

In the present paper, we prove a norm approximation for the many-body dynamics
generated by the Hamilton operator (1.6), in the Gross—Pitaevskii regime (i.e. with § = 1
in (1.9)). Compared with the techniques developed in [10, 16] for 8 < 1, there is an impor-
tant difference in the construction of the approximating wave function. In fact, as already
observed in [8, 18, 54] in the time-independent setting, for § = 1 microscopic correla-
tions cannot be precisely modeled only through a Bogoliubov transformation; they require
instead an additional unitary conjugation with a phase cubic in creation and annihilation
operators. This makes our analysis significantly more involved. While the inclusion of the
cubic phase is crucial to compare the generators of the full many-body evolution and of the
quadratic dynamics (and thus to establish convergence for the corresponding evolutions),
in the end it does not substantially change the L2(IR3" )-norm of the approximation and it
can therefore be removed, providing a quasi-free norm approximation to the many-body
evolution, similar to those obtained in [10, 16] for 8 € (0; 1).

2. Setting and main results

We aim at approximating the solution ¥y of the many-body Schrodinger equation (1.5),
for a class of initial data exhibiting complete Bose—Einstein condensation in a normalized
one-particle wave function ¢ € L2(R?). In view of (1.4), from the point of view of physics
it is interesting to choose ¢ as the minimizer of a Gross—Pitaevskii functional of the form
(1.3). Here we will keep the choice of ¢ open, requiring only sufficient regularity.

First of all, we need to approximate the evolution of the condensate. While (1.7) pro-
vides a good approximation at the level of reduced density matrices, to derive a norm
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approximation it is more convenient to consider a slightly modified, N -dependent, nonlin-
ear equation. In the modified equation, the interaction potential appearing in the Hamilton
operator (1.6) is corrected, to take into account correlations among particles. In order to
describe correlations, we fix £ € (0; 1/2) and we consider the ground state solution of the
Neumann problem

[—A + %V]fg — Afy 2.1)

on the ball |x| < N{ (we omit the N-dependence in the notation here for f; and for
Ag; notice that Ay scales as N ~3), with the normalization f;(x) = 1 for |x| = N{. We
extend fy to R3, setting fy(x) = 1 for all |x| > N£ and we also introduce the notation
we(x) =1 — fy(x). To describe correlations created by the rescaled interaction appearing
in (1.1) and in (1.6), we will use the functions fy ¢(x) = fr(Nx), wy¢(x) = we(Nx) =
1 — fn(x). By scaling, we observe that

N? 5
[—8+ V) | fve = V22 v 22)

on the ball |x| < £. Some important properties of Ay, f¢, wy are collected in Lemma A.1
in Appendix A.

With fu ¢, we can now define the condensate wave function at time ¢ € R as the
solution ¢, of the modified Gross—Pitaevskii equation

i10:¢: = —Ag; + (N>V(N-) fo(N-) % |@:|*)@r, (2.3)

with initial data ¢;—o = ¢. As discussed in Lemma A.1, we have

[V(x)fg(x) dx —8ma| < i—;z.

It is therefore easy to check that, as N — oo, ¢, converges to the solution of the limiting
Gross—Pitaevskii equation (1.7) (with the same initial data). This convergence is part of
the statement of Proposition A.2, in Appendix A, where we also collect some standard
properties of the solutions of (1.7) and of (2.3) which will be used throughout the paper.
As explained in the introduction, to obtain a norm approximation for the time evolution
it is not enough to approximate the evolution of the condensate; we also need to take into
account its excitations. To this end, it is convenient to factor out the (time-dependent)
condensate wave function introducing, for every ¢ € R, the unitary map Uy, : LZ2(R3V) —

F fé:’ into the Fock space of excitations

/N3V(Nx)ﬁg(Nx) dx —8ma

N
<N __ 2 3\®sn
j,J—fINJt - @Ll@t (R ) ’
n=0

over the orthogonal complement Li@ (R3) of ¢;. The map Uy, is defined so that

UniYUN: = {ozg?)t, ey aj(VNt)}, corresponding to the unique decomposition

N
~®(N—
1,ﬁN,t = E O{E\’;’)t ®s (p?( n)’
n=0
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where a](\',’,)t € Li@ (R3)®s™ is symmetric with respect to permutation and orthogonal to @;
in each coordinate. Denoting by a( f), a*(g) the usual creation and annihilation operators,
the action of Uy, is characterized (see [17,45]) by the rules
Unia*(@r)a(@)Uy, = N — N,
Unsa*(a@)Uy, = a*(HVN =N = VNb(f)",
Unta*(@)a(@)Uy, = VN — Na(g) = VNb(g).
Unga™(fa(@)Uy, = a*(f)a(g),

2.4)

where N = [ a%ay dx is the number of particles operator, and b*( f), b(g) are modified
creation and annihilation operators satisfying the commutation relations

N
b @1 = (1 5) ) — v (Nala)
[B(f).b(@)] = [0 (). 5" ()] = 0.

2.5)

forall f,g € Li @ (R3). Denoting by by, b, ay, a’ the corresponding operator-valued
distributions, we also find

s —yy(1- )2 Lo
[bx,by] = 8(x y)(l N) N (2.6)

[br.afaz] = 8(c — )bz, [b.ajaz] = —8(y — 2)bL.

forall x, y,z € R3,

After factoring out the condensate with the unitary operator Un,, we need to approx-
imate the evolution of its orthogonal excitations in 37 . Here, we need to distinguish
between microscopic excitations, varying on small length scales between 1/N and £
(which is chosen of order one) and macroscopic excitations, varying on scales of order
one. Let us first worry about the microscopic excitations, characterizing all low-energy
states. It is natural to include them on the initial data and to propagate them along the
time evolution. These excitations only depend on time through the time dependence of
the condensate wave function ¢;. We are going to describe them through a (generalized)
Bogoliubov transformation.

We define the integral kernel

ki(x,y) = =Nwg(N(x = y)@: (x)@: (). 2.7

With Lemma A.1, we find k; € L?(R3 x R3) (with bounded norm, uniform in N). Hence,
k, defines a Hilbert—Schmidt operator on L2(R?), which we will again denote by k;. To
obtain a Bogoliubov transformation acting on the Hilbert space ¥ (p[ defined on the
orthogonal complement of the condensate wave function ¢;, we set §; = 1 — |@;) (¢, | and

Nt = (Gr ® Gr)k;. (2.8)
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We also denote u; = n, — k;. With 1, we define the antisymmetric operator
1 _
=5 /[m(X;y)b;b;‘ — 7: (x: y)bxby] dx dy, (2.9

and we consider the unitary operator e5" on & fN An important consequence of the

bound ||7¢]l2 < |lk¢]l2 < C, uniformly in N € N and ¢ € R, is the fact that e®* does not
substantially change the number of excitations. The proof of the following lemma can be
found, for example, in [17, Lemma 3.1].

Lemma 2.1. Let B; be the anti-symmetric operator defined in (2.9). Then for everyn € Z
there exists a constant C > 0 (depending only on ||n;||) such that

e BN + 1B < C(NV + 1)
as an operator inequality on =N

On states with few excitations (on which the commutation relations (2.5) are almost
canonical), eB approximately acts as a Bogoliubov transformation. In fact, we can write

ePh(f)e™ P = b(yi(f) + b* (0, () + di (/). (2.10)
where we introduced the notation
_ e (efie)? _ _ (7)1
yi = cosh(,) —; Gy O = sinh(m) = Z 2 4D @.11)

and where, from [9, Lemma 3.4], we have the bounds (denoting by d, d;; the operator-
valued distributions associated with the operators d, d*)

IV + D8] < %nfn IV + 12 (2.122)

IV + 1" aydetl < [ G lallneGs Vil + e )
X |(N + 1) 22
+ 17 G |2 llax (N + DH@HD/2g|
+ In: (x5 ) ll2llay (N + 1)(n+3)/2§g_”
+ llaxay (N + D@FD2¢ ], (2.12b)

IV + D" 2ddyE]| < %[(HW(X;')||2||Tlt(-;y)||2 e D)
X |(N + 1) F9/2¢
+ 17 G 2 llax (N + DH@HD2g
+ [Ine (xs )2 llay (M + 1)(n+5)/2s||
+ llaxay (N + D@HH2g ], 2120
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for ff = *,-, forall f € L?2(R3), x,y € R3and n € Z. Some bounds on the operators 7;,
s, Vi, 0¢ are collected in Lemma A.3, in Appendix A.
We are interested in the time evolution of initial data having the form

YN = Uy oe™én. (2.13)

under appropriate conditions on the excitation vector £y € F wa (we will make assump-
tions on moments of the number of particles and kinetic energy operators, in the state £y ).
This allows us to consider initial data which are expected to describe the ground state
vector of a trapped Hamiltonian like (1.1) (see Remark 2.3 for more details).

We consider the many-body evolution Yy ; = e NIy of (2.13), generated by the
translation-invariant Hamilton operator (1.6). At time ¢ # 0, we expect ¥ x; to again have
approximately the form (2.13), but now with ¢ replaced by the solution ¢, of (2.3). For

this reason, we introduce the excitation vector £y, € ¥ f@lj requiring that

e Nty = Uy P én.
In other words, £n,; = U (t;0)Ex, with the fluctuation dynamics
Un (1:5) = e Bt UN,,e_iHN(’_s)U;\},seBS. (2.14)

While e8! takes care of the microscopic excitations of the condensate, to derive a norm
approximation for e 7/FIN 1\ we still need to take into account the evolution of the macro-
scopic excitations. To reach this goal, we introduce a unitary dynamics U,y (¢;0), whose
generator is quadratic in creation and annihilation operators (a time-dependent Bogoli-
ubov transformation), approximating the fluctuation dynamics Uy (¢; 0) and providing
therefore an approximation of £y, = Uy (¢; 0)&y. To this end, let us introduce the “pro-
jected” modified creation and annihilation operators

by =b*(§x) = by =G ()b (@1), by = b(Gx) = bx — G:(x)b(G1), (2.15)
where ¢x(y) = q:(y,x) = §(x — y) — @:(x)@ () is the kernel of the projection orthog-

onal to the condensate wave function. Then we define the time-dependent self-adjoint
operator

Fon () = g N () + Fo N (1)
4 N3 [ dxdy g = )@ 0F BB + he
45 [ dxdy Nuwos = IBG0G0) + 50AGONEE + he

+ [ dxdy NVt = DIVE0G0) = 6DV OIBE + e

1
- /0 ds / dx dy i (e ) [B* (/B (7 9) + B* ()b ()
+b(@ENb(0P) + b* (y)b(0)] + he.

y
4 / dx N*(Vy five) * |3 P (@ax — 55y)
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=+ [ dx N0 fvo < 16t
+ f dx dy (Gy(x,y)biby + H,(x, y)bibs + Hy(x,y)bcby).  (2.16)
where
Hn (0 = K+ [ dx [B - Bapodbe + 35 (Vupb(Vaps) + D26 (A
+ 0" (= Ax p)b* () + B*(px)b* (= Axry) + bib* (—Axry)
35 (Ten0b(Vene) + B* (b (-Asr)

B (Ver)b(Vary) + h.c.] 2.17)

+
N =

and
1
Fan () =3 / dx dy N>(Vi fae)(x — »)@: (x): ()

x [b*(px)b} + b*(yx)b* (py)] + hec.

45 [ dxay N0 fu 0= D 0IEO)
X [Z;*(yy)l;(ax) + l;*(yx)l;(oy) + l;(crx)l;(cry)] + h.c.

4 / dx (N> (Vi fv) * |30 ()

X (b*(yx)b(yx) + b(0x)b(yx) + b* (yx)b*(0x) + b*(0x)b(0%))
+ [ dx dy N3 (Vy fu) (x — )6 ()50

X (b* (yx)b(yy) + b(0x)b(yy) + b*(yx)b* (0y) + b*(0,)b(0%)). (2.18)

Here we used the kernels n;, 4y, yt, 0 introduced in (2.8), (2.11) and, additionally, we
defined p; = y; — 1 and r; = o, — 1;. Moreover, for s € [0; 1], yt(s) and O't(s) are defined as
V¢, 0¢, but with 7, replaced by s7,. Furthermore, we used the notation fy(y) = f:(y, x)
for kernels of operators acting on L2(R3) (here we drop the label 7, to keep the notation
as light as possible). Also, we set Vy (x) = V(N x) and we used the notation

K= /dx VyaiVyay

for the kinetic energy operator. The self-adjoint operator J, ny(f) generates a two-
parameter family of unitary transformations U, n, satisfying the equation

10, Ua, N (t:5) = Jo,n () Uz, N (2:5) (2.19)

with U v (s;5) = 1 forall s € R (the well-posedness of (2.19) is part of the statement of
the next theorem; it will be established in Proposition 4.4).
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In our first main theorem, we show that the Bogoliubov dynamics U, can be used
to describe the evolution of macroscopic excitations of the condensate, providing a norm
approximation for the solution of the many-body Schrédinger equation.

Theorem 2.2. Let V € L3(R3) be nonnegative, spherically symmetric and compactly
supported. Let ¢ € H®(R3). Let n; be defined as in (2.8), with parameter £ > 0 small
enough. Then (2.19) defines a unique two-parameter strongly continuous unitary group

Uz, N, with U N (t;5): ?fé:’ — }‘fg. Moreover, let B; be defined as in (2.9) and

1 _ s~
- 5(%, (NVn fue * 192D r)

N . Y 129~
kn (1) = 5(90:, [NV (1 =2fn0) * |9:*101)
1 2 2
+ 5 [ dxdy N2Vt = (.00
+ [ ax 3 v 80000
+ [ dvdy Ny fval = DG OF D) or. )
1 - -
45 [ dxdy N Vn G = 0GR 00w 1) + e + Vo]
1
—/ ds / dx dy 1n:(x, y)(a)gs), yy(s)) + h.c. (2.20)
0
Consider a sequence of normalized initial data 'y € L*>(R3)®sN, with excitation vectors

Ey = e BoUy oy (2.21)

satisfying
(En (K2 + NOEN) < C, (2.22)

uniformly in N € N. Then there exist constants C,c > 0 such that

clt]

le= ity — = v dsy g By, (|| < e NTYE (2.03)

foranyt € R, and N € N large enough.

Remark 2.3. From (2.21), we have Yy = Uy, OeB"SN. Thus, (2.23) is equivalent to

| Un (1006w — e o N @ dsq, w11 0)en || < Cece™" N=1/8 (2.24)

with the fluctuation dynamics (2.14). In other words, the proof of Theorem 2.2 reduces to
the comparison of the evolution U y with its quadratic approximation U,y .

Remark 2.4. Observe that the choice £y = eBQ, with

1 -
B = 5/[r(x;y)b;b; — T(x:y)bxbyldx dy
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and with a kernel t € (g¢ x go) H*>(R3 x R3) (with go = 1 — |¢)(p| projecting orthog-
onally to the condensate wave function) is compatible with the condition (2.22). This
allows us to consider initial many-body wave functions of the form ¥y = U ]"\‘,’OeB"eB Q
which are expected to approximate (in the LZ(R>") norm which is preserved over time)
the ground state vector of Hamilton operators of the form (1.1), describing trapped Bose
gases in the Gross—Pitaevskii regime. This fact has been proven in [8] in the translation-
invariant setting, for a gas confined on the unit torus. Notice that, in [8, equation (6.7)], the
norm approximation of the ground state vector also includes the unitary operator e4, with
A cubic in creation and annihilation operators; in fact, this cubic phase can be removed, at
the expense of another error of order smaller than N ~'/# (arguing similarly to below, in
the proof of Theorem 2.2, to show (4.13)). If the trapping potential is sufficiently smooth,
it is also easy to verify the condition ¢ € H°(R?), with ¢ minimizing the functional (1.3).

Remark 2.5. The double exponential in time on the right-hand side of (2.23) is due to
the fact that we use estimates on high Sobolev norms for the solution of the modified
Gross—Pitaevskii equation (2.3) and we apply a Gronwall argument for the propagation
of many-body bounds. Assuming scattering for the solution of (2.3), the dependence on ¢
could be substantially improved.

Remark 2.6. Theorem 2.2 confirms a conjecture formulated in [36, Section 10], for a
different class of initial data (through the assumption (2.22), we impose a correlation
structure on the initial wave function, generated by eBo_ which is absent from the initial
data discussed in [36]; it is not clear to us whether a norm approximation similar to (2.23)
with an explicit rate can be obtained for “flat” data).

In (2.23), after factoring out the evolving Bose—Einstein condensate and the micro-
scopic correlation structure, we approximate the evolution of the macroscopic correlations
by the Bogoliubov dynamics Uz v (¢), which still depends on N . It is thus natural to ask
whether U, v (¢) approaches a limiting, N -independent, quadratic evolution Uz, (?), as
N tends to infinity. To answer this question, we start by defining the pointwise limit of
Nwpy ¢(x), setting

[ 1 3 N xz] | < ¢
al— — — ~2 | X| =4,
Weor(x) = { Lix| 2€ " 263 (2.25)
0 otherwise,
and the corresponding limiting integral kernel k; o € L?(R3 x R3) by
Kt.00(X:y) = —Woo,e(X = ¥)¢r (x)p1 (¥), (2.26)

where ¢; is the solution to the limiting (/N -independent) Gross—Pitaevskii equation (1.7).
Similarly to (2.8), we define 7,00 = (q: ® q)kr,00, projecting along g; = 1 — |¢){¢:],
orthogonally to ¢; and (s co = Nt,00 — Kt,00- We also introduce the notation

Vi,oo = COSh(Nr,00) =14 proo and  0¢.00 = Sinh(Ms,00) = Nt00 + Fr,00.  (2.27)
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With this notation, we can introduce the generator of the limiting quadratic evolution
setting

Ja.00(t) = ;tz"ooa) + 45 0o(0)
/dx dy 1e(x = V) () ()aTaT + hie,
[ 0% dy woo 1 (x — ) [Ag (@1 () + @0 (x) Agr (N)]aZa% + hic.

/ dx dy Ve ¢(x — y)[Ver ()@ () — 0 (x)Ve (y)]azay, + h.c.

- / s [ dxdy oex, G 008 042,) + 3 G20A02))
+a(08))a0g),) +a* (r,)aw )l
+ h.c.

+ 87ma [ dx|o,(x)*(atay — atay)
= K+ 8na/dx lo: (X)|*atay

+/dxdy (Groo(x, y)ayay + Hyoo(x, y)ayay

+ I"_It,oo(xa y)&x&y) (2.28)

where @, @* denote annihilation and creation operators, projected on ¥, and where

. . 1, .
5*’2K,oo(t) =K+ / dx [a*(_Axpoo,x)ax + Ea*(vxpoo,x)a(vxpoo,x)"i'

&;&*(—Axﬂoo %)+ M'((_Axpoo x)a*(noo x)
(poox)a (=A Voox)"'A*A*( AxToox)

(Vx Noo, x)a(Vy Noo,x) +a (ﬂoo,x)& (—Ax7Too,x)

[\)|»—[\)|»— Q)

+ 0" (VaToo)d(Varoox) + h.c.]

and

Hoolt) = 40 [ (P10 (o) + 8 () ()] + i
+4na f dx 1 (x)*[28* (Yoo,x)a(000,x) + G(0c0.x)d (000 x)] + hec.

+ 1671a/dx |(pt|2(x)(&*(yoo,x)&()’oo,x) + &(Uoo,x)&()’oo,x)

+ &*(Voo,x)&*(ooo,x) + &*(O'oo,x)&(ooo,x))~ (2.29)
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Here, y,(fgo, a,(fgo are defined like ;¢ o0, 0,00, but with 1 o replaced by s7so,s. The two-
parameter unitary evolution generated by J» o (?) is denoted by Uy o0 (2; s). It satisfies
the Schrodinger equation

iatuz,oo(t’s) = g2,oo(t)‘u2,oo(t»s)v (2.30)

with initial condition Uz (s, s) = 1 for all s € R (the well-posedness of (2.30) is part
of the statement of next theorem). Notice that U, o (¢; s) maps the Fock space ¥ 4, into
F 1 ¢, here, there is no truncation on the number of particles.

Theorem 2.7. Let V € L3(R3) be nonnegative, spherically symmetric and compactly
supported. Let ¢ € HS(R3) and 1, o be defined as after (2.26). Then there is a
unique two-parameter strongly continuous unitary group Uz o satisfying (2.30), with
U2,00(t;8): Flo, = FlLg,. For normalized § € .’Ff(pN satisfying

(£, (K2 + N?)E) < o0, 231)
we find C, c > 0 (only depending on the expectation (2.31)) such that
U, (1500 — Us o013 0)E || < Cee™ N1/ (2.32)

foranyt € R, and N € N large enough. In (2.32), both U, n (¢; 0)§ and Uz o (t; 0)€ are
thought of as vectors in the full Fock space ¥, and ||.|| denotes the norm in this space.

Remark 2.8. Since here we compare two quadratic evolutions, condition (2.31) is milder
than the corresponding assumption (2.22) in Theorem 2.2, where we compare the full
many-body dynamics with a quadratic approximation.

Because its generator is quadratic in creation and annihilation operators, the evolution
U2,00 acts as time-dependent Bogoliubov transformations. Thus, its action on annihilation
and creation operators can be calculated explicitly.

Proposition 2.9. Under the same assumptions as in Theorem 2.2, let U5, oo be the limiting
quadratic evolution defined in equation (2.30). For every t,s € R there exists a bounded
linear map

O(t;s): L2 (R?) @ L?*(R?) — L*(R?) @ L?(R?)
such that

U3 o0 (t: )AL, &) Uz,00(t35) = A(O(t:5)( . 8))

forall f,g € L>(R3). Here, A(f.g) = a(f) + a*(g). The map O(t;s) satisfies
O@:5)d = 30O(t;s), S =0(:5)"SO(;s),

where § = (9 g) with J denoting complex conjugation on L*>(R3?) and S = ((1, 9 ) It
can be written as

(2.33)

Vit,s) JU(,s)J

O:s) = (U(t,s) JV(t,s)J)
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for bounded linear maps U(t, s), V(t,s): L>(R3) — L2(R3) satisfying

U*@t,)U(t,s) = V*(@,5)V(t,s) =1,
U*(t,s)JV(t,s)J = V*(t,5)JU(t,s)J.

Remark 2.10. Differentiating the action of U5 o, on A(f, g) yields the differential equa-
tion —i ;O (t,s) = O(t, s)A(t) with

—A + 8ralgi[* + ¢:Gr00q: —J (291 Ht,009:)J )

At) =
® ( 2q: Hy o0q: —J(=A + 87T(1|(.0t|2 + Qth,oo(]z)J

This can be compared with [6, equation (2.22)] in the mean-field setting.

The proof follows from [6, Theorem 2.2] and [56, Proposition1.3]; using the notation
introduced in the last two lines of (2.28), the bounds ||G¢,c0lop 5 [|[Hz,00ll2 < 00, which
are assumed in [56] follow from the analysis in the proof of Proposition 5.2.

Using the approximation in terms of the Bogoliubov dynamics U3 o, We can establish
a central limit theorem for the evolution of initial data approximating ground states of the
trapped Hamiltonian (1.1). Similar results have been obtained for the evolution generated
by the Hamilton operator (1.9) in [6,20] (if 8 = 0) and in [56] (for 0 < B8 < 1). In the
time-independent setting, an analogous central limit theorem has been established in [57],
in the Gross—Pitaevskii regime.

Theorem 2.11. Under the same assumptions as in Theorem 2.2, consider initial wave
functions having the form
YN = Uy ge™ef Q.

where By is defined as in (2.9), and
1
B =3 [[etebib - 2 y)babyldxdy (2.34)

with kernel T € (o ® qo) H>(R3 x R3) (where qo = 1 — |@){¢| projects orthogonally to
the condensate wave function ¢ used in U 1’:,,0 ). For a bounded operator O on L?(R?) we
define

N
1 .
Ons = ﬁ;(0<f) — {91, 0¢1)), (2.35)

where O =1® - ® O ® --- ® 1 is the operator O acting only on the jth particle.
We set, with U, V indicating the linear maps introduced in (2.33),

heo,r = cosh(Nz,00)qg, O + sinh(11,00)q4, O¢:,
ny = U(I,O)hoo,t + V(Z,O)I’E,
fr = cosh(t)n; + sinh(t)i;.
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Then there exist ¢ > 0 and, for all —oo < a <b < 0o, C > 0 such that, in the state
YNy = e HNTyy,
Py, (Ons € [a.b]) = P(S; € [a.b])] < Cec« N7I/16 (2.36)

for all N large enough. Here, &, is a centered Gaussian with variance | f;|>.

Remark 2.12. The bound (2.36) follows through standard arguments (see [20, Proof of

Corollary 1.2]) from an estimate of the form

2
‘EV/N,zg(@N,t) - /dx g(x)e 20712

1
V2| £l
< e / BOINTYE L N2 10 + N7 sl oY ds  (237)

for the expectation of the random variable g(@y,), valid for any g € L1(R), with (1 +
s*)&(s) € L' (R). The proof of (2.37), which is based on the approximation (2.23) of the
many body evolution, is given in Section 6. Similarly to [20,56,57], we could also extend
(2.37) to a multivariate central limit theorem, proving that expectations of products of
observables of the form (2.35) approach a Gaussian limit, as N — oo.

3. Fluctuation dynamics

While the wave function e~ /o kn () ds Uy, €% Uz, v (1)EN appearing in (2.23) provides
a good norm approximation for the full evolution e =N vy = e HHNI ;:,,OeBO En, the
difference between their energies does not converge to zero, as N — oo. For this reason, it
seems difficult to show (2.23) directly. To circumvent this problem, we introduce an alter-
native approximation for the many-body evolution, this time having the correct energy. At
the end, we will show that the two approximations are close in norm.

To define the new approximation of the many-body evolution, we will use a cubic
phase. First, we define, as in [54], a cutoff ®: N — R in the number of particles, setting

1 <M+10

) n__ 3
2

O(n) = 1(M D) M o<n<m—10

2 40—M+>’ y Tl0=n= :

0, n>M —10,

for M = N¢ > 50 where ¢ < 1. Throughout this paper we always assume that N is
sufficiently large so that this last condition holds true. Next we define the kernel

ve(x,y) = =Nwn(N(x — ) (y) (3.1

with m = N~% and we introduce the antisymmetric operator

@(JV) I TN 7%
a=20 / v (e, VBB () + b (0)] dx dy — e, (32)
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where we recall the definition (2.15) of the projected operators by = b(Gx) = by —
@¢(x)b(¢¢). Notice that, in contrast with the quadratic kernel (2.7), we cut off (3.1) on
a length scale m = N~¢, vanishing as N — oco. This makes sure that, as discussed in
Lemma A5, |v]l, < C/m < CN~*is small and therefore it allows us to compute the
action of the phase e, which will be used in combination with the generalized Bogoli-
ubov transformation B to generate the microscopic correlation structure, expanding the
exponential to first and second order (all higher-order contributions will be negligible). In
the following, we will choose @ = ¢ = 1/2.

An important observation is that conjugation with e’ does not substantially change
the number of excitations and their energy. The proof of the next lemma is deferred to
Section 7.

Lemma 3.1. Let A; be the anti-symmetric operator defined in (3.2). For every k € N
there exists a constant C > 0 such that

e~ AN + DFedt < Celtl (N + 1E. (3.3)

Let 3y = K + Vy, with
1
X = /vxa;vxax, Vy = 5/NZV(N(X — y)ajayaxay. (3.4)

Then, for every k € N, there is C > 0 such that

e (Hy + N + DN + DFedr < Cell(Jy + N + 1N + 1F (3.5)

holds true as an operator inequality on ¥ fg.

Remark 3.2. In (3.5) it is crucial that the exponent k is the same on both sides of the
inequality. In fact, this is the reason for the introduction of the cutoff ®(N) in (3.2). For
cubic phases without cutoff, such as the one used in the time-independent setting in [18],
an estimate similar to (3.5) holds true, but only with an additional term (N + 1)¥*2 on
the right-hand side of the equation; see [18, Lemma 5.8].

With the cubic phase, we define a new fluctuation dynamics Uy, setting
Un(t;s) = e Uy (t; s)eAS = ¢ Ate™B: UN,te_iHN(t_s) U;(,’seBseAS. 3.6)

To prove Theorem 2.2, we will first show that the difference between U N (t;0)én and
U (t; 0)Ep is small in norm, in the limit N — oco. Afterwards, we will prove (2.24),
but with U x replaced by U y. To this end, we will need some properties of the cubically
renormalized fluctuation dynamics U, which we establish in the rest of this section.

First of all, we need to control the growth of the number of particles and of the energy
along the evolution Uy . The proof of the next proposition is based on the estimates in
[17, Proposition 6.1] for the dynamics U N-



Quantum fluctuations of many-body dynamics around the Gross—Pitaevskii equation 1329

Proposition 3.3. Under the same assumptions as in Theorem 2.2, let U be defined as
in (3.6). Then there exist C,c > 0 such that

(Un (1008, (Hy + N)Un (1:008) < Ce®™ (£, (Hy + N + D),
forall§ € F5) and all t € R.
Proof. From Lemma 3.1 (with k = 0), we find
(Un(:0), (Hn + N)Un(2;0)§)

= (Un (t: 0)e®E, e (Hn + N)e A Uy (1:0)e™0E)
< Ce"(Up (1;0)e0E, (Fn + N + 1)Un (1;0)e40E).

From [17, Proposition 6.1 and the following remark] and applying Lemma 3.1 again, we
conclude

(Un (1008, (Hn + M) Un (1:008) < Ce (e, (Fy + N + De0€)
< Cell(E, (Jn + N + DE). .
While controlling the growth of the expectation of N, # with respect to the fluctu-
ation dynamics Uy is enough to establish convergence of the reduced density, to obtain

a norm approximation for the dynamics Uy we need more precise information on its
generator. To this end, we remark that (3.0) satisfies the Schrodinger-type equation

10, Un(t;s) = In@OUnN(E;5),
with the time-dependent generator §y (¢) given by
In () = [id;e™ A ]e
+e (9,07 B)eB + e B (10, Un ) U, + Uny Hy Uy JeB Je . (3.7)

In the next proposition, we compute x (¢) up to errors vanishing in the limit N — oo.
The proof of this proposition is deferred to Section 8.

Proposition 3.4. Under the same assumptions as in Theorem 2.2, let (1) be the gen-

erator of the fluctuation dynamics Uy, as defined in (3.7). Then we have, as a quadratic

form on Fig X F 5

In@) =kn(t) + 2N () + VN + Egy (1),
where kn (t) and 2 n(t) are defined as in (2.20), (2.16) and where the error term &g, ()
satisfies
(61, 4y (VE2) < CeINTVH Tty + N + D26 | [(Fen + N + DV + Dl

<N
forany&1,§, € J*f@.
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4. Quadratic evolution and the proof of Theorem 2.2

In this section we study the quadratic evolution defined in (2.19). First of all, we establish
important properties of the time-dependent generator £, .

Proposition 4.1. Let §o N be defined as in equation (2.16). Under the same assumptions
as in Theorem 2.2, there exist constants C,c > 0 such that

£(Fa.n (1) — K) < Ce (N + 1), @.1)
(Fo.n (1) — K)? < Ce "IN + 1)2, 4.2)
+don(t) < Ce'I (N + 1), (4.3)

93 5 (1) < CeI(N + 1)2, 4.4)

(1. [V Fan (D162)] < Ce (N + DOFD2E | (W + DI Pg) @5)

for j e Nand &,& € F=N,

To show Proposition 4.1 (and some of the other bounds discussed in this section), the
following lemma will be useful. Its proof is a straightforward adaptation of [10, Lemma
34,3.6].

Lemma 4.2. Let F be a bounded operator and J1, J» two Hilbert—Schmidt operators on
L2(R3). We also denote by F, Jy, J, the integral kernels of the three operators (J1, J, €
L2(R3 x R3), while F is in general a distribution). Let

Ay = / dx bF (1 )bt (Jay).  As = [ dx b*(J1.2)bx.
(4.6)
Az = /dx dy F(x,y)b}by

where # = x,-. Then we have

(&1, A1&2)| < CIJ1 2NN + DT 2 (W + DE=P 2,
(&1, A282)] < Ci 2l 22l (N + DEFP2g (N + DD 2, (4.7)
{81, A382)| < C||F[opll(N + DIFP2g (N + 1T~ 25, ],

forall p € Z and &, &, € F=N. Moreover,

AT AL+ A AT < CILIENV + 1D,
A3 Ay + A2 45 < CINBI 205N + 12, 4.8)
A3 < CIIF 5N + 12
Remark 4.3. The bounds in Lemma 4.2 continue to hold true if we replace the operators

b, b* (or the corresponding operator-valued distributions) with the projected operators b,
b*, introduced in (2.15) and used in (2.16) to define the generator > y (¢). In fact, it is
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easy to see that switching from b, b* to b, b* corresponds to multiplying the operators
J1, J2, F by the orthogonal projection g; = 1 — |@;)(¢;| on the right and/or on the left;
this does not increase the norms ||J1l|2, || /2|2, || F |lop appearing on the right-hand side
of (4.7), (4.8). Furthermore, (4.7), (4.8) (and their proofs) also hold true for operators Ay,
/fz, ff3 on the full Fock space ¥ (without truncation to N < N), defined like A;, A4,,
As, but with b, b* replaced by the standard creation and annihilation operators a, a* or
by their projected versions a, a*, used in the definition of the limiting generator (2.28).

Proof of Proposition 4.1. With the notation introduced in the last two lines on the right-
hand side of (2.16), we claim that ||G¢||op, || H¢[l2 < Ce°ll. For most terms this follows
easily from Lemma A.1, Proposition A.2 and Lemma A.3. In fact, all contributions (to G,
and to H;) arising from the kinetic part (2.17) that involve derivatives of p, r or u have
L2-norm (and therefore also operator norm) less than C "l Also, the term

/ dx b (Ven)b(Veny) = / dz dw [ / dx vxm(z;x)vxm(x,w)}é:éw
=:[dzdwut(z,w)l;;l;w

can be bounded with Lemma 4.2, since |[u;|lop < |Jus]2 < Cecl"l by Lemma A.3.
To handle the contributions arising from the potential part (2.18), we observe that
N3(Vn fne)(x —y) = N3V(N(x — »)) fe(N(x — y)) is the integral kernel of the differ-
ential operator V?e (iV/N) on L?(R3) (with operator norm bounded by 17(0)), that y;, p:
and o; are also bounded operators on L?(R3) and that all off-diagonal terms (contribut-
ing to H) involve at least one factor of p; or o; (with bounded Hilbert—Schmidt norm,
uniformly in N'). Finally, let us consider the contributions from the other terms on the
right-hand side of (2.16) (line 2 to line 7). Most of them can be handled as above, with the
estimates from Lemma A.1, Proposition A.2 and Lemma A.3 (notice, in particular, that
N31; < C). Some more attention is needed for the term involving Vwy ¢. Using Lemma
A.1, we bound

INVwne(x = y)VP: (x)@: (y) = ¢ (x)V: (V)]

C — {
< 2N 20 (196, (011800 — 61 (] + 1600V (x) — V()

lx — y|?
Cllo 4 — </ - -
< ”“””Hli(_'xﬂ M=9 196,001 + 160 0)). 4.9)

Thus, the L2-norm of the left-hand side is bounded, uniformly in N. This concludes the
proof of the bounds || G [|op, || H¢ |2 < Ce¢"! From Lemma 4.2 (and from Remark 4.3) we
arrive at (4.1) and, using (4.8), to (4.2) (the second term on the right-hand side of (2.16),
the one proportional to aay, can be handled in the same way). Since

W G (0] = [ dxdy RHL e )BIE; 2, )i

we also conclude (4.5).
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As for (4.3) and (4.4), we observe that contributions to the time derivative ;,iz, N ()
have the same form as contributions to $» n (), either with a factor ¢, replaced by (ﬁ,, or
with one of the kernels 7;, y;, oy, p:, r; replaced by 1;, V¢, 64, Py, I'+, or with one of the
operators b, b* replaced by its time derivative (the projection depends on time). Using

at[;; = —ta(x)b*@t) - mb*@t),

a similar formula for 9,5, and the bounds in Lemma A.1, Proposition A.2 and Lemma
A.3, we conclude that 32 ~ (¢) can be written as the sum of terms of the form (4.6)" (with
two projected operators b* or with one b* and one b*). For this reason, Lemma 4.2 also
implies (4.3) and (4.4) (again, the term proportional to ajax on the right-hand side of
(2.16) can be handled similarly). ]

With the help of Proposition 4.1, we obtain well-posedness of equation (2.19) (exis-
tence and uniqueness of the unitary quadratic evolution U, ) and control on the growth
of kinetic energy and the number of particles. Compared with the bounds obtained in
Proposition 3.3 for the full fluctuation dynamics, here we can derive stronger estimates,
controlling arbitrary moments of the number of particles operator N and the second
moment of the kinetic energy operator K. These improvements (which we can only show
for U,,x and not for the full fluctuation dynamics Uy ) will play a crucial role in the
proof of Theorem 2.2.

Proposition 4.4. Under the same assumptions as in Theorem 2.2, let > n be defined as
in equation (2.16). Then $ n(t) generates a unique strongly continuous two-parameter
group Ua N of unitary transformations satisfying the Schrodinger equation (2.19). For
everyt,s € R, Up n(t;5): F "<N - ¥ N . Moreover, for every k € N there exist C,c > 0
such that

clt|

(€. (N + DFE),
(£, (K2 4+ N2 +1)E).

(Ua, N (5 0)E, (N + DF Uy (2 0)E) < Ce®®

(4.10)
(U, v (2:0)E, K2Us n(1:0)E) < Cec®

clt|
Remark 4.5. From [10, Lemma 3.10] (extended trivially to the case 8 = 1), we have
C .2 2
Vy < N(K + N9), 4.11)

which also implies #y < C(K? + N2 + 1) and

(Hn + N+ DN +1) < C(K?+ (N +1)3).

'In fact, from (4.9) we find a contribution proportional to ||, || 4; this is the only term where control
of the H®-norm of ¢, is needed.
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Proof of Proposition 4.4. To prove the well-posedness, we proceed as in [44, Theorem 7].
Note that (4.1), (4.3) and (4.5) are precisely the inequalities shown in [44, Lemma 9] and
needed to apply the abstract result in [44, Theorem 8].

To show that U, N (¢; s) maps f/?féj into 315@1:/,

implies that a(@;)& = 0. We compute

let us consider & € ¥ f@N’ which
5

@ )8

d
= 2Re{a(@) U, (136 7 (@(@) Uz (1:9))

= 2Im{a(@;) Ua,n (t; $)E, (—a(i@r) + a(@r)Fo,n (1) Ua,n (t; 5)E)
= —2Im(Us,n (1:5)&, a* (G1)ali ¢) Uz, v (1: 5)E)
— i (Ua n (1 9)E, [a* (§0)a(@r), Fo.n (O] Uz, (t:5)E) = 0,

where we used that [a* (@;)a(@;), 5;] = 0 and

|:a(¢t), K+ / dx N*(Vy fne) * |¢,|2a;"axi| = a(i¢y).
Let us now show (4.10). From (4.5), we find

| Uy 008 N+ 1A Uy 5 008)|
= Uz, ¥ (1 00E. I [(N + DE, o n ()] Uz, n (2: 0)E)]
< Ce M Un N (1005, (N + DF Us y (£ 0)E).

The first estimate in (4.10) follows from Gronwall’s lemma.
As for the second bound in (4.10), we first apply (4.2) to estimate

(Ua, v (1308, K> Us y (t: 0)E)
< 2(Uz, N (108, &3y (1) Uz, (1: 0)E)
+ 2(Ua, v (15008, (F2,n (1) — K> Ua v (15 0)§)
< Uz, v (1: 008, 83 5 (1) Uz N (3 0))
+ CelUn y (£ 0)E, (N + 12 Usy (1:0)E)
< 2Un (1006 3y (VU (50)8) + Ce™ (5. (N +1%6)  (@4.12)

where, in the last inequality, we applied the first bound in (4.10). To control the first term
on the right-hand side of the last equation, we observe that

d
— (U2, (: 0§, §5 5 (1) Uz, N (15 0)E)

dt
= (Ua N (1;0)&, [ ) J2.n @) + Jo.n @) Fo.n ()] Ua N (2 0)E)
< (Ua,n (1: 008, 92 5 (O Uz, y (1500E) + (U, v (15 0)E, §3 (1) Uz, (1 0)E).
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With (4.4) and with the first bound in (4.10), we conclude that

U ¥ (15008, B (U (5 08)
< (Uz,n (1008, 83y () Uz, v (13 0)€) + Ce VN (Us v (13 0)E, (N + 1)* Uz v (25 0))
< Uz (1:0)E. 3 3 (D Uz (13 0)8) + Ce" (£, (N + 1)2E).

Applying Gronwall’s lemma, we conclude that

clt]

(Ua, N (1:0)&, g3 5 (1)U N (£:0)E) < Ce®

With (4.2) (at time ¢ = 0), we find therefore

(Ua, v (15 00E. §3 (1) Uz, v (1:0)§) < Ce®®

(€ (I35 (0) + N + 1)E).
TUE (K + N2+ 1DE).
Inserting into (4.12), we obtain the desired bound. [ ]

Combining Propositions 3.3, 3.4 and 4.4, we can now proceed with the proof of our
first main theorem.

Proof of Theorem 2.2. As observed in Remark 2.3, we have
le= Nty — e N DAy By (1 0)éw |
= [ Un (1:0)8y — e v O a9y, (1:0)ey .

Next we introduce cubic phases to pass from Uy to the new fluctuation dynamics Uy .
To this end, we estimate

le™ Nty — e N OISy B,y (15 0)n |
< U (1: 0)et0sy — e oonO dsediq, (1 0)ey |
+ ety — En|l + lled Ua v (2;0)en — Uz n (£;0)EN ||

Writing
1
leogn —Enl* =2 —2Re (v, e *Ey) = Re / ds (&, Age ™ MEN)
0
and estimating (recalling the definition (3.2))
[(61, Aok2)| < CN_”Z/ o (x. )| laxayi || [laxéall + [(V + 1)'/2E|] dx dy

+ N [ o llasa (¥ + 1725
X [lax(V + D26 | + [ + D] dx dy
= CN7V2[suplvo,clla + Ivolla [IME I + D)2
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1/4

we obtain, using the estimates sup, || vo,x |2, [[voll2 < C/m < CN~"/* from Lemma A.5,

1
leo&y —En)? < CN3/4 / ds (N + DEN (N + 1)1/2e 5oy .
0
With Lemma 3.1, we arrive at
ety —Enl? < CN 34N + DEN (N + D) 2Ey]. (4.13)

Similarly, also using Proposition 4.4, we find

clel

le™0Us n (£:0)ENn — Uz, (;0)En |12 < Ce NT3/4|(N + DEn]||(V + DY 2Ex].

Hence, we conclude that
le™ Nty — e N Oy By (15 0)n |
< U (1006 — e o N @ dsqp, y (11 0)En || + Cee N3/ (4.14)

We now compute

% 1 Un (1 0)En — e o SN DY, v (1:0)EN |2
= 2Im(Un ()EN, (FN () — Fon (1) —ken (1) RIS NOY, y(1)Ey).

With Proposition 3.4 and with the bound (4.11), we obtain

d —i [{dskn(s
S UN 05y — T P BNOU, v 0)y |

< (Un (1:0)En. Eg (1) Uz v (£ 0)EN)]
VN2 U (00N || VN> Ua, v (25 0)EN |
< {Un(t;0)En, Egy (U N (1;0)EN)]

4 %ﬁnkuw;m&vn 1K+ M) Uy (13 00w

From Proposition 3.4, we conclude that

d —i [$ kN (s)ds
S UN @0y — e PO DU (108w |

cle|

Ce
< a1 + N + DUy 08|

X [(Fy + N>+ DY2N + DU n (1: 00N |

4 ﬁnkumﬁm&vn 1K + M) Us (£ 0w |
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Using Vy < C KN (which follows from the Sobolev inequality, since [[ N2V (N-)||3/2 <
[V ]l3/2 < 00), we arrive at

d —i ! SknN (s
T UN (08N — e Jodsen 9, n(1;0)En||?

Cecltl
= s (Un (0N . (Hy + N 4+ DUN (2 0)EN)
Cecltl

+ i (U (0w (K24 N® + 1)Us n (1: 0)EN).

With Propositions 3.3 and 4.4, we obtain

d Y
S UN @0y — e PO D Uy (106w |

Cece! 5 6
< W(SN»(JC + N° + Dén).

Integrating over ¢, using assumption (2.22) and combining with (4.14), we find (2.23). =

5. Limiting quadratic evolution and proof of Theorem 2.7

In this section we show the well-posedness of the limiting Schrodinger equation (2.30),
we control the growth of the number of particles with respect to the limiting quadratic
evolution U5, and we show the convergence of U,y to Uz, in the limit N — oo, as
stated in Theorem 2.7.

Proposition 5.1. Under the same assumptions as in Theorem 2.2, let §» o be defined as in
(2.28). Then $2,00(t) generates a unique strongly continuous two-parameter group Uz oo
of unitary transformations satisfying (2.30). For every t,s € R, U2 00 (t;5): Fly, = Fle,
where @; denotes the solution of the limiting Gross—Pitaevskii equation (1.7). Moreover,
for every k € N there exist C,c > 0 such that

cle|

(Uz,00(t5 0)E, (N + 1) Uz 00(:0)§) < Ce™ (£, (N + 1FE) (G.D

forall§ € F1,.

Proof. The proof is very similar to the proof of Proposition 4.4. Combining Lemma 4.2
(and Remark 4.3) with the estimates in Lemma A.4, one can prove that the limiting gen-
erator > o0(¢) satisfies bounds analogous to (4.1), (4.3), (4.5) in Proposition 4.1. The
well-posedness of (2.30), the fact that U o0 (¢;s) maps F 1, into ¥4, and the bound
(5.1) can then be shown arguing exactly as in the proof of Proposition 4.4. ]

To prove the convergence of U, y towards Uz 0, we bound the difference of the two
generators. Since g5y (¢) is only defined on the truncated Fock space ¥ =V, our estimate
is restricted to this space.
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Proposition 5.2. Under the assumptions of Theorem 2.2, we have, for every £, £, € F=N

and for every t € R,
[(€1, (F2,n (1:0) — &2,00(7:0))62) |

ceclt]

=TUN

Proof. From (2.16) and (2.28), we write

N + DENIN + DE] + IV + DY 2a K26 ],

Jon(t) =K + / dx N3*(Vy fae * |§:)?)(x)akax
+ [ dxdy N3y fu0 = 930G 018D,
+ [ dxdy G BBy + Hix, BB} + Hulx,3)bib,).
F2.00(t) = K + Sna/dx lpr (x)[Patay + Sna/dx lor (X)|?a%ax
+ / dx dy (G;,oo(x, y)ayay + Hyool(x, y)&;fz; + Hi oo(x, y)axay).
Qbservg that, with respect to (2.16), we extracted the operator on the second line from the
b*(yx)b(yy)-contribution in the last summand in (2.18), denoting by G/ the difference

between G, (as appearing in the last line of (2.16)) and this term (we isolate this term

because it will require some additional care). In the expansion for J» 0, We extracted the

corresponding term, proportional to d}dy, from G; . Thus, we have

FoN({t) — F2.00(t) =T+ T+ T+ 1V,

where
1= / dx [N>(Vy fie * |32 (x) — 8malgr (0)Platas.
~ )~ / * ~ )~ * N
Il = /dx Ay [4:G14r — q: Gy ooqe](x, y)ayay — / dx dy [qu,Qt](x,y)axﬁay,
o o N
= [ dxdy lePeds = 4 Prosa(x.3)a%a, - [ dxdy G Pidider. v ras,

Iv = / dx dy (@ ® 30 Hy — (¢ ® q0) Hy o) (x. y)a’a]

+[dxdy [(G: ® G H(x. y)ajay[/1— (N +1)/Ny/1—N/N —1] +hec.,

where we recall that §; = 1 — |@;)(¢;| and ¢; = 1 — |¢;) (¢ | and where we introduced the
notation P;, P, for the operators with the integral kernels Py (x,y) = N3>(Vy fy.0)(x —
V)@ (X)Pr (1), Proo(x,y) = 8wales(x)|*8(x — y). By Lemma 4.2, we can bound

(€1,162)] < CIN(Viy fve % 1@:”) = 8malpr oo [(V + DPE (N + 128
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For any x € R3 we have
[N (Vi fae *18:%) (x) = 8ralgr (x) ]

< / dz V(@) £12)|16:(x + 2/ NP = G (0P|

+| [ dz V@1 = sral 9.0 + 870 0  for (P,

Estimating
~ 2 _ |~ 2 bood 2 ~ ~
[16e(x + 2/ N)P? = |6 (x)]?] = ‘/0 ds @i (x + 52/ N)I7| = 21z[[V@rllool|@rlloo/ N

and observing that ||@; () = |¢¢ () *] = (I8¢ lloo + 9¢lloo) 1¢r — @1 lloo, We conclude
with Proposition A.2 and equation (A.2) from Lemma A.1 that

cecltl

[{€1,182)| < N
Let us now consider the term II. Again with Lemma 4.2, we can estimate
(€1, 1E2)| < CllG:Grdi — 41 sttt llopll (N + D2EL (N + 1)VV2E, |

C . .-
+ 3 19: G lopll(V + DENTN + D2l

[NV + D2 (N + D28,

Since ||G: — gt llop < 2|l¢r — @¢||2, we obtain, with Proposition A.2,
cecltl
N

Going through the several contributions to G/, G;’Oo in (2.16) and (2.28) (all diagonal
terms) and applying the bounds in Proposition A.2 (iv) and Lemmas A.3 and A.4, we find
that ||G}llop < C ¢!l (as already discussed in the proof of Proposition 4.4) and that

1G:G1G: — 4:G100Gitllop = G llop + 1G7 = G oo lop-

cle|

Cece

N
In fact, to compare contributions from (2.18) with the corresponding contributions in
(2.29), we often need to control the convergence of N3V(N(x — y)) fe(N(x — y))
towards 8mwad(x — y). Here, it is important to observe that, in all terms contributing to
G; (which are compared with terms in G; ), the factor N3V(N(x — ) fe(N(x — y))
appears in convolution with a kernel o, 0y, px, p, (this is not the case for III; that is
why this term has to be handled separately). To further illustrate this point, consider for

example the difference D; — D; o contributing to G; — G, ,, with

”G; - G;,oo”op =<

(5.2)

Di(y.z) = /dx N3V(N(x = y)) fe(N(x = y)@7 (9)0r (x, 2),

Dio(y.2) = 8ma@; (y)os(y.z)
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(this difference arises from the term proportional to 5*(yy)l;(ox) in the second summand
in (2.18)). With (A.2), we can bound

|Dl(yvz)_Dt,00(yvz)|

= ‘/ dw V(w) fo(w)@; (»)or (v + w/N, 2) = 8mag (y)or (v, 2)

clt|

< el / dw V() fo(@)|or (v + w/N.2) — 001, 2)] + oy (3. 2)|

N
Cecll
<

1
= S [ v [ as v il 910, 4+ sw/8.2)

clt|

N

+ |0t(y»z)|v (53)

which leads to

Cecll Cecltl
N IViotllz + llocll2] < v

|D: — Dtoollop < 1Dt — Diooll2 <

With (5.2), we obtain
cecltl

VN

(61, 1162)| = [N+ DEAHIN + D

Similarly, we can also estimate

Cecgdtl

N
+ '/ dz dx V(z) fo(2)|e: ()| *(axkr, (ax — axiz/n)E2)

[(51, 1TI&2) | <

[N + DEJTN + Dl

To bound the last term, we proceed as in [10, Lemma 5.2]. We find

‘ [ dzdx v fielpn P (@3 = et

! d
=| [ dzax [ a5V Ai@la 0P ok arsnziva)

IA

L / dz dx / s V) o) llor 0P lasé | 1 sassss wtal
N A

Ceclll
N
This is the only contribution where the kinetic energy is needed (exactly because, in
contrast with contributions in G/, here the difference N3V(N(x — y)) fy(N(x — y)) —
8mad(x — y) acts directly on the operators aya,, without convolution; therefore, some
regularity of &1, & is needed).

[NV + D28 | | K28,

IA
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Finally, to control the term IV, we bound
[(61.1IVE2)| < Cll(Gr ® G)Hr — (qr ® q0) Heool2|(V + DY ZE | [V + D2
+ Cll(Gr ® o) Hell2 (N + DE& |
x [[V1=(N +1)/Ny1—N/N —1]&]|.

cle|

Using that ||§; — q¢llop < Ce®® /N, that

IVT=F T /N T=R7N ~ 1ea]| = SN + D

and that, going through the several contributions to H;, H;  (the off-diagonal terms) in
(2.16) and (2.28) and applying the bounds in Proposition A.2 (iv) and Lemmas A.3 and
A4 |H |2 < CeM || Hy — Hyooll2 < Ce™" //N, we find that

Cece"!
VN

which concludes the proof of the proposition. ]

161, 1VE)| < [N + DEHIN + Dl

We can now proceed with the proof of Theorem 2.7.
Proof of Theorem 2.7. First of all, we observe that

| Us v (1 0)E — Us,o0(5 081 = 2 — 2Re(Us 00 (13 0)E. Uz, (15 0)8)
= 2= 2Re(Uspoo(t: 0), LN <N) Uz v (13 0)€) (5.4)

because Uy y (1;0) = L(N < N)U,, n(t;0)E. We compute
—i%(‘uz,oo(tgo)é, UN < N)Usw (15 0)8)
= (U2,00(1:0)§. [F2,00 (LN = N) = L(N = N)go,n (1)]Uz,n (2:0)§).

While we cannot move J n () to the left of the projection 1(N < N), we can move
F2,00 (1) to its right, generating a commutator. Thus

—i%(‘uzm(t;O)g, 1N < N)Us,w (1 0)8)
= (Uz,00(t; 0)&, L(N = N)(J2,00(t) — F2,n (1)) U2, n(t;0)E)
+ (Uz,00(t; 0)€, [F2,00 (1), L(N < N)] U2 N (2;0)8).

With Proposition 5.2 and recalling the expression in the last two lines of (2.28) for the
limiting generator $2,00(¢), we find

O Us ol 08 1N = N) U (1:0)8)
Cec®

- JN

clt|

[N 4+ DUz,00(: 0E[ (K + N2+ DV2Us n (13 0)E]|
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+ ’/dx dy Hoo(x, y)[(U2,00(1;0), (N =2 = N < N)flx&y‘llz,N(t;O)E)‘

+ de dy Hoo(x, y){Uz,n (t;0)§,d3ay I(N < N < N + 2)U2,oo(t:0)é>‘-

In the last two terms, we estimate 1(N > N —2), I(N > N) < CN/N and we use
Lemma 4.2 in combination with || Heo||2 < Ce®*l. We obtain

(U o100 TN = N) U, (100

clt|

Cece
<
VN

From Propositions 4.4 and 5.1, we conclude that

[N+ DUs,00(t: 0E (K + N2 + DV Us n (15 0)E].

d
E(uz,oo(uo)é:’ﬂ(dv < N)U,,n(1;0)€)

Cece"!
<
VN

Integrating over ¢ and with assumption (2.31), we arrive at

[NV + DENIK + N2+ DV

cecll
VN

Inserting this on the right-hand side of (5.4) proves the desired estimate. ]

11— (Uz,00(1: 005, L(N = N) Uz N (1:0)8)] =

6. Central limit theorem: Proof of Theorem 2.11

Following Remark 2.12, in this section we aim at proving that

x2

/dx g(x)e 2072

1
‘EWN,tg(QN,z) - m
t

< Ceoe / ds|g(S)|(NTVE L NT2sP 0P + N7Ss* oY 6.D)

for every g € L'(R) with ¢ € L' (R, (1 + s*) ds).

For the initial wave function Yy = U I’Q’OeBOeB Q with By defined as in (2.9) and with
B given by (2.34), with 7 € (g0 ® qo) H*(R3 x R?), we find that (2.22) is satisfied, with
Ex = eBQ. Thus, Theorem 2.2 provides the norm approximation

cle|

le™ N Yy — U eB Un n (1)eB Q| < Ce™ NTVE,
Writing

Eyy 8On] = (VN1 (ONDYNL) = /ds 2 (YN, €Ny,
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setting
- -
One = —= D (0¥ —(G,. Oqr))
75 =
and observing that, by Proposition A.2, |Oy,; — @N,t llop < Ce”cm/«/N, we can there-
fore estimate

Eyy, [8(On,)] — / ds g(s)(Up B Uz n (1)eBQ, OV U B Uy (1)eB Q)

< Coee / 26N + NT|s] 0] ds. 62)

Next we conjugate the observable e’* Ons with the unitary operators defining the norm
approximation. With the rules (2.4), we find
1
VN
with O’ = O — (@, O@;). Here we set ¢(f) = b*(f) + b(f), while dT"(R) denotes the
second quantization of the one-particle operator R and G; = 1 — |@; ) (@ ].

When inserting into (6.2), the contribution of the first term on the right-hand side of
(6.3) is small. Proceeding as in [57, Step 1 in Proof of Theorem 1.1], we arrive at

UnOn Uy, = —=dT(G:0'Gr) + ¢(G: 0@y) (6.3)

‘JEWN,, [8(On)] — f ds §(s)(eBrUa v (1)eBQ, /500 By, v (1)eB Q)
< e / 18()|(NY8 4 N~V2s P3| 0)) ds. (6.4)

This bound relies on the control of the growth of the number of particles operator, which
follows from Lemmas 2.1 and 3.1, Proposition 4.4 and from the estimate

(E. 7PN +a)fe®DE) < CE (N +a+ | fH)FE) (6.5)
for the action of the modified Weyl operator ¢'9) From (2.10) and (2.12), the action of
eB1 is given by

e P 9@ 0ge" = ¢(hs) + D.
with iy = y,(G: O@;) + 0+(4: Op;) and with an error D satisfying

C
IDEN < IV + 1))
Proceeding as in [57, Step 2 in Proof of Theorem 1.1], from (6.4) we therefore arrive at
‘Ex/w,, [g(On,)] — / ds g(s)(Ua,n (1)eBQ, e BIU, v (1)eB Q)

< e / 1EOINTVE . N2 0P + N7V s[Ho)H) ds. (6.6)
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Before proceeding with the last two unitary conjugations, we replace the field ¢ (h,) =
b*(h¢) + b(hy) with ¢, (hy) = a*(hy) + a(h,). To this end, we observe that

Clsl

{61 (@(f) = @a(fNE) = —— (N + D& (W + D (6.7)

for all £, &, € =N (the operators b, b* are only defined on the truncated Fock space).
Thus, for £ € =¥, we have, with the notation 1= = 1(N < N),

(£, "0 00g) — (g, "2 g)|

N
d . .
/0 @ (g, DL Pt

/ A (6 P (3 0h0) - Balh DI + [V, gy ()]} S PRG0g) .
0

Writing

(15, a(h)] = a(h)I(N < N < N + 1),

(15N, a*(h)] = =1(N < N < N + Da*(h),

estimating I((N <N < N + 1) < N /N and applying (6.7) and (6.5) (and the analogous
bound for the action of '%«(/)), we conclude that

(£, &gy _ (g oistalhi)gy| < Cls| Al
b 5 < N

Inserting into (6.6) we find, with Lemma 2.1 and Proposition 4.4,

N+ 212 P 2ENITN + 578l

‘Ew,t [§(On,)] —/ds () (U n(1)eBQ, ey, N (1)eBQ)
< Cece" / 18IV Y+ N2 5P + N7V s oY ds.  (6.8)

Next we apply Theorem 2.7 to replace the quadratic evolution U, n with its limit
U2,00- Moreover, we replace h; with

hoot = Vt,00(q: OPt) + 01,00(q: O@1),

where 00, 07,00 are defined as in (2.27) and g¢; = 1 — |¢;)(¢;|. From Proposition A.2
and Lemma A .4, we find

lhe — hoorll2 < Ce<™ O] /V/N.

From (6.8) we therefore obtain
‘]szv,z [g(On.)] - / ds §(5)(Uz,co(t: 0)eBQ, &Py o (1:0)eB Q)

< cece" / 18N8 4 N2 5P O + N7V s 0]1*) ds.
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The action of Uj o(f;0) on the operators a, a* appearing in ¢, is explicit and
described by Proposition 2.9. Setting n; = U(#; 0)hoo s + V(¢;0)hoo,, we find

‘EWN,t[g((gN,t)]_/ng(S)(eBQ’eis(ba(nt)eBQ)
el [ n B B B
= ce [ 12N NP OF + N s 01 ds. (69)

Finally, we need to compute the action of e®. To this end, we first replace the operator B
in (2.34) with

1 * %k
B, = E/dx dy[t(x;y)aya, —hcl],

proceeding as we did above to replace ¢ (h;) with ¢ (h;) to show that [|eBQ — eB«Q|| <
C/~/N. Then we use the explicit formula for the action of the Bogoliubov transformation
eBa_ which implies, setting f; = cosh(t)n; + sinh(t)it;, that

(eBaq2, e59a(8D e Bay) — (Q, €% Q)
— (Q, e Wi /2gisa* (D pisa(fy — =511/,

From (6.9), we obtain

'Ew, [8(On.)] = / ds §(s)e* 111?12
< cere™! [ g+ NP IOIF + N s O1Y) ds

which immediately implies (6.1). The statement of Theorem 2.11 now follows by standard
arguments (see, for example, [20, Corollary 1.2]).

7. Control of the action of 4, and proof of Lemma 3.1

In this section, we consider the action of the cubic phase ¢4’ on number and energy
of excitations. To this end, we compute commutators of A; with the Hamilton operator
Hy =K + Vn.

Lemma 7.1. Recall the definition of A, in (3.2), with parameter M = m™' = N'/2,
and recall the notation Ky = K + Vy, with K, Vn the kinetic and potential energy

<N <N <N
operators on ¥ ;. On Fig X Fig we have

[Hn. Ai] = — / dx dy N>V (x = y)@(0)b3by[b(yx) + b* (0x)]

+ hc. + 8,4, (7.1)
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where

[(€1, &30, 4,152)]
< CeMINTV4(Jy + N + D25 |[|(Jy + N + DV2(N + 1) 2g].

Furthermore,

[(€1,[H N, Ar]é2)]
< CeM[(Fn + N +DY2N + D" 2E || (Jy + N+ DV2(N + 1) 25| (7.2)
foralln € N.

Remark 7.2. To apply Lemma 7.1 in the proof of Lemma 3.1, it is important that the
total exponent of Hy + N on the right-hand side of (7.2) is 1 (so that (3.5) follows by
Gronwall’s lemma). To reach this goal, we inserted the cutoff ® () in the definition (3.2)
of A, similarly to [54] (in [18, Lemma 5.7], where the cubic phase does not have a cutoff,
the exponent of N increases).

Proof of Lemma 7.1. We proceed similarly to the proof of [18, Lemma 5. 7] We define
Al as A, in (3.2), but with b, b* replaced by b, b*. Using [K, a ¥] = —Axaj and that X
commutes with A, we have

g, 4] = 29 [ dx dy (~Ax — By)vi(x, PBTIb(r) + b* ()] + he.

@(N) /dx dy Vyve(x, y)b} b [2Vibyx + 2b(Vy px) + b*(Vyox)] + hec.

+ M / dx dy v(x,y)bib [b(—Axpx) + b(Apyx)] + hec.

®
+ % / dx dy vi(x, y)Vxbib;b*(Vyoy) + hec.

ON
+ _éﬁ) /dx dy dz v;(x, y)bEbIV.bIV,0(z, x) + hie.

5
+[K. A —A]] =) M +he +[K. A - A}].
i=1
With Lemmas A.3 and A.5, we find

m
[(€1, M3&2)| < Cec‘",/ﬁ(llAlpll + 1 22p DIV + DV2ZENN + D&
< CeMINTHWN + D28 [ [(V + D&
Writing Vyv:(x,y) = =N Vywy ,m(x — ¥)@;(y) and integrating by parts, we can bound
m
(1. Ma2)| < CeM\ [y + N + D125

x (K2 + D26 + (IVapll + V20 DIV + DE])
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< Ce'INTVH|(Hy + N + 1)V 2|
x |(Fn + N + DYV2N + 1)2g,). (7.3)

The term M, can be controlled analogously. In addition, M5 satisfies the same bound,
since | Vio| < Cel /N by Lemma A.3. As for My, the scattering equation (2.2) yields

(—Ax = Ay)ve(x,y) = =N3>V (x = ¥) fum(x = 9)@: (y)
+ N3AmfN,m(x — V) Xm(x — )
—2NVunm(x =)V (y) + Nwnm(x — y)Ag:(y).
Let us denote the four contributions to M; corresponding to the four terms in the last
identity by M1y, ..., M14. Then M4 is bounded similarly to M3, and M3 satisfies the
same bound as M, after integration by parts (as usual, we use Proposition A.2 to bound

norms of ¢, and of its derivatives). Since N3, <Cm ™3 by (A.1)and 0 < fiy m(x — y) <
1 we can bound

1 m? _ 1/2
[(§1. M126,)| < Cecltm(/ dxdy m”axay(a\f +1) 1/251“2)

1/2
< ( [ xay gnt =N + 0 i + b*(ox)]&nZ)
< CeMINTVH Gty + N + D26 [(Fw + N + D2V + D26,

where we used Hardy’s inequality in the first integral and the choice m = N~'/2. As for
M1, with ® =1 4 (® — 1) we write

My = —O(N)N?2 / dx dy Vi (x = ) fm(x = D@05 (1) + b*(0:)]
=-N°/2 f dx dy Vi (x = ) fm(x = )@ (0)b3by[b(yx) +b*(0x)] + €, (7.4)
where, using @(N) — 1 < 1I(N > M/2) and Markov’s inequality, we can estimate
(1. 68)] < Ce VLW = M/DEN WV + DLW = M/2)E|

clt|

Ce
= N1/4 ”(VN + N+ ])1/251” ”(VN + N+ 1)1/2(JV + 1)1/2&_2”

Finally, we have to control the term arising from the difference A, — Atl. We observe
that, on F=N x F=N_
byby[b(yx) + b*(0:)] = byby[b(yx) + b*(0x)]
= byby@1(x)b(Pr) + b*($0)@: (V)b [b(yx) + b (0x)]
+ b (@)@ ()b} 1b(yx) + b*(0x)]- (15)
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Here we used the fact that, because of the projection in the kernel 7, (x, y) and the def-

initions of p; and o, in (2.11), we have (@;, 0x) = 0 = (@, px). Note that as quadratic

forms on ¥ wN xF fg, we have, for any operator D, with the shorthand notation By =

b(yx) + b*(0x) and By = b(yy) + b* (o),
[D,b:b% By — bk By] = bEb G (x)[D. b(@)] + [D,b* (@1)]@: (v)b} Bx
+ [D.b*($0)1G: ()b} By

Applying this with D = X, contributions arising from the commutator of this difference
with K can be controlled as before, using the bounds of Proposition A.2 for ¢, and its
derivatives. We conclude that

[(E1, [K, A — ANEa)| < CeTINTH|(W 4+ 1) 28| (M + D&

Let us now consider [Vy, A;]. With [V, b%] = [ds N*Vy(x — s)bkafas we can
write

[VN. Ad]
— W [ dx dy V(5 = y)wwn(x = DG OIBIE D) + 5 (0] + b

+ — iC) /dx dy dsv,(x, y)N?Vy(x — s)bybyagas[b(yx) + b*(0x)] + h.c.
O( )

[dx dy dsv;(x, y)N?Vy(y — s)bybyagaslb(yx) + b*(0x)] + h.c.
@ N

( )/dxdyds v (x, y)N? Vi (x —s)bybyaiasbx + h.c.
@ N

( )/dx dydzdsvi(x,y)N*Vy(z —s)p(z, x) x)bybjagash; + h.c.

®
n (N )/dx dydzdsv;(x,y)N*Vn(z —s)o(z, x)bybybagas +h.c.

+[Vn. A; — Al]
6

=Y Ni+hec +[Vy. 4, — A}].
i=1

Proceeding as in (7.4) to replace the cutoff ®(N) by 1, we find
Ny = —N°? / dxdy VN (x = y)wnm(x — y)@: (y)bybyBx + &', (71.6)

where
clt

e
| = N1/4 ”('VN + N+ 1)1/2%-1” ”(va + N+ 1)1/2(¢N + 1)1/2%_2”

(61, 8'62)
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Noticing that [a}as, b*(0x)] = 0;(x; s)b], and applying Lemma A.3 to prove that
los(x:s)| < CN, we find

[(£1, N2&2)|
< CeMINTV4(Hy + N + D25 [(Hy + N + DYV + DV (7.7)

The terms N3, N4 can be bounded similarly. As for N5, Ng, they can be estimated by
Cauchy—Schwarz, using Lemma A.3 to show that sup, || p; ||, sup, |0z || < Ce¢ll. We find

[{€1, (N5 + Ng)&2)|

F
Ce "l 2 |(Jy + N + D28 || |[(Hy + N + DVEN + 1)2g|

< CelMIN~ 1||(3€N + N+ D2y + N+ DVEWN + 1))

To bound [Vy, A; — Al] we argue as we did above to handle [K, A, — A!], using the
identity (7.5). Combining all the estimates above, we obtain (7.1) (in particular, the large
term on the right-hand side of (7.1) emerges summing the right-hand side of (7.4) and the
right-hand side of (7.6)).

The second claim in the lemma follows analogously, noticing that powers of (N + 1)
can be moved freely from one norm to the other, that in the bounds (7.3), (7.7) we can use
the cutoff to remove the operator (N + 1)!/2 applied to &, at the expense of an additional
factor M /2 < CN'/4 and that also the main terms on the right-hand side of (7.4) and
(7.6) can be controlled (with Cauchy—Schwarz) by the right-hand side of (7.2). [

Now we are ready to show Lemma 3.1.

Proof of Lemma 3.1. The proof is similar to the proof of [18, Lemma 5.8]. To show (3.3),
we observe that, since N preserves the space 5 (DN
[N, A] =[N, A = A}7 +34;° +he., (7.8)

where, as above, A} is defined as A;, but with b s b* replaced by b, b* and where
Ly _ O(N)
AN = W/dx dy ve(x, y)bibyb(yx),
O(N)
A0 = W/dx dy vi(x, y)bybyb*(0x).

From (7.8), it is easy to check that =[N, A;] < Cel(N + 1). With Gronwall’s lemma,
we obtain (3.3) (first with & = 1 but then, using [N¥, 4,] = 2}‘;} N[N, A NF—T—1
also for arbitrary k € N).

Let us now consider (3.5). For § € & ’V<N

o ands € [0, 1] we define

fe(s) = (£, e A Hn (N + DFesArg).
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We have
fL(s) = (E. e ([Hn. AN + DX + HN[(N + D 4 DesME). (7.9
For k = 0, Lemma 7.1 implies, together with (3.3), that

£ ()] < CeM(fe(s) + (£.(N + DE)). (7.10)

The desired bound follows therefore from Gronwall’s lemma.
For k > 1, the contribution of the term proportional to [#,, A] is bounded similarly;
using (7.2), with & = 4 £, & = (N + 1)ke*4 g and n = k, we find

(E,e_SA’[%N,Az](N+ l)keSAtE) < Ceclt‘(€SAtE, (Hn + N + DN+ 1)k€SAtE)
= CeM(fe(s) + (£, (N + DFF1g)).

To handle the second contribution on the right-hand side of (7.9), we use (7.8). For k = 1,
we write

HNIN, Al = [Hn, A7 +347°] + (A7 +34;7)Hy + hee.)
+ Hn[N, A, — AN (7.11)

Contributions arising from the commutator [y, A} Y 4+ 34,%] have already been
estimated in the proof of Lemma 7.1. Thus

(g, e ™4 [Hn, A;Y + 34,7154 E)] < Cefll £ (s).

Contributions to the second term on the right-hand side of (7.11) have the form

APV K = %/dx dy vt(x,y)b;b;[dz V.aiV.a;b(yx)

O(N) .
+ W/dx dy ve(x, y)biby (—Axbx + b(—Apx)), (7.12a)
AP K = M/abc dy v,(x,y)b;b;b*(ox)/dz V.at (N +1)"YN +1)V,a;,
VN
(7.12b)
At1 Yyy = W/dx dy vi(x, y)bybj /dr dz N2Vn(r —z)aya,arazb(yx)
+ W/dx dy ve(x, y)bybs /dr dz N*Vy(r —z)ayarb;y(z,x),
(7.12¢)

O(N
AMVy = %/dx dy v,(x,y)b;b;‘b*(ox)/dr dz N*Vy(r —z)a*atara;.
(7.12d)



C. Caraci, J. Oldenburg, and B. Schlein 1350

The two commutators contributing to A } YK, A } YV can be bounded similarly to the
terms M», M3 and N4, Ns, respectively, in the proof of Lemma 7.1. All other terms can
be bounded directly with Cauchy—Schwarz; for instance

‘(ewg% [ axayuce s [ s vza:vzazb(yx)e“fsﬂ

Cecltl
<

- VN
1/2
X (/ dxdydz Nsz,m(x - y)2||a(yx)vzazeSAtE”2)

< CefM||(Fy + DY2(N + 1) 2esArg )2,

1/2
( / dxdydz |axayV.a,O(N )e“‘f%‘llz)

The hermitian conjugates of the terms in (7.12) satisfy similar estimates. We handle the
last term on the right-hand side of (7.11) analogously to the way we handled the terms
proportional to A, — A ,1 in the proof of Lemma 7.1, using identity (7.5). Observe here that
on ?fé:] X ?’f{g we have Hnb*(¢;) = [#Hn,b*(¢;)] allowing us to recover a commu-
tator which has been estimated before. Thus we find that (7.10) also holds true for k = 1.

For k > 2, we write

k
FNICN + DR A = YN + 1T I[N AN + D
j=1

and we argue similarly to k = 1, after appropriately pulling factors of (N + 1)!/2 through
the commutator [V, A;]. We obtain again estimate (7.10). The desired bounds follows by
Gronwall’s lemma. ]

8. Generator of fluctuation dynamics: Proof of Proposition 3.4

In this section we study the properties of the generator J y (¢) of the full fluctuation dynam-
ics (3.6). We start from expression (3.7). A first step in the proof of Proposition 3.4 consists
of applying the rules (2.4) to compute the generator

iN([) = (l'atUN,t)U;\k]’t + UNJHNU;\;J.

We find £x(t) = Z;';o éﬁ%)t where as quadratic forms on ¥ f{g x F fg

1 ~ ~ ~
O = (G IN*Vn (1 = 2w.0) * 1@ P16 (N — N)

2
1 N-N
— 3GV P + T @10

2
" e N +1
L3, = VNB(N?Vywag * @ 21@0) — T

b(IN>Vy * |@:[*1¢:) + h.c., (8.1b)
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~ " |-
L0, =K+ [ dxdy NVt = 0I5 (bibe — yyatas)

~ = * 1 *
+ / dxdy N>V (x — y)@:(X)@; (y)(bxby - Naan’)

1 ~ ~ k7 %k
+ 3 |:/ dxdy N3Vy(x — V)P (x)ge (¥)(biby + h.c.):|, (8.1¢c)
xg@t - / dx dy N°?Vy (x — y)@:(y)ba}ax + he., (8.1d)
L5, = V. (8.1e)

where we recall that K and Vy are the kinetic and the potential energy operators, as
defined on &‘f@[:’ in (3.4).

Next we have to consider the effect of the quadratic conjugation with the generalized
Bogoliubov transformation e57. We define the renormalized generator

En(t) = (0,67 B)eB + e Br sty (r)eBr. (8.2)

In order to describe the operator Gy (¢), we define
N, =2 1, 21 ~
Kkg(t) = 7(‘/%7 [N?’VN(l —2fne) * |‘/’t|2]§0t) - 5(‘/%7 (NSVNfN,(Z * |‘/’12|)§0t)

1 2 2

+5 [ dxdy NV (x = y)[{y. 0x)l

+ /dx (N3Vy *|@:))(x) (0%, 0x)

+ [ dvdy NVn = D@ F G or.)
1 - ~

45 [ dxdy N Vn G = @0 0w 1) + e+ [T

1
—/ ds / dx dy 0 (x, y) (o, J/y(s)) + h.c. (8.3)
0
and the quadratic operator
SN (1) =GN (1) + 9 (1)
N [ dxdy et = OG0B + b
1 ~ ~ ~ ~ * 7k
45 [ dxdy Nuy et = DIAGDEO) + G WAFOIBEE + he
+ / dx dy NVwy ¢(x = y)[V@: (x)@1 (y) — §:(X)V @ (y)]b3b; + h.c.

1
- /0 ds / dx dy 1o (v, )" (XD GO) + b* ()b (o)

+ (@) + b*(y)b(0P)] + he., (8.4)
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where
550 = K + [ dx[b*BpaIbs + 35 (Tupb(Tape) + B2 (=Bt
D (A pb™ (1) + B (p)b™ (~Axry) + BIH* (~Asgry)
+ 5 (Vanb (Vo) + " (n)b(~Asr)
4 2" (Verb(Very) + e 8.5)
and
290!
= 5 [ dxay N0 fu ) = DB DGO (b5 + (b ()] + e
45 [ dxdy N fuo(x = 060 (0)
X [0 (73)b(0) + b*(72)b(0y) + b(0:)b(0,)] + hic.
+ [ ax v e
X (6" ()b () + be)b () + b* ()™ (@) + b (@:)b(02))
+ [ dvdy NV = @7 0)
% (6" ()b () + b@0b(ry) + b* (r)b*(03) + b*(0)b().  (8.6)

The following proposition establishes, up to negligible errors, the form of Gy (¢), in
terms of (8.3), (8.5), (8.6).

Proposition 8.1. Let V € L3(R3) be nonnegative, spherically symmetric and compactly
supported. Let Gy (t) be defined as in equation (8.2). Assume £ in (2.7) is small enough
but of order one in N. Let

Cwa = [ drdy NV (= DE OIS bn) + 500l b (B)

<N <N
Then on ¥ o X F i

Gn(t) =Kkg(t) + G, N(t) +Cn; + VN + Egy (1), (8.8)

where the phase kg (t), §2,n(t) and Vy are given in equations (8.3), (8.4), (8.1) respec-
tively, and the error term Eg,, (1) satisfies

clt|

(61, 85y (E2)| < Ce [(Hn + N+ DV2E[(Hy + NP+ DY2(N + DE| (8.9)

VN

<N
forany£1,§, € J*f@.
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Proposition 8.1 is analogous to [18, Proposition 2.5 (b)] in the time-independent set-
ting, where the solution of the Gross—Pitaevskii equation (2.3) (entering the definition
of £xn(¢) and Gx(2)) is replaced by the minimizer of the Gross—Pitaevskii energy func-
tional.” The main difference is the fact that Proposition 8.1 provides bounds for general
matrix elements, while [18, Proposition 2.5 (b)] only deals with expectations. Since the
two proofs are very similar, we only sketch the main steps in the proof of Proposition
8.1, referring to [18] for all details (we give some more details for the term (i 8,8_Bf)eB’ s
which is absent in [18]).

Sketch of proof of Proposition 8.1. We write §x(t) = (i0,e B)eBr + Z}‘:O ﬁl(\,j)(t),
with ﬁl(vj)(t) = e‘B’Cf%)(t)eB’, for j =0,...,4. We have

0 = G VPV (1 = 2fsc0) 161G — 3G, N>V 161 160)
(G [NV * 15050
([ 16 000 +5° @2)0(@0) +5° (05" (02) + bl + o )
1ew, (8.10)
where

(61,606 < %n(w )25 N+ DE

forall &, € ¥ fé:/ and all ¢ € R. Details can be found in [18, Corollary 4.3].
Proceeding as in [18, Lemma 4.4], we find

9 = VN[b(y(hn,)) + b* (@ () +hel + 6D, (8.11)
with iy, = (N3*Vywp.e * |¢¢]?)@: and
<
VN

We decompose ﬁji,z)(t) =e B KeB 4 ﬁl(vz’v)(t). Following [18, Lemma 4.6], we
obtain

(E1. E0ME2)] < —=II(N + D& [ |[(NV + DE2.

50V = / dx (N*Viy * 16,2 (x)

X (b*(yx)b()/x) + b(ox)b(yx) + b*(Vx)b*(Ux) + b*(Ux)b(Ux) + (0x,0x))

ZNotice that the energy functional used in [18] was the limiting Gross—Pitaevskii functional, defined in
terms of the scattering length a. In the present paper, on the other hand, we find it more convenient to work
with the modified N -dependent Gross—Pitaevskii equation (2.3); as a consequence, some of the expressions
emerging in the computation of ¥y (¢) are slightly different from the corresponding expressions in [18].
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n / dx dy N3V (x — 1)@ ()6 ()
x (b* (yx)b(yy) +b(0x)b(yy) +b* (yx)b* (0y) +b* (03)b(0x) + (0%, 7))
1
+3 / dx dy N3V (x — )G (X))

X [b*(yy)b* (yx) + b* (vy)b(0x) + b* (yx)b(0y) + b(0x)b(0y)
+ {ox, yy) (1 = N/N) + dg (b*(yy) + b(0y))
+ (b*(yx) + b(ox))dy +he] + €5 (8.12)
with

(6168, 6 < ze

where dy, df are the operator-valued distributions associated with the fields d; defined in
(2.10). On the other hand, analogously to [18, Lemma 4.8], we conclude that

55 = x + / dx dy (~Agne)(x. y)bEbT + / dx dy A D)baby

IV + N+ DV2E IV + N + DYV + D26,

4 [ b apaby + BB p) + Vb () V()
B (A p)b™ () + b (p)b* (—Agre) + b2b* (~Agry)
- b(=Asro)bs + b(—Arr)b(ps) + b(1)b(—Asps)
T Veb* (1) Vb (1) + B (0)b(—Ary) + b (—Are)b (1)

+ f dx [b(Van) Vads + Vad b (V)] + V107 2(1 = N /N)
1 \% 2
o 19imd? + B ([ ax b + 0 @b

+ b*(yx)b* (0x) + b(Vx)b(Ux)])

\v/ 2
L 1]\7]lt|| o] + €59, (8.13)

with

As for the cubic term, we find

50 = / dx dy N5V (x — )G (0B b(re) + b*(0)

——=e“ MK+ N + DV (K + NP+ DN + D&

— VN(b(y(hn.)) + b*(0(hy)) +he. + EG. (8.14)
with
C clt|
(1. 8D e < — D26 [ [(Fey + N + DYV2N + D).

The proof of (8.14) is very similar to the proof of [18, Lemma 4.9].
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Furthermore, following the strategy used in [18, Lemma 4.10], we obtain
1 2N )

1
580 =V + 5 [ dxdy NV =l P (14 3 - 2

1
+t3 / dxdy N*Vi(x — y)[b* (yx)b*(vy) + b* (vx)b(0y) + b*(vy)b(0%)
+ b(ox)b(oy)]k:(x,y) + hec.

45 [ dxdy N2Va G- DIE®" 03 + (o)
T (0" () + b@ ) e (x, ) + he.

+ / dx dy N*(Vwi ) (x = 1)1 ()@ ()|

X ([ du [b* (yu)b(yu) + b* (0u)b(0w) + b* (vu)b™ (o) + b(yu)b(0w)] + ||0||2)
+ 81(\2)1, (8.15)
with

Cecltl

N I(Fen + N + D& (N + N + DYAN + DE.

(€1, 8 E)| <

Finally, we claim that

1
(iate_B’)eB’ = —/(; ds/dx dy ﬁt(x,y)[b*(y)(cs))b*(yﬁs)) +b*()/§s))b(UJES))
+b(@)b(P) + b* (r)b(?)
+ (09 YN +he +8&,.  (8.16)

where &€, satisfies

C
(£1. 9,62)] < ﬁeC"'nw + DY2E WV + )28, (8.17)

for any &1, &, € ffg, t € R,and N € N large enough.
To prove (8.16), we use (2.10) to expand

1
(id;eBryeBt :/ ds e *Bt (19, B;)esB
0

1
_ / ds / dx dy i (v, )" (XD GO) + b* ()b (o)
0
+b(E)b(0) + b*(¥)b(a)
+ ((I)ES), )/y(s))] +he. + 8,
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where the superscript s denotes that we consider cosh and sinh of s7; instead of ;. Here,
&y, is given by

1
€, = /0 ds / dx dy (v, y) x [d2,(0*79) + b)) + B* ()
+b(eO)d) + dfdy — (0O yO)N/N]
+ h.c.,

where dy s, d;"s are the operator-valued distributions associated with operators dt(s),
which are defined as d; in (2.10), but with 5, replaced by sn,. With (2.12) and with

the bounds from Lemma A.3, we have

Cecltl
N

A

[(§1,85,82)| <

/dx dy i (e, PN + D28

X [(1L+ [n: e, DN + D328 + lax(N + DE||
+ llaxay (N + 1)2&||]
Cecltl
N

which concludes the proof of (8.17).
Collecting the contributions on the right-hand sides of (8.12), (8.13) and (8.15) con-
taining the operators d, d*, we define

1N+ DY2& [V + 1328,

IA

Dy, = /dx [p(Vxnx)Vydyx 4+ h.c]

1
45 [dxdy N0 fwoe - 10603 0)
x [dX(b*(yy) + b(0y)) + (b(yx) + b*(0x))dy +hecl].

Proceeding as in [18, Section 4.5], we obtain
Dns = 5 [ dxdy N3 fvawm) (= DIG P10
x [ vl @b 00 + b(@Ib0A) + 26 @)b(o0)]
45 [ dxay N 0w fuot - DG OPIEOPIo + 7). 318)
with the error

C
(61 & 82| < e IOV + DGV + N2+ D2+ D12,

To obtain the constant term (8.3), we first recombine the following terms, appearing in
(8.10), (8.13) and (8.15):

1 1 1, . ~ 27~
IVl + 5 [ dvdy N2V e = 0l 0002 = 5 @ V3V 1Pl
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Using the scattering equation (2.2) and the estimate

[{ox. vy) — ke (x. )| = Cloe ()] 1@: (¥

we end up with the second summand on the right-hand side of (8.3) (up to an error of
order 1/N). Moreover, observing that

1 - - 1
5 [y KA fe = DRI + 19102

+ / dxdy N3(VNw12v,z)(x - )’)|¢t(x)|2|€5z(y)|2 - (@t,N3VNwN,€ * |¢t|2¢t)

C
=< et
- N
we conclude that the contributions proportional to |o||? from equations (8.10), (8.13),
(8.15) and (8.18) cancel (again, up to an error of order 1/N); this leads to (8.3).
To derive (8.4), we use (8.19) again to show that the sum of all terms proportional to
N and all terms proportional to

(8.19)

/ du [b*(vu)b(yu) + b*(0u)b(0w) + b (vu)b™ (0u) + b(yu)b(0w)]

appearing on the right-hand side of (8.10), (8.12), (8.13), (8.15), (8.18) produces a small
error, which can be absorbed into Eg,, (in (8.18), we first decompose 20:6; = y,z + 0.0 —
1). Furthermore, in the terms on the first line on the right-hand side of (8.13), we split
n: = u; + k; and we combine the contribution associated with k, with the contributions

1 ~ ~ *7 % 1 * 7k
5 [ dvdy NV =g m ity [ dxdy N2V - yki iy

extracted from the third summands on the right-hand side of (8.12) and on the right-hand
side of (8.15) (expanding y; = 1 + p;). Observing that

N(Ax + Ay)wne(x = 1)@ ()@ () + N>V fn,0) (x = )@ ()1 ()
= NRAww(x = ) + N> (Vi fn,0) (x = )1 (x) @1 (v)
+ Nwn,e(x = V)[AG: ()P (¥) + @ (x) A ()]
+ 2NVwne(x = y)[V@: ()01 (y) — 01 (x) V@ (y)]
and that, from the scattering equation (2.2),
NR2Awn¢(x = y) + N2(Vw fwe)(x = 216 (x) G ()
= 2N Ag fuaxe(x = )@ ()i (),

we conclude that
1 1 - ~
[y [3-00= A + SNV = 9603 0)

l * 7 %k
+ ENZVN(x — k¢ (x; y)]bxby
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— [ axdy A
N3 [ dxdy e = 3) el =BG OIBD;
45 [ dxdy Nuwos = DIBG0F0) + 0AG OS]
+ [ NVun = DV 0F0) - B 0TE Wb, ($820)

In the second term on the right-hand side we can write fxy¢ = 1 — wy ¢ and check that
the contribution of wy ¢ can be absorbed into the small error. Thus, combining (8.10),
(8.11), (8.12), (8.13), (8.14), (8.15) and (8.16) with (8.18) and (8.20) and comparing with
the definitions (8.3), (8.4), (8.7), we obtain the claim of Proposition 8.1. [

With (8.2), we can rewrite the generator §  (¢) defined in (2.14) as
In (@) = (9,6 4)ed + e gy (1)er. (8.21)

To conclude the proof of Proposition 3.4, we need therefore to control the action of A;
on the terms on the right-hand side of (8.8). We already have some information about
the action of A, on the Hamilton operator #y = K + Vp, thanks to Lemma 7.1. The
action of A; on the quadratic terms in ¥, x(¢) (excluding the kinetic energy operator X)
is determined by the next lemma.

Lemma 8.2. Let A, be defined as in (3.2). Let F:R3® x R3 — C. For any £1,&, € ?f(g
we have

'/drds F(r,s)(&1, [bXb¥, A/]E2)), ’/drdsf(r,s)@l,[brbs,At]sz)

< CeMF N3N + DY2E ][V + Dé. (8.22)

Moreover, assuming additionally that F(r,s) = F(s,r), we also have

'/ drds F(r,s)(&1, [b)bs, A¢)&2)

< Cecltl N—3/4 minQIFllz,SUP /dr |F(r, S)I)II(N+1)1/ZE1II [(N+Dé2|. (8.23)
s

Lemma 8.2 is very similar to [18, Lemma 5.2]. The main differences are the presence
of the cutoff ®(N) in definition (3.2) of A; (which plays no role in the proof) and the fact
that bounds in [18, Lemma 5.2] only control commutators in expectation, while (8.22),
(8.23) control all matrix elements. However, the proof only requires straightforward adap-
tations. We skip the details.

Finally, we need to control the action of 4, on the cubic operator €y, on the right-
hand side of (8.8). This is the aim of the next lemma.
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Lemma 8.3. Let A, be defined as in (3.2), with parameters M = m~' = /N and Cn
as in (8.7). Furthermore, let

) [ dx dy N3Vy (x — 1) wnm(x — V)5 06 ()

X (b*(yy)b(yx) + b*(yy)b* (0x) + b(yx)b(0y)
+ b*(0x)b(0y) + (0y,0x)). (8.24a)

g, = 2 / dx (N Viy wym) * |5:12)(x)

X (b* (yx)b(yx) + b*(yx)b*(0x) + b(yx)b(0x)
+ b*(0x)b(0x) + llox]1?). (8.24b)

<N <N
Then, on J*J_@ X j'J_@ , we have
[€N,17Al] = El + EZ + S[EN,At]v

where Epey  4,] s such that

|(Elv S[EN,AI]EZH
< CeMINTV4(Hy + N + DYV2E | |(Jn + N + D2V + 1)Y25]. (8.25)

Proof. We write €y = ‘gN + €%, with
By = N2 [ dxdy Vit = GBI D) + b7 (@]
We will also use the shorthand notation By = b(yx) + b*(0,). We have
OWN 5 * 7k
[Cn:, Ar] = % / dx dy u,(x,y)[‘C’N,bxby By ]
O(N) 5 kg x
+ 22 [ dxdy v G b0 B
5 5 * 1 * 7%
+ €y +Cn ,@(N)]ﬁ / dxdyv(x,y)biby Bx + h.c.
+[Eny, Ar — A7) (8.26)

With the notation W =1 — N /N and W=w-— I/N =1— (N + 1)/N and with the
commutation relations (2.6), we find

2
[bz,byby Bx] = Whid(z — y)Bx + Whyé(z — x) By — ﬁb:a;asz

k7 3%k 1 k ok ok
+bibyWor(z, x) — Nbxbya (ox)az,
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_ 1
[b7,biby By] = —biby Wy (z,x) + Nb*b*a*a(yx),

z>Yx%y xPylz
_ - 2
[Br,byby Bx] = Wby, (x,r)Bx + Wby (y,r)Bx — ﬁb;a:a(y,)Bx
+ b;b; W({(pr.ox) — (px.0r))
1 1
+ Nb;b;a*(o—r)a(yx) - Nb;b;a*(UX)a(Vr)»
[B:’ b;b;BX] = WU[(X, r)b;Bx + Wat(y’ r)b;Bx
2
- Nb;a;a(ar)Bx — bbby Wi(r —x)
—b;b;W(p,(x,r) + pe(r,x) + (px, pr) — (0r,0x))
1 1
b ()aly) - bl G2)a ;).
A lengthy but straightforward computation leads to

[bb¥ By, b¥b*By] = —b*b*b? p,(r, x)W B, — b¥bXb*W§(s — x) B,

r“x%y x“y“s r“x%y

~— 2
—brbyby W pi(s, x) By + Nb;‘b;b;a:a(yx)B,

+ b:b;‘b;ﬁ;p,(x, r)By + bXb*bXWE(y — r) By

ON— 2
+brbgbyWpe(y,1)Bx — Nb:b:b;a;a(yr)Bx
+ b:b:b;b;W((pr, 0x) = {Px.0r))

1 kpokg kg ok ok 1 kg okpkjp ok ok
+ Nbr bgbibya™(or)a(yx) — Nbr bgbibia™(ox)a(yr). (8.27)

Let us label by Ry, ..., Ry the contributions to [€x,, A;] associated with the terms
in (8.27). We claim that these terms can all be included in the error &g, 4,]. Let us
consider first the terms with six creation and annihilation operators. As an example, using
Proposition A.2, Lemma A.3 and the cutoff N < M, we bound

Cecltl

(61 Ra2)] < — 577 VN2V + DI=Mg |

1/2
([ axayar ds NVA =N w0 =3 Platr B 1M e 1)
M2
= CellyIm—es | (Fn + N+ D2 ||y + N + 12N + 1)1
Here we used that a(y)b*(or) = (1 — N/N)l/za*(ax)ay + (1 = N/N)os(x,r) and

the fact that ||o;||2 < C. The other terms with six creation and annihilation operators,
namely Rg, Ryp and R, can be bounded in the same way. Next we consider terms with
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a contraction, quartic in creation and annihilation operators. Let us start with

clt|

[(§1, Ri§2)| = IV + DI=Mgy|

(/dxdydrdsN Vn(r—s)N wNm(X—y)2|Pt(r X)|

1/2
<IN + )1/23,52“2)

M
< CeM\ fm- (N + DPE N + Dl

where we used Lemma A.3 to bound sup, || p, |2 < Ce¢¥l. The term Rj is estimated in
exactly the same way. Furthermore,

Ceclll

(6, Rst) ( / dx dy dr dsN2Vy (r — )| py(r, )2

<
N1/2 12
<IN + 1)~ Vayara15Mg | )

1/2
x ( [ dxavdrasn vy - P + 1)“23,52“2)

< Ce [N Gy + X + DV Gy + N + D2 + )25

and R; can be bounded analogously. Also, Rg satisfies the same estimate, since
|(pr. )| < | pr x| Finally, we control

Cecltl

1/2
e Ratall = Sz ([ vy dr N2V =01 + )7 2y ar0,1M 0 )
1/2
([ ey dr WPV NP U + 028,17

< Ce M [Ny + N+ DGy + N + D2+ )]

and we observe that Rg is essentially the same as R, after renaming variables.

Let us now consider the second term on the right-hand side of (8.26). Here we have to
compute the commutator [B;bsb,, b b} By]. The computations are more involved than in
(8.27), because now there can be multiple contractions, leading to contributions that are
quadratic or even constant in creation and annihilation operators. The main contributions
are those where b, and b, are contracted with b7, b;‘. There are two such contributions.
Assuming that b, b* satisfy canonical commutation relations (it is easy to check that the

corrections are negligible), they are given by
= OW) [ dxdy NV (= Dnn = )EEF0) BBy

- @(N)fdx (N3VNwm *|¢:/*)(X)BEBy +hec. = E; + B, + &,
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with the error
(81, €E2)| < CeVINTVAI(WN + DV || |(N + D&

needed to remove the cutoff @ (N') (arguing similarly to (7.4), with the choice M = N1/2).
Terms involving contractions between b,, by and By (or between B and b}, b;) are
smaller, because they produce factors of o;(r, x) or o;(s, x), which are in L?%. As an
example, consider the term §(s — x)o; (r, x) B} by (where we contracted by with by and b,
with By, ignoring again corrections to the canonical commutation relations). It produces
a contribution S to (8.26), which can be bounded by

1/2
(&1, SE2)] < Ce”'( [ axayarwevee—one + 1)_1/2ayBr§1||2)

1/2
< (/ dx dy dr N3Vy (r —x)|vt(x,y)|2) I + D)2
< CeXMINTVAI(N + DV || (N + D25,

where we used |0y (r, x)| < CN|@;(r)@:(x)| from Lemma A.3 and |v;|| < C/m from

Lemma A.5 (and the choice m = N ~'/2). Terms arising from [B*bb,, b3b} By] contain-

ing six or four creation and annihilation operators can be bounded as we did above with
Ry,..., Rq1.
The next term in (8.26) has the form

[En + €, @(N)]JLW / dx dy v (x, y)b;b} By + h.c.
= [ drds NV =956/ OW — 1) = OB

« /dx dy v:(x, y)b2b? By

+ [ rds N2Vt = )3(5) (O = 3) — (MBI (02)
v / dx dy vi(x. y)b%b? By

+ [ drds NPVN @ = DFTHOW + 1) = 0NN (1 )beb,
x / dx dy vy (x, y)bTb? By

+ [ drds N2V = HEGHO +3) = OWDb(o,)bib,

X /dx dy ve(x, y)biby By + h.c.

4
= Z T; + hec. (8.28)
i=1
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The contribution 75 is already normally ordered. It can simply be bounded by Cauchy—
Schwarz. We find

(61, Tota)| < /dxdydrds N2V (r — 9|30 )] [v2 (x. )]

x [|bybsb(0x)bxby(N + D732 || Be (N + 1) 2LN < M)E ||

< cec‘fl,/%uv}vﬂglu (N + DTN < M)E ||
< CeINTVHIVE |V + D&,

where we used sup, [|ox |2 < Cec! from Lemma A.3 and sup, [|[vx|l2 < C /me€!! from
Lemma A.5 (with m = N~'/2). All other normally ordered terms emerging from (8.28)
can be treated analogously. On the other hand, terms involving commutators (produced
through normal ordering) are closely related to the contributions discussed above from
the first two terms on the right-hand side of (8.26). Due to the presence of the differ-
ences O(N + 1) — O(N) (or similar), the contributions where by, b, are contracted with
byb} (arising from T3 and T}) are also negligible here (since [[(®(N + 1) — O(N))E[| <
C/M|1(M/2 < N < M)E|, we can gain a factor M ~!, arguing similarly to (7.4)).
Finally, we deal with the commutator [€x, A; — Atl] using the identity (7.5). The
resulting terms can be treated analogously to the contributions to [€y, A}] (but these
terms are less singular and thus simpler to handle). They all satisfy estimate (8.25). We
skip the details. ]

We are now ready to proceed with the proof of Proposition 3.4.
Proof of Proposition 3.4. Recall from (8.21) that
In () = (id,e et + e gy (r)er, (8.29)
where, by Proposition 8.1,
Gn(t) =kg(t) + G N (1) +Cny + VN + Egy (1),
with the error &y (¢) satisfying the bound (8.9). From Lemma 3.1, we find

[(E1. e Egy (e £5)|
Cecll

<
- JN

With Lemmas 7.1, 8.3 and 8.2, we claim that

[(Fn + N+ DV2E|[(Hn + NP+ D2V + 1DE.

1 1
e (G (1) + Cne + VN)ed =G v (1) + 531 + 5:2 + VN + €, (8.30)

where E1, &, are defined in equation (8.24) and

(61, €E)| < CeSMINTV4 | (Hn + N + DV2E | [|(Hn + N + DYV + 1))



C. Caraci, J. Oldenburg, and B. Schlein 1364

To prove (8.30), we start by observing that

1
A (Gan (1) — K)eM = (San (1) — K) + / ds e [(Sa.n (1) — JO), AfJe .
0

Going through the terms in 9, y () — K in (8.4), we can check with Proposition A.2 and
Lemma A.3 that they all have one of the forms considered in Lemma 8.2. It follows that

e~ (G n(t) — K)et = (Gon(t) — K) + €,
where, applying Lemma 3.1 also,
1
(81, 8'&)| = CeINT3/4 [ ds (N + )25 £ [ |(N + De & |
0
< CeMINTIAWN + D2 | (M + D&

On the other hand, with Duhamel’s formula, we can write
1
e A Jnett = Jy +/ dse A [ Hy, Ag]es A
0
1
= JHN —I—/ ds e_SA’(—fN,, + S[J{N’At])ESAt
0
1
= JHn — Cny +/ ds e_SA’g[JgN,At]ESA’
0
1 K}
+[ ds/ dre_rA’(—ul — B2+ Eley.a ])e'A’
0 0
|
=3€N—€Nt——(51+ E2)
+/ dse” SA’S;gNA ’—|—/ ds[ dre”é?gNAt]e
/ ds/ dr/ dte” TA’["‘l—i—uz, t]e”"
Similarly,

1
e_A’EN,,eA’ =Cn; +/ ds e_SA’[‘€N,,,A,]eSA’
0

1
= €N,t —I—/ ds e_SA[(El + B, + g[fN,Al])eSAt
0

=Cn¢+ E1+ &2

1 1 K]
+ dse 4 & 4 eSAr 4 ds dr efrA’[El + B,, A,]e’A’.
o [En,Ar] o o
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Applying Lemmas 7.1, 8.3 and 8.2 (noticing that the commutator of the quadratic oper-
ators E1, Z, with A; is a sum of terms that can be bounded with (8.22), (8.23)) and
propagating the estimates through the cubic phase with Lemma 3.1, we arrive at (8.30).

As for the first term on the right-hand side of (8.29), we observe that since sup, ||V x ||
< CetI N=1/4 from Lemma A.5,

(€1, (106 4)e Er)| < /0 ds (€54 &1, [i0: A)e™ &)
< Ce"INTH|(WV + D& IV + DE.
We conclude that
I () = k6(0) + Hon () + 381 + 382 + €
where
|(€1.€'6)| < CeVINTV4| Iy + N + D)2
x |(Fn + N>+ DV2N + D& . (8.31)

Next we observe that in the terms Z 1, &5, as defined in (8.24), we can replace the param-
eter m = N~1/2 with the fixed, N -independent, parameter £ € (0; 1), at the expense of a
small error. In fact, setting

g =2 / dx dy N*Vy (x = y)wn.e(x — E @60

x (b*(yy)b(yx) + b* (yy)b™*(0x) + b(yx)b(0y)
+ b*(0x)b(0y) + {0y, 0x)), (8.32a)

g, =2 / dx(N*Vywno) * |3 ) (x)

x (b*(yx)b(yx) + b*(yx)b*(0x) + b(yx)b(0x)
+ b*(0x)b(0x) + llox|?). (8.32b)

we find

clt|

C
(E1, (B — EDE)| < ——II(N + DV2E (K + & + D)2 (8.33)

VN

for j = 1, 2. To show (8.33), we argue as we do in the proof of Proposition 5.2 to con-
trol the terms L, I, III (in that proposition, we control convergence of N3Vy fy ¢ towards
a §-distribution, but the same argument implies convergence of N3Vy fu , towards a
S8-distribution and therefore allows us to control the difference N3V ( fne— fam) =
N3Vyn(wym — wye); note that to handle N3Vy fy.m we need to use (A.2) with £
replaced by m = N -1 2 which makes some of the estimates, like the one for the sec-
ond term on the right-hand side of (5.3), worse).
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Combining the operator &, n (¢), as defined in (8.4), with the terms &/, E) from

(8.32) we obtain, as a quadratic form on F f@ (so that the “projected” operators b, b* are

the same as b, b*), the operator f, x(¢) in (2.16), up to a small error due to the term on
the seventh line of (2.16), whose matrix elements can be bounded by

V dx N3V five * 1912 () (1, (aFax — bibx)E2)

< CN7TY(WN + DV2E [V + D2, (8.34)

o =<

Remark that, despite its smallness on ¥ @1:’ , we inserted this term into definition (2.16) to

make sure that U, y (¢; s) maps F féj into ¥ f@lj . Absorbing (8.34), together with (8.31),
into the error term Eg4,, (t), we conclude the proof of Proposition 3.4. |

A. Properties of fl’ Dy ¢t’ Nty Noo,ts Vi

In this appendix we collect some analytic properties of functions and kernels that are used
throughout the paper to construct the approximation of the many-body dynamics.

In the first lemma, whose proof can be found in [9, 17,25], we consider the ground
state solution of the Neumann problem (2.1) on the ball |x| < N £, with the normalization
fe(x) = 1for |x| = NL.

Lemma A.1. Let V € L3(R3) be nonnegative, compactly supported and spherically sym-
metric. Fix £ > 0 and let fy denote the solution of (2.1). For N large enough the following
properties hold true:

(i) We have
3a

~ Ny

(i) We have 0 < f;, wy < 1. Moreover, there exists a constant C > 0 such that

by (1 + O(a/LN)). (A1)

2
‘/ V(x) fe(x)dx — 8ma| < i—; (A2)

foralll € (0;1/2) and N € N.

(iii) There exists a constant C > 0 such that

we(x) <

d |V <
a1 @ Vel = 5

(A3)

forallx € R3, £ € (0;1/2) and all N € N large enough.

Next we consider solutions of the Gross—Pitaevskii equation (1.7) and of the modified
N -dependent Gross—Pitaevskii equation (2.3). The proof of Proposition A.2 is essentially
contained (up to straightforward changes) in [7, Theorem 3.1], [17, Proposition 4.2] and
[10, Proposition B.1].
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Proposition A.2. Let V € L3(R3) be a nonnegative, spherically symmetric, compactly
supported potential. Let ¢ € L*>(R3) with ||¢|| = 1. Recall the scattering solution (2.2)
which enters the modified Gross—Pitaevskii equation (2.3); assume £ € (0,1/2).

(i) For ¢ € H'(R?), there exist unique global solutions t — ¢, and t — @, in
E(R, H'(R?)) of the Gross—Pitaevskii equation (1.7) and, respectively, of the
modified Gross—Pitaevskii equation (2.3) with initial datum ¢. We have |¢;|| =
|@: |l = 1forallt € R. Furthermore, there exists a constant C > 0 such that

loellar. el < C.

(i) Ifo € H™(R?3) for some m > 2, then ¢;,¢; € H™(R3) for everyt € R. Moreover,
there exist constants C depending on m and on ||¢||gm, and ¢ > 0 depending on
m and on ||@||g1, such that for all t € R,

e llgrm, | @e |l prm < CeMl.

(iii) Suppose ¢ € H*(R3). Then there exist constants C > 0 depending on ||| g+,
and ¢ > 0 depending on ||¢|| g1, such that for allt € R

1@ellzr2, 102l r> < Cec.

Furthermore, if ¢ € H(R3) there exist constants C > 0 depending on ||¢|| gs,
and ¢ > 0 depending on ||¢|| g1, such that for all t € R

I6e s 116e | s < CeMl.

(iv) Suppose ¢ € H?*(R3). Then there exist constants C, ¢y, ¢2 > 0 such that for all
teR,
lge = @ell < CN ™" exp(cr exp(ealt]). (Ad4)

For ¢ € H®(R3) there are constants C, ¢ > 0 such that

cle]

lgr — @ellgs < CN~'e®

and
e = Gellaz < CN e,

Now recall definition (2.8), depending on the parameters N, £, of the kernel 7, appear-
ing in the generalized Bogoliubov transformation e® and the notation y; = cosh 7;,
o; = sinh 7. Furthermore, we set p; = y; — 1, r; = 0y — 1y and u; = n; — k; (recall
(2.7)). Several bounds for the operators 1y, y;, 0¢, pt, r; (for their integral kernels) and for
their time derivatives are established in the next lemma, whose proof is a straightforward
adaptation of [7, Lemmas 3.3 and 3.4], [17, Lemma 4.3], [10, Appendix C].

Lemma A.3. Let §; be the solution of (2.3) with initial datum ¢ € H*(R). Let wy =
1 — f¢ with fy the ground state solution of the Neumann problem (2.1) and let £ € (0;1/2).
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Let k¢, n¢, jut be defined as in (2.7), (2.8). Then there exist constants C, ¢ > 0 depending
only on ||@|| g+ (or lower Sobolev norms of ¢) and on V such that the following bounds
hold uniformly in £, for allt € R:

(i) We have
Il < Cce'/?

and also
IVindl < CVN, IVl <C

for j = 1,2. With Vin; and Van; we indicate the kernels Vyn:(x;y) and
Vyn:(x;y), and similar definitions hold for Ajn,, for j = 1,2. Let 04, py, 1;
be defined as in (2.11) and after (2.18), we obtain

loell, el el 1V pell 1Vl < C
1A; pell 1A TNl 1A || < e,
[Vjo/| < CeMIVN.

(i) Fora.e.x,y € R3, n e N, n > 2, we have the pointwise bounds

C - -
Wkﬂt(xﬂ lg: (M.
lwe s L [ pe (s Y1 Jre (s p)| < Clge ()] @ ()]

Y
Ve )] = €OV + oDl (X222 ),

[n:(x;y)| <
[x —

(iii) Moreover, we have

2
I

supl|nlI?, supllks.x |2, supllperx |? < Clige g2 < Cell,
X X X

where we denote sup, |1« ||> = sup, [ [n:(x; y)|> dy and

loells | peells el < Ce.

(iv) For j = 1,2 we have the following bounds for the time derivatives:
10:n¢ll, ”8?771?” < Cecltl,

and also
18, Vin: || < CvV/Ne |8,V || < Cecll.

Furthermore,

00\l M9erell 92 pell NV B2 pell 1V Oere |l 11D e pell 1A ere |l 1A e pue |

< Cecl"l,
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(v) Fora.e. x,y € R3 we have the pointwise bounds

AR ACAS]
+ 120 (1@ )]

1
[0 (x5 y)| < C[l + m]

and

10z e (x5 Y], 1027 (X3 Y], [0 pr (5 p)|
< CeMIG () 1@ ()] + 18: )18 ()] + 18 ()] [@: ()]
(vi) Finally, we have
19 mell 19ekexlls 182 peex |l < Cee!
and

18¢0exll 13 pex I, [13erexll < CeMl.

While the kernels 7y, y;, 0t, ps, r; considered in the last lemma are used in the defini-
tion of the fluctuation dynamics Uy and of its quadratic approximation U, x, the limiting
quadratic evolution U o is defined in (2.30) in terms of limiting kernels 7oo,¢, Yoo,r» Oco,z»
Doo,t> T'oo,r- To show the well-posedness of U, o and to compare it with U, y, we need
some bounds on these limiting objects.

Lemma A4. Let Woo 4, Noo,tr Voo,t» Too,ts Poosts Too, e defined as in (2.25)—(2.27).

(1) The limiting kernels satisfy

2,00l losoll. [l Pooll. [I7eoll = C.
18 Pooll, 1A 7ooll, 114 1,00]] < CeM,
172,001l 1600 | ooll, [IFooll < CeMl,
1A) Poolls 1A ool 1A fee,00ll < Cel,
.00l < Ce M,
for almost all x e R3 and j = 1,2.
(i) Let R > 0 be such that V(x) = 0 for |x| > R. Then we have

C
x|
|NwN,€(x) - woo,[(x)| = ¢ . R/N < |x| <, (A.5a)

N x|
0, £ < |x|,
C
—5, O0=ZI[x|<R/N,
x|

INVuy () = Voo s =4 _C oy oy <g. (ASH)
N|x[?
0, £ <|x|.
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(iii) We have

cle|
. Ce*®
In: = ne,00ll. 171 = Nt,00ll: 1o = Oooll. |2 = Pooll: Ir = rooll < I

cle|

Cece
VN

1A2p = Az pos|l, [ A2r — Azros |, [ A2pts — Ao pireoll <

Proof. The bounds in (i) follow from (2.25), which implies that |wee ¢(x)| < C/|x]|,
|[Vweo¢(x)] < C/|x|? and Aweo ¢(x) = dmad(x) + 3ay(|x| < £)/€3.

The bounds (A.5) are trivial for |x| > £. In the region |x| < R/N, they follow by
combining the estimates for Wee ¢, VWeo ¢ With (A.3). In the region R/N < |x| < £, we
apply the identity (see [8,9])

sin(va(lx| = 0) ¢ cos(yane(lx] - 0)

wye(x) =1-—
N VANIX] |x|

and the corresponding expression for Vwy ¢. Using Ay ¢£? =~ 1/(N{) < 1 and Taylor
expanding sin and cos, we obtain (A.5).

The bounds in (iii) follow from (ii) and from (A.4) (because the limiting kernels 7; o,
Nt,00> Ocos Poos T'oos Mi,00 are defined like n;, 0;, 0, p, 7, (s, with Nwy ¢ and ¢, replaced
by Weo,¢ and ¢,). We leave the details to the reader. [

Finally, in the next lemma we collect some estimates for the kernel v; introduced in
(3.1), entering the definition of the cubic phase A; in (3.2). The proof is a straightforward
adaptation of the proof of Lemma A.3 above (with the parameter £ now replaced by m).

Lemma A.5. Under the same conditions as in Lemma A.3, the kernel v; defined as in
equation (3.1) satisfies the following bounds:

vell < C/m,  supllvex| < CeVl/m,  vey |l < Clge(v)|/m
X

and the pointwise bound
Cle:(y)l
ve(x, < — .
| t( y)l |x_y|+N_l

Furthermore, the time derivative satisfies similar estimates:

1l < Ce ™ /m,  supl|ve x| < CeMl/m, Vel < Clge () |V/m.
X
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