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Generalized theta functions, projectively flat vector bundles
and noncommutative tori

Maximiliano Sandoval and Mauro Spera

Abstract. In this paper, the well-known relationship between theta functions and Heisenberg
group actions thereon is resumed by combining complex algebraic and noncommutative geo-
metric techniques in that we describe Hermitian–Einstein vector bundles on 2-tori via rep-
resentations of noncommutative tori, thereby reconstructing Matsushima’s (1976) setup and
elucidating the ensuing Fourier–Mukai–Nahm (FMN) aspects. We prove the existence of non-
commutative torus actions on the space of smooth sections of Hermitian–Einstein vector bundles
on 2-tori preserving the eigenspaces of a natural Laplace operator. Motivated by the Coherent
State Transform approach to theta functions (Florentino, Mourão, Nunes (2002), Tyurin (2003)),
we extend the latter to vector valued thetas and develop an additional algebraic reinterpretation
of Matsushima’s theory making FMN-duality manifest again.

1. Introduction

In this paper, we address, in the simplest case, the well-known intriguing and multi-
faceted relationship between theta functions and representations of Heisenberg groups
(both infinite and finite [12, 14, 17]), from a blended complex differential geometric
viewpoint – focused on holomorphic vector bundles on 2-tori – and a noncommuta-
tive geometric one – involving (rational) noncommutative 2-tori – possibly bringing
in some novel insights and, in particular, improving the treatment given in [23]. Non-
commutative geometry arose with the aim of studying singular objects, such as orbit
spaces, generally intractable via traditional topological, analytical and geometrical
tools (see, in particular, the comprehensive [4]), and it is ultimately based on the
transition from points in a topological space to functions thereon and thence to gen-
eral algebras. Noncommutative tori provide a simple yet highly non-trivial testing
ground for carrying out such a programme. They appear naturally in condensed mat-
ter physics issues, see, e.g., [2, 5] and they also implicitly crop up in the theory of
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projectively flat vector bundles over tori, see, e.g., [11, 12]; it is precisely this aspect
that is dealt with in the present work.

Specifically, in Section 3, via a series of propositions, we prove the existence of a
representation of the noncommutative torus A1=� (� D q=r , q and r being coprime
positive integers) on the space of sections �.Er;q/ of a projectively flat Hermitian–
Einstein holomorphic vector bundle (or HE-vector bundle for short) Er;q of rank r and
degree q on a two-dimensional torus. This representation will actually preserve the
eigenspaces (“Landau levels”) of a natural Laplace operator (essentially, a quantum
harmonic oscillator), hence, in particular, its holomorphic sections, thereby recovering
the classical algebraic-geometric portrait. The vector bundle Er;q itself, in turn, can be
manufactured from a representation of A� on its typical fibre. Another representation
of A� on �.Er;q/, commuting with the representation of A1=� , is produced out of
the parallel transport pertaining to the Chern connection on Er;q . The above develop-
ments bring in a vivid portrait of the Fourier–Mukai–Nahm (FMN, [13, 15]) duality
between Er;q and Eq;r together with their respective Chern connections. Actually,
all objects, representations and bundles, will come in (torus-) families (moduli). In
Section 4, upon resorting to the well-known heat equation interpretation of theta func-
tions (described via the so-called Coherent State Transform (CST) of [8]) and further
insisting on a noncommutative torus perspective, we present a “matrix” description of
Matsushima’s theory making again the above duality manifest. Finally, we prove that,
as pre-C �-algebras (and for the unique C �-tensor product involved), Aq=r ˝ Ar=q

and A1=rq are isomorphic. This will be a byproduct of a “categorical” reinterpreta-
tion of Gauss sums identities also shedding light on Fourier–Mukai–Nahm transform
issues. Moreover, a vector analogue of the CST will be set up. The layout of the paper
is completed by Section 2 – gathering together background material from different
areas in order to fix notation and to pave the ground for the successive developments
in Sections 3 and 4 – and by Section 5, pointing out possible applications and further
research directions.

2. Preliminary tools

In this section, we establish our notation and collect several miscellaneous technical
tools for the benefit of a wider readership.

2.1. k-level theta functions and the Coherent State Transform

We begin by providing minimal background on k-level theta functions and on their
relationship with the heat equation closely following the exposition of [8] (see
also [25]) – up to slight notational changes – and referring to it for a complete treat-
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ment. We restrict to the genus one case, namely to an Abelian torus .M; �/, � 2 C,
Im � > 0.

Let us start from the following (tempered) distributions on S1

�0` .x/ D
X
n2Z

e2�i.`Ckn/x

with `D 0;1; : : : ; k � 1. They are mapped, via the so-called Coherent State Transform
(CST),

CST.�0` /.z/ D #`.z; �/ D
X
n2Z

e�i.`Ckn/.�=k/.`Ckn/e2�i.`Ckn/z

to the k-level theta functions. These, in turn, are interpreted as holomorphic sections
of the k-th power of the so-called Theta line bundle, and yield a basis thereof, as a con-
sequence of the Riemann–Roch theorem. A far reaching generalization for HE-vector
bundles has been developed by Matsushima [12] and his theory will be retrieved and
elaborated on in what follows.

2.2. Review of Matsushima’s theory

In this subsection, we outline Matsushima’s theory [12], tailoring the exposition to
our purposes and referring to [11], especially Chapter IV-7 and to [23, Section 3.2],
for background material. Here we just recall that an irreducible holomorphic vec-
tor bundle (i.e., without proper holomorphic direct summands) admits a HE-metric
if and only if it is stable in the algebraic-geometric sense: this is the celebrated
Kobayashi–Hitchin correspondence, fully established for compact Kähler manifolds
in [26]. HE-vector bundles are poly-stable, i.e., direct sums of stable bundles. In the
present work we shall consider the special class of HE-bundles consisting of pro-
jectively flat holomorphic vector bundles on complex tori, which are equipped with
a Hermitian metric whose corresponding canonical (Chern) connection has constant
curvature.

Let r and q be coprime positive integers, i.e., gcd.r; q/ D 1. Let V be a one-
dimensional complex vector space and let us consider a complex torus V=L where
L Š Z2 is a lattice. Let L0 � L be a complete sublattice of L. Specifically, if L D
h!1; !2i is the lattice generated by a (real) basis ¹!j ºjD1;2 of V , let L0 D hr!1; !2i
and

K WD L=L0 Š Zr ;

thus we have an r-covering of complex tori

' W V=L0 ! V=L:
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Let A be the Q-valued form defined by A.!1; !2/ D q=r , and A0 D rA the Z-valued
form fulfilling A0.!1; !2/ D q (the pull-back of A via '). The form A gives rise to a
HE-vector bundle Er;q ! V=L – of rank r and degree q – i.e., such that its canonical
(Chern) connection has constant curvature

� D �2�iA˝ IdEr;q . Correspondingly, one has a HE-line bundle E1;q ! V=L0,
the q-level theta line bundle over V=L0, related to the formA0. Let us denote, as usual,
byH 0.X;E/ the space of holomorphic sections of a holomorphic vector bundleE!
X , X being the base manifold, with dimension h0.X; E/. It is known (by Riemann–
Roch and the vanishing of H 1.X;E/ for tori) that

h0.V=L;Er;q/ D h
0.V=L0;E1;q/ D q;

thus the corresponding section spaces are (non-canonically) isomorphic. Now, given
an orthonormal basis ofH 0.V=L0;E1;q/made up by q-level theta functions ¹#mº

q�1
mD0,

one has, according to Matsushima, a splitting of '�Er;q ! V=L0 as

'�Er;q Š
M
�2K

.E1;q/�

where .E1;q/� is a translate of E1;q and any two different translates being non-iso-
morphic as holomorphic line bundles.

Therefore, one has an injective correspondence

M W H 0.V=L;Er;q/!
M
�2Zr

H 0.V=L0; .E1;q/� /

given by (picking an orthonormal basis ¹smº, m D 0; 1; : : : ; q � 1)

M W sm 7! vec.#m/ WD Œ.� � #m/�2Zr �

where the map vec arranges the translates of #m 2 H 0.V=L0; E1;q/ into a column
vector.

We do not spell out the action of � in the original Matsushima picture in detail,
since we shall essentially recover it anew in what follows, see Section 4.2.

2.3. The noncommutative torus

General references for the present subsection are, among others, [3,4,16]. Recall that
a C �-algebra A is a Banach �-algebra whose norm k�k satisfies ka�ak D kak2 for all
a 2 A. The algebra C.X/ of continuous functions on a locally compact topological
space X – vanishing at infinity if X is not compact – is a commutative C �-algebra,
with the product given by the pointwise product of functions, the involution � being
complex conjugation and k�k the supremum norm. If X is not compact, C.X/ will
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not possess an identity, which can nevertheless be adjoined, this corresponding to the
one-point compactification ofX . Conversely, according to the Gel’fand–Naimark the-
orem, any commutative C �-algebra A can be realized as C.�.A//, with �.A/ being
the spectrum of A, i.e., the set of maximal ideals 	 � A, equipped with the weak
�-topology. In C.X/, a maximal ideal is of the form 	x D ¹f 2 C.X/ j f .x/ D 0º,
where x 2 X . Therefore, the category of locally compact spaces and proper maps
is dual to the category of commutative C �-algebras and �-homomorphisms. In par-
ticular, a standard 2-torus T2 WD ¹.z1; z2/ 2 C2 j jzj j D 1; j D 1; 2º can be traded
for C.T2/, which is in turn generated, in view of Fourier theory, by the (unitary)
multiplication operators uj WD zj � acting on the Hilbert space L2.T2;m/, with m

the Lebesgue measure. “Deformation” of the above algebra produces what is called a
noncommutative torus. It is then possible to select the “smooth” part of it, akin to the
smooth functions on a manifold. This is done immediately below.

Let � 2 R. The noncommutative torus is the pre-C �-algebra A� consisting of
rapidly decaying series

a D

1X
n;mD�1

anmu
nvm; an;m 2 C

where u; v are unitary operators in a Hilbert space H satisfying the relation

vu D e2�i�uv: (1)

We have a natural smooth structure on A� given by the noncommutative integral

�.a/ D a00; a 2 A� ;

and noncommutative derivatives

@1.u
nvm/ D inunvm; @2.u

nvm/ D imunvm:

In the sequel, we shall take � 2Q, � > 0 and, ultimately, we shall deal with � D q=r ,
with q and r positive and coprime. Also, we notationally distinguish A� from its
C �-completion A� .

We remark from the outset that finite-dimensional irreducible unitary represen-
tations of A� exist, see, e.g., [4, 23]: indeed set � WD q=r , with q and r relatively
prime positive integers, and take u D diag.1; e.�/; e.2 � �/; : : : ; e..r � 1/ � �// and
v D matrix of the shift map ei ! ei�1, i D 1; 2; : : : ; r , e0 D er , with .e1; : : : ; er/
being the canonical basis of Cr and where we defined, for real x, e.x/ WD e2�ix . Then
(1) is satisfied; also notice that ur D vr D 1 (unit matrix), which entails irreducibility.

Proposition 3.3 below will show that (up to phase factors and unitary equiva-
lence) this is indeed the typical example. In Section 4 we shall present a distributional
realization of the Matsushima spaces carrying explicit noncommutative tori represen-
tations akin to the one just discussed.
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2.4. The Canonical Commutation Relations and the quantum harmonic
oscillator

In this subsection, we assemble basic information on the quantum harmonic oscilla-
tor and its relationship to the Canonical Commutation Relations and the associated
Stone–von Neumann theorem [27], referring to the comprehensive survey [21] for
elucidation of their modern ramifications.

Let us consider a representation of the Canonical (or Weyl–Heisenberg) Com-
mutation Relations (CCR) on a (necessarily infinite-dimensional) separable Hilbert
space H ,

ŒQ; P � D i111

(one degree of freedom), with Q and P (“position” and “momentum” operators,
respectively) unbounded self-adjoint operators on a suitable domain. In order to avoid
problems arising from the latter issue (see however [18, Section X.6], for amplifica-
tion and further use, together with [7]), the CCR are reformulated (Weyl) in integral
form,

U.a/V .b/ D eiabV.b/U.a/; a; b 2 R

with P and Q becoming the infinitesimal generators of the one parameter unitary
groups U.�/ and V.�/, respectively.

The quantum harmonic oscillator Hamiltonian reads

H D
1

2
.P 2 CQ2/ D A�AC

1

2
111 D

1

2
.A�AC AA�/

in terms of annihilation and creation operators

A D
1
p
2
.QC iP /; A� D

1
p
2
.Q � iP /

subject to the commutation relation

AA� � A�A D 111:

In the irreducible case, the spectrum of H only consists of simple eigenvalues
¹nC 1

2
º1nD0 and the n-th eigenspace Hn is generated by �n D .1=

p
nŠ/.A�/n�0, with

the ground state �0 fulfilling A�0 D 0. The operator A�A, namely, the Hamiltonian
without constant term (“zero-point energy”) is called the number operator.

In general the multiplicity of a representation of the CCR (phrased into Weyl’s
integral form) is given by k D dim H0: this is a version of the Stone–von Neumann
uniqueness theorem (see, e.g., [27]).
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2.5. Gauss sums

First of all, let us recall the celebrated Gauss sums (see [9, Section 5.6]):

S.�; r/ WD
X

0�`�r�1

e2�i`
2 �
r ;

for integers � and r , the latter different from zero, together with the well-known
multiplicative formula

S.�q; r/S.�r; q/ D S.�; rq/

valid for coprime integers r and q and any integer � (cf. [9, Theorem 64]).
Here is a quick outline of the proof. The right-hand side reads

rq�1X
kD0

e2�i
�
rq k

2

:

Now, upon exploiting the group isomorphism

Zr � Zq Š Zrq

stemming from the equation

q � Œ`�r C r � Œm�q D Œk�rq

which, given a residue class Œk� modulo rq, yields unique residue classes Œ`� modulo
r and Œm� modulo q (the converse being clear), we see that, setting k D `q Cmr (no
dependence on representatives), the right-hand side splits into the product appearing
in the left-hand side. Explicitly,

k2

rq
D
.`q Cmr/2

rq
D
`2q

r
C
m2r

q
C 2`m

and the last term in the right-hand side exponentiates to 1. Notice that the problem
of finding Œk�rq such that Œk�r D Œ`�r and Œk�q D Œm�q , with given classes Œ`�r and
Œm�q is solved via the Chinese Remainder Theorem: if a and b are integers such that
ar C bq D 1, then k D qb`C ram, see again [9, Theorem 121].

3. Representations of noncommutative tori and HE-vector bundles

In this Section, we reinterpret the Matsushima construction of holomorphic HE-vector
bundles over a two-dimensional torus C=ƒ – with lattice ƒ D h1; �i and Im � > 0 –
via representations of the two-dimensional noncommutative torus, see also [23]. This
will be unfolded through the following series of propositions.
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Proposition 3.1. Given � 2Q, � > 0, an irreducible representation of A� on a finite-
dimensional Hilbert space H produces a HE-vector bundle E� ! C=ƒ over a two-
dimensional torus C=ƒ, whereƒD h1; �i, Im.�/ > 0 with degree � dim.H / and rank
dim.H /.

Proof. Let u, v be unitary operators on a finite-dimensional Hilbert space H satisfy-
ing (1) (abuse of notation); then if 
 D nC �m 2 ƒ the function (theta multiplier)

J�1
 .z/ D e
��

Im.�/ .z
C
1
2 j
 j

2/e�i�nmu�nv�m; z D x C �y 2 C; 
 2 ƒ;

satisfying
J�1
Cı.z/ D J

�1

 .z C ı/J�1ı .z/;

defines a holomorphic vector bundleE with typical fibre H over the torus C=ƒ given
as the quotient

.C �H /=�

where
.z C 
; v/ � .z; J�1
 .z/v/;

v 2 H . Its (smooth) sections s W C ! H (collectively denoted by �.E/) are then
characterized by the following periodicity conditions:

s.z C 1/ D e
��

Im.�/ .zC
1
2 /u�.s.z//; s.z C �/ D e

��
Im.�/ .z�C

1
2 j� j

2/v�.s.z//: (2)

This can be ascertained via the following computation. Write

zs.z/ D sj .z/ej .z/

with ej .z/, j D 1; 2; : : : ; dimH a smooth frame (Einstein’s convention employed).
Then

zs.z/ D zs.z C 
/ D sj .z C 
/ej .z C 
/ D sj .z C 
/ŒJ�1
 .z/�ij ei .z/

whence
si .z C 
/ D ŒJ
 .z/�

i
j s
j .z/;

yielding (2).
On �.E/ we have a Hermitian structure .�j�/ given by

.sjs0/.z/ D hs.z/; s0.z/iHh.z/; h.z/ D e�
��

Im.�/ jzj
2

with Chern connection (the unique connection compatible with the Hermitian and the
holomorphic structure)

r D

�
d �

��

Im.�/
xzdz

�
˝ 111H



Generalized theta functions, projectively flat vector bundles and noncommutative tori 213

having constant curvature and Chern class

i

2�
r
2
D �! ˝ 111H ; c1.E/ D � dim.H /!

with
! D

i

2 Im.�/
dz ^ dxz:

Indeed, a short computation shows that, if Q WD ir @
@x

, P WD ir @
@x

, then

1

2�i
ŒQ;P � D �111�.E/:

Moreover, it is clear that the rank of E is c0.E/ D dim.H /.
This vector bundle will be our E� .

Proposition 3.2. The correspondence that assigns to each representation � of A�

the holomorphic vector bundle E� over the torus C=ƒ is functorial.

Proof. Let � WA� !B.H�/ and � WA� !B.H� / be two such representations and
let T W H� ! H� be an intertwining unitary map. Then the map on sections

 T W �.E�/! �.E� /

given by
. T .s//.z/ D T .s.z//

is an isomorphism of C1.T2/-modules. The above map is indeed well defined, i.e.,
it maps sections to sections,

. T .s//.z C nC � n/ D e
��

Im.�/ .z
C
1
2 j
 j

2/e�i�nmT�.u/�n�.v/�ms.z/

D e
��

Im.�/ .z
C
1
2 j
 j

2/e�i�nm�.u/�n�.v/�mT s.z/

D e
��

Im.�/ .z
C
1
2 j
 j

2/e�i�nm�.u/�n�.v/�m. T s/.z/:

Proposition 3.3. Let � W Aq=r ! B.H/ be an irreducible finite-dimensional repre-
sentation of the noncommutative torus Aq=r where r and q are positive and coprime.
Then, the dimension of H is r and �.u/ DW u, �.v/ DW v fulfill

ur D �111 and vr D �111;

for some �, � 2 S1.

Proof. Let u, v define a finite-dimensional irreducible representation of Aq=r on H

of dimension d . Let us write � WD q=r with gcd.r; q/ D 1. Taking the determinant
of vu D e2�i�uv we see that �d 2 Z. Also observe that, since ur and vr com-
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mute with the representation by Schur’s lemma, there is a constant � 2 S1 such that
ur D �111; therefore, the minimal polynomial of u, call it P , has to divide xr � �
and has degree at most r . Moreover, P satisfies vP .u/v� D P .ue2�i� / D 0 and
the polynomial Q.x/ D P .xe2�i� / must also satisfy Q.u/ D 0; thus, given a root
� of P we see that e2�i�� is a different root of it, whence the polynomial zP .x/ WD
.x � �/.x � e2�i=r�/ � � � .x � e2�i.r�1/=r�/ divides P and, having the same degree
as P , coincides with it. In particular, P .x/ D xr � �r . Let ' ¤ 0 be an eigenvec-
tor for u, then ¹unvm'ºr�1n;mD0 generate the whole Hilbert space, and one checks that
unvm' D �ne�2�inm�vm' so the dimension d of the Hilbert space H is at most r ,
and therefore equal to r .

Note that if s; t 2 S1 and sr 6D 1, t r 6D 1 then

u0 � � 0.u/ WD su D s�.u/; v0 � � 0.uv/ WD tv D t�.v/;

defines a second irreducible representation � 0 6Š � , since the minimal polynomial
of u0 is now given by u0r � sr�111 (notational abuse) and it is intrinsic to a representa-
tion.

Recall that two noncommutative tori A WD A# and B WD A# 0 are called dual, or
strongly Morita equivalent if there exists an A � B-bimodule E such that they are
each other’s endomorphism algebra, see, e.g., [20]. This is tantamount to require that
# and # 0 are on the same SL.2;Z/-orbit. It turns out that all rational noncommutative
tori are strongly Morita equivalent to C.T2/, the C �-algebra of continuous functions
on the torus T2 ([19]). This entails the following.

Corollary 3.1. Since A� is strongly Morita equivalent to the classical torus, its rep-
resentations are indexed by points in T2, so they all produce, topologically, the same
vector bundle.

Proof. Let � denote a finite-dimensional irreducible representation of the noncom-
mutative torus A� via operators u, v as above, then any other representation on the
same space is given by u0 WD �u, v0 WD �v, �; � 2 S1. Accordingly, we get another
theta character J 0 and a corresponding holomorphic vector bundle E 0, together with a
naturally induced isomorphism with E .

Proposition 3.4. Let � D q
r

, with q and r positive and coprime. Let � be an irre-
ducible representation of A� on a finite-dimensional Hilbert space H via operators
u, v, inducing as above a HE-vector bundle E� ! C=ƒ. Then, on the space yH con-
sisting of the L2-sections of E� and in particular on the holomorphic ones (i.e., the
Matsushima generalised (vector) theta functions) we have:

(i) a natural C �-representation of A� given by operators {u WD eiQ, {v WD eiP ;
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(ii) a natural C �-representation of A1=� given by operators yu, yv,

.yus/.z/ D e
��

Im.�/ .
�
�
z� 12 j

�
�
j2/s

�
z �

1

�
�

�
;

.yvs/.z/ D e
��

Im.�/ .
1
�
z� 12 j

1
�
j2/s

�
z �

1

�

�
;

that is, yu; yv are unitary operators satisfying yvyu D e2�i
1
� yuyv. The two repre-

sentations mutually commute.

Proof. Assertion (ii) being clear via a straightforward computation, let us elaborate
on (i). By virtue of Proposition 3.3, dim H D r , so we shall denote E� also as Er;q .
Then notice thatQ D ir @

@x
, P D ir @

@y
are symmetric and essentially self-adjoint on

�.Er;q/ since for all s, s0 2 �.Er;q/Z
C=ƒ

�
.r @

@x
sjs0/C .sjr @

@x
s0/
�
D

Z
C=ƒ

@

@x
.sjs0/ D 0

and similarly for r @
@y

. Essential self-adjointness ultimately follows from Nelson’s
analytic vector theorem, see, e.g., [18, X.6, together with Example 2]. Then, on the
same domain, we have

1

2�i
ŒQ;P � D � � 111 yH

and we shall check below that P and Q and hence r @
@xz
D �

�
2 Im.�/iQC

1
2 Im.�/iP

commute with yu; yv. So in the space yH we have operators satisfying

yvyu D e2�i
1
� yuyv;

U.a/V .b/ D e2�i�abV.b/U.a/; a; b 2 R

whereU.a/ D eiaP , V.b/ D eibQ (parallel transport operators along the fundamental
directions). In particular, setting {u WD V.1/ and {v WD U.1/ (caveat) we get

{v{u D e2�i� {u{v:

It is then enough to show that, on �.Er;q/,

ŒQ; yu� D 0 D ŒQ; yv�

and that the same relation holds forP . Let us start with the proof forQ. Let ˛ D ��
Im.�/ .

We have

�iQyvs.z/ D
@

@x
yvs.z/ � ˛zyvs.z/;

�iyvQs.z/ D yv
@s

@x
.z/ � ˛

�
z �

1

�

�
yvs.z/;
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so if .yvs/.z/ D eˇ.z/s.z � 1
�
/,

Œ�iQ; yv�s.z/ D

�
@

@x
; yv

�
s.z/ �

˛

�
yvs.z/ D

@ˇ

@x
eˇ s

�
z �

1

�

�
�
˛

�
eˇ s

�
z �

1

�

�
D 0:

Now, repeating the computation for P we find

�iP yvs.z/ D
@

@y
yvs.z/ � ˛�zyvs.z/;

�iyvP s.z/ D yv
@s

@y
.z/ � ˛�

�
z �

1

�

�
yvs.z/:

Thus

Œ�iP; yv�s.z/D

�
@

@y
; yv

�
s.z/� �

˛

�
yvs.z/D

@ˇ

@y
eˇ s

�
z �

1

�

�
� �

˛

�
eˇ s

�
z �

1

�

�
D 0:

In the same vein, if yus.z/ D e
s.z � �
�
/,

Œ�iQ; yu�s.z/ D

�
@

@x
; yu

�
s.z/ � ˛�

1

�
e
s

�
z �

�

�

�
D

�
@


@q
� ˛

�

�

�
e
s

�
z �

�

�

�
D 0;

Œ�iP; yu�s.z/ D

�
@

@y
; yu

�
s.z/ � ˛j� j2

1

�
e
s

�
z �

�

�

�
D

�
@


@y
� ˛
j� j2

�

�
e
s

�
z �

�

�

�
D 0

yielding the conclusion.

We may rephrase the previous result in the following manner.

Proposition 3.5. Within the above setting, we have a representation of the Heisenberg
group HD C � S1 with parameter � and a representation of the discrete Heisenberg
group Hr D ƒ � S

1 with parameter r

W.z; t/ D e2�it�ei��xyV.x/U.y/; z D x C �y 2 C;

yw.n; t/ D t rei��n1n2yvn1 yun2 ; n D n1 C � n2 2 ƒ

where the group structures are given, respectively, by

.z; t/.z0; t 0/ D .z C z0; t t 0ei�.x
0y�y0x//; z; z0 2 C; t; t 0 2 S1

and
.n; t/.n0; t 0/ D .nC n0; t t 0ei�

1
r .n
0
1
n2�n1n

0
2
//; n; n0 2 ƒ:
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These representations commute,

W.z; t/ yw.n; s/ D yw.n; s/W.z; t/

for all z; t; n; s.

We also notice the following consequence.

Proposition 3.6. We have yvq D �111 yH , yuq D �111 yH , where �; � 2 S1 are constants
given by ur D �111H , vr D �111H .

Proof. We find, successively

.yvqs/.z/ D e
��

Im.�/ .
1
�
.zC.z�1=�/�����.z�.q�1/=�//� q2 j

1
�
j2/s

�
z �

q

�

�
D e

��
Im.�/ .

1
�
.qz� q.q�1/

2�
/� q2 j

1
�
j2/s.z � r/

D e
��

Im.�/ .rz�
r2.q�1/
2q � r

2

2q /s.z � r/

D e
��

Im.�/ .rz�
r2

2 /s.z � r/

D e
��

Im.�/ .rz�
r2

2 /e
��

Im.�/ .�rzC
r2

2 /.ur/.s.z//

D �s.z/;

where we used (2) in the second to last equality. Similarly,

.yuqs/.z/ D e
��

Im.�/ .
�
�
.zC.z��=�/�����.z�.q�1/�=�//� q2 j

�
�
j2/s

�
z �

�q

�

�
D e

��
Im.�/ .

�
�
.qz� �q.q�1/

2�
/� q2 j

�
�
j2/s.z � � r/

D e
��

Im.�/ .r�z�
r2.q�1/j�j2

2q �
r2j�j2

2q /s.z � � r/

D e
��

Im.�/ .r�z�
r2j�j2

2 /s.z � � r/

D e
��

Im.�/ .r�z�
r2j�j2

2 /e
��

Im.�/ .�r�zC
r2j�j2

2 /.vr/.s.z//

D �s.z/:

Note that, in accordance with the Stone–von Neumann theorem, the represen-
tation W is not irreducible: indeed, by Riemann–Roch, its multiplicity is precisely
� dim.H / D .q=r/ � r D q, also cf. [22, 23].

Corollary 3.2. Each k-level theta line bundle over the two-dimensional torus pro-
duces an irreducible finite-dimensional representation of A� with � D 1=k.

In view of the preceding discussion (Section 2.4) on the harmonic oscillator we
have (with obvious and inessential notational changes), the following result.
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Proposition 3.7. Let � D .r@xz /
�r@xz � A

�A be the Laplacian on E� (the “number
operator”). Then its spectrum only consists of eigenvalues, whose eigenspaces are
finite-dimensional with the same dimension q and each carrying a representation of
A1=� D Ar=q (with generators yu, yv).

Remark 3.1. The above proposition, together with the preceding developments, re-
formulate and possibly improve (in the classical case) the celebrated results estab-
lishing the action of finite Heisenberg groups on spaces of theta functions (viewed
as holomorphic sections of line bundles on complex tori), see, e.g., [14] (especially
volume III) and [17] (cf. in particular, the remark in Section 3.1).

Proposition 3.8 (Bimodule structure). The HE-vector bundle Er;q ! C=ƒ (actually,
its space of smooth sections �.Er;q/) comes equipped with a A� �A�1=� bimodule
structure, where A� acts on the left by {u and {v, and A1=� acts on the right by yu and yv.

Proof. This is clear in view of the preceding discussion. The minus sign comes from
regarding yu and yv as acting on the right.

Remark 3.2. Regarding the above mentioned strong Morita equivalence between
A� and A�1=� , it would be interesting to explicitly compare the two algebra-valued
Hermitian structures involved, see, e.g., [20].

4. Gauss sums, vector theta functions and the FMN-transform

The above construction can be interpreted in terms of the so-called Fourier–Mukai–
Nahm (FMN*) transform (plus dualization) as in [23] (see, in particular, Section 4.3).
For background on the FMN-transform see, e.g., – in addition to the original sources
[13, 15] – the article [24] and the textbook [1].

Specifically, in view of Proposition 3.3, an irreducible representation � 0 of A1=�

on a finite-dimensional Hilbert space H 0 yields in turn, á la Matsushima, a HE-vector
bundle E1=� ! C=ƒ with rank q D dimH 0.E� / D dim H 0 and degree r (FMN*-
dual to E� ! C=ƒ) equipped with a Chern connection r 0 having constant curvature
and Chern class given respectively by

i

2�
r
02
D .1=�/!1H 0 ; c1.E 1

�
/ D .1=�/ dim.H 0/!:

The above connection can be also readily computed via noncommutative geometric
tools as in [23]. In general, the moduli dependence is governed by Proposition 3.6.

In the following sections, we shall reformulate the Matsushima approach by a
further enhancement of a noncommutative torus perspective and by enforcing FMN*
from the outset via a matrix portrait and by building upon the Coherent State Trans-
form of [8].
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4.1. ı-description of vector theta functions and Gauss sums

Let us consider coprime positive integers r and q, set, for x 2 S1,

ı
.q/

`
.x/ WD ıŒ.x � `=r/q�; ` D 0; 1; : : : ; r � 1:

If qD 1we simply write ı` instead of ı.q/
`

. From the (distributional) Fourier expansion
(involving a q-covering S1 ! S1 and, dually, the subgroup qZ � Z)

ı
.q/
0 .x/ D ı.qx/ D

X
n2Z

e2�inqx � F ı.q/ � �
.q/
0

one gets

ı
.q/

`
.x/ D

X
0�`0�r�1

e�2�i`
0` qr

X
n2Z

e2�i.`
0Crn/qx

D

X
0�`0�r�1

e�2�i`
0` qr �

.q/

`0
� a`

0

` �
.q/

`0

via the introduction of the (invertible) r � r matrix (cf. [8])

A WD .a`
0

` / D .e
�2�i`0` qr /

(Einstein’s convention is employed) relating the ı and (boundary) theta descriptions;
thus

TrA D
X

0�`�r�1

e�2�i`
2 q
r D S.q; r/;

i.e., a Gauss sum. Similarly (obvious notation, with y 2 S1), one has

ı.r/m .y/ WD ıŒ.y �m=q/r� D
X

0�m0�q�1

e�2�im
0m rq

X
n2Z

e2�i.m
0Cqn/ry

� bm
0

m �
.r/
m0

with a corresponding matrix

B WD .bm
0

m / D .e
�2�im0m rq /

with
TrB D

X
0�m�q�1

e�2�im
2 r
q D S.r; q/:

Then consider the tensor product distributions

ı
.q/

`
.x/ı.r/m .y/; x; y 2 S1:

Upon fixing m 2 ¹0; 1; : : : ; q � 1º, one has an obvious r-component column vector,
representing a model for the m-th Matsushima holomorphic section for the vector
bundle Er;q ! V=L. More precisely, we have (with a natural abridged notation), upon
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suitably reinterpreting Matsushima’s construction ([12, Section 8], and our previous
discussion on the CST in Section 2.1),

Eı�;m WD .ı0;m; ı1;m; : : : ; ır�1;m/
T
$ ı0;m:

The q columns thus obtained yield a basis for a q-dimensional Hilbert space Hq Š

H 0.V=L;Er;q/.
Similarly, fixing ` 2 ¹0; 1; : : : ; r � 1º, we get a row vector, giving rise to a model

for the `-th holomorphic section of the (FMN�) dual vector bundle Eq;r ! V=L,
namely,

Eı`;� WD .ı`;0; ı`;1; : : : ; ı`;q�1/$ ı`;0:

and the ensuing r rows yield a basis for an r-dimensional Hilbert space H r Š

H 0.V=L;Eq;r/.
Also, in view of the previous considerations (Section 2.5, we can naturally estab-

lish a bijective correspondence

ı
.q/

`
.x/ı.r/m .y/$ ık.z/ D ı.z � k=rq/; z 2 S1

(k 2 ¹0; 1; : : : ; rq � 1º), with the rq-level thetas, viewed as holomorphic sections of
the complex line bundle E1;rq ! V=L0.

Therefore, one finds a third matrix

C WD .ck
0

k D e
�2�ik0k 1rq /

with
TrC D

X
0�k�rq�1

e�2�ik
2 1
rq D S.1; rq/:

The above matrix is related to the former ones in the following way. Let us con-
sider the following rq-dimensional Hilbert spaces: H rq , generated by the orthonor-
mal basis ı.q/

`
.x/ı

.r/
m .y/, and Hrq , generated by the orthonormal basis ık.z/; we have

then a natural unitary transformation T W H rq ! Hrq

T .ı
.q/

`
ı.r/m / WD ık

whereby
T .�

.q/

`
� .r/m / D �k

as well (shorthand notation), this easily leading to

C D T .A˝ B/T �1:

Therefore, from

TrC D TrŒT .A˝ B/T �1� D Tr.A˝ B/ D TrA � TrB

we get a special case of the above multiplicative formula for Gauss sums with � D 1.
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Actually, the general formula is also obtained via the same technique, after intro-
ducing from the outset another �-covering S1! S1, resulting in an extra factor � in
the numerators of all arguments of the exponentials.

This may be viewed as a sort of categorification of Gauss sums in the sense that,
as numerical objects, they come from the multiplicativity of tensor product traces.

A variant of the above procedure consists in exploiting the (algebra) isomorphism
Mrq.C/ Š Mr.C/˝Mq.C/ via the elementary matrix bases Eij (i.e., the matrices
whose .i; j /-entry is 1 and all others are zero),

Ekk0 $ E``0 ˝Emm0

(abridged notation: k, k0 and so on are taken modulo the size of the respective matri-
ces).

Remark 4.1. A few words about the heuristics behind the above discussion are may-
be in order: upon formally multiplying the deltas labelled by ` and m after taking the
same argument x D y (this is an ill-defined object!), one has, for the product of their
Fourier series, after an obvious index relabelling, the (meaningless) expressionX

n;N2Z

e2�iŒ`qCmrCrqN�x (3)

which, upon discarding the sum in n, yields the distributional Fourier series express-
ing ı.z � k=rq/ – after changing x to z – with Œk�rq obeying the above equation.

4.2. Noncommutative torus aspects of the ı-formulation

Set (abridged notation) ı`m WD ı`ım and define, in H rq , for �, �, z�, z� 2 S1

Uı`m WD �ı`;m�1; Vı`m WD �e
�2�i mq ı`m

and
zUı`m WD z�ı`�1;m; zVı`m WD z�e

�2�i `r ı`m

(cyclic ordering understood: for instance, Uı`;0 WD �ı`;q et cetera). One has, upon
restriction to the spaces indicated, Uq D �q1Hq , Vq D �q1Hq , zUr D z�r1Hr , zVr D

z�r1Hr and subsequently

UV D e�2�i
1
qVU; zU zV D e�2�i

1
r zVzU:

Then define

Uı`m WD �ı`;m�1 D Uı`m; V ı`m WD �
re�2�i

r
qmı`m D Vrı`m;
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yielding
UV D e�2�i

r
qVU ;

that is, a representation of A1=� , � D q=r (cyclic ordering again understood), with
Uq D �q1Hq , V q D �rq1Hq . Similarly, upon setting

zUı`m WD z�ı`�1;m D zUı`m; zV ı`m WD z�
qe�2�i

q
r `ı`m D zV

qı`m;

we get
zU zV D e�2�i

q
r zV zU

(a representation of A� ), together with zU r D z�r1Hr , zV r D z�rq1Hr . These two rep-
resentations mutually commute (since they do not mix first and second subscripts)
and they are exchanged upon application of the FMN*-transform.

The action of the various operators involved can be cast in a more compact way
as follows: in Hq one has

U Eı�;m D �Eı�;m�1; V Eı�;m D �
re�2�i

r
qmEı�;m; m D 0; 1; : : : ; q � 1

with the “tilded” operators acting as the identity:

zU Eı�;m D Eı�;m; zV Eı�;m D Eı�;m; m D 0; 1; : : : ; q � 1:

A similar portrait, mutatis mutandis, holds in H r . Summarizing, we have the follow-
ing proposition.

Proposition 4.1. The above operators U , V realize a representation of Ar=q uni-
tarily equivalent to a representation induced by yu, yv in Proposition 3.4 above, after
restriction of the latter to the space of holomorphic sections of Er;q . An analogous
statement is true for the tilded operators and the FMN*-transformed bundle Eq;r .

Remark 4.2. Geometrically, the above “toric” families of representations correspond
to tensoring the initial holomorphic bundleE� !C=ƒwith the flat line bundle P�!

C=ƒ, the restriction of the Poincaré bundle to C=ƒ � ¹�º Š C=ƒ, where � D .�; �/
and similarly for E1=� ! C=ƒ. Also notice that the torus also classifies holonomies
of the different Chern connections, see also [23].

We recover the standard Matsushima correspondence involving the holomorphic
vector bundle Er;q ! V=L and the q-level theta line bundle E1;q ! V=L0 via the
Coherent State Transform CST through the following steps (obvious abridged nota-
tion), also setting � D z� D � D z� D 1 for simplicity. Indeed,

#j;m D CST.ıj;m/ D CST. zU j ı0;m/ D CST. zUj ı0;m/; j D 0; 1; : : : ; r � 1

whence
E#�;m WD .#j;m/

T
jD0;:::;r�1 DW CST.Eı�;m/$ #0;m:
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Actually, in this manner we have defined a vector version of the Coherent State Trans-
form:

C�T DM�1 ı vec ı CST ı F

mapping ı0;m 7! sm and spelled out as follows

ı0;m
F
7�! �0;m.x/

CST
7��! #0;m.z/

vec
7��! E#�;m.z/

M�1

7���! sm:

The notation M�1 is justified since M is injective and Im.vec/ � Im M. We may
recap the previous discussion via the isomorphism

H 0.V=L;Er;q/˝H
0.V=L;Eq;r/ Š H

0.V=L0;E1;rq/

induced by the correspondence

sm ˝ s` $ sk

where again
Œk�rq D qŒl�r C rŒm�q

and by further noticing the following “categorical” result.

Proposition 4.2. Under the above assumptions, we have

A1=rq Š Aq=r ˝Ar=q:

Proof. First observe that noncommutative tori are nuclear C �-algebras, so their C �-
tensor product appearing in the right-hand side is uniquely determined ([3]). Then,
starting from

uv D e�2�i
r
q vu

and
zuzv D e�2�i

q
r zvzu

(all tilded operators commuting with untilded ones), define (same notation as before:
k D `q Cmr and so on)

Uk
WD umzu`; Vk0

WD vm
0

zv`
0

:

A straightforward computation then yields

UkVk0
D e�2�i

kk0

rq Vk0Uk :

The above reasoning is clearly invertible, achieving the sought for conclusion.
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Remark 4.3. Upon further requiring that uq D vq D 1 and zur D zvr D 1, we get
Urq D V rq D 1 (with 1 the identity in the respective algebras).

Also notice that, at the vector bundle level, this reflects an operation (denoted
by ?)

Er;q ? Eq;r D E1;rq:

casting light on FMN-duality via a “Gauss” perspective.

5. Conclusions and outlook

In this paper, we used complex algebraic-geometric and noncommutative geometric
techniques in order to understand and possibly enhance, at least in the classical case
(i.e., on the complex field) the relationship between theta functions and Heisenberg
groups. Our research is strongly motivated by the Quantum Hall Effect as well: the
symmetry � $ 1=� discussed in the paper may ultimately lead to an explanation of
the duality occurring between Hofstadter’s and Harper’s regimes, see, e.g., [5]. Also,
our results may help in providing a clear-cut mathematical formulation of the impor-
tant Laughlin gauge principle for a toral configuration, see, e.g., the comprehensive
review [10]. Finally, instances of the vector bundles dealt with in the present paper
also appear in the works [5, 6], devoted to a far reaching generalization of the TKNN
equations. These questions will be possibly tackled elsewhere.
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